More stories

  • in

    Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).
    Google Scholar 
    Karl, D. M. et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Res. Part II Top. Stud. Oceanogr. 43, 539–568 (1996).CAS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Quay, P. D. The subtropical ocean’s biological carbon pump determined from O2 and DIC/DI13C tracers. Geophys. Res. Lett. 46, 5361–5368 (2019).
    Google Scholar 
    Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, 1–22 (2022).
    Google Scholar 
    Chávez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger? Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 
    Signorini, S. R., Franz, B. A. & McClain, C. R. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1–11 (2015).
    Google Scholar 
    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).CAS 

    Google Scholar 
    Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).CAS 

    Google Scholar 
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).
    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).CAS 

    Google Scholar 
    Behrenfeld, M. Uncertain future for ocean algae. Nat. Clim. Chang. 1, 33–34 (2011).CAS 

    Google Scholar 
    Flombaum, P. & Martiny, A. C. Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnol. Oceanogr. 66, 4171–4181 (2021).
    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 10, 1063–1085 (1972).
    Google Scholar 
    Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature. Rev. Microbiol. 5, 813–819 (2007).CAS 

    Google Scholar 
    van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–8 (2020).
    Google Scholar 
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    Google Scholar 
    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 21, 1025–1040 (2015).PubMed 

    Google Scholar 
    Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Skau, L. F., Andersen, T., Thrane, J.-E. & Hessen, D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 5, e3743 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fernández‐González, C. et al. Effects of temperature and nutrient supply on resource allocation, photosynthetic strategy and metabolic rates of Synechococcus sp. J. Phycol. 56, 818–829 (2020).PubMed 

    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2020).
    Google Scholar 
    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).PubMed 

    Google Scholar 
    Davey, M. et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53, 1722–1733 (2008).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).CAS 
    PubMed 

    Google Scholar 
    Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).CAS 
    PubMed 

    Google Scholar 
    Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. G. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Res. Part I Oceanogr. Res. Pap. 45, 1339–1355 (1998).
    Google Scholar 
    Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
    Google Scholar 
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
    Google Scholar 
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).CAS 

    Google Scholar 
    Visintini, N., Martiny, A. C. & Flombaum, P. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnol. Oceanogr. Lett. 6, 207–215 (2021).
    Google Scholar 
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    Google Scholar 
    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Google Scholar 
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 

    Google Scholar 
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).CAS 

    Google Scholar 
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    Berthelot, H., Duhamel, S., L’Helguen, S., Maguer, J. F. & Cassar, N. Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean. Limnol. Oceanogr. 66, 3682–3696 (2021).CAS 

    Google Scholar 
    Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).
    Google Scholar 
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    Google Scholar 
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    PubMed 

    Google Scholar 
    Babin, S. M., Carton, J. A., Dickey, T. D. & Wiggert, J. D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 109, 1–21 (2004).
    Google Scholar 
    Walker, N. D., Leben, R. R. & Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, 1–5 (2005).
    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Chang. Biol. 24, 2239–2261 (2018).PubMed 

    Google Scholar 
    Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).CAS 
    PubMed 

    Google Scholar 
    Marañón, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50, 299–310 (2005).
    Google Scholar 
    Halsey, K. H. & Jones, B. M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7, 265–297 (2015).
    Google Scholar 
    Quevedo, M. & Anadón, R. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221, 29–38 (2001).
    Google Scholar 
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Google Scholar 
    Landry, M. R. & Hassett, R. P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283–288 (1982).
    Google Scholar 
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Google Scholar 
    Cermeño, P. et al. Marine primary productivity is driven by a selection effect. Front. Mar. Sci. 3, 1–10 (2016).Browning, T. J. et al. Nutrient co-limitation in the subtropical Northwest Pacific. Limnol. Oceanogr. Lett. 7, 52–61 (2022).
    Google Scholar 
    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).
    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Geider, R. J. Light and temperature dependence of the carnon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. N. Phytol. 106, 1–34 (1987).CAS 

    Google Scholar 
    Maxwell, D. P., Laudenbach, D. E. & Huner, N. P. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109, 787–795 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, H. J., Sui, Y., Tang, D. L. & Afanasyev, Y. D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 128, 138–145 (2013).
    Google Scholar 
    Zhang, H., He, H., Zhang, W. Z. & Tian, D. Upper ocean response to tropical cyclones: a review. Geosci. Lett. 8, 1–12 (2021).
    Google Scholar 
    Lin, I. et al. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1–4 (2003).Chai, F. et al. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 18, 849–859 (2021).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Somero, G. N. Adaptation of enzymes to temperature: Searching for basic ‘strategies’. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 139, 321–333 (2004).PubMed 

    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends Ecol. Evol. 37, 20–29 (2022).PubMed 

    Google Scholar 
    Staehr, P. A. & Birkeland, M. J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45, 648–656 (2006).
    Google Scholar 
    Morán, X. A. G., Calvo-Díaz, A., Arandia-Gorostidi, N. & Huete-Stauffer, T. M. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ. Microbiol. 20, 3798–3810 (2018).PubMed 

    Google Scholar 
    Courboulès, J. et al. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 55, 647–666 (2021).
    Google Scholar 
    López-Sandoval, D. C., Duarte, C. M. & Agustí, S. Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol. Oceanogr. 66, 2923–2935 (2021).
    Google Scholar 
    Landry, M. R., Selph, K. E., Hood, R. R., Davies, C. H. & Beckley, L. E. Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10 °C temperature gradient in the oligotrophic Indian Ocean. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10224 (2021)Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).CAS 

    Google Scholar 
    Fernández-González, C. & Marañón, E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Marañón, E. et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56 (2001).
    Google Scholar 
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 1–18 https://doi.org/10.1111/1365-2435.13986 (2021).Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).
    Google Scholar 
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).CAS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
    Google Scholar 
    Fofonoff, N. P. & Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44, 1–53 (1983).
    Google Scholar 
    Becker, S. et al. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.581790 (2020).Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. 8, 1–24 (2021).Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees

    The bee health modelThe conceptual model of the interactions of various stressors with honey bee health is described by the following system of ordinary differential equations (ODEs)$${{tau }_{{HB}}dot{x}}_{{HB}}= {-{delta }_{{HB}}x}_{{HB}}+{g}_{{TC}}left({x}_{{TC}}right)+{g}_{{VA}}left({x}_{{VA}}right)+{g}_{{VI}}left({x}_{{VI}}right) \ +{bar{f}}_{S,C}left({u}_{S},{u}_{C},{x}_{{TC}},{x}_{{VA}}right)+{bar{f}}_{P}left({u}_{P},{x}_{{TC}}right)+{underline{f}}_{{HB}}left({u}_{T}right)$$
    (1)
    $${{tau }_{{TC}}dot{x}}_{{TC}}={-{delta }_{{TC}}x}_{{TC}}+{g}_{{HB}}left({x}_{{HB}}right)$$
    (2)
    $${{tau }_{{VA}}dot{x}}_{{VA}}={-{delta }_{{VA}}x}_{{VA}}+{h}_{{VA}}left({{x}_{{HB}},x}_{{TC}},varepsilon {x}_{{VI}}right)+{underline{f}}_{{VA}}left({u}_{T}right)$$
    (3)
    $${{tau }_{{VI}}dot{x}}_{{VI}}={-{delta }_{{VI}}x}_{{VI}}+{h}_{{VI}}left({{x}_{{HB}},x}_{{TC}},{varepsilon x}_{{VI}}right)$$
    (4)
    for the state variables ({x}_{{HB}}) representing honey bee health, ({x}_{{TC}}) the stress due to toxic compounds (e.g., neonicotinoid insecticides), ({x}_{{VA}}) the stress due to parasites (e.g., V. destructor) and ({x}_{{VI}}) the stress due to pathogens (e.g., DWV). The system includes the effects of external inputs as sugar ({u}_{S}), pollen ({u}_{P}), absolute deviation from desired temperature ({u}_{T}) and sub-optimal temperature ({u}_{C}). All the inputs and possible parameters are non-negative; the coefficients (tau) denote the time constants; the coefficients (delta) denote the self-regulation parameters; (varepsilon) in the last two equations allows to account for pathogens that can ((varepsilon , > , 0)) or cannot ((varepsilon=0)) impair the immune system (through link m in Fig. 1). We assume that the functions (g) are smooth, bounded, positive, convex and decreasing to 0; the functions (bar{f}) are smooth, bounded, non-negative, concave and increasing with respect to (w.r.t.) (u) arguments (vanishing only when the first (u) argument vanishes) while convex and decreasing to 0 w.r.t. (x) arguments; the functions ({underline{f}}) are smooth, bounded, non-positive and decreasing (vanishing only when (u=0)); the functions (h) are smooth, bounded, positive, convex and decreasing to 0 w.r.t. the first argument while concave and increasing w.r.t. all the other arguments. For a detailed description of the various functions, together with a summary of the biological effects they account for and a reference to the conceptual model in Fig. 1, see Supplementary Table 3.Structural analysis of the bee health modelWe describe here the structural considerations and computations that yield the structural influence matrix for the honey bee health system.The structural influence matrix (M) is defined as follows. (M) is a symbolic matrix with entries ({M}_{{ij}}) chosen among: +,−,0,?, according to the criteria described below. Consider an equilibrium point (bar{x}) and a constant perturbation (u) applied on the (j)-th system variable (small enough not to compromise the stability of the equilibrium). The equilibrium value will be modified as (bar{x}+delta bar{x}). Consider the sign of the perturbation of the (i)-th variable, (delta bar{{x}_{i}}). Then ({M}_{{ij}}) = + if (delta bar{{x}_{i}}) always has the same sign as (u); ({M}_{{ij}}=) − if (delta bar{{x}_{i}}) always has the opposite sign as (u); ({M}_{{ij}}) = 0 if always (delta bar{{x}_{i}}=0); regardless of the system parameters. Conversely, if the sign does depend on the system parameters, we set ({M}_{{ij}}) = ?.In this section we prove that the influence matrix of the honey bee health system is structurally determined, i.e., there are no “?”‘ entries in (M).We start with the following proposition.
    Proposition 1
    Assume that a matrix
    (J)
    is Hurwitz stable (i.e., all its eigenvalues have negative real part) and has the sign pattern
    $${sign}left(Jright)=left[begin{array}{cccc}- & – & – & -\ – & – & 0 & 0\ – &+& – &+\ – &+& 0 & -end{array}right]$$
    Then, the sign pattern of
    ({adj}left(-Jright))
    , the adjoint of
    (-J)
    , is
    $${sign}left({adj}left(-Jright)right)=left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$
    Proof To prove the statement, we just change the sign of the first variable, hence we change sign to the first row and column of matrix (J). The resulting matrix (M) is such that$${sign}left(Mright)=left[begin{array}{cccc}- &+&+&+\+& – & 0 & 0\+&+& – &+\+&+& 0 & -end{array}right]$$We observe that (M) is a Metzler matrix, namely, all its off-diagonal entries are non-negative. Moreover, the matrix is Hurwitz stable. Then, we can proceed as in the proof of Proposition 4 in a previous report16. Given a Metzler matrix that is Hurwitz stable, its inverse has non-positive entries; hence, the inverse of (-M) has non-negative entries: ({left(-Mright)}^{-1}ge 0) elementwise. Moreover, we observe that(,M) is an irreducible matrix, i.e., there is no variable permutation that brings the matrix in a block (either upper or lower) triangular form. This implies that the inverse of (-M) has strictly positive entries: ({left(-Mright)}^{-1} , > , 0) elementwise. Also, stability implies that the determinant of (-M) is positive: ({det }left(-Mright) , > , 0). Then, ({adj}left(-Mright)={left(-Mright)}^{-1}{det }left(-Mright) > 0), hence the adjoint of (-M) is also positive elementwise. To consider again the original sign of the variables, we change sign to the first row and column of ({adj}left(-Mright)), and we get the signature above for ({adj}left(-Jright)).The next step is the characterization of the structural influence matrix, which corresponds to the sign pattern of the adjoint of the negative Jacobian matrix in Proposition 1.To this aim, we first consider the linearized system and write it in a matrix-vector form$$dot{x}left(tright)={Jx}left(tright)+{e}_{j}u$$where (dot{x}left(tright)) is the time derivative of the four-dimensional vector (xleft(tright)) and ({e}_{k}), (k={{{{mathrm{1,2,3,4}}}}}), is an input vector, constant in time, with a single non-zero component, the (k)-th, equal to 1, while the scalar (u , > , 0) is the magnitude of the input. We wish to assess the (i)-th component of (xleft(tright)), ({x}_{i}left(tright)={e}_{i}^{T}xleft(tright)). If (J) is Hurwitz, as assumed, the steady-state value of variable ({x}_{i}left(tright)) due to the input perturbation ({e}_{k}) applied to the equation of variable ({x}_{k}left(tright)) is achieved for$$0=Jbar{x}+{e}_{k}u,$$namely$${x}_{i}=-{e}_{i}^{T}{J}^{-1}{e}_{k}u,$$which implies that the sign of the steady-state value ({bar{x}}_{i}) of variable ({x}_{i}) due to a persistent positive input acting on the (k)-th equation has the same sign as ({(-{J}^{-1})}_{{ik}}), the (left(i,kright)) entry of matrix ({left(-Jright)}^{-1}). Since we assume Hurwitz stability, we have that ({det }left(-Jright)) is positive, hence the sign pattern of the inverse ({left(-Jright)}^{-1}) corresponds to the sign pattern of the adjoint, ({adj}left(-Jright)). In fact, ({adj}left(-Jright)={left(-Jright)}^{-1}{det }left(-Jright)).We next consider the nonlinear system under investigation, which we write in the form$$dot{x}left(tright)=fleft(xleft(tright)right)$$and without restriction we assume that the zero vector is an equilibrium point: (0=fleft(0right)). This condition can be always achieved, without loss of generality, by a translation of coordinates. We also consider a stable equilibrium: we assume that the linearized system at the equilibrium is asymptotically stable, namely its Jacobian (J), which has the sign pattern considered in Proposition 1 above, is Hurwitz. We also assume that a constant input perturbation of magnitude (u) is applied to the system, affecting the (k)-th equation, i.e.,$$dot{x}left(tright)=fleft(xleft(tright)right)+{e}_{k}u,$$and that the perturbation is small enough to keep the state in the domain of attraction of the considered equilibrium. Due to this perturbation, a new steady state (bar{x}left(uright)) is reached that satisfies the condition$$0=fleft(bar{x}left(uright)right)+{e}_{k}u$$To determine the sign of the new equilibrium components (bar{x}left(uright)), we consider this new equilibrium vector as a function of (u) in a small interval (left[0,{x}_{{MAX}}right]). Adopting the implicit function theorem yields$$frac{d}{{dx}}bar{x}left(uright)=-J{left(uright)}^{-1}{e}_{k}u,$$where we have denoted by (Jleft(uright)) the Jacobian matrix computed at the perturbed equilibrium (bar{x}left(uright)). Hence, for (u) small enough, the sign of the derivatives of the entries of the new, perturbed equilibrium are, structurally, the same as those in the (k)-th column of matrix (-{J}^{-1}). Since, by construction, (xleft(0right)=0), this is also the sign of the elements of vector (bar{x}left(uright)), for (u) in the interval (left[0,{x}_{{MAX}}right]).We have therefore proved that the original nonlinear system describing honey bee health admits the following structural influence matrix:$$left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$System equilibriaThe results concerning the system equilibria were obtained through a standard analytical treatment of the nonlinear equations describing the equilibrium conditions of the system of differential Eqs. (1), (2), (3), (4). A detailed description of methods is reported in Supplementary Methods.Laboratory experiments using honey beesTo confirm the bistability of the system representing honey bee health as affected by multiple stressors, we used data from several survival experiments, carried out in a laboratory environment according to the same standardized method, over a 6-year period (Source data file).All experiments involved Apis mellifera worker bees, sampled at the larval stage or before eclosion, from the hives of the experimental apiary of the University of Udine (46°04′54.2″N, 13°12′34.2″E). Previous studies indicated that the local bee population consists of hybrids between A. mellifera ligustica and A.m. carnica62,63. Ethical approval was not required for this study.We considered experiments on the effect of the following stressors: infection with 1000 DWV genome copies administered through the diet before pupation, feeding with a 50 ppm nicotine in a sugar solution at the adult stage, exposition to a sub-optimal temperature of 32 °C at the adult stage. All experiments were replicated 3 to 13 times, using, in total, the number of bees reported in Table 1.For the artificial infection with DWV, we collected with soft forceps individual L4 larvae from the brood cells of several combs. Groups of 20–30 of such larvae were placed in Petri dishes with an artificial diet made of 50% royal jelly, 37% distilled water, 6% glucose, 6% fructose, and 1% yeast. 25 DWV copies per mg of diet were added or not to the diet according to the experimental group (note that a bee larva at this stage consumes about 40 mg of larval food per day, thus the viral infection per bee was 1000 viral copies). After 24 h larvae were transferred onto a piece of filter paper to remove the residues of the diet and then into a clean Petri dish, where they were maintained until eclosion. At the day of emergence, bees were transferred to plastic cages in a thermostatic cabinet, where they were kept until death. The DWV extract was prepared according to previously described protocols64 and quantified according to standard methods.For the treatment with nicotine, 10 µL of pure nicotine were added to 200 g of the sugar solution used for the feeding of the caged bees, to reach the concentration of 50 ppm.Finally, to expose bees to a 32 °C temperature, the plastic cages with the adult bees were kept in a thermostatic cabinet whose temperature was set accordingly.To monitor the survival of the adult bees treated as above, they were maintained from eclosion until death in plastic cages in a dark incubator at 34.5 °C (or 32 °C, according to the experiment), 75% R.H.; two syringes were used to supply a sugar solution made of 2.4 mol/L of glucose and fructose (61% and 31%, respectively) and water, respectively; dead bees were counted daily.All the results of these experiments are reported in Source data file.All experiments were carried out during the summer months, from June to September for 6 consecutive years. Previous data indicated that, in this region, virus prevalence increases along the active season starting from very low levels in spring and reaching 100% of virus-infected honey bees by the end of the summer; virus abundance in infected honey bees follows a similar trend28. For this reason, it can be assumed that bees sampled early in the season are either uninfected or they bear only a very low viral infection level, whereas bees sampled later in the season are likely to be virus-infected, bearing moderate to high viral infections. To confirm this assumption and identify a method for filtering our data according to viral infection, we assessed viral infection in a sample of bees from the untreated control group of each experiment, by means of qRT-PCR. According to standard practice, we assumed that Ct values below 30 are indicative of an effective viral infection, whereas Ct above that threshold are more likely in virus negative bees. As expected, we found that virus prevalence increases from June to September (Supplementary Figure 1a), in such a way that up to mid July only the minority of bees can be considered as viral infected (Supplementary Figure 1b). Therefore, we classified as “early” all the samples collected up to mid July and assumed that viral infection in those samples was low; on the other hand, samples collected from mid July till September were classified as “late” and we assumed that viral infection in those samples was high.qRT-PCR analysis of viral infection was carried out as follows. At the beginning of every experiment (i.e., at day 0), two to five bees for each replication were sampled in liquid nitrogen and transferred in a −80 °C refrigerator. After defrosting of samples in RNA later, the gut of each honey bee was eliminated to avoid the clogging of the mini spin column used after. The whole body of sampled bees was homogenized using a TissueLyser (Qiagen®, Germany). Total RNA was extracted from each bee according to the procedure provided with the RNeasy Plus mini kit (Qiagen®, Germany). The amount of RNA in each sample was quantified with a NanoDrop® spectrophotomer (ThermoFisher™, USA). cDNA was synthetized starting from 500 ng of RNA following the manufacturer specifications (PROMEGA, Italy). Additional negative control samples containing no RT enzyme were included. DWV presence was verified by qRT-PCR considering as positive all samples with a Ct value lower than 30. The following primers were adopted: DWV (F: GGTAAGCGATGGTTGTTTG, R: CCGTGAATATAGTGTGAGG65). 10 ng of cDNA from each sample were analyzed using SYBR®green dye (Ambion®) according to the manufacturer specifications, on a BioRad CFX96 Touch™ Real time PCR Detector. Primer efficiency was calculated according to the formula (E={10}^{left(-1/{{{{{{rm{slope}}}}}}}-1right)*100}). The following thermal cycling profiles were adopted: one cycle at 95 °C for 10 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, and one cycle at 68 °C for 7 min.Individual survival and colony stabilityTo investigate how the death rate of forager bees affects colony growth, a compartment model of honey bee colony population dynamics was proposed50. This model showed that death rates over a critical threshold led to colony failure. Here we modified this model to include premature death of bees at younger age, as predicted by our model of individual bee health in the presence of an immuno-suppressive virus. We show that the critical threshold found in the previously published model50 becomes a decreasing function of the death rate of the younger individuals, so that premature death (and, in turn, immune-suppression) favors colony collapse.In more details, we first summarize the results of the previously published model50 where two populations (F) (forager) and (H) (hive) of bees are considered and where conditions are provided on the mortality (m) of (F) under which the whole population collapses: namely, mathematically stated, the system admits the zero equilibrium only. Here we extend the model partitioning (H) in two categories, (Y) (younger hive bees) and (O) (older hive bees), asintroducing an early mortality factor (n) for the young population, showing how such a factor worsens the collapsing condition.The previously published model50 concerns the interaction between hive bees (H) and forager bees (F) and is described by the ODEs$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Above, (L) is the queen’s eggs laying rate, (w) is the rate at which (L) is reached as the total population (H+F) gets large, (alpha) is the maximum rate at which hive bees become forager bees in the absence of the latter, (sigma) measures the reduction of recruitment of hive bees in the presence of forager bees and, finally, (m) is the death rate of forager bees (while the death rate of hive bees is assumed to be negligible).We first summarize the main results in terms of a threshold value for (m) in view of colony collapse, as our further analysis will follow a similar approach. All the parameters are assumed to be positive.The search for the equilibria of the above ODEs leads to the unique nontrivial equilibrium (beyond the trivial one)$$bar{H}=frac{L}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for$$J=Jleft(mright):=frac{alpha -sigma -m+sqrt{{left(alpha -sigma -mright)}^{2}+4malpha }}{2m}.$$Note that (J) is alway positive (and, moreover, it is independent of (L) and (w)). It follows that (bar{F}) and (bar{H}) have the same sign, so that the existence of the nontrivial equilibrium is equivalent to (bar{F}+bar{H} , > , 0). It is not difficult to recover that$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)$$where (l:=L/w) is introduced for brevity. Then if (alpha le l) we get$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)ge frac{w}{m}left(alpha frac{1+J}{J}-mright)=frac{w}{m}left(sigma+{mJ}right) , > , 0,$$with the last equality following from$$alpha -sigma frac{J}{1+J}-{mJ}=0,$$which in turn comes from annihilating the right-hand side of the second ODE and from using (J=bar{F}/bar{H}) while searching for equilibria. We conclude that, independently of (m), the colony never collapses if the recruitment rate (alpha) of forager bees is sufficiently low.Hence, we assume (alpha , > , l). Observe that$$bar{F}+bar{H}iff l , > , Jleft(m-lright)$$guarantees existence whenever (m) is sufficiently small, viz. (mle l). Assume then (m , > , l), so that the above condition reads$$J , < , frac{l}{m-l}$$leading to the threshold condition$$m , < , bar{m}:=frac{l}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma l}}{alpha -l}$$by using the definition of (J), see Eq. (2) the previously published model50.A standard stability analysis shows that, assuming (alpha,m , > , l), the nontrivial equilibrium is (globally) asymptotically stable whenever it exists (positive), i.e., whenever (m , < , bar{m}). Otherwise, the only (globally) attracting equilibrium is the trivial one, corresponding to colony collapse (see Fig. 5 for the previously published model50 or Fig. 4 for (n=0)). In the mathematical jargon, the disappearance of the positive equilibrium, for (m) exceeding (bar{m}), is referred to as a transcritical bifurcation43.Now, in view of the outcome of the analysis of our model of individual bee health, we introduce a mortality term for the younger bees. As forager bees are recruited from adult hive bees, we divide the class of hive bees (H) in younger (Y) and older (O), assuming that the former die at a rate (n), while the death rate of the latter remains negligible according to the previously published model50. Obviously, (H=Y+O). The original ODEs are consequently modified as$$dot{Y}=Lfrac{H+F}{w+H+F}-Y$$$$dot{O}=left(1-nright)Y-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Note that the sum of the first two equations above gives$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)-{nY}.$$The new negative mortality term for younger hive bees, (-{nY}), models the fact that only the younger hive bees die prematurely while the rest of the dynamics is unchanged with respect to the original model.The search for equilibria soon gives$$bar{Y}=Lfrac{bar{H}+bar{F}}{w+bar{H}+bar{F}}$$from the first ODE above, so that the remaining two equilibrium conditions lead to$$bar{H}=frac{{L}_{n}}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for the same (J) originally defined and ({L}_{n}:=Lleft(1-nright)) (note that (nin left({{{{mathrm{0,1}}}}}right)), and the case (n=0) brings us back to the original model). From this point on the analysis is the same as that previously summarized for the original model, but for replacing (L) with ({L}_{n}) and (l) with (l:=lleft(1-nright)). Consequently, by assuming (alpha,m , > , {l}_{n}) (which is less restrictive when (n , > , 0)), the threshold condition (m < bar{m}) becomes$$m , < , bar{m}left(nright):=frac{{l}_{n}}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma {l}_{n}}}{alpha -{l}_{n}},$$which clearly returns the original threshold condition when (n=0). Since$$frac{dbar{m}}{{dn}}left(nright) , < , 0$$as it can be immediately verified, it follows that the critical value for (m), (bar{m}left(nright)), beyond which the colony system admits only the zero equilibrium, i.e., the transcritical bifurcation value, decreases with (n) (Fig. 4). We thus conclude that colony collapse is favored by the premature death of younger hive bees, possibly caused by a virus impairing the immune system as shown by the analysis of our model of individual bee health.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands

    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Population genomics of barn owls in the Western Parlearctic; NCBI bio project PRJNA727977; https://doi.org/10.1093/molbev/msab343Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, and Goudet J (2021) Population genomics of barn owls in the British Isles; NCBI bio project PRJNA700797; https://doi.org/10.1111/mec.16250Anguita F and Hernán F (2000) The Canary Islands origin: A unifying model. J Volcanol Geotherm Res 103:1–26. Elsevier B.VAstle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 167:1415–1429.e19. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58:1891–1900. Society for the Study of EvolutionPubMed 
    Article 

    Google Scholar 
    Bannerman DA (1963) Birds of the Atlantic Islands. Vol. 1. A history of the birds of the Canary Islands and of the Salvages. Oliver & BoydBirdLife International (2019) The IUCN Red List of Threatened Species. Version 6.2Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri R, Antoniazza S, Gaigher A, Ducrest A-L, Simon C, Fumagalli L, Goudet J, Roulin A (2016) The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70:140–153PubMed 
    Article 

    Google Scholar 
    Carine MA, Humphries CJ, Guma IR, Reyes-Betancort JA, Santos Guerra A (2009) Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. J Biogeogr 36:593–611Article 

    Google Scholar 
    Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJ, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, Astle WJ, Evangelou E, van Heel DA, Sankaran VG, Okada Y, Soranzo N, Johnson AD, Reiner AP, Auer PL, Lettre G (2020) Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182:1198–1213.e14CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements JF, Schulenberg TS, Iliff MJ, Billerman SM, Fredericks TA, Sullivan BL, and Wood CL (2019) The eBird/clements checklist of birds of the world: v2019Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 23:3133–3157PubMed 
    Article 

    Google Scholar 
    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Landscape and climatic variations of the Quaternary shaped multiple secondary contacts among barn owls (Tyto alba) of the Western Palearctic. Mol Biol Evol, msab343, https://doi.org/10.1093/molbev/msab343.Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darre MJ, Harrison PC (1987) Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb White Leghorn hens during an acute exposure to 35 C ambient temperature. Poult Sci 66:541–547CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen AK, Pihur V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia-Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lyytikäinen LP, Fava C, Eriksson N, Nolte IM, Magnusson PK, Salfati EL, Rallidis LS, Theusch E, Smith AJP, Folkersen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Balkau B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Bjornsdottir G, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC, Chang IS, Cheng CY, Chines PS, Chung RH, Collins FS, Connell JM, Döring A, Dallongeville J, Danesh J, De Faire U, Delgado G, Dominiczak AF, Doney ASF, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrières J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Franco OH, Franco-Cereceda A, Fraser RM, Ganesh SK, Gao H, Gertow K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Gräßler J, Groves CJ, Gudnason V, Gyllensten U, Hallmans G, Hartikainen AL, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig KH, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga JJ, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kähönen M, Kang HM, Kathiresan S, Keating BJ, Khaw KT, Kim YK, Kim E, Kivimaki M, Klopp N, Kolovou G, Komulainen P, Kooner JS, Kosova G, Krauss RM, Kuh D, Kutalik Z, Kuusisto J, Kvaløy K, Lakka TA, Lee NR, Te Lee I, Lee WJ, Levy D, Li X, Liang KW, Lin H, Lin L, Lindström J, Lobbens S, Männistö S, Müller G, Müller-Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menni C, Metspalu A, Mijatovic V, Moilanen L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O’Donnell CJ, O’Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poulter N, Pramstaller PP, Psaty BM, Quertermous T, Rao DC, Rasheed A, Rayner NW, Renström F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WHH, Shin YA, Sim X, Smit JH, Smith AV, Sosa MX, Spector TD, Stančáková A, Stanton AV, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvänen AC, Tai ES, Tanaka T, Tarasov KV, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Uitterlinden AG, Uusitupa M, Vaez A, Vaidya D, Van Duijn CM, Van Iperen EPA, Vasan RS, Verwoert GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain LV, Wareham NJ, Watkins H, Weder AB, Westra HJ, Wilks R, Wilsgaard T, Wilson JF, Wong TY, Yang TP, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee JY, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njølstad I, Schwarz PEH, Langenberg C, Snieder H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimäki T, Hveem K, Palmas W, März W, Kumari M, Salomaa V, Chen YDI, Rotter JI, Froguel P, Jarvelin MR, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann HE, Palmer CNA, Stefansson K, Ridker PM, Loos RJF, Chakravarti A, Deloukas P, Morris AP, Newton-Cheh C, Munroe PB (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48:1171–1184. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Exposito-Alonso M (2017) rbioclim: Improved getData function from the raster R package to interact with past, present and future climate data from worldclim.orgFirmat C, Gomes Rodrigues H, Renaud S, Claude J, Hutterer R, Garcia-Talavera F, Michaux J (2010) Mandible morphology, dental microwear, and diet of the extinct giant rats Canariomys (Rodentia: Murinae) of the Canary Islands (Spain). Biol J Linn Soc 101:28–40. Blackwell Publishing LtdArticle 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. Oxford AcademicPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327PubMed 
    Article 

    Google Scholar 
    Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.5pd26sGe SX, Jung D, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. Oxford University PressCAS 
    PubMed 
    Article 

    Google Scholar 
    German CA, Sinsheimer JS, Klimentidis YC, Zhou H, Zhou JJ (2020) Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genet Epidemiol 44:248–260. Wiley-Liss IncPubMed 
    Article 

    Google Scholar 
    Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillespie R, Croom H, Hasty G (1997) Phylogenetic relationships and adaptive shifts among major clades of tetragnatha spiders (Araneae: Tetragnathidae) in Hawai’i. Pac Sci 51:380–394CAS 

    Google Scholar 
    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F -statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Kay T, Weir BS (2018) How to estimate kinship. Mol Ecol 27:4121–4135. Blackwell Publishing LtdPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graffelman J (2015) Exploring diallelic genetic markers: the {HardyWeinberg. } Package J Stat Softw 64:1–23
    Google Scholar 
    Graffelman J, Morales-Camarena J (2008) Graphical tests for Hardy-Weinberg Equilibrium based on the ternary plot. Hum Hered 65:77–84PubMed 
    Article 

    Google Scholar 
    Grant PR (1999) Ecology and Evolution of Darwin’s Finches. Princeton University PressGrant PR (1998) Evolution on Islands. Oxford University Press, Oxford, UK
    Google Scholar 
    Gu J, Liang Q, Liu C, Li S (2020) Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China. Front Genet 11:582355CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2011) Relationship between outdoor temperature and blood pressure. Occup Environ Med 68:296–301PubMed 
    Article 

    Google Scholar 
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, Iribarren C, Chakravarti A, Risch N (2017) Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet 49:54–64CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutterer R, Lopez-Jurado LF, Vogel P (1987) The shrews of the eastern Canary Islands: a new species (mammalia: Soricidae). J Nat Hist 21:1347–1357Article 

    Google Scholar 
    Illera JC, Spurgin LG, Rodriguez-Exposito E, Nogales M, Rando JC (2016) What are we learning about speciation and extinction from the Canary Islands? Ardeola 63:15–33Article 

    Google Scholar 
    Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL (2016) Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Ecol 25:4488–4507PubMed 
    Article 

    Google Scholar 
    Irwin DE, Milá B, Toews DPL, Brelsford A, Kenyon HL, Porter AN, Grossen C, Delmore KE, Alcaide M, Irwin JH (2018) A comparison of genomic islands of differentiation across three young avian species pairs. Mol Ecol 27:4839–4855CAS 
    PubMed 
    Article 

    Google Scholar 
    Juan C, Emerson BC, Oromí P, and Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Elsevier Ltd.Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241Article 

    Google Scholar 
    Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL (2019) Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 104:65–75. Cell PressCAS 
    PubMed 
    Article 

    Google Scholar 
    Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinforma 15:1–13. BioMed Central LtdArticle 

    Google Scholar 
    Kulminski AM, Huang J, Loika Y, Arbeev KG, Bagley O, Yashkin A, Duan M, Culminskaya I (2018) Strong impact of natural-selection-free heterogeneity in genetics of age-related phenotypes. Aging 10:492–514. Impact Journals LLCPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. Elsevier LtdArticle 

    Google Scholar 
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, García-Del-Rey E (2016) Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC Zool 1:1–19. BioMed Central LtdArticle 

    Google Scholar 
    Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen YDI, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin LA, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Larson MG, Grove ML, Smith AV, Hwang SJ, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Li M, Fuchsberger C, Pattaro C, Gorski M, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SLR, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O’Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dörr M, Felix SB, Rettig R, Völzke H, Kim E, Lee WJ, Te Lee I, Sheu WHH, Tsosie KS, Edwards DRV, Liu Y, Correa A, Weir DR, Völker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, Van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJF, Fornage M, Ehret GB, Newton-Cheh C, Levy D, Chasman DI (2016) Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48:1162–1170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losos JB, Jackman TR, Larson A, De Queiroz K, Rodríguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–6. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387Article 

    Google Scholar 
    MacArthur RH and Wilson EO (1967) The theory of island biogeography. Princeton University PressMachado AP, Clément L, Uva V, Goudet J, Roulin A (2018) The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J Biogeogr 45:1288–1300Article 

    Google Scholar 
    Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, Goudet J (2021) Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Mol Ecol 1–16. https://doi.org/10.1111/mec.16250Machado AP, Topaloudis A, Cumer T, Lavanchy E, Bontzorlos VA, Ceccherelli R, Charter M, Kassinis N, Lymberakis P, Manzia F, Ducrest AL, Dupasquier M, Guex N, Roulin A, Goudet J (2022) Genomic consequences of colonisation, migration and genetic drift in barn owl insular populations of the eastern Mediterranean. Mol Ecol 31:1375–1388Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, Turner GF (2015) Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350:1493–1498CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martín A, Lorenzo JA (2001) Aves del archipiélago canario. Editor, Francisco Lemus
    Google Scholar 
    Martin SH, Van Belleghem SM (2017) Exploring evolutionary relationships across the genome using topology weighting. Genetics 206:429–438. Genetics Society of AmericaPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masseti M (2010) Mammals of the Macaronesian islands (the Azores, Madeira, the Canary and Cape Verde islands): redefinition of the ecological equilibrium. Mammalia 74:3–34Article 

    Google Scholar 
    Mateo JA, Crochet PA, Afonso OM (2011) The species diversity of the genus Gallotia (Sauria: Lacertidae) during the Holocene on La Gomera (Canary Islands) and the Latin names of Gomeran giant lizards. Zootaxa 2755:66–68Article 

    Google Scholar 
    Molina-Borja M (2003) Sexual dimorphism of Gallotia atlantica atlantica and Gallotia atlantica mahoratae (Lacertidae) from the Eastern Canary Islands. J Herpetol 37:769–772Article 

    Google Scholar 
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380. https://doi.org/10.1016/j.cub.2015.03.047CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, Van Der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliot KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O’Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O’Reilly PF, Peltonen L, Pouta A, De Jong PE, Snieder H, Van Gilst WH, Clarke R, Goel A, Hamsten A, Altshuler D, Jarvelin MR, Elliott P, Lakatta EG, Forouhi N, Wareham NJ, Loos RJF, Deloukas P, Lathrop GM, Zelenika D, Strachan DP, Soranzo N, Williams FM, Zhai G, Spector TD, Peden JF, Watkins H, Ferrucci L, Caulfield M, Munroe PB, Berglund G, Melander O, Matullo G, Uiterwaal CS, van der Schouw YT, Numans ME, Ernst F, Homuth G, Völker U, Elosua R, Laakso M, Connell JM, Mooser V, Salomaa V, Tuomilehto J, Laan M, Navis G, Seedorf U, Syvänen AC, Tognoni G, Sanna S, Uda M, Scheet P, Schlessinger D, Scuteri A, Dörr M, Felix SB, Reffelmann T, Lorbeer R, Völzke H, Rettig R, Galan P, Hercberg S, Bingham SA, Kooner JS, Bandinelli S, Meneton P, Abecasis G, Thompson JR, Braga Marcano CA, Barke B, Dobson R, Gungadoo J, Lee KL, Onipinla A, Wallace I, Xue M, Clayton DG, Leung HT, Nutland S, Walker NM, Todd JA, Stevens HE, Dunger DB, Widmer B, Downes K, Cardon LR, Kwiatkowski DP, Barrett JC, Evans D, Morris AP, Lindgren CM, Rayner NW, Timpson NJ, Lyons E, Vannberg F, Hill AVS, Teo YY, Rockett KA, Craddock N, Attwood AP, Bryan C, Bumpstead SJ, Chaney A, Ghori J, William RG, Hunt SE, Inouye M, Keniry E, King E, McGinnis R, Potter S, Ravindrarajan R, Whittaker P, Withers D, Bentley D, Groves CJ, Duncanson A, Ouwehand WH, Boorman JP, Cant B, Jolley JD, Knight AS, Koch K, Taylor NC, Watkins NA, Winzer T, Braund PS, Dixon RJ, Mangino M, Stevens S, Donnely P, Davidson D, Marchini JL, Spencer ICA, Cardin NJ, Ferreira T, Pereira-Gale J, Hallgrimsdottir IB, Howie BN, Su Z, Vukcevic D, Easton D, Everson U, Hussey JM, Meech E, Prowse CV, Walters GR, Jones RW, Ring SM, Prembey M, Breen G, St. Clair D, Ceasar S, Gordon-Smith K, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskovina V, Nikolov I, O’Donovan MC, Owen MJ, Craddock N, Collier DA, Elkin A, Farmer A, Williamson R, McGruffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Lewis CM, Onnie CM, Prescott NJ, Mathew CG, Forbes A, Sanderson J, Mathew C, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DPM, Thomson W, Worthington J, Frayling TM, Freathy RM, Lango H, Perry JRB, Weedon MN, Hattersley AT, Shields BM, Hitman GA, Walker M, Newport M, Sirugo G, Conway D, Jallow M, Bradbury LA, Pointon JL, Brown MA, Farrar C, Wordsworth P, Franklyn JA, Heward JM, Simmonds MJ, Cough SCL, Seal S, Stratton MR, Ban M, Goris A, Sawcer SJ, Compston A (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogales M, De León L, Gómez R (1998) On the presence of the endemic skink Chalcides simonyi Steind. 1891 in Lanzarote (Canary Islands). Amphib-Reptilia 19:427–430Article 

    Google Scholar 
    Nogales M, Rando JC, Valido A, Martín A (2001) Discovery of a living giant lizard, genus Gallotia (Reptilia: Lacertidae), from La Gomera, Canary Islands. Herpetologica 57:169–179
    Google Scholar 
    Norder SJ, Proios K, Whittaker RJ, Alonso MR, Borges PAV, Borregaard MK, Cowie RH, Florens FBV, de Frias Martins AM, Ibáñez M, Kissling WD, de Nascimento L, Otto R, Parent CE, Rigal F, Warren BH, Fernández-Palacios JM, van Loon EE, Triantis KA, Rijsdijk KF (2019) Beyond the Last Glacial Maximum: Island endemism is best explained by long-lasting archipelago configurations. Glob Ecol Biogeogr 28:184–197. Blackwell Publishing LtdArticle 

    Google Scholar 
    O’Brien KA, Simonson TS, and Murray AJ (2020) Metabolic adaptation to high altitude. Elsevier Ltd.Oskarsson GR, Oddsson A, Magnusson MK, Kristjansson RP, Halldorsson GH, Ferkingstad E, Zink F, Helgadottir A, Ivarsdottir EV, Arnadottir GA, Jensson BO, Katrinardottir H, Sveinbjornsson G, Kristinsdottir AM, Lee AL, Saemundsdottir J, Stefansdottir L, Sigurdsson JK, Davidsson OB, Benonisdottir S, Jonasdottir A, Jonasdottir A, Jonsson S, Gudmundsson RL, Asselbergs FW, Tragante V, Gunnarsson B, Masson G, Thorleifsson G, Rafnar T, Holm H, Olafsson I, Onundarson PT, Gudbjartsson DF, Norddahl GL, Thorsteinsdottir U, Sulem P, Stefansson K (2020) Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis. Commun Biol 3:1–10. Nature ResearchArticle 

    Google Scholar 
    Palacios CJ (2004) Current status and distribution of birds of prey in the Canary Islands. Bird Conserv Int 14:203–213Article 

    Google Scholar 
    Pestano J, Brown RP, Suárez NM, Benzal J, Fajardo S (2003) Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences. Heredity 90:302–307. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Pickrell J and Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. Nat Preced, https://doi.org/10.1038/npre.2012.6956.1. Springer Science and Business Media LLCPurcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Rodríguez B, Rodríguez A, Siverio F, Siverio M (2018) Factors affecting the spatial distribution and breeding habitat of an insular cliff-nesting raptor community. Curr Zool 64:173–181PubMed 
    Article 

    Google Scholar 
    Rodríguez A, Rodríguez B, Montelongo T, Garcia‐Porta J, Pipa T, Carty M, Danielsen J, Nunes J, Silva C, Geraldes P, Medina FM, and Illera JC (2020) Cryptic differentiation in the Manx Shearwater hinders the identification of a new endemic subspecies. J Avian Biol https://doi.org/10.1111/jav.02633Romano A, Séchaud R, Roulin A (2020) Geographical variation in bill size provides evidence for Allen’s rule in a cosmopolitan raptor. Glob Ecol Biogeogr 29:65–75Article 

    Google Scholar 
    Romano A, Séchaud R, Roulin A (2021) Evolution of wing length and melanin-based coloration in insular populations of a cosmopolitan raptor. J Biogeogr 48:961–973. Blackwell Publishing LtdArticle 

    Google Scholar 
    Senfeld T, Shannon TJ, van Grouw H, Paijmans DM, Tavares ES, Baker AJ, Lees AC, Collinson JM (2020) Taxonomic status of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi. Ibis 162:1068–1074. Blackwell Publishing LtdArticle 

    Google Scholar 
    Siverio F (1998) Distribución y estatus de Tyto alba (Scopoli, 1769) en Tenerife, islas Canarias (Aves, Tytonidae). Vieraea 26:121–131
    Google Scholar 
    Siverio F (2007) Lechuza común, Tyto alba. In: Lorenzo JA (Ed.) Atlas de las aves nidificantes en el archipiélago canario (1997–2003). Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, p 304–310
    Google Scholar 
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F, Birks HJB, Borges PAV, Cardoso P, Chou CH, De Sanctis M, de Sequeira MM, Duarte MC, Elias RB, Fernández-Palacios JM, Gabriel R, Gereau RE, Gillespie RG, Greimler J, Harter DEV, Huang TJ, Irl SDH, Jeanmonod D, Jentsch A, Jump AS, Kueffer C, Nogué S, Otto R, Price J, Romeiras MM, Strasberg D, Stuessy T, Svenning JC, Vetaas OR, Beierkuhnlein C (2016) Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob Ecol Biogeogr 25:1097–1107. Blackwell Publishing LtdArticle 

    Google Scholar 
    Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Nielsen SF, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, De Craen AJM, Trompet S, Luan J, Scott RA, Harris SE, Liewald DCM, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, Uria-Nickelsen M, Malarstig A, Reilly DF, Hoek M, Vogt TF, Lin H, Lieb W, Traylor M, Markus HS, Highland HM, Justice AE, Marouli E, Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD, Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, De Boer RA, Van Der Meer P, Van Der Harst P, Gambaro G, Ingelsson E, Lind L, De Bakker PIW, Numans ME, Brandslund I, Christensen C, Petersen ERB, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AIF, Franks S, Jarvelin MR, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney ASF, Morris AD, Palmer CNA, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Majumder AAS, Di Angelantonio E, Chowdhury R, McCarthy MI, Poulter N, Stanton AV, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P, Elliott P, Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous DJ, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM, Frossard P, Newton-Cheh C, Tobin MD, Nordestgaard BG, Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain LV, Butterworth AS, Howson JMM, Munroe PB (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48:1151–1161. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorpe RS, Baez M (1993) Geographic variation in scalation of the lizard Gallotia stehlini within the island of Gran Canaria. Biol J Linn Soc 48:75–87. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164PubMed 
    Article 

    Google Scholar 
    Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D’Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O’Connel JR, O’Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WHH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, Van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50:26–35. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Uva V, Päckert M, Cibois A, Fumagalli L, Roulin A (2018) Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Mol Phylogenet Evol 125:127–137. Academic PressPubMed 
    Article 

    Google Scholar 
    van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform 43:11.10.1–11.10.33. John Wiley & Sons, Inc., Hoboken, NJ, USAArticle 

    Google Scholar 
    Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, Chen MH, Raffield LM, Tardaguila M, Huffman JE, Ritchie SC, Megy K, Ponstingl H, Penkett CJ, Albers PK, Wigdor EM, Sakaue S, Moscati A, Manansala R, Lo KS, Qian H, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala KN, Wilson PWF, Choquet H, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Felix SB, Floyd JS, Broer L, Grarup N, Guo MH, Guo Q, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nikus K, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Ghanbari M, Völker U, Völzke H, Watkins NA, Weiss S, Cai N, Kundu K, Watt SB, Walter K, Zonderman AB, Cho K, Li Y, Loos RJF, Knight JC, Georges M, Stegle O, Evangelou E, Okada Y, Roberts DJ, Inouye M, Johnson AD, Auer PL, Astle WJ, Reiner AP, Butterworth AS, Ouwehand WH, Lettre G, Sankaran VG, Soranzo N (2020) The polygenic and monogenic basis of blood traits and diseases. Cell 182:1214–1231.e11. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wain LV, Vaez A, Jansen R, Joehanes R, Van Der Most PJ, Erzurumluoglu AM, O’Reilly PF, Cabrera CP, Warren HR, Rose LM, Verwoert GC, Hottenga JJ, Strawbridge RJ, Esko T, Arking DE, Hwang SJ, Guo X, Kutalik Z, Trompet S, Shrine N, Teumer A, Ried JS, Bis JC, Smith AV, Amin N, Nolte IM, Lyytikäinen LP, Mahajan A, Wareham NJ, Hofer E, Joshi PK, Kristiansson K, Traglia M, Havulinna AS, Goel A, Nalls MA, Sõber S, Vuckovic D, Luan J, Del Greco FM, Ayers KL, Marrugat J, Ruggiero D, Lopez LM, Niiranen T, Enroth S, Jackson AU, Nelson CP, Huffman JE, Zhang W, Marten J, Gandin I, Harris SE, Zemunik T, Lu Y, Evangelou E, Shah N, De Borst MH, Mangino M, Prins BP, Campbell A, Li-Gao R, Chauhan G, Oldmeadow C, Abecasis G, Abedi M, Barbieri CM, Barnes MR, Batini C, Beilby J, Blake T, Boehnke M, Bottinger EP, Braund PS, Brown M, Brumat M, Campbell H, Chambers JC, Cocca M, Collins F, Connell J, Cordell HJ, Damman JJ, Davies G, De Geus EJ, De Mutsert R, Deelen J, Demirkale Y, Doney ASF, Dörr M, Farrall M, Ferreira T, Frånberg M, Gao H, Giedraitis V, Gieger C, Giulianini F, Gow AJ, Hamsten A, Harris TB, Hofman A, Holliday EG, Hui J, Jarvelin MR, Johansson Å, Johnson AD, Jousilahti P, Jula A, Kähönen M, Kathiresan S, Khaw KT, Kolcic I, Koskinen S, Langenberg C, Larson M, Launer LJ, Lehne B, Liewald DCM, Lin L, Lind L, Mach F, Mamasoula C, Menni C, Mifsud B, Milaneschi Y, Morgan A, Morris AD, Morrison AC, Munson PJ, Nandakumar P, Nguyen QT, Nutile T, Oldehinkel AJ, Oostra BA, Org E, Padmanabhan S, Palotie A, Paré G, Pattie A, Penninx BWJH, Poulter N, Pramstaller PP, Raitakari OT, Ren M, Rice K, Ridker PM, Riese H, Ripatti S, Robino A, Rotter JI, Rudan I, Saba Y, Saint Pierre A, Sala CF, Sarin AP, Schmidt R, Scott R, Seelen MA, Shields DC, Siscovick D, Sorice R, Stanton A, Stott DJ, Sundström J, Swertz M, Taylor KD, Thom S, Tzoulaki I, Tzourio C, Uitterlinden AG, Völker U, Vollenweider P, Wild S, Willemsen G, Wright AF, Yao J, Thériault S, Conen D, Attia J, Sever P, Debette S, Mook-Kanamori DO, Zeggini E, Spector TD, Van Der Harst P, Palmer CNA, Vergnaud AC, Loos RJF, Polasek O, Starr JM, Girotto G, Hayward C, Kooner JS, Lindgren CM, Vitart V, Samani NJ, Tuomilehto J, Gyllensten U, Knekt P, Deary IJ, Ciullo M, Elosua R, Keavney BD, Hicks AA, Scott RA, Gasparini P, Laan M, Liu Y, Watkins H, Hartman CA, Salomaa V, Toniolo D, Perola M, Wilson JF, Schmidt H, Zhao JH, Lehtimäki T, Van Duijn CM, Gudnason V, Psaty BM, Peters A, Rettig R, James A, Jukema JW, Strachan DP, Palmas W, Metspalu A, Ingelsson E, Boomsma DI, Franco OH, Bochud M, Newton-Cheh C, Munroe PB, Elliott P, Chasman DI, Chakravarti A, Knight J, Morris AP, Levy D, Tobin MD, Snieder H, Caulfield MJ, Ehret GB (2017) Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70:e4–e19. Lippincott Williams and WilkinsCAS 
    Article 

    Google Scholar 
    Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernández-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartín I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, and Thébaud C (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-WilsonWeir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476. Cold Spring Harbor Laboratory PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weir BS, Goudet J (2017) A unified characterization of population structure and relatedness. Genetics 206:2085–2103PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Witt KE, Huerta-Sánchez E (2019) Convergent evolution in human and domesticate adaptation to high-altitude environments. Phil. Trans. R. Soc. B 374:20180235Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O’Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L (2020) Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 145:537–549. Mosby IncCAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    Stress responses to repeated captures in a wild ungulate

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 

    Google Scholar 
    Keuling, O., Lauterbach, K., Stier, N. & Roth, M. Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. Eur. J. Wildl. Res. 56, 159–167 (2010).Article 

    Google Scholar 
    Trondrud, L. M. et al. Fat storage influences fasting endurance more than body size in an ungulate. Funct. Ecol. 35, 1470–1480 (2021).CAS 
    Article 

    Google Scholar 
    Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).PubMed 
    Article 

    Google Scholar 
    Kukalová, M., Gazárková, A. & Adamík, P. Should i stay or should i go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859 (2013).Article 

    Google Scholar 
    Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. Effects of capture and transport on blood parameters in free-ranging mouflon (Ovis ammon). J. Zoo Wildl. Med. 28, 428–433 (1997).CAS 
    PubMed 

    Google Scholar 
    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).Article 

    Google Scholar 
    Mortensen, R. M. & Rosell, F. Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal. Sci. Rep. 10, 1–16 (2020).Article 

    Google Scholar 
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11, 1164–1181 (2020).Article 

    Google Scholar 
    Herman, J. P. et al. Regulation of the hypothalamic-pituitary- adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Sjaastad, V. Ø., Hove, K. & Sand, O. Physiology of Domestic Animals (Scandinavian Veterinary Press, 2016).
    Google Scholar 
    Omsjø, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. The stress response to repeated capture in mouflon (Ovis ammon): Physiological, haematological and biochemical parameters. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 45, 243–253 (1998).CAS 
    Article 

    Google Scholar 
    Hattingh, J., Pitts, N. I. & Ganhao, M. F. Immediate response to repeated capture and handling of wild impala. J. Exp. Zool. 248, 109–112 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortega, A. C. et al. Effectiveness of partial sedation to reduce stress in captured mule deer. J. Wildl. Manag. 84, 1445–1456 (2020).Article 

    Google Scholar 
    Arnemo, J. M. & Caulkett, N. Stress. In Zoo Animal and Wildlife Anesthesia and Immobilization (eds West, G. et al.) 103–109 (Blackwell Publications, 2007).
    Google Scholar 
    Sinclair, M. D. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885–897 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ranheim, B. et al. The effects of medetomidine and its reversal with atipamezole on plasma glucose, cortisol and noradrenaline in cattle and sheep. J. Vet. Pharmacol. Ther. 23, 379–387 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carroll, G. L. et al. Effect of medetomidine and its antagonism with atipamezole on stress-related hormones, metabolites, physiologic responses, sedation, and mechanical threshold in goats. Vet. Anaesth. Analg. 32, 147–157 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rode, K. D. et al. Effects of capturing and collaring on polar bears: finDings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322 (2014).Article 

    Google Scholar 
    Sakamoto, H., Misumi, K., Nakama, M. & Aoki, Y. The effects of xylazine on intrauterine pressure, uterine blood flow, maternal and fetal cardiovascular and pulmonary function in pregnant goats. J. Vet. Med. Sci. 58, 211–217 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katila, T. & Oijala, M. The effect of detomidine (Domosedan) on the maintenance of equine pregnancy and foetal development: ten cases. Equine Vet. J. 20, 323–326 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsen, D. G. & Gauthier, D. A. Effects of capturing pregnant moose and calves on calf survivorship. J. Wildl. Manag. 53, 564 (1989).Article 

    Google Scholar 
    Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manage. 62, 745–752 (1998).Article 

    Google Scholar 
    DelGiudice, G. D., Mech, L. D., Paul, W. J. & Karns, P. D. Effects on fawn survival of multiple immobilizations of captive pregnant white-tailed deer. J. Wildl. Dis. 22, 245–248 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: The case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: The ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).CAS 
    Article 

    Google Scholar 
    Huber, S., Palme, R. & Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 130, 48–54 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morellet, N. et al. The effect of capture on ranging behaviour and activity of the European roe deer Capreolus capreolus. Wildlife Biol. 15, 278–287 (2009).Article 

    Google Scholar 
    Tarlow, E. M. & Blumstein, D. T. Evaluating methods to quantify anthropogenic stressors on wild animals. Appl. Anim. Behav. Sci. 102, 429–451 (2007).Article 

    Google Scholar 
    Hik, D. S. Does risk of predation influence the cyclic decline of snowshoe hares. Wildl. Res. 22, 115–129 (1995).Article 

    Google Scholar 
    Ordiz, A. et al. Lasting behavioural responses of brown bears to experimental encounters with humans. J. Appl. Ecol. 50, 306–314 (2013).Article 

    Google Scholar 
    Dechen Quinn, A. C., Williams, D. M. & Porter, W. F. Postcapture movement rates can inform data-censoring protocols for GPS-collared animals. J. Mammal. 93, 456–463 (2012).Article 

    Google Scholar 
    Cattet, M. R. L. Falling through the cracks: Shortcomings in the collaboration between biologists and veterinarians and their consequences for wildlife. ILAR J. 54, 33–40 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albon, S. D. et al. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Glob. Change Biol. 23, 1374–1389 (2017).ADS 
    Article 

    Google Scholar 
    Ovejero, R. et al. Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free-ranging guanacos (Lama guanicoe). J. Exp. Zool. Part A Ecol. Genet. Physiol. 319, 539–547 (2013).CAS 
    Article 

    Google Scholar 
    Bonacic, C., Feber, R. E. & Macdonald, D. W. Capture of the vicuña (Vicugna vicugna) for sustainable use: Animal welfare implications. Biol. Conserv. 129, 543–550 (2006).Article 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 337, 7–14 (2022).CAS 
    Article 

    Google Scholar 
    Sire, J. E. et al. The effect of blood sampling on plasma cortisol in female reindeer (Rangifer tarandus tarandus L). Acta Vet. Scand. 36, 583–587 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harlow, H. J., Thorne, E. T., Williams, E. S., Belden, E. L. & Gern, W. A. Adrenal responsiveness in domestic sheep ( Ovis aries ) to acute and chronic stressors as predicted by remote monitoring of cardiac frequency. Can. J. Zool. 65, 2021–2027 (1987).Article 

    Google Scholar 
    Pottinger, T. G. & Moran, T. A. Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol. 43, 121–130 (1993).CAS 
    Article 

    Google Scholar 
    Arnemo, J. M. & Ranheim, B. Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer 19, 85–89 (1999).Article 

    Google Scholar 
    Mentaberre, G. et al. Effects of azaperone and haloperidol on the stress response of drive-net captured Iberian ibexes (Capra pyrenaica). Eur. J. Wildl. Res. 56, 757–764 (2010).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. & Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildl. Manag. 78, 731–738 (2014).Article 

    Google Scholar 
    Jung, T. S. et al. Short-term effect of helicopter-based capture on movements of a social ungulate. J. Wildl. Manag. 83, 830–837 (2019).Article 

    Google Scholar 
    Nurmi, H., Laaksonen, S., Raekallio, M. & Hänninen, L. Wintertime pharmacokinetics of intravenously and orally administered meloxicam in semi-domesticated reindeer (Rangifer tarandus tarandus). Vet. Anaesth. Analg. 49, 423–428 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, R. S., English, A. W., Mulley, R. C. & Lepherd, E. E. Haematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. J. Wildl. Dis. 27, 396–406 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brosh, A. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: A review1. J. Anim. Sci. 85, 1213–1227 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suazo, A. A., Delong, A. T., Bard, A. A. & Oddy, D. M. Repeated capture of beach mice (Peromyscus polionotus phasma and P. P. niveiventris) reduces body mass. J. Mammal. 86, 520–523 (2005).Article 

    Google Scholar 
    Hoyle, S. D., Horsup, A. B., Johnson, C. N., Crossman, D. G. & McCallum, H. Live-trapping of the northern hairy-nosed wombat (Lasiorhinus krefftii): Population-size estimates and effects on individuals. Wildl. Res. 22, 741–755 (1995).Article 

    Google Scholar 
    Estruelas, N. F. Short- and long-term physiological effects of capture and handling on free-ranging brown bears (Ursus arctos). PhD Thesis. (Inland Norway University of Applied Sciences, 2017).Veiberg, V. et al. Maternal winter body mass and not spring phenology determine annual calf production in an Arctic herbivore. Oikos 126, 980–987 (2017).Article 

    Google Scholar 
    Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Change Biol. 27, 993–1002 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Larsen, T. S., Nilsson, N. & Blix, A. S. Seasonal changes in lipogenesis and lipolysis in isolated adipocytes from Svalbard and Norwegian reindeer. Acta Physiol. Scand. 123, 97–104 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colman, J. E., Jacobsen, B. W. & Reimers, E. Summer response distances of Svalbard reindeer (Rangifer tarandus platyrhynchus) to provocation by humans on foot. Wildlife Biol. 7, 275–283 (2001).Article 

    Google Scholar 
    Trondrud, L. M. et al. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200215 (2021).Article 

    Google Scholar 
    Pigeon, G. et al. Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. J. Anim. Ecol. 91, 61–73 (2022).PubMed 
    Article 

    Google Scholar 
    Peeters, B., Pedersen, Å., Veiberg, V. & Hansen, B. Hunting quotas, selectivity and stochastic population dynamics challenge the management of wild reindeer. Clim. Res. https://doi.org/10.3354/cr01668 (2021).Article 

    Google Scholar 
    Loe, L. E. et al. Activity pattern of arctic reindeer in a predator-free environment: No need to keep a daily rhythm. Oecologia 152, 617–624 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dahl, S. R. et al. Assay of steroids by liquid chromatography–tandem mass spectrometry in monitoring 21-hydroxylase deficiency. Endocr. Connect. 7, 1542–1550 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loe, L. E. et al. Testing five hypotheses of sexual segregation in an arctic ungulate. J. Anim. Ecol. 75, 485–496 (2006).PubMed 
    Article 

    Google Scholar 
    Reimers, E., Lund, S. & Ergon, T. Vigilance and fright behaviour in the insular Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 89, 753–764 (2011).Article 

    Google Scholar 
    The R Core Team. R: A language and environment for statistical computing (2021).Burnham, K. P. & Anderson, D. R. in Model selection and multimodel inference. A Practical Information-Theoretic Approach. Ecological Modelling (Springer, 2002).Blanchet, F. G., Tikhonov, G. & Norberg, A. HMSC: Hierarchical modelling of species community. R package version 2.2-0 (2019).Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).PubMed 
    Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science BV, 2012).MATH 

    Google Scholar 
    Diggle, P. J., Heagerty, P., Liang, K.-Y. & Zeger, S. L. Analysis of Longitudinal Data (Oxford University Press, 2013).MATH 

    Google Scholar  More

  • in

    Assessing a megadiverse but poorly known community of fishes in a tropical mangrove estuary through environmental DNA (eDNA) metabarcoding

    Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451 (2001).CAS 

    Google Scholar 
    Wagner, G. M. & Sallema-Mtui, R. in Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean Estuaries of the World (eds S. Diop, P. Scheren, & J. Machiwa) 183–207 (2016).Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14 (2019).CAS 

    Google Scholar 
    De La Morinière, E. C., Pollux, B., Nagelkerken, I. & Van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).ADS 

    Google Scholar 
    Branton, M. & Richardson, J. S. Assessing the value of the umbrella-species concept for conservation planning with meta-analysis. Conserv. Biol. 25, 9–20 (2011).PubMed 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed 

    Google Scholar 
    Zainal Abidin, D. H. et al. DNA-based taxonomy of a mangrove-associated community of fishes in Southeast Asia. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-021-97324-1 (2021).CAS 
    Article 

    Google Scholar 
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. Roy. Soc. B Biol. Sci. 368, 20120482 (2013).
    Google Scholar 
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS 
    PubMed 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chong, V. C., Lee, P. K. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066. https://doi.org/10.1111/j.1095-8649.2010.02685.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zainal Abidin, D. H. et al. Ichthyofauna of Sungai Merbok Mangrove Forest Reserve, northwest Peninsular Malaysia, and its adjacent marine waters. Check List 17, 601–631. https://doi.org/10.15560/17.2.601 (2021).Article 

    Google Scholar 
    Ong, J. et al. in Hutan paya laut Merbok, Kedah: Pengurusan hutan, persekitaran fizikal dan kepelbagaian flora. Vol. 23 Siri kepelbagaian biologi hutan (ed Ku Aman KA Abd Rahim AR, Abu Hassan MN, Abdullah M, Nor Hazliza MB, Latiff A) 21–33 (Jabatan Perhutanan Semenanjung Malaysia, 2015).Hookham, B., Shau-Hwai, A. T., Dayrat, B. & Hintz, W. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in Malaysia: Langkawi Island and Sungai Merbok. Trop. Life Sci. Res. 25, 1 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Jamaluddin, J. A. F. et al. DNA barcoding of shrimps from a mangrove biodiversity hotspot. Mitochondrial DNA Part A 30, 618–625. https://doi.org/10.1080/24701394.2019.1597073 (2019).CAS 
    Article 

    Google Scholar 
    Mansor, M., Mohammad-Zafrizal, M., Nur-Fadhilah, M., Khairun, Y. & Wan-Maznah, W. Temporal and spatial variations in fish assemblage structures in relation to the physicochemical parameters of the Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 110–127 (2012).
    Google Scholar 
    Alshari, N. F. M. A. H. et al. Metabarcoding of Fish Larvae in the Merbok River reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, 60–76. https://doi.org/10.6620/ZS.2021 (2021).Article 

    Google Scholar 
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Hupało, K. et al. An urban Blitz with a twist: Rapid biodiversity assessment using aquatic environmental DNA. Environ. DNA 3, 200–213 (2020).
    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 

    Google Scholar 
    Ahn, H. et al. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding. PLoS ONE 15, e0231127 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polanco, F. A. et al. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53, 1606–1619 (2021).
    Google Scholar 
    Zhang, H., Yoshizawa, S., Iwasaki, W. & Xian, W. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Front. Mar. Sci. 6, 515. https://doi.org/10.3389/fmars.2019.00515 (2019).Article 

    Google Scholar 
    Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 1–11 (2017).ADS 
    CAS 

    Google Scholar 
    West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27, 1942–1957 (2021).
    Google Scholar 
    Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).
    Google Scholar 
    Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 1–12 (2021).
    Google Scholar 
    Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2021).PubMed 

    Google Scholar 
    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS ONE 14, e0210357 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshwat. Ecosyst. 29, 1785–1800 (2019).
    Google Scholar 
    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Klymus, K. E., Marshall, N. T. & Stepien, C. A. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS ONE 12, 24. https://doi.org/10.1371/journal.pone.0177643 (2017).CAS 
    Article 

    Google Scholar 
    Wilson, C. et al. Tracking ghosts: Combined electrofishing and environmental DNA surveillance efforts for Asian carps in Ontario waters of Lake Erie. Manag. Biol. Invasion 5, 225–231. https://doi.org/10.3391/mbi.2014.5.3.05 (2014).Article 

    Google Scholar 
    Alexander, J. B. et al. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39, 159–171. https://doi.org/10.1007/s00338-019-01875-9 (2020).Article 

    Google Scholar 
    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541. https://doi.org/10.1111/mec.13481 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fritts, A. K. et al. Development of a quantitative PCR method for screening ichthyoplankton samples for bigheaded carps. Biol. Invasions 21, 1143–1153 (2019).
    Google Scholar 
    Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amberg, J. J., Merkes, C. M., Stott, W., Rees, C. B. & Erickson, R. A. Environmental DNA as a tool to help inform zebra mussel, Dreissena polymorpha, management in inland lakes. Manag. Biol. Invasion 10, 96 (2019).
    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zainal Abidin, D. H. & Noor Adelyna, M. A. Environmental DNA (eDNA) Metabarcoding as a Sustainable Tool of Coastal Biodiversity Assessment in Universities as Living Labs for Sustainable Development 211–225 (Springer, 2020).Sard, N. M. et al. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environ. DNA 1, 368–384 (2019).
    Google Scholar 
    Hoffman, J. C., Kelly, J. R., Trebitz, A. S., Peterson, G. S. & West, C. W. Effort and potential efficiencies for aquatic non-native species early detection. Can. J. Fish. Aquat. Sci. 68, 2064–2079 (2011).
    Google Scholar 
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    Whitfield, A. K. Fish species in estuaries—From partial association to complete dependency. J. Fish Biol. 97, 1262–1264 (2020).PubMed 

    Google Scholar 
    Carpenter, K. & Niem, V. The living marine resources of the Western Central Pacific. Volume 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Vol. 5, 2791–3380 (Food and Agriculture Organization of the United Nations, 2001).Carpenter, K. E. & Niem, V. FAO species identification guide for fishery purposes. The Living Marine Resources of the Western Central Pacific. Volume 6. Bony Fishes Part 4 (Labridae to Latimeriidae), Estuarine Crocodiles, Sea Turtles, Sea Snakes and Marine Mammals. Vol. 6, 3381–4218 (Food and Agriculture Organization of the United Nations, 2001).Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific: Batoid fishes, chimaera and bony fishes part 1 (Elopidae to Linophrynidae). Vol. 3, 1397–2068 (Food and Agriculture Organization of the United Nations, 1999).Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific. Volume 4. Bony Fishes Part 2 (Mugilidae to Carangidae). Vol. 4, 2069–2790 (Food and Agriculture Organization of the United Nations, 1999).Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).CAS 
    PubMed 

    Google Scholar 
    Pentinsaari, M., Ratnasingham, S., Miller, S. E. & Hebert, P. D. N. BOLD and GenBank revisited—Do identification errors arise in the lab or in the sequence libraries?. PLoS ONE 15, e0231814–e0231814. https://doi.org/10.1371/journal.pone.0231814 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ardura, A., Planes, S. & Garcia-Vazquez, E. Applications of DNA barcoding to fish landings: Authentication and diversity assessment. Zookeys 365, 49–65. https://doi.org/10.3897/zookeys.365.6409 (2013).Article 

    Google Scholar 
    ZainalAbidin, D. H. et al. Population genetics of the black scar oyster, Crassostrea iredalei: Repercussion of anthropogenic interference. Mitochondrial DNA Part A 27, 647–658 (2016).CAS 

    Google Scholar 
    Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 283 (2017).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).CAS 
    Article 

    Google Scholar 
    Vasconcelos, R. P. et al. Global patterns and predictors of fish species richness in estuaries. J. Anim. Ecol. 84, 1331–1341 (2015).PubMed 

    Google Scholar 
    Shah, A. S. R. M., Hashim, Z. H. & Sah, S. A. M. Freshwater fishes of Gunung Jerai, Kedah Darul Aman: A preliminary study. Trop. Life Sci. Res. 20, 59 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Md. Zain, K. et al. Fish diversity along streams in Ulu Muda Forest Reserve, Kedah, Peninsular Malaysia. Malayan Nat. J. 73, 349–361 (2021).
    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).CAS 
    PubMed 

    Google Scholar 
    Wang, S. et al. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 755, 142622. https://doi.org/10.1016/j.scitotenv.2020.142622 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Southeast Asian Fisheries Development Centre (SEAFDEC). Status and trends of sharks fisheries in South East Asia in Malaysia Shark Fisheries (Fisheries and Resources Monitoring System (FIRMS), Rome, 2004).Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).ADS 

    Google Scholar 
    Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS 

    Google Scholar 
    Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morey, K. C., Bartley, T. J. & Hanner, R. H. Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium. Environ. DNA 2, 330–342 (2020).
    Google Scholar 
    Shaw, J. L. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).
    Google Scholar 
    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220. https://doi.org/10.1111/1755-0998.12956 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeckle, M. Y., Das Mishu, M. & Charlop-Powers, Z. Improved environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. Front. Mar. Sci. 7, 226 (2020).
    Google Scholar 
    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).
    Google Scholar 
    Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 270, S96–S99 (2003).CAS 

    Google Scholar 
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Roy. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 

    Google Scholar 
    Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samplers. Curr. Biol. 29, R401–R402 (2019).CAS 
    PubMed 

    Google Scholar 
    Bylemans, J., Gleeson, D. M., Duncan, R. P., Hardy, C. M. & Furlan, E. M. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ. DNA 1, 402–414 (2019).
    Google Scholar 
    Chin, A. T. et al. Beta diversity changes in estuarine fish communities due to environmental change. Mar. Ecol. Prog. Ser. 603, 161–173 (2018).ADS 

    Google Scholar 
    Sloterdijk, H. et al. Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change. Estuar. Coast. Shelf Sci. 197, 10–26 (2017).ADS 

    Google Scholar 
    Malaysian Meteorological Department. Tinjauan Cuaca bagi Tempoh November 2017 hingga April 2018. National Climate Centre: Ministry of Science, Technology and Innovation. Retrieved on February 1st, 2018, from https://www.met.gov.my/iklim/ramalanbermusim/ (2017).Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 

    Google Scholar 
    Illumina. 16S Metagenomic Sequencing Library Preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf 1–28 (2013).Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (Babraham Bioinformatics (Babraham Institute, 2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, species, references. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names/ (2021).Ebert, D. A. & Fowler, S. Sharks of the World (Princeton University Press, 2013).
    Google Scholar 
    R Core Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com42, 14 (2015).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Pack. 2, 1–295 (2013).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar  More

  • in

    Following the niche: the differential impact of the last glacial maximum on four European ungulates

    MaterialsWe collected from the literature and available databases a dataset of radiocarbon dates from Europe (West of 60°E and North of 37°N) either obtained from remains of the four analyzed species or from archaeological layers where they have been observed. However, we only considered observations dated between 7500 and 47,000 cal BP: their scarcity before this period may bias the GAMs, and after it, domesticated cattle, pigs and (later) horses arrived in Europe, making it difficult to differentiate them from their wild forms.We excluded any record fitting one or more of the following conditions: unreliable; not in accord with the expected chronology of their archaeological layer; without a reported standard error; available only as terminus ante/post quem.All dates were calibrated with OxCal5 version 4.4 using the IntCal20 curve51, and we further excluded any record for which calibration resulted in an error, resulting in the number of points presented in Table 1 as “Original dataset” (available at the link https://doi.org/10.6084/m9.figshare.20510364).Table 1 Number of observations for each species.Full size tableSDMs based on GAMs need presence/background data, not frequencies; moreover, multiple observations (i.e., presence in different archaeological layers) from the same site and time slice are likely to introduce stronger sample biases linked to chrono-geographically differential sampling efforts. For this reason, we collapsed our observations by keeping only one point per grid cell per time slice for each species, leaving the number of observations reported in Table 1 as “Collapsed datasets”, used for all the analyses presented in this work.To perform all analyses, we used the R package pastclim v. 1.042 to couple each observation from the collapsed datasets to paleoclimatic reconstructions published in8 by setting dataset = “Beyer2020”. These are based on the Hadley CM3 model, include 14 different bioclimatic variables at a spatial resolution of 0.5°, and are available for the whole world every 1000 years until 22 kya and every 2000 years before that date (referred to in the manuscript as “time slices”). Specifically, each observation was associated with the relevant bioclimatic reconstruction based on its average age and spatial coordinates.As already mentioned, the four species analyzed show different preferences regarding temperature, habitat, and altitude. Therefore, for the Species Distribution Modelling, we choose five environmental variables that should be able to capture such differences: two measures of temperature (BIO5, maximum temperature of the warmest month, and BIO6, minimum temperature of the coldest month); two variables to help capture habitat differentiation (BIO12, total annual precipitation, and Net Primary Productivity, NPP), and one measure of topography (rugosity42).High collinearity can be problematic in SDMs; we confirmed that all our variables had a correlation below 0.7, a threshold commonly adopted for this kind of analysis52,53.Whilst the GAMs predicted all time points; we visualized our results by creating an average estimate for the following periods: pre-LGM (from the beginning of the time range analyzed, i.e., 47 kya to 27 kya), LGM (from 27 to 18 kya), Late Glacial (from 18 to 11.7 kya), Holocene (from 11.7 kya to the end of the time range analyzed, i.e., 7.5 kya).MethodsWe generated 25 sets of background points for each species to adequately represent the existing climatic space in our SDMs. Each set was generated by sampling, for each observation, 50 random locations matched by time. This resulted in n = 25 datasets (“repetitions”) of background points and presences (observations) for each species, which we used to repeat our analyses to account for the stochastic sampling of the background. For each dataset, we used GAMs to fit two possible models: a “constant niche” model, which included only the environmental variables as covariates, and a “changing niche” model, that also included interactions of each environmental variable with time (fitted as tensor products).In GAMs, the effect of a given continuous predictor on the response variable (in our case, the logit transformed probability of a presence) is represented by a smooth function; this smooth function can be linear or non-linear and can become highly complex in shape depending on the number of knots selected by the GAM fitting algorithm. The interaction between two covariates is modelled by tensor products54; this approach is equivalent to an interaction term in a linear model but with the added complexity of the smooth function. In our models, we confine tensor products to the interaction between an environmental variable and time; a simple way to think about such a tensor product is that it allows the smooth representation of the relationship between the variable and the probability of a presence to change progressively over time.GAMs were fitted using the mgcv package in R54 using thin plate regression splines (TPNR; bs = “tp”, default in mgcv) for environmental variables and their tensor products with time in the “niche changing” models. The GAM algorithm automatically selects the complexity of the smooth most appropriate to the data that are being fitted; as GAM can have issues with overfitting, we added an additional penalty against overly complex smooths (gamma = 1.4) and used Restricted Maximum Likelihood (REML = TRUE), as recommended by54. It is possible that even with these settings, the complexity of the smooth is not sufficient; we used mgcv::gam.check() to check this, and increased the basis dimension of the smooth, k, to make sure that k-1 was larger than the estimated degrees of freedom (edf). We found the best maximum thresholds for k to be 16 for bio06 and 10 for all other variables.We checked for non-linear correlation among variables using the mgcv::collinearity function and checked the values of estimated concurvity. All estimates were below the threshold of 0.8 in all models, runs and variables except for a few instances for time (Supplementary Figs. 5–8). We consider this not to be worrying: this is most likely a result of sample bias, and GAM is known to be robust to correlation/concurvity55,56.We verified the model assumptions by inspecting the residuals using the R package DHARMa57. Standard tests for deviations from the expected distribution and dispersion were non-significant for all repetitions for all species, as were the tests for outliers. Furthermore, we tested for spatial autocorrelation among residuals by computing Moran’s I; all tests were either non-significant or, when significance was detected, the estimate of Moran’s I was very close to zero, revealing a trivial deviation from the assumptions which should not impact the results (Supplementary Tables 1–4).We performed model choice (Supplementary Tables 5–8) by comparing the constant- and changing-niche models for each combination of species and repetition using the Akaike Information Criterion (AIC). AIC strongly supported the changing-niche model in all species and repetitions, an inference supported by the higher Nagelkerke R2 and expected deviance for those models than for the constant-niche ones (Supplementary Tables 5–8).The model fit for each of the changing niche GAMs was evaluated with the Boyce Continuous Index25,26, designed to be used with presence-only data58,59. We set a threshold of Pearson’s correlation coefficient  >  0.8 to define acceptable models25 (Supplementary Table 9).The relative importance of each environmental variable was quantified for all the models above the BCI threshold of 0.8 in two different ways. Firstly, we computed the total deviance explained by each variable by simply fitting a GAM with only that variable. We then estimated the unique deviance explained by each variable by comparing the full model with one for which that variable was excluded (i.e., we computed the explained deviance lost by dropping that predictor). The difference between the two values represents the deviance explained by a variable which can also be accounted for by other variables (i.e., the deviance in common with other variables).To achieve more robust predictions60, we averaged in two different ensembles the repetitions for the changing niche GAMs with BCI  > 0.8: by mean and median. This step is intended to reduce the weight of models that are highly sensitive to the random sampling of the background60. Then, for each species, we selected the ensemble (either based on mean or median) with the higher BCI as the most supported and used it to perform all further analyses.The effect of different variables through time was visualized by plotting the interactions of the GAMs. For each model with a BCI  > 0.8, we used the R package gratia27 to generate a surface with time as the x-axis, the environmental variable as the y-axis, and the effect size as the z-axis (visualized as colour shades). We then plotted the mean surface for each species, which captures the signal consistent across all randomized background sets.To visualize the prediction for each species, we then transformed the predicted probabilities of occurrence from the ensemble into binary presence/absences by using the threshold needed to get a minimum predicted area encompassing 99% of our presences (function ecospat.mpa() from the ecospat R package61). The binary predictions were then visualized using the mean over the time steps within each major climatic period.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Effects of different water management and fertilizer methods on soil temperature, radiation and rice growth

    General description of the experimental areaThe experiment was performed for two years at the National Key Irrigation Experimental Station located on the Songnen Plain in Heping town, Qing’an County, Suihua, Heilongjiang, China, with a geographical location of 45° 63′ N and 125° 44′ E at an elevation of 450 m above sea level (Fig. 1). This region consists of plain topography and has a semiarid cold temperate continental monsoon climate, i.e., a typical cold region with a black soil distribution area. The average annual temperature is 2.5 °C, the average annual precipitation is 550 mm, the precipitation is concentrated from June to September of each year, and the average annual surface evaporation is 750 mm. The growth period of crops is 156–171 days, and there is a frost-free period of approximately 128 days year−122. The soil at the study site is albic paddy soil with a mean bulk density of 1.01 g/cm3 and a porosity of 61.8% prevails. The basic physicochemical properties of the soil were as follows: the mass ratio of organic matter was 41.8 g/kg, pH value was 6.45, total nitrogen mass ratio was 15.06 g/kg, total phosphorus mass ratio was 15.23 g/kg, total potassium mass ratio was 20.11 g/kg, mass ratio of alkaline hydrolysis nitrogen was 198.29 mg/kg, available phosphorus mass ratio was 36.22 mg/kg and available potassium mass ratio was 112.06 mg/kg.Figure 1Location of the study area. The map and inset map in this image were drawn by the authors using ArcGIS software. The software version used was ArcGIS software v.10.2, and its URL is http://www.esri.com/.Full size imageHumic acid fertilizerHumic acid fertilizer was produced by Yunnan Kunming Grey Environmental Protection Engineering Co., Ltd., China (Fig. 2). The organic matter was ≥ 61.4%, and the total nutrients (nitrogen, phosphorus and potassium) were ≥ 18.23%, of which N ≥ 3.63%, P2O5 ≥ 2.03%, and K2O ≥ 12.57%. The moisture content was ≤ 2.51%, the pH value was 5.7, the worm egg mortality rate was ≥ 95%, and the amount of faecal colibacillosis was ≤ 3%. The fertilizer contained numerous elements necessary for plants. The contents of harmful elements, including arsenic, mercury, lead, cadmium and chromium, were ≤ 2.8%, 0.01%, 7.6%, 0.1% and 4.7%, respectively; these were lower than the test standard.Figure 2Humic acid fertilizer in powder form.Full size imageExperimental design and observation methodsIrrigationIn this experiment, three irrigation practices, namely, control irrigation (C), wet irrigation (W) and flood irrigation (F), were designed (Table 1).Table 1 Different irrigation methods.Full size tableControl irrigation (C) of rice had no water layer in the rest of the growing stages, except for the shallow water layer at the regreen stage of rice, which was maintained at 0–30 mm, and the natural dryness in the yellow stage. The irrigation time and irrigation quota were determined by the root soil moisture content as the control index. The upper limit of irrigation was the saturated moisture content of the soil, the lower limit of soil moisture at each growth stage was the percentage of saturated moisture content, and the TPIME-PICO64/32 soil moisture analyser was used to determine the soil moisture content at 7:00 a.m. and 18:00 p.m., respectively. When the soil moisture content was close to or lower than the lower limit of irrigation, artificial irrigation occurred until the upper irrigation limit was reached. The soil moisture content was maintained between the upper irrigation limit and the lower irrigation limit of the corresponding fertility stage. Under the wet irrigation (W) and flood irrigation (F) conditions, it was necessary to read the depth of the water layer through bricks and a vertical ruler embedded in the field before and after 8:00 am every day to determine if irrigation was needed. If irrigation was needed, then the water metre was recorded before and after each irrigation. The difference between before and after was the amount of irrigation23.FertilizationIn our research, five fertilization methods were applied, as shown in Table 2. In this experiment, the rice cultivar “Suijing No. 18” was selected. Urea and humic acid fertilizer were applied according to the proportion of base fertilizer:tillering fertilizer:heading fertilizer (5:3:2). The amounts of phosphorus and potassium fertilizers were the same for all treatments, and P2O5 (45 kg ha−1) and K2O (80 kg ha−1) were used. Phosphorus was applied once as a basal application. Potassium fertilizer was applied twice: once as a basal fertilizer and at 8.5 leaf age (panicle primordium differentiation stage) at a 1:1 ratio22.Table 2 The fertilizer methods.Full size tableThis study was performed with a randomized complete block design with three replications. Three irrigation practices and five fertilizer methods were applied, for a total of 15 treatments as follows: CT1, CT2, CT3, CT4, CT5; WT1, WT2, WT3, WT4, WT5; FT1, FT2, FT3, FT4, and FT5 (C, W, and F represent control irrigation, wet irrigation, and flood irrigation; T represents fertilizer treatment).Measurements of the samplesA soil temperature sensor (HZTJ1-1) was buried in each experimental plot to monitor the temperature of each soil layer (5 cm, 10 cm, 15 cm, 20 cm and 25 cm depth). The transmission of photosynthetically active radiation was measured from 11:00 to 13:00 by using a SunScan Canopy Analysis System (Delta T Devices, Ltd., Cambridge, UK), and data during the crop-growing season were recorded every day24.Plant measurements were taken during the periods of tillering to ripening on days with no wind and good light. The fluorescence parameters were measured by a portable fluorescence measurement system (Li-6400XT, America). The detection light intensity was 1500 μmol m−2 s−1, and the saturated pulsed light intensity was 7200 μmolm−2 s−1. The functional leaves were dark adapted for 30 min, and then the maximum photosynthetic efficiency of PSII (Fv/Fm) was measured. Photochemical quenching (QP) and nonphotochemical quenching (NPQ) were measured with natural light. Simultaneously, the leaf chlorophyll relative content (SPAD) was monitored using SPAD 502 (Konica Minolta, Inc., Tokyo, Japan). For plant agronomic characteristics, the distance from the stem base to the stem tip was measured with a straight ruler to quantify plant height24.Statistical analysisExperimental data obtained for different parameters were analysed statistically using the analysis of variance technique as applicable to randomized complete block design. Duncan’s multiple range test was employed to assess differences between the treatment means at a 5% probability level. All statistical analyses were performed using SPSS 22.0 for Windows24.
    Ethics approvalExperimental research and field studies on plants, including the collection of plant material, comply with relevant institutional, national, and international guidelines and legislation. We had appropriate permissions/licences to perform the experiment in the study area. More