More stories

  • in

    Genetic and particle modelling approaches to assessing population connectivity in a deep sea lobster

    Farmery, A. K., Hendrie, G. A., O’Kane, G., McManus, A. & Green, B. S. Sociodemographic variation in consumption patterns of sustainable and nutritious seafood in Australia. Front. Nutr. 5, 118. https://doi.org/10.3389/fnut.2018.00118 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillen, J. et al. Global seafood consumption footprint. Ambio 48, 111–122. https://doi.org/10.1007/s13280-018-1060-9 (2019).Article 
    PubMed 

    Google Scholar 
    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320. https://doi.org/10.1016/j.marpol.2011.06.008 (2012).Article 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298. https://doi.org/10.1111/mec.13689 (2016).Article 
    PubMed 

    Google Scholar 
    Victorero, L., Watling, L., Deng Palomares, M. L. & Nouvian, C. Out of sight, but within reach: A global history of bottom-trawled deep-sea fisheries from > 400 m depth. Front. Mar. Sci. 5, 98. https://doi.org/10.3389/fmars.2018.00098 (2018).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466. https://doi.org/10.1146/annurev.marine.010908.163757 (2009).Article 
    PubMed 

    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: The deep-sea floor. Mol. Ecol. 26, 4872–4896. https://doi.org/10.1111/mec.14237 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).Article 
    PubMed 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417. https://doi.org/10.1038/srep43417 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman, F. C. & Williams, S. L. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity. Trends Ecol. Evol. 17, 40–44. https://doi.org/10.1016/S0169-5347(01)02330-8 (2002).Article 

    Google Scholar 
    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349. https://doi.org/10.1126/science.1230441 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).Article 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39. https://doi.org/10.1111/mec.12509 (2014).Article 
    PubMed 

    Google Scholar 
    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. et al. Guidelines for genetic data analysis. J. Cetac. Res. Manag. 18, 33–80 (2018).ADS 

    Google Scholar 
    Hauser, L., Adcock, G. J., Smith, P. J., Bernal Ramírez, J. H. & Carvalho, G. R. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. 99, 11742–11747. https://doi.org/10.1073/pnas.172242899 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laikre, L., Palm, S. & Ryman, N. Genetic population structure of fishes: Implications for coastal zone management. AMBIO A J. Hum. Environ. 34, 111–119. https://doi.org/10.1579/0044-7447-34.2.111 (2005).Article 

    Google Scholar 
    Gaggiotti, O. E. Population genetic models of source–sink metapopulations. Theor. Popul. Biol. 50, 178–208. https://doi.org/10.1006/tpbi.1996.0028 (1996).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Bracco, A., Liu, G., Galaska, M. P., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).Article 

    Google Scholar 
    Liu, S.-Y.V., Hsin, Y.-C. & Cheng, Y.-R. Using particle tracking and genetic approaches to infer population connectivity in the deep-sea scleractinian coral Deltocyathus magnificus in the South China sea. Deep Sea Res. Part I 161, 103297. https://doi.org/10.1016/j.dsr.2020.103297 (2020).Article 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344. https://doi.org/10.1111/maec.12343 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377. https://doi.org/10.1111/j.1467-2979.2008.00300.x (2008).Article 

    Google Scholar 
    Yan, R.-J., Schnabel, K. E., Rowden, A. A., Guo, X.-Z. & Gardner, J. P. A. Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the southwest Pacific Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00791 (2020).Article 

    Google Scholar 
    Breusing, C. et al. Biophysical and population genetic models predict the presence of “phantom” stepping stones connecting Mid-Atlantic Ridge vent ecosystems. Curr. Biol. 26, 2257–2267. https://doi.org/10.1016/j.cub.2016.06.062 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment: Scampi (SCI). https://fs.fish.govt.nz/Page.aspx?pk=113&dk=24443 (2017).Botsford, L. W. et al. Connectivity, sustainability, and yield: Bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fish. 19, 69–95. https://doi.org/10.1007/s11160-008-9092-z (2009).Article 

    Google Scholar 
    NIWA. Annual Distribution of Scampi. Ministry for Primary Industries, New Zealand. https://mpi.maps.arcgis.com/home/item.html?id=97da6c1a912b45a8855bf741211f5911 (2016).Heasman, K. G. & Jeffs, A. G. Fecundity and potential juvenile production for aquaculture of the New Zealand scampi, Metanephrops challengeri (Balss, 1914) (Decapoda: Nephropidae). Aquaculture 511, 634184. https://doi.org/10.1016/j.aquaculture.2019.05.069 (2019).Article 

    Google Scholar 
    Smith, P. J. Allozyme variation in scampi (Metanephrops challengeri) fisheries around New Zealand. NZ J. Mar. Freshw. Res. 33, 491–497. https://doi.org/10.1080/00288330.1999.9516894 (1999).Article 

    Google Scholar 
    Berry, P. The biology of Nephrops andamanicus Wood-Mason (Decapoda, Reptantia). Report No. 22, 1–55 (South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa, 1969).Major, R. N. & Jeffs, A. G. Orientation and food search behaviour of a deep sea lobster in turbulent versus laminar odour plumes. Helgol. Mar. Res. 71, 9. https://doi.org/10.1186/s10152-017-0489-8 (2017).Article 

    Google Scholar 
    Tuck, I. D., Parsons, D. M., Hartill, B. W. & Chiswell, S. M. Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES J. Mar. Sci. 72, i199–i210. https://doi.org/10.1093/icesjms/fsu244 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Booth, J. D. Sources and sinks of larval settlement in Jasus edwardsii around New Zealand: Where do larvae come from and where do they go?. Mar. Ecol. Prog. Ser. 354, 201–217. https://doi.org/10.3354/meps07217 (2008).ADS 
    Article 

    Google Scholar 
    Silva, C. N. S., Macdonald, H. S., Hadfield, M. G., Cryer, M. & Gardner, J. P. A. Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery. ICES J. Mar. Sci. 76, 1007–1018. https://doi.org/10.1093/icesjms/fsy201 (2019).Article 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: Understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237. https://doi.org/10.1002/ece3.4684 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C. & Willows-Munro, S. Between the current and the coast: Genetic connectivity in the spiny lobster Panulirus homarus rubellus, despite potential barriers to gene flow. Mar. Biol. 166, 36. https://doi.org/10.1007/s00227-019-3486-4 (2019).Article 

    Google Scholar 
    Thomas, L. & Bell, J. J. Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity 111, 345–354. https://doi.org/10.1038/hdy.2013.58 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baeza, J. A., Holstein, D., Umaña-Castro, R. & Mejía-Ortíz, L. M. Population genetics and biophysical modeling inform metapopulation connectivity of the Caribbean king crab Maguimithrax spinosissimus. Mar. Ecol. Prog. Ser. 610, 83–97 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Hedgecock, D., Barber, P. H. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).Article 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024. https://doi.org/10.1098/rstb.2021.0024 (2022).Article 

    Google Scholar 
    Sebastian, W. et al. Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish. Sci. Rep. 11, 20690. https://doi.org/10.1038/s41598-021-00129-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lal, M. M., Southgate, P. C., Jerry, D. R., Bosserelle, C. & Zenger, K. R. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: The case of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 11, e0161390. https://doi.org/10.1371/journal.pone.0161390 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, T. et al. Hidden historical habitat-linked population divergence and contemporary gene flow of a deep-sea patellogastropod limpet. Mol. Biol. Evol. 38, 5640–5654. https://doi.org/10.1093/molbev/msab278 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Souza, J. M. A. C. et al. Moana Ocean Hindcast—A 25+ years simulation for New Zealand Waters using the ROMS v3.9 model. EGUsphere https://doi.org/10.5194/egusphere-2022-41 (2022).Norrie, C., Dunphy, B., Roughan, M., Weppe, S. & Lundquist, C. Spill-over from aquaculture may provide a larval subsidy for the restoration of mussel reefs. Aquac. Environ. Interact. 12, 231–249 (2020).Article 

    Google Scholar 
    Larsson, J. et al. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuar. Coast. Shelf Sci. 195, 98–109. https://doi.org/10.1016/j.ecss.2016.06.016 (2017).ADS 
    Article 

    Google Scholar 
    Nicolle, A. et al. Modelling larval dispersal of Pecten maximus in the English Channel: A tool for the spatial management of the stocks. ICES J. Mar. Sci. 74, 1812–1825. https://doi.org/10.1093/icesjms/fsw207 (2017).Article 

    Google Scholar 
    Hold, N. et al. Using biophysical modelling and population genetics for conservation and management of an exploited species, Pecten maximus L. Fish. Oceanogr. 30, 740–756. https://doi.org/10.1111/fog.12556 (2021).Article 

    Google Scholar 
    Truelove, N. K. et al. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs 36, 233–244. https://doi.org/10.1007/s00338-016-1516-y (2017).ADS 
    Article 

    Google Scholar 
    Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I 167, 103427. https://doi.org/10.1016/j.dsr.2020.103427 (2021).Article 

    Google Scholar 
    Ross, P. M., Hogg, I. D., Pilditch, C. A. & Lundquist, C. J. Phylogeography of New Zealand’s coastal benthos. NZ J. Mar. Freshw. Res. 43, 1009–1027. https://doi.org/10.1080/00288330.2009.9626525 (2009).Article 

    Google Scholar 
    Tuck, I. D. Characterisation and a length-based assessment model for scampi (Metanephrops challengeri) at the Auckland Islands (SCI 6A). Report No. 2015/21, 160 (Ministry for Primary Industries, Wellington, 2015).Verry, A. J. F., Walton, K., Tuck, I. D. & Ritchie, P. A. Genetic structure and recent population expansion in the commercially harvested deepsea decapod, Metanephrops challengeri (Crustacea: Decapoda). NZ J. Mar. Freshw. Res. 54, 251–270. https://doi.org/10.1080/00288330.2019.1707696 (2020).CAS 
    Article 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: Contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19. https://doi.org/10.3354/meps11792 (2016).ADS 
    Article 

    Google Scholar 
    Hare, M. P. et al. Understanding and estimating effective population size for practical application in marine species management. Conserv. Biol. 25, 438–449. https://doi.org/10.1111/j.1523-1739.2010.01637.x (2011).Article 
    PubMed 

    Google Scholar 
    Ashry, N. A. Plant biodiversity and biotechnology. In From Plant Genomics to Plant Biotechnology (eds Poltronieri, P. et al.) 205–222 (Woodhead Publishing, 2013).Chapter 

    Google Scholar 
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337. https://doi.org/10.1111/j.1752-4571.2010.00157.x (2011).Article 
    PubMed 

    Google Scholar 
    Kerr, L. A., Cadrin, S. X. & Secor, D. H. Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES J. Mar. Sci. 67, 1631–1639. https://doi.org/10.1093/icesjms/fsq053 (2010).Article 

    Google Scholar 
    Carroll, E. L. et al. Perturbation drives changing metapopulation dynamics in a top marine predator. Proc. R. Soc. B Biol. Sci. 287, 20200318. https://doi.org/10.1098/rspb.2020.0318 (2020).Article 

    Google Scholar 
    Chiswell, S. M., Bostock, H. C., Sutton, P. J. H. & Williams, M. J. M. Physical oceanography of the deep seas around New Zealand: A review. NZ J. Mar. Freshw. Res. 49, 286–317. https://doi.org/10.1080/00288330.2014.992918 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Roemmich, D. The East Cape Current and two eddies: A mechanism for larval retention?. NZ J. Mar. Freshw. Res. 32, 385–397. https://doi.org/10.1080/00288330.1998.9516833 (1998).Article 

    Google Scholar 
    Condie, S. & Condie, R. Retention of plankton within ocean eddies. Glob. Ecol. Biogeogr. 25, 1264–1277. https://doi.org/10.1111/geb.12485 (2016).Article 

    Google Scholar 
    Lesser, J. H. R. Phyllosoma larvae of Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae) and their distribution off the east coast of the North Island, New Zealand. NZ J. Mar. Freshw. Res. 12, 357–370. https://doi.org/10.1080/00288330.1978.9515763 (1978).Article 

    Google Scholar 
    Kawecki, T. J. Ecological and evolutionary consequences of source-sink population dynamics. In Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 387–414 (Academic Press, 2004).Chapter 

    Google Scholar 
    Figueira, W. F. & Crowder, L. B. Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul. Ecol. 48, 215–224. https://doi.org/10.1007/s10144-006-0265-0 (2006).Article 

    Google Scholar 
    Heinrichs, J. A. et al. Recent advances and current challenges in applying source-sink theory to species conservation. Curr. Landsc. Ecol. Rep. 4, 51–60. https://doi.org/10.1007/s40823-019-00039-3 (2019).Article 

    Google Scholar 
    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinrichs, J. A., Lawler, J. J. & Schumaker, N. H. Intrinsic and extrinsic drivers of source-sink dynamics. Ecol. Evol. 6, 892–904. https://doi.org/10.1002/ece3.2029 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilroy, J. J. & Edwards, D. P. Source-sink dynamics: A neglected problem for landscape-scale biodiversity conservation in the Tropics. Curr. Landsc. Ecol. Rep. 2, 51–60. https://doi.org/10.1007/s40823-017-0023-3 (2017).Article 

    Google Scholar 
    Lal, M. M., Bosserelle, C., Kishore, P. & Southgate, P. C. Understanding marine larval dispersal in a broadcast-spawning invertebrate: A dispersal modelling approach for optimising spat collection of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 15, e0234605. https://doi.org/10.1371/journal.pone.0234605 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chassé, J. & Miller, R. J. Lobster larval transport in the southern Gulf of St. Lawrence. Fish. Oceanogr. 19, 319–338. https://doi.org/10.1111/j.1365-2419.2010.00548.x (2010).Article 

    Google Scholar 
    Lindegren, M., Andersen, K. H., Casini, M. & Neuenfeldt, S. A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study. Ecol. Appl. 24, 1820–1832. https://doi.org/10.1890/13-0566.1 (2014).Article 
    PubMed 

    Google Scholar 
    Tuck, I. D. et al. Estimating the abundance of scampi in SCI 6A (Auckland Islands) in 2013. Report No. 2015/10, 48 (Ministry for Primary Industries, 2015).Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614. https://doi.org/10.1016/j.cub.2009.05.046 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196. https://doi.org/10.1038/s41586-018-0006-5 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230. https://doi.org/10.1038/s41586-018-0007-4 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    van Gennip, S. J. et al. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617. https://doi.org/10.1111/gcb.13586 (2017).ADS 
    Article 

    Google Scholar 
    Bashevkin, S. M. et al. Larval dispersal in a changing ocean with an emphasis on upwelling regions. Ecosphere 11, e03015. https://doi.org/10.1002/ecs2.3015 (2020).Article 

    Google Scholar 
    Gerber, L. R., Mancha-Cisneros, M. D. M., O’Connor, M. I. & Selig, E. R. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5, 1–18. https://doi.org/10.1890/es13-00336.1 (2014).Article 

    Google Scholar 
    Hoegh-Gulderg, O. & Pearse, J. Temperature, food availability, and the development of marine invertebrate larvae. Am. Zool. 35, 415–425. https://doi.org/10.1093/icb/35.4.415 (1995).Article 

    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA 104, 1266–1271. https://doi.org/10.1073/pnas.0603422104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cetina-Heredia, P., Roughan, M., van Sebille, E., Feng, M. & Coleman, M. A. Strengthened currents override the effect of warming on lobster larval dispersal and survival. Glob. Change Biol. 21, 4377–4386. https://doi.org/10.1111/gcb.13063 (2015).ADS 
    Article 

    Google Scholar 
    Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00362 (2020).Article 

    Google Scholar 
    Ogilvie, S. et al. Mātauranga Māori driving innovation in the New Zealand scampi fishery. NZ J. Mar. Freshw. Res. 52, 590–602. https://doi.org/10.1080/00288330.2018.1532441 (2018).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data v. 0.11.7 (Babraham Bioinformatics, 2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing v. 4.1.0 (R Studio v1.4.1106) (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.Díaz-Arce, N. & Rodríguez-Ezpeleta, N. Selecting RAD-seq data analysis parameters for population genetics: The more the better?. Front. Genet. 10, 533. https://doi.org/10.3389/fgene.2019.00533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 12, e0169774. https://doi.org/10.1371/journal.pone.0169774 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. & Jombart, T. hierfstat: Estimation and Tests of Hierarchical F-Statistics v. 0.04-22 (Comprehensive R Archive Network (CRAN), 2015). https://CRAN.R-project.org/package=hierfstat.Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259. https://doi.org/10.1111/j.1469-1809.1983.tb00993.x (1983).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An R package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11. https://doi.org/10.1111/1755-0998.12559 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 125, 269–280. https://doi.org/10.1038/s41437-020-0348-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788. https://doi.org/10.1111/2041-210x.12067 (2013).Article 

    Google Scholar 
    Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Dagestad, K. F., Röhrs, J., Breivik, Ø. & Ådlandsvik, B. OpenDrift v1.0: A generic framework for trajectory modelling. Geosci. Model Dev. 11, 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018 (2018).ADS 
    Article 

    Google Scholar 
    Jeffs, A., Daniels, C. & Heasman, K. In Fisheries and Aquaculture: Natural History of Crustacea, Vol. 9 (eds Lovrich, G. & Thiel, M.) 285–311 (Oxford University Press, 2020).Lundquist, C. J., Oldman, J. W. & Lewis, M. J. Predicting suitability of cockle Austrovenus stutchburyi restoration sites using hydrodynamic models of larval dispersal. NZ J. Mar. Freshw. Res. 43, 735–748. https://doi.org/10.1080/00288330909510038 (2009).Article 

    Google Scholar 
    Lundquist, C. J., Thrush, S. F., Oldman, J. W. & Senior, A. K. Limited transport and recolonization potential in shallow tidal estuaries. Limnol. Oceanogr. 49, 386–395. https://doi.org/10.4319/lo.2004.49.2.0386 (2004).ADS 
    Article 

    Google Scholar 
    Okubo, A. & Ebbesmeyer, C. C. Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res. Oceanogr. Abstr. 23, 349–352. https://doi.org/10.1016/0011-7471(76)90875-5 (1976).ADS 
    Article 

    Google Scholar 
    Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files v. 1.17 (Comprehensive R Archive Network (CRAN), 2019). https://CRAN.R-project.org/package=ncdf4.Coelho, S. C. C., Gherardi, D. F. M., Gouveia, M. B. & Kitahara, M. V. Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms. Sci. Rep. 12, 5286. https://doi.org/10.1038/s41598-022-09269-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demmer, J. et al. The role of wind in controlling the connectivity of blue mussels (Mytilus edulis L.) populations. Mov. Ecol. 10, 3. https://doi.org/10.1186/s40462-022-00301-0 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atalah, J., South, P. M., Briscoe, D. K. & Vennell, R. Inferring parental areas of juvenile mussels using hydrodynamic modelling. Aquaculture 555, 738227. https://doi.org/10.1016/j.aquaculture.2022.738227 (2022).Article 

    Google Scholar 
    McGeady, R., Lordan, C. & Power, A. M. Long-term interannual variability in larval dispersal and connectivity of the Norway lobster (Nephrops norvegicus) around Ireland: When supply-side matters. Fish. Oceanogr. 31, 255–270. https://doi.org/10.1111/fog.12576 (2022).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: Extra Map Databases v. 2.3.0 (Comprehensive R Archive Network (CRAN), 2018). https://CRAN.R-project.org/package=mapdata.McIlroy, D., Brownrigg, R., Minka, T. P. & Bivan, R. mapproj: Map Projections v. 1.2.7 (Comprehensive R Archive Network (CRAN), 2020). https://CRAN.R-project.org/package=mapproj.South, A. rnaturalearth: World Map Data from Natural Earth v. 0.1.0 (Comprehensive R Archive Network (CRAN), 2017). https://CRAN.R-project.org/package=rnaturalearth. More

  • in

    Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands

    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).CAS 
    Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhuang, Q., Lu, Y. & Chen, M. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atm. Environ. 47, 66–75 (2012).CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J. Geophys. Res. 113, D17313 (2008).Article 

    Google Scholar 
    D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).Article 

    Google Scholar 
    Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).CAS 
    Article 

    Google Scholar 
    Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza-Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buessecker, S. et al. Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms. Biogeosciences 16, 4601–4612 (2019).CAS 
    Article 

    Google Scholar 
    Heil, J., Liu, S., Vereecken, H. & Brüggemann, N. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biol. Biochem. 84, 107–115 (2015).CAS 
    Article 

    Google Scholar 
    Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3, 341–344 (2010).CAS 
    Article 

    Google Scholar 
    Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, L. C., Peters, B., Pacheco, J. S. L., Casciotti, K. L. & Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 49, 3444–3452 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010).CAS 
    Article 

    Google Scholar 
    Holtan-Hartwig, L., Dörsch, P. & Bakken, L. R. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biol. Biochem. 34, 1797–1806 (2002).CAS 
    Article 

    Google Scholar 
    Gorelsky, S. I., Ghosh, S. & Solomon, E. I. Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. https://doi.org/10.1021/ja055856o (2005).Tsai, M.-L. et al. [Cu2O]2+ active site formation in Cu–ZSM-5: geometric and electronic structure requirements for N2O activation. J. Am. Chem. Soc. https://doi.org/10.1021/ja4113808 (2014).Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA 109, 19709–19714 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Change 4, 801–805 (2014).CAS 
    Article 

    Google Scholar 
    Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26, 43–55 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lycus, P. et al. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. Proc. Natl Acad. Sci. USA 115, 11820–11825 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, L. C., Stevens, R. J. & Laughlin, R. J. Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biol. Biochem. 27, 839–844 (1995).CAS 
    Article 

    Google Scholar 
    Burns, L. C., Stevens, R. J. & Laughlin, R. J. Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol. Biochem. 28, 609–616 (1996).CAS 
    Article 

    Google Scholar 
    Wullstein, L. H. & Gilmour, C. M. Non-enzymatic formation of nitrogen gas. Nature 210, 1150–1151 (1966).CAS 
    Article 

    Google Scholar 
    Liu, S., Schloter, M., Hu, R., Vereecken, H. & Brüggemann, N. Hydroxylamine contributes more to abiotic N2O production in soils than nitrite. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00047 (2019).Thorn, K. A. & Mikita, M. A. Nitrite fixation by humic substances: nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. Soil Sci. Soc. Am. J. 64, 568–582 (2000).CAS 
    Article 

    Google Scholar 
    Thorn, K. A., Younger, S. J. & Cox, L. G. Order of functionality loss during photodegradation of aquatic humic substances. J. Environ. Qual. 39, 1416–1428 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article 

    Google Scholar 
    Lovley, D. R. & Blunt-Harris, E. L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65, 4252–4254 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Cleemput, O., Patrick, W. H. & McIlhenny, R. C. Nitrite decomposition in flooded soil under different pH and redox potential conditions. Soil Sci. Soc. Am. J. 40, 55–60 (1976).Article 

    Google Scholar 
    Van Cleemput, O. & Baert, L. Nitrite: a key compound in N loss processes under acid conditions? Plant Soil 76, 233–241 (1984).Article 

    Google Scholar 
    Porter, L. K. Gaseous products produced by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Soil Sci. Soc. Am. J. 33, 696–702 (1969).CAS 
    Article 

    Google Scholar 
    Liu, B., Mørkved, P. T., Frostegård, Å. & Bakken, L. R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72, 407–417 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Domeignoz-Horta, L. et al. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00971 (2015).Domeignoz-Horta, L. A. et al. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Glob. Change Biol. 24, 360–370 (2018).Article 

    Google Scholar 
    Onley, J. R., Ahsan, S., Sanford, R. A. & Löffler, F. E. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl. Environ. Microbiol. 84, 4 (2018).Article 

    Google Scholar 
    Sanford, R. A., Cole, J. R. & Tiedje, J. M. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893–900 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohr, K. I., Zindler, T., Wink, J., Wilharm, E. & Stadler, M. Myxobacteria in high moor and fen: an astonishing diversity in a neglected extreme habitat. MicrobiologyOpen 6, e00464 (2017).PubMed Central 
    Article 

    Google Scholar 
    Hori, T., Müller, A., Igarashi, Y., Conrad, R. & Friedrich, M. W. Identification of iron-reducing microorganisms in anoxic rice paddy soil by ¹³C-acetate probing. ISME J. 4, 267–278 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawaichi, S. et al. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int. J. Sys. Evol. Microbiol. 63, 2992–3002 (2013).CAS 
    Article 

    Google Scholar 
    Podosokorskaya, O. A. et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ. Microbiol. 15, 1759–1771 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon, S. et al. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I nosz from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793–3800 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maher, B. A. & Taylor, R. M. Formation of ultrafine-grained magnetite in soils. Nature 336, 368–370 (1988).CAS 
    Article 

    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (Wiley, 1976).White, A. F. et al. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim. Cosmochim. Acta 62, 209–226 (1998).CAS 
    Article 

    Google Scholar 
    Hall, S. J., Liptzin, D., Buss, H. L., DeAngelis, K. & Silver, W. L. Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130, 177–190 (2016).CAS 
    Article 

    Google Scholar 
    Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).CAS 
    Article 

    Google Scholar 
    Grabb, K. C., Buchwald, C., Hansel, C. M. & Wankel, S. D. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochim. Cosmochim. Acta 196, 388–402 (2017).CAS 
    Article 

    Google Scholar 
    Drewer, J. et al. Linking nitrous oxide and nitric oxide fluxes to microbial communities in tropical forest soils and oil palm plantations in Malaysia in laboratory incubations. Front. For. Glob. Change 3, 4 (2020).Article 

    Google Scholar 
    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature – a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).Article 

    Google Scholar 
    Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stumm, W. & Lee, G. F. Oxygenation of ferrous iron. Ind. Eng. Chem. 53, 143–146 (1961).CAS 
    Article 

    Google Scholar 
    Theis, T. L. & Singer, P. C. Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ. Sci. Technol. 8, 569–573 (1974).CAS 
    Article 

    Google Scholar 
    Wan, X. et al. Complexation and reduction of iron by phenolic substances: implications for transport of dissolved Fe from peatlands to aquatic ecosystems and global iron cycling. Chem. Geol. 498, 128–138 (2018).CAS 
    Article 

    Google Scholar 
    Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prananto, J. A., Minasny, B., Comeau, L.-P., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).Article 

    Google Scholar 
    Stirling, E., Fitzpatrick, R. W. & Mosley, L. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387 (2020).CAS 
    Article 

    Google Scholar 
    Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamilton, S. K. & Ostrom, N. E. Measurement of the stable isotope ratio of dissolved N2 in 15N tracer experiments. Limnol. Oceanogr. Methods 5, 233–240 (2007).CAS 
    Article 

    Google Scholar 
    Ostrom, N. E., Gandhi, H., Trubl, G. & Murray, A. E. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. Geobiology 14, 575–587 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stumm, W. & Morgan, J. J. Aquatic Chemistry 3rd edn (John Wiley & Sons, 1996).Homyak, P. M., Kamiyama, M., Sickman, J. O. & Schimel, J. P. Acidity and organic matter promote abiotic nitric oxide production in drying soils. Glob. Change Biol. 23, 1735–1747 (2017).Article 

    Google Scholar 
    Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181–5189 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417–426 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B. et al. A new primer set for clade I nosZ that recovers genes from a broader range of taxa. Biol. Fertil. Soils 57, 523–531 (2021).CAS 
    Article 

    Google Scholar 
    Herbold, C. W. et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6, 8966 (2015).Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/early/2016/10/15/081257 (2016).Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using Framebot, a new informatics tool. mBio 4, e00592-13 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fish, J. A. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huson, D. H. et al. MEGAN Community Edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huson, D. H. et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 13, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12, 385 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Connectivity modelling in conservation science: a comparative evaluation

    Abram, D. The spell of the sensuous: Perception and language in a more-than-human world. Vintage (2012).Ingold, T. Being alive: Essays on movement, knowledge and description. Routledgehttps://doi.org/10.4324/9780203818336 (2011).Article 

    Google Scholar 
    Kimmerer, R.W. Braiding sweetgrass: Indigenous wisdom, scientific knowledge and the teachings of plants (Milkweed editions, 2013).Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibbs, J.P. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. in The Journal of Wildlife Management (1998), pp. 584–589. https://doi.org/10.2307/3802333.Moller, H., Berkes, F., O’Brian Lyver, P., & Kislalioglu, M. Combining science and traditional ecological knowledge: Monitoring populations for co-management. in Ecology and society (2004).Lorimer, J. Wildlife in the Anthropocene: conservation after nature. (U of Minnesota Press, 2015).Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3(4), 385–397 (1989).Article 

    Google Scholar 
    Abram, D. Becoming animal: An earthly cosmology. Vintage (2010).Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105(49), 19052–19059 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90(1), 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x (2000).Article 

    Google Scholar 
    Rudnick, D., Ryan, S.J., Beier, P., Cushman, S.A., Dieffenbach, F., Epps, C., Gerber, L.R., Hartter, J.N., Jenness, J.S., & Kintsch, J. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology (2012).Hilty, J.A., Lidicker, W.Z., & Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, 2012).Cushman, S.A., McRae, B.H., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. Biological corridors and connectivity [Chapter 21]. in Key Topics in Conservation Biology 2nd ed. (eds Macdonald, D.W., Willis, K.J.) pp. 384–404 (Hoboken, NJ: Wiley-Blackwell, 2013).Unnithan Kumar, S., Turnbull, J., Hartman Davies, O., Hodgetts, T., & Cushman, S.A. Moving beyond landscape resistance: Considerations for the future of connectivity modelling and conservation science. in Landscape Ecology (2022).Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landscape Ecol. 27(6), 777–797 (2012).Article 

    Google Scholar 
    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64(4), 233–247 (2003).Article 

    Google Scholar 
    Cushman, S. A. & McKelvey, K. S. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376. https://doi.org/10.1111/j.1523-1739.2008.01111.x (2009).Article 
    PubMed 

    Google Scholar 
    Moilanen, A. On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J. Appl. Ecol. pp. 1543–1547 (2011).Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21(3), 788–799. https://doi.org/10.1111/j.1523-1739.2007.00674.x (2007).Article 
    PubMed 

    Google Scholar 
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1. (2008).Article 
    PubMed 

    Google Scholar 
    Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879. https://doi.org/10.1111/ddi.12742. (2018).Article 

    Google Scholar 
    Pullinger, M. G. & Johnson, C. J. Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol. 25(10), 1547–1560 (2010).Article 

    Google Scholar 
    Sawyer, S. C., Clinton, W. E. & Brashares, J. S. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48(3), 668–678 (2011).Article 

    Google Scholar 
    Laliberté, J. & St-Laurent, M.-H. Validation of functional connectivity modeling: The Achilles’ heel of landscape connectivity mapping. Landsc. Urban Plan. 202, 103878 (2020).Article 

    Google Scholar 
    Landguth, E. L. & Cushman, S. A. CDPOP: A spatially explicit cost distance popula tion genetics program. Mol. Ecol. Resour. 10(1), 156–161. https://doi.org/10.1111/j.1755-0998.2009.02719.x. (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19(19), 4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cushman, S. A. & Landguth, E. L. Scale dependent inference in landscape genetics. Landsc. Ecol. 25(6), 967–979 (2010).Article 

    Google Scholar 
    Cushman, S. A., Shirk, A. J. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).Article 

    Google Scholar 
    Macdonald, E. A. et al. Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE 13(9), e0196974 (2018).Article 

    Google Scholar 
    Schumaker, N. H. et al. Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecol. 29(4), 579–592 (2014).Article 

    Google Scholar 
    Unnithan Kumar, S., Kaszta, Ż & Cushman, S. A. Pathwalker: A new individual-based movement model for conservation science and connectivity modelling. ISPRS Int. J. Geo Inf. 11(6), 329 (2022).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927–930 (2003).Article 

    Google Scholar 
    Dray, S., Royer-Carenzi, M. & Calenge, C. The exploratory analysis of autocorrelation in animal-movement studies. Ecol. Res. 25(3), 673–681. https://doi.org/10.1007/s11284-010-0701-7 (2010).Article 

    Google Scholar 
    Cushman, S.A. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. in Spatial Complexity, Informatics, and Wildlife Conservation (Springer, 2010), pp. 131-149.Zeller, K. A. et al. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol. 29(3), 541–557 (2014).Article 

    Google Scholar 
    Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56(2), 234–238 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schumaker, N.H. Using landscape indices to predict habitat connectivity. Ecology (1996), pp. 1210–1225.Schumaker, N. H. & Brookes, A. HexSim: A modeling environment for ecology and conservation. Landscape Ecol. 33(2), 197–211 (2018).Article 

    Google Scholar 
    Bocedi, G., Palmer, S. C. F., Malchow, A.-K., Zurell, D. & Watts, K. RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44(10), 1453–1462 (2021).Article 

    Google Scholar 
    Kaszta, Ż, Cushman, S. A. & Slotow, R. Temporal non-stationarity of path- selection movement models and connectivity: An example of African elephants in Kruger national park. Front. Ecol. Evol. 9, 207 (2021).Article 

    Google Scholar 
    Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: Accounting for variability across individuals and seasons. Anim. Conserv. 22(1), 35–48 (2019).Article 

    Google Scholar 
    Vergara, M., Cushman, S. A. & Ruiz-González, A. Ecological differences and limiting factors in different regional contexts: landscape genetics of the stone marten in the Iberian Peninsula. Landscape Ecol. 32(6), 1269–1283 (2017).Article 

    Google Scholar 
    Reddy, P. A., Puyravaud, J.-P., Cushman, S. A. & Segu, H. Spatial variation in the response of tiger gene ow to landscape features and limiting factors. Anim. Conserv. 22(5), 472–480 (2019).Article 

    Google Scholar 
    Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land 9(9), 303. https://doi.org/10.3390/land9090303 (2020).Article 

    Google Scholar 
    Cronon, W. The trouble with wilderness: or, getting back to the wrong nature. Environ. Hist. 1(1), 7–28 (1996).Article 

    Google Scholar 
    Ingold, T. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill (Routledge, 2021).Boettiger, A. N. et al. Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology 92(8), 1648–1657 (2011).Article 

    Google Scholar 
    Pooley, S. et al. An interdisciplinary review of current and future approaches to improving human-predator relations. Conserv. Biol. 31(3), 513–523. https://doi.org/10.1111/cobi.12859 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benson, E. S. Minimal animal: Surveillance, simulation, and stochasticity in wildlife biology. Antennae 30, 39 (2014).
    Google Scholar 
    Kaszta, Ż et al. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol. Cons. 235, 63–76 (2019).Article 

    Google Scholar 
    Penjor, U., Astaras, C., Cushman, S. A., Kaszta, Ż & Macdonald, D. W. Contrasting effects of human settlement on the interaction among sympatric apex carnivores. Proc. R. Soc. B 289(1973), 20212681 (2022).Article 

    Google Scholar 
    Barua, M. Bio-geo-graphy: Landscape, dwelling, and the political ecology of human-elephant relations. Environ. Plann. D Soc. Space 32(5), 915–934 (2014).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51(5), 1169–1178 (2014).Article 

    Google Scholar 
    Kareiva, P. & Marvier, M. What is conservation science?. Bioscience 62(11), 962–969 (2012).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Bunnefeld, N., Nicholson, E., & Milner-Gulland, E.J. Decision-Making in Conservation and Natural Resource Management: Models for Interdisciplinary Approaches. (Vol. 22, Cambridge University Press, 2017).Parathian, H. E., McLennan, M. R., Hill, C. M., Fraza o-Moreira, A. & Hockings, K. J. Breaking through disciplinary barriers: Human-wildlife interactions and multispecies ethnography. Int. J. Primatol. 39(5), 749–775 (2018).Article 

    Google Scholar 
    Hodgetts, T. Connectivity as a multiple: In with and as “nature’’. Area 50(1), 83–90. https://doi.org/10.1111/area.12353 (2018).Article 
    PubMed 

    Google Scholar 
    Berkes, F. Sacred ecology (Routledge, 2017). https://doi.org/10.4324/9781315114644.Parrenas, J.S. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation (Duke University Press, 2018).Bill Adams, W., & Mulligan, M. Decolonizing Nature: Strategies for Conservation in a Post-Colonial Era (Routledge, 2012). More

  • in

    Ancient DNA provides insights into 4,000 years of resource economy across Greenland

    Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).Meldgaard, M. Ancient Harp Seal Hunters of Disko Bay (Museum Tusculanum Press, 2004).Grønnow, B. & Jensen, J. F. The Northernmost Ruins of the Globe: Eigil Knuth’s Archaeological Investigations in Peary Land and Adjacent Areas of High Arctic Greenland (Museum Tusculanum Press, 2003).Jensen, J. F. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, T. M. & Mason, O.) 673–691 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.56Buckland, P. C., Ski, A. M. A. Y. E. W., Mcgovern, T. H. & Ogilvie, A. E. J. Bioarchaeological and climatological evidence for the fate of Norse farmers in medieval Greenland. Antiquity 70, 88–96 (1996).Article 

    Google Scholar 
    Gulløv, H. C. Grønlands Forhistorie (Gyldendal, 2004).Friesen, T. M. & Arnold, C. D. The timing of the Thule migration: new dates from the Western Canadian. Soc. Am. Archaeol. 73, 527–538 (2008).
    Google Scholar 
    Moltke, I. et al. Uncovering the genetic history of the present-day Greenlandic population. Am. J. Hum. Genet. 96, 54–69 (2015).CAS 
    Article 

    Google Scholar 
    Gulløv, H. C. From Middle Ages to Colonial Times: Archaeological and Ethnohistorical Studies of the Thule Culture in South West Greenland 1300–1800 AD (Dansk Polar Center, 1997).Gulløv, H. C. et al. Danmark og Kolonierne: Grønland (Gads Forlag, 2017).Ameen, C. et al. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. R. Soc. B 286, 20191929 (2019).Grønnow, B. et al. At the edge: High Arctic Walrus hunters during the Little Ice Age. Antiquity 85, 960–977 (2011).Article 

    Google Scholar 
    Fitzhugh, B. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 253–278 (Oxford Univ. Press, 2016).Lyman, R. L. Vertebrate Taphonomy (Cambridge Univ. Press, 1994).Seersholm, F. V. et al. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4000 years ago. Nat. Commun. 7, 13389 (2016). https://doi.org/10.1038/ncomms13389Betts, M. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 81–108 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.8Szpak, P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).Article 

    Google Scholar 
    Murray, D. C. et al. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3, 3371 (2013).Article 

    Google Scholar 
    Møhl, J. in From Middle Ages to Colonial Times (ed. Gulløv, H. C.) 495–501 (Kommissionen for videnskabelige undersøgelser i Grønland, 1980).Møhl, U. Animal Bones from Itivnera, West Greenland: A Reindeer Hunting Site of the Sarqaq Culture (C. A. Reitzels Forlag, 1972).Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).Article 

    Google Scholar 
    Arneborg, J. et al. Norse Greenland Dietary Economy ca. AD 980–ca. AD 1450: introduction. J. North Atl. S3, 1–39 (2012).
    Google Scholar 
    Whitridge, P. Zen fish: a consideration of the discordance between artifactual and zooarchaeological indicators of Thule Inuit fish use. J. Anthropol. Archaeol. 20, 3–72 (2001).Article 

    Google Scholar 
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).Seersholm, F. V. et al. Ancient DNA preserved in small bone fragments from the P.W. Lund collection. Ecol. Evol. 11, 2064–2071 (2021).Article 

    Google Scholar 
    Wheeler, A. & Jones, A. K. J. Fishes (Cambridge Manuals in Archaeology) (Cambridge Univ. Press, 1989).Gotfredsen, A. B. Former occurrences of geese (Genera Anser and Branta) in ancient West Greenland: morphological and biometric approaches. Acta Zool. 45, 179–204 (2002).
    Google Scholar 
    Gotfredsen, A. B. & Møbjerg, T. Nipisat—A Saqqaq Culture Site in Sissimut, Central West Greenland (Museum Tusculanum Press, 2004).Bockstoce, J. R. On the development of whaling in the western Thule culture. Folk 18, 41–45 (1976).
    Google Scholar 
    Ferguson, S. H., Higdon, J. W., Hall, P. A., Hansen, R. G. & Doniol-Valcroze, T. Developing a precautionary management approach for the eastern Canada–west Greenland population of bowhead whales (Balaena mysticetus). Front. Mar. Sci. 8, 709989 (2021).Eschricht, D. F. Undersögelser over Hvaldyrene (Bianco Lunos Bogtrykkeri, 1846).Mikkelsen, N. et al. European trading, whaling and climate history of west Greenland documented by historical records, drones and marine sediments. Geol. Surv. Den. Greenl. Bull. 41, 67–70 (2018).
    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235 (2007).CAS 
    Article 

    Google Scholar 
    LeDuc, R. G. Mitochondrial genetic variation in bowhead whales in the western Arctic. J. Cetacean Res. Manag. 10, 93–97 (2008).
    Google Scholar 
    McLeod, B. A. Examination of ten thousand years of mitochondrial DNA diversity and population demographics in bowhead whales (Balaena mysticetus) of the Central Canadian Arctic. Mar. Mammal. Sci. 28, 426–443 (2012).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).Article 

    Google Scholar 
    Meldgaard, M. The Greenland Caribou—Zoogeography, Taxonomy, and Population Dynamics (Museum Tusculanum Press, 1986).Meldgaard, M. New perspectives on the zoogeography of the Greenlandic caribou (Rangifer tarandus). In Proc. 4th North American Caribou Workshop (eds Butler, C. & Mahoney, S. P.) 37–63 (Newfoundland and Labrador Wildlife Division, 1991).Solazzo, C., Fitzhugh, W., Kaplan, S., Potter, C. & Dyer, J. M. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections. PLoS ONE 12, e0183053 (2017).Article 

    Google Scholar 
    Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B 268, 1811–1816 (2001).CAS 
    Article 

    Google Scholar 
    Hollesen, J. et al. Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity 92, 573–586 (2018).Article 

    Google Scholar 
    Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097 (2019).Matthiesen, H., Høier Eriksen, A. M., Hollesen, J. & Collins, M. Bone degradation at five Arctic archaeological sites: quantifying the importance of burial environment and bone characteristics. J. Archaeol. Sci. 125, 105296 (2021).Seersholm, F. V. et al. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1803573115 (2018).Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–63 (2013).CAS 
    Article 

    Google Scholar 
    Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    Dyke, A., Moore, A. & Robertson, L. Deglaciation of North America (Geological Survey of Canada, 2003).Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. Dev. Quat. Sci. 2, 373–424 (2004).
    Google Scholar 
    Gansauge, M. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).Grealy, A. et al. Eggshell palaeogenomics: palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol. Phylogenet. Evol. 109, 151–163 (2017).CAS 
    Article 

    Google Scholar 
    Lindgreen, S. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res. Notes 5, 337 (2012).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Single-cell view of deep-sea microbial activity and intracommunity heterogeneity

    Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arístegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29.Article 

    Google Scholar 
    Ebrahimi A, Schwartzman J, Cordero OX. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc Natl Acad Sci USA. 2019;116:23309–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:469.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28:175–211.Article 

    Google Scholar 
    Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Progr Oceanogr. 1988;20:41–82.Article 

    Google Scholar 
    Zehr JP, Kudela RM. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci. 2011;3:197–225.PubMed 
    Article 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teira E, Lebaron P, van Aken H, Herndl GJ. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr. 2006;51:2131–44.CAS 
    Article 

    Google Scholar 
    Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol. 2005;71:2303–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasol JM, Alonso-Sáez L, Vaqué D, Baltar F, Calleja ML, Duarte CM, et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Progr Oceanogr. 2009;83:189–96.Article 

    Google Scholar 
    Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orphan VJ, House CH. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology. 2009;7:360–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol Biol. 2012;881:375–408.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13:03B301.Article 

    Google Scholar 
    Dawson KS, Scheller S, Dillon JG, Orphan VJ. Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front Microbiol. 2016;7:774.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia-Gorostidi N, Weber PK, Alonso-Sáez L, Morán XAG, Mayali X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 2017;11:641–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinic I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:1–23.Article 

    Google Scholar 
    Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, et al. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol. 2021;23:6764–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gini C. Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C. Cuppini, Bologna; 1912.Fernández-Tschieder E, Binkley D. Linking competition with growth dominance and production ecology. Ecol Manag. 2018;414:99–107.Article 

    Google Scholar 
    Cordonnier T, Kunstler G. The Gini index brings asymmetric competition to light. Perspect Plant Ecol Evol Syst. 2015;17:107–15.Article 

    Google Scholar 
    Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods. 1997;30:91–101.CAS 
    Article 

    Google Scholar 
    Li J, Ma YB, Hu HW, Wang JT, Liu YR, He JZ. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Front Microbiol. 2015;6:31.PubMed 
    PubMed Central 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia‐Gorostidi N, Alonso‐Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ Microbiol. 2020;22:1381–96.PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kemp PF, Lee S, Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993;59:2594–601.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baltar F, Arístegui J, Gasol J, Sintes E, van Aken H, Herndl G. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Micro Ecol. 2010;58:287–302.Article 

    Google Scholar 
    Lønborg C, Nieto-Cid M, Hernando-Morales V, Hernández-Ruiz M, Teira E, Álvarez-Salgado XA. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity. FEMS Microbiol Ecol. 2016;92:fiw048.PubMed 
    Article 

    Google Scholar 
    Nagata T, Fukuda H, Fukuda R, Koike I. Bacter-ioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr. 2000;45:426–35.CAS 
    Article 

    Google Scholar 
    Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl Environ Microbiol. 2004;70:4411–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mestre M, Hofer J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 2020;29:482–92.PubMed 
    Article 

    Google Scholar 
    Giering SLC, Evans C. Overestimation of prokaryotic production by leucine incorporation—and how to avoid it. Limnol Oceanogr. 2022;67:726–38.Article 

    Google Scholar 
    Amos CM, Castelao RM, Medeiros PM. Offshore transport of particulate organic carbon in the California Current System by mesoscale eddies. Nat Commun. 2019;10:4940.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer JE, Druffel ERM. Ocean margins as a significant source of organic matter to the deep open ocean. Nature. 1998;392:482–5.CAS 
    Article 

    Google Scholar 
    Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM. Dilution limits dissolved organic carbon utilization in the deep ocean. Science. 2015;348:331–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Musat N, Adam B, Kuypers M, Amann R. HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol. 2012;35:541–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Klawonn I, Bonaglia S, Whitehouse MJ, Littmann S, Tienken D, Kuypers MMM, et al. Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J. 2019;13:1960–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:150720190448005.Article 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Licht TR, Tolker-Nielsen T, Holmstrøm K, Krogfelt KA, Molin S. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol. 1999;1:23–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu J, Gao W, Johnson R, Zhang W, Meldrum D. Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs. 2013;11:3777–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Intraspecies characterization of bacteria via evolutionary modeling of protein domains

    Protein domains show a Gompertzian growthThe protein domain RSA distributions of 3368 bacterial genomes were obtained as detailed in the “Materials and methods” section. Briefly, for each bacterial genome we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein domains belonging to each protein domain family.Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike Information Criterion (AIC)30, in (99.97%) of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). This model performed better than both the Log-Series and the Negative Binomial and described the data well, with an average (R^2) of 0.97 (minimum (R^2)=0.86). The selection of the Poisson Log-Normal model instead of the Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a Gompertzian density regulation function ((g(x)=gamma ln (x+epsilon ))) rather than a linear one ((g(x)=eta x)). This suggests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for the high abundant ones.Figure 1Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial genome (text {GCA}_000717515). The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion parameter (alpha) of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the dispersion parameter obtained for the 3368 bacterial genomes are ({2.67times 10^{-4}}) and ({2.62times 10^{-7}}), in agreement with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 bacterial genomes.Full size imageProtein domains deactivation is faster than duplicationThe examination of the Poisson Log-Normal scale ((mu)) and location ((sigma ^2)) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein domains.First of all, Fig. 2 shows that (mu) has negative values in all bacterial genomes. Recalling that (mu =r/gamma), where r is the growth rate and (gamma) is the multiplicative constant of the Gompertzian function, which must be positive, this implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed as the difference between the birth and the death rate, (r=b-d). Hence, a negative r means that the death rate is greater than the birth rate ((d > b)). In the evolutionary model of protein domains, the birth rate b has the meaning of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain sequence within the genome.Figure 2Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal parameters (mu) versus (sigma ^2) obtained fitting the protein domains RSAs. Only species represented by at least 10 different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different species. Different colors represent different species as indicated in the legend.Full size imageFurthermore, the plot of (mu) as a function of (sigma ^2) (Fig. 2) highlights the negative linear relationship between (mu) and (sigma ^2). Such relationship can also be deduced mathematically.Starting from the expressions (mu =r/gamma) and (sigma ^2=sigma _e^2 / 2gamma), and after simple algebraic manipulation, we can in fact obtain that (mu = 2rsigma ^2 / sigma _e^2), which explains the negative linear relationship between the two parameters.Besides the negative relationship, the plot of (mu) versus (sigma ^2) also highlights the presence of clusters of bacterial genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny based on the ecological modeling of protein domains and the consequent estimation of the parameters (mu) and (sigma ^2).Protein domain RSA and evolutionary distanceWe propose to calculate the pairwise evolutionary distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters discussed above ((mu) and (sigma)), and the density of protein domains in the bacterial genome. Such density describes to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an additional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance between bacteria is specifically computed as the 3D euclidean distance in the scaled space of (mu), (sigma), and protein domain density. In the following, we refer to such distance as ‘RSA distance’.To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared with the bacterial taxonomic classification.Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit the complementary information that these two approaches provide, despite their intrinsic connection. Namely, modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships at the intraspecies level, for which the taxonomic classification is not available.As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent to the number of taxa available at the selected taxonomic level.At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval (left[ 0,1right]), NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, signifying that 65% of bacteria are correctly classified.Figure 3Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent the baselines of NMI score and are based on simulations.Full size imageTo assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein domains, we randomly selected subsamples of protein domains in different proportions (from (10%) to 90% of all protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained using all protein domains (see Materials and Methods for details), and the correlation between the trees was calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsampling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling height of the branches correlates with the full-data height only at larger subsampling proportions.To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of species for which at least 10 different strains were present in our data (48 species). Among them, we selected the species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the “Materials and methods” section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correlation (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial species in more details.Figure 4(Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and (hbox {A}^{mathrm{W}}) (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular chromosomes Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb) (magenta). 2 strains have one (sim)4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ((sim)3 Mb), Chr2 ((sim)1 Mb) and Chr3 ((sim)1 Mb) (violet).Full size imageRSA-based method distinguishes subspecies infecting different hostsXanthomonas citri subsp. citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not detected comparing the 16S rRNA gene sequences.Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* and (hbox {A}^{mathrm{W}}), have a much more limited host range with XCC pathotype (hbox {A}^{mathrm{W}}) infecting only Key lime (C. aurantifolia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC pathotype (hbox {A}^{mathrm{W}})2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and (hbox {A}^{mathrm{W}}) have different hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of XCC included in our data set have diverse geographical origin. While all (hbox {A}^{mathrm{W}}) strains were sampled from USA, strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of strain jx-6 ((text {GCA}_001028285)) coming from China.For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread in human population and causes acute respiratory disease. Besides humans, different animal species can be infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based clustering (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived isolates and the koala strain LPCoLN ((text {GCA}_000024145)) through whole-genome sequencing showed a much higher variation between human and koala-derived strains than within the human-derived strains35.Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in separating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that tissue tropism is not entirely captured by our method.RSA-based method discriminates subspecies with different genome compositionIn some cases, subspecies of the same species are characterized by global differences in the genome composition. This is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromosomes: Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb). However, some strains show a different karyotype. The two strains (1154text {-}74) ((text {GCA}_000969235)) and (10432text {-}62) ((text {GCA}_000969265)), for instance, underwent the process of chromosomal fusion and possess only one (sim 4) Mb long circular chromosome, which shows a high degree of synteny with the two chromosomes of the more common strains36. The strain (text {TSY}216) ((text {GCA}001045415)), on the other hand, besides having the original two chromosomes, also contains an additional (sim 1) Mb long replicon, which does not share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae strains included in our data set are located on (sim 3) Mb long chromosome, which shows high synteny across all strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global genomic differences that exist between the considered strains. On the other hand, the results obtained with the RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, the RSA-based distance depends on the Poisson Log-Normal location parameter (sigma ^2), which increases with the genome length (Supplementary Fig. S1): by definition, (sigma ^2 = sigma _e^2 / 2gamma), and, while the environmental noise (sigma _e^2) can be reasonably considered independent of the genome length, the density regulation (gamma) is expected to be stronger for smaller genomes, which repesent a scarcer environment with less resources.Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids (members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length ( More

  • in

    The impact of restoration methods for Solidago-invaded land on soil invertebrates

    Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).Article 

    Google Scholar 
    Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).CAS 
    Article 

    Google Scholar 
    Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).Article 

    Google Scholar 
    Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).CAS 
    Article 

    Google Scholar 
    Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).Article 

    Google Scholar 
    Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).Article 

    Google Scholar 
    Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).Article 

    Google Scholar 
    de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).Article 

    Google Scholar 
    Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).Article 

    Google Scholar 
    Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).Article 

    Google Scholar 
    Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).Article 

    Google Scholar 
    Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).Article 

    Google Scholar 
    Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).Article 

    Google Scholar 
    Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).Article 

    Google Scholar 
    Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).Article 

    Google Scholar 
    Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).Article 

    Google Scholar 
    Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).CAS 
    Article 

    Google Scholar 
    Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).Article 

    Google Scholar 
    Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).Article 

    Google Scholar 
    Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).
    Google Scholar 
    Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).Article 

    Google Scholar 
    Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).ADS 
    Article 

    Google Scholar 
    Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).Article 
    PubMed 

    Google Scholar 
    Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).Article 

    Google Scholar 
    Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).Article 

    Google Scholar 
    Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).Article 

    Google Scholar 
    Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).Article 

    Google Scholar 
    Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).Article 

    Google Scholar 
    Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).CAS 
    Article 

    Google Scholar 
    Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).ADS 
    Article 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).Chapter 

    Google Scholar 
    Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).
    Google Scholar 
    Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).CAS 
    Article 

    Google Scholar 
    Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).Article 

    Google Scholar 
    van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).Article 

    Google Scholar 
    Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).Article 

    Google Scholar 
    Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).Article 

    Google Scholar 
    Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).ADS 
    Article 

    Google Scholar 
    de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).CAS 
    Article 

    Google Scholar 
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).
    Google Scholar 
    Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).CAS 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).CAS 
    Article 

    Google Scholar 
    Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).CAS 
    Article 

    Google Scholar 
    Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).CAS 
    Article 

    Google Scholar 
    Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).CAS 
    Article 

    Google Scholar 
    Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).Article 

    Google Scholar 
    Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).Article 

    Google Scholar 
    Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).Article 

    Google Scholar 
    Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).Article 
    PubMed 

    Google Scholar  More

  • in

    Author Correction: Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    National Center for Theoretical Sciences, Taipei, 10617, TaiwanChun-Wei Chang & Chih-hao HsiehResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanChun-Wei Chang, Fuh-Kwo Shiah & Chih-hao HsiehFaculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiInstitute of Oceanography, National Taiwan University, Taipei, 10617, TaiwanTakeshi Miki, Fuh-Kwo Shiah & Chih-hao HsiehCenter for Biodiversity Science, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiHealth Science Center Libraries, University of Florida, Gainesville, FL, 32611, USAHao YeUniv. Lille, CNRS, Univ, Littoral Côte D’Opale, IRD, UMR 8187, LOG— Laboratoire D’Océanologie et de Géosciences, Station Marine de Wimereux, F- 59000, Lille, FranceSami SouissiLeibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, 12587, Berlin, GermanyRita AdrianFreie Universität Berlin, Department of Biology, Chemistry and Pharmacy, 14195, Berlin, GermanyRita AdrianNational Research Institute for Agriculture, Food and Environment (INRAE), CARRTEL, Université Savoie Mont Blanc, 74200, Thonon les Bains, FranceOrlane AnnevilleCentre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, 51014, Tartu, EstoniaHelen Agasild & Peeter NõgesDepartment of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, JapanSyuhei Ban & Xin LiuKinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, P.O. Box 447, 14950, Migdal, IsraelYaron Be’eri-Shlevin, Gideon Gal & Tamar ZoharyBiodiversity Research Center, Academia Sinica, Taipei, 11529, TaiwanYin-Ru Chiang & Jiunn-Tzong WuUK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire, LA1 4AP, UKHeidrun Feuchtmayr & Stephen J. ThackerayLake Biwa Environmental Research Institute, Otsu, 520-0022, JapanSatoshi Ichise & Michio KumagaiFaculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8502, Kanagawa, JapanMaiko KagamiDepartment of Environmental Science, Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, JapanMaiko KagamiResearch Center for Lake Biwa & Environmental Innovation, Ritsumeikan University, Kusatsu, 525-0058, Shiga, JapanMichio KumagaiBiodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanShin-Ichiro S. MatsuzakiCNR Water Research Institute (IRSA), L.go Tonolli 50, 28922, Verbania, Pallanza, ItalyMarina M. Manca, Roberta Piscia & Michela RogoraPlymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UKClaire E. WiddicombeInstitute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, 10617, TaiwanChih-hao Hsieh More