Climate change impacts the vertical structure of marine ecosystem thermal ranges
Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS
Article
Google Scholar
Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
Google Scholar
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article
Google Scholar
García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article
Google Scholar
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS
Article
Google Scholar
Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article
Google Scholar
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS
Article
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article
Google Scholar
Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article
Google Scholar
Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article
Google Scholar
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS
Article
Google Scholar
Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS
Article
Google Scholar
Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS
Article
Google Scholar
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS
Article
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article
Google Scholar
Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article
Google Scholar
Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS
Article
Google Scholar
Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS
Article
Google Scholar
Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article
Google Scholar
Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article
Google Scholar
Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS
Article
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article
Google Scholar
Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article
Google Scholar
Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS
Article
Google Scholar
Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article
Google Scholar
Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article
Google Scholar
Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article
Google Scholar
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS
Article
Google Scholar
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article
Google Scholar
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS
Article
Google Scholar
Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article
Google Scholar
Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS
Article
Google Scholar
Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS
Article
Google Scholar
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article
CAS
Google Scholar
Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS
Article
Google Scholar
Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS
Article
Google Scholar
Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS
Article
Google Scholar
Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article
CAS
Google Scholar
Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article
Google Scholar
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS
Article
Google Scholar
Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS
Article
Google Scholar
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article
Google Scholar
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article
Google Scholar
Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS
Article
Google Scholar
Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article
Google Scholar
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article
Google Scholar
Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article
Google Scholar
Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS
Article
Google Scholar
Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article
Google Scholar
Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article
Google Scholar
Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article
Google Scholar
Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article
Google Scholar
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article
Google Scholar
Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article
CAS
Google Scholar
Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article
Google Scholar
Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article
Google Scholar
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article
CAS
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS
Article
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article
Google Scholar
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS
Article
Google Scholar
Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS
Article
Google Scholar
Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS
Article
Google Scholar
Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS
Article
Google Scholar
Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS
Article
Google Scholar
Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS
Article
Google Scholar
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS
Article
Google Scholar
Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article
Google Scholar
Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article
Google Scholar
Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article
Google Scholar
Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS
Article
Google Scholar
Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article
Google Scholar
Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS
Article
Google Scholar
Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS
Article
Google Scholar
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS
Article
Google Scholar
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS
Article
Google Scholar More