More stories

  • in

    Predicting performance of naïve migratory animals, from many wrongs to self-correction

    Calculation of flight-step headings and movementTerms defining flight-step movement, precision and geophysical orientation cues are listed in Table 1. Since seasonal migration nearly ubiquitously proceeds from higher to lower latitudes, it is convenient to define headings clockwise from geographic South (counter-clockwise from geographic North for migration commencing in the Southern Hemisphere). Assuming a spherical Earth, a sequence of N migratory flight-steps with corresponding headings, αi, i = 0,…, N−1, the latitudes, ∅i+1, and longitudes, λi+1, on completion of each flight-step can be calculated using the Haversine Equation76, which we approximated by stepwise planar movement using Eqs. (1) and (2). For improved computational accuracy and to accommodate within flight-step effects, we updated simulated headings and corresponding locations hourly. A migrant’s flight-step distance ({R}_{{{mathrm {step}}}}=3.6{V}_{{mathrm {a}}}{cdot n}_{{mathrm {H}}}/{R}_{{{mathrm {Earth}}}}) (in radians), depends on its flight speed, Va (m/s) relative to the mean Earth radius REarth (km), and flight-step hours, nH. With a geomagnetic in-flight compass, expected hourly geographic headings are modulated by changes in magnetic declination, i.e., the clockwise difference between geographic and geomagnetic South10,32.Formulation of compass coursesFor simplicity, we consider the case of a single inherited or imprinted heading. This can be extended to include sequences of preferred headings. Expected geographic loxodrome headings remain unchanged en route, i.e.,$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}$$
    (5)
    Relative to geographic axes, expected geomagnetic loxodrome headings remain unchanged relative to proximate geomagnetic South, i.e., are offset by geomagnetic declination on departure (updated hourly in simulations)$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}+{delta }_{{mathrm {m}},i}$$
    (6)
    As described and illustrated in detail by Kiepenheuer13, the magnetoclinic compass was hypothesized to explain the prevalence of “curved” migratory bird routes, i.e., for which local geographic headings shift gradually but substantially en route. A migrant with a magnetoclinic compass adjusts its heading at each flight-step to maintain a constant transverse component, γ′, of the experienced inclination angle, γ, so that error-free headings are (see Fig. S5 in ref. 34)$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}}{{{tan }}{gamma }^{{prime} }}right){={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{gamma }_{0}}right).$$
    (7)
    In a geomagnetic dipole field, the horizontal (Bh) and vertical (Bz) field, and therefore also inclination, each depends solely on geomagnetic latitude, ∅m:(gamma ={{{tan }}}^{-1}left({B}_{{mathrm {z}}}/{B}_{{mathrm {h}}}right)={{{tan }}}^{-1}left(2{{sin }}{phi }_{{mathrm {m}}}/{{cos }}{phi }_{{mathrm {m}}}right)={{{tan }}}^{-1}left(2{{tan }}{phi }_{{mathrm {m}}}right).) The projected transverse component, therefore, becomes$${gamma }^{{prime} }={{{tan }}}^{-1}left(frac{{{tan }}{gamma }_{0}}{{{sin }}{bar{{{alpha }}}}_{0}}right)={{{tan }}}^{-1}left(frac{2{{tan }}{{{phi }}}_{{mathrm {m}},0}}{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}right),$$which can be substituted into Eq. (7) to produce a closed formula for magnetoclinic headings in a dipole as a function of geomagnetic latitude$${bar{{{{{{rm{alpha }}}}}}}}_{i}left({{{phi }}}_{{mathrm {m}},i}right)={{{sin }}}^{-1}left(frac{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{{{phi }}}_{{mathrm {m}},0}}cdot {{tan }}{{{phi }}}_{{mathrm {m}},i}right),$$
    (8)
    with the expected initial heading, ({bar{{{{{{rm{alpha }}}}}}}}_{0}), and initial geomagnetic latitude, ∅m,0, being constants. Equations (7) and (8) have no solution when inclination increases en route, which could occur following substantial orientation error or in strongly non-dipolar fields. We followed previous studies in allowing magnetoclinic migrants to head towards magnetic East or West until inclination decreased sufficiently33,34,46, but also included orientation error based on the modelled compass precision.To assess sun-compass sensitivity algebraically, and also to improve computational efficiency, we used a closed-form equation for sunset azimuth, θs (derived in Supplementary Note 3 and see ref. 23),$${theta }_{{mathrm {s}}}={{{cos }}}^{-1}left(frac{-{{sin }}{delta }_{{mathrm {s}}}}{{{cos }}{{phi }}}right),$$
    (9)
    where δs is the solar declination, which varies between −23.4° and 23.4° with season and latitude23. Sunset azimuth is the positive and sunrise azimuth is the negative solution to Eq. (9) (relative to geographic N–S).Fixed sun-compass headings represent a uniform (clockwise) offset, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}) to sunrise or sunset azimuth, θs,i (calculated using Eq. (9))$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}+theta }_{{mathrm {s}},i}$$
    (10)
    where the preferred heading on commencement of migration, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}={bar{{{{{{rm{alpha }}}}}}}}_{0}-{theta }_{{mathrm {s}},0}), is presumed to be imprinted using an inherited geographic or geomagnetic heading2,10,30.With a TCSC, preferred headings relative to sun azimuth are adjusted according to the time of day. In the context of sun-compass use during migration, Alerstam and Pettersson22 related the hourly “clock-shift” induced by crossing bands of longitude (∆h = 12 ∆λ/π), to a migrant’s time-compensated adjustment given the rate of change (i.e., angular speed) of sun azimuth close to sunset$$frac{partial {theta }_{{mathrm {s}}}}{partial h}cong frac{2pi {{sin }}{{phi }}}{24},$$
    (11)
    resulting in a “time-compensated” offset in heading on departure ((varDelta bar{{{{{{rm{alpha }}}}}}}cong varDelta {{{{{rm{lambda }}}}}},sin phi), which Eq.(4)). Equation (4) results in near-great-circle trajectories for small ranges in latitude, ∅, until inner clocks are reset. The feasibility of TCSC courses over longer distances (latitude ranges) relies on two critical but little-explored assumptions: (1) time-compensated orientation adjustments are presumed to follow the angular speed of sun azimuth (Eq. (11)) retained from the most recent clock-reset site, and (2) to negotiate unpredictable migratory schedules, migrants are presumed to retain their preferred geographic heading on arrival at extended stopovers22.Regarding the first assumption, time-compensated adjustments could also be influenced by proximate speeds of sun azimuth even when inner clocks are not fully reset. We, therefore, use distinct indices to keep track of “reference” flight-steps for clock-resets (cref,i) and time-compensated adjustments (sref,i). TCSC flight-step headings can then be written as$${bar{{{{{{rm{alpha }}}}}}}}_{i}=left{begin{array}{cc}{bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},i}-{theta }_{{mathrm {s}},{c}_{{{mathrm {ref}}},i}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{phi }_{{s}_{{{mathrm {ref}}},i}}, & {i,ne, c}_{{{mathrm {ref}}},i} ; (12a)\ {{{{{{rm{alpha }}}}}}}_{i-1}, & {i=c}_{{{mathrm {ref}}},i} ; (12b)end{array}right.,$$where θs,i represents the sunset azimuth on departures, cref,i specifies the most recent clock-reset site (during which geographic headings are also retained, i.e., ({bar{{{{{{rm{alpha }}}}}}}}_{i}={{{{{{rm{alpha }}}}}}}_{i-1})), and sref,i specifies the site defining the migrant’s temporal (hourly) rate of “time-compensated” adjustments (Eq. (11)). For TCSC courses as conceived by Alerstam and Pettersson22, reference rates of adjustment to sun azimuth are reset in tandem during stopovers, i.e., ({s}_{{{mathrm {ref}}},i}={c}_{{{mathrm {ref}}},i}), but we also considered a proximately gauged TCSC, where migrants gauge their adjustments to currently experienced speed of sun azimuth, i.e., ({s}_{{{mathrm {ref}}},i}=i).Regarding the second assumption, retaining geographic headings on arrival at stopovers is not consistent with ignoring geographic headings between consecutive nightly flight-steps, and may be difficult to achieve while landing. We, therefore, examined a more parsimonious alternative (Fig. 7d, Supplementary Fig. 3) where migrants retain their (usual) TCSC heading from the first night of stopovers, i.e., as if they would have departed on the first night. This alternative also simplifies Eq. (12) to$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},({t}_{i-1}+1)}-{theta }_{{mathrm {s}},{t}_{i-1}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{{{phi }}}_{{s}_{{{mathrm {ref}}},i}}$$
    (12c)
    where the index ti−1 here represents the departure date from the previous flight.Sensitivity of compass-course headingsSensitivity was assessed by the marginal change in expected heading from previous (imprecise) headings, (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}). When this is positive, small errors in headings will perpetuate, and therefore expected errors in migratory trajectories will grow iteratively. Conversely, negative sensitivity implies self-correction between successive flight-steps. Geographic and geomagnetic loxodromes are per definition constant relative to their respective axes so have “zero” sensitivity, as long as cue-detection errors are stochastically independent.For magnetoclinic compass courses in a dipole field, sensitivity can be calculated by differentiating Eq. (8) with respect to previous headings:$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}=frac{{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{tan {phi }_{{mathrm {m}},0}}cdot frac{1}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i}}frac{partial {phi }_{{mathrm {m}},i}}{partial {alpha }_{i-1}}=frac{{R}_{{mathrm {step}}},sin {alpha }_{i-1}{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i},tan {phi }_{{mathrm {m}},0}}$$
    (13)
    All three terms in the denominator indicate, as illustrated in Fig. 3b, that magnetoclinic courses become unstably sensitive at both high and low latitudes, and any heading with a significantly East–West component.Sensitivity of fixed sun compass headings is non-zero due to sun azimuth dependence on location (Eq. (9)):$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{sin {phi }_{i}}{{cos }^{2}{phi }_{i}}frac{partial {phi }_{i}}{partial {alpha }_{i-1}}=frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{{R}_{{mathrm {step}}},sin {phi }_{i},sin {alpha }_{i-1}}{{cos }^{2}{phi }_{i}}\ = , {R}_{{mathrm {step}}}cdot ,sin {alpha }_{i-1}frac{tan {phi }_{i}}{tan {theta }_{{mathrm {s}},i}}$$
    (14)
    The sine factor on the right-hand side in Eq. (14) causes the sign of (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}) to be opposite for East to West or West to East headings, and tan θs also change sign at the fall equinox (due to solar declination changing sign). The azimuth term in the denominator indicates heightened sensitivity closer to the summer or winter equinox and at high latitudes, and, conversely, heightened robustness to errors closer to the spring or autumnal equinox (since ({{tan }}{theta }_{{mathrm {s}},0}to pm infty)). This seasonal and directional asymmetry is illustrated in Fig. 3c, e.TCSC courses (Eq. (12)) involve up to three sensitivity terms, due to dependencies on sun azimuth, longitude and latitude:$$ frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , {R}_{{{mathrm {step}}}}cdot {{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}+frac{{mathrm {d}}{lambda }_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}{{sin }}{{{phi }}}_{{c}_{{{mathrm {ref}}}},i}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right)frac{{mathrm {d}}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}\ =, left{begin{array}{cc}{R}_{{{mathrm {step}}}}cdot left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}right],hfill & {{{{{rm{classic}}}}}} ; (15{{{{{rm{a}}}}}})\ {R}_{{{mathrm {step}}}}left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right){{sin }}{alpha }_{i-1}{{cos }}{phi }_{i}right], & {{{{{rm{proximate}}}}}} ; left(15{{{{{rm{b}}}}}}right).end{array}right.$$The first square-bracketed terms in Eqs. (15a, b) are identical to the fixed sun compass (Eq. (14)), reflecting seasonal and latitudinal dependence in sun-azimuth. For headings with a Southward component (α0  1) and nonexistent for North–South headings (G = 1, reflecting no longitude bands being crossed). We expected this factor to affect compass courses differentially according to their error-accumulating or self-correcting nature.We further modified the effective goal-area breadth to account for a (geographically) circular goal area on the sphere, i.e., effectively modulating the longitudinal component of the goal-area breadth at the arrival latitude, ∅A:$${beta }_{{mathrm {A}}}=beta sqrt{{{{{sin }}}^{2}bar{alpha }+left({{cos }}bar{alpha }/{{cos }}{{{phi }}}_{{mathrm {A}}}right)}^{2}}.$$
    (19)
    To account for differential sensitivity among compass-courses, we generalized the normal many-wrongs relation between performance and number of steps, (1/{hat{N}}^{eta }), from η = 0.5 (Eqs. (3) and (16)) to$$eta left({sigma }_{{step}}|s,bright)=left(0.5+bright){e}^{-s{{sigma }_{{step}}}^{2}},$$
    (20)
    where b  0 self-correction, and s represents a modulating exponential damping factor, consistent with the limiting circular-uniform case (as κ → 0, i.e., ({sigma }_{{{mathrm {step}}}}to infty)), where no (timely) convergence of heading is expected with an increasing number of steps.In assessing performance, we also accounted for seasonal migration constraints via a population-specific maximum number of steps, Nmax (Table 2; this became significant for the longest-distance simulations with large expected errors, i.e., small ({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}=1/{sigma }_{{{mathrm {step}}}}^{2})). The probability of having arrived at the goal latitude can be estimated using the Central Limit Theorem:$${p}_{{{phi }},{N}_{{max }}}cong frac{1}{2}left[1-{erf}left(left(frac{{N}_{0}}{{N}_{{max }}}-frac{{I}_{1}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}{{I}_{0}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}right)cdot frac{{{cos }}bar{alpha }}{{sigma }_{{mathrm {C}}}sqrt{2}}right)right],$$
    (21)
    where Ij is the modified Bessel function of the first kind and order j53, and σC (the standard deviation in the latitudinal component of flight-step distance) can be calculated using Bessel functions together with known properties of sums of cosines53,77 (Supplementary Note 2).Regression-estimated performanceWe fit the parameters in the spherical-geometry factor (Eq. (18)) and many-wrongs effect (Eq. (20)) according to expected performance, estimated as the product of sufficiently timely migration (Eq. (21)) and sufficiently precise migration, now generalized from Eq. (16), i.e.$${p}_{beta ,hat{N}}cong {erf}left(frac{{beta }_{{mathrm {A}}}}{{G}^{{g}}sqrt{2left({{sigma }_{{{mathrm {ind}}}}}^{2}+{sigma }_{{{mathrm {step}}}}/{hat{N}}^{n}right)}}right),$$
    (22)
    This resulted in up to four fitted parameters for each compass course

    i.

    an exponent, g, to the spherical-geometry factor (Eq. (19)), i.e., Gg, reflecting how growth or self-correction in errors between steps further augments or reduces this factor,

    ii.

    a baseline offset, b0, to the “normal” exponent η = 0.5, which mediates the relation between the number of steps and performance (Eq. (20)),

    iii.

    an exponent s reflecting how decreasing precision among flight-steps dampens the many-wrongs convergence (Eq. (20)),

    iv.

    for TCSC courses, a modulation, ρ, to the offset, b0, quantifying the extent to which self-correction increases with increased flight-step distance Rstep, i.e., ({{b={b}_{0}R}_{{{mathrm {step}}}}^{{prime} }}^{rho }) in Eq. (20), where ({R}_{{{mathrm {step}}}}^{{prime} })is the flight-step distance scaled by its median value among species.

    Parameters were fit using MATLAB routine fitnlm based on compass course performance among species and seven error scenarios (5°, 10°, 20°, 30°, 40°, 50°, and 60° directional precision among flight-steps), for all combinations (including or excluding the four parameters). The most parsimonious combination of parameters was selected using MATLAB routine aicbic, based on the AICc, the Akaike information criterion corrected for small sample size57. Null values for the spherical-geometry parameter were set to g = 1, and for the parameters governing convergence of route-mean headings b0 = 0, s = 0, and, for TCSC courses, ρ = 0 (for loxodrome courses, ρ = 0 by default, i.e., was not fitted).Statistics and reproducibilityOur simulation results, regression fitting and AICc-model selection are reproducible using the MATLAB scripts (see the section “Code availability”).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    This rare primate will not survive deforestation

    .readcube-buybox { display: none !important;}
    An endangered lemur species that lives in Madagascar’s rainforest could vanish within 25 years if deforestation on the island isn’t reduced1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03116-6

    References

    Subjects

    Conservation biology More

  • in

    Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes

    Dookes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).Article 

    Google Scholar 
    Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 

    Google Scholar 
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).Article 

    Google Scholar 
    Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C. & Hua, X. How does climate change cause extinction?. Proc. Biol. Sci. 280, 20121890 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chu, C. et al. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).PubMed 
    Article 

    Google Scholar 
    Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Farrer, E. C. et al. Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 103, 351–360 (2015).CAS 
    Article 

    Google Scholar 
    Sentis, A., Montoya, J. M. & Lurgi, M. Warming indirectly increases invasion success in food webs. Proc. R. Soc. B. 288, 1947 (2021).Article 

    Google Scholar 
    Ohgushi, T. Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).Article 

    Google Scholar 
    Classen, A. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 1–21 (2015).Article 

    Google Scholar 
    Van-der-Putten, W. H., Macel, M. & Visser, M. E. Predicting species distributions and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).Article 

    Google Scholar 
    Deltedesco, E. et al. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 142, 1–12 (2020).Article 

    Google Scholar 
    Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. & Flory, S. L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME 14, 1396–1409 (2020).Article 

    Google Scholar 
    Nuccio, E. E. et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, J. A. & Cahill, J. F. Fungal effects on plant–plant interactions contribute to grassland plant abundances: Evidence from the field. J. Ecol. 104, 755–764 (2016).Article 

    Google Scholar 
    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    Inderjit, C. J. F. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants 7, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 
    Article 

    Google Scholar 
    Teh, S. Y. & Koh, H. L. Climate change and soil salinization: Impact on agriculture, water, and food security. IJAFP 2, 1–9 (2016).
    Google Scholar 
    White, E. Restore or retreat? Saltwater intrusion and coastal management in coastal wetlands. Ecosyst. Health Sustain. https://doi.org/10.1002/ehs2.1258 (2016).Article 

    Google Scholar 
    Donnolly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. PNAS 98, 14218–14223 (2001).ADS 
    Article 

    Google Scholar 
    Sharpe, P. J. & Baldwin, A. H. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40 (2012).Article 

    Google Scholar 
    Birnbaum, C., Waryszak, P. & Farrer, E. C. Direct and indirect effects of climate change in coastal wetlands: Will climate change influence wetlands by affecting plant invasion?. Wetlands 59, 1–11 (2021).
    Google Scholar 
    Noto, A. E. & Shurin, J. B. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean climate marshes. PLoS ONE 12, 1–11 (2017).Article 

    Google Scholar 
    Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2017).Article 

    Google Scholar 
    Neubauer, S. C., Piehler, M. F., Smyth, A. R. & Franklin, R. B. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems 22, 912–928 (2019).CAS 
    Article 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME. 13, 836–846 (2019).CAS 
    Article 

    Google Scholar 
    Meyerson, L. A., Cronin, J. T. & Pysek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421–2431 (2016).Article 

    Google Scholar 
    Soares, M. A. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions 18, 2689–2702 (2016).Article 

    Google Scholar 
    Gonzalez, M., Baldwin, A. H., Maul, J. E. & Yarwood, S. A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME 14, 1943–1954 (2020).Article 

    Google Scholar 
    Farrer, E. C. et al. Plant and microbial impacts of an invasive species vary across an environmental gradient. J. Ecol. 109, 2163–2176 (2021).Article 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, L. M. & Reynolds, H. L. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96, 2523–2532 (2015).PubMed 
    Article 

    Google Scholar 
    Parepa, M., Schaffner, U. & Bossdorf, O. Help from underground: Soil biota facilitate knotweed invasion. Ecosphere 4, 1–11 (2013).Article 

    Google Scholar 
    Larios, L. & Suding, K. N. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB Plants 7, 1–9 (2014).
    Google Scholar 
    Hoeksema, J. D. Ongoing coevolution in mycorrhizal interactions. New Phytol. 187, 286–300 (2010).PubMed 
    Article 

    Google Scholar 
    Van der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 

    Google Scholar 
    Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1(116), 2018. https://doi.org/10.1038/s42003-018-0120-9 (2018).Article 

    Google Scholar 
    Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2020).Article 

    Google Scholar 
    Farrer, E. C. & Suding, K. N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296 (2016).PubMed 
    Article 

    Google Scholar 
    Hawkins, A. P. & Crawford, K. M. Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB Plants. 10, 39. https://doi.org/10.1093/aobpla/ply039 (2018).Article 

    Google Scholar 
    Wu, Y. et al. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biol. Biogeochem. 115, 108163. https://doi.org/10.1016/j.soilbio.2021.108163 (2021).CAS 
    Article 

    Google Scholar 
    Allen, W. J., Meyerson, L. A., Flick, A. J. & Cronin, J. T. Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99, 1430–1440 (2018).PubMed 
    Article 

    Google Scholar 
    Crawford, K. M. & Knight, T. M. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183, 211–220 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Al-Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Howard, R. J. & Rafferty, P. S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ. Exp. Bot. 56, 301–313 (2006).Article 

    Google Scholar 
    Visser, J. M., Sasser, C. E., Chabreck, R. H. & Linscombe, R. G. Marsh vegetation types of the Mississippi River Deltaic plain. Estuaries 21, 818–828 (1998).Article 

    Google Scholar 
    De Wit, C. T. & van den Bergh, J. P. Competition between herbage plants. NJAS 13, 212–221 (1965).Article 

    Google Scholar 
    R Core Team. In r: A Language and Environment for Statistical Computing; r foundation for statistical computing: Vienna, Austria (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla

    Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291–310 (2009).
    Google Scholar 
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Google Scholar 
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152 (2017).PubMed 

    Google Scholar 
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1, 393–430 (1985).
    Google Scholar 
    Duputié, A. & Massol, F. An empiricist’s guide to theoretical predictions on the evolution of dispersal. Interface Focus 3, 20130028 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity? Mol. Ecol. 19, 3038–3051 (2010).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).ADS 

    Google Scholar 
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).ADS 

    Google Scholar 
    Whitlock, M. C. & Mccauley, D. E. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117–125 (1999).PubMed 

    Google Scholar 
    Benestan, L. et al. Restricted dispersal in a sea of gene flow. Proc. R. Soc. B Biol. Sci. 288, 20210458 (2021).CAS 

    Google Scholar 
    Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 17, e3000380 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gagnaire, P.-A. Comparative genomics approach to evolutionary process connectivity. Evol. Appl. 13, 1320–1334 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pinsky, M. L. et al. Marine dispersal scales are congruent over evolutionary and ecological time. Curr. Biol. 27, 149–154 (2017).CAS 
    PubMed 

    Google Scholar 
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).ADS 

    Google Scholar 
    Tomback, D. F., Anderies, A. J., Carsey, K. S., Powell, M. L. & Mellmann-Brown, S. Delayed seed germination in whitebark pine and regeneration patterns following the yellowstone fires. Ecology 82, 2587–2600 (2001).
    Google Scholar 
    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 

    Google Scholar 
    Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).Legrand, T., Di Franco, A., Ser-Giacomi, E., Caló, A. & Rossi, V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Mar. Environ. Res. 151, 104761 (2019).CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Crandall, E. D., Treml, E. A. & Barber, P. H. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Mol. Ecol. 21, 5579–5598 (2012).PubMed 

    Google Scholar 
    Smith, T. M. et al. Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. Glob. Ecol. Biogeogr. 27, 487–496 (2018).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long‐distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Lett, C., Barrier, N. & Bahlali, M. Converging approaches for modeling the dispersal of propagules in air and sea. Ecol. Model. 415, 108858 (2020).
    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl Acad. Sci. USA 112, 13940–13945 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).
    Google Scholar 
    Mari, L., Melià, P., Fraschetti, S., Gatto, M. & Casagrandi, R. Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Divers. Distrib. 26, 169–182 (2020).
    Google Scholar 
    Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal Kernels. vol. 15 (Oxford University Press Oxford, UK, 2012).Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 43, 1167–1179 (2020).
    Google Scholar 
    Jahnke, M. et al. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea. Evol. Appl. 11, 645–661 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024 (2022).
    Google Scholar 
    Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).PubMed 

    Google Scholar 
    Assis, J. et al. Ocean currents shape the genetic structure of a kelp in southwestern Africa. J. Biogeogr. 49, 822–835 (2022).
    Google Scholar 
    Ser-Giacomi, E., Vasile, R., Hernández-García, E. & López, C. Most probable paths in temporal weighted networks: An application to ocean transport. Phys. Rev. E 92, 012818 (2015).ADS 

    Google Scholar 
    McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl Acad. Sci. USA 104, 19885–19890 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157 (2012).PubMed 

    Google Scholar 
    Kool, J. T., Paris, C. B., Andréfouët, S. & Cowen, R. K. Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33, 597–606 (2010).
    Google Scholar 
    White, J. W., Botsford, L. W., Hastings, A. & Largier, J. L. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398, 49–67 (2010).ADS 

    Google Scholar 
    Ser-Giacomi, E., Legrand, T., Hernández-Carrasco, I. & Rossi, V. Explicit and implicit network connectivity: Analytical formulation and application to transport processes. Phys. Rev. E 103, 042309 (2021).ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 1–7 (2017).
    Google Scholar 
    Rousset, F. Inferences from spatial population genetics. Handb. Stat. Genet. 4, 23 (2001).
    Google Scholar 
    Dubois, M. et al. Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob. Ecol. Biogeogr. 25, 503–515 (2016).
    Google Scholar 
    Monroy, P., Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Sensitivity and robustness of larval connectivity diagnostics obtained from Lagrangian Flow Networks. ICES J. Mar. Sci. 74, 1763–1779 (2017).
    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Ser-Giacomi, E., Rossi, V., Lopez, C. & Hernandez-Garcia, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Oddo, P. et al. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5, 461–473 (2009).Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics, biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 107, 221–231 (2017).PubMed 

    Google Scholar 
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borrero-Pérez, G. H., González-Wangüemert, M., Marcos, C. & Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern: PHYLOGEOGRAPHY OF HOLOTHURIA MAMMATA. Mol. Ecol. 20, 1964–1975 (2011).PubMed 

    Google Scholar 
    Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).
    Google Scholar 
    Aurelle, D. et al. Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica 139, 855–869 (2011).CAS 
    PubMed 

    Google Scholar 
    Costantini, F., Carlesi, L. & Abbiati, M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS ONE 8, e61546 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261 (2013).ADS 

    Google Scholar 
    Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).
    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 

    Google Scholar 
    Dalongeville, A. et al. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol. Appl. 11, 1437–1447 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenkins, D. G. et al. A meta‐analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33, 315–320 (2010).
    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305 (2011).ADS 

    Google Scholar 
    Alberto, F. et al. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol. Ecol. 20, 2543–2554 (2011).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).PubMed 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).PubMed 

    Google Scholar 
    Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).PubMed 

    Google Scholar 
    Sen Gupta, A. et al. Future changes to the upper ocean Western Boundary Currents across two generations of climate models. Sci. Rep. 11, 9538 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).ADS 
    CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).PubMed 

    Google Scholar 
    Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).CAS 
    PubMed 

    Google Scholar 
    Pascual, M. et al. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6, 29892 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 

    Google Scholar 
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).
    Google Scholar 
    Weber, A. A.-T., Mérigot, B., Valière, S. & Chenuil, A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol. Ecol. 24, 6080–6094 (2015).CAS 
    PubMed 

    Google Scholar 
    Marzouk, Z., Aurelle, D., Said, K. & Chenuil, A. Cryptic lineages and high population genetic structure in the exploited marine snail Hexaplex trunculus (Gastropoda: Muricidae). Biol. J. Linn. Soc. 122, 411–428 (2017).
    Google Scholar 
    Cowen, R. K., Lwiza, K. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).
    Google Scholar  More

  • in

    Safeguarding nutrients from coral reefs under climate change

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).Article 

    Google Scholar 
    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).Article 

    Google Scholar 
    Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).Article 

    Google Scholar 
    Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).Article 

    Google Scholar 
    Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).Article 

    Google Scholar 
    Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).Article 

    Google Scholar 
    Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).Article 

    Google Scholar 
    Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).PubMed 
    Article 

    Google Scholar 
    Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).Article 

    Google Scholar 
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).CAS 
    Article 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).Article 

    Google Scholar 
    Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.orgMacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).Article 

    Google Scholar 
    Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).Article 

    Google Scholar 
    Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).PubMed 
    Article 

    Google Scholar 
    Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).Article 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).Article 

    Google Scholar 
    Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).Article 

    Google Scholar 
    Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).CAS 
    Article 

    Google Scholar 
    Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).Article 

    Google Scholar 
    Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).PubMed 
    Article 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).PubMed 
    Article 

    Google Scholar 
    McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 
    Article 

    Google Scholar 
    Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).Article 

    Google Scholar 
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 

    Google Scholar 
    Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).Article 

    Google Scholar  More

  • in

    Fish community structure and dynamics are insufficient to mediate coral resilience

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5, 149–155 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, S. M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200 (1986).Article 

    Google Scholar 
    Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345–364 (1986).Article 

    Google Scholar 
    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).Article 

    Google Scholar 
    Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, A. L. & Bellwood, D. R. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience. A Practical Guide for Coral reef Managers in the Asia Pacific Region (IUCN, 2009).Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruno, J. F., Cote, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected sreas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Mora, C. A clear human footprint in the coral reefs of the Caribbean. Proc. Biol. Sci. 275, 767–773 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 85, 117–132 (2015).Article 

    Google Scholar 
    Mellin, C., Bradshaw, C. J., Fordham, D. A. & Caley, M. J. Strong but opposing beta-diversity–stability relationships in coral reef fish communities. Proc. Biol. Sci. 281, 20131993 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nash, K. L. et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Thibaut, L. M., Connolly, S. R. & Sweatman, H. P. Diversity and stability of herbivorous fishes on coral reefs. Ecology 93, 891–901 (2012).PubMed 
    Article 

    Google Scholar 
    Zhang, S. Y. et al. Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2, e308 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements, C. S. & Hay, M. E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat. Ecol. Evol. 3, 178–182 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).Article 

    Google Scholar 
    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).Article 

    Google Scholar 
    Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013).PubMed 
    Article 

    Google Scholar 
    Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steneck, R. S., Mumby, P. J., Macdonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).Article 

    Google Scholar 
    Harvey, C. J. et al. The importance of long-term ecological time series for integrated ecosystem assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).PubMed 
    Article 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).Article 

    Google Scholar 
    Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).PubMed 
    Article 

    Google Scholar 
    Munsterman, K. S., Allgeier, J. E., Peters, J. R. & Burkepile, D. E. A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 24, 1702–1715 (2021).Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).Article 

    Google Scholar 
    Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doropoulos, C. et al. Characterising the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Russ, G. R., Questel, S. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).Article 

    Google Scholar 
    Chung, A. E. et al. Building coral reef resilience through spatial herbivore management. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00098 (2019).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Edwards, A. J. Reef Rehabilitation Manual (Coral Reef Targeted Research & Capacity Building for Management Program, 2010).Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindler, D. E. & Hilborn, R. Sustainability. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).Article 

    Google Scholar 
    Cote, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, E. S. & Cote, I. M. Seeking resilience in marine ecosystems. Science 359, 986–987 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rassweiler, A. et al. Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio 49, 130–143 (2020).PubMed 
    Article 

    Google Scholar 
    Moorea Coral Reef LTER & Carpenter, R. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Benthic Algae and Other Community Components (Environmental Data Initiative, accessed 2019); https://doi.org/10.6073/pasta/37d9c451a908e4a6f8e7ab914b93f44fBrooks, A. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Fishes (MCR, 2018).de Loma, T. L. et al. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pac. Sci. 62, 431–441 (2008).Article 

    Google Scholar 
    Nicholson, M. D. & Jennings, S. Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004).Article 

    Google Scholar 
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae)

    Moyle, P. B. Inland fishes of California (University of California Press, 2002).
    Google Scholar 
    Moyle, P. B., Brown, L. R., Durand, J. R. & Hobbs, J. A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 14, 1–28 (2016).
    Google Scholar 
    U. S. Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status of the Delta Smelt. Federal Regist. 58, 12854–12864 (1993).
    Google Scholar 
    California Department of Fish and Wildlife. State and federally listed endangered and threatened animals of California. California Department of Fish and Wildlife, (The Natural Resources Agency, North Highlands, 2017).Moyle, P. B. & Bennett, W. A. The future of the Delta ecosystem and its fish, Technical Appendix D. Comparing Futures for the Sacramento-San Joaquin Delta. San Francisco (CA): Public Policy Institute of California (2008).Lund, J. R. et al. Comparing futures for the Sacramento-San Joaquin Delta (Public Policy Institute of California, 2010).Book 

    Google Scholar 
    Moyle, P. B., Bennett, W. A., Fleenor, W. E. & Lund, J. R. Habitat variability and complexity in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 8, 1–24 (2010).
    Google Scholar 
    Feyrer, F., Newman, K., Nobriga, M. & Sommer, T. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish. Estuaries Coast. 34, 120–128 (2011).Article 

    Google Scholar 
    Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco bay. Rev. Geophys. 50, RG4001 (2012).ADS 
    Article 

    Google Scholar 
    Moyle, P. B., Hobbs, J. A. & Durand, J. R. Delta Smelt and water politics in California. Fisheries 43, 42–60 (2018).Article 

    Google Scholar 
    Mahardja, B. et al. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco estuary. Ecol. Appl. 31, e02243 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Börk, K., Moyle, P., Durand, J., Hung, T.-C. & Rypel, A. L. Small populations in jeopardy: Delta smelt case study. Environ. Law Reporter 50, 10714–10722 (2020).
    Google Scholar 
    Moyle, P. B. 2021. Experimental habitats for hatchery Delta Smelt. California WaterBlog https://californiawaterblog.com/2021/07/25/experimental-habitats-for-hatchery-delta-smelt/ (2021).Jeffries, K. M. et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 219, 1705–1716 (2016).PubMed 
    Article 

    Google Scholar 
    Bashevkin, S. M. & Mahardja, B. Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary. Limnol. Oceanogr. 67, 684–702 (2022).ADS 
    Article 

    Google Scholar 
    Brown, L. R. et al. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PLoS ONE 11, e0146724 (2015).Article 

    Google Scholar 
    Kurobe, T. et al. Reproductive strategy of Delta Smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE 17, e0264731 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis, L. S. et al. Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Mar. Ecol. Prog. 676, 37–56 (2021).Article 

    Google Scholar 
    Hammock, B. G. et al. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849, 675–695 (2021).Article 

    Google Scholar 
    Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary, California. San Franc. Estuary Watershed Sci. 3(1), (2005).Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, cou008 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moyle, P. B., Herbold, B., Stevens, D. E. & Miller, L. W. Life history of delta smelt in the Sacramento-San Joaquin Estuary California. Trans. Am. Fish. Soc. 121, 67–77 (1992).Article 

    Google Scholar 
    Kimmerer, W. J., MacWilliams, M. L. & Gross, E. S. Variation of fish habitat and extent of the low-salinity zone with freshwater flow in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 11 (2013).Sommer, T. & Meija, F. A place to call home: A synthesis of delta smelt habitats in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 9 (2013).Hammock, B. G. et al. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish. PLoS ONE 12, e0173497 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, D. Effects of three heating rates on the critical thermal maximum of Bluegill. In W Gibbons, R Sharitz, eds, Thermal Ecology. National Technical Information Service, 158–163 (Springfield, IL, 1974).Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).Article 

    Google Scholar 
    Davis, B. E. et al. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: Implications for shifting community structure with climate change. Conserv. Physiol. 7, coy076 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, C., Reid, T., Young, P. S. & Cech, J. J. Jr. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123, 384–390 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S. & Teh, S. J. Contaminant and food limitation stress in an endangered estuarine fish. Sci. Total Environ. 532, 316–326 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, S. A. & Murphy, D. D. Analysis of limiting factors across the life cycle of delta smelt (Hypomesus transpacificus). Environ. Manage. 62, 365–382 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Nobriga, M. L. & Sommer, T. R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California USA. Can. J. Fish. Aquat. Sci. 64, 723–734 (2007).Article 

    Google Scholar 
    Nobriga, M. L., Sommer, T. R., Feyrer, F. & Fleming, K. Long-term trends in summertime habitat suitability for delta smelt (Hypomesus transpacificus). San Franc. Estuary Watershed Sci. 6(1), (2008).Brown, L. R. et al. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento-San Joaquin Delta California. Estuaries Coast. 36, 754–774 (2013).CAS 
    Article 

    Google Scholar 
    Moyle, P., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLoS ONE 8, e63883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, W. A. & Burau, J. R. Riders on the storm: Selective tidal movements facilitate the spawning migration of threatened Delta Smelt in the San Francisco Estuary. Estuaries Coast. 38, 826–835 (2015).Article 

    Google Scholar 
    Hirvonen, H., Ranta, E., Piironen, J., Laurila, A. & Peuhkuri, N. Behavioral responses of naive Arctic charr to chemical cues from salmonid and non-salmonid fish. Oikos 88, 191–199 (2000).Article 

    Google Scholar 
    Correia, A. M., Bandeira, N. & Anastacio, P. M. Influence of chemical and visual stimuli in food-search behaviour of Procambarus clarkii under clear conditions. Mar. Freshw. Behav. Physiol. 40, 189–194 (2007).CAS 
    Article 

    Google Scholar 
    Nay, T. J. et al. Habitat complexity influences selection of thermal environment in a common coral reef fish. Conserv. Physiol. 8, coaa070 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horning, W. B. & Weber, C. I. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014, 58–75 (1985).Lindberg, J. et al. Aquaculture methods for a genetically managed population of endangered delta smelt. N. Am. J. Aquac. 75, 186–196 (2013).Article 

    Google Scholar 
    Ferrari, M. C. O. et al. Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environ. Biol. Fishes 97, 79–90 (2014).Article 

    Google Scholar 
    Petersen, M. F. & Steffensen, T. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meager, J. J. & Utne-Palm, A. C. Effect of turbidity on habitat preference of juvenile Atlantic cod Gadus morhua. Environ. Biol. Fishes 81, 149–155 (2008).Article 

    Google Scholar 
    Serrano, X., Grosell, M. & Serafy, J. E. Salinity selection and preference of the grey snapper Lutjanus griseus: Field and laboratory observations. J. Fish Biol. 76, 1592–1608 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stol, J. A., Svendsen, J. C. & Enders, E. C. Determining the thermal preferences of Carmine Shiner (Notropis percobromus) and Lake Sturgeon (Acipenser fulvescens) using an automated shuttlebox. Can. Tech. Rep. Fish. Aquat. Sci. 3038 (2013).Hammock, B. G. et al. The health and condition responses of delta smelt to fasting: A time series experiment. PLoS ONE 15, e0239358 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. (CRC Press, 2016.R Core Team. R: A language and environment for statistical computing (2021).Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (2012).Korner-Nievergelt, F. et al. Bayesian data analysis in ecology using linear models with R (Elsevier, 2015).
    Google Scholar 
    Gilliam, J. F. & Fraser, D. F. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68, 1856–1862 (1987).PubMed 
    Article 

    Google Scholar 
    Metcalfe, N. B., Fraser, N. H. & Burns, M. D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 68, 371–381 (1999).Article 

    Google Scholar 
    Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).Article 

    Google Scholar 
    Bull, H. O. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. J. Mar. Biol. Assoc. U. K. 21, 1–27 (1936).Article 

    Google Scholar 
    Steffel, S., Magnuson, J. J., Dizon, A. E. & Neill, W. H. Temperature discrimination by captive free-swimming tuna Euthynnus affinis. Trans. Am. Fish. Soc. 105, 588–591 (1976).Article 

    Google Scholar 
    Dülger, N. et al. Thermal tolerance of European Sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37, 79–82 (2012).Article 

    Google Scholar 
    Hung, T.-C. et al. A pilot study of the performance of captive-reared delta smelt Hypomesus transpacificus in a semi-natural environment. J. Fish Biol. 95, 1517–1522 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Navarro, I. & Gutiérrez, J. Fasting and starvation. Biochemistry and molecular biology of fishes. 4: Elsevier. p. 393–434 (1995).Finger, A. J. et al. A conservation hatchery population of Delta Smelt shows evidence of genetic adaptation to captivity after 9 generations. J. Hered. 109, 689–699 (2018).PubMed 
    Article 

    Google Scholar 
    Middaugh, D. P., Davis, W. R. & Yokum, R. L. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19, 13–19 (1975).CAS 

    Google Scholar 
    Stevens, E. D. & Sutterlin, A. M. Heat transfer between fish and ambient water. J. Exp. Biol. 65, 131–145 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beitinger, T. L., Thommes, M. M. & Spigarelli, S. A. Relative roles of conduction and convection in the body temperature change of gizzard shad Dorosoma cepedianum. Comp. Biochem. Physiol. 57A, 275–279 (1977).Article 

    Google Scholar 
    Neill, W. H. & Magnuson, J. J. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona Wisconsin. Trans. Am. Fish. Soc. 103, 663–710 (1974).Article 

    Google Scholar 
    Coutant, C. C. Temperature selection by fish–a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna (1975).Richards, F. P., Reynolds, W. W. & McCauley, R. W. Temperature preference studies in environmental impact assessment: An overview with procedural recommendations. J. Fish. Res. Board Can. 34, 728–761 (1977).Article 

    Google Scholar 
    Swanson, C., Mager, R. C., Doroshov, S. I. & Cech, J. J. Jr. Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Trans. Am. Fish. Soc. 125, 326–329 (1996).CAS 
    Article 

    Google Scholar 
    Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Sommer, T. & Harrell, W. Importance of flood dynamics versus intrinsic physical habitat in structuring fish communities: Evidence from two adjacent engineered floodplains on the Sacramento river California. N. Am. J. Aquac. 26, 408–417 (2006).
    Google Scholar  More

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More