More stories

  • in

    Hardship at birth alters the impact of climate change on a long-lived predator

    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Field, C.B. et al. eds) vol. 9781107025 109–230 (Cambridge University Press, 2012).Tan, X., Gan, T. Y. & Horton, D. E. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Glob. Chang. Biol. 24, 4696–4708 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000).ADS 
    Article 

    Google Scholar 
    Van de Pol, M., Jenouvrier, S., Cornelissen, J. H. C. & Visser, M. E. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–16 (2017).Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).Article 

    Google Scholar 
    Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–10 (2017).Sergio, F., Blas, J. & Hiraldo, F. Animal responses to natural disturbance and climate extremes: a review. Glob. Planet. Change. 161, 28–40 (2018).ADS 
    Article 

    Google Scholar 
    Aghakouchak, A. et al. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    Boyce, M. S. et al. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 
    Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645 (2008).Article 

    Google Scholar 
    Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1000–1001 (2007).Article 
    CAS 

    Google Scholar 
    Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).PubMed 
    Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Environmental variability, life-history covariation and cohort effects in the red-billed chough Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 72, 36–46 (2003).Article 

    Google Scholar 
    Hamel, S., Gaillard, J. M., Festa-Bianchet, M. & Côté, S. D. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90, 1981–1995 (2009).PubMed 
    Article 

    Google Scholar 
    Kordosky, J. R. et al. Landscape of stress: tree mortality influences physiological stress and survival in a native mesocarnivore. PLoS One. 16, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).PubMed 
    Article 

    Google Scholar 
    Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taborsky, B. The influence of juvenile and adult environments on life-history trajectories. Proc. R. Soc. B Biol. Sci. 273, 741–750 (2006).Article 

    Google Scholar 
    Hayward, A. D., Rickard, I. J. & Lummaa, V. Influence of early-life nutrition on mortality and reproductive success during a subsequent famine in a preindustrial population. Proc. Natl Acad. Sci. 110, 13886–13891 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A. & Spencer, H. G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20, 527–533 (2005).PubMed 
    Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. R. Soc. B Biol. Sci. 272, 671–677 (2005).Article 

    Google Scholar 
    Grafen, A. On the uses of data on lifetime reproductive success. in Reproductive Success (ed. T. H. Clutton-Brock) 454–471 (Chicago University Press, 1988).Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape lifehistory traits and population dynamics. Ecol. Monogr. 85, 605–623 (2015).Article 

    Google Scholar 
    McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Douhard, M. et al. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proc. R. Soc. B Biol. Sci. 281, 1–8 (2014).Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66 (2014).PubMed 
    Article 

    Google Scholar 
    Zimmer, C., Larriva, M., Boogert, N. J. & Spencer, K. A. Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci. Rep. 7, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Krause, E. T., Honarmand, M., Wetzel, J. & Naguib, M. Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female zebra finches. PLoS One. 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Martin, T. G. et al. Acting fast helps avoid extinction. Conserv. Lett. 5, 274–280 (2012).Article 

    Google Scholar 
    Lewontin, R. C. & Cohen, D. On population growth in a randomly varying environment. Proc. Natl Acad. Sci. 62, 1056–1060 (1969).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sæther, B. E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).Article 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. Am. Nat. 163, 579–590 (2004).PubMed 
    Article 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130, 1346–1358 (2021).Article 

    Google Scholar 
    Bakker, V. J., Doak, D. F. & Ferrara, F. J. Understanding extinction risk and resilience in an extremely small population facing climate and ecosystem change. Ecosphere 12, 1–20 (2021).Beissinger, S. R. Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol. Appl. 5, 618–631 (1995).Article 

    Google Scholar 
    Simberloff, D. Small and declining populations. in Conservation science and action (ed. Sutherland, W. J.) 116–134 (Blackwell, 1998).Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ. 2015, 1–20 (2015).
    Google Scholar 
    Whitfield, S. M. et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc. Natl Acad. Sci. 104, 8352–8356 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, (2017).González, L. M., Margalida, A., Sánchez, R. & Oria, J. Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol. Conserv. 129, 477–486 (129AD).García, F. & Marín, C. Doñana: water and biosphere. (Spanish Ministry of the Environment, 2006).Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Schmidt, G. et al. The state of water in Doñana: an evaluation of the state of the water and of the ecosystems of the protected space. (WWF/Adena, Madrid, 2017).Camacho, C. et al. Groundwater extraction poses extreme threat to Doñana World Heritage Site. Nat. Ecol. Evol. 6, 654–655 (2022).Navedo, J. G., Piersma, T., Figuerola, J. & Vansteelant, W. Spain’s Doñana World Heritage Site in danger. Science 376, 144 (2022).ADS 
    PubMed 
    Article 

    Google Scholar 
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change. 63, 90–104 (2008).ADS 
    Article 

    Google Scholar 
    Goubanova, K. & Li, L. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob. Planet. Change 57, 27–42 (2007).ADS 
    Article 

    Google Scholar 
    Hertig, E. & Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob. Planet. Change. 151, 36–48 (2017).ADS 
    Article 

    Google Scholar 
    Bustamante, J., Pacios, F., Díaz-Delgado, R. & Aragonés, D. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 90, 2219–2225 (2009).Article 

    Google Scholar 
    Veiga, J. P. & Hiraldo, F. Food habits and the survival and growth of nestlings in two sympatric kites (Milvus milvus and Milvus migrans). Ecography (Cop.). 13, 62–71 (1990).Article 

    Google Scholar 
    Viñuela, J. & Bustamante, J. Effect of growth and hatching asynchrony on the fledging age of Black and Red Kites. Auk 109, 748–757 (1992).Article 

    Google Scholar 
    Newton, I., Davis, P. E. & Davis, J. E. Age of first breeding, dispersal and survival of Red Kites Milvus milvus in Wales. Ibis (Lond. 1859). 131, 16–21 (1989).Article 

    Google Scholar 
    Katzenberger, J., Gottschalk, E., Balkenhol, N. & Waltert, M. Density-dependent age of first reproduction as a key factor for population dynamics: stable breeding populations mask strong floater declines in a long-lived raptor. Anim. Conserv. 24, 862–875 (2021).Article 

    Google Scholar 
    Sergio, F., Tavecchia, G., Blas, J., Tanferna, A. & Hiraldo, F. Demographic modeling to fine-tune conservation targets: importance of pre-adults for the decline of an endangered raptor. Ecol. Appl. 31, 1–12 (2021).Article 

    Google Scholar 
    Sergio, F. et al. Protected areas under pressure: decline, redistribution, local eradication and projected extinction of a threatened predator, the red kite, in Doñana National Park, Spain. Endanger. Species Res. 38, 189–204 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Preservation of wide-ranging top predators by site-protection: black and red kites in Doñana National Park. Biol. Conserv. 125, 11–21 (2005).Article 

    Google Scholar 
    Sofaer, H. R., Chapman, P. L., Sillett, T. S. & Ghalambor, C. K. Advantages of nonlinear mixed models for fitting avian growth curves. J. Avian Biol. 44, 469–478 (2013).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Anderson, D. R. Model based inference in the life sciences: a primer on evidence (Springer, 2008).White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird. Study. 46, S120–S139 (1999).Article 

    Google Scholar 
    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).Article 

    Google Scholar 
    Caswell, H. Matrix population models (Sinauer, 2001).Ballerini, T., Tavecchia, G., Pezzo, F., Jenouvrier, S. & Olmastroni, S. Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea. Front. Ecol. Evol. 3, 1–11 (2015).Bateson, P. et al. Developmental plasticity and human health. Nature 430, 419–421 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration

    External datasetsWoody biomass carbon dataThe dataset by ref. 16 maps annual global woody biomass carbon densities for 2000–2019 at a spatial resolution of ~10 km. The annual estimates represent averages for the tropical regions and growing-season (April–October) averages for the extra-tropical regions. Ref. 16 analyse global trends of gains and losses in woody biomass carbon for 2000–2019. Overall, they find that grid cells with (significant) net gains of vegetation carbon are by a factor of 1.4 more abundant than grid cells with net losses of vegetation carbon, indicating that there is a global greening trend when only considering the areal extent of biomass gains and not the magnitude of carbon gains. Their regionally distinct analysis of trends shows that almost all regions, except for the tropical moist forests in South America and parts of Southeast Asia, experienced net gains in biomass carbon. On the country scale, the largest net increase in biomass carbon is shown in China, which is mainly attributed to the large-scale afforestation programs in the southern part of the country and increased carbon uptake of established forests. On the other hand, the largest vegetation carbon losses are shown for Brazil and Indonesia, which is partly attributed to deforestation, degradation, and drought events. All of the mentioned trends have been found to be significant16. The decreasing carbon sink in Brazil is in line with ref. 44, who, considering both natural and anthropogenic fluxes, show that the southeastern Amazon has even turned from a carbon sink to a carbon source, mainly owing to fire emissions from forest clearing. Isolating carbon fluxes in intact, old-growth Amazonian rainforests (i.e., SLAND,B), ref. 45 also find evidence for a significantly decreasing carbon sink due to the negative effects of increasing temperatures and droughts on carbon uptake since the 1990s.The dataset was remapped to the BLUE resolution of 0.25∘ through conservative remapping (i.e., area-weighted averaging).ERA-5 dataThe ERA-5 variables were downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/home). Monthly air temperature (Ta) at 2 m height was averaged over each year, and annual precipitation was calculated by taking the sum of the monthly total precipitation (P). Both variables were regridded from the original resolution of ~0.1° to 0.25° resp. to the TRENDY resolution of 0.5° through conservative remapping.TRENDY dataWe used the TRENDY model ensemble version 8 (conducted for the 2019 GCB; ref. 8). We used net biome production (NBP) and annual vegetation carbon stocks (cVeg) for 2000–2018 from four different model setups (S2, S3, S5, and S6) and eight resp. 13 DGVMs (depending on the data available). The selection of DGVMs is done as in ref. 19 (Supplementary Tab. 3), but we included one additional model (ISAM) for the S2 simulations. The terrestrial biomass carbon sink (SLAND,B) was calculated for 13 DGVMs following the GCB 2020 approach, i.e., from the S2 simulation, which is the simulation without LULCC (i.e., fixed pre-industrial land cover) under transient environmental conditions (climate, nitrogen deposition, CO2 evolution). SLAND,B is the annual difference of cVeg and makes no statements about the further fate of biomass if cVeg decreases. SLAND,B, therefore, should not be interpreted as equivalent to the flux to/from the atmosphere, since parts of cVeg may be transferred to litter, dead wood, or soil. The same applies to our BLUE estimates of SLAND,B, ensuring comparability between our BLUE estimates and the TRENDY estimates. Increases (decreases) of cVeg between two years are a net uptake (release) of carbon from the terrestrial biosphere. The global sums of biomass carbon stocks under transient climate and CO2 were calculated from the S3 setup (LULCC under historical environmental conditions), whereas the S5 setup provides biomass carbon under constant present-day environmental forcing (closest to the classical bookkeeping approach). In line with the GCB, ELUC was calculated under historical environmental conditions as the difference in NBP between the S2 and S3 simulations (ELUC = NBP_S2 – NBP_S3). ELUC under constant present-day environmental forcing was calculated as the difference in NBP between the S6 (fixed pre-industrial land cover under present-day environmental forcing) and S5 simulations (ELUC = NBP_S6 – NBP_S5)19. All datasets were remapped to a common resolution of 0.5∘ through conservative remapping (area-weighted average) for the data analysis.Assimilation of observed woody biomass carbon in BLUEThe observed woody biomass carbon densities by ref. 16 are assimilated in BLUE in several steps.Carbon transfer in the default setup of BLUEThe BLUE simulation is started in AD 850. Biomass and soil vegetation carbon densities are based on ref. 17, which are converted to exponential time constants. A detailed explanation of the exponential model can be found in ref. 5.While in the default setup, changes are only due to LULCC, our assimilation approach now introduces environmental effects on woody vegetation carbon by assimilating the observed woody biomass carbon densities in BLUE from 2000 onward according to the methodological considerations explained below.Calculation of woody biomass carbon densities for different land cover types and PFTsWithin each 0.25° cell of the global grid, the (remapped) woody biomass carbon density from ref. 16 must be the sum of woody biomass carbon stored in all woody PFTs of all woody land cover types. The distribution of the woody biomass carbon across PFTs and land cover types is achieved by distributing the observed (i.e., actual) woody biomass carbon densities (ρBa) from ref. 16 across the two land cover types (j) and the eight PFTs (l) that can be woody vegetation (primary land, called virgin, “v” in BLUE and secondary, “s”, land) according to the fraction of total woody biomass carbon (fB) contained in each land cover type and each PFT (fB,j,l) as estimated by BLUE. fB,j,l varies for different PFTs and land cover types, depending on their history of LULCC and their potential for carbon uptake (i.e., the potential carbon densities).fB,j,l is extracted from the default simulations for the first year of the time series (i.e., 2000) and calculated for subsequent years from the BLUE simulations using the assimilated woody vegetation carbon densities for that year:$${f}_{B,j,l}(t)=frac{{C}_{B,j,l}(t)}{{C}_{B}(t)}$$
    (1)
    where CB is the woody biomass carbon stock.Consequently, the assimilated woody biomass carbon stock per cover type and PFT (CB_as,j,l) at each time step can be calculated as:$${C}_{B_as,j,l}(t)={rho }_{Ba}(t);*;A;*;{f}_{B,j,l}(t)$$
    (2)
    with j{v, s}; l{1. . 8}; t{2000. . 2019}. A is the area per grid cell.Thresholds for excluding inconsistent woody biomass carbon densitiesWe eliminate unrealistically large values for woody biomass carbon densities that our assimilation framework produces. Woody biomass carbon densities in BLUE that exceed the highest value (~374 t ha−1) of the original dataset indicate inconsistencies between the observed woody biomass carbon estimates and the fractional grid cell areas per PFT and land cover types that BLUE simulates. To account for uncertainties related to the criteria for exclusion of grid cells, multiple threshold approaches are applied and the results are compared. To maintain a temporally and spatially consistent time series of woody biomass carbon, grid cells that are excluded according to the chosen threshold approach are interpolated through linear barycentric interpolation. A first approach relies on a uniform upper threshold of More

  • in

    Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons

    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar 
    Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. The forms and fitness cost of senescence: Age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. Am. Nat. 179, E15–E27 (2011).Article 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. Biol. Sci. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Millon, A., Petty, S. J. & Lambin, X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J. Anim. Ecol. 79, 426–435 (2010).CAS 
    Article 

    Google Scholar 
    Newton, I. & Rothery, P. Senescence and reproductive value in Sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    Boonekamp, J. J., Salomons, M., Bouwhuis, S., Dijkstra, C. & Verhulst, S. Reproductive effort accelerates actuarial senescence in wild birds: An experimental study. Ecol. Lett. 17, 599–605 (2014).Article 

    Google Scholar 
    Péron, G., Gimenez, O., Charmantier, A., Gaillard, J.-M. & Crochet, P.-A. Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proc. R. Soc. B Biol. Sci. 277, 2849–2856 (2010).Article 

    Google Scholar 
    Pyle, P., Nur, N., Sydeman, W. J. & Emslie, S. D. Cost of reproduction and the evolution of deferred breeding in the western gull. Behav. Ecol. 8, 140–147 (1997).Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Age specific reproductive performance in red-billed chough Pyrrhocorax pyrrhocorax: Patterns and processes in a natural population. J. Anim. Ecol. 72, 765–776 (2003).Article 

    Google Scholar 
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).ADS 
    Article 

    Google Scholar 
    Nussey, D. H. et al. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1–18 (2007).Article 

    Google Scholar 
    Cam, E. & Monnat, J. Y. Apparent inferiority of first-time breeders in the kittiwake: The role of heterogeneity among age classes. J. Anim. Ecol. 69, 380–394 (2000).Article 

    Google Scholar 
    Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis (Lond. 1859). 158, 227–248 (2016).Clutton-Brock, T. H. Reproductive success: Studies of individual variation in contrasting breeding systems. (The university of Chicago Press, 1988).Ringsby, T. H., Sæther, B. & Solberg, E. J. Factors affecting juvenile survival in house sparrow passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J.-A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 399–410 (2008).Article 

    Google Scholar 
    Crawley, M. J. The R Book. (John Wiley & Sons, Ltd, 2007). https://doi.org/10.1002/9780470515075Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).Article 

    Google Scholar 
    Forslund, P. & Pärt, T. Age and reproduction in birds–hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    Article 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).Article 

    Google Scholar 
    Sergio, F. et al. Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic Appl. Ecol. 12, 107–115 (2010).Article 

    Google Scholar 
    Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).Article 

    Google Scholar 
    Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. 50, 1–14 (2019).Article 

    Google Scholar 
    Nielsen, J. T. & Drachmann, J. Age-dependent reproductive performance in Northern Goshawks Accipiter gentilis. Ibis (Lond. 1859). 145, 1–8 (2003).Zuberogoitia, I. et al. Population trends of Peregrine Falcon in Northern Spain–results of a long-term monitoring project. Ornis Hungarica 26, 51–68 (2018).Article 

    Google Scholar 
    Macdonald, D. W. The ecology of carnivore social behaviour. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    Sergio, F. & Boto, A. Nest dispersion, diet, and breeding success of Black Kites (Milvus migrans) in the Italian pre-Alps. J. Raptor Res. 33, 207–217 (1999).
    Google Scholar 
    Sergio, F. & Newton, I. Occupancy as a measure of habitat quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    Millon, A. et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: A long-term demographic study on tawny owls. Glob. Chang. Biol. 20, 1770–1781 (2014).ADS 
    Article 

    Google Scholar 
    Krüger, O. Long-term demographic analysis in goshawk accipiter gentilis: The role of density dependence and stochasticity. Oecologia 152, 459–471 (2007).ADS 
    Article 

    Google Scholar 
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: Food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).Article 

    Google Scholar 
    Froy, H., Phillips, R. A., Wood, A. G., Nussey, D. H. & Lewis, S. Age-related variation in reproductive traits in the wandering albatross: Evidence for terminal improvement following senescence. Ecol. Lett. 16, 642–649 (2013).Article 

    Google Scholar 
    McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. Age-specific reproduction in a long-lived species- the combined effects of senescence and individual quality. Proc. R. Soc. B 275, 963–970 (2008).CAS 
    Article 

    Google Scholar 
    Dixon, A. et al. Seasonal variation in gonad physiology indicates juvenile breeding in the Saker Falcon (Falco cherrug). Avian Biol. Res. 14, 39–47 (2021).Article 

    Google Scholar 
    Newton, I. & Mearns, R. Population ecology of peregrines in South Scotland. in Peregrine falcon populations. Their management and recovery. (eds. Cade, T. J., Enbderson, J. H., Thelander, C. G. & White, C. M.) 651–665 (The Peregrine Fund Inc., 1988).Brommer, J. E., Pietiäinen, H. & Kolunen, H. The effect of age at first breeding on Ural owl lifetime reproductive success and fitness under cyclic food conditions. J. Anim. Ecol. 67, 359–369 (1998).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E., González-Oreja, J. A., Calvo, J. F. & Zabala, J. The relationship between brood size and prey selection in a Peregrine Falcon population located in a strategic region on the Western European Flyway. J. Ornithol. 154, 73–82 (2013).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus : A key for long-term monitoring programmes. Munibe Ciencias Nat. 61, 117–127 (2013).
    Google Scholar 
    Zabala, J. & Zuberogoitia, I. Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PLoS ONE 9, e90254 (2014).ADS 
    Article 

    Google Scholar 
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: A review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).Article 

    Google Scholar 
    McDonald, T. L. & White, G. C. A comparison of regression models for small counts. J. Wildl. Manage. 74, 514–521 (2010).Article 

    Google Scholar 
    Zabala, J. et al. Accounting for food availability reveals contaminant-induced breeding impairment, food-modulated contaminant effects, and endpoint-specificity of exposure indicators in free ranging avian populations. Sci. Total Environ. 791, 148322 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. (Springer-Verlag, 2002).Toms, J. D. & Lesperance, M. L. Piecewise regresion: A tool for identifying ecological tresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Van De Pol, M. & Verhulst, S. Age–dependent traits: A new statistical model to separate within–and between–individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6Therneau, T. A Package for Survival Analysis in S. (2014). More

  • in

    Estimating long-term spatial distribution of Plodia interpunctella in various food facilities at Rajshahi Municipality, Bangladesh, through pheromone-baited traps

    Nansen, C., Phillips, T. W., Parajuleeb, M. N. & Franqui, R. A. Comparison of direct and indirect sampling procedures for Plodia interpunctella in a maize storage facility. J. Stored Prod. Res. 40, 151–168 (2004).Article 

    Google Scholar 
    Gerken, A. R. & Campbell, J. F. Using long-term capture data to predict Trogoderma variabile Ballion and Plodia interpunctella (Hübner) population patterns. Insects 10, 93. https://doi.org/10.3390/insects10040093 (2019).Article 
    PubMed Central 

    Google Scholar 
    Athanassiou, C. G. & Buchelos, C. T. Grain properties and insect distribution trends in silos of wheat. J. Stored Prod Res. 88, 101632 (2020).Article 

    Google Scholar 
    Campbell, J., Mullen, M. & Dowdy, A. Monitoring stored-product pests in food processing plants with pheromone trapping, contour mapping, and mark-recapture. J. Econ. Entomol. 95, 1089–1101 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arbogast, R. T., Weaver, D. K., Kendra, P. E. & Brenner, R. J. Implications of spatial distribution of insect populations in storage ecosystems. Environ. Entomol. 27, 202–216 (1998).Article 

    Google Scholar 
    Brenner, R. J., Focks, D. A., Arbogast, R. T., Weaver, D. K. & Shuman, D. Practical use of spatial analysis in precision targeting for integrated pest management. Am. Entomol. 44, 79–102 (1998).Article 

    Google Scholar 
    Arbogast, R. T., Kendra, P. E., Mankin, R. W. & McGovern, J. E. Monitoring insect pests in retail stores by trapping and spatial analysis. J. Econ. Entomol. 93, 1531–1542 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthur, F. & Phillips, T.W. Stored-product insect pest management and control. In Food Plant Sanitation; Hui, Y.H., Bruinsma, B.L., Gorham, J.R., Nip, W.-K., Tong, P.S., Ventresca, P., Eds.; Marcel Dekker, Inc, pp. 341–348(2003).Campbell, J. F., Toews, M. D., Arthur, F. H. & Arbogast, R. T. Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and impact of fumigation. J. Econ. Entomol. 103, 991–1001 (2010).PubMed 
    Article 

    Google Scholar 
    Doud, C. W. & Phillips, T. W. Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills. J. Econ. Entomol. 93, 1842–1847 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, J. & Mullen, M. Distribution and dispersal behavior of Trogoderma variabile and Plodia interpunctella outside a food processing plant. J. Econ. Entomol. 97, 1455–1464 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larson, Z., Subramanyam, B. & Herrman, T. Stored-product insects associated with eight feed mills in the Midwestern United States. J. Econ. Entomol. 101, 998–1005 (2008).PubMed 
    Article 

    Google Scholar 
    Trematerra, P., Paula, M. C., Sciarretta, A. & Lazzari, S. Spatio-temporal analysis of insect pests infesting a paddy rice storage facility. Neotrop. Entomol. 33, 469–479 (2004).Article 

    Google Scholar 
    Arthur, F. H., Campbell, J. F. & Toews, M. D. Distribution, abundance, and seasonal patterns of Plodia interpunctella (Hübner) in a commercial food storage facility. J. Stored Prod. Res. 53, 7–14 (2013).Article 

    Google Scholar 
    McKay, T., White, A. L., Starkus, L. A., Arthur, F. H. & Campbell, J. F. Seasonal patterns of stored-product insects at a rice mill. J. Econ. Entomol. 110, 1366–1376 (2017).PubMed 
    Article 

    Google Scholar 
    Roesli, R., Subramanyam, B., Fairchild, F. J. & Behnke, K. C. Trap catches of stored-product insects before and after heat treatment in a pilot feed mill. J. Stored Prod. Res. 39, 521–540 (2003).Article 

    Google Scholar 
    Campbell, J., Ching’oma, G.M., Toews, M.D. & Ramaswamy, S. Spatial distribution and movement patterns of stored-product insects. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paulo, Brazil, 15–18 October 2006; Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., Santos, J.P.D., Biagi, J.D., Celaro, J.C., Faroni, L.R.D., Bortolini, L.D.F., Eds.; Brazilian Post-harvest Association—ABRAPOS: Passo Fundo, RS, Brazil, p. 18 (2006).Trematerra, P., Gentile, P., Brunetti, A., Collins, L. & Chambers, J. Spatio-temporal analysis of trap catches of Tribolium confusum du Val in a semolina-mill, with a comparison of female and male distributions. J. Stored Prod. Res. 43, 315–322 (2007).Article 

    Google Scholar 
    Semeao, A. A., Campbell, J. F., Whitworth, R. J. & Sloderbeck, P. E. Influence of environmental and physical factors on capture of Tribolium castaneum (Coleoptera: Tenebrionidae) in a flour mill. J. Econ. Entomol. 105, 686–702 (2012).PubMed 
    Article 

    Google Scholar 
    Campbell, J.F., Perez-Mendoza, J. &Weier, J. Insect Pest Management Decisions in Food Processing Facilities. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University, pp. 219–232 (2012).Mohandass, S., Arthur, F. H., Zhu, K. & Throne, J. E. Biology and management of Plodia interpunctella (Lepidoptera:Pyralidae) in stored products. J. Stored Prod. Res. 43, 302–311 (2007).Article 

    Google Scholar 
    Hamlin, J.C., Reed, W.D. & Phillips, M.E. Biology of the Indianmeal Moth on Dried Fruits in California. USDA Technical Bulletin No. 242, (1931)Hagstrum, D.W. & Subramanyam, B. Review of Stored-Product Insect Resource. AACC International (2009).Soderstrom, T., Stoica, P. & Trulsson, E. Instrumental variable methods for closed loop systems. IFAC 10th Triennial World Congress, Munich, FRG. pp. 363–368(1987).Johnson, J. A., Valero, K. A., Hannel, M. M. & Gill, R. F. Seasonal occurrence of post harvest dried fruit insects and their parasitoids in a culled fig warehouse. J. Econ. Entomol. 93, 1380–1390 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nansen, C., Subramanyam, B. & Roesli, R. Characterizing spatial distribution of trap captures of beetles in retail pet stores using SADIE® software. J. Stored Prod. Res. 40, 471–483 (2004).Article 

    Google Scholar 
    Phillips, T.W., Berbert, R.C. &Cuperus, G.W. Post-harvest integrated pest management. In: Francis, F.J. (Ed.), Encyclopedia of Food Science and Technology. 2nd ed. Wiley Inc., pp. 2690–2701(2000).Phillips,T.W., Cogan, P.M. & Fadamiro, H.Y. Pheromones. In: Subramanyam, B., Hagstrum, D.W. (Eds.), Alternatives to Pesticides in Stored-product IPM. Kluwer Academic Publishers, pp. 273–302 (2000).Mullen, M. A. & Dowdy, A. K. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 37, 231–235 (2001).PubMed 
    Article 

    Google Scholar 
    Nansen, C. & Phillips, T. W. Ovipositional responses of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to oils. Ann. Entomol. Soc. Am. 96, 524–531 (2003).Article 

    Google Scholar 
    Hagstrum, D. W. Using five sampling methods to measure insect distribution and abundance in bins storing wheat. J. Stored Prod. Res. 36, 253–262 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Athanassiou, C. G., Kavallieratos, N. G., Sciarretta, A. & Trematerra, P. Mating disruption of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in a storage facility: spatio-temporal distribution changed after long-term application. J. Stored Prod. Res. 67, 1–12 (2016).Article 

    Google Scholar 
    Lee, W. H., Jung, J. M., Kim, J., Lee, H. & Jung, S. Analysis of the spatial distribution and dispersion of Plodia interpunctella (Lepidoptera: Pyralidae) in South Korea. J. Stored Prod. Res. 86, 101577 (2020).Article 

    Google Scholar 
    Gerken, A.R. & Campbell, J.F. Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities. Ann. Entomol. Soc. Am. saab049(2021).Athanassiou, C. G. & Buchelos, CTh. Detection of stored-wheat beetle species and estimation of population density using unbaited probe traps and grain trier samples. Ent. Exp. et Applic. 98, 67–78 (2001).Article 

    Google Scholar 
    Subramanyam, B. & Hagstrum, D.W. Sampling. In: Subramanyam B. & Hagstrum D.W. (eds), Integrated Management of Insects in Stored Products. Marcel Dekker Inc., pp. 135–193 (1995).Morrison, W. R. et al. Aeration to manage insects in wheat stored in the Balkan peninsula: Computer simulations using historical weather data. Agronomy 10, 1927 (2020).Article 

    Google Scholar 
    Toews, M. D., Campbell, J. F. & Arthur, F. H. Temporal dynamics and response to fogging or fumigation of stored-product Coleoptera in a grain processing facility. J. Stored Prod. Res. 42, 480–498 (2006).Article 

    Google Scholar 
    Buckman, K. A., Campbell, J. F. & Subramanyam, B. Tribolium castaneum (Coleoptera: Tenebrionidae) associated with rice mills: Fumigation efficacy and population rebound. J. Econ. Entomol. 106, 499–512 (2013).PubMed 
    Article 

    Google Scholar 
    Campbell, J. F., Buckman, K. A., Fields, P. G. & Subramanyam, Bh. Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities. J. Econ. Entomol. 108, 2125–2140 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levene, H. Robust tests for equality of variances. In Ingram Olkin; Harold Hotelling; et al. (eds.). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. pp. 278–292(1960).SAS Institute. SAS/STAT 9.2 User’s guide. SAS Institute (2008).Taylor, L. R. Aggregation, variance and mean. Nature 189, 732–735 (1961).ADS 
    Article 

    Google Scholar 
    Iwao, S. A new method of sequential sampling to classify populations according to a critical density. Res. Popln. Ecol. 16, 281–288 (1975).
    Google Scholar 
    Green, R. H. Measurement of non-randomness in spatial distribution. Res. Popln. Ecol. 8, 1–17 (1966).
    Google Scholar 
    Hillhouse, T. L. & Pitre, H. N. Comparison of sampling techniques to obtain measurements of insect populations on soybeans. J. Econ. Entomol. 67, 411–414 (1974).Article 

    Google Scholar 
    Cassie, R. M. Frequency distribution models in the ecology of plankton and other organisms. J. Anim. Ecol. 31, 65–92 (1962).Article 

    Google Scholar 
    Southwood, T. R. E. Ecological Methods, with Particular Reference to the Study of Insect Population (Chapman and Hall, 1995).
    Google Scholar 
    Costa, M. G., Barbosa, J. C., Yamamoto, P. T. & Leal, R. M. Spatial distribution of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in citrus orchards. Scientia Agric 67, 546–554 (2010).Article 

    Google Scholar 
    Patil, G. P. & Stiteler, W. M. Concepts of aggregation and their quantification: A critical review with some new result and applications. Pop. Ecol. 15, 238–254 (1974).Article 

    Google Scholar 
    David, F. N. & Moor, P. G. Notes on contagious distribution in plant populations. Ann. Bot. 18, 47–53 (1954).Article 

    Google Scholar 
    Lloyd, M. Mean crowding. J. Anim. Ecol. 36, 1–30 (1967).Article 

    Google Scholar 
    Southwood, T. R. E. & Henderson, P. A. Ecological Methods 3rd edn. (Blackwell Sciences, 2000).
    Google Scholar 
    Feng, M. G. & Nowierski, R. M. Spatial distribution and sampling plans for four species of cereal aphids (Homoptera: Aphididae) infesting spring wheat in southwestern Idaho. J. Econ. Entomol. 85, 830–837 (1992).Article 

    Google Scholar  More

  • in

    Footprint beds record Holocene decline in large mammal diversity on the Irish Sea coast of Britain

    Jiang, D., Klaus, S., Zhang, Y.-P., Hillis, D. M. & Li, J.-T. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl Sci. Rev. 6, 739–745 (2019).Article 

    Google Scholar 
    Bailey, G. et al. in The Archaeology of Europe’s Drowned Landscapes (eds Bailey, G. et al.) 189–219 (Springer, 2020).Erlandson, J., Braje, T., Gill, K. & Graham, M. Ecology of the kelp highway: did marine resources facilitate human dispersal from northeast Asia to the Americas? J. Isl. Coast. Archaeol. 10, 392–411 (2015).Article 

    Google Scholar 
    McLaren, D. et al. Terminal Pleistocene epoch human footprints from the Pacific coast of Canada. PLoS ONE 13, e0193522 (2018).Article 

    Google Scholar 
    Woodward, J. C. The Ice Age: A Very Short Introduction (Oxford Univ. Press, 2014).Pettitt, P. & White, M. The British Palaeolithic: Human Societies at the Edge of the Pleistocene World (Routledge, 2012).Bell, M. Prehistoric Coastal Communities: The Mesolithic in Western Britain (Council for British Archaeology, 2007).Gaffney, V., Fitch, S. & Smith, D. Europe’s Lost World: The Rediscovery of Doggerland (Council for British Archaeology, 2009).Gutiérrez–Zugasti, I. et al. Shell midden research in Atlantic Europe: state of the art, research problems and perspectives for the future. Quat. Int. 239, 70–85 (2011).Article 

    Google Scholar 
    Milner, N., Craig, O.E. & Bailey, G. N. Shell Middens in Atlantic Europe (Oxbow Books, 2007).Neto de Carvalho, C. et al. First tracks of newborn straight-tusked elephants (Palaeoloxodon antiquus). Sci. Rep. 11, 17311 (2021).CAS 
    Article 

    Google Scholar 
    Ashton, N. et al. Hominin footprints from Early Pleistocene deposits at Happisburgh, UK. PLoS ONE 9, e88329 (2014).Article 

    Google Scholar 
    Duveau, J., Berillon, G. & Verna, C. in Reading Prehistoric Human Tracks: Methods and Material (eds Pastoors, A. & Tilman, L.) 183–200 (Springer, 2021).Allen, J. R. L. Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: mechanics of formation, preservation and distribution. Philos. Trans. R. Soc. B 352, 481–518 (1997).Article 

    Google Scholar 
    Aldhouse-Green, S. H. R. et al. Prehistoric footprints from the Severn Estuary at Uskmouth and Magor Pill, Gwent, Wales. Archaeol. Cambrensis 141, 14–55 (1992).
    Google Scholar 
    Barr, K. & Bell, M. Neolithic and Bronze Age ungulate footprint-tracks of the Severn Estuary: species, age, identification and the interpretation of husbandry practices. Environ. Archaeol. 22, 1–14 (2016).Article 

    Google Scholar 
    Bennett, M. R. & Morse, S. A. Human Footprints: Fossilised Locomotion? (Springer, 2014).Polton, J. A., Palmer, M. R. & Howarth, M. J. Physical and dynamical oceanography of Liverpool Bay. Ocean Dynam. 91, 1421–1439 (2011).Article 

    Google Scholar 
    Roberts, G. Ephemeral, subfossil mammalian, avian and hominid footprints within Flandrian sediment exposures at Formby Point, Sefton Coast, North West England. Ichnos 16, 33–48 (2009).Article 

    Google Scholar 
    Burns, A. An 8000-Year Record of Prehistoric Footprints in a Dynamic Coastal Landscape, Formby Point, UK. PhD thesis, Univ. Manchester (2019).Tooley, M. J. Sea level changes in Northern England. Proc. Geol. Assoc. 93, 43–51 (1982).Article 

    Google Scholar 
    Pye, K. & Neal, A. in The Dynamics and Environmental context of Aeolian Sedimentary Systems (ed. Pye, K.) 201–217 (Geological Society Special Publication, 1993).Pye, K., Stokes, S. & Neal, A. Optical dating of aeolian sediments from the Sefton Coast, Northwest England. Proc. Geol. Assoc. 106, 281–292 (1995).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Walker, M. et al. Subdividing the Holocene Series/Epoch: formalisation of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. Quat. Sci. 34, 173–186 (2019).Article 

    Google Scholar 
    Tooley, M. J. The peat beds of the southwest Lancashire coast. Nat. Lancs. 1, 19–21 (1970).
    Google Scholar 
    Gonzalez, S., Huddart, D. & Roberts, G. Holocene development of the Sefton coast: a multidisciplinary approach to understanding the archaeology. In Archaeological Sciences 1995 Proc. Conference on the Application of Scientific Techniques to the Study of Archaeology (eds Sinclair, A. et al.) 289–299 (Oxbow Books, 1997).Huddart, D., Roberts, G. & Gonzalez, S. Holocene human and animal footprints and their relationships with coastal environmental change, Formby Point, NW England. Quat. Int. 55, 29–41 (1999).Article 

    Google Scholar 
    Galbraith, H. et al. Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25, 173–183 (2002).Article 

    Google Scholar 
    Bellard, C., Leclerc, C. & Courchamp, F. Sea level rise and insular hotspots. Glob. Ecol. Biogeogr. 23, 203–212 (2014).Article 

    Google Scholar 
    Editorial Why biodiversity matters. Nat. Ecol. Evol. 1, 0042 (2017).Article 

    Google Scholar 
    Hall, J. G. A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography 31, 187–190 (2008).Article 

    Google Scholar 
    Milner, N., Conneller, C. & Taylor, B. Star Carr: A Persistent Place in a Changing World Vol. 1 (White Rose Univ. Press, 2018).Conneller, C. The Mesolithic in Britain: Landscape and Society in Times of Change (Routledge, 2022).Hernandez, L. & Laundre, J. W. Foraging in the ‘landscape of fear’ and its implications for habitat use and diet quality of elk (Cervus elaphus) and bison (Bison bison). Wildl. Biol. 11, 215–220 (2005).Article 

    Google Scholar 
    Overton, N. J. in Multispecies Archaeology (ed. Pilaar-Birch, S.) 295–309 (Routledge, 2018).Moore, E. K., Britton, A. J., Iason, G., Pemberton, J. & Pakeman, R. J. Landscape-scale vegetation patterns influence small-scale grazing impacts. Biol. Conserv. 192, 218–225 (2015).Article 

    Google Scholar 
    Gonzalez, S. & Huddart, D. in The Quaternary of Northern England (eds Huddart, D. & Glasser, N. F.) 582–588 (Joint Nature Conservation Committee, 2002).Cowell, R. W. & Innes, J. The Wetlands of Merseyside (Lancaster Univ. Archaeological Unit, 1994).Leonard, P. B. et al. Landscape connectivity losses due to sea level rise and land use change. Anim. Conserv. 20, 80–90 (2017).Article 

    Google Scholar 
    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    Stuart, A. J. in Island Britain: a Quaternary Perspective (ed. Preece, R. C.) 111–125 (Geological Society Special Publication, 1995).Maroo, S. & Yalden, D. W. The Mesolithic mammal fauna of Great Britain. Mammal. Rev. 30, 243–248 (2000).Article 

    Google Scholar 
    Yalden, D. W. The History of British Mammals (T. & A.D. Poyser, 1999).Barnett, R. The Missing Lynx: The Past and Future of Britain’s Lost Mammals (Bloomsbury, 2019).Crees, J. J., Carbone, C., Sommer, R. S., Benecke, N. & Turvey, S. T. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene. Proc. R. Soc. B 283, 20152152 (2016).Article 

    Google Scholar 
    Burns, A. in Reading Prehistoric Human Tracks (eds Pastoors, A. & Lenssen-Erz, T.) 295–315 (Springer, 2021).Brown, R., Lawrence, M. & Pope, J. Animals: Tracks, Trails and Signs (Octopus Publishing, 2004).Donovan, S. K. Animal and bird tracks. Ichnos 16, 238–238 (2009).Article 

    Google Scholar 
    Roberts, G., Gonzalez, S. & Huddart, D. Intertidal Holocene footprints and their archaeological significance. Antiquity 70, 647–651 (1996).Article 

    Google Scholar 
    Scales, R. in Prehistoric Coastal Communities: The Mesolithic in Western Britain (ed. Bell, M.) 139–159 (Council for British Archaeology, 2007).Robbins, L. M. Estimating height and weight from size of footprints. J. Forensic Sci. 31, 143–152 (1986).CAS 
    Article 

    Google Scholar 
    Stuiver, M. & Polach, H. A. Reporting of C-14 data—discussion. Radiocarbon 19, 355–363 (1977).Article 

    Google Scholar  More

  • in

    Troubled biodiversity plan gets billion-dollar funding boost

    Countries have yet to agree to protect at least 30% of land, a crucial target proposed in the global biodiversity deal.Credit: Roberto Schmidt/AFP via Getty

    A beleaguered global deal to save the environment got a financial boost last week when Germany announced that it was upping its funding for international biodiversity conservation to €1.5 billion (US$1.49 billion) a year — an increase of €0.87 billion — making it the largest national financial pledge yet to save nature. The announcement came at a 20 September meeting in New York City, where political leaders, businesses and conservation and Indigenous-rights groups came together to rally momentum and support ahead of the United Nations biodiversity summit in Montreal, Canada, in December.Conservationists welcomed the extra funding, but warned that other wealthy countries must also reach deeper into their pockets to ensure that nations agree on a new biodiversity agreement, called the Post-2020 Global Biodiversity Framework. Estimates suggest that an additional US$700 billion annually is needed to protect the environment.Concerns over insufficient financing for global biodiversity conservation have stalled negotiations and threaten to derail attempts to finalize a deal in Montreal. The forthcoming summit will be the 15th meeting of the Conference of the Parties (COP15) to the UN’s Convention on Biological Diversity.Announcing the new funds, German Chancellor Olaf Scholz said: “With this contribution, we want to send a strong signal for an ambitious outcome of the biodiversity COP-15.”Claire Blanchard, head of global advocacy at WWF, a conservation group, told Nature that the extra funding “is highly significant” and sends an important signal that rich countries are prepared to step up.But she adds: “More signals of this kind will be needed to create the environment conducive to constructive dialogue in the negotiation room.”Andrew Deutz, a specialist in biodiversity law and finance at the Nature Conservancy, a conservation group in Arlington, Virginia, says he expects further funding announcements to come in the run up to and at the COP15.Other pledgesSeveral key political leaders, including Justin Trudeau, Canada’s prime minister, echoed calls for rich nations to make urgent progress to secure the biodiversity deal. Trudeau urged countries to agree on two crucial targets proposed in the biodiversity framework, both to be met by 2030: to halt and reverse biodiversity loss, and to protect at least 30% of land and seas.The new funding was bolstered by other pledges and developments, including a promise from a partnership of some of the world’s wealthiest private philanthropic foundations and charities to add to the $5 billion they have already committed to conservation, if other countries promise more funds.The partnership — which includes the Bezos Earth Fund, an environmental fund financed by entrepreneur Jeff Bezos — has already spent around $1 billion of its promised financing over the past two years, says Cristián Samper, head of the Wildlife Conservation Society, a not-for-profit group. Samper was speaking on behalf of the partnership at the meeting in New York City.Frans Timmermans, vice-president of the European Commission, reaffirmed that Europe would double its international biodiversity funding to $1.13 billion annually — a promise originally announced in September last year. Timmermans told the meeting that the European Union would set out more details about the funding soon.Funding shortfallAlso at the meeting, a group of four countries comprising Ecuador, Gabon, the Maldives and the United Kingdom launched a joint 10-point plan to bridge the biodiversity finance gap, which is estimated at $700 billion annually.The plan sets out the financial commitments and policy reforms needed to finance biodiversity on the required scale. For example, it encourages wealthy and lower-income nations to allocate new funds for biodiversity and to quickly deliver on their existing financial pledges. It requires donor countries to ensure that funds for overseas development do no harm to biodiversity. And it asks countries to dedicate a portion of their national funding for climate change to activities that also protect and conserve nature.The plan also commits countries to ensuring that public finance is invested in ways that benefit biodiversity, and to reviewing national subsidies and redirecting those that are harmful to nature. It calls on businesses to assess and disclose commercial risks associated with biodiversity decline, and to set quantitative targets to reduce their impact on the natural world. And it encourages multilateral development banks — such as the World Bank in Washington DC — and international financial institutions to ensure that their investments benefit biodiversity, and asks that they report on their biodiversity funding in time for COP-15.So far, 15 countries, including Canada, Germany and Norway, as well as the EU have endorsed the plan.“The plan provides a clear pathway for bridging the global biodiversity finance gap. Its significance lies in the political signal it sends,” says Blanchard.António Guterres, secretary-general of the UN, urged political leaders to “act now and at scale” to secure biodiversity financing and ensure agreement on the framework. “If negotiations continue at their slow pace, we are headed to failure,” he told the meeting. More

  • in

    The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica 49, 593–603 (2017).Article 

    Google Scholar 
    Grace, O. M. et al. Plant power: opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. Plants People Planet 2, 446–462 (2020).Article 

    Google Scholar 
    Howes, M. J. R. et al. Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet 2, 463–481 (2020).Article 

    Google Scholar 
    Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article 

    Google Scholar 
    Brondizio, E., Diaz, S., Settele, J. & Ngo, H. T. (eds) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).Bennun, L. et al. The value of the IUCN Red List for business decision-making. Conserv. Lett. 11, e12353 (2018).Betts, J. et al. A framework for evaluating the impact of the IUCN Red List of threatened species. Conserv. Biol. 34, 632–643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maira, L. et al. Achieving international species conservation targets: closing the gap between top-down and bottom-up approaches. Conserv. Soc. 19, 25–33 (2021).Article 

    Google Scholar 
    IUCN Red List version 2022-2: Table 1a (IUCN, 2022); https://www.iucnredlist.org/resources/summary-statistics#Figure2Rivers, M. The global tree assessment—red listing the world’s trees. BGjournal 14, 16–19 (2017).
    Google Scholar 
    Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Silva, S. V. et al. Global estimation and mapping of the conservation status of tree species using artificial intelligence. Front. Plant Sci. 13, 839792 (2022).ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 12 October 2021); https://tools.bgci.org/threat_search.phpBachman, S. P., Nic Lughadha, E. M. & Rivers, M. C. Quantifying progress toward a conservation assessment for all plants. Conserv. Biol. 32, 516–524 (2018).PubMed 
    Article 

    Google Scholar 
    Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    Cazalis, V. et al. Bridging the research–implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).PubMed 
    Article 

    Google Scholar 
    Dauby, G. et al. ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 7, 11292–11303 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 

    Google Scholar 
    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).Article 

    Google Scholar 
    Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J. & Espíndola, A. Predicting plant conservation priorities on a global scale. Proc. Natl Acad. Sci. USA 115, 13027–13032 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).PubMed 
    Article 

    Google Scholar 
    Walker, B. E., Leão, T. C. C., Bachman, S. P., Bolam, F. C. & Nic Lughadha, E. Caution needed when predicting species threat status for conservation prioritization on a global scale. Front. Plant Sci. 11, 520 (2020).Lughadha, E. N. et al. The use and misuse of herbarium specimens in evaluating plant extinction risks. Philos. Trans. R. Soc. B 374, 20170402 (2019).Article 

    Google Scholar 
    Walker, B. E., Leão, T. C. C., Bachman, S. P., Lucas, E. & Nic Lughadha, E. M. Evidence-based guidelines for developing automated assessment methods. Preprint at https://ecoevorxiv.org/zxq6s/ (2021).Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).Article 

    Google Scholar 
    Lindegren, M., Holt, B. G., MacKenzie, B. R. & Rahbek, C. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Sci. Rep. 8, 4099 (2018).Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).Article 

    Google Scholar 
    Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).Article 

    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).Saslis-Lagoudakis, C. H. et al. Phylogenies reveal predictive power of traditional,medicinein bioprospecting. Proc. Natl Acad. Sci. USA 109, 15835–15840 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Molina-Venegas, R., Rodríguez, M., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind. Nat. Ecol. Evol. 5, 583–588 (2021).PubMed 
    Article 

    Google Scholar 
    Molina-Venegas, R. Conserving evolutionarily distinct species is critical to safeguard human well-being. Sci. Rep. 11, 24187 (2021).Zaman, W. et al. Predicting potential medicinal plants with phylogenetic topology: inspiration from the research of traditional Chinese medicine. J. Ethnopharmacol. 281, 114515 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cámara-Leret, R. et al. Climate change threatens New Guinea’s biocultural heritage. Sci. Adv. 5, eaaz1455 (2019).Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 2267 (2022).Johnson, D. V. Tropical Palms 2010 Revision Non-Wood Forest Products 10 (FAO, 2010).Johnson, D. V. & Sunderland, T. C. H. Rattan Glossary and Compendium Glossary with Emphasis on Africa Non-Wood Forest Products 16 (FAO, 2004).Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).
    Google Scholar 
    Kissling, W. D. et al. PalmTraits 1.0, a species-level functional trait database of palms worldwide. Sci. Data 6, 178 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomlinson, P. B. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5–14 (2006).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Muscarella, R. et al. The global abundance of tree palms. Glob. Ecol. Biogeogr. 29, 1495–1514 (2020).Article 

    Google Scholar 
    Dransfield, J. et al. Genera Palmarum: The Evolution and Classification of Palms (Kew Publishing, 2008).Diazgranados, M. et al. World Checklist of Useful Plant Species (Royal Botanic Gardens, Kew, 2020).Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 2–5 (2013).Article 

    Google Scholar 
    Faurby, S., Eiserhardt, W. L., Baker, W. J. & Svenning, J. Molecular phylogenetics and evolution: an all-evidence species-level supertree for the palms (Arecaceae). Mol. Phylogenet. Evol. 100, 57–69 (2016).PubMed 
    Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2021-2 (IUCN, accessed 12 October 2021); https://www.iucnredlist.orgBaker, W. J. & Dransfield, J. Beyond genera Palmarum: progress and prospects in palm systematics. Bot. J. Linn. Soc. 182, 207–233 (2016).Article 

    Google Scholar 
    Henderson, A. A revision of Calamus (Arecaceae, Calamoideae, Calameae, Calaminae). Phytotaxa https://doi.org/10.11646/phytotaxa.445.1.1 (2020).Rakotoarinivo, M., Dransfield, J., Bachman, S. P., Moat, J. & Baker, W. J. Comprehensive red list assessment reveals exceptionally high extinction risk to Madagascar palms. PLoS ONE 9, e103684 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cosiaux, A. et al. Low extinction risk for an important plant resource: conservation assessments of continental African palms (Arecaceae/Palmae). Biol. Conserv. 221, 323–333 (2018).Article 

    Google Scholar 
    Johnson, D. & UICN/SSC Palm Specialist Group (eds) Palms, Their Conservation and Sustained Utilization—Status Survey and Conservation Action Plan (Union Internationale pour la Conservation de la Nature et de ses Ressources, 1996).Bachman, S., Walker, B. E., Barrios, S., Copeland, A. & Moat, J. Rapid least concern: towards automating red list assessments. Biodivers. Data J. 8, e47018 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. https://doi.org/10.1126/sciadv.aaz0414 (2019).Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 222, 189–197 (2018).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).Gamoga, G., Turia, R., Abe, H., Haraguchi, M. & Iuda, O. The forest extent in 2015 and the drivers of forest change between 2000 and 2015 in Papua New Guinea: deforestation and forest degradation in Papua New Guinea. Case Stud. Environ. 5, 1442018 (2021).Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henderson, A., Fischer, B., Scariot, A., Whitaker Pacheco, M. A. & Pardini, R. Flowering phenology of a palm community in a central Amazon forest. Brittonia 52, 149–159 (2000).Article 

    Google Scholar 
    Olivares, I. & Galeano, G. Leaf and inflorescence production of the wine palm (Attalea butyracea) in the dry Magdalena river valley, Colombia. Caldasia 35, 37–48 (2013).
    Google Scholar 
    Voeks, R. A. Disturbance pharmacopoeias: medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94, 868–888 (2004).
    Google Scholar 
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).Article 

    Google Scholar 
    Govaerts, R., Dransfield, J., Zona, S. & Henderson, A. World Checklist of Arecaceae (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://wcsp.science.kew.org/Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2021).Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    Plants of the World Online (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://www.plantsoftheworldonline.org/South, A. rworldmap v.1.3-6: Mapping global data (2016).Bivand, R. et al. maptools v.0.9-2: Tools for handling spatial objects (2017).Arel-Bundock, V., Enevoldsen, N. & Yetman, C. countrycode: an R package to convert country names and country codes. J. Open Source Softw. 3, 848 (2018).Article 

    Google Scholar 
    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps v.3.3.0: Draw geographical maps (2018).Pebesma, E. et al. sp v.1.2-7: Classes and methods for spatial data (2018).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Wickham, H., Hester, J. & Chang, W. devtools v.1.13.5: Tools to make developing R packages easier (2018).World Geographic Scheme for Recording Plant Distributions Standard (TDWG, 2001); http://www.tdwg.org/standards/109Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (Hunt Institute for Botanical Documentation, 2001).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Moat, J. & Bachman, S. P. rCAT v.0.1.6: Conservation assessment tools (2017).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Plants of the World Online (Royal Botanic Gardens, Kew, accessed 10 June 2020); http://www.plantsoftheworldonline.org/Csárdi, G. & FitzJohn, R. progress v.1.2.2: Terminal progress bars (2019).Microsoft Corporation & Weston, S. doParallel: Foreach parallel adaptor for the ‘parallel’ package. R package version 1.0.16 (2020).Microsoft Corporation & Weston, S. foreach: Provides foreach looping construct. R package version 1.5.0 (2020).Ooms, J., Lang, D. T. & Hilaiel, L. jsonlite v.1.7.2: A simple and robust JSON parser and generator for R (2020).Wickham, H. httr v.1.4.2: Tools for working with URLs and HTTP (2020).Global Human Footprint (Geographic), v2 (1995 – 2004) (SEDAC, accessed 14 May 2018); https://doi.org/10.7927/H4M61H5FFick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wickham, H. plyr v.1.8.6: Tools for splitting, applying and combining data (2021).Wickham, H. & RStudio. tidyr v.1.1.4: Tidy messy data (2021).Wickham, H., François, R., Henry, L. & Müller, K. dplyr v.1.0.7: A grammar of data manipulation (2021).Bivand, R. et al. rgdal v.1.5-8: Bindings for the ‘geospatial’ data abstraction library (2020).Greenberg, J. A. & Mattiuzzi, M. gdalUtils v.2.0.3.2: Wrappers for the Geospatial data Abstraction Library (GDAL) utilities (2020).Hijmans, R. J. et al. raster v.3.1-5: Geographic data analysis and modeling (2020).The IUCN Red List of Threatened Species (IUCN, accessed 22 March 2018); https://www.iucnredlist.org/ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 1 March 2018); https://tools.bgci.org/threat_search.phpChamberlain, S., ROpenSci & Salmon, M. rredlist: ‘IUCN’ Red List client (2020).Wickham, H. stringr v.1.4.0: Simple, consistent wrappers for common string operations (2019).Gagolewski, M. & Tartanus, B. stringi v.1.7.5: Character string processing facilities (2021).Kuhn, M. caret: Classification and regression training. R package version 6.0-86 (2020).Torgo, L. Data Mining with R, Learning with Case Studies (Chapman and Hall/CRC, 2010).Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2020).Article 

    Google Scholar 
    Stokely, M. HistogramTools: Utility functions for R histograms. R package version 0.3.2 (2015).Sarkar, D. et al. lattice v.0.20-40: Trellis graphics for R (2020).Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Springer, 2016).Auguie, B. & Antonov, A. gridExtra v.2.3: Miscellaneous functions for ‘grid’ graphics (2017).Pruim, R., Kaplan, D. T. & Horton, N. J. mosaic v.1.6.0: Project MOSAIC statistics and mathematics teaching utilities (2020).Meyer, D. & Buchta, C. proxy v.0.4-23: Distance and similarity measures (2019).Wickham, H. & Seidel, D. scales v.1.1: Scale functions for visualization (2019).Branco, P., Ribeiro, R. & Torgo, L. UBL v.0.0.6: An implementation of re-sampling approaches to utility-based learning for both classification and regression tasks (2017).Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).Article 

    Google Scholar 
    Ripley, B. & Venables, W. nnet v.7.3-13: Feed-forward neural networks and multinomial log-linear models (2020).Warnes, G. R. et al. gdata v.2.18.0: Various R programming tools for data manipulation (2017).Wright, M. N., Wager, S. & Probst, P. ranger v.0.12.1: A fast implementation of random forests (2020).Arya, S., Mount, D., Kemp, S. E. & Jefferis, G. RANN v.2.6.1: Fast nearest neighbour search (wraps ANN Library) using L2 metric (2019).Meyer, D. et al. e1071 v.1.7-3: Misc Functions of the Department of Statistics, Probability Theory Group (formerly: E1071), TU Wien (2019).Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
    Google Scholar 
    Greenwell, B. fastshap v.0.0.7: Fast approximate Shapley values (2021).Greenwell, B. vip v.0.3.2: Variable importance plots (2020).Donoghoe, M. W. glm2 v.1.2.1: Fitting generalized linear models (2018).Wickham, H. reshape2 v.1.4.4: Flexibly reshape data: a reboot of the reshape package (2020).Robin, X. et al. pROC v.1.18.0: Display and analyze ROC curves (2020).Warnes, G. R. et al. gplots v.3.0.3: Various R programming tools for plotting data (2019).Müller, K. & Bryan, J. here v.1.0.1: A simpler way to find your files (2017).Wickham, H., Hester, J., Francois, R., Jylänki, J. & Jørgensen, M. readr v.1.3.1: Read rectangular text data (2018).Wickham, H. et al. readxl v.1.3.1: Read Excel files (2019).Henry, L. & Wickham, H. purrr v.0.3.4: Functional programming tools (2020).Lin Pedersen, T. ggforce v.0.3.1: Accelerating ‘ggplot2’ (2019).Lin Pedersen, T. patchwork v.1.0.0: The composer of plots (2019).Hester, J. glue v.1.3.1: Interpreted string literals (2019).Ooms, J. & McNamara, J. writexl v.1.2: Export data frames to Excel ‘xlsx’ format (2019).Horikoshi, M. et al. ggfortify v.0.4.8: Data visualization tools for statistical analysis results (2019).Liaw, A. randomForest v.4.6-14: Breiman and Cutler’s random forests for classification and regression (2018).Kassambara, A. ggpubr v.0.2.5: ‘ggplot2’ based publication ready plots (2020).Gruca, M., Blach-Overgaard, A. & Balslev, H. African palm ethno-medicine. J. Ethnopharmacol. 165, 227–237 (2015).PubMed 
    Article 

    Google Scholar 
    Cámara–Leret, R. & Dennehy, Z. Indigenous knowledge of New Guinea’s useful plants: a review. Econ. Bot. 73, 405–415 (2019).Article 

    Google Scholar 
    Macía, M. J. et al. Palm uses in Northwestern South America: a quantitative review. Bot. Rev. 77, 462–570 (2011).Article 

    Google Scholar 
    Orme, D. et al. caper: Comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/package=caper (2018).Kowarik, A. & Templ, M. Imputation with the R package VIM. J. Stat. Softw. 74, 1–16 (2016).Alfons, A. & Templ, M. Estimation of social exclusion indicators from complex surveys: the R package laeken. J. Stat. Softw. 54, 1–25 (2013).Article 

    Google Scholar 
    Milliken, W., Walker, B. E., Howes, M. J. R., Forest, F. & Nic Lughadha, E. Plants used traditionally as antimalarials in Latin America: mining the tree of life for potential new medicines. J. Ethnopharmacol. 279, 114221 (2021).PubMed 
    Article 

    Google Scholar 
    Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).PubMed 
    Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).Paradis, E. & Schliep, K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).Yu, G. ggplotify v.0.0.4: Convert plot to ‘grob’ or ‘ggplot’ object (2019).Yu, G. aplot v.0.0.3: Decorate a ‘ggplot’ with associated information (2020).Slowikowski, K. et al. ggrepel v.0.8.1: Automatically position non-overlapping text labels with ‘ggplot2’ (2019).Schloerke, B. et al. GGally v.1.4.0: Extension to ‘ggplot2’ (2018).Rubis, B. et al. hrbrthemes v.0.6.0: Additional themes, theme components and utilities for ‘ggplot2’ (2019).Henry, L., Wickham, H. & Chang, W. ggstance v.0.3.3: Horizontal ‘ggplot2’ components (2019).Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Brown, C. hash v.2.2.6.1: Full feature implementation of hash/associated arrays/dictionaries (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development for R (RStudio, 2021).Bellot, S. et al. Workflow and code used to perform palm extinction risk and regional palm use resilience analyses. Zenodo https://doi.org/10.5281/zenodo.6678122 (2022). More