More stories

  • in

    Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane

    Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions. John Wiley & Sons: Chichester; 1993.Gleiter, R, Hopf H. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004.Hopf H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew Chem Int Ed. 2008;47:9808–12.CAS 

    Google Scholar 
    Brown CJ, Farthing AC. Preparation and structure of Di-p-Xylylene. Nature. 1949;164:915–6.CAS 

    Google Scholar 
    Cram DJ, Steinberg H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J Am Chem Soc. 1951;73:5691–704.CAS 

    Google Scholar 
    Wang S, Bazan GC, Tretiak S, Mukamel S. Oligophenylenevinylene Phane Dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc. 2000;122:1289–97.CAS 

    Google Scholar 
    Bartholomew GP, Bazan GC. Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res. 2001;34:30–9.CAS 
    PubMed 

    Google Scholar 
    Bartholomew GP, Bazan GC. Strategies for the Synthesis of ‘Through-space’ Chromophore Dimers Based on [2.2]Paracyclophane. Synthesis. 2002;1245–55.Hong JW, Woo HY, Bazan GC. Solvatochromism of distyrylbenzene pairs bound together by [2.2]Paracyclophane: evidence for a polarizable “Through-space” delocalized state. J Am Chem Soc. 2005;127:7435–43.CAS 
    PubMed 

    Google Scholar 
    Bazan GC. Novel organic materials through control of multichromophore interactions. J Org Chem. 2007;72:8615–35.CAS 
    PubMed 

    Google Scholar 
    Cram DJ, Allinger NL. Macro Rings. XII stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc. 1955;77:6289–94.CAS 

    Google Scholar 
    Rozenberg V, Sergeeva E, Hopf H. Cyclophanes as templates in stereoselective synthesis. In Gleiter R, Hopf H, editors. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004, p. 435–62.Rowlands GJ. The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem. 2008;6:1527–34.CAS 
    PubMed 

    Google Scholar 
    Gibson SE, Knight JD. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem. 2003;1:1256–69.CAS 
    PubMed 

    Google Scholar 
    Aly AA, Brown AB. Asymmetric and fused heterocycles based on [2.2]Paracyclophane. Tetrahedron. 2009;65:8055–89.CAS 

    Google Scholar 
    Paradies J. [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis. 2011;3749–66.Delcourt M-L, Felder S, Turcaud S, Pollok CH, Merten C, Micouin L, et al. Highly enantioselective asymmetric transfer hydrogenation: a practical and scalable method to efficiently access planar chiral [2.2]paracyclophanes. J Org Chem. 2019;84:5369–82.CAS 
    PubMed 

    Google Scholar 
    Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, et al. Symmetrically tetrasubstituted [2.2]Paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J. 2008;14:4600–17.CAS 
    PubMed 

    Google Scholar 
    David ORP. Syntheses and applications of disubstituted [2.2]Paracyclophanes. Tetrahedron. 2012;68:8977–93.CAS 

    Google Scholar 
    Hassan Z, Spluling E, Knoll DM, Lahann J, Bräse S. Planar Chiral [2.2]Paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem Soc Rev. 2018;47:6947–63.CAS 
    PubMed 

    Google Scholar 
    Hassan Z, Spuling E, Knoll DM, Bräse S. Regioselective functionalization of [2.2]Paracyclophanes: recent synthetic progress and perspectives. Angew Chem Int Ed. 2020;59:2156–70.CAS 

    Google Scholar 
    Felder S, Wu S, Brom J, Micouin L, Benedetti E. Enantiopure Planar Chiral [2.2]Paracyclophanes: synthesis and applications in asymmetric organocatalysis. Chirality. 2021;33:506–27.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y. Circularly Polarized Luminescence from Planar Chiral Compounds Based on [2.2]Paracyclophane. In: Mori T, editor. Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer: Singapore; 2020, p. 31–52.Morisaki, Y. Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama Y, Yagi S, editors. Progress in the Science of Functional Dyes. Springer: Singapore; 2021, p. 343–74.Morisaki Y, Chujo Y. Planar Chiral [2.2]Paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn. 2019;92:265–74.CAS 

    Google Scholar 
    Maeda H, Kameda M, Hatakeyama T, Morisaki Y. π-Stacked polymer consisting of a Pseudo-meta-[2.2]Paracyclophane skeleton. Polymers. 2018;10:1140. https://doi.org/10.3390/polym10101140.PubMed Central 

    Google Scholar 
    Gon M, Sawada R, Morisaki Y, Chujo Y. Enhancement and controlling the signal of circularly polarized luminescence based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules. 2017;50:1790–802.CAS 

    Google Scholar 
    Gon M, Morisaki Y, Sawada R, Chujo Y. Synthesis of optically active X-shaped conjugated compounds and dendrimers based on Planar Chiral [2.2]Paracyclophane, leading to highly emissive circularly Polarized Luminescence. Chem Eur J. 2016;22:2291–8.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Shibata S, Chujo Y. Synthesis of optically active through-space conjugated polymers consisting of Planar Chiral [2.2]Paracyclophane and Quaterthiophene. Polym J. 2015;47:278–81.CAS 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Through-space conjugated polymers consisting of Planar Chiral Pseudo-ortho-linked [2.2]Paracyclophane. Polym Chem. 2012;3:2727–30.CAS 

    Google Scholar 
    Liao C, Zhang Y, Ye S-H, Zheng W-H. Planar Chiral [2.2]Paracyclophane-based thermally activated delayed fluorescent materials for circularly polarized electroluminescence. ACS Appl Mater Int. 2021;13:25186–92.CAS 

    Google Scholar 
    Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H. Solid-state emissive triarylborane-based [2.2]Paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett. 2018;20:6868–71.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Practical optical resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. Chem Lett. 2012;41:990–2.CAS 

    Google Scholar 
    Tsuchiya M, Maeda H, Inoue R, Morisaki Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: fusing helical and planar chiralities. Chem Commun. 2021;57:9256–9.CAS 

    Google Scholar 
    Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, et al. Control of circularly polarized luminescence by orientation of stacked π-Electron Systems. Chem Asian J. 2019;14:1681–5.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Sawada R, Gon M, Chujo Y. New Type of Planar Chiral [2.2]Paracyclophanes and construction of one-handed double Helices. Chem Asian J. 2016;11:2524–7.CAS 
    PubMed 

    Google Scholar 
    Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y. Synthesis of Enantiopure Planar Chiral Bis-(para)-Pseudo-meta-Type [2.2]Paracyclophanes. Chirality. 2018;30:1109–14.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: optical resolution and functionalization. J Am Chem Soc. 2014;136:3350–3.CAS 
    PubMed 

    Google Scholar 
    Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–70.
    Google Scholar 
    Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis. In: Negishi E, editor. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York; 2002, p. 493–529.Meyer-Epler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. Synthesis, Chiral Resolution, and absolute configuration of dissymmetric 4,15-Difunctionalized [2.2]Paracyclophanes. J Org Chem. 2014;79:6679–87.
    Google Scholar 
    Miki N, Maeda H, Inoue R, Morisaki Y. Syntheses and Chiroptical properties of optically active V-shaped molecules based on Planar Chiral [2.2]Paracyclophane. ChemistrySelect. 2021;6:12970–4.CAS 

    Google Scholar 
    Bondarenko L, Dix I, Hinrichs H, Hopf H. Cyclophanes. Part LII: Ethynyl[2.2]paracyclophanes – New Building Blocks for Molecular Scaffolding. Synthesis. 2004;2751–9.Tanaka Y, Ozawa T, Inagaki A, Akita M. Redox-active Polyiron Complexes with Tetra(ethynylphenyl)ethene and [2,2]Paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire. Dalton Trans. 2007;928–33.Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y. π-Electron-system-layered Polymer: through-space conjugation and properties as a single molecular wire. Chem Eur J. 2012;18:4216–24.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Chujo Y. Planar Chiral through-space conjugated oligomers: synthesis and characterization of Chiroptical Properties. Chem Eur J. 2014;20:8386–90.CAS 
    PubMed 

    Google Scholar 
    Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with Data Science. Polym J. 2020;52:1307–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miki N, Inoue R, Morisaki Y. Synthesis of optically active V-shaped molecules: studies on the orientation of the Stacked π-Electron Systems and Their Chiroptical Properties. Bull Chem Soc Jpn. 2021;94:451–3.CAS 

    Google Scholar 
    Tabata D, Inoue R, Sasai Y, Morisaki Y. Synthesis of optically active V(120°)- and (60°)-shaped molecules comprising different π-electron systems. Bull Chem Soc Jpn. 2022;95:595–601.CAS 

    Google Scholar 
    Asakawa R, Tabata D, Miki N, Tsuchiya M, Inoue R, Morisaki Y. Syntheses of optically active V-shaped molecules: relationship between their Chiroptical Properties and the Orientation of the Stacked π-Electron System. Eur J Org Chem. 2021;2021:5725–31.Berova N, Nakanishi K, Woody RW. Circular Dichroism 2nd ed. Wiley-VCH: Toronto; 2000.Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev. 1986;86:1–16.CAS 

    Google Scholar 
    Riehl JP, Muller F. Comprehensive Chiroptical Spectroscopy. Wiley and Sons: New York; 2012. More

  • in

    Fungi are more transient than bacteria in caterpillar gut microbiomes

    Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. 106, 18054–18061 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).PubMed 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giron, D. et al. Chapter seven—influence of microbial symbionts on plant-insect interactions. In Advances in Botanical Research Vol. 81 (eds Sauvion, N. et al.) 225–257 (Academic Press, 2017).
    Google Scholar 
    Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6, 29505 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. Tree endophytes: cryptic drivers of tropical forest diversity. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 63–103 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-89833-9_4.Chapter 

    Google Scholar 
    Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).PubMed 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303–311 (2014).Article 

    Google Scholar 
    Faeth, S. H. & Hammon, K. E. Fungal endophytes in oak trees: Long-term patterns of abundance and associations with leafminers. Ecology 78, 810–819 (1997).Article 

    Google Scholar 
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40, 1111–1122 (2011).PubMed 
    Article 

    Google Scholar 
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, 117 (2019).Article 
    CAS 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montagna, M. et al. Evidence of a bacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 18, 4961–4973 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phalnikar, K., Kunte, K. & Agashe, D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. R. Soc. B Biol. Sci. 286, 20192438 (2019).CAS 
    Article 

    Google Scholar 
    Somerville, J., Zhou, L. & Raymond, B. Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects 10, 89 (2019).PubMed Central 
    Article 

    Google Scholar 
    González-Serrano, F. et al. The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Goharrostami, M. & JalaliSendi, J. Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. J. Stored Prod. Res. 75, 10–17 (2018).Article 

    Google Scholar 
    Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minard, G., Tikhonov, G., Ovaskainen, O. & Saastamoinen, M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ. Microbiol. 21, 4253–4269 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 
    Article 

    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, T., Pereira, J. A., Benhadi, J., Lino-Neto, T. & Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 76, 668–679 (2018).PubMed 
    Article 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Sanders, J., Kaltenpoth, M. & Pierce, N. E. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7, 1920 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, Y. et al. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol. 20, 58 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffin, E. A., Harrison, J. G., McCormick, M. K., Burghardt, K. T. & Parker, J. D. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest experiment. Diversity 11, 234 (2019).Article 

    Google Scholar 
    Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).PubMed 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: A new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96, fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100, e02758 (2019).PubMed 
    Article 

    Google Scholar 
    Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Unterseher, M., Reiher, A., Finstermeier, K., Otto, P. & Morawetz, W. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201–212 (2007).Article 

    Google Scholar 
    Gilbert, G. S., Reynolds, D. R. & Bethancourt, A. The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88, 575–581 (2007).PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28, 274–285 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb. Ecol. https://doi.org/10.1007/s00248-020-01564-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B. & Allende, A. Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol. 66, 77–85 (2017).PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 
    Article 

    Google Scholar 
    Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez, N. E., Pereyra, P. C. & Luna, M. G. Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Entomol. 38, 365–374 (2009).PubMed 
    Article 

    Google Scholar 
    Santos, A. M. C. & Quicke, D. L. J. Large-scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382 (2011).Article 

    Google Scholar 
    Mereghetti, V., Chouaia, B. & Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 18, 2450 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floater, G. J. Estimating movement of the processionary caterpillar Ochrogaster zunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete resource patches. Aust. J. Entomol. 35, 279–283 (1996).Article 

    Google Scholar 
    Turčáni, M. & Patočka, J. Does intraguild predation of Cosmia trapezina L. (Lep.: Noctuidae) influence the abundance of other Lepidoptera forest pests?. J. For. Sci. 57, 472–482 (2011).Article 

    Google Scholar 
    Hikisz, J. & Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 17, 59–71 (2015).
    Google Scholar 
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    Qian, X. et al. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci. Rep. 10, 952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller, T., Müller, M., Behrendt, U. & Stadler, B. Diversity of culturable phyllosphere bacteria on beech and oak: The effects of lepidopterous larvae. Microbiol. Res. 158, 291–297 (2003).PubMed 
    Article 

    Google Scholar 
    Hrcek, J., Miller, S. E., Quicke, D. L. J. & Smith, M. A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 11, 786–794 (2011).PubMed 
    Article 

    Google Scholar 
    Bateman, C., Šigut, M., Skelton, J., Smith, K. E. & Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 45, 883–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science https://peerj.com/preprints/27295 (2018) https://doi.org/10.7287/peerj.preprints.27295v2.Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    UNITE Community. UNITE QIIME Release for Fungi 2. (2019).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ter Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D. & Hughes, G. L. Horizontal transmission of intracellular insect symbionts via plants. Front. Microbiol. 8, 2237 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2019).Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Background climate conditions regulated the photosynthetic response of Amazon forests to the 2015/2016 El Nino-Southern Oscillation event

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).CAS 
    Article 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167 (2003).Article 

    Google Scholar 
    Marengo, J. A. et al. Changes in climate and land use over the amazon region: current and future variability and trends. Front. Earth Sci. 6, 1–21 (2018).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Change 2, 177–181 (2012).Article 

    Google Scholar 
    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).Article 

    Google Scholar 
    Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).CAS 
    Article 

    Google Scholar 
    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).Koren, G. et al. Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philos. Trans. R. Soc. Lond. B Biol. Sci 373, 20170408 (2018).Article 
    CAS 

    Google Scholar 
    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).CAS 
    Article 

    Google Scholar 
    Sousa, T. R. et al. Palms and trees resist extreme drought in Amazon forests with shallow water tables. J. Ecol. 108, 2070–2082 (2020).CAS 
    Article 

    Google Scholar 
    Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).CAS 
    Article 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900278116 (2019).Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).CAS 
    Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    Article 

    Google Scholar 
    Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 60, 12 (2016).
    Google Scholar 
    Fisher, R. A., Williams, M., de Lourdes Ruivo, M., de Costa, A. L. & Meir, P. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric. For. Meteorol. 148, 850–861 (2008).Article 

    Google Scholar 
    Marthews, T. R. et al. High-resolution hydraulic parameter maps for surface soils in tropical South America. Geosci. Model Dev. 7, 711–723 (2014).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New. Phytol. 229, 1995–2006 (2021).CAS 
    Article 

    Google Scholar 
    Castro, A. O. et al. OCO-2 solar-induced chlorophyll fluorescence variability across ecoregions of the amazon basin and the extreme drought effects of El Niño (2015–2016). Remote Sens. 12, 1202 (2020).Article 

    Google Scholar 
    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).CAS 
    Article 

    Google Scholar 
    Sombroek, W. Spatial and temporal patterns of amazon rainfall. Ambio 30, 388–396 (2001).CAS 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    Article 

    Google Scholar 
    Joetzjer, E., Douville, H., Delire, C. & Ciais, P. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim. Dyn. 41, 2921–2936 (2013).Article 

    Google Scholar 
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant. Ecol. Divers. 7, 241–253 (2014).Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2018).Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108, 20627–20632 (2011).CAS 
    Article 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Article 

    Google Scholar 
    Guillemot, J. et al. Small and slow is safe: On the drought tolerance of tropical tree species. Glob. Chang. Biol. 28, 2622–2638 (2022).CAS 
    Article 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).CAS 
    Article 

    Google Scholar 
    de Almeida Castanho, A. D. et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Glob. Biogeochem. Cycles 30, 18–39 (2016).Article 
    CAS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Lathière, J. et al. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos. Chem. Phys. 6, 2129–2146 (2006).Article 

    Google Scholar 
    Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187, 647–65 (2010).Article 

    Google Scholar 
    Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Chang. Biol. 22, 3996–4013 (2016).Article 

    Google Scholar 
    Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).Article 

    Google Scholar 
    Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106 (2011).Article 

    Google Scholar 
    Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 1–14 (2017).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Running, Steve, Mu, Qiaozhen & Zhao, Maosheng. MOD16A2 MODIS/Terra net evapotranspiration 8-day L4 global 500m. https://doi.org/10.5067/MODIS/MOD16A2.006 (2017).van Schaik, E. et al. Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation. https://doi.org/10.5194/amt-2019-384 (2020).Kooreman, M. L. et al. GOME-2A SIFTER v2 (2007-2018) [Data set]. SIFTER sun-induced vegetation fluorescence data from GOME-2A (Version 2.0) [Data set]. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/gome2a-sifter-v2-sun-induced-fluorescence.Hoese, D. et al. pytroll/pyresample: Version 1.23.0. Zenodo, https://doi.org/10.5281/zenodo.6375741 (2022).Kooreman, M., Tuinder, O., Boersma, K. F. & van Schaik, E. Algorithm Theoretical Basis Document for the GOME-2 NRT, Offline and Data Record Sun-Induced Fluorescence Products. (2019).Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).CAS 
    Article 

    Google Scholar 
    Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).CAS 
    Article 

    Google Scholar 
    Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl. Acad. Sci. USA 116, 22393–22398 (2019).CAS 
    Article 

    Google Scholar 
    Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).CAS 
    Article 

    Google Scholar 
    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).Article 
    CAS 

    Google Scholar 
    Wood, J. D. et al. Multiscale analyses of solar-induced florescence and gross primary production. Geophys. Res. Lett. 44, 533–541 (2017).Article 

    Google Scholar 
    Verma, M. et al. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 122, 716–733 (2017).Article 

    Google Scholar 
    Parazoo, N. C. et al. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang Biol. 20, 3103–3121 (2014).Article 

    Google Scholar 
    Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. https://cds.climate.copernicus.eu/cdsapp#!/home (2017).Goddard Earth Sciences Data and Information Services Center (GES DISC). Tropical Rainfall Measuring Mission (TRMM) – TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34 (2007).Paca, V. H. et al. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 8, 6 (2019).Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).Article 

    Google Scholar 
    Maeda, E. E. et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 8, 439–454 (2017).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 
    CAS 

    Google Scholar 
    Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytol. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17914 .Walsh, R. P. D. & Lawler, D. M. Rainfall seasonality: description, spatial patterns and change through time. Weather 36, 201–208 (1981).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).Heinze, G., Wallisch, C. & Dunkler, D. Variable selection – a review and recommendations for the practicing statistician. Biom. J. 60, 431–449 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).QGIS.org. QGIS Geographic Information System (QGIS Association, 2022).Fancourt, M. Repository for Code, Data and Figures. https://zenodo.org/badge/latestdoi/514231211 (2022). More

  • in

    Genic distribution modelling predicts adaptation of the bank vole to climate change

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189 (2018).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).Article 

    Google Scholar 
    Bradshaw, A. D. & McNeilly, T. Evolutionary response to global climatic change. Ann. Bot. 67, 5–14 (1991).Article 

    Google Scholar 
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).Article 

    Google Scholar 
    Veron, S., Haevermans, T., Govaerts, R., Mouchet, M. & Pellens, R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 9, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed 
    Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. & Whitlock, M. C. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2015).Article 
    CAS 

    Google Scholar 
    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 

    Google Scholar 
    Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).Article 

    Google Scholar 
    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).PubMed 
    Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).PubMed 
    Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, S. J. G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160 (1979).Article 

    Google Scholar 
    Kotlík, P. et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B 281, 20140021 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Searle, J. B. et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escalante, M. A., Horníková, M., Marková, S. & Kotlík, P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 11, 8054–8070 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reischl, E., Dafre, A. L., Franco, J. L. & Wilhelm Filho, D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 146, 22–53 (2007).Article 
    CAS 

    Google Scholar 
    Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, R. et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 276, 7004–7010 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitturi, D. A. et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 55, 119–129 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petersen, A. G. et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R84–R93 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paital, B. et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 7, 110–127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, P. J., Oosthuizen, M. K., Mitchell, C., Blount, J. D. & Bennett, N. C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 15, e0242279 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kotlík, P., Marková, S., Horníková, M., Escalante, M. A. & Searle, J. B. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 10, 866605 (2022).Article 

    Google Scholar 
    Strážnická, M., Marková, S., Searle, J. B. & Kotlík, P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes 9, 492 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).Article 

    Google Scholar 
    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213, 63–72 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).Article 

    Google Scholar 
    Mayes, J. & Wheeler, D. Regional weather and climates of the British Isles—part 1: introduction. Weather 68, 3–8 (2013).Article 

    Google Scholar 
    Kotlík, P., Marková, S., Konczal, M., Babik, W. & Searle, J. B. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B 285, 20172624 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 222, 1757–1765 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning – ICML ’04 9, 83 (ACM Press, 2004).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 341, 5–13 (2016).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).Article 

    Google Scholar 
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).Article 

    Google Scholar 
    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 

    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).Article 

    Google Scholar  More

  • in

    Bryozoan–cnidarian mutualism triggered a new strategy for greater resource exploitation as early as the Late Silurian

    Pushkin, V. I., Nehkorosheva, L. V., Kopaevich, G. V. & Yaroshinskaya, A. M. Přídolian Bryozoa of the USSR 1–125 (Nauka, 1990) (in Russian).
    Google Scholar 
    Kopaevich, G. V. Silurian Bryozoa of Estonia and Podolia (Cryptostomata and Rhabdomesonata). Trudy Paleontol. Inst Akad. Nauk SSSR 151, 5–153 (1975) (in Russian).
    Google Scholar 
    Tuckey, M. E. Biogeography of Ordovician bryozoans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 91–126 (1990).Article 

    Google Scholar 
    McCoy, V. E. & Anstey, R. L. Biogeographic associations of Silurian bryozoan genera in North America, Baltica and Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 420–427 (2010).Article 

    Google Scholar 
    Bassler, R. S. The early Paleozoic Bryozoa of the Baltic provinces. Bull. U. S. Natl. Museum 77, 1–382 (1911).
    Google Scholar 
    Vinn, O. & Wilson, M. A. Symbiotic interactions in the Silurian of Baltica. Lethaia 49, 413–420 (2016).Article 

    Google Scholar 
    Vinn, O. Symbiotic interactions in the Silurian of North America. Hist. Biol. 29, 341–347 (2017).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of cornulitids with the cystoporate bryozoan Fistulipora in the Přídolí of Saaremaa, Estonia. Lethaia 54, 90–95 (2021).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Intergrowth of bryozoans with other invertebrates in the late Přídolí of Saaremaa, Estonia. Ann. Soc. Geol. Poloniae 91, 101–111 (2021).
    Google Scholar 
    Jackson, J. B. C. & Buss, L. Allelopathy and spatial competition among coral reef invertebrates. Proc. Natl. Acad. Sci. USA 72, 5160–5163 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osman, R. W. & Haugsness, J. A. Mutualism among sessile invertebrates: A mediator of competition and predation. Science 211(4484), 846–848 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pawlik, J. R. Marine invertebrate chemical defenses. Chem. Rev. 93, 1911–1922 (1993).CAS 
    Article 

    Google Scholar 
    Figuerola, B., Núñez-Pons, L., Moles, J. & Avila, C. Feeding repellence in Antarctic bryozoans. Naturwissenschaften 100, 1069–1081 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Puce, S., Bavestrello, G., Di Camillo, C. G. & Boero, F. Symbiotic relationships between hydroids and bryozoans. Symbiosis 44, 137–143 (2007).
    Google Scholar 
    López-Gappa, J. & Liuzzi, M. G. An unusual symbiotic relationship between a cyclostome bryozoan and a thecate hydroid. Symbiosis 85, 217–223 (2021).Article 
    CAS 

    Google Scholar 
    McKinney, F. K., Broadhead, T. W. & Gibson, M. A. Coral-bryozoan mutualism: Structural innovation and greater resource exploitation. Science 248(4954), 466–468 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    McKinney, F. K. Bryozoan-hydroid symbiosis and a new ichnogenus, Caupokeras. Ichnos 16, 193–201 (2009).Article 

    Google Scholar 
    Suárez-Andrés, J. L., Sendino, C. & Wilson, M. A. Life in a living substrate: Modular endosymbionts of bryozoan hosts from the Devonian of Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109897 (2020).Article 

    Google Scholar 
    Okamura, B. The influence of neighbors on the feeding of an epifaunal bryozoan. J. Exp. Mar. Biol. Ecol. 120, 105–123 (1988).Article 

    Google Scholar 
    Sendino, C., Suárez-Andrés, J. L. S. & Wilson, M. A. A rugose coral–bryozoan association from the Lower Devonian of NW Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 271–280 (2019).Article 

    Google Scholar 
    Suárez-Andrés, J., Sendino, C. & Wilson, M. A. Caupokeras badalloi, a new ichnospecies of impedichnia from the Lower Devonian of Spain. Palaeoecological significance. Hist. Biol. 34, 62–66 (2021).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of conulariids with trepostome bryozoans in the Upper Ordovician of Estonia (Baltica). Palaeogeogr. Palaeoclimatol. Palaeoecol. 518, 89–96 (2019).Article 

    Google Scholar 
    Melchin, M. J., Cooper, R. A. & Sadler, P. M. The Silurian period. In A Geologic Time Scale 2004 (eds Gradstein, F. M. et al.) 188–201 (Cambridge University Press, 2004).
    Google Scholar 
    Torsvik, T. H. & Cocks, L. R. M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geol. Soc. Lond. Memoirs 38, 5–24 (2013).Article 

    Google Scholar 
    Hints, O. The Silurian system in Estonia. in The Seventh Baltic Stratigraphical Conference. Abstracts and Field Guide (Hints, O. Ainsaar, L. Männik, P. & Meidla, T. eds.). 1–46. (Geological Society of Estonia, 2008).Nestor, H. & Einasto, R. Facies-sedimentary model of the Silurian Paleobaltic pericontinental basin. in (Kaljo, D. ed.) Facies and Fauna of the Baltic Silurian. 89–121 (Academy of Sciences of the Estonian S. S. R. Institute of Geology, 1977) (in Russian, English summary).Nestor, H. & Einasto, R. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (eds Raukas, A. & Teedumäe, A.) 192–205 (Estonian Academy Publishers, 1997).
    Google Scholar 
    Nestor, H. Locality 7: 4 Ohesaare cliff. in Field Meeting, Estonia 1990. An Excursion Guidebook (Kaljo, D. & Nestor, H. eds.). 175–178. (Institute of Geology, Estonian Academy of Sciences, 1990).Klaamann, E. R. Tabulate corals of the Upper Silurian of Estonia. Trudy Inst. Gieol. AN Estonskoi SSR 9, 25–74 (1962) (in Russian).
    Google Scholar 
    Hill, D. Tabulata. in Treatise on Invertebrate Paleontology, Part F, Coelenterate, Supplement 1, Rugosa and Tabulata (Teichert, C. ed.). F430–F762 (The Geological Society of America, Inc./The University of Kansas, 1981).Zapalski, M. K. Tabulate corals from the Givetian and Frasnian of the southern region of the Holy Cross Mountains (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).
    Google Scholar 
    Stasińska, A. Colony structure and systematic assignment of Cladochonus tenuicollis McCoy, 1847 (Hydroidea). Acta Palaeontol. Pol. 27, 59–64 (1982).
    Google Scholar 
    Król, J., Zapalski, M. K. & Berkowski, B. Emsian tabulate corals of Hamar Laghdad (Morocco): Taxonomy and ecological interpretation. Neues Jahrbuch Geol. Palaontol.-Abhandlungen 290, 75–102 (2018).Article 

    Google Scholar 
    Coronado, I. Biomineral analysis of the enigmatic fossil Cladochonus Mccoy, 1847: A representative of calcifiying hydrozoa? In New Perspectives on the Evolution of Phanerozoic Biotas and Ecosystems (Manzanares, E. et al. eds.). Vol. 24.Bouillon, J., Gravili, C., Gili, J. M. & Boero, F. An Introduction to Hydrozoa (ResearchGate, 2006).
    Google Scholar 
    Tassia, M. G. et al. The global diversity of Hemichordata. PLoS ONE 11(10), e0162564 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zapalski, M. K. & Clarkson, E. N. Enigmatic fossils from the Lower Carboniferous shrimp bed, Granton, Scotland. PLoS ONE 10(12), e0144220 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, A. Seasonal reproductive activity in the pterobranch hemichordate Rhabdopleura compacta. J. Mar. Biol. Assoc. UK 88, 1033–1041 (2008).Article 

    Google Scholar 
    Underwood, C. J. Graptolite preservation and deformation. Palaios 7, 178–186 (1992).ADS 
    Article 

    Google Scholar 
    Maletz, J. Hemichordata (Enteropneusta & Pterobranchia, incl. Graptolithina): A review of their fossil preservation as organic material. Bull. Geosci. 95(1), 41–80 (2020).Article 

    Google Scholar 
    Tapanila, L. Direct evidence of ancient symbiosis using trace fossils. Paleontol. Soc. Pap. 14, 271–287 (2008).Article 

    Google Scholar 
    Zapalski, M. K. Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 484–488 (2011).Article 

    Google Scholar 
    Mathis, K. A. & Bronstein, J. L. Our current understanding of commensalism. Annu. Rev. Ecol. Evol. Syst. 51, 167–189 (2020).Article 

    Google Scholar 
    Zapalski, M. K., Berkowski, B. & Klug, C. Subepidermal Emsian” auloporids” on crinoids from Hamar Laghdad (Anti-Atlas, Morocco). N. Jb. Geol. Paläont. 290, 103–110 (2018).Article 

    Google Scholar 
    Winston, J. E. Feeding in marine bryozoans. In Biology of Bryozoans (eds Wollacott, W. S. & Zimmer, R. L.) 233–271 (Academic Press, 1977).Chapter 

    Google Scholar 
    Okamura, B. & Partridge, J. C. Suspension feeding adaptations to extreme flow environments in a marine bryozoan. Biol. Bull. 196, 205–215 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ernst, A. Fossil Record and Evolution of Bryozoa. Handbook of Zoology. Bryozoa 11–55 (De Gruyter, 2020).
    Google Scholar 
    Riisgård, H. U. & Manríquez, P. Filter-feeding in fifteen marine ectoprocts (Bryozoa): Particle capture and water pumping. Mar. Ecol. Prog. Ser. 154, 223–239 (1997).ADS 
    Article 

    Google Scholar 
    Boero, F. & Hewitt, C. L. A hydrozoan, Zanclella bryozoophila n. gen, n.sp. (Zancleidae) symbiotic with a bryozoan, and a discussion of the Zancleidae. Can. J. Zool. 70, 1645–1651 (1992).Article 

    Google Scholar 
    Piraino, S., Bouillon, J. & Boero, F. Halocoryne epizoica (Cnidaria, Hydrozoa), a hydroid that “bites”. Sci. Mar. 56(2), 141–147 (1992).
    Google Scholar 
    Maggioni, D. et al. Evolution and biogeography of the Zanclea-Scleractinia symbiosis. Coral Reefs 12, 1–17 (2020).
    Google Scholar 
    Taylor, P. D. Competition between encrusters on marine hard substrates and its fossil record. Palaeontology 59, 481–497 (2016).Article 

    Google Scholar 
    Taylor, P. D. & Wilson, M. A. Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 62, 1–103 (2003).ADS 
    Article 

    Google Scholar 
    Gordon, D. P. Biological relationships of an intertidal bryozoan population. J. Nat. Hist. 6, 503–514 (1972).Article 

    Google Scholar 
    Jackson, J. B. C. & Winston, J. E. Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J. Exp. Mar. Biol. Ecol. 57, 135–147 (1982).Article 

    Google Scholar 
    McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution 238 (Unwin Hyman, 1989).
    Google Scholar 
    Wicander, R. & Playford, G. Acritarchs and prasinophytes from the Lower Devonian (Lochkovian) Ross Formation, Tennessee, USA: Stratigraphic and paleogeographic distribution. Palynology 46(2), 1–50 (2022).Article 

    Google Scholar 
    Ristedt, H. & Schuhmacher, H. The bryozoan Rhynchozoon larreyi (Audouin, 1826)—A successful competitor in coral reef communities of the Red Sea. Mar. Ecol. 6, 167–179 (1985).ADS 
    Article 

    Google Scholar 
    Puce, S., Cerrano, C., Di Camillo, C. & Bavestrello, G. Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J. Mar. Biol. Assoc. U.K. 88(8), 1715–1721 (2008).Article 

    Google Scholar 
    Winston, J. E. & Migotto, A. E. Behavior. In Phylum Bryozoa (ed. Schwaha, T.) 143–187 (De Gruyter, 2020).Chapter 

    Google Scholar 
    Cadée, G. C. & McKinney, F. K. A coral-bryozoan association from the Neogene of northwestern Europe. Lethaia 27, 59–66 (1994).Article 

    Google Scholar 
    Jackson, P. N. W. & Key, M. M. Jr. Borings in trepostome bryozoans from the Ordovician of Estonia: Two ichnogenera produced by a single maker, a case of host morphology control. Lethaia 40, 237–252 (2007).Article 

    Google Scholar 
    Jackson, P. N. W. & Key, M. M. Epizoan and endoskeletozoan distribution across reassembled ramose stenolaemate bryozoan zoaria from the Upper Ordovician (Katian) of the Cincinnati Arch region, USA. Aust. Palaeontol. Memoirs 52, 169–178 (2019).
    Google Scholar 
    Ma, J., Taylor, P. D. & Buttler, C. J. Sclerobionts associated with Orbiramus from the Early Ordovician of Hubei, China, the oldest known trepostome bryozoan. Lethaia 54, 443–456 (2020).
    Google Scholar 
    Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50, 1–22 (2007).Article 

    Google Scholar 
    Vinn, O., Ernst, A. & Toom, U. Symbiosis of cornulitids and bryozoans in the Late Ordovician of Estonia (Baltica). Palaios 33, 290–295 (2018).ADS 
    Article 

    Google Scholar 
    Palmer, T. J. & Wilson, M. A. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31, 939–949 (1988).
    Google Scholar 
    Ernst, A. Trepostome and cryptostome bryozoans from the Koněprusy Limestone (Lower Devonia, Pragian) of Zlatý Kůň (Czech republic). Riv. Ital. Paleontol. Stratigr. 114(3), 329–348 (2008).
    Google Scholar 
    Morozova, I. P. Devonskie mshanki Minusinskikh i Kuznetskoy kotlovin. Trudy Paleontol. Inst. Akad. Nauk SSSR 86, 1–207 (1961) (in Russian).
    Google Scholar  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude

    Plants increase their freezing resistance upon exposure to low temperatureThe freezing resistance (LT50 values) was found to vary ranging from − 6.9 °C (14-August-2017) to − 31.7 °C (04-November-2018) over the course of study period. The freezing resistance of leaves recorded during the 12 sampling time-points has been provided in Table 1 (also see39). The overlap of confidence intervals around the mean was examined for comparison of LT50 values for the different sampling time-points. Significant differences in freezing resistance were observed across the sampling time-points (Table 1). Leaves of R. anthopogon collected during summer [July and August (Air temperature and photoperiod was about 9.6 °C and 13 h day−1 respectively)] showed marginal resistance to freezing (LT50: − 7 °C) and thus, are more susceptible to freezing damage. Further, as the ambient air temperature and photoperiod decreased towards the end of growing season (i.e., October and November 2017 with air temperature and photoperiod of about − 1.1 °C and 10.5 h day−1 respectively), the plants acquired the highest freezing resistance (LT50: − 30 °C). Interestingly, a sharp increase in freezing resistance (− 29.4 °C) was observed in September 2018, when the daily mean air temperature decreased below 0 °C due to sudden snowfall (Supplementary Fig. S2). Comparison of LT50 values of all the leaf samples of R. anthopogon showed that cold de-acclimation occurred after the snowmelt during early spring in June (LT50: − 13.4 °C) with an increase in air temperature and photoperiod. These results demonstrated that R. anthopogon plants exhibit lowered freezing resistance during the warmer months [hence, these time-periods were referred as non-acclimation (NA)], progressively develop greater freezing resistance during the onset of winter season (hence, referred as cold acclimation) followed by an intermediate level of freezing resistance during the spring [hence, these time-periods were referred as de-acclimation (DA)].Table 1 The estimates of LT50, calculated by fitting sigmoidal curve to electrolyte leakage values of temperature treatments, recorded for leaves collected during the different sampling time-points (from August 22, 2017 to September 18, 2018).Full size tableDuring the acclimation period (i.e., late in the growing season), plants acquired the highest resistance to freezing (Fig. 1). The low electrolyte leakage (= high freezing resistance) observed during this period might be due to changes in cell wall properties (such as increase in lignification and suberization of cell walls), which provide resistance to diffusion of electrolytes from cells of the leaves to the extracellular water47. Moreover, high freezing resistance may also be attributed to high leaf toughness and sclerophyllous habit of this evergreen species48. Further, it was found that freezing resistance was the lowest during mid-summer period. This pattern could be explained by a trade-of between plant growth rates and freezing resistance, where warmer temperatures favour plant allocation to growth49. These observations corroborated well with earlier reports that showed a rapid increase in ‘freezing resistance’ during the transition from summer to early winter and vice versa50.Figure 1LT50 [black point (with solid fill) on the curve] calculated by fitting sigmoidal curve to relative electrolyte leakage (REL %) values recorded during the three different acclimation phases. GOF indicates ‘goodness of fit’ test values for the fitted sigmoidal curves.Full size imagePhotosynthetic rates are higher during non-acclimation and de-acclimation periodIt was found that PN of R. anthopogon varied in the range from 8.336 to 17.64 μmol(CO2)m−2 s−1 and E from 2.281 to 4.912 mol(H2O)m−2 s−1, throughout its growing season. The Gs of leaves was estimated to be in the range from 0.110 to 0.265 mol (H2O) m−2 s−1. WUE, a ratio of PN and E, varied between 52.21 and 87.68 (Table 2). The gas exchange parameters of R. anthopogon varied significantly among the sampling time-points [referred to here as different acclimation phases of the growing period of evergreen shrub (Fig. 2, Table 3)]. In particular, PN was significantly lower on 18-September-2018 (referred as cold acclimation phase), whereas it was higher on 31-August-2018 and 15-June-2018 (referred as NA and DA phases, respectively). Similarly, Gs of leaves was significantly lower during cold acclimation in comparison to the rest of the acclimation phases (i.e., NA and DA). Further, WUE was significantly higher during cold acclimation, while it was lower during both NA and DA (p ≤ 0.05) (Fig. 2).Table 2 Variability in leaf gas exchange parameters of R. anthopogon during the different acclimation phases (NA = Non-acclimation, LA = Late cold acclimation and DA = De-acclimation).Full size tableFigure 2Variability in leaf gas exchange parameters of R. anthopogon during the three acclimation phases [i.e., Non-acclimation (31 August, 2018), Cold acclimation (18 September, 2018) and De-acclimation (15 June, 2018)]. Different alphabets (a, b, c) represent statistically significant values (p  More

  • in

    Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China

    Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).Article 
    CAS 

    Google Scholar 
    Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).PubMed 
    Article 

    Google Scholar 
    Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).Article 

    Google Scholar 
    Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).PubMed 
    Article 

    Google Scholar 
    Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).Article 

    Google Scholar 
    Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).ADS 
    Article 

    Google Scholar 
    Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).
    Google Scholar 
    Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).PubMed 
    Article 

    Google Scholar 
    Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).PubMed 
    Article 

    Google Scholar 
    Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).PubMed 
    Article 

    Google Scholar 
    Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).Article 

    Google Scholar 
    Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).PubMed 
    Article 

    Google Scholar 
    Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).Article 

    Google Scholar 
    Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).
    Google Scholar 
    Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).
    Google Scholar 
    Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).PubMed Central 
    Article 

    Google Scholar 
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar  More