More stories

  • in

    Diving in

    Nearly two years into the United Nations Decade of Ocean Science, research, including some featured in this month’s issue, shows that there is still a wealth of scientific secrets to uncover in the ocean depths.
    In many ways, considering the ocean as a single unit is overly broad. The global ocean covers 71% of the planet’s surface, reaches down to depths of over 10 kilometres, includes about 1.35 billion cubic kilometres of water and houses an approximated 2.2 million eukaryotic species. There are distinct regions, with distinct physical properties, and, in turn, there are distinct species. Yet, the world’s oceans do have a level of physical and thematic connectivity.
    Credit: Daria Zaseda / DigitalVision Vectors / GettyPhysically, a large part of the connection is related to the presence of large rotating ocean currents that transfer heat across latitudes and contribute to ocean mixing (thermohaline circulation). Some of these currents are warming at alarming rates — up to three times faster than the rest of the ocean, leading to questions about the underlying mechanisms of the warming and expectations for change.Focusing on western boundary currents (WBCs) in the Southern Hemisphere, in an Article in this issue of Nature Climate Change, Li and colleagues answer a long-debated question on the mechanisms of change, showing that temperature-gradient-related instabilities, rather than flow-speed-related instabilities are behind the shifts. In another Article, focusing on the global future changes of eddies (including eddy-rich WBCs), Beech and colleagues report the development of a flexible method that maximizes local model resolution while minimizing computational costs, to reveal the long-term geographical specificities and nonlinear temperature increases expected to 2100 (see also the News and Views article by Yang on these papers).A recent paper1 has demonstrated the important role of large ocean currents in defining plankton biogeography and dynamics, and WBC warming has previously been linked to impacts such as fishery collapses. The tight link between physical processes and biological responses is an underscoring theme of climate change ecology, but is perhaps more apparent in the open ocean, where physical processes can be easily (if imperfectly) linked to primary productivity using remotely sensed phytoplankton pigment absorption, and where life is generally less impacted by geographical, political or disturbance-based boundaries compared with land and freshwater systems. These aspects may facilitate modelling of current and future communities, while also allowing broader assumptions to be made about biological movement and connectivity.Despite these benefits, understanding ocean change comes with its own difficulties. Biological sampling, while easy enough in the surface waters, becomes increasingly difficult at depth. Although future habitats for various organisms have been projected on the basis of their thermal limits in the ocean, these predictions often still rely on temperatures at the surface of the sea. Addressing this, Santana-Falcón and colleagues report in an Article the global mapping of ocean temperature changes to depths of 1,000 metres, and reveal the complex depth-dependent changes in thermal upper and lower bounds that marine organisms will soon be subjected to. In another Article, Ariza and colleagues neatly address the issue of directly monitoring deep-ocean change by compiling a large database of sound-based observations, and subsequently classifying the ocean’s ‘echobiomes’, defined as sound-scattering communities with comparable structural and functional properties (see also the accompanying News and Views article by Hazen). Sound-based methods are also increasingly being used on land2, and represent an exciting tool for monitoring change, particularly in hard-to-reach places such as deep forests, high mountaintops or underground. While the sound reflection method used in the study by Ariza and colleagues has limits in its ability to identify organisms at the individual or species levels, it does provide a community-level focus on change, which remains much needed in the field of global change ecology.At the other end of the spatial spectrum, research by Lee and colleagues reported in an Article also in this issue dives deep into the DNA of a keystone ocean organism (a copepod), to understand the mechanisms that may allow longer-term adaptation to warming and pH stress. The work reveals remarkable adaptation over just a few short generations, which is linked to epigenetic changes. As climate change impacts continue to escalate, the ability of organisms to invoke both shorter- and longer-term adaptations has become an increasingly relevant area of research. Epigenetics has previously been reported as a quick-response method to cope with environmental stress, and may be particularly relevant in defining the adaptation of short-lived animals such as insects and the resilience of the communities they uphold.The five research pieces linked to the oceans in this issue reveal just some of the diversity of topics, methods and scales relevant to understanding global change. Also increasingly relevant are works on ocean conservation3 and on the social and economic impacts of ocean change4,5. Like climate change science, the topic of ocean change is less of a field, and more of a cross-disciplinary theme. More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Spring thaw nitrous oxide

    Agriculture soils are a source of nitrous oxide and account for 60% of total emissions. It is well established that nitrogen addition via fertilizers drives nitrous oxide emissions during crop growing season. However, little is known about the role of melting snow and thawing surface soil layers during the spring. Limited knowledge of this phenomenon reduces our ability to develop accurate nitrous oxide emissions inventories required under the UN Framework Convention on Climate Change (UNFCCC). More

  • in

    Global decline of pelagic fauna in a warmer ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Choy, C., Wabnitz, C., Weijerman, M., Woodworth-Jefcoats, P. & Polovina, J. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549, 9–25 (2016).
    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).CAS 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 

    Google Scholar 
    Angel, M. V. & de C. Baker, A. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2, 1–30 (1982).
    Google Scholar 
    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep Sea Res. 2 98, 279–291 (2013).
    Google Scholar 
    Hidaka, K., Kawaguchi, K., Murakami, M. & Takahashi, M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res. 1 48, 1923–1939 (2001).Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).
    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).CAS 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 
    Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).
    Google Scholar 
    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
    Google Scholar 
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).
    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. PICES Scientific Report 38 (North Pacific Marine Science Organization, 2010).Kaartvedt, S., Staby, A. & Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456, 1–6 (2012).
    Google Scholar 
    Gjøsaeter, J. & Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish Fisheries Technical Paper 193 (FAO, 1980).Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).
    Google Scholar 
    Annasawmy, P. et al. Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the south west Indian Ocean: insight from acoustics and stable isotopes. Deep Sea Res. 1 138, 85–97 (2018).CAS 

    Google Scholar 
    Haris, K. et al. Sounding out life in the deep using acoustic data from ships of opportunity. Sci. Data 8, 23 (2021).CAS 

    Google Scholar 
    Irigoien, X. et al. The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Sci. Data 8, 259 (2021).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).CAS 

    Google Scholar 
    Proud, R., Cox, M., Le Guen, C. & Brierley, A. Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Mar. Ecol. Prog. Ser. 598, 35–48 (2018).
    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).CAS 

    Google Scholar 
    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis (Springer, 2005).Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
    Google Scholar 
    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, e1602468 (2017).
    Google Scholar 
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Godø, O. R., Patel, R. & Pedersen, G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J. Mar. Sci. 66, 1143–1148 (2009).
    Google Scholar 
    Agersted, M. D. et al. Mass estimates of individual gas-bearing mesopelagic fish from in situ wideband acoustic measurements ground-truthed by biological net sampling. ICES J. Mar. Sci. 78, 3658–3673 (2021).
    Google Scholar 
    Backus, R. & Craddock, J. in Oceanic Sound Scattering Prediction (eds Anderson, N. R. & Zahuranec, B. J.) 529–547 (Springer, 1977).Longhurst, A. Ecological Geography of the Sea (Elsevier, 2010).Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge Univ. Press, 2010).Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
    Google Scholar 
    Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J. & Brierley, A. S. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76, 718–733 (2019).
    Google Scholar 
    Chapman, R. P., Bluy, O. Z., Adlington, R. H. & Robison, A. E. Deep scattering layer spectra in the Atlantic and Pacific oceans and adjacent seas. J. Acoust. Soc. Am. 56, 1722–1734 (1974).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc. R. Soc. B 286, 20190353 (2019).
    Google Scholar 
    Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y. & Jendersie, S. Estimates of density of mesopelagic fish in the Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biol. 43, 43–61 (2020).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties. Proc. R. Soc. B 289, 20211781 (2022).
    Google Scholar 
    Reygondeau, G. et al. Climate change-induced emergence of novel biogeochemical provinces. Front. Mar. Sci. 7, 657 (2020).
    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).
    Google Scholar 
    Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).
    Google Scholar 
    Grimaldo, E. et al. Investigating the potential for a commercial fishery in the northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 77, 2541–2556 (2020).
    Google Scholar 
    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. 2 180, 104722 (2020).CAS 

    Google Scholar 
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Google Scholar 
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Google Scholar 
    Perrot, Y. et al. Matecho: an open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Google Scholar 
    Stanton, T. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57, 793–807 (2000).
    Google Scholar 
    GEBCO: A Continuous Terrain Model of the Global Oceans and Land (British Oceanographic Data Centre, 2019).EchoPY v.1.1: Fisheries Acoustic Data Processing in Python (Python, 2020); https://pypi.org/project/echopyde Boor, C. A Practical Guide to Splines (Springer, 1978).Clustering (SciKit Learn, 2021); https://scikit-learn.org/stable/modules/clusteringEyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).
    Google Scholar 
    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. J. Adv. Model. Earth Syst. 13, e2021MS002496 (2021).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Locarnini, R. et al. World Ocean Atlas 2018, Volume 1: Temperature NOAA Atlas NESDIS 81 (NOAA, 2018).García, H. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation NOAA Atlas NESDIS 83 (NOAA, 2018).Sathyendranath, S. et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021; http://www.esa-oceancolour-cci.org More

  • in

    Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models

    Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).Article 

    Google Scholar 
    Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Oxford University Press, 2000).
    Google Scholar 
    Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: Managing a moving target. Rev. Environ. Econom. Policy 15, 180–190 (2021).Article 

    Google Scholar 
    Gippet, J. M. & Bertelsmeier, C. Invasiveness is linked to greater commercial success in the global pet trade. Proc. Natl. Acad. Sci. 118, e2016337118 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).PubMed 
    Article 

    Google Scholar 
    Charles, H. & Dukes, J. S. Biological Invasions 217–237 (Springer, 2008).
    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Let. 12, 20150623 (2016).Article 

    Google Scholar 
    Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).Article 

    Google Scholar 
    Grimaldi, D., Engel, M. S., Engel, M. S. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).MATH 

    Google Scholar 
    Hill, M. P., Clusella-Trullas, S., Terblanche, J. S. & Richardson, D. M. Vol. 18, 883–891 (Springer, 2016).Sawicka, B. & Egbuna, C. Natural Remedies for Pest, Disease and Weed Control 1–16 (Elsevier, 2020).Book 

    Google Scholar 
    de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).Article 

    Google Scholar 
    Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? PLoS ONE 10, e0119618 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Early, R., González-Moreno, P., Murphy, S. T. & Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40, 25–50 (2018).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Rose, D. D. & Page, W. W. The African Armyworm Handbook 304 (Chatham, 2000).
    Google Scholar 
    De Groote, H. et al. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 292, 106804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheke, R. & Tucker, M. An evaluation of potential economic returns from the strategic control approach to the management of African armyworm Spodoptera exempta (Lepidoptera: Noctuidae) populations in eastern Africa. Crop Prot. 14, 91–103 (1995).Article 

    Google Scholar 
    Fox, K. Migrant Lepidoptera in New Zealand 1972–1973. N. Z. Entomol. 5, 268–271 (1973).Article 

    Google Scholar 
    Baker, G. An Outbreak of Spodoptera exempta (Walker) (Lepidoptera: Noctuidae) in the Highlands of Papua New Guinea (1978).Haggis, M. J. Distribution, Frequency of Attack and Seasonal Incidence of the African Armyworm Spodoptera exempta (Walk.) (Lep.: Noctuidae), with Particular Reference to Africa and Southwestern Arabia (Tropical Development and Research Institute, 1984).
    Google Scholar 
    Brown, E. Control of the African armyworm, Spodoptera exempta (Walk.)—An appreciation of the problem. East Afr. Agric. For. J. 35, 237–245 (1970).Article 

    Google Scholar 
    Rose, D. & Rainey, R. C. The significance of low-density populations of the African armyworm Spodoptera exempta (Walk.). Philos. Trans. R. Soc. Lond. B Biol. Sci. 287, 393–402 (1979).ADS 
    Article 

    Google Scholar 
    Tucker, M. & Pedgley, D. Rainfall and outbreaks of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Entomol. Res. 73, 195–199 (1983).Article 

    Google Scholar 
    Tucker, M. Forecasting the severity of armyworm seasons in East Africa from early season rainfall. Int. J. Trop. Insect Sci. 5, 51–55 (1984).Article 

    Google Scholar 
    Wilson, K. & Gatehouse, A. Seasonal and geographical variation in the migratory potential of outbreak populations of the African armyworm moth, Spodoptera exempta. J. Anim. Ecol. 62, 169–181 (1993).Article 

    Google Scholar 
    Odiyo, P. O. Development of the first outbreaks of the African armyworm, Spodoptera exempta (Walk.), between Kenya and Tanzania during the ‘off-season’ months of July to December. Int. J. Trop. Insect Sci. 1, 305–318 (1981).Article 

    Google Scholar 
    Haggis, M. Forecasting the severity of seasonal outbreaks of African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae) in Kenya from the previous year’s rainfall. Bull. Entomol. Res. 86, 129–136 (1996).Article 

    Google Scholar 
    Harvey, A. & Mallya, G. Predicting the severity of Spodoptera exempta (Lepidoptera: Noctuidae) outbreak seasons in Tanzania. Bull. Entomol. Res. 85, 479–487 (1995).Article 

    Google Scholar 
    Holt, J., Mushobozi, W., Tucker, M. & Venn, J. Workshop on Research Priorities for Migrant Pests of Agriculture in Southern Africa, 151.Matthew Hill, T. C. M. Bloomberg (Online, 2017).Wilson, K. The Conversation (United Kingdom, 2017).Day, R. K. et al. WormBase: A data management and information system for forecasting Spodoptera exempta (Lepidoptera: Noctuidae) in eastern Africa. J. Econ. Entomol. 89, 1–10 (1996).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).PubMed 
    Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Sutherst, R. W. Pest species distribution modelling: Origins and lessons from history. Biol. Invas. 16, 239–256 (2014).Article 

    Google Scholar 
    Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R. & Cerdeira-Estrada, S. Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Comput. Electron. Agric. 167, 105101 (2019).Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).ADS 
    Article 

    Google Scholar 
    Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (Wiley, 2013).MATH 
    Book 

    Google Scholar 
    Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 1–20 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).ADS 
    Article 

    Google Scholar 
    Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    Marchant, R. et al. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth Sci. Rev. 178, 322–378 (2018).ADS 
    Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Pemberton, C. E. Highlights in the history of entomology in Hawaii 1778–1963. Pac. Insects 6, 689–729 (1964).
    Google Scholar 
    Andow, D. A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36, 561–586 (1991).Article 

    Google Scholar 
    Andow, D. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agr. Ecosyst. Environ. 9, 25–35 (1983).Article 

    Google Scholar 
    Oliveira, C., Auad, A., Mendes, S. & Frizzas, M. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 56, 50–54 (2014).Article 

    Google Scholar 
    Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howse, M. W., Haywood, J. & Lester, P. J. Bioclimatic modelling identifies suitable habitat for the establishment of the invasive European paper wasp (Hymenoptera: Vespidae) across the southern hemisphere. Insects 11, 784 (2020).PubMed Central 
    Article 

    Google Scholar 
    Rose, D., Dewhurst, C., Page, W. & Fishpool, L. The role of migration in the life system of the African armyworm Spodoptera exempta. Int. J. Trop. Insect Sci. 8, 561–569 (1987).Article 

    Google Scholar 
    Dewhurst, C. F., Page, W. W. & Rose, D. J. The relationship between outbreaks, rainfall and low density populations of the African armyworm, Spodoptera exempta, Kenya. Entomol. Exp. et Appl. 98, 285–294 (2001).Article 

    Google Scholar 
    Aguilon, D. J. & Velasco, L. R. Effects of larval rearing temperature and host plant condition on the development, survival, and coloration of African armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). J. Environ. Sci. Manag. 18, 54 (2015).Article 

    Google Scholar 
    David, W. & Ellaby, S. The viability of the eggs of the African army-worm, Spodoptera exempta in laboratory cultures. Entomol. Exp. Appl. 18, 269–280 (1975).Article 

    Google Scholar 
    He, L., Zhao, S., Ali, A., Ge, S. & Wu, K. Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), China. J. Econ. Entomol. 114, 1145–1158 (2021).PubMed 
    Article 

    Google Scholar 
    Janssen, J. Effects of the mineral composition and water content of intact plants on the fitness of the African armyworm. Oecologia 95, 401–409 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shahzad, M. S. et al. Modelling population dynamics of army worm (Spodoptera litura F.) (Lepidoptera: Noctuiidae) in relation to meteorological factors in Multan, Punjab, Pakistan. Int. J. Agron. Agric. Res. 5, 39–45 (2014).
    Google Scholar 
    Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest. Sci. 92, 429–441 (2019).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455 (2006).ADS 
    Article 

    Google Scholar 
    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth-a model study. Silva Fennica 41, 621 (2007).Article 

    Google Scholar 
    Falk, W. & Hempelmann, N. Species favourability shift in Europe due to climate change: A case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 2013, 1–18 (2013).Article 

    Google Scholar 
    Arora, R. & Dhawan, A. Climate Change and Insect Pest Management. Integrated Pest Management 44–60 (Scientific Publisher, 2013).
    Google Scholar 
    Andrew, N. R. & Hill, S. J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers, 197 (2017).De Boer, J. G. & Harvey, J. A. Range-expansion in processionary moths and biological control. Insects 11, 267 (2020).PubMed Central 
    Article 

    Google Scholar 
    Bras, A. et al. A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe. J. Pest. Sci. 92, 1187–1202 (2019).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).PubMed 
    Article 

    Google Scholar 
    Barford, E. Crop pests advancing with global warming. Nature 10, 13644 (2013).
    Google Scholar 
    Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    Rubenstein, D. I. The greenhouse effect and changes in animal behavior: Effects on social structure and life-history strategies. In Global Warming and Biological Diversity, 180–192 (1992).Karuppaiah, V. & Sujayanad, G. Impact of climate change on population dynamics of insect pests. World J. Agric. Sci. 8, 240–246 (2012).
    Google Scholar 
    Jakhar, B. et al. Influence of climate change on Helicoverpa armigera (Hubner) in pigeonpea. J. Agric. Ecol. 2, 25–31 (2016).
    Google Scholar 
    Akbar, S. M., Pavani, T., Nagaraja, T. & Sharma, H. Influence of CO 2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environ. Entomol. 45, 229–236 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Magandana, T. P., Hassen, A. & Tesfamariam, E. H. Seasonal herbaceous structure and biomass production response to rainfall reduction and resting period in the semi-arid grassland area of South Africa. Agronomy 10, 1807 (2020).CAS 
    Article 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass-and increases shrub-productivity. Proc. Natl. Acad. Sci. 112, 12735–12740 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheiter, S. & Higgins, S. I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–2246 (2009).ADS 
    Article 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. & Hortal, J. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10, 196–205 (2009).Article 

    Google Scholar 
    Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, S. New pest response guidelines: Spodoptera. USDA/APHIS/PPQ/PDMP (2004).Waage, J. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. B Biol. Sci. 363, 863–876 (2008).CAS 
    Article 

    Google Scholar 
    Anand, M. A systems approach to agricultural biosecurity. Health Secur. 16, 58–68 (2018).PubMed 
    Article 

    Google Scholar 
    MacLeod, A., Pautasso, M., Jeger, M. J. & Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2, 49–70 (2010).Article 

    Google Scholar 
    Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invas. 13, 2785–2797 (2011).Article 

    Google Scholar 
    Oluwole, F. A., Sambo, J. M. & Sikhalazo, D. Long-term effects of different burning frequencies on the dry savannah grassland in South Africa. Afr. J. Agric. Res. 3, 147–153 (2008).
    Google Scholar 
    Kalleshwaraswamy, C. et al. First Report of the Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India (2018).Bentivenha, J., Baldin, E., Hunt, T., Paula-Moraes, S. & Blankenship, E. Intraguild competition of three noctuid maize pests. Environ. Entomol. 45, 999–1008 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapman, J. W. et al. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10, 298–303 (1999).Article 

    Google Scholar 
    Divya, J., Kalleshwaraswamy, C., Mallikarjuna, H. & Deshmukh, S. Does recently invaded fall armyworm, Spodoptera frugiperda displace native lepidopteran pests of maize in India? Curr. Sci. 120, 1358 (2021).Article 

    Google Scholar 
    Hailu, G. et al. Could fall armyworm, Spodoptera frugiperda (JE Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. Int. J. Trop. Insect Sci. 41, 1753–1762 (2021).Article 

    Google Scholar 
    Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 
    Article 

    Google Scholar 
    Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).Article 

    Google Scholar 
    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article 

    Google Scholar 
    Cano, J. et al. Modelling the spatial distribution of aquatic insects (Order Hemiptera) potentially involved in the transmission of Mycobacterium ulcerans in Africa. Parasit. Vectors 11, 1–16 (2018).Article 

    Google Scholar 
    Gómez-Undiano, I. Modelos y patrones de distribución geográfica de especies de Culicidae (Culex pipiens, Mansonia africana y Mansonia uniformis) vectores de filariasis linfática en ámbitos urbanos y periurbanos del África subsahariana. Máster en Zoología thesis, Universidad Complutense de Madrid (2018).R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. et al. Package ‘biomod2’. Species Distribution Modeling Within an Ensemble Forecasting Framework (2016).Acevedo, P., Jiménez-Valverde, A., Lobo, J. M. & Real, R. Delimiting the geographical background in species distribution modelling. J. Biogeogr. 39, 1383–1390 (2012).Article 

    Google Scholar 
    VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 220, 589–594 (2009).Article 

    Google Scholar 
    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. (2012).Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 675–684 (2017).Article 

    Google Scholar 
    Liu, C., White, M., Newell, G. & Griffioen, P. Species distribution modelling for conservation planning in Victoria, Australia. Ecol. Model. 249, 68–74 (2013).Article 

    Google Scholar  More

  • in

    Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 
    Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 
    Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).
    Google Scholar 
    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).
    Google Scholar 
    Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).
    Google Scholar 
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 
    Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 
    Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 
    Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).
    Google Scholar 
    Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).CAS 
    PubMed 

    Google Scholar 
    Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).
    Google Scholar 
    Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).PubMed Central 

    Google Scholar 
    Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).
    Google Scholar 
    Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).
    Google Scholar 
    Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).PubMed 

    Google Scholar 
    Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).
    Google Scholar 
    Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).
    Google Scholar 
    Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).CAS 
    PubMed 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).ADS 

    Google Scholar 
    Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).
    Google Scholar 
    Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).
    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).
    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).
    Google Scholar 
    Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).PubMed 

    Google Scholar 
    Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).ADS 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).ADS 

    Google Scholar 
    Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).CAS 
    PubMed 

    Google Scholar 
    Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).PubMed 

    Google Scholar 
    Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).CAS 
    PubMed 

    Google Scholar 
    Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).PubMed 

    Google Scholar  More

  • in

    Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini

    Changes in temperature and extreme environmental conditions can affect the dynamics of vector-borne pathogens. These include leishmaniasis, transmitted by phlebotomine sandflies, as well as mosquitoes that spread arboviruses like dengue, encephalitis, yellow fever, West Nile fever, and lymphatic filariasis19,20,21.The CCA analysis showed that maximum temperature significantly influenced the abundance of mosquito populations in the study area. In addition, the NMDS showed two different groupings that consisted of samples collected during the rainy and dry seasons. Accordingly, Refs.22,23 report that changes in temperature and relative humidity determine the abundance of mosquitoes, which can disappear entirely during the dry season. Moreover, Refs.22,24,25 note that certain species of mosquitoes increase proportionally with the regional rainfall regime. This is consistent with Ref.10, who find alternating patterns in tropical and temperate climates in some Brazilian regions.As shown by the geometric regression, there is a positive correlation between cumulative rainfall in the days before collection and the number of species found in the study period. Likewise, Ref.26 reported that under the conditions observed in the Serra do Mar State Park, climate variables directly influenced the abundance of Cq. chrysonotum and Cq. venezuelensis, favoring the occurrence of culicids during the more warm, wet, and rainy months.The current climate scenario and future projections about climate, environmental, demographic, and meteorological factors directly influence the distribution and abundance of mosquito vectors and/or diseases27,28,29,30. Environmental temperature alters mosquito population dynamics, thereby affecting the development of immature stages as well as reproduction31. While temperature has an important effect on population dynamics, rainfall and drought also affect the density and dispersal of mosquitoes in temperate and tropical regions32.To be sure, environmental changes other than climate can modify the behavior of vector insects and, subsequently, the mechanism of transmission of parasites20. Specifically, human impacts on the environment can result in drastically different disease transmission cycles in and around inhabited areas33.A previous study34 reported that changes in land use influence the mosquito communities with potential implications for the emergence of arboviruses. Another study35 noted that environmental changes negatively affect natural ecosystems with accelerated biodiversity loss. This is due to the modification and loss of natural habitat and unsustainable land use, which leads to the spread of pathogens and disease vectors.Hence, understanding the relationship between humans and the environment becomes increasingly critical, given the way in which climate changes can lead to alterations in the epidemiology of diseases such as dengue in areas considered free of the disease, as well as in endemic areas36.We found that the abundance and diversity of Mansoniini were directly influenced by the effect of the rainy season and other climatic factors. The rainfall regime has been shown to affect the development of immature forms12,37; explaining the greater frequency of these specimens in the warmer and wetter months38,39,40. According to Ref.41, stable ecosystems such as forests contain great species diversity. On the other hand, diversity tends to be reduced in biotic communities suffering from stress.Studies of insect populations in natural areas are important because they allow a direct analysis of how environmental factors influence phenomena such as the choice of breeding sites by females for oviposition, hematophagous behavior, and the distribution of species along a vegetation gradient12,26,42,43.Throughout the experimental period of the present study, we observed that Shannon light traps are an effective method for catching mosquitoes from the Mansoniini tribe. Interestingly, Ref.44 reported a species richness pattern strongly influenced by Coquillettidia fasciolata (Lynch Arribálzaga, 1891) on mosquito samples from different capture points by using CDC and Shannon light traps as sampling methods. In contrast to the results of Ref.44, where the highest population density of mosquitoes was captured with CDC traps, we observed that these traps were not effective at capturing specimens of Mansoniini in spite of being used in large numbers in the present study. Moreover, Ref.45 conducted another study on faunal diversity in an Atlantic Forest remnant of the state of Rio de Janeiro and observed the highest abundance of Cq. chrysonotum (Peryassú, 1922) and Cq. venezuelensis by using Shannon light traps, while the numbers of captures of Ma. titillans were very similar using CDC and Shannon traps.The results of this study indicate that the makeup of culicid fauna remains quite similar throughout the year, despite seasonal variations in abundance, though there was a lower variability of fauna in the dry season. Therefore, although the seasonality did not affect the temporal variation of the faunal composition in a generalized way, it was possible to detect a partial effect of the seasonality on fauna abundance.
    Reference46 report that the incidence peaks of mosquitoes in the warmer and wetter months, as well as mosquito populations remaining between tolerance limits for most of the year, indicate the sensitivity of some species to the local climate.The elevated abundance and diversity of species of Mansoniini in the study area were influenced by the favorable maintenance of breeding sites, including specific water accumulations with emerging vegetation that remain present throughout the year and the well-defined rainy season in the region. In addition, the representatives of Mansoniini, which prefer breeding sites containing macrophytes, made up nearly all of the species collected7.Besides providing a greater awareness of mosquito populations’ ecological and biological aspects, research carried out in wild areas also provides information on the relationship between species diversity and the area in which they are found. Considering that wild insects may become potential vectors of diseases, research in wild areas also provides helpful information for understanding relevant epidemiological aspects. These studies facilitate the identification, monitoring, and control of mosquito populations following environmental changes caused by direct human action, which can lead to major epidemics26.We observed considerable heterogeneity among Mansoniini fauna, and the months with the highest rainfall directly influence the structure of the communities and contribute to the increase in mosquito diversity and abundance, possibly due to variations in the availability of habitat for their immature forms. More

  • in

    How a COVID lockdown changed bird behaviour

    Sightings of some common bird species increased during the UK’s 2020 lockdown.Credit: Tolga Akmen/AFP via Getty

    People weren’t the only ones who changed their ways during the COVID-19 pandemic — birds did, too. Four out of five of the most commonly observed birds in the United Kingdom altered their behaviour during the nation’s first lockdown of 2020, although they did so in different ways depending on the species, according to an analysis.The study, published in Proceedings of the Royal Society B on 21 September1, is one of several that used the disruptions brought about by the pandemic — from a reduction in the number of cars on the roads to the closure of some national parks — to quantify the impact that humanity has on the natural world. Although some research has found that lockdowns had a largely positive effect on wildlife2, the latest data from the United Kingdom provide a much more nuanced picture (see Bird Behaviour).

    Credit: Warrington et al/Proceedings of the Royal Society B

    “People didn’t disappear during the lockdown,” says co-author Miyako Warrington, a behavioural ecologist at the University of Manitoba in Winnipeg, Canada. “We changed our behaviour, and wildlife responded.”Rare experimentIn the early months of the pandemic, social media was abuzz with reports of wild animals being seen in unusual places. These claims were partially validated when Warrington and her colleagues reported that, in 2020, many bird species in the United States and Canada were spotted moving into spaces usually occupied by people2.To see how a COVID-19 lockdown affected birds in the United Kingdom, Warrington and her colleagues tallied sightings of the 25 most common birds between March and July 2020 — during the country’s first lockdown — and compared their data set with data from previous years. In total, the study included around 870,000 observations.The team then compared this information to data showing how people split their time between home, essential shops and parks: three places people in the United Kingdom were allowed to be during the lockdown.Because people spent more time at home and in parks than before March 2020, the analysis found that 20 of the 25 bird species examined behaved differently during lockdown. Parks — which were flooded with visitors — saw an an uptick in the numbers of corvids and gulls, whereas smaller birds, such as Eurasian blue tits (Cyanistes caeruleus) and house sparrows (Passer domesticus), were spotted less frequently than in previous years. And because people spent more time at home, the number of avian species that visited domestic gardens also dropped, by around one-quarter, compared with previous years.Other species, including rock pigeons (Columba livia), didn’t react to the lockdown at all. Warrington found this surprising, because pigeons are city dwellers, so she thought they would be affected by the changes in people’s behaviour. “But they don’t give a crap about what we do,” she says.Adapting to changeThe birds that altered their habits during the lockdown were probably responding to changes in human behaviour, says Warrington. Tits and other birds whose numbers dipped might have fled when people and their pets started spending more time in parks and gardens. The reverse could be true for scavengers, such as gulls and corvids, which might have benefited from park visitors leaving behind rubbish for them to feed on.When combined with the results of other studies, the behaviour of British birds reveals the complex ways in which wildlife was affected by lockdowns and underlines the importance of reducing the disturbance of animals by people, says Raoul Manenti, a conservation zoologist at the University of Milan in Italy.For Warrington, that means acknowledging that lockdowns were not universally good for wildlife. “Our relationship with nature is complicated,” she says. By developing a better understanding of this relationship, “we know we can affect positive change as long as we do it in a thoughtful manner”. More