More stories

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude

    Plants increase their freezing resistance upon exposure to low temperatureThe freezing resistance (LT50 values) was found to vary ranging from − 6.9 °C (14-August-2017) to − 31.7 °C (04-November-2018) over the course of study period. The freezing resistance of leaves recorded during the 12 sampling time-points has been provided in Table 1 (also see39). The overlap of confidence intervals around the mean was examined for comparison of LT50 values for the different sampling time-points. Significant differences in freezing resistance were observed across the sampling time-points (Table 1). Leaves of R. anthopogon collected during summer [July and August (Air temperature and photoperiod was about 9.6 °C and 13 h day−1 respectively)] showed marginal resistance to freezing (LT50: − 7 °C) and thus, are more susceptible to freezing damage. Further, as the ambient air temperature and photoperiod decreased towards the end of growing season (i.e., October and November 2017 with air temperature and photoperiod of about − 1.1 °C and 10.5 h day−1 respectively), the plants acquired the highest freezing resistance (LT50: − 30 °C). Interestingly, a sharp increase in freezing resistance (− 29.4 °C) was observed in September 2018, when the daily mean air temperature decreased below 0 °C due to sudden snowfall (Supplementary Fig. S2). Comparison of LT50 values of all the leaf samples of R. anthopogon showed that cold de-acclimation occurred after the snowmelt during early spring in June (LT50: − 13.4 °C) with an increase in air temperature and photoperiod. These results demonstrated that R. anthopogon plants exhibit lowered freezing resistance during the warmer months [hence, these time-periods were referred as non-acclimation (NA)], progressively develop greater freezing resistance during the onset of winter season (hence, referred as cold acclimation) followed by an intermediate level of freezing resistance during the spring [hence, these time-periods were referred as de-acclimation (DA)].Table 1 The estimates of LT50, calculated by fitting sigmoidal curve to electrolyte leakage values of temperature treatments, recorded for leaves collected during the different sampling time-points (from August 22, 2017 to September 18, 2018).Full size tableDuring the acclimation period (i.e., late in the growing season), plants acquired the highest resistance to freezing (Fig. 1). The low electrolyte leakage (= high freezing resistance) observed during this period might be due to changes in cell wall properties (such as increase in lignification and suberization of cell walls), which provide resistance to diffusion of electrolytes from cells of the leaves to the extracellular water47. Moreover, high freezing resistance may also be attributed to high leaf toughness and sclerophyllous habit of this evergreen species48. Further, it was found that freezing resistance was the lowest during mid-summer period. This pattern could be explained by a trade-of between plant growth rates and freezing resistance, where warmer temperatures favour plant allocation to growth49. These observations corroborated well with earlier reports that showed a rapid increase in ‘freezing resistance’ during the transition from summer to early winter and vice versa50.Figure 1LT50 [black point (with solid fill) on the curve] calculated by fitting sigmoidal curve to relative electrolyte leakage (REL %) values recorded during the three different acclimation phases. GOF indicates ‘goodness of fit’ test values for the fitted sigmoidal curves.Full size imagePhotosynthetic rates are higher during non-acclimation and de-acclimation periodIt was found that PN of R. anthopogon varied in the range from 8.336 to 17.64 μmol(CO2)m−2 s−1 and E from 2.281 to 4.912 mol(H2O)m−2 s−1, throughout its growing season. The Gs of leaves was estimated to be in the range from 0.110 to 0.265 mol (H2O) m−2 s−1. WUE, a ratio of PN and E, varied between 52.21 and 87.68 (Table 2). The gas exchange parameters of R. anthopogon varied significantly among the sampling time-points [referred to here as different acclimation phases of the growing period of evergreen shrub (Fig. 2, Table 3)]. In particular, PN was significantly lower on 18-September-2018 (referred as cold acclimation phase), whereas it was higher on 31-August-2018 and 15-June-2018 (referred as NA and DA phases, respectively). Similarly, Gs of leaves was significantly lower during cold acclimation in comparison to the rest of the acclimation phases (i.e., NA and DA). Further, WUE was significantly higher during cold acclimation, while it was lower during both NA and DA (p ≤ 0.05) (Fig. 2).Table 2 Variability in leaf gas exchange parameters of R. anthopogon during the different acclimation phases (NA = Non-acclimation, LA = Late cold acclimation and DA = De-acclimation).Full size tableFigure 2Variability in leaf gas exchange parameters of R. anthopogon during the three acclimation phases [i.e., Non-acclimation (31 August, 2018), Cold acclimation (18 September, 2018) and De-acclimation (15 June, 2018)]. Different alphabets (a, b, c) represent statistically significant values (p  More

  • in

    No evidence for long-range male sex pheromones in two malaria mosquitoes

    Alexander, R. D., Marshall, D. C. & Cooley, J. R. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. C. & Crespi, B. J.) 4–31 (Cambridge Univ. Press, 1997).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour (CABI Publishing, 1999).Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–298 (1969).Article 

    Google Scholar 
    Gibson, N. H. E. On the mating swarms of certain Chironomidae (Diptera). Trans. R. Entomol. Soc. Lond. 95, 263–294 (1945).Article 

    Google Scholar 
    Sivinski, J. M. & Petersson, E. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 294–309 (Cambridge Univ. Press, 1997).Shelly, T. E. & Whittier, T. S. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 273–293 (Cambridge Univ. Press, 1997).Savolainen, E. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Ann. Zool. Fennici 15, 17–52 (1978).
    Google Scholar 
    Howell, P. I. & Knols, B. G. J. J. Male mating biology. Malar. J. 8, S8 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol. Entomol. 5, 315–320 (1980).Article 

    Google Scholar 
    Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth. J. Zool. 34, 367–387 (1984).Article 

    Google Scholar 
    Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 276, 4215–4222 (2009).Article 

    Google Scholar 
    Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).Article 

    Google Scholar 
    della Torre, A. et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol. Biol. 10, 9–18 (2001).Article 
    PubMed 

    Google Scholar 
    della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tripet, F. et al. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10, 1725–1732 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).Article 
    PubMed 

    Google Scholar 
    Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sawadogo, P. S. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Persiani, A., Dideco, M. A. & Petrangeli, G. Osservzioni di laboratorio su polimorfismi da inversione originati da incroci tra popolazioni diverse di Anopheles gambiae s.s. Ann. Dell’Istituto Super. Di Sanita 22, 221–224 (1986).CAS 

    Google Scholar 
    Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).Article 
    PubMed 

    Google Scholar 
    Diabaté, A., Dabiré, K. R., Millogo, N. & Lehmann, T. Evaluating the effect of postmating isolation between molecular forms of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 44, 60–64 (2007).Article 
    PubMed 

    Google Scholar 
    Hahn, M. W., White, B. J., Muir, C. D. & Besansky, N. J. No evidence for biased co-transmission of speciation Islands in Anopheles gambiae. Philos. Trans. R. Soc. B Biol. Sci. 367, 374–384 (2012).Article 

    Google Scholar 
    Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 00, 1–19 (2017).
    Google Scholar 
    Lehmann, T. & Diabaté, A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect. Genet. Evol. 8, 737–746 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clements, A. N. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Feugère, L., Gibson, G., Manoukis, N. C. & Roux, O. Mosquito sound communication: are male swarms loud enough to attract females? J. R. Soc. Interface 18, 20210121 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit. Vectors 12, 589 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dao, A. et al. Assessment of alternative mating strategies in Anopheles gambiae: does mating occur indoors? J. Med. Entomol. 45, 643–652 (2008).PubMed 

    Google Scholar 
    Gomulski, L. Aspects of Mosquito Mating Behaviour. PhD thesis, Univ. London (1988).Kelly, D. W. & Dye, C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim. Behav. 53, 721–731 (1997).Article 

    Google Scholar 
    Bray, D. P., Alves, G. B., Dorval, M. E., Brazil, R. P. & Hamilton, J. G. C. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasit. Vectors 3, 16 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levi-Zada, A. et al. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males. Naturwissenschaften 101, 671–678 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjostad, L. B., Gaston, L. K. & Shorey, H. H. Temporal pattern of sex pheromone release by female Trichoplusia ni. J. Insect Physiol. 26, 493–498 (1980).Article 

    Google Scholar 
    Merlin, C. et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22, 502–514 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo, N. & Arzuffi, R. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andersson, J. et al. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964–970 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 4, 1395–1401 (2020).Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.187542 (2021).Verhulst, N. O. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5, e15829 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, S. K. & Kim, K. Human body-odor components and their determination. Trends Anal. Chem. 30, 784–796 (2011).CAS 
    Article 

    Google Scholar 
    Dormont, L., Bessiere, J. M., McKey, D. & Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216, 2783–2788 (2013).CAS 
    PubMed 

    Google Scholar 
    Dormont, L., Bessière, J. M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B. 878, 2643–2651 (2010).CAS 
    Article 

    Google Scholar 
    Filipiak, W. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath. Res. 8, 027111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Calenic, B. & Amann, A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 6, 357–376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cainap, C., Pop, L. A., Balacescu, O. & Cainap, S. S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 10, 1993–2009 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekel, A., Yakir, E. & Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 111, 103174 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS Negl. Trop. Dis. 9, e89818 (2014).
    Google Scholar 
    Wondwosen, B. et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar. J. 17, 90 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wondwosen, B. et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 6, 37930 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suh, E., Choe, D., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29, 693–702 (1995).CAS 
    Article 

    Google Scholar 
    Kruza, M., Lewis, A. C., Morrison, C. G. & Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: a modeling study. Indoor Air 27, 1001–1011 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tripet, F., Dolo, G., Traoré, S. & Lanzaro, G. C. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).Article 
    PubMed 

    Google Scholar 
    Facchinelli, L. et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar. J. 14, 271 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, G. Swarming behaviour of the mosquito Culex pipiens quinquefasciatus: a quantitative analysis. Physiol. Entomol. 10, 283–296 (1985).Article 

    Google Scholar 
    Bimbilé Somda, N. S. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).Article 
    PubMed 

    Google Scholar 
    Maïga, H. et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 132S, S102–S107 (2014).Article 

    Google Scholar 
    Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).Article 
    PubMed 

    Google Scholar 
    Goodrich, K. R., Zjhra, M. L., Ley, C. A. & Raguso, R. A. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in Pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167, 33–46 (2006).CAS 
    Article 

    Google Scholar 
    Iatrou, K. & Biessmann, H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem. Mol. Biol. 38, 268–274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pitts, R. J., Rinker, D. C., Jones, P. L., Rokas, A. & Zwiebel, L. J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12, 271 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, T. et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guidobaldi, F., May-Concha, I. J. & Guerenstein, P. G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108, 96–111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosqueira, B. et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 148, 162–169 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa). Malar. J. 17, 136 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Heal. 9, 1267–1273 (2004).Article 

    Google Scholar 
    Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lefèvre, T. et al. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop. Med. Int. Heal. 14, 228–236 (2009).Article 

    Google Scholar 
    Lefèvre, T. et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS ONE 5, e9546 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vantaux, A. et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front. Ecol. Evol. 3, 86 (2015).Article 

    Google Scholar 
    Nguyen, P. L. et al. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci. Rep. 7, 9415 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tienpont, B., David, F., Bicchi, C. & Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12, 577–584 (2000).CAS 
    Article 

    Google Scholar 
    Bicchi, C., Cordero, C., Iori, C., Rubiolo, P. & Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J. High. Resolut. Chromatogr. 23, 539–546 (2000).CAS 
    Article 

    Google Scholar 
    Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256–2273 (2018).Article 

    Google Scholar 
    Zellner, Bd’Acampora et al. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23, 297–314 (2008).Article 
    CAS 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar  More

  • in

    Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly

    Insect rearingThe B. dorsalis strain collected from a carambola (Averrhoa carambola) orchard in Guangzhou, Guangdong Province, was reared under laboratory conditions (27 ± 1 °C, 12:12 h light:dark cycle, 70–80% RH). A maize-based artificial diet containing 150 g of corn flour, 150 g of banana, 0.6 g of sodium benzoate, 30 g of yeast, 30 g of sucrose, 30 g of paper towel, 1.2 mL of hydrochloric acid and 300 mL of water was used to feed the larvae. Adults were fed a solid diet (consisting of 50 g yeast and 50 g sugar) and 50 mL sterile water in a 35 cm × 35 cm × 35 cm wooden cage. For B. dorsalis, the female will start laying eggs once mated and the female will start mating 7 days after emergence. To make sure all females used in our study were gravid females, females were selected 10 day after emergence.Visualization of CF-BD with FISH and PCRFISH was carried out on dissected gut and ovary samples from B. dorsalis. The hybridization protocol for the gut and ovary was performed according to a previously described method32. Briefly, the gut and ovary were collected and immediately soaked in Carnoy’s fixative for 12 h. After sample fixation, proteinase K (2 mg/mL) treatment for 20 min at 37 °C and HCl (0.2 mol/L) treatment for 15 min at room temperature were performed successively. Then, followed by dehydration in ethanol, the samples were incubated in buffer (20 mM Tris-HCl (pH 8.0), 0.9 M NaCl, 0.01% sodium dodecyl sulfate, 30% formamide) containing 50 nM CF-BD specific probe (5′-AATGGCGTACACAAAGAG-3′) labeled with cy3 at the 5′ end for 90 min. After incubation, the samples were washed with buffer (0.1 M NaCl, 20 mM Tris/HCl (pH 8.0), 5 mM ethylenediaminetetraacetic acid (pH 8.0), 0.01% SDS) and observed under an epifluorescence microscope (Axiophot, Carl Zeiss, Shinjuku-ku, Japan).To further confirm CF-BD in rectum and ovary of mature females, rectums and ovaries of mature females were dissected and fixed in formalin fixation for 24 h. After soaking in graded alcohols and xylene, all samples were embedded in paraffin for section preparation. Samples were sliced into 4 µm each before pasting on the glass slide and then sent for FISH with the same probe (labeled with cy3 at the 5′ end) used above. Moreover, nested PCR was applied to detect CF-BD in 19 ovaries of mature females according to the method of Guo et al., 201733. Briefly, a 1149 bp region of gyrB gene of CF-BD was amplified by the specific outer primer gyrBP1-F (5′-CAGCCCACTCTGAACTGTAT-3′) and gyrBP1-R (5′-TCAGGGCGTTTTCTTCGATA-3′) under a temperature profile of 95 °C for 1 min, which was followed by 25 cycles of 95 °C for 30 s, 52 °C for 30 s, 72 °C for 90 s, and 72 °C for 5 min. Then, a 371 bp region of the gyrB gene of CF-BD was amplified by the specific inner primer gyrBP4-F (5′-ACGCTGGCTGAAGACTGCC-3′) and gyrBP4-R (5′-TGGATAGCGAGACCACGACG-3′) under a temperature profile of 95 °C for 2 min, which was followed by 35 cycles of 95 °C for 30 s, 57 °C for 30 s, 72 °C for 30 s, and 72 °C for 5 min.Influence of CF-BD on B. dorsalis ovary developmentTo evaluate the effect of CF-BD on ovary development, newly emerged B. dorsalis females were injected with streptomycin and CF-BD suspension (both dilute in sterile water). Specifically, 10 µL 25% glycerol solution containing CF-BD was added into 100 mL Luria-Bertani (LB) liquid medium and culturing for 1 day by shaking (180 rpm) in 30 °C incubator. After culturing, CF-BD was collected by centrifuging (3000 rpm, 15 min) the medium in a 50 mL centrifuge tube. Then collected CF-BD was re-suspended with 5 mL sterile water. CF-BD concentration was measured on a hemocytometer and CF-BD concentrations used in the following assays were prepared by diluting the original concentration with sterile water. A 0.5 mm inside diameter capillary needle with 1 μL streptomycin or CF-BD suspension was used for injection. The injection operation was carried out on a microinjector (Eppendorf FemtoJet), and every female was injected in the abdomen near the ovipositor. The concentrations of streptomycin used were 20 mg/mL, 10 mg/mL and 5 mg/mL, respectively. And CF-BD suspension concentrations were 3 × 107 cfu/mL, 1.5 × 107 cfu/mL and 7.5 × 106 cfu/mL, respectively. For control, the female fly was injected with 1 μL sterile water in the abdomen near the ovipositor. Then the development level of the ovary was assessed by comparing the width and length of ovary between streptomycin (or CF-BD suspension) injection flies and control. For CF-BD injected flies, developmental facilitation was observed for ovaries 2 days before the flies reached sexual maturity (flies will reach sexual maturity after 7 days). For antibiotic injected flies, ovaries were dissected after 7 days.Oviposition assaysThe method reported in previous studies was followed for the oviposition experiments17. Briefly, a 2-choice apparatus was assembled in a cage made up of wood and wire gauze (length: width: height = 60 cm: 60 cm: 60 cm) with two petri dishes (diameter: 3 cm) at the bottom of the cage (Fig. 2a). All devices were sterilized before each experiment. Fresh fruits of guava (Psidium guajava Linn.) and mango (Mangifera indica L.) were sourced from the local market in Guangzhou, China. These fruits were sterilized on the surface with ethanol and ground into puree with a sterilized grinder, and puree (2 g) was added to the sterilized Petri dishes of the cages (one dish with puree containing 100 μL CF-BD (0.8*108 cfu/mL) in sterile water, and one dish with puree containing 100 μL sterile water). Then the prepared cages were divided into two groups for different assays. Group 1: At 0 h, 50 gravid females of B. dorsalis were placed in the cages and egg numbers in the petri dishes were recorded after 2 h. Group 2: At 4 h, 50 gravid females of B. dorsalis were placed in the cages and egg numbers in the petri dishes were recorded after 2 h.To test the oviposition attraction of 3-HA, a 4-choice apparatus was assembled in a cage made up of wood and wire gauze (length: width: height = 60 cm: 60 cm: 60 cm) with four petri dishes (diameter: 3 cm) at the bottom of the cage. In the Petri dishes, 2 g puree, 2 g puree + 0.2 mg 3-HA, 2 g puree + 2 mg 3-HA and 2 g puree + 20 mg 3-HA were added. Then, the egg-laying behavior was observed31.To test the oviposition attraction of 3-HA to flies with genes knocked down, 20 females injected with dsRNA were placed into the above cage with two Petri dishes. In the Petri dishes, 2 g guava puree and 2 g guava puree + 20 mg 3-HA were added. Then, the egg-laying behavior was observed using the above method. Oviposition of normally reared females was performed as a control. The oviposition index was calculated using the following formula:Oviposition index = (O − C)/(O + C), where O is the number of eggs in the treatment and C is the number of eggs in the control.Volatile analysisThe volatile compounds in guava and mango purees were analyzed by GC–MS according to the method described in a previous study17. Briefly, 2 g puree mixed with sterile water or CF-BD was added into a 20 ml bottle, and then a 100-μm polydimethylsiloxane (PDMS) SPME fiber (Supelco) was used to extract the headspace volatiles for 30 min. GC–MS was performed with an Agilent 7890B Series GC system coupled to a quadruple-type-mass-selective detector (Agilent 5977B; transfer line 250 °C, source 230 °C, ionization potential 70 eV). The 3-HA concentrations in puree mixed with sterile water and CF-BD were measured with the standard curve drawn by the authentic standards of 3-HA. And 3-HA concentration in puree mixed with sterile water and CF-BD was compared with a paired sample Student’s t-test.Olfactometer bioassaysAn olfactometer consisting of a Y-shaped glass tube with a main arm (20 cm length*5 cm diameter) and two lateral arms (20 cm length, 5 cm diameter) was used. The lateral arms were connected to glass chambers (20 cm diameter, 45 cm height) in which the odor sources were placed. To ensure a supply of odor-free air, both arms of the olfactometer received charcoal-purified and humidified air at a rate of 1.3 L/min.To test the attraction effect of puree supplemented with CF-BD or 3-HA for females, puree mixed with CF-BD was prepared and placed in one odor glass chamber. In the control odor glass chamber, puree mixed with sterile water was placed. After 4 h, gravid females were individually released at the base of the olfactometer and allowed 5 min to show a selective response. The response was recorded when a female moved >3 cm into one arm and stayed for >1 min. Females that did not leave the base of the olfactometer were recorded as nonresponders. Only females that responded were included in the data analysis. Odor sources were randomly placed in one arm or the other at the beginning of the bioassay, and the experiment was repeated ten times. The system was washed with ethanol after every experiment. More than 100 females were selected for testing, and each female was used only once for each odor. A chi-square test was performed to compare the attraction difference between puree mixed with sterile water and CF-BD.Olfactory trap assaysThe attraction of purees supplemented with CF-BD to mature females was also tested. The test chamber was assembled with a plastic cylinder (120 × 30 cm) covered by a ventilated lid. The test chamber contained an odor-baited trap (2 g puree + 100 μL CF-BD (0.8*108 cfu/mL)) and a control trap (2 g puree + 100 μL sterile water). The traps were made of transparent plastic vials (20 × 6 cm) and were sealed with a yellow lid on which small entrances were present to let the flies in (Fig. 3a). After 0 h or 4 h of fermentation, 100 gravid females were released in the cage. The fly number in each trap bottle was recorded after 2 h. The number of flies was compared with a paired sample Student’s t-test.The attraction effect of puree supplemented with 3-HA on mature females was tested by placing four traps (2 g puree, 2 g puree + 0.2 mg 3-HA, 2 g puree + 2 mg 3-HA and 2 g puree + 20 mg 3-HA) in the test chamber. Then, the attraction effect was observed31.Video observation of egg-laying behaviorEgg-laying behavior was observed in a Petri dish. Briefly, guava puree was added to a centrifuge tube on which a hole was made. Then, one gravid female was placed into the petri dish, and the lid was closed. Above the petri dish, a camera was placed to record the behavior of the female before laying eggs.EAG analysisEAG analysis was performed to determine whether 3-HA could elicit electrogram responses in the ovipositors of gravid females and Obps knocked down gravid females. For EAG preparations, the ovipositor of a gravid female was cut off and mounted between two glass electrodes (one electrode connected with the ovipositor tip). The ovipositor tip was cut slightly to facilitate electrical contact. Dilution of 3-HA in ethanol (0.1, 1 and 10 mg/mL) was used as a stimulant. Ethanol was used as control. For each ovipositor, ethanol and 3-HA diluted in ethanol were used as stimulants. The signals from the ovipositors were analyzed with GC-EAD 2014 software (version 4.6, Syntech).Transcriptome sequencing and gene identificationTo identify the olfactory genes that contribute to B. dorsalis oviposition preference, the transcriptome sequencing results of the female ovipositors at different developmental times (0 day, 3 days, 6 days, 9 days and 12 days) were compared. For each time, 5 ovipositors were dissected for RNA extraction. In addition, five replicates were included for each time. In the next step, paired-end RNA-seq libraries were prepared by following Illumina’s library construction protocol. The libraries were sequenced on an Illumina HiSeq2000 platform (Illumina, USA). FASTQ files of raw reads were produced and sorted by barcodes for further analysis. Prior to assembly, paired-end raw reads (uploaded to National Genomics Data Center, Accession number: PRJCA004790) from each cDNA library were processed to remove adapters, low-quality sequences (Q  More

  • in

    No evidence that mandatory open data policies increase error correction

    Hardwicke, T. E. et al. Analytic reproducibility in articles receiving open data badges at the journal Psychological Science: an observational study. R. Soc. Open Sci. 8, 201494 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enserink, M. Sea of doubts. Science 372, 560–565 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buxton, R. T. et al. Avoiding wasted research resources in conservation science. Conserv. Sci. Pract. 3, 1–11 (2021).
    Google Scholar 
    Tai, T. C. & Robinson, J. P. W. Enhancing climate change research with open science. Front. Environ. Sci. 6, 1–5 (2018).Article 

    Google Scholar 
    Popkin, G. Data sharing and how it can benefit your scientific career. Nature 569, 445–447 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roche, D. G. et al. Slow improvement to the archiving quality of open datasets shared by researchers in ecology and evolution. Proc. R. Soc. B Biol. Sci. 289, 20212780 (2022).Article 

    Google Scholar 
    Tedersoo, L., Küngas, R., Oras, E., Köster, K. & Helen, E. Data sharing practices and data availability upon request differ across scientific disciplines. Sci. Data 8, 1–11 (2021).Article 

    Google Scholar 
    Christian, T. M., Gooch, A., Vision, T. & Hull, E. Journal data policies: exploring how the understanding of editors and authors corresponds to the policies themselves. PLoS ONE 15, 1–15 (2020).
    Google Scholar 
    Sholler, D., Ram, K., Boettiger, C. & Katz, D. S. Enforcing public data archiving policies in academic publishing: a study of ecology journals. Big Data Soc. 6, 1–18 (2019).Article 

    Google Scholar 
    Postma, E., Gonzalez‐Voyer, A. & Holman, L. A comment on The adaptive value of gluttony: predators mediate the life history trade‐offs of satiation threshold by Pruitt & Krauel (2010). J. Evol. Biol. 34, 1989–1993 (2021).PubMed 
    Article 

    Google Scholar 
    Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc. Natl Acad. Sci. USA 115, 2584–2589 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohrer, J. M. et al. Putting the self in self-correction: findings from the Loss-of-Confidence Project. Perspect. Psychol. Sci. 16, 1255–1269 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vazire, S. A toast to the error detectors. Nature 577, 9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roche, D. G. et al. Paths towards greater consensus building in experimental biology. J. Exp. Biol. 225, jeb243559 (2022).PubMed 
    Article 

    Google Scholar 
    Laurinavichyute, A., Yadav, H. & Vasishth, S. Share the code, not just the data: a case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. J. Mem. Lang. 125, 104332 (2022).Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Besançon, L., Bik, E., Heathers, J. & Meyerowitz-Katz, G. Correction of scientific literature: too little, too late! PLoS Biol. 20, e3001572 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holmes, N. P. I critiqued my past papers on social media—here’s what I learnt. Nature 595, 333 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teixeira da Silva, J. A. & Al-Khatib, A. Ending the retraction stigma: encouraging the reporting of errors in the biomedical record. Res. Ethics 17, 251–259 (2021).Article 

    Google Scholar 
    Minocher, R., Atmaca, S., Bavero, C., McElreath, R. & Beheim, B. Estimating the reproducibility of social learning research published between 1955 and 2018. R. Soc. Open Sci. 8, 210450 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montgomerie, R. From the Editor’s desk of The American Naturalist: data transparency 2020. The American Naturalist http://comments.amnat.org/2021/01/note-since-fall-2020-robert-montgomerie.html (2021).R Project. R version 4.0.3 https://cran.r-project.org/bin/windows/base/old/4.0.3/ (2020). More

  • in

    Maladaptive evolution or how a beneficial mutation may get lost due to nepotism

    Our model results indicate that in species with a strict social dominance hierarchy where social rank is determined by nepotism, a beneficial mutation occurring in a low-ranking female is not very likely to get established. This outcome emerged despite the immense advantage of the modeled mutation, which doubled its carrier’s survival probability. Moreover, the reproductive skew in our model (see Supplementary Fig. 1) was less radical than the skew reported for the spotted hyena females21, which means that in the model, low-ranking females had a relatively higher reproductive success potential than in reality. In other words, our model may be underestimating the severity of the negative selection a low rank induces.It is reasonable to assume that a low-ranking mutant female in a female dominant society would produce very few surviving offspring due to her low rank and ensuing lack of access to resources. Thus, this female would have only a slight chance to transmit the mutation to the next generation. If this female does reproduce successfully and produces a female which also inherits the mutation, chances of this daughter to pass on the mutation are also slim, as her rank would be even lower than that of her mother. However, if the young produced is a male and has inherited the mutation, chances of transmitting the mutation may increase depending on the male’s reproduction odds. As demonstrated by the four scenarios, the reduction in mutation establishment with decreasing mutant female’s rank became more and more prominent with increasing restrictions on male reproduction. In all four scenarios, the mutation establishment rate median was zero for the lowest ranking mutants, and in all cases but Scenario I, it was 41. Although female dominance hierarchy exists in a few of these species (e.g., Peruvian squirrel monkey41, ring-tailed lemur (Lemur catta)39,42, Verreaux’s sifaka (Propithecus verreauxi))13,25, we did not find any studies indicating female reproductive skew in any of them. Holekamp and Engh25, who reviewed the more classical female dominant species, also reported no evidence for female reproductive skew.This seemingly lack of female reproductive skew among most female dominant species is quite surprising in light of the rather common correlation between social rank and female reproductive success in male dominant species. To mention a few, considerable female reproductive skew is found in baboons (Papio spp), macaques (macaca spp.), feral horses (Equus caballus) and plains zebras (Equus burchelli)8,15,19.Holekamp and Smale28 state that “reproductive skew among female spotted hyenas appears to be greater than that documented among females of male-dominated species characterized by plural breeding”. They suggest that the key determinant of reproductive success among females in this species is rank-related priority of access to food resources. This high priority is reinforced by female dominance over males and is particularly important as this species resides in an environment in which prey availability is seasonal and scarce at times21. Our study suggests that this extreme difference in reproductive success, which, unlike in male-dominated species, is determined by nepotism rather than by physical characters, may induce a handicap on the entire population preventing the establishment of beneficial mutations. This may also hinder adaptation to a changing environment. However, our study results indicate that male equal access to females may, at least partially, counter the inhibition effect on a beneficial mutation establishment. More research is necessary in order to investigate female reproductive skew in species with a social structure similar to that of the spotted hyena, which is characterized by female dominance over males, plural breeding, and a strict female linear social hierarchy determined by nepotism.One intriguing possibility for testing this model’s validity would be an empirical study, provided that the value of some adaptive trait can be measured. In the case of the spotted hyena such a trait may refer to hunting success or physical capabilities. It is well established that adult female spotted hyenas are larger and more aggressive than adult males21, but little attention has been allocated to the study of individual physical differences among females of different ranks. Smith et al.43 studied within clan aggression in the context of the fission-fusion behavior characterizing the spotted hyena clans. Their results indicate more frequent aggression and resulting fissions occurring during times of food shortage. Rank was found to be the major correlate of an aggressive incident result. If it is possible to identify low-ranking females with some beneficial trait (independent of rank), it would be interesting to follow such females’ inclusive reproductive success along time, and even more so, the reproductive success of their sons.Another possible path around the conflict this model suggests would be through the selection of male admission into new clans. Male admission into clans is often constrained by severe aggression of resident immigrant males which may prevent or delay male admission21,26. Such behavior may in fact promote mutant male chances, at least in the case of a mutation that improves physical capabilities.One last, though not very likely possible detour around this difficulty is the occurrence of dominance rank exchanges. Such rank improvements are not very common among female dominated societies, except for in the case of aging females who may clear the way for their daughters44. However, Straus and Holekamp44 found that individuals who repeatedly form coalitions with their top allies are likely to improve their position, and, according to Strauss and Holekamp44, “facilitate revolutionary social change”. It should be kept in mind that not only are such incidents rather rare, but they are unlikely to turn a very low-ranking female into a high-ranking one, especially not when group size is large.More empirical and theoretical research should shed more light on this intriguing question of possible maladaptive evolution. Our model, in line with a few other models such as that of Holman31, suggests that evolution may not always lead to the best solution. As in every process, a local optimum may get evolution trapped and prevent further advance to better optima. More

  • in

    Social Support and Network Formation in a Small-Scale Horticulturalist Population

    Human evolutionary research has historically conceptualised social support as a purely dyadic phenomenon (e.g., see Refs. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16). That is, given some trait pertaining to two persons i and j — e.g., their genetic relatedness, history of helping each other, physical proximity, or difference in wealth — does i help j? Both elegant and tractable, this dyad-centric view of social support evokes classic theoretical models of cooperation as a “Prisoner’s Dilemma” within a void consisting only of ego (i) and alter (j)17. Yet it also belies the fact that aid relationships (i.e., who helps who) constitute complex networks of supportive social bonds that emanate throughout entire human communities.Members of such networks may, in principle, unilaterally help whomever they wish. And their decisions to help — or to not help — specific others comprise a dynamic, supra-dyadic relational context that shapes one’s plausible set of aid targets at the micro level18,19,20,21,22. Put simply, in social support networks, aid is targeted and interdependent across dyads such that the patterning of cooperation among multiple alters jointly affects whom any one network member helps. This sociocentric (i.e., whole network) view of social support is distinct from the perspective taken by evolutionary graph theorists who study the emergence of cooperation on network structure and other spatial substrates (e.g., square grids) that may be fixed or dynamic (e.g., see Refs. 23,24,25). And it is distinct from the perspective taken by analysts of egocentric (i.e., personal) networks who study how the arrangement of intimate relationships exclusively between one’s closest contacts (e.g., the extent to which one’s friends are also friends) eases access to help (e.g., see Martí, Bolíbar, and Lozares26).Differences between the dyad-centric and the sociocentric perspectives on social support are not merely cosmetic. Indeed, the dyad-centric stance of human evolutionary research has led to a situation wherein the relational context of helping behaviour is underexplored. And this has, in turn, impaired understanding of the relative importance of fundamental evolutionary mechanisms to the structuring of cooperative relationships in human communities.Specifically, human evolutionary research on helping behaviour generally takes the theories of kin selection and reciprocal altruism as lodestars. In so doing, sociometric data from subsistence societies across the globe have been used to investigate whether consanguinity (i.e., genetic kinship) and reciprocity govern aid unconditionally and in relation to multiple social and demographic factors. These include affinity (i.e., marriage-based kinship), physical proximity, relative need, homophily (e.g., based on age and gender), social closeness, friendship, religiosity, reputation, conflict, status, and anthropometric measurements such as size, height, and strength. And, on balance, evidence1,2,3,4,5,6,7,8,9,10,13,14,16,27,28,29,30,31,32,33 suggests that helping family and responding in kind when helped are the primary mechanisms by which humans informally distribute resources vital to day-to-day survival (e.g., advice, information, food, money, durables, and physical assistance).However, despite laudable exceptions2,7,15,28,29,30,31,32,33,34 and perhaps due to the influence of methodological trends in the wider behavioural ecology literature on relationships between animals (see Refs. 35,36,37), human evolutionary studies of real helping behaviour have typically relied on non-network methods — namely, monadic regression, dyadic regression, and permutation tests (e.g., see Refs. 1,2,3,5,6,8,9,10,11,12,13,14,16,27). Respectively, these techniques treat the supra-dyadic structure of social support networks as ignorable, reducible to dyads, or a nuisance to be corrected for38. Yet, sociocentric research by sociologists39,40,41,42,43,44,45,46,47,48,49 firmly establishes that humans create and maintain relationships in accordance with factors intrinsic to the supra-dyadic arrangement of network structure itself (e.g., processes of degree-reinforcement and group formation involving at least three persons). And this sociological research makes clear that network-structure-related dynamics can operate simultaneously and independently of non-network factors (e.g., age and kinship).Ultimately, reliance on methods that disregard complex interdependences between aid obscures the extent to which helping family and responding in kind when helped outrank the dynamics of the cooperative system within which decisions to assist specific individuals take place. This uncertainty represents a substantial gap in our scientific understanding of altruism. Accordingly, here I tackle a major point of interest in evolutionary anthropology and human behavioural ecology50 specifically through the lens of the sociology of social networks18,21,51, asking:RQ: How important is helping family and responding in kind when helped relative to supra-dyadic, network-structure-related constraints on the provision of aid?The Current StudyTo answer my research question, I use Koster’s27 recently-released cross-sectional data on genetic relatedness and the habitual provision of tangible aid (e.g., firewood, food, valuable items, and/or physical assistance). Re-analysed here due to their exceptional detail and measurement quality in addition to their broad relevance to the scientific community (see Methods), these data were collected in 2013 and concern a complete population. Specifically, they cover all 108 adult (18+) residents (11,556 ordered dyads) of the 32 households of Arang Dak — a remote village of 279 indigenous Mayangna and Miskito swidden (i.e., “slash-and-burn”) horticulturalists. Arang Dak sits on the Lakus River in Nicaragua’s Bosawás Biosphere Reserve, a neotropical forest in the Department of Jinotega.In total, the tangible aid network that I analyse — i.e., x(t2013)— consists of 1,485 asymmetric aid relationships between the adult residents of Arang Dak. Of the 1,485 aid relationships, 1,422 are verified by the source and the recipient of help. That is, xij(t2013) = 1 if villager i reported in 2013 that they give tangible aid to villager j at least once per month and villager j reported in 2013 that they receive tangible aid from villager i at least once per month. Still, note that Koster’s27 data document self-reported resource flows as opposed to observed transfers. Named sources and targets of aid are based on the village roster — not freely recalled from memory. See Methods for a summary of the data and details on the measurement of the network and kinship.Modelling StrategyTo analyse tangible aid in relation to supra-dyadic network structure (Fig. 1), I use generative network models following Redhead and von Rueden32 and von Rueden et al.33, amongst other human evolutionary scientists2,7,15,28,29,30,31,32,33,34. Specially, I rely on Stochastic Actor-Oriented Models (SAOMs) which are used for observational (i.e., non-causal) analyses of the temporal evolution of networks.Put simply, SAOMs are akin to multinomial logistic regression. More formally, SAOMs are simulations of individual network members’ choices between outgoing relationships with different rewards and costs. These simulations are calibrated or “tuned” to the observed network data. That is, conditional on x (i.e., the observed states of a dynamic network), SAOMs simulate network evolution between successive observations or “snapshots” of the network at (M) discrete time points — i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right)) — as a continuous-time, Markovian process of repeated, asynchronous, and sequential tie changes. The Markovian process is defined on the space of all possible directed graphs for a set of N = {1, …, n} network members40,42,44,52,53,54,55.SAOMs decompose change between successive network observations into its smallest possible unit. Specifically, “change” means creating one outgoing tie if it does not exist, dropping one outgoing tie if it does, or doing nothing (i.e., maintaining the status quo network). More formally, during a SAOM simulation, focal actors i (ego) myopically modify just one of their outgoing relationships with some alter j in the set of network members N (i.e., j ∈ N, j ≠ i). The change made by i is the change that maximises a utility or “evaluation” function. In this respect, the evaluation function captures the “attractiveness”44 of tie changes — where “attraction” means “…something like ‘sending a tie to [an actor j] with a higher probability if all other circumstances are equal.’” (Snijders and Lomi56, p. 5).The evaluation function itself is a weighted sum of parameter estimates (widehat{beta }) and their associated covariates k (i.e., SAOM “effects”44) plus a Gumbel-distributed variable used to capture random influences55. The simulated tie changes or “ministeps”44 made by i shift the network between adjacent (unobserved) states. These states differ, at most, by the presence/absence of a single tie40,42. And the probabilities of the ministeps — a large number of which are required to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))) — are given by a multinomial logit which uses the evaluation function as the linear predictor.Each covariate k used to specify the evaluation function summarises some structural (i.e., purely network-related) feature or non-structural feature of i’s immediate (i.e., local) network — e.g., the sum of the in-degrees of i’s alters, the number of reciprocated dyads that i is embedded in, or i’s number of outgoing ties weighted by genetic relatedness. These features correspond to theoretical mechanisms of interest (e.g., preferential attachment, reciprocal altruism, or kin selection) and generally take the form of unstandardised sums.SAOM parameter estimates (widehat{beta }) (log odds ratios) summarise the association between the covariates and the simulated tie changes or “ministeps”. Specifically, should a focal actor i have the opportunity to make a ministep in departure from some current (i.e., status-quo) network state x in transit to a new network state x±ij — i.e., the adjacent network defined by i’s addition/subtraction of the tie xij to/from x — ({widehat{beta }}_{k}) is the log odds of choosing between two different versions of x±ij in relation to some covariate k. For example, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7) would indicate that the log odds of i creating and maintaining the supportive relation xij is, conditional on the other covariates k, larger by 1.7 when xij reciprocates a tie (i.e., xji) compared to when xij does not reciprocate a tie (i.e., reciprocated ties are more “attractive”). In contrast, ({widehat{beta }}_{{rm{Reciprocity}}}=-1.7) would indicate that the log odds of xij is, conditional on the other effects, smaller by −1.7 when xij reciprocates a tie compared to when xij does not reciprocate a tie (i.e., reciprocated ties are less “attractive”).Given the longitudinal nature of the model, the gain in the evaluation function for a ministep is determined by the difference Δ in the value of the statistic s for a covariate k — i.e., Δk,ij(x, x±ij) = sk,i(x±ij) − sk,i(x) — incurred through the addition/subtraction of xij to/from x (see Block et al.42 and Ripley et al.44 on “change statistics”). Accordingly, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7), for example, is the value that xij positively contributes to the evaluation function when xij increases the network statistic sk,i(x) underlying the Reciprocity effect by the value of one (i.e., ΔReciprocity,ij (x, x±ij) = sReciprocity,i(x±ij) − sReciprocity,i (x) = 1 − 0 = 1).The probabilities of network members being selected for a ministep is governed by a separate “rate” function. And the baseline rate parameter λ is a kind of intercept for the amount of network change between successive observations of the analysed network. Larger baseline rates indicate that, on average, more simulated tie changes were made to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))).However, as the data from Nicaragua are from a single point in time (i.e., 2013), I use the cross-sectional or stationary Stochastic Actor-Oriented Model (cf. von Rueden et al.33). Accordingly, Arang Dak’s tangible aid network is assumed to be in “short-term dynamic equilibrium.” As Snijders and Steglich40 (p. 265) discuss in detail, “this ‘short-term equilibrium’ specification of the SAOM is achieved by requiring that the observed network is both the centre and the starting value of a longitudinal network evolution process in which the number of change opportunities per actor [i.e., λ] is fixed to some high (but not too high) value.”Practically speaking, this means that the cross-sectionally observed network is used as the beginning and the target state for a SAOM simulation — i.e., (xleft({t}_{2013}right)to xleft({t}_{2013}right)) — during which actors are allowed to make, on average, very many changes (i.e., λ) to their portfolio of outgoing ties. These simulated tie changes produce a distribution of synthetic networks with properties that are, on average, similar to those of the cross-sectionally observed network in a converged SAOM — where the target properties correspond to the researcher-chosen SAOM effects k. Put simply, “[cross-sectional] SAOMs assume that the network structure, although changing, is in a stochastically stable state.” (Krause, Huisman, and Snijders57, p. 36–37). Thus, the estimated parameters (widehat{beta }) continue to summarise the rules by which ministeps unfold. However, the asynchronous, sequential, simulated tie changes, in a sense, “cancel out” and thus hold the network in “short-term dynamic equilibrium”40,42. Formally, the cross-sectional SAOM is defined as a stationary distribution of a Markov Chain with transition probabilities given by the multinomial logit used to model change between adjacent network states40,42.The rate parameter λ is fixed at 36 for my analysis. The value of 36 is the maximum observed out-degree in the source-recipient-verified tangible aid network x(t2013). Accordingly, under λ = 36, all members of the tangible aid network have, on average, at least one opportunity to modify their entire portfolio of outgoing ties during the simulations. Nevertheless, to ensure the robustness of my results, I also fit a second set of models for which λ was fixed to 108 (i.e., thrice the maximum out-degree).Model SpecificationTo assess the importance of kinship and reciprocity to hypothetical decisions to help others (i.e., ministeps), I use four archetypal specifications of the SAOM’s evaluation function. These model specifications feature nested sets of covariates (i.e., the SAOM “effects”44). And, using language found in prior evolutionary studies3,5, I refer to these archetypal specifications as the “Conventional Model” (Model 1) of aid, the “Extended Model” (Model 2) of aid, the “Networked Aid Model (Limited)” (Model 3), and the “Networked Aid Model (Comprehensive)” (Model 4).The first specification (i.e., Model 1) comes from Hackman et al.3 and Kasper and Borgerhoff Mulder5 who respectively label it the “Human Behavioural Ecology” and “Conventional” model. This specification is comprised of just four dyadic covariates — one each for consanguinity (i.e., Wright’s coefficient of genetic relatedness), affinity (i.e., Wright’s coefficient of genetic relatedness between i’s spouse s and his/her blood relative j), the receipt of aid, and geographic distance. The first three covariates are used to test long-standing predictions of helping in order to reap indirect and direct fitness benefits in line with the theories of kin selection and reciprocal altruism (see Refs. 1,5,27,58,59 for primers). And the fourth covariate is used to adjust for tolerated scrounging — i.e., what Jaeggi and Gurven4 (p. 2) define as aid resulting from one’s inability to monopolise resources due to costs imposed by the resource-poor — where a covariate for distance operationalises pressure to help imposed by those who are spatially close4.The second specification (i.e., Model 2) reflects Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extensions to the conventional model (see also Page et al.16). Specifically, and following important work by Allen-Arave, Gurven, and Hill1, Hooper et al.14, and Nolin7, it is distinguished by nuanced tests of kin selection and reciprocal altruism via interactions between: (i) consanguinity and the receipt of aid; (ii) consanguinity and relative need; and (iii) consanguinity and geographic distance. Furthermore, Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extended model includes covariates for the non-network-related attributes of individuals (e.g., gender, wealth, and physical size), thus adjusting for homophily, trait-based popularity, trait-based activity, and local context (e.g., results from a gift-giving game9 or, in the present case, infidelity and discrimination based on skin-tone27).The third specification (i.e., Model 4) is my revision of the second. It is geared to make the relational context of aid explicit. This is done using nine covariates that account for the breadth of sociologists’ contemporary understanding of supra-dyadic interdependence between positive-valence (i.e., not based on disliking or aggression), asymmetric social relationships39,40,41,42,43,44,45,46,47,48,49. In keeping with the nature of the SAOM, each of these covariates summarises some structural feature of a villager’s immediate (i.e., local) network (e.g., the number of transitive triads that she is embedded in). Accordingly, each structural covariate is used to capture a form of self-organisation — i.e., network formation driven by an individual’s selection of alters in response to network structure itself (Lusher et al.49, p. 10–11 and 23–27).Specifically, the covariates added in the third specification reflect predictions derived from three fundamental sociological theories of the emergence of non-romantic relationships. The first is structural balance theory which posits that individuals create and maintain ties that move groups of three people from an intransitive to a transitive state (i.e., transitive closure), the latter of which is understood to be more psychologically harmonious or “balanced” (see Refs. 39,43,47,48,60,61,62 for primers). The second is Simmelian tie theory which posits that, once formed, individuals will maintain relationships embedded in maximally-cohesive groups of three people such that 3-cliques (i.e., fully-reciprocated triads) are resistant to dissolution (see Refs. 43,48,63 for primers). The third is social exchange theory (as it relates to structured reciprocity) which posits that individuals will unilaterally give benefits to others in response to benefits received such that indirect reciprocity (i.e., returns to generosity) and generalised reciprocity (i.e. paying-it-forward) in groups of three people encourage cyclic closure — i.e., the simplest form of chain-generalised exchange (see Refs. 19,20,43 for primers). Furthermore, the third specification reflects the broad prediction that individuals vary in their propensity to send and receive relationships based on their structural position alone (e.g., popularity-biased attachment) leading to dispersion in the distribution of in-degrees and out-degrees (see Refs. 39,44,49 for primers) — especially for ties with an inherent cost to their maintenance39,42.Last, I consider a fourth specification (i.e., Model 3) that uses a subset of the nine network-structure-related covariates included in Model 4. This limited set of structural effects typifies the specifications used in prior human evolutionary studies of empirical help that present generative models of entire networks2,7,15,28,29,30,31,32,33,34. Specifically, the fourth specification features just three network-structure-related covariates to account for structural balance theory, self-reinforcing in-degree (i.e., popularity-bias), and the interplay between in-degree and out-degree.Descriptive statistics for the relevant attributes of the 108 residents of Arang Dak appear in Table 1. Formulae used to calculate the network statistics sk,i(x) underlying each effect k used to specify my SAOMs, alongside verbal descriptions to aid reader interpretation, appear in Online-Only Table 1. See Methods for additional rationale behind the third specification.Table 1 Descriptive statistics for the monadic and dyadic attributes of the residents of Arang Dak.Full size tableModel ComparisonCompared to prior human evolutionary research on social support networks, I take two novel approaches to gauging the importance of kinship and reciprocity to help. First, I use a technique41 specifically designed to measure the relative importance of individual effects in SAOMs (see Methods). And second, I evaluate each specification’s ability to produce synthetic graphs with topologies representative of the structure of the analysed tangible aid network64.Judging model specifications using topological properties reflects one of the core purposes of methods such as the SAOM and the Exponential Random Graph Model (ERGM) — i.e., to explain the emergence of global network structure (see Refs. 40,42,46,47,49 also Refs. 18,48), not simply the state of individual dyads (i.e., is aid given or not?). Admittedly, explaining global network structure is not a stated primary aim of dyadic-centric or sociocentric studies of help by human evolutionary scientists, including those wherein authors rely on SAOMs or ERGMs2,7,15,28,29,30,31,32,33,34. Still, topological reproduction is an important, strong test of the relative quality of the four archetypal specifications as each encodes the set of rules presumed to govern network members’ decisions about whom to help.To clarify, recall that here it is assumed, a priori, that network members can, in principle, cooperate with whomever they wish, that their cooperative decisions are intertwined across multiple scales, and that their micro-level decisions ultimately give rise to macro-level patterns of supportive social bonds (see Refs. 18,19,20,21,22). The macro-level patterns generated by SAOMs and ERGMs can differ dramatically based on specification40,46,47,49,64,65. Thus, the empirical relevance of a candidate model rests with its ability to produce synthetic graphs similar to the observed structure40,42,46,47,48,49,64. Ultimately, divergence between the real and simulated graphs suggests that a candidate specification is suspect as it does not describe how some network of interest could have formed. More

  • in

    Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system

    Iron and carbon dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms a synthetic phototrophic communityThe synthetic microalgal-bacterial community based on the active exchange of iron and carbon was developed by screening multiple siderophore producer bacteria and dye decolorizer algae (Fig. 1; refer to Supplementary Data S1 for detailed results). Out of seven bacterial isolates obtained from untreated textile wastewater, five showed relatively high siderophore production in CAS agar plates and broth (Fig. S1). In broth, Serratia plymuthica PW1, Serratia liquefaciens PW71, and Ralstonia pickettii PW2 produced siderophores in decreasing order of concentration, i.e., 15.26 ± 1.3  > 13.28 ± 0.9  > 10.85 ± 0.7 µMmL−1 (Table 1). Arnow’s assay confirmed that S. plymuthica PW1 (81.10 ± 9.8 µMmL−1), R. pickettii PW2 (97.43 ± 16.8 µMmL−1), and S. liquefaciens PW71 (103.1 ± 8.3 µMmL−1) produced catecholate-type siderophores. On the other hand, Csaky’s assay confirmed that Stenotrophomonas maltophilia PW5 (37.86 ± 0.4 µMmL−1) and Stenotrophomonas maltophilia PW6 (17.73 ± 0.2 µMmL−1) produced hydroxamate-type of siderophores. Out of the five algal species, only freshwater microalgae Chlorella sorokiniana and Scenedesmus sp. showed the highest dye degradation potential; therefore, they were selected for further experiments (Data S1).Fig. 1: The study design explains different stages of experiments to develop a phototrophic community of previously non-associated algae and bacteria.The stages include (A) isolation of bacterial strains from textile wastewater collected from Panipat Industrial area, Haryana (India); B cultivation of freshwater and marine algal strains; C assessment of siderophore production in bacterial strains using Schwyn and Neilands’s universal Chrome Azurol S (CAS) assay; D assessment of dye degradation potential of algae strains using Acid Black 1 (AB1) dye; E interaction study between siderophore producing bacteria and dye degrader microalgae to identify bacterial strains that could sustain on algae-derived DOM secreted in algal exudates; F algal-bacterial co-culturability assessment to study different types of microbial interactions viz. antagonism, mutualism, or no interaction between the two organisms, and G identification of algal-bacterial model phototrophic community based on the active exchange of iron and DOM (refer to Data S1 for detailed results).Full size imageTable 1 Characterization of siderophore production in bacterial strains isolated from textile wastewater.Full size tableAfter that, the sterile exudates from C. sorokiniana and Scenedesmus sp. were used as the sole source of dissolved organic matter for bacterial growth and selection of appropriate microalgal-bacterial partners comprising the phototrophic community (Fig. 1E; Data S2). All five bacterial isolates grew well on the exudate of C. sorokiniana as a sole source of carbon. On the contrary, on exudates of Scenedesmus sp., S. plymuthica PW1 showed moderate growth in 20 h, while the growth of R. pickettii PW2 and S. liquefaciens PW71 remained insignificant. S. maltophilia PW5 and PW6 failed to grow in the exudate of Scenedesmus sp. (Fig. S2B).Finally, the compatibility between the phototrophic community of selected microalgae (C. sorokiniana/ Scenedesmus sp.) and siderophore-producer bacteria (S. plymuthica PW1/ R. pickettii PW2/ S. liquefaciens PW71) was tested by co-culturing them in iron limiting BBM media (BBM-Fe; without EDTA) (Fig. 1F). In the absence of EDTA, Fe precipitates rapidly as iron oxyhydroxides and becomes unavailable to microbes. Microalgal growth curves in co-culture assays were used to measure and compare population characteristics such as carrying capacity ‘k’, growth rate ‘r’, etc., in axenic and consortium setups. Algal growth parameters in co-culture with a bacterial partner were used to categorize their interaction as putative mutualistic, antagonistic, and neutral (Data S1, Tables S1 and S2) [42]. Under iron-limiting conditions, axenic C. sorokiniana experienced iron stress as the cell growth was 4.2 ± 0.4 × 106 cells mL−1 after 200 h incubation. On the other hand, axenic Scenedesmus sp. showed a significantly higher growth (11.3 ± 1.2 × 106 cells mL−1) than C. sorokiniana suggesting an effective iron uptake mechanism under iron-limiting conditions (k; t-test, p = 0.001) (Table S1). In contrast to the axenic microalgal culture, C. sorokiniana in co-culture with R. pickettii PW2 showed a significant increase in cell count at 200 h (6.2 ± 0.85 × 106 cells mL−1) (auc; p = 0.000). However, S. plymuthica PW1 exerted a negative effect on C. sorokiniana (Fig. 2A), as indicated by its significant increase in doubling time (p = 0.009) and reduction in auc (p = 0.001) (Fig. 3A). While S. liquefaciens PW71 remained neutral to C. sorokiniana (auc; p = 0.430) (Fig. 2A, Table 2). On the other hand, the interaction of Scenedesmus sp. with both R. pickettii PW2 and S. liquefaciens PW71 was neutral, while S. plymuthica PW1 showed a negative effect (Figs. 2A and 3A).Fig. 2: Assessment of algal and bacterial growth in co-culture experiments.A The growth curves represent the difference in the growth of C. sorokiniana when grown axenically or in co-culture with S. plymuthica PW1, R. pickettii PW2, and S. liquefaciens PW71 under iron limiting conditions. Whereas, the effect of bacteria on the growth of Scenedesmus sp. was less prominent. The difference in the CFUs of bacterial strains in axenic culture and co-culture suggests the growth-promoting effect of C. sorokiniana on S. plymuthica PW1 and R. pickettii PW2. B Anion-exchange chromatography suggests a difference in the glycosyl composition in the EPS of C. sorokiniana and Scenedesmus sp. C The area under curve (auc) of S. plymuthica PW1 and R. pickettii PW2 obtained after growth curves in different sugars. Here, ‘a’, ‘b’, etc., represent grouping after Tukey’s post hoc test.Full size imageFig. 3: Assessment of algal growth parameters in the algal-bacterial phototrophic community under iron-limiting conditions.A The confidence interval plots represent the significant difference in the growth parameters i.e., growth rate ‘r’, carrying capacity ‘k’, doubling time ‘Dt’, and area under curve ‘auc’, of C. sorokiniana (left panel) and Scenedesmus sp. (right panel) in algal-bacterial co-cultures w.r.t. to axenic culture (horizontal blue dashed line). The symbols ‘*’ and ‘**’ represent p values with statistical significance of ‘p  More