More stories

  • in

    How a COVID lockdown changed bird behaviour

    Sightings of some common bird species increased during the UK’s 2020 lockdown.Credit: Tolga Akmen/AFP via Getty

    People weren’t the only ones who changed their ways during the COVID-19 pandemic — birds did, too. Four out of five of the most commonly observed birds in the United Kingdom altered their behaviour during the nation’s first lockdown of 2020, although they did so in different ways depending on the species, according to an analysis.The study, published in Proceedings of the Royal Society B on 21 September1, is one of several that used the disruptions brought about by the pandemic — from a reduction in the number of cars on the roads to the closure of some national parks — to quantify the impact that humanity has on the natural world. Although some research has found that lockdowns had a largely positive effect on wildlife2, the latest data from the United Kingdom provide a much more nuanced picture (see Bird Behaviour).

    Credit: Warrington et al/Proceedings of the Royal Society B

    “People didn’t disappear during the lockdown,” says co-author Miyako Warrington, a behavioural ecologist at the University of Manitoba in Winnipeg, Canada. “We changed our behaviour, and wildlife responded.”Rare experimentIn the early months of the pandemic, social media was abuzz with reports of wild animals being seen in unusual places. These claims were partially validated when Warrington and her colleagues reported that, in 2020, many bird species in the United States and Canada were spotted moving into spaces usually occupied by people2.To see how a COVID-19 lockdown affected birds in the United Kingdom, Warrington and her colleagues tallied sightings of the 25 most common birds between March and July 2020 — during the country’s first lockdown — and compared their data set with data from previous years. In total, the study included around 870,000 observations.The team then compared this information to data showing how people split their time between home, essential shops and parks: three places people in the United Kingdom were allowed to be during the lockdown.Because people spent more time at home and in parks than before March 2020, the analysis found that 20 of the 25 bird species examined behaved differently during lockdown. Parks — which were flooded with visitors — saw an an uptick in the numbers of corvids and gulls, whereas smaller birds, such as Eurasian blue tits (Cyanistes caeruleus) and house sparrows (Passer domesticus), were spotted less frequently than in previous years. And because people spent more time at home, the number of avian species that visited domestic gardens also dropped, by around one-quarter, compared with previous years.Other species, including rock pigeons (Columba livia), didn’t react to the lockdown at all. Warrington found this surprising, because pigeons are city dwellers, so she thought they would be affected by the changes in people’s behaviour. “But they don’t give a crap about what we do,” she says.Adapting to changeThe birds that altered their habits during the lockdown were probably responding to changes in human behaviour, says Warrington. Tits and other birds whose numbers dipped might have fled when people and their pets started spending more time in parks and gardens. The reverse could be true for scavengers, such as gulls and corvids, which might have benefited from park visitors leaving behind rubbish for them to feed on.When combined with the results of other studies, the behaviour of British birds reveals the complex ways in which wildlife was affected by lockdowns and underlines the importance of reducing the disturbance of animals by people, says Raoul Manenti, a conservation zoologist at the University of Milan in Italy.For Warrington, that means acknowledging that lockdowns were not universally good for wildlife. “Our relationship with nature is complicated,” she says. By developing a better understanding of this relationship, “we know we can affect positive change as long as we do it in a thoughtful manner”. More

  • in

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Orr, D. W. Land use and climate change. Conserv. Biol. 22(6), 1372–1374 (2010).
    Google Scholar 
    Zhang, X. D. et al. Tropospheric ozone perturbations induced by urban land expansion in China from 1980 to 2017. Environ. Sci. Technol. https://doi.org/10.1021/ACS.EST.1C06664 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian cerrado biome. Environ. Res. Lett. 12(2), 025004. https://doi.org/10.1088/1748-9326/aa5986 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, B., Xun, Z., Ran, Z. & Zhao, X. Study of multiple land use planning based on the coordinated development of wetland farmland: A case study of Fuyuan City, China. Sustainability 11(1), 271. https://doi.org/10.3390/su11010271 (2019).Article 

    Google Scholar 
    Tong, D., Chu, J., Han, Q. & Liu, X. How land finance drives urban expansion under fiscal pressure: Evidence from Chinese cities. Land. 11(2), 253. https://doi.org/10.3390/land11020253 (2022).Article 

    Google Scholar 
    Chen, J., Chang, K. T., Karacsonyi, D. & Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat. Int. 43, 61–71. https://doi.org/10.1016/j.habitatint.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Shu, B. R., Zhang, H. H., Li, Y. L., Qu, Y. & Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat. Int. 43, 181–190. https://doi.org/10.1016/j.habitatint.2014.02.004 (2014).Article 

    Google Scholar 
    Wang, R. Y., He, W. S., Wu, D., Zhang, L. & Li, Y. J. Urban Land expansion simulation considering the diffusional and aggregated growth simultaneously: A case study of Luoyang City. Sustainability. 13(17), 9781–9781. https://doi.org/10.3390/su13179781 (2021).Article 

    Google Scholar 
    Wei, Y. D. & Ye, X. Determinants of urban land expansion and environmental change in China. Stoch. Env. Res. Risk. A. 28(4), 757–765. https://doi.org/10.1007/s00477-013-0840-9 (2014).Article 

    Google Scholar 
    Yang, Q. K., Duan, X. J., Yang, L. & Wang, L. Spatial-Temporal patterns and driving factors of rapid urban land development in provincial China: A case study of Jiangsu. Sustainability. 9(12), 2371. https://doi.org/10.3390/su9122371 (2017).Article 

    Google Scholar 
    Zhong, Y., Lin, A. & Zhou, Z. Evolution of the pattern of spatial expansion of urban land use in the Poyang Lake ecological economic zone. Int. J. Environ. Res. Public. Health. 16(1), 117. https://doi.org/10.3390/ijerph16010117 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wu, C., Huang, X. & Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China. Land Use Policy 96, 104687. https://doi.org/10.1016/j.landusepol.2020.104687 (2020).Article 

    Google Scholar 
    Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat. Int. 34(2), 236–243. https://doi.org/10.1016/j.habitatint.2009.09.008 (2010).Article 

    Google Scholar 
    Cai, W. J. & Tu, F. Y. Spatiotemporal characteristics and driving forces of construction land expansion in Yangtze River economic belt, China. PLoS ONE 15(1), 0227299. https://doi.org/10.1371/journal.pone.0227299 (2020).CAS 
    Article 

    Google Scholar 
    Salvati, L., Carlucci, M., Grigoriadis, E. & Chelli, F. M. Uneven dispersion or adaptive polycentrism? Urban expansion, population dynamics and employment growth in an “ordinary” city. Rev. Region. Res. 38(1), 1–25. https://doi.org/10.1007/s10037-017-0115-x (2017).Article 

    Google Scholar 
    Cao, Y., Ba, I. Z., Zhou, W. & Zhang, X. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth. Sci. 75(16), 1191.1-11911.3. https://doi.org/10.1007/s12665-016-5926-5 (2016).Article 

    Google Scholar 
    Davies, R. G., Barbosa, O. D. & Fuller, R. A. City-wide relationships between green spaces, urban land use and topography. Urban Ecosyst. 11(3), 269. https://doi.org/10.1007/s11252-008-0062-y (2008).Article 

    Google Scholar 
    Cheng, L. L., Liu, M. & Zhan, J. Q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 17(2), 289–303. https://doi.org/10.1007/s11629-019-5491-y (2020).Article 

    Google Scholar 
    Liu, J. Y., Zhan, J. Y. & Deng, X. Z. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 34, 450–455. https://doi.org/10.1579/0044-7447-34.6.450 (2005).Article 
    PubMed 

    Google Scholar 
    Li, X. M., Zhou, W. & Quyang, Z. J. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors?. Appl. Geogr. 38, 1–10. https://doi.org/10.1016/j.apgeog.2012.11.004 (2013).Article 

    Google Scholar 
    Wang, Z. W. & Lu, C. H. Urban land expansion and its driving factors of mountain cities in China during 1990–2015. J. Geogr. Sci. 28(8), 1152–1166. https://doi.org/10.1007/s11442-018-1547-0 (2018).MathSciNet 
    Article 

    Google Scholar 
    Zhang, Y. W. & Xie, H. L. Interactive relationship among urban expansion, economic development, and population growth since the reform and opening up in China: An analysis based on a vector error correction model. Land 8(10), 153–153. https://doi.org/10.3390/land8100153 (2019).CAS 
    Article 

    Google Scholar 
    Deng, X., Huang, J., Rozelle, S. & Uchid, E. Growth, population and industrialization, and urban land expansion of China. J. Urban. Econ. 63(1), 96–115. https://doi.org/10.1016/j.jue.2006.12.006 (2006).Article 

    Google Scholar 
    Luo, J., Zhang, X. & Wu, Y. Urban land expansion and the floating population in China: For production or for living?. Cities 74(4), 219–228. https://doi.org/10.1016/j.cities.2017.12.007 (2018).Article 

    Google Scholar 
    Salem, M., Tsurusaki, N. & Divigalpitiya, P. Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: A case study of the greater Cairo region. Infrastructures 4(1), 4. https://doi.org/10.3390/infrastructures4010004 (2019).Article 

    Google Scholar 
    Salem, M., Bose, A. & Chowdhury, I. R. Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability 13(19), 1–17. https://doi.org/10.3390/su131910805 (2021).Article 

    Google Scholar 
    Su, Z. W. et al. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China. Geomat. Nat. Hazards. Risk. 9(1), 1207–1229. https://doi.org/10.1080/19475705.2018.1505667 (2018).Article 

    Google Scholar 
    Hu, Y. & Hu, Y. Land cover changes and their driving mechanisms in central Asia from 2001 to 2017 supported by google earth engine. Remote. Sens-Basel. 11(5), 554. https://doi.org/10.3390/rs11050554 (2019).ADS 
    Article 

    Google Scholar 
    Liu, Y., Song, W. & Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional dpsir-based indicators. Ecol. Indic. 2(96), 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029 (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L., Wang, Y. F., Sun, H. Y. & Yin, T. T. Comprehensive effectiveness evaluation and obstacle diagnosis of mining villages in the transition period. Trans. CSAE. 38(5), 241–249. https://doi.org/10.11975/j.issn.1002-6819.2022.05.029 (2022).Article 

    Google Scholar 
    Cheng, L. L., Sun, H. Y., Zhang, Y. & Zhen, S. Spatial structure optimization of mountainous abandoned mine land reuse based on system dynamics model and CLUE-S model. Int. J. Coal. Sci. Techn. 6, 113–126. https://doi.org/10.1007/s40789-019-0241-x (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L. & Yin, T. T. Impacts of anthropogenic and biophysical factors on ecological land using logistic regression and random forest: A case study in Mentougou District, Beijing, China. J. Mt. Sci. 19, 433–445. https://doi.org/10.1007/s11629-021-7022-x (2022).Article 

    Google Scholar 
    Gorelick, N., Hanchr, M., Dixon, M., Ilyushchenko, S. & Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS 
    Article 

    Google Scholar 
    Feng, R. D., Wang, F. Y. & Wang, K. Y. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao Greater Bay area. J. Clean. Prod. 283(9), 125304. https://doi.org/10.1016/j.jclepro.2020.125304 (2021).Article 

    Google Scholar 
    Sun, X., Lu, Z., Li, F. & Crittenden, J. C. Analyzing spatio-temporal changes and tradeoffs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indicat. 94, 117–129. https://doi.org/10.1016/j.ecolind.2018.06.049 (2018).Article 

    Google Scholar 
    Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A. & Pereira, J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest. Ecol. Manag. 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003 (2012).Article 

    Google Scholar 
    Ugur, A. Dynamic land cover mapping of urbanized cities with Landsat 8 multi-temporal images: Comparative evaluation of classification algorithms and dimension reduction methods. Isprs Int. J. Geo-Inf. 8(3), 139. https://doi.org/10.3390/ijgi8030139 (2019).Article 

    Google Scholar 
    Chapelle, O. Training a support vector machine in the primal. Neural. Comput. 19(5), 1155. https://doi.org/10.1162/neco.2007.19.5.1155 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lin, Q. Y., Guo, J. Y., Yan, J. F. & Wang, H. Land use and landscape pattern changes of Weihai, China based on object-oriented SVM classification from Landsat MSS/TM/OLI images. Eur. J. Remote. Sens. 51(1), 1036–1048. https://doi.org/10.1080/22797254.2018.1534532 (2018).Article 

    Google Scholar 
    Devos, O., Ruckebusch, C., Duponchel, L. & Huvenne, J. P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometr. Intell. Lab. 96(1), 27–33. https://doi.org/10.1016/j.chemolab.2008.11.005 (2009).CAS 
    Article 

    Google Scholar 
    Heumann, B. W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote. Sens-Basel. 3(11), 2440–2460. https://doi.org/10.3390/rs3112440 (2011).ADS 
    Article 

    Google Scholar 
    Hsu, C., Chang, C. C. & Lin, C. J. A practical guide to support vector classification, 15. Department of Computer Science, National Taiwan University. https://doi.org/10.1111/j.1365-3016.1995.tb00168.x (2009).Aspinall, R. Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin valley, Montana. J. Environ. Manage. 72(1–2), 91–103. https://doi.org/10.1016/j.jenvman.2004.02.009 (2004).Article 
    PubMed 

    Google Scholar 
    Wu, W. & Zhang, J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62. https://doi.org/10.1016/j.apgeog.2012.10.012 (2013).Article 

    Google Scholar 
    Thomas, D. R., Zhu, P. C. & Decady, Y. J. Point estimates and confidence intervals for variable importance in multiple linear regression. J. Educ. Behav. Stat. 32(1), 61–91. https://doi.org/10.1002/bimj.201100134 (2007).Article 

    Google Scholar 
    Huang, B. & Boutros, P. C. The parameter sensitivity of random forests. BMC Bioinform. 17, 331. https://doi.org/10.1186/s12859-016-1228-x (2016).Article 

    Google Scholar 
    Pang, J., Chen, Y., He, S., Qiu, H. & Mao, L. Classification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithms. J. Tribol-T. Asme. 143(9), 1–28. https://doi.org/10.1115/1.4049257 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M., Hu, S., Ge, Y., Heuvelink, G. & Huang, X. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spat. Stat.-Neth. 42, 100461. https://doi.org/10.1016/j.spasta.2020.100461 (2020).MathSciNet 
    Article 

    Google Scholar 
    Jutidamrongphan, W. Determine the land-use land-cover changes, urban expansion and their driving factors for sustainable development in Gazipur Bangladesh. Atmosphere 12(10), 1353. https://doi.org/10.3390/atmos12101353 (2021).ADS 
    Article 

    Google Scholar 
    Liu, M. & Tian, H. China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009GB003687 (2010).Article 

    Google Scholar 
    Tong, Z., Yao, S., Hu, W. & Cui, F. Simulation of urban expansion in Guangzhou Foshan metropolitan area under the influence of accessibility. Scientia. Geographica. Sinica. 38(5), 737–746 (2018).
    Google Scholar 
    Poelmans, L. & Rompaey, A. V. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 34(1), 17–27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001 (2010).Article 

    Google Scholar 
    Galinato, S. P. & Gregma, I. The effects of government spending on deforestation due to agricultural land expansion and CO2 related emissions. Ecol. Econ. 122, 43–53. https://doi.org/10.1016/j.ecolecon.2015.10.025 (2016).Article 

    Google Scholar 
    Xie, X. F., Wu, T., Zhu, M., Jiang, G. J. & Xw, E. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925. https://doi.org/10.1016/j.ecolind.2020.106925 (2021).CAS 
    Article 

    Google Scholar 
    Miller, M. D. The mpacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 34, 171–179. https://doi.org/10.1016/j.apgeog.2011.11.010 (2012).ADS 
    Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/1/014025 (2013).Article 

    Google Scholar 
    Qiao, W. et al. Multi-dimensional expansion of urban space through the lens of land use: The case study of Nanjing city, China. J. Geogr. Sci. 29(5), 749–761. https://doi.org/10.1007/s11442-019-1625-y (2019).Article 

    Google Scholar 
    Yza, B., Lt, A. & Hw, A. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 329, 129488. https://doi.org/10.1016/j.jclepro.2021.129488 (2021).Article 

    Google Scholar  More

  • in

    Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models

    Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).Article 

    Google Scholar 
    Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Oxford University Press, 2000).
    Google Scholar 
    Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: Managing a moving target. Rev. Environ. Econom. Policy 15, 180–190 (2021).Article 

    Google Scholar 
    Gippet, J. M. & Bertelsmeier, C. Invasiveness is linked to greater commercial success in the global pet trade. Proc. Natl. Acad. Sci. 118, e2016337118 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).PubMed 
    Article 

    Google Scholar 
    Charles, H. & Dukes, J. S. Biological Invasions 217–237 (Springer, 2008).
    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Let. 12, 20150623 (2016).Article 

    Google Scholar 
    Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).Article 

    Google Scholar 
    Grimaldi, D., Engel, M. S., Engel, M. S. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).MATH 

    Google Scholar 
    Hill, M. P., Clusella-Trullas, S., Terblanche, J. S. & Richardson, D. M. Vol. 18, 883–891 (Springer, 2016).Sawicka, B. & Egbuna, C. Natural Remedies for Pest, Disease and Weed Control 1–16 (Elsevier, 2020).Book 

    Google Scholar 
    de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).Article 

    Google Scholar 
    Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? PLoS ONE 10, e0119618 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Early, R., González-Moreno, P., Murphy, S. T. & Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40, 25–50 (2018).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Rose, D. D. & Page, W. W. The African Armyworm Handbook 304 (Chatham, 2000).
    Google Scholar 
    De Groote, H. et al. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 292, 106804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheke, R. & Tucker, M. An evaluation of potential economic returns from the strategic control approach to the management of African armyworm Spodoptera exempta (Lepidoptera: Noctuidae) populations in eastern Africa. Crop Prot. 14, 91–103 (1995).Article 

    Google Scholar 
    Fox, K. Migrant Lepidoptera in New Zealand 1972–1973. N. Z. Entomol. 5, 268–271 (1973).Article 

    Google Scholar 
    Baker, G. An Outbreak of Spodoptera exempta (Walker) (Lepidoptera: Noctuidae) in the Highlands of Papua New Guinea (1978).Haggis, M. J. Distribution, Frequency of Attack and Seasonal Incidence of the African Armyworm Spodoptera exempta (Walk.) (Lep.: Noctuidae), with Particular Reference to Africa and Southwestern Arabia (Tropical Development and Research Institute, 1984).
    Google Scholar 
    Brown, E. Control of the African armyworm, Spodoptera exempta (Walk.)—An appreciation of the problem. East Afr. Agric. For. J. 35, 237–245 (1970).Article 

    Google Scholar 
    Rose, D. & Rainey, R. C. The significance of low-density populations of the African armyworm Spodoptera exempta (Walk.). Philos. Trans. R. Soc. Lond. B Biol. Sci. 287, 393–402 (1979).ADS 
    Article 

    Google Scholar 
    Tucker, M. & Pedgley, D. Rainfall and outbreaks of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Entomol. Res. 73, 195–199 (1983).Article 

    Google Scholar 
    Tucker, M. Forecasting the severity of armyworm seasons in East Africa from early season rainfall. Int. J. Trop. Insect Sci. 5, 51–55 (1984).Article 

    Google Scholar 
    Wilson, K. & Gatehouse, A. Seasonal and geographical variation in the migratory potential of outbreak populations of the African armyworm moth, Spodoptera exempta. J. Anim. Ecol. 62, 169–181 (1993).Article 

    Google Scholar 
    Odiyo, P. O. Development of the first outbreaks of the African armyworm, Spodoptera exempta (Walk.), between Kenya and Tanzania during the ‘off-season’ months of July to December. Int. J. Trop. Insect Sci. 1, 305–318 (1981).Article 

    Google Scholar 
    Haggis, M. Forecasting the severity of seasonal outbreaks of African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae) in Kenya from the previous year’s rainfall. Bull. Entomol. Res. 86, 129–136 (1996).Article 

    Google Scholar 
    Harvey, A. & Mallya, G. Predicting the severity of Spodoptera exempta (Lepidoptera: Noctuidae) outbreak seasons in Tanzania. Bull. Entomol. Res. 85, 479–487 (1995).Article 

    Google Scholar 
    Holt, J., Mushobozi, W., Tucker, M. & Venn, J. Workshop on Research Priorities for Migrant Pests of Agriculture in Southern Africa, 151.Matthew Hill, T. C. M. Bloomberg (Online, 2017).Wilson, K. The Conversation (United Kingdom, 2017).Day, R. K. et al. WormBase: A data management and information system for forecasting Spodoptera exempta (Lepidoptera: Noctuidae) in eastern Africa. J. Econ. Entomol. 89, 1–10 (1996).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).PubMed 
    Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Sutherst, R. W. Pest species distribution modelling: Origins and lessons from history. Biol. Invas. 16, 239–256 (2014).Article 

    Google Scholar 
    Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R. & Cerdeira-Estrada, S. Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Comput. Electron. Agric. 167, 105101 (2019).Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).ADS 
    Article 

    Google Scholar 
    Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (Wiley, 2013).MATH 
    Book 

    Google Scholar 
    Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 1–20 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).ADS 
    Article 

    Google Scholar 
    Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    Marchant, R. et al. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth Sci. Rev. 178, 322–378 (2018).ADS 
    Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Pemberton, C. E. Highlights in the history of entomology in Hawaii 1778–1963. Pac. Insects 6, 689–729 (1964).
    Google Scholar 
    Andow, D. A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36, 561–586 (1991).Article 

    Google Scholar 
    Andow, D. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agr. Ecosyst. Environ. 9, 25–35 (1983).Article 

    Google Scholar 
    Oliveira, C., Auad, A., Mendes, S. & Frizzas, M. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 56, 50–54 (2014).Article 

    Google Scholar 
    Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howse, M. W., Haywood, J. & Lester, P. J. Bioclimatic modelling identifies suitable habitat for the establishment of the invasive European paper wasp (Hymenoptera: Vespidae) across the southern hemisphere. Insects 11, 784 (2020).PubMed Central 
    Article 

    Google Scholar 
    Rose, D., Dewhurst, C., Page, W. & Fishpool, L. The role of migration in the life system of the African armyworm Spodoptera exempta. Int. J. Trop. Insect Sci. 8, 561–569 (1987).Article 

    Google Scholar 
    Dewhurst, C. F., Page, W. W. & Rose, D. J. The relationship between outbreaks, rainfall and low density populations of the African armyworm, Spodoptera exempta, Kenya. Entomol. Exp. et Appl. 98, 285–294 (2001).Article 

    Google Scholar 
    Aguilon, D. J. & Velasco, L. R. Effects of larval rearing temperature and host plant condition on the development, survival, and coloration of African armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). J. Environ. Sci. Manag. 18, 54 (2015).Article 

    Google Scholar 
    David, W. & Ellaby, S. The viability of the eggs of the African army-worm, Spodoptera exempta in laboratory cultures. Entomol. Exp. Appl. 18, 269–280 (1975).Article 

    Google Scholar 
    He, L., Zhao, S., Ali, A., Ge, S. & Wu, K. Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), China. J. Econ. Entomol. 114, 1145–1158 (2021).PubMed 
    Article 

    Google Scholar 
    Janssen, J. Effects of the mineral composition and water content of intact plants on the fitness of the African armyworm. Oecologia 95, 401–409 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shahzad, M. S. et al. Modelling population dynamics of army worm (Spodoptera litura F.) (Lepidoptera: Noctuiidae) in relation to meteorological factors in Multan, Punjab, Pakistan. Int. J. Agron. Agric. Res. 5, 39–45 (2014).
    Google Scholar 
    Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest. Sci. 92, 429–441 (2019).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455 (2006).ADS 
    Article 

    Google Scholar 
    Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth-a model study. Silva Fennica 41, 621 (2007).Article 

    Google Scholar 
    Falk, W. & Hempelmann, N. Species favourability shift in Europe due to climate change: A case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 2013, 1–18 (2013).Article 

    Google Scholar 
    Arora, R. & Dhawan, A. Climate Change and Insect Pest Management. Integrated Pest Management 44–60 (Scientific Publisher, 2013).
    Google Scholar 
    Andrew, N. R. & Hill, S. J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers, 197 (2017).De Boer, J. G. & Harvey, J. A. Range-expansion in processionary moths and biological control. Insects 11, 267 (2020).PubMed Central 
    Article 

    Google Scholar 
    Bras, A. et al. A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe. J. Pest. Sci. 92, 1187–1202 (2019).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).PubMed 
    Article 

    Google Scholar 
    Barford, E. Crop pests advancing with global warming. Nature 10, 13644 (2013).
    Google Scholar 
    Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    Rubenstein, D. I. The greenhouse effect and changes in animal behavior: Effects on social structure and life-history strategies. In Global Warming and Biological Diversity, 180–192 (1992).Karuppaiah, V. & Sujayanad, G. Impact of climate change on population dynamics of insect pests. World J. Agric. Sci. 8, 240–246 (2012).
    Google Scholar 
    Jakhar, B. et al. Influence of climate change on Helicoverpa armigera (Hubner) in pigeonpea. J. Agric. Ecol. 2, 25–31 (2016).
    Google Scholar 
    Akbar, S. M., Pavani, T., Nagaraja, T. & Sharma, H. Influence of CO 2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environ. Entomol. 45, 229–236 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Magandana, T. P., Hassen, A. & Tesfamariam, E. H. Seasonal herbaceous structure and biomass production response to rainfall reduction and resting period in the semi-arid grassland area of South Africa. Agronomy 10, 1807 (2020).CAS 
    Article 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass-and increases shrub-productivity. Proc. Natl. Acad. Sci. 112, 12735–12740 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheiter, S. & Higgins, S. I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–2246 (2009).ADS 
    Article 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. & Hortal, J. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10, 196–205 (2009).Article 

    Google Scholar 
    Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, S. New pest response guidelines: Spodoptera. USDA/APHIS/PPQ/PDMP (2004).Waage, J. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. B Biol. Sci. 363, 863–876 (2008).CAS 
    Article 

    Google Scholar 
    Anand, M. A systems approach to agricultural biosecurity. Health Secur. 16, 58–68 (2018).PubMed 
    Article 

    Google Scholar 
    MacLeod, A., Pautasso, M., Jeger, M. J. & Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2, 49–70 (2010).Article 

    Google Scholar 
    Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invas. 13, 2785–2797 (2011).Article 

    Google Scholar 
    Oluwole, F. A., Sambo, J. M. & Sikhalazo, D. Long-term effects of different burning frequencies on the dry savannah grassland in South Africa. Afr. J. Agric. Res. 3, 147–153 (2008).
    Google Scholar 
    Kalleshwaraswamy, C. et al. First Report of the Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India (2018).Bentivenha, J., Baldin, E., Hunt, T., Paula-Moraes, S. & Blankenship, E. Intraguild competition of three noctuid maize pests. Environ. Entomol. 45, 999–1008 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapman, J. W. et al. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10, 298–303 (1999).Article 

    Google Scholar 
    Divya, J., Kalleshwaraswamy, C., Mallikarjuna, H. & Deshmukh, S. Does recently invaded fall armyworm, Spodoptera frugiperda displace native lepidopteran pests of maize in India? Curr. Sci. 120, 1358 (2021).Article 

    Google Scholar 
    Hailu, G. et al. Could fall armyworm, Spodoptera frugiperda (JE Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. Int. J. Trop. Insect Sci. 41, 1753–1762 (2021).Article 

    Google Scholar 
    Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 
    Article 

    Google Scholar 
    Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).Article 

    Google Scholar 
    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article 

    Google Scholar 
    Cano, J. et al. Modelling the spatial distribution of aquatic insects (Order Hemiptera) potentially involved in the transmission of Mycobacterium ulcerans in Africa. Parasit. Vectors 11, 1–16 (2018).Article 

    Google Scholar 
    Gómez-Undiano, I. Modelos y patrones de distribución geográfica de especies de Culicidae (Culex pipiens, Mansonia africana y Mansonia uniformis) vectores de filariasis linfática en ámbitos urbanos y periurbanos del África subsahariana. Máster en Zoología thesis, Universidad Complutense de Madrid (2018).R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. et al. Package ‘biomod2’. Species Distribution Modeling Within an Ensemble Forecasting Framework (2016).Acevedo, P., Jiménez-Valverde, A., Lobo, J. M. & Real, R. Delimiting the geographical background in species distribution modelling. J. Biogeogr. 39, 1383–1390 (2012).Article 

    Google Scholar 
    VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 220, 589–594 (2009).Article 

    Google Scholar 
    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. (2012).Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 675–684 (2017).Article 

    Google Scholar 
    Liu, C., White, M., Newell, G. & Griffioen, P. Species distribution modelling for conservation planning in Victoria, Australia. Ecol. Model. 249, 68–74 (2013).Article 

    Google Scholar  More

  • in

    The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs

    Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).PubMed 

    Google Scholar 
    Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evolution 8, 1929–1939 (2016).CAS 

    Google Scholar 
    Liu, W. et al. Single genome amplification and direct amplicon sequencing of Plasmodium spp. DNA from ape fecal specimens. Protocol Exchange 1–14 (2010).Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Otto, T. D. et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat. Microbiol. 3, 687–697 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boundenga, L. et al. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14, 1–8 (2015).CAS 

    Google Scholar 
    Délicat-Loembet, L. et al. No evidence for ape Plasmodium infections in humans in gabon. Plos One 10, e0126933 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sundararaman, S. A. et al. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. Proc. Natl Acad. Sci. USA 110, 7020–7025 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Junker, J. et al. Recent decline in suitable environmental conditions for African great apes. Diversity Distrib. 18, 1077–1091 (2012).
    Google Scholar 
    de Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    de Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser, M. et al. Wild chimpanzees infected with 5 Plasmodium species. Emerg. Infect. Dis. 16, 1956–1959 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Paupy, C. et al. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon. PLoS ONE 8, e57294 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl Acad. Sci. USA 113, 5329–5334 (2016).Loy, D. E. et al. Investigating zoonotic infection barriers to ape Plasmodium parasites using faecal DNA analysis. Int. J. Parasitol. 48, 531–542 (2018).Martin, M., Rayner, J., Gagneux, P., Barnwell, J. & Varki, A. Evolution of human–chimpanzee differences in malaria susceptibility: Relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scully, E. J., Kanjee, U. & Duraisingh, M. T. Molecular interactions governing host-specificity of blood stage malaria parasites. Curr. Opin. Microbiol. 40, 21–31 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sundararaman, S. A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 20735–20740 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ngoubangoye, B. et al. The host specificity of ape malaria parasites can be broken in confined environments. Int. J. Parasitol. 46, 737–744 (2016).PubMed 

    Google Scholar 
    Mapua, M. I. et al. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar. J. 15, 423 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D. F. et al. Seasonal and inter-annual variation of malaria parasite detection in wild chimpanzees. Malar. J. 17, 1–5 (2018).CAS 

    Google Scholar 
    Craig, M., le Sueur, D. & Snow, B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).CAS 
    PubMed 

    Google Scholar 
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 

    Google Scholar 
    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 

    Google Scholar 
    LaPointe, D. A., Goff, M. L. & Atkinson, C. T. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J. Parasitol. 96, 318–324 (2010).PubMed 

    Google Scholar 
    Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).Macdonald, G. The Epidemiology and Control of Malaria (Oxford University Press, 1957).Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gemperli, A. et al. Mapping malaria transmission in West and Central Africa. Tropical Med. Int. Health 11, 1032–1046 (2006).
    Google Scholar 
    Gething, P. W. et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 4, 92 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Weiss, D. J. et al. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: a high-resolution spatiotemporal prediction. Malar. J. 13, 171 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lyons, C. L., Coetzee, M. & Chown, S. L. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites Vectors 6, 104 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2, e1146 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Faust, C. & Dobson, A. P. Primate malarias: diversity, distribution and insights for zoonotic Plasmodium. One Health 1, 66–75 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Tucker Lima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 372, 20160125 (2017).
    Google Scholar 
    Borner, J. et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol. Phylogenetics Evolution 94, 221–231 (2016).CAS 

    Google Scholar 
    Emery Thompson, M., Muller, M. N., Machanda, Z. P., Otali, E. & Wrangham, R. W. The Kibale Chimpanzee Project: over thirty years of research, conservation, and change. Biol. Conserv. 252, 108857 (2020).
    Google Scholar 
    Langergraber, K. E., Mitani, J. C. & Vigilant, L. The limited impact of kinship on cooperation in wild chimpanzees. Proc. Natl Acad. Sci. USA 104, 7786–7790 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).CAS 
    PubMed 

    Google Scholar 
    Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 220 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Torres, J. R. Therapy of Infectious Diseases 597–613 (2003).Trampuz, A., Jereb, M., Muzlovic, I. & Prabhu, R. M. Clinical review: severe malaria. Crit. Care 7, 315 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    Akim, N. I. et al. Dynamics of P. falciparum gametocytemia in symptomatic patients in an area of intense perennial transmission in Tanzania. Am. J. Tropical Med. Hyg. 63, 199–203 (2000).CAS 

    Google Scholar 
    Mackinnon, M. J. & Read, A. F. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53, 689–703 (1999).PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 

    Google Scholar 
    Prugnolle, F. et al. African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proc. Natl Acad. Sci. USA 108, 11948–11953 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayouba, A. et al. Ubiquitous Hepatocystis infections, but no evidence of Plasmodium falciparum-like malaria parasites in wild greater spot-nosed monkeys (Cercopithecus nictitans). Int. J. Parasitol. 42, 709–713 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenetics Evolution 47, 261–273 (2008).CAS 

    Google Scholar 
    Thurber, M. I. et al. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community. Int. J. Parasitol. 43, 613–619 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics (Cambridge University Press, 2008).Stanisic, D. I. et al. Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response. Infect. Immun. 83, 646–660 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, R. R., Allen, S. J., Greenwood, B. M. & Riley, E. M. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am. J. Tropical Med. Hyg. 58, 406–413 (1998).CAS 

    Google Scholar 
    World Malaria Report (World Health Organization, 2015).Shaman, J. Letter to the Editor: Caution needed when using gridded meteorological data products for analyses in Africa. Eur. Surveill. 19, 20930 (2014).
    Google Scholar 
    Tatem, A. J., Goetz, S. J. & Hay, S. I. Terra and Aqua: new data for epidemiology and public health. Int. J. Appl. Earth Observation Geoinf. 6, 33–46 (2004).
    Google Scholar 
    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 

    Google Scholar 
    Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarello, W. A fatal Plasmodium reichenowi infection in a chimpanzee? Rev. de. Med. Veterinaire 156, 503–505 (2005).
    Google Scholar 
    Taylor, D. W. et al. Parasitologic and immunologic studies of experimental Plasmodium falciparum infection in nonsplenectomized chimpanzees (Pan troglodytes). Am. J. Tropical Med. Hyg. 34, 36–44 (1985).CAS 

    Google Scholar 
    Krief, S., Martin, M., Grellier, P., Kasenene, J. & Sevenet, T. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrobial Agents Chemother. 48, 3196–3199 (2004).CAS 

    Google Scholar 
    Cox-Singh, J. et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46, 165–171 (2008).CAS 
    PubMed 

    Google Scholar 
    Singh, B. & Daneshvar, C. Human infections and detection of Plasmodium knowlesi. Clin. Microbiol. Rev. 26, 165–184 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brasil, P. et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Global Health 5, e1038–e1046 (2017).Krief, S. et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathog. 6, e1000765 (2010).Pacheco, M. A., Cranfield, M., Cameron, K. & Escalante, A. A. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar. J. 12, 328 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Etienne, L. et al. Noninvasive follow-up of simian immunodeficiency virus infection in wild-living nonhabituated western lowland gorillas in Cameroon. J. Virol. 86, 9760–9772 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keele, B. F. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keele, B. F. et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 86, 10776–10791 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neel, C. et al. Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J. Virol. 84, 1464–1476 (2010).CAS 
    PubMed 

    Google Scholar 
    Rudicell, R. S. et al. Impact of simian immunodeficiency virus infection on chimpanzee population dynamics. PLoS Pathog. 6, 1–17 (2010).
    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D. & Maechler, M. Lme4: linear mixed-effects models using s4 classes. Cran R Project Website (2010). More

  • in

    Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades

    Morens, D. M. et al. The origin of COVID-19 and why it matters. Am. J. Trop. Med. Hyg. 103, 955–959 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gates, B. The next epidemic—Lessons from Ebola., https://doi.org/10.1056/NEJMp1502918 (2015).World Health Organization. Lassa fever research and development (R&D) roadmap. https://www.who.int/publications/m/item/lassa-fever-research-and-development-(r-d)-roadmap (2018).World Health Organization. Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts.Akpede, G. O. et al. Caseload and case fatality of Lassa fever in Nigeria, 2001–2018: A specialist center’s experience and its implications. Front. Public Health 7, https://doi.org/10.3389/fpubh.2019.00170 (2019).Eberhardt, K. A. et al. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int. J. Infect. Dis. 87, 15–20 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lukashevich, I. S., Paessler, S. & de la Torre, J. C. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res 8, https://doi.org/10.12688/f1000research.16989.1 (2019).Purushotham, J., Lambe, T. & Gilbert, S. C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett. 215, 1–11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mateo, M. et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci. Transl. Med. 13, eabf6348 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCormick, J. B. et al. Lassa Fever. N. Engl. J. Med. 314, 20–26 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bell-Kareem, A. R. & Smither, A. R. Epidemiology of Lassa fever. in 1–23 (Springer, 2021). https://doi.org/10.1007/82_2021_234.Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Manning, J. T., Forrester, N. & Paessler, S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front. Microbiol. 6, https://doi.org/10.3389/fmicb.2015.01037 (2015).Dzotsi, E. K. et al. The first cases of Lassa fever in Ghana. Ghana. Med. J. 46, 166–170 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patassi, A. A. et al. Emergence of Lassa fever disease in northern Togo: Report of two cases in Oti District in 2016. Case Rep. Infect. Dis. 2017, 8242313 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yadouleton, A. et al. Lassa fever in Benin: Description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerg. Microbes Infect. 9, 1761–1770 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCormick, J. B. & Fisher-Hoch, S. P. Lassa fever. Curr. Top. Microbiol. Immunol. 262, 75–109 (2002).CAS 
    PubMed 

    Google Scholar 
    Monath, T. P., Newhouse, V. F., Kemp, G. E., Setzer, H. W. & Cacciapuoti, A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185, 263–265 (1974).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stephenson, E. H., Larson, E. W. & Dominik, J. W. Effect of environmental factors on aerosol-induced Lassa virus infection. J. Med. Virol. 14, 295–303 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wozniak, D. M. et al. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir – Mastomys natalensis. Emerg. Microbes Infect. 10, 2313–2325 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Meulen, J. et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am. J. Trop. Med. Hyg. 55, 661–666 (1996).PubMed 
    Article 

    Google Scholar 
    Downs, I. L. et al. Natural history of aerosol induced Lassa fever in non-human primates. Viruses 12, 593 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Lecompte, E. et al. Mastomys natalensis and Lassa Fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smither, A. R. & Bell-Kareem, A. R. Ecology of Lassa Virus. in 1–20 (Springer, 2021). https://doi.org/10.1007/82_2020_231.Ogbu, O., Ajuluchukwu, E. & Uneke, C. J. Lassa fever in West African sub-region: An overview. J. Vector Borne Dis. 44, 1–11 (2007).CAS 
    PubMed 

    Google Scholar 
    Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 7, 119–128 (2007).PubMed 
    Article 

    Google Scholar 
    Fichet-Calvet, E., Becker-Ziaja, B., Koivogui, L. & Günther, S. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 14, 665–674 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lo Iacono, G. et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: The case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015).Siddle, K. J. et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N. Engl. J. Med. 379, 1745–1753 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, K. G. et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162, 738–750 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lalis, A. & Wirth, T. Mice and men: An evolutionary history of Lassa fever. in Biodiversity and Evolution (eds. Grandcolas, P. & Maurel, M.-C.) 189–212, https://doi.org/10.1016/B978-1-78548-277-9.50011-5 (Elsevier, 2018).Mylne, A. Q. N. et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans. R. Soc. Trop. Med. Hyg. 109, 483–492 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colangelo, P. et al. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 108, 901–916 (2013).Article 

    Google Scholar 
    Gryseels, S. et al. When viruses don’t go viral: The importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Path 13, e1006073 (2017).Article 

    Google Scholar 
    Cuypers, L. N. et al. Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: Same host specificity, but different spatial genetic structure? Virus Evol. https://doi.org/10.1093/ve/veaa039 (2020).Vazeille, M., Gaborit, P., Mousson, L., Girod, R. & Failloux, A.-B. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect. Dis. 16, 318 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chan, K. F. et al. Investigating viral interference between influenza A virus and human respiratory syncytial virus in a ferret model of infection. J. Infect. Dis. 218, 406–417 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, D. Y., McCormick, J. B., Georges, A. J., Georges, M. C. & Gonzalez, J. P. Comparison of Lassa, Mobala, and Ippy virus reactions by immunofluorescence test. Lancet 1, 873–874 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard, C. R. Antigenic diversity among the Arenaviruses. in The Arenaviridae (ed. Salvato, M. S.) 37–49, https://doi.org/10.1007/978-1-4615-3028-2_3 (Springer US, 1993).Bhattacharyya, S., Gesteland, P. H., Korgenski, K., Bjørnstad, O. N. & Adler, F. R. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. Proc. Natl Acad. Sci. U. S. A. 112, 13396–13400 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luis, A. D., Douglass, R. J., Mills, J. N. & Bjørnstad, O. N. Environmental fluctuations lead to predictability in Sin Nombre hantavirus outbreaks. Ecology 96, 1691–1701 (2015).Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian, H. et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathog. 13, e1006198 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Peterson, A. T., Moses, L. M. & Bausch, D. G. Mapping transmission risk of Lassa fever in West Africa: the importance of quality control, sampling bias, and error weighting. PLoS One 9, e100711 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fichet-Calvet, E. & Rogers, D. J. Risk maps of Lassa fever in West Africa. PLoS. Negl. Trop. Dis. 3, e388 (2009).Basinski, A. J. et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput. Biol. 17, e1008811 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iacono, G. L. et al. A unified framework for the infection dynamics of zoonotic spillover and spread. PLoS Negl. Trop. Dis. 10, e0004957 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Coumou, D., Robinson, A. & Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Change 118, 771–782 (2013).ADS 
    Article 

    Google Scholar 
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, eaar5809 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arneth, A. Uncertain future for vegetation cover. Nature 524, 44–45 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 81 (2017).PubMed 
    Article 

    Google Scholar 
    Herrmann, S. M., Brandt, M., Rasmussen, K. & Fensholt, R. Accelerating land cover change in West Africa over four decades as population pressure increased. Com. Earth Envir 1, 1–10 (2020).
    Google Scholar 
    Gibb, R., Moses, L. M., Redding, D. W. & Jones, K. E. Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glob. Health 111, 276–288 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).ADS 
    Article 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl Acad. Sci. U. S. A. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lukashevich, I. S. Generation of reassortants between African arenaviruses. Virology 188, 600–605 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vijaykrishna, D., Mukerji, R. & Smith, G. J. D. RNA virus reassortment: an evolutionary mechanism for host jumps and immune evasion. PLoS Path 11, e1004902 (2015).Article 

    Google Scholar 
    Whitmer, S. L. M. et al. New lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Phylogeography of Lassa virus in Nigeria. J. Virol. 93, e00929–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 5620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos, Trans. Am. Geophys. Union 38, 913–920 (1957).Article 

    Google Scholar 
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Current molecular epidemiology of Lassa virus in Nigeria. J. Clin. Microbiol. 49, 1157 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oloniniyi, O. K. et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl. Trop. Dis. 12, e0006971 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olesen, J. E. et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim. Change 81, 123–143 (2007).Article 

    Google Scholar 
    Simo Tchetgna, H. et al. Molecular characterization of a new highly divergent Mobala related arenavirus isolated from Praomys sp. rodents. Sci. Rep. 11, 10188 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaidi, M. B. et al. Competitive suppression of dengue virus replication occurs in chikungunya and dengue co-infected Mexican infants. Parasit. Vectors 11, 378 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasit. Vectors 11, 416 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Norris, K. et al. Biodiversity in a forestagriculture mosaic: the changing face of west Africa rainforests. Biol. Conserv. 143, 2341–2350 (2010).Article 

    Google Scholar 
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, 2013).Buba, M. I. et al. Mortality among confirmed Lassa fever cases during the 2015-2016 outbreak in Nigeria. Am. J. Public Health 108, 262–264 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobin, E. A. et al. Knowledge of secondary school children in Edo State on Lassa fever and its implications for prevention and control. West. Afr. J. Med. 34, 101–107 (2015).CAS 
    PubMed 

    Google Scholar 
    Saez, A. M. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829 (2018).Article 

    Google Scholar 
    Ejembi, J. et al. Contact tracing in Lassa fever outbreak response, an effective strategy for control? Online J. Public Health Inf. 11, e378 (2019).
    Google Scholar 
    ECHO Flash List. https://erccportal.jrc.ec.europa.eu/ECHO-Flash/ECHO-Flash-List/yy/2018/mm/2.Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology https://doi.org/10.1038/s41564-019-0376-y (2019).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Dhingra, M. S. et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 5, e19571 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006).Article 

    Google Scholar 
    Lange, S. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dyn. 9, 627–645 (2018).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).ADS 
    Article 

    Google Scholar 
    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).ADS 
    Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 1–65 https://doi.org/10.5194/gmd-2019-360 (2020)Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).ADS 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. https://doi.org/10.1093/sysbio/syz020 (2019).Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Landscape genetic analyses of Cervus elaphus and Sus scrofa: comparative study and analytical developments. Heredity 123, 228–241 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylogeographic and phylodynamic approaches to epidemiological hypothesis testing. bioRxiv https://doi.org/10.1101/788059 (2020).Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform 17, 1–12 (2016).Article 

    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 
    Article 

    Google Scholar 
    Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. R. Soc. Lond. B 284, 20170919 (2017).
    Google Scholar 
    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Hardship at birth alters the impact of climate change on a long-lived predator

    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Field, C.B. et al. eds) vol. 9781107025 109–230 (Cambridge University Press, 2012).Tan, X., Gan, T. Y. & Horton, D. E. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Glob. Chang. Biol. 24, 4696–4708 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000).ADS 
    Article 

    Google Scholar 
    Van de Pol, M., Jenouvrier, S., Cornelissen, J. H. C. & Visser, M. E. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–16 (2017).Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).Article 

    Google Scholar 
    Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–10 (2017).Sergio, F., Blas, J. & Hiraldo, F. Animal responses to natural disturbance and climate extremes: a review. Glob. Planet. Change. 161, 28–40 (2018).ADS 
    Article 

    Google Scholar 
    Aghakouchak, A. et al. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    Boyce, M. S. et al. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 
    Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645 (2008).Article 

    Google Scholar 
    Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1000–1001 (2007).Article 
    CAS 

    Google Scholar 
    Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).PubMed 
    Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Environmental variability, life-history covariation and cohort effects in the red-billed chough Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 72, 36–46 (2003).Article 

    Google Scholar 
    Hamel, S., Gaillard, J. M., Festa-Bianchet, M. & Côté, S. D. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90, 1981–1995 (2009).PubMed 
    Article 

    Google Scholar 
    Kordosky, J. R. et al. Landscape of stress: tree mortality influences physiological stress and survival in a native mesocarnivore. PLoS One. 16, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).PubMed 
    Article 

    Google Scholar 
    Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taborsky, B. The influence of juvenile and adult environments on life-history trajectories. Proc. R. Soc. B Biol. Sci. 273, 741–750 (2006).Article 

    Google Scholar 
    Hayward, A. D., Rickard, I. J. & Lummaa, V. Influence of early-life nutrition on mortality and reproductive success during a subsequent famine in a preindustrial population. Proc. Natl Acad. Sci. 110, 13886–13891 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A. & Spencer, H. G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20, 527–533 (2005).PubMed 
    Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. R. Soc. B Biol. Sci. 272, 671–677 (2005).Article 

    Google Scholar 
    Grafen, A. On the uses of data on lifetime reproductive success. in Reproductive Success (ed. T. H. Clutton-Brock) 454–471 (Chicago University Press, 1988).Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape lifehistory traits and population dynamics. Ecol. Monogr. 85, 605–623 (2015).Article 

    Google Scholar 
    McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Douhard, M. et al. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proc. R. Soc. B Biol. Sci. 281, 1–8 (2014).Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66 (2014).PubMed 
    Article 

    Google Scholar 
    Zimmer, C., Larriva, M., Boogert, N. J. & Spencer, K. A. Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci. Rep. 7, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Krause, E. T., Honarmand, M., Wetzel, J. & Naguib, M. Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female zebra finches. PLoS One. 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Martin, T. G. et al. Acting fast helps avoid extinction. Conserv. Lett. 5, 274–280 (2012).Article 

    Google Scholar 
    Lewontin, R. C. & Cohen, D. On population growth in a randomly varying environment. Proc. Natl Acad. Sci. 62, 1056–1060 (1969).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sæther, B. E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).Article 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. Am. Nat. 163, 579–590 (2004).PubMed 
    Article 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130, 1346–1358 (2021).Article 

    Google Scholar 
    Bakker, V. J., Doak, D. F. & Ferrara, F. J. Understanding extinction risk and resilience in an extremely small population facing climate and ecosystem change. Ecosphere 12, 1–20 (2021).Beissinger, S. R. Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol. Appl. 5, 618–631 (1995).Article 

    Google Scholar 
    Simberloff, D. Small and declining populations. in Conservation science and action (ed. Sutherland, W. J.) 116–134 (Blackwell, 1998).Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ. 2015, 1–20 (2015).
    Google Scholar 
    Whitfield, S. M. et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc. Natl Acad. Sci. 104, 8352–8356 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, (2017).González, L. M., Margalida, A., Sánchez, R. & Oria, J. Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol. Conserv. 129, 477–486 (129AD).García, F. & Marín, C. Doñana: water and biosphere. (Spanish Ministry of the Environment, 2006).Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Schmidt, G. et al. The state of water in Doñana: an evaluation of the state of the water and of the ecosystems of the protected space. (WWF/Adena, Madrid, 2017).Camacho, C. et al. Groundwater extraction poses extreme threat to Doñana World Heritage Site. Nat. Ecol. Evol. 6, 654–655 (2022).Navedo, J. G., Piersma, T., Figuerola, J. & Vansteelant, W. Spain’s Doñana World Heritage Site in danger. Science 376, 144 (2022).ADS 
    PubMed 
    Article 

    Google Scholar 
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change. 63, 90–104 (2008).ADS 
    Article 

    Google Scholar 
    Goubanova, K. & Li, L. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob. Planet. Change 57, 27–42 (2007).ADS 
    Article 

    Google Scholar 
    Hertig, E. & Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob. Planet. Change. 151, 36–48 (2017).ADS 
    Article 

    Google Scholar 
    Bustamante, J., Pacios, F., Díaz-Delgado, R. & Aragonés, D. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 90, 2219–2225 (2009).Article 

    Google Scholar 
    Veiga, J. P. & Hiraldo, F. Food habits and the survival and growth of nestlings in two sympatric kites (Milvus milvus and Milvus migrans). Ecography (Cop.). 13, 62–71 (1990).Article 

    Google Scholar 
    Viñuela, J. & Bustamante, J. Effect of growth and hatching asynchrony on the fledging age of Black and Red Kites. Auk 109, 748–757 (1992).Article 

    Google Scholar 
    Newton, I., Davis, P. E. & Davis, J. E. Age of first breeding, dispersal and survival of Red Kites Milvus milvus in Wales. Ibis (Lond. 1859). 131, 16–21 (1989).Article 

    Google Scholar 
    Katzenberger, J., Gottschalk, E., Balkenhol, N. & Waltert, M. Density-dependent age of first reproduction as a key factor for population dynamics: stable breeding populations mask strong floater declines in a long-lived raptor. Anim. Conserv. 24, 862–875 (2021).Article 

    Google Scholar 
    Sergio, F., Tavecchia, G., Blas, J., Tanferna, A. & Hiraldo, F. Demographic modeling to fine-tune conservation targets: importance of pre-adults for the decline of an endangered raptor. Ecol. Appl. 31, 1–12 (2021).Article 

    Google Scholar 
    Sergio, F. et al. Protected areas under pressure: decline, redistribution, local eradication and projected extinction of a threatened predator, the red kite, in Doñana National Park, Spain. Endanger. Species Res. 38, 189–204 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Preservation of wide-ranging top predators by site-protection: black and red kites in Doñana National Park. Biol. Conserv. 125, 11–21 (2005).Article 

    Google Scholar 
    Sofaer, H. R., Chapman, P. L., Sillett, T. S. & Ghalambor, C. K. Advantages of nonlinear mixed models for fitting avian growth curves. J. Avian Biol. 44, 469–478 (2013).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Anderson, D. R. Model based inference in the life sciences: a primer on evidence (Springer, 2008).White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird. Study. 46, S120–S139 (1999).Article 

    Google Scholar 
    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).Article 

    Google Scholar 
    Caswell, H. Matrix population models (Sinauer, 2001).Ballerini, T., Tavecchia, G., Pezzo, F., Jenouvrier, S. & Olmastroni, S. Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea. Front. Ecol. Evol. 3, 1–11 (2015).Bateson, P. et al. Developmental plasticity and human health. Nature 430, 419–421 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    From the archive: ancient poisonous honey, and museum photography

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study

    Case studyThe experimental setup for the field studies that provided the bacterial population and weather data used here was previously described by Belias et al. [9]. Briefly, baby spinach and lettuce plants were spray-inoculated with E. coli and S. enterica (Salmonella) onto field plots established in Davis, CA (University of California, Plant Sciences Field Research Facility); Freeville, NY (Homer C. Thompson Research Farm, Cornell University); and Murcia, Spain (La Matanza Research Farm). The spinach and lettuce varieties were selected based on their suitability for baby leaf production: lettuce var. Tamarindo, and spinach var. Acadia F1 and Seaside F1. Four replicate trials at different times of the regional growing season were carried out per location. The plants were spray-inoculated with a 104 CFU/mL cocktail of rifampin-resistant strains of commensal E. coli and attenuated S. enterica serovar Typhimurium (Salmonella), and samples were collected for bacterial cell quantification by plate counts on selective and differential media at 0, 4, 8, 24, 48, 72 and 96 h post-inoculation. Concurrent with leaf sample collection, weather variables (temperature, relative humidity (RH), solar radiation intensity, and wind velocity) were recorded hourly for the respective field locations. The hourly dew point (DP) was calculated as a function of both the hourly temperature and RH.Model for persister formation on plantsMathematical modeling to characterize the switch rate from a non-persister bacterial cell (hereafter termed “normal cell”) to a persister cell in the phyllosphere under laboratory conditions was performed as described in our previously published study [24]. Briefly, persister cell fractions were quantified in culturable EcO157 populations after inoculation onto young lettuce plants cultivated in plant growth chambers. Persister cells recovered from the lettuce phyllosphere were identified using the antibiotic lysing method [23]. The greatest persister fraction in the EcO157 population on lettuce in our laboratory investigation above was observed during population decline on leaf surfaces of plants left to dry after inoculation. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on these data [24]. Importantly, our laboratory conditions mimicked inoculation conditions in which E. coli arrived via water on leaves, the surfaces of which progressively dried like under prevailing weather conditions in the field.Based on the main dynamic observed in the field study data [9] and building on our previous study [24], we assumed that the total enteric pathogen population is composed of (i) non-persister (normal) cells consisting of two sub-populations, characterized by fast (n1) (CFU/100g) and slow (n2) (CFU/100g) decay, and (ii) the persister population, leading to the following model from Munther et al. [24]:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1 + beta _dleft( {1 – sigma } right)hat p,$$
    (1a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2 – alpha _dn_2 + beta _dsigma hat p,$$
    (1b)
    $$frac{{dhat p}}{{dt}} = – mu _{hat p}hat p – beta _dhat p + alpha _dleft( {n_1 + n_2} right),$$
    (1c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (1d)
    where (theta _{n_i})(1/h) is the death rate of the normal cells (subscript i = 1 for fast and i = 2 for slow), (hat p) (CFU/100 g) represents the persister cell population at time t (h), (mu _{hat p}) (1/h) reflects the persister population inactivation rate, αd (1/h) is the switch rate from normal to persister state, βd (1/h) is the switch rate from persister to the normal state, and σ ∈ (0,1) is a constant, describing the fraction of persister cells switching back to the normal, slowly decaying state. Equation (1a) and (1b) reflect the assumption that times between switching states are exponentially distributed, using the expected values (frac{1}{{alpha _d}}) (h) and (frac{1}{{beta _d}}) (h) of the respective distributions.Lacking data for potential persister populations from the field trials, we assumed the persister population is a fraction 1  > k  > 0 of the tail population, as observed in Munther et al. [24]. Regarding the model above, this implies that (hat p approx kn_2) for (t ge t^ ast), where (t^ ast approx frac{1}{{theta _{n_1}}}) (the time scale of survival for the fast-decaying population (n1)). In accord with bi-phasic decay, for (t ge t^ ast), the main dynamics for slow decaying population (n2) is dictated by (- theta _{n_2}n_2) in Eq. (1b). This suggests that the effective switch rates from n2 to (hat p) and from (hat p) back to n2 balance, so that (beta _dsigma hat p approx alpha _dn_2) in Eq. (1b). Following these ideas, we simplified the model in Eq. (1a)–(1d) to:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1,$$
    (2a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2,$$
    (2b)
    $$frac{{dhat p}}{{dt}} = – theta _{hat p}hat p + alpha _dn_1,$$
    (2c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (2d)
    where we ignored (beta _dleft( {1 – sigma } right)hat p) in (1a) since the decay rate ((theta _{n_1})) dominates. Also, by setting (theta _{hat p} = mu _{hat p} + beta _d(1 – sigma )), and using (beta _dsigma hat p approx alpha _dn_2), we obtained Eq. (2c). Furthermore, because (hat p approx kn_2) for (t ge t^ ast), (theta _{hat p} approx) (theta _{n_2}).In particular, the assumption that (hat p approx kn_2) for (t ge t^ ast) characterizes the switch rate from normal to persister cells, αd, as (alpha _d approx kalpha), where α is a hypothetical switch rate assuming that the population is composed only of fast decaying normal cells (n1) and a hypothetical persister cell population (p). In this case, the hypothetical population p starts small at (widehat {p_0}), initially increases due to switching from population n1 and then slowly decays as the n1 population is effectively inactivated (i.e., the tail of the total population is comprised entirely of p). From this perspective we utilized the following equations:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha n_1,$$
    (3a)
    $$frac{{dp}}{{dt}} = alpha n_1 – theta _pp.$$
    (3b)
    $$n_1left( 0 right) = n_0,, pleft( 0 right) = widehat {p_0},$$
    (3c)
    For mathematical justification regarding the relationship (alpha _d approx kalpha), please see the appendix (Supplementary Information).The utility of the relationship (alpha _d approx kalpha), is twofold. First, we used model fitting (Eqs. (3a)–(3c)) to determine α from the respective field study data [9]. Note that using Eqs. (3a)–(3c), we actually fit for (theta _{n_1}), θp, and α using the field study data [9]. Please reference the “model fitting procedure” section as well as the appendix for details concerning the unique determination of the aforementioned parameters, i.e., the practical identifiability of these parameters, and justification regarding the legitimacy of measured tail populations relative to the respective field trial data [9]. Second, because we wanted to examine Spearman’s correlations (corr) between αd and various weather factors, given a particular weather factor (vec w) across trials (i = 1, ldots ,n), let k be the maximum persister fraction (of the tail) across these n trials, that is, for each i, we have (alpha _{d_i} approx k_ialpha _i), so (alpha _{d_i} lesssim kalpha _i). Thus kαi represents the maximum persister switch rate for each trial i, and since corr((kvec alpha ,vec w)) =corr((vec alpha ,vec w)), we conducted the correlation analysis with the fitted α values in lieu of the actual persister switch rate αd.The assumptions behind our approach are summarized below:

    A.

    The tails of pathogen populations surviving on plants in the field study [9] are comprised of some fraction k ∈(0,1) of persister cells since their decay rate is quite small and they remain culturable.

    B.

    Because (alpha _d approx kalpha), we hereafter utilize α from model (3a)–(3c) as the representative persister switch rate.

    C.

    Given that the experimental context [24] for modeling persister switching occurred during population decline, we only employed trials from Belias et al. [9] that exhibited bi-phasic decay. Namely, we did not include trials in which significant bacterial growth was observed at the time scale of successive data points (the time scale in the field study is on the order of 4–16 h for the 1st day and then 24 h thereafter.)

    D.

    The switch rate from normal to persister cell is on average a monotonic function of some measure of environmental stress.

    Based on assumptions A–D above, we applied the model (3a)–(3c) to published pathogen population size and weather data from four replicate trials in Spain, two in California, and one in NY [9]. More specifically, we fit model (3a)–(3c) to the respective population data in order to:

    1.

    determine values for the maximum switch rate α relative to the produce/bacteria type at the field scale,

    2.

    describe the correlative relationship between α and weather factors in the respective field trials.

    Model fitting procedureIn model (3a)–(3c) above, we supposed dp/dtt = 0  > 0, i.e., we assumed that bacteria experience stress from the change in conditions from culture growth and inoculum suspension preparation to those on the plant surface and therefore, that persister formation increases in the phyllosphere immediately following inoculation. The report that EcO157 persister formation increases as early as 1 h after inoculation into leaf wash water [23], which could be considered as a proxy for the average oligotrophic environment that bacterial cells experience after spray inoculation onto leaves or through irrigation in the field, supports this assumption. To avoid identifiability issues between the initial persister population (widehat {p_0}) and α regarding the model fits above, we assumed that (widehat {p_0})= 1 ((widehat {p_0}) = 0 gives the same results). Thus, the initial persister population at inoculation is at its lowest, an assumption supported by Munther et al. [24], who observed an average fraction of EcO157 persisters of 0.0043% in the inoculum population. This imparts the largest possible switch rate, α, onto the population, corresponding to the largest and hence most conservative food safety risk.Let yk (CFU/100 g of produce) be the average bacteria population measurement at time tk (h) and let Pk,X (CFU/100 g of produce) represent the model prediction (total population) at time tk relative to the parameter vector (X = [ {theta _{n_1} , theta_p , alpha } ]^T). Following Eqs. (3a) and (3b), this means that ({{{{{{{mathrm{P}}}}}}}}_{k,X} = n_1left( {t_k,X} right) + p(t_k,X)). Since the population data spans multiple orders of magnitude, we calculated the residuals as (e_{k,X} = log _{10}y_k – log _{10}P_{k,X}). To determine the optimal model fit (see the appendix for details regarding a priori bounds on parameter ranges), we utilized the fminsearch function in MATLAB (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United States) to determine the parameter vector X that minimizes the 2-norm of the following function F:$$| | Fleft( X right) | |_2 = left( {mathop {sum }limits_k e_{k,X}^2} right)^{frac{1}{2}}$$Correlation analysisTo provide a statistical foundation from which to relate the switch rate α and measured weather factors, we utilized Spearman and partial Spearman correlation. First, we calculated the Spearman correlation coefficients between α and each of the respective factors: 8-h average of temperature, RH, solar radiation, wind speed post-inoculation, and then we calculated the partial Spearman correlation coefficients for each respective weather factor, while controlling for the other three factors and simultaneously controlling for produce type (using lettuce =1 and spinach =0) (For details regarding why 8-h weather variables were used, see the “model fitting” subsection of the results.) The correlation coefficients were determined using the corr and partialcorr functions in MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA). Considering the significant association of Salmonella α with RH and temperature, we also examined the correlation between α and dew point. Figure 1 presents a logical flow of the statistical analysis. Partial correlations with a P value of less than 0.05 were deemed significant. If the 8-h average of a weather factor exhibited a significant correlation with the switch rate, the 8-h minimum and range of the weather factor were also tested.Fig. 1: Logical flow diagram for statistical analysis.Factors in Step 1: UV (average ultraviolet radiation intensity), RH (average air relative humidity), Wind (average wind speed), and Temp (average air temperature). All weather data used in the statistical analysis were obtained over 8 h post-inoculation of E. coli and Salmonella onto lettuce and spinach leaves in the field.Full size image More