More stories

  • in

    Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians

    Pax, F. Grundzüge der Pflanzenverbreitung in den Karpathen. 1–342 (W. Engelmann, 1898). https://doi.org/10.5962/bhl.title.20419.Popov [Попов], M. G. [М. Г.]. Ocherk rastitel’nosti i flory Karpat [Очерк растительности и флоры Карпат]. vol. 5 (XIII) (Izdatel’stvo Moskovskogo Obshchestva Ispytateley Prirody [Издательство Московского Общества Испытателей Природы], 1949).Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559 (2016).Article 

    Google Scholar 
    Breman, E. et al. Conserving the endemic flora of the Carpathian Region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst. Evol. 306, 59 (2020).Article 

    Google Scholar 
    Bálint, M. et al. The Carpathians as a Major Diversity Hotspot in Europe. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds. Zachos, F. E. & Habel, J. C.) 189–205 (Springer, 2011). https://doi.org/10.1007/978-3-642-20992-5_11.Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurdu, B. et al. Patterns of plant endemism in the Romanian Carpathians (South-Eastern Carpathians). Contrib. Bot. 47, 25–38 (2012).
    Google Scholar 
    Pawłowski, B. Remarques sur l’endemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21, 181–243 (1970).Article 

    Google Scholar 
    Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 373–389 (2011).Hendrych, R. Primula vulgaris in der Slowakei und in den umliegenden Gebieten. Preslia Praha 68, 135–156 (1996).
    Google Scholar 
    Hendrych, R. & Hendrychová, H. Preliminary report on the Dacian migroelement in the flora of Slovakia. Preslia Praha 51, 313–332 (1979).
    Google Scholar 
    Sramkó, G. „Dunántúli” közép-dunai flóraválasztós fajok a Matricum flórájában. KITAIBELIA 9, 31–56 (2004).
    Google Scholar 
    Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28, 583–594 (2018).Kliment, J., Turis, P. & Janišová, M. Taxa of vascular plants endemic to the Carpathian Mts. Preslia -Praha- 88, 19–76 (2016).
    Google Scholar 
    Konowalik, K. Reconstructing reticulate relationships in the polyploid complex of Leucanthemum Mill. (Compositae, Anthemideae). (Fakultät für Biologie und Vorklinische Medizin, Universität Regensburg, 2014).Konowalik, K., Wagner, F., Tomasello, S., Vogt, R. & Oberprieler, C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92, 308–328 (2015).Wagner, F. et al. ‘At the crossroads towards polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223, 2039–2053 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, F., Härtl, S., Vogt, R. & Oberprieler, C. “Fix Me Another Marguerite!”: Species delimitation in a group of intensively hybridizing lineages of ox-eye daisies (Leucanthemum Mill., Compositae-Anthemideae). Mol. Ecol. 26, 4260–4283 (2017).Piękoś-Mirkowa, H., Mirek, Z. & Miechowka, A. Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. Pol. Bot. Stud. 12, (1996).Zelený, V. Taxonomisch-chorologische Studie über die Art Leucanthemum rotundifolium (W. K.) DC. Folia Geobot. 5, 369–400 (1970).Piękoś, H. Nowy mieszaniec między Leucanthemum rotundifolium (W. et K.) DC. a L. vulgare Lam. var. alpicolum Gremli – Hybrida nova inter Leucanthemum rotundifolium (W. et K.) DC. et L. vulgare Lam. var. alpicolum Gremli. Fragm. Florist. Geobot. 16, 319–326 (1970).Rogalski, M., do Nascimento Vieira, L., Fraga, H. P. & Guerra, M. P. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, (2015).Greiner, R., Vogt, R. & Oberprieler, C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann. Bot. 111, 1109–1123 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberprieler, C., Konowalik, K., Fackelmann, A. & Vogt, R. Polyploid speciation across a suture zone: phylogeography and species delimitation in S French Leucanthemum Mill. representatives (Compositae–Anthemideae). Plant Syst. Evol. 304, 1141–1155 (2018).Oberprieler, C., Greiner, R., Konowalik, K. & Vogt, R. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling. Mol. Phylogenet. Evol. 70, 478–491 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alexander, P. J., Rajanikanth, G., Bacon, C. D. & Bailey, C. D. Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol. Ecol. Notes 7, 5–9 (2007).CAS 
    Article 

    Google Scholar 
    Sang, T., Crawford, D. & Stuessy, T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheunert, A., Dorfner, M., Lingl, T. & Oberprieler, C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE 15, e0226234 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98 (1999).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformatics 4, 65–69 (2005).PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).CAS 
    Article 

    Google Scholar 
    Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K., Tao, Q. & Kumar, S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. 109, 19333–19338 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tao, Q., Tamura, K., Mello, B. & Kumar, S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280–290 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).Mello, B., Tao, Q., Barba-Montoya, J. & Kumar, S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol. Ecol. Resour. 21, 122–136 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, wei-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. in Proceedings of the 16th International Parallel and Distributed Processing Symposium 311 (IEEE Computer Society, 2002).Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Y., Blair, C. & He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ali, S. S., Yu, Y., Pfosser, M. & Wetschnig, W. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann. Bot. 109, 95–107 (2012).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11, 1482 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamner, B., Frasco, M. & LeDell, E. Metrics: Evaluation metrics for machine learning (2018).Ripley, B. & Venables, W. nnet: Feed-forward neural networks and multinomial log-linear models. (2020).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2020).Therneau, T., Atkinson, B., port, B. R. (producer of the initial R. & maintainer 1999–2017). rpart: Recursive Partitioning and Regression Trees. (2019).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. (2017).Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Jasiewicz, A. Rośliny naczyniowe Bieszczadów Zachodnich [The Vascular Plants of the Western Bieszczady Mts. (East Carpathians)]. Monogr. Bot. 20, 1–340 (1965).Kornaś, J. Charakterystyka geobotaniczna Gorców [Caractéristique géobotanique des Gorces (Karpathes Occidentales Polonaises)]. Monogr. Bot. 3, 3–230 (1955).Article 

    Google Scholar 
    de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37, 637–647 (2014).Article 

    Google Scholar 
    Sobral-Souza, T., Lima-Ribeiro, M. S. & Solferini, V. N. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol. Ecol. 29, 643–655 (2015).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes (2018) 10.5061/DRYAD.KD1D4.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Wing, M. K. C. from J. et al. caret: Classification and regression training. (2019).Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable importance. Ecography 43, 1801–1813 (2020).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A. & Ram, K. spatialEco: Spatial analysis and modelling utilities. (2021).Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).Article 

    Google Scholar 
    Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Model. 448, 109502 (2021).Article 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).R Core Team. R: A language and environment for statistical computing. (2019).QGIS Development Team. QGIS geographic information system. (2019).Frajman, B. & Oxelman, B. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43, 140–155 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronikier, M., Cieślak, E. & Korbecka, G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol. Ecol. 17, 1763–1775 (2008).Ehrich, D. et al. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol. Ecol. 16, 2542–2559 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Šrámková, G. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri—a montane species from Central Europe. Plant Syst. Evol. 305, 885–898 (2019).Article 

    Google Scholar 
    Birks & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Jarčuška, B., Kaňuch, P., Naďo, L. & Krištín, A. Quantitative biogeography of Orthoptera does not support classical qualitative regionalization of the Carpathian Mountains. Biol. J. Linn. Soc. 128, 887–900 (2019).Article 

    Google Scholar 
    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 71–76 (2014).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 (2005).
    Google Scholar  More

  • in

    Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi

    Analysis of contents of heavy metals in wasteland soilThe test results show (Table 5) that the contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu in the surface soil within Shigetai Coal Mine vary from 0.043 to 0.255, 0.44 to 2.23, 2.66 to 18.40, 11.80 to 42.80, 40.50 to 118.60, 18.90 to 70.10, 4.31 to 28.10, 4.96 to 46.25 mg/kg, respectively; the average contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu are 0.128, 1.03, 4.73, 23.08, 76.22, 46.94, 16.11 and 12.10 mg/kg, respectively. The average contents of Hg, Cd, Pb and Cr in soil within the research area are 2.03, 1.36, 1.11 and 1.23 times of the soil background values in Shaanxi Province, respectively. The average contents of As, Zn and Cu are lower than the soil background value in Shaanxi Province, but the maximum contents of these three elements are 1.65, 1.01 and 2.16 times of the soil background values in Shaanxi Province, respectively. It is reported that the average concentration of lead in agricultural soil affected by coal mines is relatively high (433 mg kg−1)38. Lead is usually related to minerals in coal and occurs mainly in the form of sulfide such as PbS and PbSe39. In addition, aluminosilicate and carbonate also contain lead40. Chromium is a non-volatile element, which is related to aluminosilicate minerals41. In the mining process, chromium may be accumulated in coal, gangue or other tailings, and then enter the soil or water body through rain leaching42.Table 5 Statistics of contents of heavy metals in wasteland soil (n = 79).Full size tableThe coefficient of variation (CV) of Hg and Cd contents in soil within the research area is 0.050 and 0.37, respectively, with moderate variation, indicating that the content of these two heavy metals is less affected by the external factors; the coefficient of variation (CV) of As, Pb, Cr, Zn, Ni and Cu contents is 2.81, 7.46, 18.00, 13.51, 5.44 and 5.64, respectively, with strong variation (CV  > 0.50)43, indicating that the content of these eight heavy metals may be affected by some local pollution sources. The skewness coefficient (SK) ranges from − 3 to 3, and the larger its absolute value, the greater its skewness. When SK  > 0, it is positive skewness; when SK  More

  • in

    Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia

    Fauna, culture and chronology datasetsA geo-referenced dataset of chronometric dates covering the late MIS 3 (55–30 kyr cal bp) was compiled from the literature (dataset 1). The dataset included 363 radiocarbon, thermoluminescence, optically stimulated luminescence and uranium series dates obtained from 62 archaeological sites and seven palaeontological sites. These chronological determinations were obtained from ten palaeontological levels and 138 archaeological levels. The archaeological levels were culturally attributed to the Mousterian (n = 75), Châtelperronian (n = 6) and Aurignacian (n = 57) technocomplexes. A number of issues can potentially hamper the chronological assessment of Palaeolithic technocomplexes from radiocarbon dates, such as pretreatment protocols that do not remove sufficient contaminants or the quality of the bone collagen extracted. Moreover, discrepancies in cultural attributions or stratigraphic inconsistencies are commonly detected in Palaeolithic archaeology. Information regarding the quality of date determinations and cultural attribution or stratigraphic issues is provided in the Supplementary Information.Our dataset also included the presence of herbivore species recovered from each archaeo-palaeontological site (hereafter referred to as local faunal assemblages (LFAs)), their body masses and their chronology. The mean body mass of both sexes, for each species, was obtained from the PHYLACINE database53 and used in the macroecological modelling approach described below (see ‘Carrying capacity of herbivores’). For visual representation purposes, the herbivore species were grouped into four weight categories: small (500 kg). The chronology of the occurrence of each herbivore species was assumed to be the same as the dated archaeo-palaeontological layer where the species remains were recovered. Thus, to estimate the chronological range of each species in each region, all radiocarbon determinations were calibrated with the IntCal20 calibration curve54 and OxCAL4.2 software55. The BAMs were run to compute the upper and lower chronological boundaries at a CI of 95.4% of each LFA (see ‘Chronological assessment’ for more details). One of the purposes of the current study was to estimate the potential fluctuations in herbivore biomass during the stadial and interstadial periods of the late MIS 3. Accordingly, the time spans of the LFAs were classified into the discrete GS and GI phases provided by Rasmussen et al.51.Geographic settingsThe Iberian Peninsula locates at the southwestern edge of Europe (Fig. 1). It constitutes a large geographic area that exhibits a remarkable diversity of ecosystems, climates and landscapes. Both now and in the past, altitudinal, latitudinal and oceanic gradients affected the conformation of two biogeographical macroregions with different flora and fauna species pools: the Eurosiberian and Mediterranean regions13,46. In the north, along the Pyrenees and Cantabrian strip, the Eurosiberian region is characterized by oceanic influence and mild temperatures in the present day, whereas the Mediterranean region features drier summers and milder winters (Fig. 1). Between the Eurosiberian and Mediterranean regions, there is a transitional area termed Submediterranean or Supramediterranean. Lastly, the Mediterranean region is divided into two distinctive bioclimatic belts: (1) the Thermomediterranean region, located at lower latitudes, with high evapotranspiration rates and affected by its proximity to the coast; and (2) the Mesomediterranean region, with lower temperatures and wetter conditions (Fig. 1).Previous studies have shown that zoocoenosis and phytocenosis differed between these macroregions in the Pleistocene13,46. However, flora and fauna distributions changed during the stadial–interstadial cycles in the Iberian Peninsula, which suggests potential alterations in the boundaries of these biogeographical regions. The modelling approach used in this study to estimate the biomass of primary consumers is dependent on the reconstructed NPP and the herbivore guild structure in each biogeographical region. To test the suitability of the present-day biogeographical demarcations of the Iberian Peninsula during MIS 3, we assessed whether the temporal trends of NPP and the composition of each herbivore palaeocommunity differed between these biogeographical regions during the MUPT.Chouakria and Nagabhusan56 proposed a dissimilarity index to compare time series data by taking into consideration the proximity of values and the temporal correlation of the time series:$${rm{CORT}}(S_1,S_2) = frac{{mathop {sum}nolimits_{i = 1}^{p – 1} {left( {u_{left( {i + 1} right)} – u_i} right)} (v_{(i + 1)} – v_i)}}{{sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(u_{(i + 1)} – u_i)^2} } sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(v_{(i + 1)} – v)^2} } }}$$
    (1)
    where S1 and S2 are the time series of data, u and v represent the values of S1 and S2, respectively, and p is the length of values of each time series. CORT(S1, S2) belongs to the interval (−1,1). The value CORT(S1, S2) = 1 indicates that in any observed period (ti, ti+1), the values of the sequence S1 and those of S2 increase or decrease at the same rate, whereas CORT = −1 indicates that when S1 increases, S2 decreases or vice versa. Lastly, CORT(S1, S2) = 0 indicates that the observed trends in S1 are independent of those observed in S2. To complement this approach by considering not only the temporal correlation between each pair of time series but also the proximity between the raw values, these authors proposed an adaptive tuning function defined as follows:$$d{rm{CORT}}left( {S_1,S_2} right) = fleft({{rm{CORT}}left( {S_1,S_2} right)} right)times dleft( {S_1,S_2} right)$$
    (2)
    where$$fleft( x right) = frac{2}{{1 + exp left( {k,x} right)}},k ge 0$$
    (3)
    In this study, k was 2, meaning that the behaviour contribution was 76% and the contribution of the proximity between values was 24%57. Hence, f(x) modulates a conventional pairwise raw data distance (d(S1,S2)) according to the observed temporal correlation56. Consequently, dCORT adjusts the degree of similarity between each pair of observations according to the temporal correlation and the proximity between values. This function was used to compare the reconstructed NPP between biogeographical regions during MIS 3 in the Iberian Peninsula. However, two different biogeographical regions could have experienced similar evolutionary trends in their NPP, even though their biota composition was different. Therefore, this analysis was complemented with a JSI to assess whether the reconstructed herbivore species composition in each palaeocommunity differed among biogeographical regions during the late MIS 3. The JSI was based on presence–absence data and was calculated as follows:$${rm{JSI}} = frac{c}{{(a + b + c)}}$$
    (4)
    where c is the number of shared species in both regions and a and b are the numbers of species that were only present in one of the biogeographical regions. Therefore, the higher the value the more similar the palaeocommunities of both regions were.Chronological assessmentPivotal to any hypothesis of Neanderthal replacement patterns by AMHs is the chronology of that population turnover. To this end, we used three different approaches to provide greater confidence in the results: BAMs, the OLE model and SPD of archaeological assemblages. As detailed below, each of these approaches provides complementary information about the MUPT.First, we built a set of BAMs for the Mousterian, Châtelperronian and Aurignacian technocomplexes in each region during the MIS 3. As stated above, we compiled the available radiocarbon dates for Iberia between 55 and 30 kyr cal bp. However, not all dates or levels were included in the Bayesian chronology models. Radiocarbon determinations obtained from shell remains were incorporated in the dataset (dataset 1); however, the local variation of the reservoir age was unknown from 55 to 30 kyr bp. Because of uncertainties related to marine reservoir offsets, all BAMs that incorporated dates from marine shells were run twice: including and excluding these dates. All of the archaeological levels with cultural attribution issues or stratigraphic inconsistencies were excluded. The Supplementary Note provides a detailed description of the sites, levels and dates excluded and their justification. All BAMs were built for each technocomplex using the OxCAL4.2 software55 and IntCal20 calibration curve54.Bayesian chronology models were built for each archaeological and palaeontological level. Then, the dates associated with each technocomplex were grouped within a single phase to determine each culture’s regional appearance or disappearance. Our interest was not focused on the chronological duration of the Mousterian, Châtelperronian and Aurignacian cultures, but on the probability distribution function of the temporal boundaries of these cultures in each region. Thus, this chronological assessment aims to provide an updated chronological frame for Neanderthal replacement by AMHs in Iberia. For this reason, we did not differentiate between proto- and early Aurignacian cultures, since both are attributed to AMHs.In each BAM, we inserted into the same sequence the radiocarbon dates associated with a given technocomplex within a start and end boundary to bracket each culture, which allowed us to determine the probability distribution function for the beginning and end moment of each cultural phase6. The resolution of all models was set at 20 years. We used a t-type outlier model with an initial 5% probability for each determination, but when more than one radiocarbon date was obtained from the same bone remain, we used an s-type outlier model and the combine function. The thermoluminescence dating likelihoods were included in the models, together with their associated 1σ uncertainty ranges. When dates with low agreement ( More

  • in

    Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).
    Google Scholar 
    Karl, D. M. et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Res. Part II Top. Stud. Oceanogr. 43, 539–568 (1996).CAS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Quay, P. D. The subtropical ocean’s biological carbon pump determined from O2 and DIC/DI13C tracers. Geophys. Res. Lett. 46, 5361–5368 (2019).
    Google Scholar 
    Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, 1–22 (2022).
    Google Scholar 
    Chávez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger? Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 
    Signorini, S. R., Franz, B. A. & McClain, C. R. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1–11 (2015).
    Google Scholar 
    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).CAS 

    Google Scholar 
    Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).CAS 

    Google Scholar 
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).
    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).CAS 

    Google Scholar 
    Behrenfeld, M. Uncertain future for ocean algae. Nat. Clim. Chang. 1, 33–34 (2011).CAS 

    Google Scholar 
    Flombaum, P. & Martiny, A. C. Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnol. Oceanogr. 66, 4171–4181 (2021).
    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 10, 1063–1085 (1972).
    Google Scholar 
    Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature. Rev. Microbiol. 5, 813–819 (2007).CAS 

    Google Scholar 
    van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–8 (2020).
    Google Scholar 
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    Google Scholar 
    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 21, 1025–1040 (2015).PubMed 

    Google Scholar 
    Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Skau, L. F., Andersen, T., Thrane, J.-E. & Hessen, D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 5, e3743 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fernández‐González, C. et al. Effects of temperature and nutrient supply on resource allocation, photosynthetic strategy and metabolic rates of Synechococcus sp. J. Phycol. 56, 818–829 (2020).PubMed 

    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2020).
    Google Scholar 
    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).PubMed 

    Google Scholar 
    Davey, M. et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53, 1722–1733 (2008).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).CAS 
    PubMed 

    Google Scholar 
    Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).CAS 
    PubMed 

    Google Scholar 
    Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. G. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Res. Part I Oceanogr. Res. Pap. 45, 1339–1355 (1998).
    Google Scholar 
    Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
    Google Scholar 
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
    Google Scholar 
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).CAS 

    Google Scholar 
    Visintini, N., Martiny, A. C. & Flombaum, P. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnol. Oceanogr. Lett. 6, 207–215 (2021).
    Google Scholar 
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    Google Scholar 
    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Google Scholar 
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 

    Google Scholar 
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).CAS 

    Google Scholar 
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    Berthelot, H., Duhamel, S., L’Helguen, S., Maguer, J. F. & Cassar, N. Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean. Limnol. Oceanogr. 66, 3682–3696 (2021).CAS 

    Google Scholar 
    Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).
    Google Scholar 
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    Google Scholar 
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    PubMed 

    Google Scholar 
    Babin, S. M., Carton, J. A., Dickey, T. D. & Wiggert, J. D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 109, 1–21 (2004).
    Google Scholar 
    Walker, N. D., Leben, R. R. & Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, 1–5 (2005).
    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Chang. Biol. 24, 2239–2261 (2018).PubMed 

    Google Scholar 
    Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).CAS 
    PubMed 

    Google Scholar 
    Marañón, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50, 299–310 (2005).
    Google Scholar 
    Halsey, K. H. & Jones, B. M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7, 265–297 (2015).
    Google Scholar 
    Quevedo, M. & Anadón, R. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221, 29–38 (2001).
    Google Scholar 
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Google Scholar 
    Landry, M. R. & Hassett, R. P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283–288 (1982).
    Google Scholar 
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Google Scholar 
    Cermeño, P. et al. Marine primary productivity is driven by a selection effect. Front. Mar. Sci. 3, 1–10 (2016).Browning, T. J. et al. Nutrient co-limitation in the subtropical Northwest Pacific. Limnol. Oceanogr. Lett. 7, 52–61 (2022).
    Google Scholar 
    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).
    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Geider, R. J. Light and temperature dependence of the carnon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. N. Phytol. 106, 1–34 (1987).CAS 

    Google Scholar 
    Maxwell, D. P., Laudenbach, D. E. & Huner, N. P. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109, 787–795 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, H. J., Sui, Y., Tang, D. L. & Afanasyev, Y. D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 128, 138–145 (2013).
    Google Scholar 
    Zhang, H., He, H., Zhang, W. Z. & Tian, D. Upper ocean response to tropical cyclones: a review. Geosci. Lett. 8, 1–12 (2021).
    Google Scholar 
    Lin, I. et al. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1–4 (2003).Chai, F. et al. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 18, 849–859 (2021).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Somero, G. N. Adaptation of enzymes to temperature: Searching for basic ‘strategies’. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 139, 321–333 (2004).PubMed 

    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends Ecol. Evol. 37, 20–29 (2022).PubMed 

    Google Scholar 
    Staehr, P. A. & Birkeland, M. J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45, 648–656 (2006).
    Google Scholar 
    Morán, X. A. G., Calvo-Díaz, A., Arandia-Gorostidi, N. & Huete-Stauffer, T. M. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ. Microbiol. 20, 3798–3810 (2018).PubMed 

    Google Scholar 
    Courboulès, J. et al. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 55, 647–666 (2021).
    Google Scholar 
    López-Sandoval, D. C., Duarte, C. M. & Agustí, S. Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol. Oceanogr. 66, 2923–2935 (2021).
    Google Scholar 
    Landry, M. R., Selph, K. E., Hood, R. R., Davies, C. H. & Beckley, L. E. Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10 °C temperature gradient in the oligotrophic Indian Ocean. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10224 (2021)Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).CAS 

    Google Scholar 
    Fernández-González, C. & Marañón, E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Marañón, E. et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56 (2001).
    Google Scholar 
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 1–18 https://doi.org/10.1111/1365-2435.13986 (2021).Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).
    Google Scholar 
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).CAS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
    Google Scholar 
    Fofonoff, N. P. & Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44, 1–53 (1983).
    Google Scholar 
    Becker, S. et al. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.581790 (2020).Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. 8, 1–24 (2021).Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Induction of ROS mediated genomic instability, apoptosis and G0/G1 cell cycle arrest by erbium oxide nanoparticles in human hepatic Hep-G2 cancer cells

    ChemicalsErbium (III) oxide nanoparticles (Er2O3-NPs) were purchased from Sigma-Aldrich Chemical Company (Saint Louis, USA) with pink appearance and product number (203,238). Powders of Er2O3-NPs with 99.9 trace metals basis were suspended in deionized distilled water to prepare the required concentrations and ultra-sonicated prior use.Cell lineHuman hepatocellular carcinoma (Hep-G2) cells were obtained from Nawah Scientific Inc., (Mokatam, Cairo Egypt). Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with streptomycin (100 mg/mL), penicillin (100 units/mL) and heat-inactivated fetal bovine serum (10) in humidified, 5% (v/v) CO2 atmosphere at 37 °C.Characterization of Er2O3-NPsThe purchased powders of Er2O3-NPs were characterized using a charge coupled device diffractometer (XPERT-PRO, PANalytical, Netherlands) to determine its X-ray diffraction (XRD) pattern. Zeta potential and particles’ size distribution of Er2O3-NPs were also detected using Malvern Instrument Zeta sizer Nano Series (Malvern Instruments, Westborough, MA) equipped with a He–Ne laser (λ = 633 nm, max 5mW). Moreover, transmission electron microscopy (TEM) imaging was done to detect the shape and average particles’ size of Er2O3-NPs suspension.Sulforhodamine B (SRB) cytotoxicity assaySulforhodamine B (SRB) assay was conducted to assess the influence of Er2O3-NPs on the proliferation of cancerous Hep-G2 cells12. Aliquots of 100 µl of Hep-G2 cells suspension containing 5 × 103 cells were separately cultured in 96-well plates and incubated for 24 h in complete media. Hep-G2 Cells were then treated with five different concentrations of Er2O3-NPs (0.01, 0.1, 1, 10 and 100 µg/ml) incubated for 24 h or (0.1, 1, 10, 100 and 1000 µg/ml) incubated for 72 h. After 24 or 72 h of Er2O3-NPs exposure, cultured cells were fixed by replacing media with 10% trichloroacetic acid (TCA) and incubated for one hour at 4 °C. Cells were then washed five times with distilled water, SRB solution (0.4% w/v) was added and incubated cells in a dark place at room temperature for 10 min. All plates were washed three times with 1% acetic acid and allowed to air-dry overnight. Then, protein-bound SRB stain was dissolved by adding TRIS (10 mM) and the absorbance was measured at 540 nm using a BMG LABTECH-FLUO star Omega microplate reader (Ortenberg, Germany).Cells treatmentCancerous Hep-G2 cells were cultured at the appropriate conditions and dived into control and treated cells. The control cells were treated with an equal volume of the vehicle (DMSO; final concentration, ≤ 0.1%), while the treated cells were treated with the IC50 of Er2O3-NPs. All cells were left for 72 h after nanoparticles treatment and were harvested by brief trypsinization and centrifugation. Each treatment was conducted in triplicate. Cells were washed twice with ice-cold PBS and used for different molecular assays.Estimation of genomic DNA integrityThe impact of Er2O3-NPs exposure on the integrity of genomic DNA in cancerous Hep-G2 cells was estimated using alkaline Comet assay13,14. Treated and control cells were mixed with low melting agarose and spread on clean slides pre-coated with normal melting agarose. After drying, slides were incubated in cold lysis buffer for 24 h in dark and then electrophoresed in alkaline electrophoresis buffer. Electrophoresed DNA was neutralized in Tris buffer and fixed in cold absolute ethanol. For analysis slides were stained with ethidium bromide, examined using epi-fluorescent microscope at magnification 200× and fifty comet nuclei were analyzed per sample using Comet Score software.Estimation of intracellular ROS generationThe effect of Er2O3-NPs exposure on intracellular ROS production in cancer Hep-G2 cells was studied using 2,7-dichlorofluorescein diacetate dye15. Cultured cells were washed with phosphate buffered saline (PBS) and then 2,7-dichlorofluorescein diacetate dye was added. Mixed cells and dye were left for 30 min in dark and spread on clean slides. The resultant fluorescent dichlorofluorescein complex from interaction of intracellular ROS with dichlorofluorescein diacetate dye was examined under epi-fluorescent at 20× magnification.Measuring the expression levels of apoptotic and anti-apoptotic genesQuantitative real time Polymerase chain reaction (RT-PCR) was conducted to measure the mRNA expression levels of apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) genes in control and treated Hep-G2 cells. Whole cellular RNA was extracted according to the instructions listed by the GeneJET RNA Purification Kit (Thermo scientific, USA) (Thermo scientific, USA) and using Nanodrop device purity and concentration of the extracted RNAs were determined. These RNAs were then reverse transcribed into complementary DNA (cDNA) using the instructions of the Revert Aid First Strand cDNA Synthesis Kit (Thermo scientific, USA). For amplification, RT-PCR was performed using the previously designed primers shown in Table 116,17 by the 7500 Fast system (Applied Biosystem 7500, Clinilab, Egypt). A comparative Ct (DDCt) method was conducted to measure the expression levels of amplified genes and GAPDH gene was used as a housekeeping gene. Results were expressed as mean ± S.D.Table 1 Sequences of the used primers in qRT-PCR.Full size tableAnalysis of cell cycle distributionDistribution of cell cycle was analyzed using flow cytometry. Control and treated cancer Hep-G2 cells with IC50 of Er2O3-NPs for 72 h were harvested, washed with PBS and re-suspended in 1 mL of PBS containing RNAase A (50 µg/mL) and propidium iodide (10 µg/mL) (PI). Cells were incubated for 20 min in dark at 37 C and analyzed for DNA contents using FL2 (λex/em 535/617 nm) signal detector (ACEA Novocyte flow cytometer, ACEA Biosciences Inc., San Diego, CA, USA). For each sample, 12,000 events are acquired and cell cycle distribution is calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Estimation of apoptosis inductionApoptotic and necrotic cell populations were determined using Annexin V- Fluorescein isothiocyanate (FITC) apoptosis detection kit (Abcam Inc., Cambridge Science Park Cambridge, UK) coupled with two fluorescent channels flow cytometry. After treatment with Er2O3-NPs for 72 h and doxorubicin as a positive control, Hep-G2 cells were collected by trypsinization and washed twice with ice-cold PBS (pH 7.4). Harvested cells are incubated in dark with Annexin V-FITC/ propidium iodide (PI) solution for 30 min at room temperature, then injected via ACEA Novocyte flowcytometer (ACEA Biosciences Inc., San Diego, CA, USA) and analyzed for FITC and PI fluorescent signals using FL1 and FL2 signal detector, respectively (λex/em 488/530 nm for FITC and λex/em 535/617 nm for PI). For each sample, 12,000 events were acquired and positive FITC and/or PI cells are quantified by quadrant analysis and calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Statistical analysisResults of the current study are expressed as mean ± Standard Deviation (S.D) and were analyzed using the Statistical Package for the Social Sciences (SPSS) (version 20) at the significance level p  More

  • in

    Effects of different water management and fertilizer methods on soil temperature, radiation and rice growth

    General description of the experimental areaThe experiment was performed for two years at the National Key Irrigation Experimental Station located on the Songnen Plain in Heping town, Qing’an County, Suihua, Heilongjiang, China, with a geographical location of 45° 63′ N and 125° 44′ E at an elevation of 450 m above sea level (Fig. 1). This region consists of plain topography and has a semiarid cold temperate continental monsoon climate, i.e., a typical cold region with a black soil distribution area. The average annual temperature is 2.5 °C, the average annual precipitation is 550 mm, the precipitation is concentrated from June to September of each year, and the average annual surface evaporation is 750 mm. The growth period of crops is 156–171 days, and there is a frost-free period of approximately 128 days year−122. The soil at the study site is albic paddy soil with a mean bulk density of 1.01 g/cm3 and a porosity of 61.8% prevails. The basic physicochemical properties of the soil were as follows: the mass ratio of organic matter was 41.8 g/kg, pH value was 6.45, total nitrogen mass ratio was 15.06 g/kg, total phosphorus mass ratio was 15.23 g/kg, total potassium mass ratio was 20.11 g/kg, mass ratio of alkaline hydrolysis nitrogen was 198.29 mg/kg, available phosphorus mass ratio was 36.22 mg/kg and available potassium mass ratio was 112.06 mg/kg.Figure 1Location of the study area. The map and inset map in this image were drawn by the authors using ArcGIS software. The software version used was ArcGIS software v.10.2, and its URL is http://www.esri.com/.Full size imageHumic acid fertilizerHumic acid fertilizer was produced by Yunnan Kunming Grey Environmental Protection Engineering Co., Ltd., China (Fig. 2). The organic matter was ≥ 61.4%, and the total nutrients (nitrogen, phosphorus and potassium) were ≥ 18.23%, of which N ≥ 3.63%, P2O5 ≥ 2.03%, and K2O ≥ 12.57%. The moisture content was ≤ 2.51%, the pH value was 5.7, the worm egg mortality rate was ≥ 95%, and the amount of faecal colibacillosis was ≤ 3%. The fertilizer contained numerous elements necessary for plants. The contents of harmful elements, including arsenic, mercury, lead, cadmium and chromium, were ≤ 2.8%, 0.01%, 7.6%, 0.1% and 4.7%, respectively; these were lower than the test standard.Figure 2Humic acid fertilizer in powder form.Full size imageExperimental design and observation methodsIrrigationIn this experiment, three irrigation practices, namely, control irrigation (C), wet irrigation (W) and flood irrigation (F), were designed (Table 1).Table 1 Different irrigation methods.Full size tableControl irrigation (C) of rice had no water layer in the rest of the growing stages, except for the shallow water layer at the regreen stage of rice, which was maintained at 0–30 mm, and the natural dryness in the yellow stage. The irrigation time and irrigation quota were determined by the root soil moisture content as the control index. The upper limit of irrigation was the saturated moisture content of the soil, the lower limit of soil moisture at each growth stage was the percentage of saturated moisture content, and the TPIME-PICO64/32 soil moisture analyser was used to determine the soil moisture content at 7:00 a.m. and 18:00 p.m., respectively. When the soil moisture content was close to or lower than the lower limit of irrigation, artificial irrigation occurred until the upper irrigation limit was reached. The soil moisture content was maintained between the upper irrigation limit and the lower irrigation limit of the corresponding fertility stage. Under the wet irrigation (W) and flood irrigation (F) conditions, it was necessary to read the depth of the water layer through bricks and a vertical ruler embedded in the field before and after 8:00 am every day to determine if irrigation was needed. If irrigation was needed, then the water metre was recorded before and after each irrigation. The difference between before and after was the amount of irrigation23.FertilizationIn our research, five fertilization methods were applied, as shown in Table 2. In this experiment, the rice cultivar “Suijing No. 18” was selected. Urea and humic acid fertilizer were applied according to the proportion of base fertilizer:tillering fertilizer:heading fertilizer (5:3:2). The amounts of phosphorus and potassium fertilizers were the same for all treatments, and P2O5 (45 kg ha−1) and K2O (80 kg ha−1) were used. Phosphorus was applied once as a basal application. Potassium fertilizer was applied twice: once as a basal fertilizer and at 8.5 leaf age (panicle primordium differentiation stage) at a 1:1 ratio22.Table 2 The fertilizer methods.Full size tableThis study was performed with a randomized complete block design with three replications. Three irrigation practices and five fertilizer methods were applied, for a total of 15 treatments as follows: CT1, CT2, CT3, CT4, CT5; WT1, WT2, WT3, WT4, WT5; FT1, FT2, FT3, FT4, and FT5 (C, W, and F represent control irrigation, wet irrigation, and flood irrigation; T represents fertilizer treatment).Measurements of the samplesA soil temperature sensor (HZTJ1-1) was buried in each experimental plot to monitor the temperature of each soil layer (5 cm, 10 cm, 15 cm, 20 cm and 25 cm depth). The transmission of photosynthetically active radiation was measured from 11:00 to 13:00 by using a SunScan Canopy Analysis System (Delta T Devices, Ltd., Cambridge, UK), and data during the crop-growing season were recorded every day24.Plant measurements were taken during the periods of tillering to ripening on days with no wind and good light. The fluorescence parameters were measured by a portable fluorescence measurement system (Li-6400XT, America). The detection light intensity was 1500 μmol m−2 s−1, and the saturated pulsed light intensity was 7200 μmolm−2 s−1. The functional leaves were dark adapted for 30 min, and then the maximum photosynthetic efficiency of PSII (Fv/Fm) was measured. Photochemical quenching (QP) and nonphotochemical quenching (NPQ) were measured with natural light. Simultaneously, the leaf chlorophyll relative content (SPAD) was monitored using SPAD 502 (Konica Minolta, Inc., Tokyo, Japan). For plant agronomic characteristics, the distance from the stem base to the stem tip was measured with a straight ruler to quantify plant height24.Statistical analysisExperimental data obtained for different parameters were analysed statistically using the analysis of variance technique as applicable to randomized complete block design. Duncan’s multiple range test was employed to assess differences between the treatment means at a 5% probability level. All statistical analyses were performed using SPSS 22.0 for Windows24.
    Ethics approvalExperimental research and field studies on plants, including the collection of plant material, comply with relevant institutional, national, and international guidelines and legislation. We had appropriate permissions/licences to perform the experiment in the study area. More