More stories

  • in

    Diving in

    Nearly two years into the United Nations Decade of Ocean Science, research, including some featured in this month’s issue, shows that there is still a wealth of scientific secrets to uncover in the ocean depths.
    In many ways, considering the ocean as a single unit is overly broad. The global ocean covers 71% of the planet’s surface, reaches down to depths of over 10 kilometres, includes about 1.35 billion cubic kilometres of water and houses an approximated 2.2 million eukaryotic species. There are distinct regions, with distinct physical properties, and, in turn, there are distinct species. Yet, the world’s oceans do have a level of physical and thematic connectivity.
    Credit: Daria Zaseda / DigitalVision Vectors / GettyPhysically, a large part of the connection is related to the presence of large rotating ocean currents that transfer heat across latitudes and contribute to ocean mixing (thermohaline circulation). Some of these currents are warming at alarming rates — up to three times faster than the rest of the ocean, leading to questions about the underlying mechanisms of the warming and expectations for change.Focusing on western boundary currents (WBCs) in the Southern Hemisphere, in an Article in this issue of Nature Climate Change, Li and colleagues answer a long-debated question on the mechanisms of change, showing that temperature-gradient-related instabilities, rather than flow-speed-related instabilities are behind the shifts. In another Article, focusing on the global future changes of eddies (including eddy-rich WBCs), Beech and colleagues report the development of a flexible method that maximizes local model resolution while minimizing computational costs, to reveal the long-term geographical specificities and nonlinear temperature increases expected to 2100 (see also the News and Views article by Yang on these papers).A recent paper1 has demonstrated the important role of large ocean currents in defining plankton biogeography and dynamics, and WBC warming has previously been linked to impacts such as fishery collapses. The tight link between physical processes and biological responses is an underscoring theme of climate change ecology, but is perhaps more apparent in the open ocean, where physical processes can be easily (if imperfectly) linked to primary productivity using remotely sensed phytoplankton pigment absorption, and where life is generally less impacted by geographical, political or disturbance-based boundaries compared with land and freshwater systems. These aspects may facilitate modelling of current and future communities, while also allowing broader assumptions to be made about biological movement and connectivity.Despite these benefits, understanding ocean change comes with its own difficulties. Biological sampling, while easy enough in the surface waters, becomes increasingly difficult at depth. Although future habitats for various organisms have been projected on the basis of their thermal limits in the ocean, these predictions often still rely on temperatures at the surface of the sea. Addressing this, Santana-Falcón and colleagues report in an Article the global mapping of ocean temperature changes to depths of 1,000 metres, and reveal the complex depth-dependent changes in thermal upper and lower bounds that marine organisms will soon be subjected to. In another Article, Ariza and colleagues neatly address the issue of directly monitoring deep-ocean change by compiling a large database of sound-based observations, and subsequently classifying the ocean’s ‘echobiomes’, defined as sound-scattering communities with comparable structural and functional properties (see also the accompanying News and Views article by Hazen). Sound-based methods are also increasingly being used on land2, and represent an exciting tool for monitoring change, particularly in hard-to-reach places such as deep forests, high mountaintops or underground. While the sound reflection method used in the study by Ariza and colleagues has limits in its ability to identify organisms at the individual or species levels, it does provide a community-level focus on change, which remains much needed in the field of global change ecology.At the other end of the spatial spectrum, research by Lee and colleagues reported in an Article also in this issue dives deep into the DNA of a keystone ocean organism (a copepod), to understand the mechanisms that may allow longer-term adaptation to warming and pH stress. The work reveals remarkable adaptation over just a few short generations, which is linked to epigenetic changes. As climate change impacts continue to escalate, the ability of organisms to invoke both shorter- and longer-term adaptations has become an increasingly relevant area of research. Epigenetics has previously been reported as a quick-response method to cope with environmental stress, and may be particularly relevant in defining the adaptation of short-lived animals such as insects and the resilience of the communities they uphold.The five research pieces linked to the oceans in this issue reveal just some of the diversity of topics, methods and scales relevant to understanding global change. Also increasingly relevant are works on ocean conservation3 and on the social and economic impacts of ocean change4,5. Like climate change science, the topic of ocean change is less of a field, and more of a cross-disciplinary theme. More

  • in

    Following the niche: the differential impact of the last glacial maximum on four European ungulates

    MaterialsWe collected from the literature and available databases a dataset of radiocarbon dates from Europe (West of 60°E and North of 37°N) either obtained from remains of the four analyzed species or from archaeological layers where they have been observed. However, we only considered observations dated between 7500 and 47,000 cal BP: their scarcity before this period may bias the GAMs, and after it, domesticated cattle, pigs and (later) horses arrived in Europe, making it difficult to differentiate them from their wild forms.We excluded any record fitting one or more of the following conditions: unreliable; not in accord with the expected chronology of their archaeological layer; without a reported standard error; available only as terminus ante/post quem.All dates were calibrated with OxCal5 version 4.4 using the IntCal20 curve51, and we further excluded any record for which calibration resulted in an error, resulting in the number of points presented in Table 1 as “Original dataset” (available at the link https://doi.org/10.6084/m9.figshare.20510364).Table 1 Number of observations for each species.Full size tableSDMs based on GAMs need presence/background data, not frequencies; moreover, multiple observations (i.e., presence in different archaeological layers) from the same site and time slice are likely to introduce stronger sample biases linked to chrono-geographically differential sampling efforts. For this reason, we collapsed our observations by keeping only one point per grid cell per time slice for each species, leaving the number of observations reported in Table 1 as “Collapsed datasets”, used for all the analyses presented in this work.To perform all analyses, we used the R package pastclim v. 1.042 to couple each observation from the collapsed datasets to paleoclimatic reconstructions published in8 by setting dataset = “Beyer2020”. These are based on the Hadley CM3 model, include 14 different bioclimatic variables at a spatial resolution of 0.5°, and are available for the whole world every 1000 years until 22 kya and every 2000 years before that date (referred to in the manuscript as “time slices”). Specifically, each observation was associated with the relevant bioclimatic reconstruction based on its average age and spatial coordinates.As already mentioned, the four species analyzed show different preferences regarding temperature, habitat, and altitude. Therefore, for the Species Distribution Modelling, we choose five environmental variables that should be able to capture such differences: two measures of temperature (BIO5, maximum temperature of the warmest month, and BIO6, minimum temperature of the coldest month); two variables to help capture habitat differentiation (BIO12, total annual precipitation, and Net Primary Productivity, NPP), and one measure of topography (rugosity42).High collinearity can be problematic in SDMs; we confirmed that all our variables had a correlation below 0.7, a threshold commonly adopted for this kind of analysis52,53.Whilst the GAMs predicted all time points; we visualized our results by creating an average estimate for the following periods: pre-LGM (from the beginning of the time range analyzed, i.e., 47 kya to 27 kya), LGM (from 27 to 18 kya), Late Glacial (from 18 to 11.7 kya), Holocene (from 11.7 kya to the end of the time range analyzed, i.e., 7.5 kya).MethodsWe generated 25 sets of background points for each species to adequately represent the existing climatic space in our SDMs. Each set was generated by sampling, for each observation, 50 random locations matched by time. This resulted in n = 25 datasets (“repetitions”) of background points and presences (observations) for each species, which we used to repeat our analyses to account for the stochastic sampling of the background. For each dataset, we used GAMs to fit two possible models: a “constant niche” model, which included only the environmental variables as covariates, and a “changing niche” model, that also included interactions of each environmental variable with time (fitted as tensor products).In GAMs, the effect of a given continuous predictor on the response variable (in our case, the logit transformed probability of a presence) is represented by a smooth function; this smooth function can be linear or non-linear and can become highly complex in shape depending on the number of knots selected by the GAM fitting algorithm. The interaction between two covariates is modelled by tensor products54; this approach is equivalent to an interaction term in a linear model but with the added complexity of the smooth function. In our models, we confine tensor products to the interaction between an environmental variable and time; a simple way to think about such a tensor product is that it allows the smooth representation of the relationship between the variable and the probability of a presence to change progressively over time.GAMs were fitted using the mgcv package in R54 using thin plate regression splines (TPNR; bs = “tp”, default in mgcv) for environmental variables and their tensor products with time in the “niche changing” models. The GAM algorithm automatically selects the complexity of the smooth most appropriate to the data that are being fitted; as GAM can have issues with overfitting, we added an additional penalty against overly complex smooths (gamma = 1.4) and used Restricted Maximum Likelihood (REML = TRUE), as recommended by54. It is possible that even with these settings, the complexity of the smooth is not sufficient; we used mgcv::gam.check() to check this, and increased the basis dimension of the smooth, k, to make sure that k-1 was larger than the estimated degrees of freedom (edf). We found the best maximum thresholds for k to be 16 for bio06 and 10 for all other variables.We checked for non-linear correlation among variables using the mgcv::collinearity function and checked the values of estimated concurvity. All estimates were below the threshold of 0.8 in all models, runs and variables except for a few instances for time (Supplementary Figs. 5–8). We consider this not to be worrying: this is most likely a result of sample bias, and GAM is known to be robust to correlation/concurvity55,56.We verified the model assumptions by inspecting the residuals using the R package DHARMa57. Standard tests for deviations from the expected distribution and dispersion were non-significant for all repetitions for all species, as were the tests for outliers. Furthermore, we tested for spatial autocorrelation among residuals by computing Moran’s I; all tests were either non-significant or, when significance was detected, the estimate of Moran’s I was very close to zero, revealing a trivial deviation from the assumptions which should not impact the results (Supplementary Tables 1–4).We performed model choice (Supplementary Tables 5–8) by comparing the constant- and changing-niche models for each combination of species and repetition using the Akaike Information Criterion (AIC). AIC strongly supported the changing-niche model in all species and repetitions, an inference supported by the higher Nagelkerke R2 and expected deviance for those models than for the constant-niche ones (Supplementary Tables 5–8).The model fit for each of the changing niche GAMs was evaluated with the Boyce Continuous Index25,26, designed to be used with presence-only data58,59. We set a threshold of Pearson’s correlation coefficient  >  0.8 to define acceptable models25 (Supplementary Table 9).The relative importance of each environmental variable was quantified for all the models above the BCI threshold of 0.8 in two different ways. Firstly, we computed the total deviance explained by each variable by simply fitting a GAM with only that variable. We then estimated the unique deviance explained by each variable by comparing the full model with one for which that variable was excluded (i.e., we computed the explained deviance lost by dropping that predictor). The difference between the two values represents the deviance explained by a variable which can also be accounted for by other variables (i.e., the deviance in common with other variables).To achieve more robust predictions60, we averaged in two different ensembles the repetitions for the changing niche GAMs with BCI  > 0.8: by mean and median. This step is intended to reduce the weight of models that are highly sensitive to the random sampling of the background60. Then, for each species, we selected the ensemble (either based on mean or median) with the higher BCI as the most supported and used it to perform all further analyses.The effect of different variables through time was visualized by plotting the interactions of the GAMs. For each model with a BCI  > 0.8, we used the R package gratia27 to generate a surface with time as the x-axis, the environmental variable as the y-axis, and the effect size as the z-axis (visualized as colour shades). We then plotted the mean surface for each species, which captures the signal consistent across all randomized background sets.To visualize the prediction for each species, we then transformed the predicted probabilities of occurrence from the ensemble into binary presence/absences by using the threshold needed to get a minimum predicted area encompassing 99% of our presences (function ecospat.mpa() from the ecospat R package61). The binary predictions were then visualized using the mean over the time steps within each major climatic period.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Induction of ROS mediated genomic instability, apoptosis and G0/G1 cell cycle arrest by erbium oxide nanoparticles in human hepatic Hep-G2 cancer cells

    ChemicalsErbium (III) oxide nanoparticles (Er2O3-NPs) were purchased from Sigma-Aldrich Chemical Company (Saint Louis, USA) with pink appearance and product number (203,238). Powders of Er2O3-NPs with 99.9 trace metals basis were suspended in deionized distilled water to prepare the required concentrations and ultra-sonicated prior use.Cell lineHuman hepatocellular carcinoma (Hep-G2) cells were obtained from Nawah Scientific Inc., (Mokatam, Cairo Egypt). Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with streptomycin (100 mg/mL), penicillin (100 units/mL) and heat-inactivated fetal bovine serum (10) in humidified, 5% (v/v) CO2 atmosphere at 37 °C.Characterization of Er2O3-NPsThe purchased powders of Er2O3-NPs were characterized using a charge coupled device diffractometer (XPERT-PRO, PANalytical, Netherlands) to determine its X-ray diffraction (XRD) pattern. Zeta potential and particles’ size distribution of Er2O3-NPs were also detected using Malvern Instrument Zeta sizer Nano Series (Malvern Instruments, Westborough, MA) equipped with a He–Ne laser (λ = 633 nm, max 5mW). Moreover, transmission electron microscopy (TEM) imaging was done to detect the shape and average particles’ size of Er2O3-NPs suspension.Sulforhodamine B (SRB) cytotoxicity assaySulforhodamine B (SRB) assay was conducted to assess the influence of Er2O3-NPs on the proliferation of cancerous Hep-G2 cells12. Aliquots of 100 µl of Hep-G2 cells suspension containing 5 × 103 cells were separately cultured in 96-well plates and incubated for 24 h in complete media. Hep-G2 Cells were then treated with five different concentrations of Er2O3-NPs (0.01, 0.1, 1, 10 and 100 µg/ml) incubated for 24 h or (0.1, 1, 10, 100 and 1000 µg/ml) incubated for 72 h. After 24 or 72 h of Er2O3-NPs exposure, cultured cells were fixed by replacing media with 10% trichloroacetic acid (TCA) and incubated for one hour at 4 °C. Cells were then washed five times with distilled water, SRB solution (0.4% w/v) was added and incubated cells in a dark place at room temperature for 10 min. All plates were washed three times with 1% acetic acid and allowed to air-dry overnight. Then, protein-bound SRB stain was dissolved by adding TRIS (10 mM) and the absorbance was measured at 540 nm using a BMG LABTECH-FLUO star Omega microplate reader (Ortenberg, Germany).Cells treatmentCancerous Hep-G2 cells were cultured at the appropriate conditions and dived into control and treated cells. The control cells were treated with an equal volume of the vehicle (DMSO; final concentration, ≤ 0.1%), while the treated cells were treated with the IC50 of Er2O3-NPs. All cells were left for 72 h after nanoparticles treatment and were harvested by brief trypsinization and centrifugation. Each treatment was conducted in triplicate. Cells were washed twice with ice-cold PBS and used for different molecular assays.Estimation of genomic DNA integrityThe impact of Er2O3-NPs exposure on the integrity of genomic DNA in cancerous Hep-G2 cells was estimated using alkaline Comet assay13,14. Treated and control cells were mixed with low melting agarose and spread on clean slides pre-coated with normal melting agarose. After drying, slides were incubated in cold lysis buffer for 24 h in dark and then electrophoresed in alkaline electrophoresis buffer. Electrophoresed DNA was neutralized in Tris buffer and fixed in cold absolute ethanol. For analysis slides were stained with ethidium bromide, examined using epi-fluorescent microscope at magnification 200× and fifty comet nuclei were analyzed per sample using Comet Score software.Estimation of intracellular ROS generationThe effect of Er2O3-NPs exposure on intracellular ROS production in cancer Hep-G2 cells was studied using 2,7-dichlorofluorescein diacetate dye15. Cultured cells were washed with phosphate buffered saline (PBS) and then 2,7-dichlorofluorescein diacetate dye was added. Mixed cells and dye were left for 30 min in dark and spread on clean slides. The resultant fluorescent dichlorofluorescein complex from interaction of intracellular ROS with dichlorofluorescein diacetate dye was examined under epi-fluorescent at 20× magnification.Measuring the expression levels of apoptotic and anti-apoptotic genesQuantitative real time Polymerase chain reaction (RT-PCR) was conducted to measure the mRNA expression levels of apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) genes in control and treated Hep-G2 cells. Whole cellular RNA was extracted according to the instructions listed by the GeneJET RNA Purification Kit (Thermo scientific, USA) (Thermo scientific, USA) and using Nanodrop device purity and concentration of the extracted RNAs were determined. These RNAs were then reverse transcribed into complementary DNA (cDNA) using the instructions of the Revert Aid First Strand cDNA Synthesis Kit (Thermo scientific, USA). For amplification, RT-PCR was performed using the previously designed primers shown in Table 116,17 by the 7500 Fast system (Applied Biosystem 7500, Clinilab, Egypt). A comparative Ct (DDCt) method was conducted to measure the expression levels of amplified genes and GAPDH gene was used as a housekeeping gene. Results were expressed as mean ± S.D.Table 1 Sequences of the used primers in qRT-PCR.Full size tableAnalysis of cell cycle distributionDistribution of cell cycle was analyzed using flow cytometry. Control and treated cancer Hep-G2 cells with IC50 of Er2O3-NPs for 72 h were harvested, washed with PBS and re-suspended in 1 mL of PBS containing RNAase A (50 µg/mL) and propidium iodide (10 µg/mL) (PI). Cells were incubated for 20 min in dark at 37 C and analyzed for DNA contents using FL2 (λex/em 535/617 nm) signal detector (ACEA Novocyte flow cytometer, ACEA Biosciences Inc., San Diego, CA, USA). For each sample, 12,000 events are acquired and cell cycle distribution is calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Estimation of apoptosis inductionApoptotic and necrotic cell populations were determined using Annexin V- Fluorescein isothiocyanate (FITC) apoptosis detection kit (Abcam Inc., Cambridge Science Park Cambridge, UK) coupled with two fluorescent channels flow cytometry. After treatment with Er2O3-NPs for 72 h and doxorubicin as a positive control, Hep-G2 cells were collected by trypsinization and washed twice with ice-cold PBS (pH 7.4). Harvested cells are incubated in dark with Annexin V-FITC/ propidium iodide (PI) solution for 30 min at room temperature, then injected via ACEA Novocyte flowcytometer (ACEA Biosciences Inc., San Diego, CA, USA) and analyzed for FITC and PI fluorescent signals using FL1 and FL2 signal detector, respectively (λex/em 488/530 nm for FITC and λex/em 535/617 nm for PI). For each sample, 12,000 events were acquired and positive FITC and/or PI cells are quantified by quadrant analysis and calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Statistical analysisResults of the current study are expressed as mean ± Standard Deviation (S.D) and were analyzed using the Statistical Package for the Social Sciences (SPSS) (version 20) at the significance level p  More

  • in

    Global decline of pelagic fauna in a warmer ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Choy, C., Wabnitz, C., Weijerman, M., Woodworth-Jefcoats, P. & Polovina, J. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549, 9–25 (2016).
    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).CAS 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 

    Google Scholar 
    Angel, M. V. & de C. Baker, A. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2, 1–30 (1982).
    Google Scholar 
    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep Sea Res. 2 98, 279–291 (2013).
    Google Scholar 
    Hidaka, K., Kawaguchi, K., Murakami, M. & Takahashi, M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res. 1 48, 1923–1939 (2001).Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).
    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).CAS 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 
    Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).
    Google Scholar 
    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
    Google Scholar 
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).
    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. PICES Scientific Report 38 (North Pacific Marine Science Organization, 2010).Kaartvedt, S., Staby, A. & Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456, 1–6 (2012).
    Google Scholar 
    Gjøsaeter, J. & Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish Fisheries Technical Paper 193 (FAO, 1980).Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).
    Google Scholar 
    Annasawmy, P. et al. Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the south west Indian Ocean: insight from acoustics and stable isotopes. Deep Sea Res. 1 138, 85–97 (2018).CAS 

    Google Scholar 
    Haris, K. et al. Sounding out life in the deep using acoustic data from ships of opportunity. Sci. Data 8, 23 (2021).CAS 

    Google Scholar 
    Irigoien, X. et al. The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Sci. Data 8, 259 (2021).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).CAS 

    Google Scholar 
    Proud, R., Cox, M., Le Guen, C. & Brierley, A. Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Mar. Ecol. Prog. Ser. 598, 35–48 (2018).
    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).CAS 

    Google Scholar 
    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis (Springer, 2005).Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
    Google Scholar 
    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, e1602468 (2017).
    Google Scholar 
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Godø, O. R., Patel, R. & Pedersen, G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J. Mar. Sci. 66, 1143–1148 (2009).
    Google Scholar 
    Agersted, M. D. et al. Mass estimates of individual gas-bearing mesopelagic fish from in situ wideband acoustic measurements ground-truthed by biological net sampling. ICES J. Mar. Sci. 78, 3658–3673 (2021).
    Google Scholar 
    Backus, R. & Craddock, J. in Oceanic Sound Scattering Prediction (eds Anderson, N. R. & Zahuranec, B. J.) 529–547 (Springer, 1977).Longhurst, A. Ecological Geography of the Sea (Elsevier, 2010).Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge Univ. Press, 2010).Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
    Google Scholar 
    Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J. & Brierley, A. S. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76, 718–733 (2019).
    Google Scholar 
    Chapman, R. P., Bluy, O. Z., Adlington, R. H. & Robison, A. E. Deep scattering layer spectra in the Atlantic and Pacific oceans and adjacent seas. J. Acoust. Soc. Am. 56, 1722–1734 (1974).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc. R. Soc. B 286, 20190353 (2019).
    Google Scholar 
    Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y. & Jendersie, S. Estimates of density of mesopelagic fish in the Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biol. 43, 43–61 (2020).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties. Proc. R. Soc. B 289, 20211781 (2022).
    Google Scholar 
    Reygondeau, G. et al. Climate change-induced emergence of novel biogeochemical provinces. Front. Mar. Sci. 7, 657 (2020).
    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).
    Google Scholar 
    Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).
    Google Scholar 
    Grimaldo, E. et al. Investigating the potential for a commercial fishery in the northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 77, 2541–2556 (2020).
    Google Scholar 
    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. 2 180, 104722 (2020).CAS 

    Google Scholar 
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Google Scholar 
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Google Scholar 
    Perrot, Y. et al. Matecho: an open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Google Scholar 
    Stanton, T. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57, 793–807 (2000).
    Google Scholar 
    GEBCO: A Continuous Terrain Model of the Global Oceans and Land (British Oceanographic Data Centre, 2019).EchoPY v.1.1: Fisheries Acoustic Data Processing in Python (Python, 2020); https://pypi.org/project/echopyde Boor, C. A Practical Guide to Splines (Springer, 1978).Clustering (SciKit Learn, 2021); https://scikit-learn.org/stable/modules/clusteringEyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).
    Google Scholar 
    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. J. Adv. Model. Earth Syst. 13, e2021MS002496 (2021).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Locarnini, R. et al. World Ocean Atlas 2018, Volume 1: Temperature NOAA Atlas NESDIS 81 (NOAA, 2018).García, H. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation NOAA Atlas NESDIS 83 (NOAA, 2018).Sathyendranath, S. et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021; http://www.esa-oceancolour-cci.org More

  • in

    Effects of different water management and fertilizer methods on soil temperature, radiation and rice growth

    General description of the experimental areaThe experiment was performed for two years at the National Key Irrigation Experimental Station located on the Songnen Plain in Heping town, Qing’an County, Suihua, Heilongjiang, China, with a geographical location of 45° 63′ N and 125° 44′ E at an elevation of 450 m above sea level (Fig. 1). This region consists of plain topography and has a semiarid cold temperate continental monsoon climate, i.e., a typical cold region with a black soil distribution area. The average annual temperature is 2.5 °C, the average annual precipitation is 550 mm, the precipitation is concentrated from June to September of each year, and the average annual surface evaporation is 750 mm. The growth period of crops is 156–171 days, and there is a frost-free period of approximately 128 days year−122. The soil at the study site is albic paddy soil with a mean bulk density of 1.01 g/cm3 and a porosity of 61.8% prevails. The basic physicochemical properties of the soil were as follows: the mass ratio of organic matter was 41.8 g/kg, pH value was 6.45, total nitrogen mass ratio was 15.06 g/kg, total phosphorus mass ratio was 15.23 g/kg, total potassium mass ratio was 20.11 g/kg, mass ratio of alkaline hydrolysis nitrogen was 198.29 mg/kg, available phosphorus mass ratio was 36.22 mg/kg and available potassium mass ratio was 112.06 mg/kg.Figure 1Location of the study area. The map and inset map in this image were drawn by the authors using ArcGIS software. The software version used was ArcGIS software v.10.2, and its URL is http://www.esri.com/.Full size imageHumic acid fertilizerHumic acid fertilizer was produced by Yunnan Kunming Grey Environmental Protection Engineering Co., Ltd., China (Fig. 2). The organic matter was ≥ 61.4%, and the total nutrients (nitrogen, phosphorus and potassium) were ≥ 18.23%, of which N ≥ 3.63%, P2O5 ≥ 2.03%, and K2O ≥ 12.57%. The moisture content was ≤ 2.51%, the pH value was 5.7, the worm egg mortality rate was ≥ 95%, and the amount of faecal colibacillosis was ≤ 3%. The fertilizer contained numerous elements necessary for plants. The contents of harmful elements, including arsenic, mercury, lead, cadmium and chromium, were ≤ 2.8%, 0.01%, 7.6%, 0.1% and 4.7%, respectively; these were lower than the test standard.Figure 2Humic acid fertilizer in powder form.Full size imageExperimental design and observation methodsIrrigationIn this experiment, three irrigation practices, namely, control irrigation (C), wet irrigation (W) and flood irrigation (F), were designed (Table 1).Table 1 Different irrigation methods.Full size tableControl irrigation (C) of rice had no water layer in the rest of the growing stages, except for the shallow water layer at the regreen stage of rice, which was maintained at 0–30 mm, and the natural dryness in the yellow stage. The irrigation time and irrigation quota were determined by the root soil moisture content as the control index. The upper limit of irrigation was the saturated moisture content of the soil, the lower limit of soil moisture at each growth stage was the percentage of saturated moisture content, and the TPIME-PICO64/32 soil moisture analyser was used to determine the soil moisture content at 7:00 a.m. and 18:00 p.m., respectively. When the soil moisture content was close to or lower than the lower limit of irrigation, artificial irrigation occurred until the upper irrigation limit was reached. The soil moisture content was maintained between the upper irrigation limit and the lower irrigation limit of the corresponding fertility stage. Under the wet irrigation (W) and flood irrigation (F) conditions, it was necessary to read the depth of the water layer through bricks and a vertical ruler embedded in the field before and after 8:00 am every day to determine if irrigation was needed. If irrigation was needed, then the water metre was recorded before and after each irrigation. The difference between before and after was the amount of irrigation23.FertilizationIn our research, five fertilization methods were applied, as shown in Table 2. In this experiment, the rice cultivar “Suijing No. 18” was selected. Urea and humic acid fertilizer were applied according to the proportion of base fertilizer:tillering fertilizer:heading fertilizer (5:3:2). The amounts of phosphorus and potassium fertilizers were the same for all treatments, and P2O5 (45 kg ha−1) and K2O (80 kg ha−1) were used. Phosphorus was applied once as a basal application. Potassium fertilizer was applied twice: once as a basal fertilizer and at 8.5 leaf age (panicle primordium differentiation stage) at a 1:1 ratio22.Table 2 The fertilizer methods.Full size tableThis study was performed with a randomized complete block design with three replications. Three irrigation practices and five fertilizer methods were applied, for a total of 15 treatments as follows: CT1, CT2, CT3, CT4, CT5; WT1, WT2, WT3, WT4, WT5; FT1, FT2, FT3, FT4, and FT5 (C, W, and F represent control irrigation, wet irrigation, and flood irrigation; T represents fertilizer treatment).Measurements of the samplesA soil temperature sensor (HZTJ1-1) was buried in each experimental plot to monitor the temperature of each soil layer (5 cm, 10 cm, 15 cm, 20 cm and 25 cm depth). The transmission of photosynthetically active radiation was measured from 11:00 to 13:00 by using a SunScan Canopy Analysis System (Delta T Devices, Ltd., Cambridge, UK), and data during the crop-growing season were recorded every day24.Plant measurements were taken during the periods of tillering to ripening on days with no wind and good light. The fluorescence parameters were measured by a portable fluorescence measurement system (Li-6400XT, America). The detection light intensity was 1500 μmol m−2 s−1, and the saturated pulsed light intensity was 7200 μmolm−2 s−1. The functional leaves were dark adapted for 30 min, and then the maximum photosynthetic efficiency of PSII (Fv/Fm) was measured. Photochemical quenching (QP) and nonphotochemical quenching (NPQ) were measured with natural light. Simultaneously, the leaf chlorophyll relative content (SPAD) was monitored using SPAD 502 (Konica Minolta, Inc., Tokyo, Japan). For plant agronomic characteristics, the distance from the stem base to the stem tip was measured with a straight ruler to quantify plant height24.Statistical analysisExperimental data obtained for different parameters were analysed statistically using the analysis of variance technique as applicable to randomized complete block design. Duncan’s multiple range test was employed to assess differences between the treatment means at a 5% probability level. All statistical analyses were performed using SPSS 22.0 for Windows24.
    Ethics approvalExperimental research and field studies on plants, including the collection of plant material, comply with relevant institutional, national, and international guidelines and legislation. We had appropriate permissions/licences to perform the experiment in the study area. More

  • in

    Spring thaw nitrous oxide

    Agriculture soils are a source of nitrous oxide and account for 60% of total emissions. It is well established that nitrogen addition via fertilizers drives nitrous oxide emissions during crop growing season. However, little is known about the role of melting snow and thawing surface soil layers during the spring. Limited knowledge of this phenomenon reduces our ability to develop accurate nitrous oxide emissions inventories required under the UN Framework Convention on Climate Change (UNFCCC). More