More stories

  • in

    Tailored pathways toward revived farmland biodiversity can inspire agroecological action and policy to transform agriculture

    Benton, T. G. & Bailey, R. The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob. Sustain. 2, (2019).IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, et al. (eds.). IPBES secretariat, Bonn, Germany, 56 p, (2019).Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).Article 

    Google Scholar 
    Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).Article 

    Google Scholar 
    Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).CAS 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 

    Google Scholar 
    Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Nat. Acad. Sci. 119, e2109217118 (2022).CAS 
    Article 

    Google Scholar 
    Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).CAS 
    Article 

    Google Scholar 
    Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).Article 

    Google Scholar 
    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol .4, 1150–1152 (2020).Article 

    Google Scholar 
    Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002).Article 

    Google Scholar 
    HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition, Food and Agriculture Organization (FAO). (2019).Barrios, E. et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 16, 230–247 (2020).Article 

    Google Scholar 
    FAO. Catalysing dialogue and cooperation to scale up agroecology: outcomes of the FAO regional seminars on agroecology. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/3/I8992EN/i8992en.pdf (2018).Wezel, A. et al. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40, 40 (2020).Article 

    Google Scholar 
    FAO. Building a common vision for sustainable food and agriculture, Principles, and approaches. Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/i3940e/i3940e.pdf, (2014).Kleijn, D., Rundlof, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–481 (2011).Article 

    Google Scholar 
    Seppelt, R. et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. BioScience 66, 890–896 (2016).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    EEA High nature value farmland Characteristics, trends, and policy challenges. EEA report No 1/2004, European Environment Agency, Luxembourg, Office for Official Publications of the European Communities, 32 pp (2004).Ichikawa, K. & Toth, G. G. The Satoyama Landscape of Japan: The Future of an Indigenous Agricultural System in an Industrialized Society. In: Nair, P., Garrity, D. (eds) Agroforestry-The Future of Global Land Use. Advances in Agroforestry, 9. Springer, Dordrecht. 341–358. (2012).Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystem 15, 900–912 (2012).Article 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2021).Article 

    Google Scholar 
    Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).CAS 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).Article 

    Google Scholar 
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).Article 

    Google Scholar 
    Sietz, D., Fleskens, L. & Stringer, L. C. Learning from non-linear ecosystem dynamics is vital for achieving Land Degradation Neutrality. Land Degrad. Dev. 28, 2308–2314 (2017).Article 

    Google Scholar 
    Van den Elsen, E. et al. Advances in understanding and managing catastrophic shifts in Mediterranean ecosystems. Front. Ecol. Evol. 8:561101, Section Conservation, https://doi.org/10.3389/fevo.2020.561101. (2020).Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2, 34–42 (2010).Article 

    Google Scholar 
    Tougiani, A., Guero, C. & Rinaudo, T. Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74, 377 (2009).Article 

    Google Scholar 
    Baumhardt, R. L. Dust Bowl Era. Encyclopedia of Water Science, pp. 187 – 191, New York, USA. (2003).Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 
    Article 

    Google Scholar 
    SER The SER International Primer on Ecological Restoration, Society for Ecological Restoration International Science & Policy Working Group, www.ser.org & Tucson, Society for Ecological Restoration International (2004).Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).Article 

    Google Scholar 
    Lomba, A. et al. Back to the future: rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).Article 

    Google Scholar 
    Teixeira, H. M. et al. Understanding farm diversity to promote agroecological transitions. Sustainability 10, 4337 (2018).Article 

    Google Scholar 
    Fraser, M. D., Moorby, J. M., Vale, J. E. & Evans, D. M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLOS ONE 9, e89054 (2014).Article 
    CAS 

    Google Scholar 
    Reganold, J. & Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).Article 

    Google Scholar 
    Niggli, U., Slabe, A., Schmid, O., Halberg, N. & Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. Technology Platform Organics. IFOAM Regional Group European Union (IFOAM EU Group), Brussels and International Society of Organic Agriculture Research (ISOFAR), Bonn, Germany (2008).Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007).Article 

    Google Scholar 
    Boddey, R. M., de Moraes, J. C., Alves, B. J. R. & Urquiaga, S. The contribution of biological nitrogen fixation for sustainable agriculture in the tropics. Soil Biol. Biochem. 29, 787–799 (1997).CAS 
    Article 

    Google Scholar 
    Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).
    Google Scholar 
    Peetsmann, E. et al. Organic marketing in Estonia. Agron. Res. 7, 706–711 (2009).
    Google Scholar 
    Palsova, L., Schwarczova, L., Schwarcz, P. & Bandlerova, A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia—Soc. Behav. Sci. 110, 520–529 (2014).Article 

    Google Scholar 
    Konstantinidis, C. Capitalism in green disguise: the political economy of organic farming in the European Union. Rev. Radic. Polit. Econ. 50, 830–852 (2018).Article 

    Google Scholar 
    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B. 282, 20141396 (2015).Article 

    Google Scholar 
    Willer, H., Trávníček, J., Meier, C. & Schlatter, B. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick and IFOAM Organics International, Bonn, Germany (2021).Rosset, P. M., Sosa, B. M., Roque Jaime, A. M. & Ávila Lozano, D. A. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 38, 161–191 (2011).Article 

    Google Scholar 
    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 27, 4697–4710 (2021).CAS 
    Article 

    Google Scholar 
    Pywell, R. F. et al. Wildlife‐friendly farming increases crop yield: Evidence for ecological intensification. Proc. Royal Soc. B Biol. Sci. 282, 20151740 (2015).Article 

    Google Scholar 
    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science 341, 33–34 (2013).CAS 
    Article 

    Google Scholar 
    Daum, T. Farm robots: ecological utopia or dystopia? Trends Ecol. Evol. 36, 774–777 (2021).Article 

    Google Scholar 
    Neethirajan, S. & Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 32, 100408 (2021).Article 

    Google Scholar 
    Mota, J. F., Peñas, J., Castro, H., Cabelllo, J. & Guirado, J. S. Agricultural development vs. biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, Southeastern Spain). Biodivers. Conserv. 5, 1597–1616 (1996).Article 

    Google Scholar 
    Giagnocavo, C. et al. Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture 12, 137 (2022).Article 

    Google Scholar 
    Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).Article 

    Google Scholar 
    Shaffer, M. L. Minimum Viable Populations: coping with uncertainty. In: Soulé M. E., editor. Viable populations for conservation. Cambridge: Cambridge University Press. pp. 69-86. (1987).Sendzimir, J., Reij, C. P. & Magnuszewski, P. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol. Soc. 16, 1 (2011).Article 

    Google Scholar 
    Weston, P., Hong, R., Kaboré, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manage. 55, 1402–1417 (2015).Article 

    Google Scholar 
    De Souza, H. N. et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 146, 179–196 (2012).Article 

    Google Scholar 
    WWF (2021) Plowprint report. World Wildlife Fund, Washington, DC, USA.Senapathi, D. et al. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 12, 93–101 (2015).Article 

    Google Scholar 
    Sietz, D. & Feola, G. Resilience in the rural Andes: critical dynamics, constraints and emerging opportunities. Reg. Environ. Change 16, 2163–2169 (2016).Article 

    Google Scholar 
    Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. Royal Soc. 276, 903–909 (2009).CAS 

    Google Scholar 
    Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric Syst 184, 102862 (2020).Article 

    Google Scholar 
    Jia, G. et al. Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M., Belkacemi, J. Malley, (eds.)]. Intergovernmental Panel on Climate Change. (2019).Tittonell, P. et al. Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1. (2016).Beyer, R. M. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar 
    Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).Article 

    Google Scholar 
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Glob. Food Secur. 24, 100346 (2020).Article 

    Google Scholar 
    Grassini, P., Eskridge, K. & Cassman, K. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).Article 
    CAS 

    Google Scholar 
    U. N. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York (2015).EC Farm to Fork strategy for a fair, healthy, and environmentally-friendly food system, European Commission, Brussels, https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de (2020).UNCBD First draft of the post-2020 global biodiversity framework. CBD/WG2020/3/3, https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021)Lacoste, M. et al. On-Farm Experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).Article 

    Google Scholar 
    Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: insights from the Netherlands. Int. J. Agric. Sustain. 15, 340–349 (2017).Article 

    Google Scholar 
    Ferguson, R. S. & Lovell, S. T. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 34, 251–274 (2014).Article 

    Google Scholar 
    Oberlack, C. et al. Archetype analysis in sustainability research: Meanings, motivations, and evidence-based policy making. Special feature: archetype analysis in sustainability research. Ecology and Society 24, 26 (2019).Article 

    Google Scholar 
    Sietz, D. et al. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Special Feature: Archetype Analysis in Sustainability Research. Ecol. Soc. 24, 34 (2019).Article 

    Google Scholar 
    Piemontese, L. et al. Validity and validation in archetype analysis: Practical assessment framework and guidelines. Environ. Res. Lett. 17, 025010 (2022).Article 

    Google Scholar 
    Sietz, D. et al. Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ. Res. Lett. 12, 095006 (2017).Article 

    Google Scholar 
    Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecological Applications. Accepted Author Manuscript e2696. https://doi.org/10.1002/eap.2696. (2022).Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).Article 

    Google Scholar 
    Jack, B. K., Kousky, C. & Sims, K. R. E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl Acad Sci. 105, 9465–9470 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Fungi are more transient than bacteria in caterpillar gut microbiomes

    Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. 106, 18054–18061 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).PubMed 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giron, D. et al. Chapter seven—influence of microbial symbionts on plant-insect interactions. In Advances in Botanical Research Vol. 81 (eds Sauvion, N. et al.) 225–257 (Academic Press, 2017).
    Google Scholar 
    Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6, 29505 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. Tree endophytes: cryptic drivers of tropical forest diversity. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 63–103 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-89833-9_4.Chapter 

    Google Scholar 
    Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).PubMed 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303–311 (2014).Article 

    Google Scholar 
    Faeth, S. H. & Hammon, K. E. Fungal endophytes in oak trees: Long-term patterns of abundance and associations with leafminers. Ecology 78, 810–819 (1997).Article 

    Google Scholar 
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40, 1111–1122 (2011).PubMed 
    Article 

    Google Scholar 
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, 117 (2019).Article 
    CAS 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montagna, M. et al. Evidence of a bacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 18, 4961–4973 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phalnikar, K., Kunte, K. & Agashe, D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. R. Soc. B Biol. Sci. 286, 20192438 (2019).CAS 
    Article 

    Google Scholar 
    Somerville, J., Zhou, L. & Raymond, B. Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects 10, 89 (2019).PubMed Central 
    Article 

    Google Scholar 
    González-Serrano, F. et al. The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Goharrostami, M. & JalaliSendi, J. Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. J. Stored Prod. Res. 75, 10–17 (2018).Article 

    Google Scholar 
    Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minard, G., Tikhonov, G., Ovaskainen, O. & Saastamoinen, M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ. Microbiol. 21, 4253–4269 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 
    Article 

    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, T., Pereira, J. A., Benhadi, J., Lino-Neto, T. & Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 76, 668–679 (2018).PubMed 
    Article 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Sanders, J., Kaltenpoth, M. & Pierce, N. E. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7, 1920 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, Y. et al. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol. 20, 58 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffin, E. A., Harrison, J. G., McCormick, M. K., Burghardt, K. T. & Parker, J. D. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest experiment. Diversity 11, 234 (2019).Article 

    Google Scholar 
    Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).PubMed 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: A new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96, fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100, e02758 (2019).PubMed 
    Article 

    Google Scholar 
    Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Unterseher, M., Reiher, A., Finstermeier, K., Otto, P. & Morawetz, W. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201–212 (2007).Article 

    Google Scholar 
    Gilbert, G. S., Reynolds, D. R. & Bethancourt, A. The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88, 575–581 (2007).PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28, 274–285 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb. Ecol. https://doi.org/10.1007/s00248-020-01564-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B. & Allende, A. Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol. 66, 77–85 (2017).PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 
    Article 

    Google Scholar 
    Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez, N. E., Pereyra, P. C. & Luna, M. G. Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Entomol. 38, 365–374 (2009).PubMed 
    Article 

    Google Scholar 
    Santos, A. M. C. & Quicke, D. L. J. Large-scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382 (2011).Article 

    Google Scholar 
    Mereghetti, V., Chouaia, B. & Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 18, 2450 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floater, G. J. Estimating movement of the processionary caterpillar Ochrogaster zunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete resource patches. Aust. J. Entomol. 35, 279–283 (1996).Article 

    Google Scholar 
    Turčáni, M. & Patočka, J. Does intraguild predation of Cosmia trapezina L. (Lep.: Noctuidae) influence the abundance of other Lepidoptera forest pests?. J. For. Sci. 57, 472–482 (2011).Article 

    Google Scholar 
    Hikisz, J. & Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 17, 59–71 (2015).
    Google Scholar 
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    Qian, X. et al. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci. Rep. 10, 952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller, T., Müller, M., Behrendt, U. & Stadler, B. Diversity of culturable phyllosphere bacteria on beech and oak: The effects of lepidopterous larvae. Microbiol. Res. 158, 291–297 (2003).PubMed 
    Article 

    Google Scholar 
    Hrcek, J., Miller, S. E., Quicke, D. L. J. & Smith, M. A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 11, 786–794 (2011).PubMed 
    Article 

    Google Scholar 
    Bateman, C., Šigut, M., Skelton, J., Smith, K. E. & Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 45, 883–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science https://peerj.com/preprints/27295 (2018) https://doi.org/10.7287/peerj.preprints.27295v2.Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    UNITE Community. UNITE QIIME Release for Fungi 2. (2019).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ter Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D. & Hughes, G. L. Horizontal transmission of intracellular insect symbionts via plants. Front. Microbiol. 8, 2237 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2019).Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Coral conservation in a warming world must harness evolutionary adaptation

    Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Nat. Clim. Chang. 11, 537–542 (2021).Article 

    Google Scholar 
    Cook, C. N. & Sgrò, C. M. Conserv. Biol. 31, 501–512 (2017).Article 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Phil. Trans. R. Soc. Lond. B 368, 1–8 (2013).
    Google Scholar 
    Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Proc. R. Soc. Lond. B 279, 3870–3878 (2012).
    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).CAS 
    Article 

    Google Scholar 
    Norberg, J. et al. Nat. Clim. Chang. 2, 747–751 (2012).Article 

    Google Scholar 
    Torda, G. et al. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. Curr. Biol. 29, R996–R1007 (2019).CAS 
    Article 

    Google Scholar 
    Keppel, G. et al. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Vos, C. C. et al. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    Isaak, D. J. et al. Glob. Change Biol. 21, 2540–2553 (2015).Article 

    Google Scholar 
    Beyer, H. L. et al. Conserv. Lett. 11, e12587 (2018).Article 

    Google Scholar 
    Tingley, M. W., Estes, L. D. & Wilcove, D. S. Nature 500, 271–272 (2013).CAS 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Cornwell, B. et al. eLife 10, e64790 (2021).CAS 
    Article 

    Google Scholar 
    National Academies. of Sciences Engineering & Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Science 344, 895–898 (2014).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Glob. Change Biol. 26, 3473–3481 (2020).Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Curr. Biol. 24, 2952–2956 (2014).CAS 
    Article 

    Google Scholar 
    Donovan, M. K. et al. Science 372, 977–980 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. et al. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    Morrison, T. H. et al. Nature 573, 333–336 (2019).CAS 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    DeFilippo, L. B. et al. Ecol. Appl. https://doi.org/10.1002/eap.2650 (2022).Steneck, R. S. et al. Front. Mar. Sci. 6, 265 (2019).Article 

    Google Scholar 
    Dixon, G. B. et al. Science 348, 1460–1462 (2015).CAS 
    Article 

    Google Scholar 
    McManus, L. C. et al. Glob. Change Biol. 27, 4307–4321 (2021).CAS 
    Article 

    Google Scholar 
    Kleypas, J. A. et al. Glob. Change Biol. 22, 3539–3549 (2016).Article 

    Google Scholar 
    McManus, L. C. et al. Ecology 102, e03381 (2021).Article 

    Google Scholar 
    Walsworth, T. E. et al. Nat. Clim. Chang. 9, 632–636 (2019).Article 

    Google Scholar  More

  • in

    Background climate conditions regulated the photosynthetic response of Amazon forests to the 2015/2016 El Nino-Southern Oscillation event

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).CAS 
    Article 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167 (2003).Article 

    Google Scholar 
    Marengo, J. A. et al. Changes in climate and land use over the amazon region: current and future variability and trends. Front. Earth Sci. 6, 1–21 (2018).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Change 2, 177–181 (2012).Article 

    Google Scholar 
    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).Article 

    Google Scholar 
    Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).CAS 
    Article 

    Google Scholar 
    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).Koren, G. et al. Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philos. Trans. R. Soc. Lond. B Biol. Sci 373, 20170408 (2018).Article 
    CAS 

    Google Scholar 
    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).CAS 
    Article 

    Google Scholar 
    Sousa, T. R. et al. Palms and trees resist extreme drought in Amazon forests with shallow water tables. J. Ecol. 108, 2070–2082 (2020).CAS 
    Article 

    Google Scholar 
    Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).CAS 
    Article 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900278116 (2019).Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).CAS 
    Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    Article 

    Google Scholar 
    Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 60, 12 (2016).
    Google Scholar 
    Fisher, R. A., Williams, M., de Lourdes Ruivo, M., de Costa, A. L. & Meir, P. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric. For. Meteorol. 148, 850–861 (2008).Article 

    Google Scholar 
    Marthews, T. R. et al. High-resolution hydraulic parameter maps for surface soils in tropical South America. Geosci. Model Dev. 7, 711–723 (2014).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New. Phytol. 229, 1995–2006 (2021).CAS 
    Article 

    Google Scholar 
    Castro, A. O. et al. OCO-2 solar-induced chlorophyll fluorescence variability across ecoregions of the amazon basin and the extreme drought effects of El Niño (2015–2016). Remote Sens. 12, 1202 (2020).Article 

    Google Scholar 
    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).CAS 
    Article 

    Google Scholar 
    Sombroek, W. Spatial and temporal patterns of amazon rainfall. Ambio 30, 388–396 (2001).CAS 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    Article 

    Google Scholar 
    Joetzjer, E., Douville, H., Delire, C. & Ciais, P. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim. Dyn. 41, 2921–2936 (2013).Article 

    Google Scholar 
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant. Ecol. Divers. 7, 241–253 (2014).Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2018).Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108, 20627–20632 (2011).CAS 
    Article 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Article 

    Google Scholar 
    Guillemot, J. et al. Small and slow is safe: On the drought tolerance of tropical tree species. Glob. Chang. Biol. 28, 2622–2638 (2022).CAS 
    Article 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).CAS 
    Article 

    Google Scholar 
    de Almeida Castanho, A. D. et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Glob. Biogeochem. Cycles 30, 18–39 (2016).Article 
    CAS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Lathière, J. et al. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos. Chem. Phys. 6, 2129–2146 (2006).Article 

    Google Scholar 
    Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187, 647–65 (2010).Article 

    Google Scholar 
    Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Chang. Biol. 22, 3996–4013 (2016).Article 

    Google Scholar 
    Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).Article 

    Google Scholar 
    Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106 (2011).Article 

    Google Scholar 
    Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 1–14 (2017).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Running, Steve, Mu, Qiaozhen & Zhao, Maosheng. MOD16A2 MODIS/Terra net evapotranspiration 8-day L4 global 500m. https://doi.org/10.5067/MODIS/MOD16A2.006 (2017).van Schaik, E. et al. Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation. https://doi.org/10.5194/amt-2019-384 (2020).Kooreman, M. L. et al. GOME-2A SIFTER v2 (2007-2018) [Data set]. SIFTER sun-induced vegetation fluorescence data from GOME-2A (Version 2.0) [Data set]. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/gome2a-sifter-v2-sun-induced-fluorescence.Hoese, D. et al. pytroll/pyresample: Version 1.23.0. Zenodo, https://doi.org/10.5281/zenodo.6375741 (2022).Kooreman, M., Tuinder, O., Boersma, K. F. & van Schaik, E. Algorithm Theoretical Basis Document for the GOME-2 NRT, Offline and Data Record Sun-Induced Fluorescence Products. (2019).Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).CAS 
    Article 

    Google Scholar 
    Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).CAS 
    Article 

    Google Scholar 
    Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl. Acad. Sci. USA 116, 22393–22398 (2019).CAS 
    Article 

    Google Scholar 
    Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).CAS 
    Article 

    Google Scholar 
    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).Article 
    CAS 

    Google Scholar 
    Wood, J. D. et al. Multiscale analyses of solar-induced florescence and gross primary production. Geophys. Res. Lett. 44, 533–541 (2017).Article 

    Google Scholar 
    Verma, M. et al. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 122, 716–733 (2017).Article 

    Google Scholar 
    Parazoo, N. C. et al. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang Biol. 20, 3103–3121 (2014).Article 

    Google Scholar 
    Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. https://cds.climate.copernicus.eu/cdsapp#!/home (2017).Goddard Earth Sciences Data and Information Services Center (GES DISC). Tropical Rainfall Measuring Mission (TRMM) – TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34 (2007).Paca, V. H. et al. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 8, 6 (2019).Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).Article 

    Google Scholar 
    Maeda, E. E. et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 8, 439–454 (2017).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 
    CAS 

    Google Scholar 
    Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytol. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17914 .Walsh, R. P. D. & Lawler, D. M. Rainfall seasonality: description, spatial patterns and change through time. Weather 36, 201–208 (1981).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).Heinze, G., Wallisch, C. & Dunkler, D. Variable selection – a review and recommendations for the practicing statistician. Biom. J. 60, 431–449 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).QGIS.org. QGIS Geographic Information System (QGIS Association, 2022).Fancourt, M. Repository for Code, Data and Figures. https://zenodo.org/badge/latestdoi/514231211 (2022). More

  • in

    Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane

    Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions. John Wiley & Sons: Chichester; 1993.Gleiter, R, Hopf H. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004.Hopf H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew Chem Int Ed. 2008;47:9808–12.CAS 

    Google Scholar 
    Brown CJ, Farthing AC. Preparation and structure of Di-p-Xylylene. Nature. 1949;164:915–6.CAS 

    Google Scholar 
    Cram DJ, Steinberg H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J Am Chem Soc. 1951;73:5691–704.CAS 

    Google Scholar 
    Wang S, Bazan GC, Tretiak S, Mukamel S. Oligophenylenevinylene Phane Dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc. 2000;122:1289–97.CAS 

    Google Scholar 
    Bartholomew GP, Bazan GC. Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res. 2001;34:30–9.CAS 
    PubMed 

    Google Scholar 
    Bartholomew GP, Bazan GC. Strategies for the Synthesis of ‘Through-space’ Chromophore Dimers Based on [2.2]Paracyclophane. Synthesis. 2002;1245–55.Hong JW, Woo HY, Bazan GC. Solvatochromism of distyrylbenzene pairs bound together by [2.2]Paracyclophane: evidence for a polarizable “Through-space” delocalized state. J Am Chem Soc. 2005;127:7435–43.CAS 
    PubMed 

    Google Scholar 
    Bazan GC. Novel organic materials through control of multichromophore interactions. J Org Chem. 2007;72:8615–35.CAS 
    PubMed 

    Google Scholar 
    Cram DJ, Allinger NL. Macro Rings. XII stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc. 1955;77:6289–94.CAS 

    Google Scholar 
    Rozenberg V, Sergeeva E, Hopf H. Cyclophanes as templates in stereoselective synthesis. In Gleiter R, Hopf H, editors. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004, p. 435–62.Rowlands GJ. The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem. 2008;6:1527–34.CAS 
    PubMed 

    Google Scholar 
    Gibson SE, Knight JD. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem. 2003;1:1256–69.CAS 
    PubMed 

    Google Scholar 
    Aly AA, Brown AB. Asymmetric and fused heterocycles based on [2.2]Paracyclophane. Tetrahedron. 2009;65:8055–89.CAS 

    Google Scholar 
    Paradies J. [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis. 2011;3749–66.Delcourt M-L, Felder S, Turcaud S, Pollok CH, Merten C, Micouin L, et al. Highly enantioselective asymmetric transfer hydrogenation: a practical and scalable method to efficiently access planar chiral [2.2]paracyclophanes. J Org Chem. 2019;84:5369–82.CAS 
    PubMed 

    Google Scholar 
    Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, et al. Symmetrically tetrasubstituted [2.2]Paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J. 2008;14:4600–17.CAS 
    PubMed 

    Google Scholar 
    David ORP. Syntheses and applications of disubstituted [2.2]Paracyclophanes. Tetrahedron. 2012;68:8977–93.CAS 

    Google Scholar 
    Hassan Z, Spluling E, Knoll DM, Lahann J, Bräse S. Planar Chiral [2.2]Paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem Soc Rev. 2018;47:6947–63.CAS 
    PubMed 

    Google Scholar 
    Hassan Z, Spuling E, Knoll DM, Bräse S. Regioselective functionalization of [2.2]Paracyclophanes: recent synthetic progress and perspectives. Angew Chem Int Ed. 2020;59:2156–70.CAS 

    Google Scholar 
    Felder S, Wu S, Brom J, Micouin L, Benedetti E. Enantiopure Planar Chiral [2.2]Paracyclophanes: synthesis and applications in asymmetric organocatalysis. Chirality. 2021;33:506–27.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y. Circularly Polarized Luminescence from Planar Chiral Compounds Based on [2.2]Paracyclophane. In: Mori T, editor. Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer: Singapore; 2020, p. 31–52.Morisaki, Y. Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama Y, Yagi S, editors. Progress in the Science of Functional Dyes. Springer: Singapore; 2021, p. 343–74.Morisaki Y, Chujo Y. Planar Chiral [2.2]Paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn. 2019;92:265–74.CAS 

    Google Scholar 
    Maeda H, Kameda M, Hatakeyama T, Morisaki Y. π-Stacked polymer consisting of a Pseudo-meta-[2.2]Paracyclophane skeleton. Polymers. 2018;10:1140. https://doi.org/10.3390/polym10101140.PubMed Central 

    Google Scholar 
    Gon M, Sawada R, Morisaki Y, Chujo Y. Enhancement and controlling the signal of circularly polarized luminescence based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules. 2017;50:1790–802.CAS 

    Google Scholar 
    Gon M, Morisaki Y, Sawada R, Chujo Y. Synthesis of optically active X-shaped conjugated compounds and dendrimers based on Planar Chiral [2.2]Paracyclophane, leading to highly emissive circularly Polarized Luminescence. Chem Eur J. 2016;22:2291–8.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Shibata S, Chujo Y. Synthesis of optically active through-space conjugated polymers consisting of Planar Chiral [2.2]Paracyclophane and Quaterthiophene. Polym J. 2015;47:278–81.CAS 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Through-space conjugated polymers consisting of Planar Chiral Pseudo-ortho-linked [2.2]Paracyclophane. Polym Chem. 2012;3:2727–30.CAS 

    Google Scholar 
    Liao C, Zhang Y, Ye S-H, Zheng W-H. Planar Chiral [2.2]Paracyclophane-based thermally activated delayed fluorescent materials for circularly polarized electroluminescence. ACS Appl Mater Int. 2021;13:25186–92.CAS 

    Google Scholar 
    Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H. Solid-state emissive triarylborane-based [2.2]Paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett. 2018;20:6868–71.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Practical optical resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. Chem Lett. 2012;41:990–2.CAS 

    Google Scholar 
    Tsuchiya M, Maeda H, Inoue R, Morisaki Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: fusing helical and planar chiralities. Chem Commun. 2021;57:9256–9.CAS 

    Google Scholar 
    Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, et al. Control of circularly polarized luminescence by orientation of stacked π-Electron Systems. Chem Asian J. 2019;14:1681–5.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Sawada R, Gon M, Chujo Y. New Type of Planar Chiral [2.2]Paracyclophanes and construction of one-handed double Helices. Chem Asian J. 2016;11:2524–7.CAS 
    PubMed 

    Google Scholar 
    Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y. Synthesis of Enantiopure Planar Chiral Bis-(para)-Pseudo-meta-Type [2.2]Paracyclophanes. Chirality. 2018;30:1109–14.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: optical resolution and functionalization. J Am Chem Soc. 2014;136:3350–3.CAS 
    PubMed 

    Google Scholar 
    Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–70.
    Google Scholar 
    Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis. In: Negishi E, editor. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York; 2002, p. 493–529.Meyer-Epler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. Synthesis, Chiral Resolution, and absolute configuration of dissymmetric 4,15-Difunctionalized [2.2]Paracyclophanes. J Org Chem. 2014;79:6679–87.
    Google Scholar 
    Miki N, Maeda H, Inoue R, Morisaki Y. Syntheses and Chiroptical properties of optically active V-shaped molecules based on Planar Chiral [2.2]Paracyclophane. ChemistrySelect. 2021;6:12970–4.CAS 

    Google Scholar 
    Bondarenko L, Dix I, Hinrichs H, Hopf H. Cyclophanes. Part LII: Ethynyl[2.2]paracyclophanes – New Building Blocks for Molecular Scaffolding. Synthesis. 2004;2751–9.Tanaka Y, Ozawa T, Inagaki A, Akita M. Redox-active Polyiron Complexes with Tetra(ethynylphenyl)ethene and [2,2]Paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire. Dalton Trans. 2007;928–33.Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y. π-Electron-system-layered Polymer: through-space conjugation and properties as a single molecular wire. Chem Eur J. 2012;18:4216–24.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Chujo Y. Planar Chiral through-space conjugated oligomers: synthesis and characterization of Chiroptical Properties. Chem Eur J. 2014;20:8386–90.CAS 
    PubMed 

    Google Scholar 
    Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with Data Science. Polym J. 2020;52:1307–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miki N, Inoue R, Morisaki Y. Synthesis of optically active V-shaped molecules: studies on the orientation of the Stacked π-Electron Systems and Their Chiroptical Properties. Bull Chem Soc Jpn. 2021;94:451–3.CAS 

    Google Scholar 
    Tabata D, Inoue R, Sasai Y, Morisaki Y. Synthesis of optically active V(120°)- and (60°)-shaped molecules comprising different π-electron systems. Bull Chem Soc Jpn. 2022;95:595–601.CAS 

    Google Scholar 
    Asakawa R, Tabata D, Miki N, Tsuchiya M, Inoue R, Morisaki Y. Syntheses of optically active V-shaped molecules: relationship between their Chiroptical Properties and the Orientation of the Stacked π-Electron System. Eur J Org Chem. 2021;2021:5725–31.Berova N, Nakanishi K, Woody RW. Circular Dichroism 2nd ed. Wiley-VCH: Toronto; 2000.Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev. 1986;86:1–16.CAS 

    Google Scholar 
    Riehl JP, Muller F. Comprehensive Chiroptical Spectroscopy. Wiley and Sons: New York; 2012. More

  • in

    Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees

    We confirm that Cuba is home to the world’s largest European honeybee population that has naturally become Varroa-resistant, with an estimated 220,000 colonies being maintained without any form of chemical treatment for over two decades19 although some drone-trapping occurred during the early years of the transition period This is despite the presence of the K-haplotype of the mite20 and the widespread occurrence of DWV19 throughout Cuba. Hence, the Cuban honeybee population is the first major case of Varroa-resistant European bees occupying an entire country of a large size (109,884 km2). In Europe the proportion of varroa-resistant honeybee populations in each country is highly variable21,22, but they still consist of small, isolated populations within any country. For example, the second largest known area of European Varroa-resistant honeybees is in North Wales, UK where 104 beekeepers have managed around 500 honey bee colonies over an area of 2500 km2 without treatment for over a decade23.It has long been established that sub-Sharan African and Africanised honeybees are Varroa-resistant and both populations cover much larger areas than Cuba, but these honeybee races are not capable of thriving in temperate regions or are rejected by beekeepers in Northern hemispheres. However, previous studies on African/Africanised and European honeybees4,5,6,9 all appear to have evolved with the same resistance mechanism7 and Cuban honeybees follow this pattern showing high recapping behaviour, high mite removal behaviour and low mite reproduction (Figs. 1, 4, Table 1).The strongest evidence that increased recapping behaviour is a direct response to the presence of Varroa, is the very low recapping rates in Varroa-naïve colonies. This is evidenced by the recapping baseline data that has now been collected from four different Varroa-naïve (Varroa free) honeybee populations (Australia, UK [two populations] and Hawaii [this study]) all producing similar results (Fig. 1). Across the four populations, a total of 9542 worker cells from 15 colonies have been studied with an average recapping rate of 2.0% (+ SD 3.2). Interestingly, only two of the colonies had atypical recapping rates of 8.5% and 10.7%, from Australia and Kauai respectively. This may suggest increased sensitivity in these colonies as no obvious causes e.g., wax moth or dead pupa, were detected in either colony. The data summary in Fig. 1 indicates that even in Varroa-treated populations the workers are still able to detect mite infested cells, but the average consistently falls significantly below that found in resistant populations. That is, in non-infested worker cells recapping rates are significantly higher in resistant populations in comparison to susceptible populations (Fig. 1) t4, 5 = − 4.185, p = 0.0023 as well as for infested cells t4, 5 = − 6.905, p = 0.00007.The ability of Cuban honeybees to detect infested cells causes not only high recapping levels but also high removal rates of artificially mite-infested cells. A mean removal rate of 81% is among one of the highest recorded in Apis mellifera7. The average control rate of 45% is driven by three colonies that all removed more than 75% of the controls, while the average of the remaining seven colonies was 28%. During the mite-removal studies in March 2022 natural Varroa infestation was 23%, whereas in December 2021 it was only 13%. This is due to decreasing worker brood rearing, caused by a shortage of nectar during the annual dry season. During this time there is an increase in hygienic behaviour in the colonies24, which could help explain the higher-than-expected removal of control cells.The reproductive ability of Varroa to produce viable i.e., mated, female offspring (r) in infested worker cells in resistant colonies in South Africa4 (r = 0.9), Brazil4 (r = 0.8), Mexico18 (r = 0.73), Europe3 (r = 0.84) is similar to the 0.87 found in Cuba (this study). In Cuba ‘r’ reduces to 0.77 when both single and multiple infested cells are considered. This reduction in mite reproduction, relative to susceptible colonies that have values of r greater than one, is directly linked to the increased ability of resistant workers to both detect and remove, by cannibalisation, the infested pupa. Hence, this ensures the invading mite fails to reproduce7 or reduces mite fertility due to the recapping process4. Although, in this study no significant difference was found in the reproduction of Varroa in recapped or non-recapped cells, supporting the findings of two previous studies5,9. Therefore, recapping may be playing a minor role in resistance. However, recapping remains the best indicator or ‘proxy’ of resistance within the vast majority of honeybee populations since it’s easier, quicker, and it requires less skill to measure recapping rates than mite removal rates. However, recapping is a highly variable trait7, hence both many cells (200–300) per colony and many colonies ( > 10) per population ideally need to be studied to help reduce the variablity, also in temperate countries measuring recapping when mite-infestation rates peak in autumn maximises detecting infested cells since the recapping of cells is spatially associated with infested cells11.Despite the current focus on what is happening in worker cells, studies focusing on the role of recapping in drone brood are still in their infancy with. Currently, data is only available from South Africa9 (Fig. 1) and now Cuba (this study). Interestingly, both studies indicate no significant difference in recapping rates between infested and non-infested brood. This is caused by some colonies performing no recapping of drone brood, while some colonies do recap cells but in a non-targeted manner. Whereas there is a significant increase in the size of the recapped area between infested (3.1 mm) and non-infested (2.3 mm) worker cells (Fig. 3), this does not occur in drone brood, as it appears that the holes are entirely exploratory. However, the lack of removal of infested drone brood may be playing an important role in mite-resistance (see below).The mite infestation of worker cells currently varies between 23 and 13% in Cuba (this study), roughly 25 years after it was first detected (1996). Whereas, in Mexico and Brazil, infestation rates of worker brood have fallen from around 20% in 1996/1999 down to 4% in 2018/197. Although, Varroa was first detected in Brazil much earlier, in 197225 and the Africanised honeybees adapted to the mite and spread northward replacing the susceptible European colonies. Therefore, we predict that the worker infestation rate in Cuba will continue to fall over the next 20 years, especially if high mite-removal rates persist. Correspondingly, we would expect to see the infestation rates of the drone brood (currently at 40%) to remain high as mites potentially avoid reproduction in worker cells. This potentially is a key, but currently overlooked part, of the resistance mechanism. Since an empirical model26 indicated that negative mite population growth occurs in (resistant) Africanised honeybee colonies only when the initial drone cells are present. This is thought to arise because mites also show a tenfold preference to reproduce in drone cells (which comprises only 1–5% of all the honeybee brood) and they soon become overcrowded as the mite population increases. This leads to inter-mite competition for the limited food and space, causing an increase in mite mortality27, resulting in negative reproductive success for mites entering these overcrowded drone cells. Thus, mite population growth in drone brood cells is limited by a density-dependent mechanism. In Cuba it has been observed that strong colonies typically with drone brood do not weaken during the drought season, whereas colonies without drone brood are weak and often die during the drought (APP personal comm).Although Cuban beekeepers have been aware of their mite-resistant honeybees for 15 to 20 years’, Cuba’s situation has only recently come to light16,18. The main reason for Varroa-resistance in Cuba is due to the centralised decision to allow natural resistance to evolve, as also was done successfully in South Africa3, rather than becoming locked into using miticides, as has happened throughout the Northern hemisphere. The CIAPI and Veterinarian Services central decision to ‘not treat’ was greatly assisted by all Cuban beekeepers being professional, registered and embedded within a strong locally based beekeeping community where colony movement and exchange of queens is within each province.There is also a large feral population and due to Cuba’s sub-tropical climate, queens are replaced annually in managed colonies because of almost continuous egg-laying, similar to honeybees in Hawaii. This rapid queen turnover speeds up natural selection relative to honeybee populations in more temperate climates. Finally, Cuba’s 60-year ban on honeybee importation has helped isolate the country from been invaded by Africanised bees which has occurred in many nearby regions (eg. Mexico, Southern USA, Puerto Rico, neighbouring Dominican Republic13 and Haiti (D. Macdonald, Apiary Inspector, Min. of Agi BC, Canada, pers. Comm.). Cuba has many managed European colonies coupled with many queen rearing stations. These colonies are productive and mild mannered. Thus, Cuba is an excellent example of the power of natural selection in honeybees when they are allowed to adapt naturally to Varroa with minimal human interference. More

  • in

    Genic distribution modelling predicts adaptation of the bank vole to climate change

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189 (2018).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).Article 

    Google Scholar 
    Bradshaw, A. D. & McNeilly, T. Evolutionary response to global climatic change. Ann. Bot. 67, 5–14 (1991).Article 

    Google Scholar 
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).Article 

    Google Scholar 
    Veron, S., Haevermans, T., Govaerts, R., Mouchet, M. & Pellens, R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 9, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed 
    Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. & Whitlock, M. C. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2015).Article 
    CAS 

    Google Scholar 
    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 

    Google Scholar 
    Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).Article 

    Google Scholar 
    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).PubMed 
    Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).PubMed 
    Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, S. J. G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160 (1979).Article 

    Google Scholar 
    Kotlík, P. et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B 281, 20140021 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Searle, J. B. et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escalante, M. A., Horníková, M., Marková, S. & Kotlík, P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 11, 8054–8070 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reischl, E., Dafre, A. L., Franco, J. L. & Wilhelm Filho, D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 146, 22–53 (2007).Article 
    CAS 

    Google Scholar 
    Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, R. et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 276, 7004–7010 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitturi, D. A. et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 55, 119–129 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petersen, A. G. et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R84–R93 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paital, B. et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 7, 110–127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, P. J., Oosthuizen, M. K., Mitchell, C., Blount, J. D. & Bennett, N. C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 15, e0242279 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kotlík, P., Marková, S., Horníková, M., Escalante, M. A. & Searle, J. B. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 10, 866605 (2022).Article 

    Google Scholar 
    Strážnická, M., Marková, S., Searle, J. B. & Kotlík, P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes 9, 492 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).Article 

    Google Scholar 
    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213, 63–72 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).Article 

    Google Scholar 
    Mayes, J. & Wheeler, D. Regional weather and climates of the British Isles—part 1: introduction. Weather 68, 3–8 (2013).Article 

    Google Scholar 
    Kotlík, P., Marková, S., Konczal, M., Babik, W. & Searle, J. B. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B 285, 20172624 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 222, 1757–1765 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning – ICML ’04 9, 83 (ACM Press, 2004).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 341, 5–13 (2016).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).Article 

    Google Scholar 
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).Article 

    Google Scholar 
    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 

    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).Article 

    Google Scholar  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More