More stories

  • in

    Climate change ‘heard’ in the ocean depths

    Irigoien, X. et al. Nat. Commun. 5, 3271 (2014).Article 

    Google Scholar 
    Ariza, A. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01479-2 (2022).Article 

    Google Scholar 
    Klevjer, T. A. et al. Sci. Rep. 6, 19873 (2016).CAS 
    Article 

    Google Scholar 
    Braun, C. D. et al. Annu. Rev. Mar. Sci. 14, 129–159 (2022).Article 

    Google Scholar 
    Heneghan, R. F. et al. Prog. Oceanogr. 198, 102659 (2021).Article 

    Google Scholar 
    Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. ICES J. Mar. Sci. 68, 986–995 (2011).Article 

    Google Scholar 
    Cheung, W. W. L. et al. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    Hazen, E. L. et al. Nat. Clim. Change 3, 234–238 (2013).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Purves, D. et al. Nature 493, 295–297 (2013).CAS 
    Article 

    Google Scholar 
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Fish. Oceanogr. 25, 45–56 (2016).Article 

    Google Scholar 
    Pons, M. et al. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).Article 

    Google Scholar  More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis

    The overall magnitude of changes in SOC, TN, and C:N in response to chemical nitrogen fertilizers reductionThe results showed that chemical nitrogen fertilizers reduction significantly decreased SOC and TN by 2.76% and 4.19% respectively, while increased C:N by 6.11% across all database (Fig. 1). SOC mainly derives from crop residues and secretions which closely related to crops growths, and crops growths were affected by fertilization, especially nitrogen fertilization20,21. The reduction of chemical nitrogen fertilizer led to poor crop growth, which reduced the amount of crop residues return, and then decreased SOC. Similarly, TN from crops was reduced due to poor crop growth. In addition, the reduction of chemical nitrogen fertilizers directly reduced the input of soil nitrogen. The increase of C:N was the result of the decrease of TN being greater than that of SOC. The responses of C:N to chemical nitrogen fertilizers reduction enhanced the comprehension of the couple relationship between SOC and TN, which was beneficial to the evolution of the C-N coupling models. Moreover, the accuracy of C-N coupling models depends on the precise quantification of the responses of SOC and TN to nitrogen fertilization. And our results accurately quantified the difference responses of SOC and TN to different nitrogen fertilization regimes, thus optimizing the C-N coupling models.Figure 1The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The value represents independent sample size.Full size imageResponses of SOC, TN and C:N to chemical nitrogen fertilizers reduction magnitudeWhen grouped by chemical nitrogen fertilizers reduction magnitude, SOC showed a significant increase by 6.9% in medium magnitude, while SOC was significantly decreased by 3.10% and 7.26% in high and total magnitude respectively (Fig. 1a). Liu and Greaver22 also stated the reduction of medium nitrogen fertilizer increased the average microbial biomass from 15 to 20%, thereby increasing the SOC content. Previous studies had reported that there were strong positive correlations between soil organic matter and soil microbial biomass in both the agricultural ecosystem and natural ecosystem23,24. Numerous researchers have demonstrated the significance of nitrogen availability in soil for the plant biomass across most ecosystems25,26. Moreover, nitrogen deficient would inhibit the activity of extracellular enzymes and root activities27. Generally, soil degradation caused by continuous rising chemical nitrogen fertilizers application may inhibit the growth of crops and ultimately reduce the SOC28.TN showed no significant difference in low and medium chemical nitrogen fertilizers reduction magnitude (p  > 0.05), while TN in high magnitude and total chemical nitrogen fertilizers reduction magnitude exhibited a decrease with 3.10% and 9.37% respectively (Fig. 1b). Numerous studies described that the amount of nitrogen fertilizers used in China was higher than the demand of N for crop, which caused serious N leaching and runoff29,30. Chemical nitrogen fertilizers in low and medium magnitude would not decrease the TN of soil by reducing N leaching and runoff. However, the residual nitrogen in soil cannot meet the requirement for the sustainable growth of plant with litter or without exogenous nitrogen supplement, which resulted in the decrease of TN in high and total chemical nitrogen fertilizers magnitude. Consequently, optimal nitrogen fertilizers application rates will take into account crops yield and environment friendliness.Additionally, C:N had a significant increase with ranging from 1.82% to 8.98% under the four chemical nitrogen fertilizers reduction magnitude (Fig. 1c), suggesting the relative increase of SOC compared to TN. Previous studies have revealed that C:N had significantly influence on the soil bacterial community structures31. And there were also considerable studies indicated that chemical nitrogen fertilizers have impact on the soil bacterial communities32,33. We may speculate that the change of C:N would bring about the variations of soil bacteria communities under the chemical nitrogen fertilizers regimes.Responses of SOC, TN, and C:N to chemical nitrogen fertilizers reduction durationNegative response of SOC to short-term chemical nitrogen fertilizers reduction was observed in our study, which was consistent with the study of Gong, et al.34 that chemical nitrogen fertilizers reduction decreased SOC by reducing crop-derived carbon by one year. However, SOC was significantly increased by 1.06% and 4.65% at mid-term and long-term chemical nitrogen fertilizers reduction respectively, which was similar with the findings of Ning, et al.11 that SOC was significantly increased under more than 5 years of chemical nitrogen fertilizers reduction treatment. TN was significantly decreased by 1.96% at short-term chemical nitrogen fertilizers reduction duration, while the results converted at mid-term chemical nitrogen fertilizers reduction duration. The effect of long-term chemical nitrogen fertilizers reduction on TN was not significant (p  > 0.05). The divergent response of TN to different chemical nitrogen fertilizers duration was mainly caused by the various treatments. In terms of C:N, a greater positive response was observed at short-term chemical nitrogen fertilizers duration (9.06%) than mid-term and long-term duration (1.99%). Moreover, with the prolongation of the chemical reduction time of nitrogen, the response ratio tends to zero, suggesting that the effect of chemical fertilizers gradually decrease. This may be ascribed to the buffer capacity of soil to resist the changes from external environment, including nutrients, pollutants, and redox substances35.Responses of SOC, TN, and C:N to different chemical nitrogen fertilizers reduction patternsUnder the pattern of chemical nitrogen fertilizers reduction without organic fertilizers supplement, SOC and TN significantly decreased by 3.83% and 11.46% respectively, however, chemical nitrogen fertilizers reduction with organic fertilizers supplement significantly increased SOC and TN by 4.92% and 8.33% respectively. Moreover, C:N significantly increased under the two chemical nitrogen fertilizers patterns (p  0.05), but there was a negative effect on SOC in high and total magnitude (p  0.05). The no significant decrease at mid-term duration might result from the limited information reported in original studies of this meta-analysis36. TN showed no significant response to chemical nitrogen fertilizers without organic fertilizers supplement in the low and medium magnitude (p  > 0.05). However, TN was significantly decreased by 8.62% and 16.7% respectively in the high and total magnitude. When regarding to chemical nitrogen fertilizers reduction duration, TN was significantly reduced at all of the categories, ranging from 3.13% to 13.4% (Fig. 2c). In the pattern of chemical nitrogen fertilizers reduction with organic fertilizers supplement, chemical nitrogen fertilizers reduction at medium, high, and total magnitudes significantly increased SOC by 13.85%, 13.03%, and 5.46%respectively, however, the response of SOC in the low chemical nitrogen fertilizers magnitude was not significant. Chemical nitrogen fertilizers reduction duration significantly increased SOC by 7.01%, 1.71%, and 22.02% in the short-term, mid-term, and long-term respectively. Comparatively, TN showed a significantly increase in most chemical nitrogen fertilizers categories expect for the long-term chemical nitrogen fertilizers duration, with an increasing from 4.90% to 14.69% (Fig. 2d).Figure 2The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c) under the two patterns (with organic fertilizers ; without organic fertilizers). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The values represent independent sample size.Full size imageOrganic fertilizers were mainly derived from animal manure or crops straws, which contained large amount of organic matter and nitrogen elements37,38. The application of organic fertilizers increased the input of SOC and TN directly. Moreover, organic fertilizer could promote the growth of crops by releasing phenols, vitamins, enzymes, auxins and other substances during the decomposition process, thus the SOC derived from crops would be increased37,39. In addition, organic fertilizers provide various nutrients for microbial reproduction, which increase the microbial population and organic carbon and total nitrogen content37. More importantly, the application of organic fertilizers could improve organic carbon sequestration and maintain its stability in aggregates, thereby reducing losses of SOC and TN40.C:N showed an increase under all of the chemical nitrogen fertilizers reduction with organic fertilizer supplement. The positive response of C:N to organic fertilizer supplement may be related to the higher C:N of organic fertilizer than soil. The average values of C:N of the commonly used organic fertilizers including animal manure, crop straws and biochar were 14, 60 and 30 respectively, while the C:N of soil was lower than 10 in average according to extensive literature researches41. Therefore, organic fertilizers would be a favorable alternative of chemical fertilizers for the sustainable development of agriculture.The correlation between the response of SOC, TN, and C:N and environmental variablesThe analysis of linear regression was conducted to analyze the environmental variables including mean annual temperature (MAT), mean annual precipitation (MAP), accumulated temperature above 10 °C (MATA), which may exert influence on SOC, TN and C:N. No significant correlation among the lnRR of SOC, TN, C:N and environmental variables were observed among the whole database (p  > 0.05; Fig. S1). Rule out the interference of organic fertilizers supplement, we analyzed the relationship between lnRR of SOC, TN, C:N and environmental variables as the Figures showed in Figs. 3 and 4 respectively. Under chemical nitrogen fertilizers without organic fertilizers supplement, there was a significant negative correlation between lnRR of SOC and MAT (p  More

  • in

    Diving in

    Nearly two years into the United Nations Decade of Ocean Science, research, including some featured in this month’s issue, shows that there is still a wealth of scientific secrets to uncover in the ocean depths.
    In many ways, considering the ocean as a single unit is overly broad. The global ocean covers 71% of the planet’s surface, reaches down to depths of over 10 kilometres, includes about 1.35 billion cubic kilometres of water and houses an approximated 2.2 million eukaryotic species. There are distinct regions, with distinct physical properties, and, in turn, there are distinct species. Yet, the world’s oceans do have a level of physical and thematic connectivity.
    Credit: Daria Zaseda / DigitalVision Vectors / GettyPhysically, a large part of the connection is related to the presence of large rotating ocean currents that transfer heat across latitudes and contribute to ocean mixing (thermohaline circulation). Some of these currents are warming at alarming rates — up to three times faster than the rest of the ocean, leading to questions about the underlying mechanisms of the warming and expectations for change.Focusing on western boundary currents (WBCs) in the Southern Hemisphere, in an Article in this issue of Nature Climate Change, Li and colleagues answer a long-debated question on the mechanisms of change, showing that temperature-gradient-related instabilities, rather than flow-speed-related instabilities are behind the shifts. In another Article, focusing on the global future changes of eddies (including eddy-rich WBCs), Beech and colleagues report the development of a flexible method that maximizes local model resolution while minimizing computational costs, to reveal the long-term geographical specificities and nonlinear temperature increases expected to 2100 (see also the News and Views article by Yang on these papers).A recent paper1 has demonstrated the important role of large ocean currents in defining plankton biogeography and dynamics, and WBC warming has previously been linked to impacts such as fishery collapses. The tight link between physical processes and biological responses is an underscoring theme of climate change ecology, but is perhaps more apparent in the open ocean, where physical processes can be easily (if imperfectly) linked to primary productivity using remotely sensed phytoplankton pigment absorption, and where life is generally less impacted by geographical, political or disturbance-based boundaries compared with land and freshwater systems. These aspects may facilitate modelling of current and future communities, while also allowing broader assumptions to be made about biological movement and connectivity.Despite these benefits, understanding ocean change comes with its own difficulties. Biological sampling, while easy enough in the surface waters, becomes increasingly difficult at depth. Although future habitats for various organisms have been projected on the basis of their thermal limits in the ocean, these predictions often still rely on temperatures at the surface of the sea. Addressing this, Santana-Falcón and colleagues report in an Article the global mapping of ocean temperature changes to depths of 1,000 metres, and reveal the complex depth-dependent changes in thermal upper and lower bounds that marine organisms will soon be subjected to. In another Article, Ariza and colleagues neatly address the issue of directly monitoring deep-ocean change by compiling a large database of sound-based observations, and subsequently classifying the ocean’s ‘echobiomes’, defined as sound-scattering communities with comparable structural and functional properties (see also the accompanying News and Views article by Hazen). Sound-based methods are also increasingly being used on land2, and represent an exciting tool for monitoring change, particularly in hard-to-reach places such as deep forests, high mountaintops or underground. While the sound reflection method used in the study by Ariza and colleagues has limits in its ability to identify organisms at the individual or species levels, it does provide a community-level focus on change, which remains much needed in the field of global change ecology.At the other end of the spatial spectrum, research by Lee and colleagues reported in an Article also in this issue dives deep into the DNA of a keystone ocean organism (a copepod), to understand the mechanisms that may allow longer-term adaptation to warming and pH stress. The work reveals remarkable adaptation over just a few short generations, which is linked to epigenetic changes. As climate change impacts continue to escalate, the ability of organisms to invoke both shorter- and longer-term adaptations has become an increasingly relevant area of research. Epigenetics has previously been reported as a quick-response method to cope with environmental stress, and may be particularly relevant in defining the adaptation of short-lived animals such as insects and the resilience of the communities they uphold.The five research pieces linked to the oceans in this issue reveal just some of the diversity of topics, methods and scales relevant to understanding global change. Also increasingly relevant are works on ocean conservation3 and on the social and economic impacts of ocean change4,5. Like climate change science, the topic of ocean change is less of a field, and more of a cross-disciplinary theme. More

  • in

    Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini

    Changes in temperature and extreme environmental conditions can affect the dynamics of vector-borne pathogens. These include leishmaniasis, transmitted by phlebotomine sandflies, as well as mosquitoes that spread arboviruses like dengue, encephalitis, yellow fever, West Nile fever, and lymphatic filariasis19,20,21.The CCA analysis showed that maximum temperature significantly influenced the abundance of mosquito populations in the study area. In addition, the NMDS showed two different groupings that consisted of samples collected during the rainy and dry seasons. Accordingly, Refs.22,23 report that changes in temperature and relative humidity determine the abundance of mosquitoes, which can disappear entirely during the dry season. Moreover, Refs.22,24,25 note that certain species of mosquitoes increase proportionally with the regional rainfall regime. This is consistent with Ref.10, who find alternating patterns in tropical and temperate climates in some Brazilian regions.As shown by the geometric regression, there is a positive correlation between cumulative rainfall in the days before collection and the number of species found in the study period. Likewise, Ref.26 reported that under the conditions observed in the Serra do Mar State Park, climate variables directly influenced the abundance of Cq. chrysonotum and Cq. venezuelensis, favoring the occurrence of culicids during the more warm, wet, and rainy months.The current climate scenario and future projections about climate, environmental, demographic, and meteorological factors directly influence the distribution and abundance of mosquito vectors and/or diseases27,28,29,30. Environmental temperature alters mosquito population dynamics, thereby affecting the development of immature stages as well as reproduction31. While temperature has an important effect on population dynamics, rainfall and drought also affect the density and dispersal of mosquitoes in temperate and tropical regions32.To be sure, environmental changes other than climate can modify the behavior of vector insects and, subsequently, the mechanism of transmission of parasites20. Specifically, human impacts on the environment can result in drastically different disease transmission cycles in and around inhabited areas33.A previous study34 reported that changes in land use influence the mosquito communities with potential implications for the emergence of arboviruses. Another study35 noted that environmental changes negatively affect natural ecosystems with accelerated biodiversity loss. This is due to the modification and loss of natural habitat and unsustainable land use, which leads to the spread of pathogens and disease vectors.Hence, understanding the relationship between humans and the environment becomes increasingly critical, given the way in which climate changes can lead to alterations in the epidemiology of diseases such as dengue in areas considered free of the disease, as well as in endemic areas36.We found that the abundance and diversity of Mansoniini were directly influenced by the effect of the rainy season and other climatic factors. The rainfall regime has been shown to affect the development of immature forms12,37; explaining the greater frequency of these specimens in the warmer and wetter months38,39,40. According to Ref.41, stable ecosystems such as forests contain great species diversity. On the other hand, diversity tends to be reduced in biotic communities suffering from stress.Studies of insect populations in natural areas are important because they allow a direct analysis of how environmental factors influence phenomena such as the choice of breeding sites by females for oviposition, hematophagous behavior, and the distribution of species along a vegetation gradient12,26,42,43.Throughout the experimental period of the present study, we observed that Shannon light traps are an effective method for catching mosquitoes from the Mansoniini tribe. Interestingly, Ref.44 reported a species richness pattern strongly influenced by Coquillettidia fasciolata (Lynch Arribálzaga, 1891) on mosquito samples from different capture points by using CDC and Shannon light traps as sampling methods. In contrast to the results of Ref.44, where the highest population density of mosquitoes was captured with CDC traps, we observed that these traps were not effective at capturing specimens of Mansoniini in spite of being used in large numbers in the present study. Moreover, Ref.45 conducted another study on faunal diversity in an Atlantic Forest remnant of the state of Rio de Janeiro and observed the highest abundance of Cq. chrysonotum (Peryassú, 1922) and Cq. venezuelensis by using Shannon light traps, while the numbers of captures of Ma. titillans were very similar using CDC and Shannon traps.The results of this study indicate that the makeup of culicid fauna remains quite similar throughout the year, despite seasonal variations in abundance, though there was a lower variability of fauna in the dry season. Therefore, although the seasonality did not affect the temporal variation of the faunal composition in a generalized way, it was possible to detect a partial effect of the seasonality on fauna abundance.
    Reference46 report that the incidence peaks of mosquitoes in the warmer and wetter months, as well as mosquito populations remaining between tolerance limits for most of the year, indicate the sensitivity of some species to the local climate.The elevated abundance and diversity of species of Mansoniini in the study area were influenced by the favorable maintenance of breeding sites, including specific water accumulations with emerging vegetation that remain present throughout the year and the well-defined rainy season in the region. In addition, the representatives of Mansoniini, which prefer breeding sites containing macrophytes, made up nearly all of the species collected7.Besides providing a greater awareness of mosquito populations’ ecological and biological aspects, research carried out in wild areas also provides information on the relationship between species diversity and the area in which they are found. Considering that wild insects may become potential vectors of diseases, research in wild areas also provides helpful information for understanding relevant epidemiological aspects. These studies facilitate the identification, monitoring, and control of mosquito populations following environmental changes caused by direct human action, which can lead to major epidemics26.We observed considerable heterogeneity among Mansoniini fauna, and the months with the highest rainfall directly influence the structure of the communities and contribute to the increase in mosquito diversity and abundance, possibly due to variations in the availability of habitat for their immature forms. More

  • in

    Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 
    Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 
    Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).
    Google Scholar 
    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).
    Google Scholar 
    Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).
    Google Scholar 
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 
    Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 
    Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 
    Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).
    Google Scholar 
    Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).CAS 
    PubMed 

    Google Scholar 
    Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).
    Google Scholar 
    Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).PubMed Central 

    Google Scholar 
    Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).
    Google Scholar 
    Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).
    Google Scholar 
    Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).PubMed 

    Google Scholar 
    Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).
    Google Scholar 
    Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).
    Google Scholar 
    Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).CAS 
    PubMed 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).ADS 

    Google Scholar 
    Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).
    Google Scholar 
    Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).
    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).
    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).
    Google Scholar 
    Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).PubMed 

    Google Scholar 
    Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).ADS 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).ADS 

    Google Scholar 
    Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).CAS 
    PubMed 

    Google Scholar 
    Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).PubMed 

    Google Scholar 
    Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).CAS 
    PubMed 

    Google Scholar 
    Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).PubMed 

    Google Scholar  More

  • in

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Orr, D. W. Land use and climate change. Conserv. Biol. 22(6), 1372–1374 (2010).
    Google Scholar 
    Zhang, X. D. et al. Tropospheric ozone perturbations induced by urban land expansion in China from 1980 to 2017. Environ. Sci. Technol. https://doi.org/10.1021/ACS.EST.1C06664 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian cerrado biome. Environ. Res. Lett. 12(2), 025004. https://doi.org/10.1088/1748-9326/aa5986 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, B., Xun, Z., Ran, Z. & Zhao, X. Study of multiple land use planning based on the coordinated development of wetland farmland: A case study of Fuyuan City, China. Sustainability 11(1), 271. https://doi.org/10.3390/su11010271 (2019).Article 

    Google Scholar 
    Tong, D., Chu, J., Han, Q. & Liu, X. How land finance drives urban expansion under fiscal pressure: Evidence from Chinese cities. Land. 11(2), 253. https://doi.org/10.3390/land11020253 (2022).Article 

    Google Scholar 
    Chen, J., Chang, K. T., Karacsonyi, D. & Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat. Int. 43, 61–71. https://doi.org/10.1016/j.habitatint.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Shu, B. R., Zhang, H. H., Li, Y. L., Qu, Y. & Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat. Int. 43, 181–190. https://doi.org/10.1016/j.habitatint.2014.02.004 (2014).Article 

    Google Scholar 
    Wang, R. Y., He, W. S., Wu, D., Zhang, L. & Li, Y. J. Urban Land expansion simulation considering the diffusional and aggregated growth simultaneously: A case study of Luoyang City. Sustainability. 13(17), 9781–9781. https://doi.org/10.3390/su13179781 (2021).Article 

    Google Scholar 
    Wei, Y. D. & Ye, X. Determinants of urban land expansion and environmental change in China. Stoch. Env. Res. Risk. A. 28(4), 757–765. https://doi.org/10.1007/s00477-013-0840-9 (2014).Article 

    Google Scholar 
    Yang, Q. K., Duan, X. J., Yang, L. & Wang, L. Spatial-Temporal patterns and driving factors of rapid urban land development in provincial China: A case study of Jiangsu. Sustainability. 9(12), 2371. https://doi.org/10.3390/su9122371 (2017).Article 

    Google Scholar 
    Zhong, Y., Lin, A. & Zhou, Z. Evolution of the pattern of spatial expansion of urban land use in the Poyang Lake ecological economic zone. Int. J. Environ. Res. Public. Health. 16(1), 117. https://doi.org/10.3390/ijerph16010117 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wu, C., Huang, X. & Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China. Land Use Policy 96, 104687. https://doi.org/10.1016/j.landusepol.2020.104687 (2020).Article 

    Google Scholar 
    Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat. Int. 34(2), 236–243. https://doi.org/10.1016/j.habitatint.2009.09.008 (2010).Article 

    Google Scholar 
    Cai, W. J. & Tu, F. Y. Spatiotemporal characteristics and driving forces of construction land expansion in Yangtze River economic belt, China. PLoS ONE 15(1), 0227299. https://doi.org/10.1371/journal.pone.0227299 (2020).CAS 
    Article 

    Google Scholar 
    Salvati, L., Carlucci, M., Grigoriadis, E. & Chelli, F. M. Uneven dispersion or adaptive polycentrism? Urban expansion, population dynamics and employment growth in an “ordinary” city. Rev. Region. Res. 38(1), 1–25. https://doi.org/10.1007/s10037-017-0115-x (2017).Article 

    Google Scholar 
    Cao, Y., Ba, I. Z., Zhou, W. & Zhang, X. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth. Sci. 75(16), 1191.1-11911.3. https://doi.org/10.1007/s12665-016-5926-5 (2016).Article 

    Google Scholar 
    Davies, R. G., Barbosa, O. D. & Fuller, R. A. City-wide relationships between green spaces, urban land use and topography. Urban Ecosyst. 11(3), 269. https://doi.org/10.1007/s11252-008-0062-y (2008).Article 

    Google Scholar 
    Cheng, L. L., Liu, M. & Zhan, J. Q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 17(2), 289–303. https://doi.org/10.1007/s11629-019-5491-y (2020).Article 

    Google Scholar 
    Liu, J. Y., Zhan, J. Y. & Deng, X. Z. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 34, 450–455. https://doi.org/10.1579/0044-7447-34.6.450 (2005).Article 
    PubMed 

    Google Scholar 
    Li, X. M., Zhou, W. & Quyang, Z. J. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors?. Appl. Geogr. 38, 1–10. https://doi.org/10.1016/j.apgeog.2012.11.004 (2013).Article 

    Google Scholar 
    Wang, Z. W. & Lu, C. H. Urban land expansion and its driving factors of mountain cities in China during 1990–2015. J. Geogr. Sci. 28(8), 1152–1166. https://doi.org/10.1007/s11442-018-1547-0 (2018).MathSciNet 
    Article 

    Google Scholar 
    Zhang, Y. W. & Xie, H. L. Interactive relationship among urban expansion, economic development, and population growth since the reform and opening up in China: An analysis based on a vector error correction model. Land 8(10), 153–153. https://doi.org/10.3390/land8100153 (2019).CAS 
    Article 

    Google Scholar 
    Deng, X., Huang, J., Rozelle, S. & Uchid, E. Growth, population and industrialization, and urban land expansion of China. J. Urban. Econ. 63(1), 96–115. https://doi.org/10.1016/j.jue.2006.12.006 (2006).Article 

    Google Scholar 
    Luo, J., Zhang, X. & Wu, Y. Urban land expansion and the floating population in China: For production or for living?. Cities 74(4), 219–228. https://doi.org/10.1016/j.cities.2017.12.007 (2018).Article 

    Google Scholar 
    Salem, M., Tsurusaki, N. & Divigalpitiya, P. Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: A case study of the greater Cairo region. Infrastructures 4(1), 4. https://doi.org/10.3390/infrastructures4010004 (2019).Article 

    Google Scholar 
    Salem, M., Bose, A. & Chowdhury, I. R. Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability 13(19), 1–17. https://doi.org/10.3390/su131910805 (2021).Article 

    Google Scholar 
    Su, Z. W. et al. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China. Geomat. Nat. Hazards. Risk. 9(1), 1207–1229. https://doi.org/10.1080/19475705.2018.1505667 (2018).Article 

    Google Scholar 
    Hu, Y. & Hu, Y. Land cover changes and their driving mechanisms in central Asia from 2001 to 2017 supported by google earth engine. Remote. Sens-Basel. 11(5), 554. https://doi.org/10.3390/rs11050554 (2019).ADS 
    Article 

    Google Scholar 
    Liu, Y., Song, W. & Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional dpsir-based indicators. Ecol. Indic. 2(96), 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029 (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L., Wang, Y. F., Sun, H. Y. & Yin, T. T. Comprehensive effectiveness evaluation and obstacle diagnosis of mining villages in the transition period. Trans. CSAE. 38(5), 241–249. https://doi.org/10.11975/j.issn.1002-6819.2022.05.029 (2022).Article 

    Google Scholar 
    Cheng, L. L., Sun, H. Y., Zhang, Y. & Zhen, S. Spatial structure optimization of mountainous abandoned mine land reuse based on system dynamics model and CLUE-S model. Int. J. Coal. Sci. Techn. 6, 113–126. https://doi.org/10.1007/s40789-019-0241-x (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L. & Yin, T. T. Impacts of anthropogenic and biophysical factors on ecological land using logistic regression and random forest: A case study in Mentougou District, Beijing, China. J. Mt. Sci. 19, 433–445. https://doi.org/10.1007/s11629-021-7022-x (2022).Article 

    Google Scholar 
    Gorelick, N., Hanchr, M., Dixon, M., Ilyushchenko, S. & Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS 
    Article 

    Google Scholar 
    Feng, R. D., Wang, F. Y. & Wang, K. Y. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao Greater Bay area. J. Clean. Prod. 283(9), 125304. https://doi.org/10.1016/j.jclepro.2020.125304 (2021).Article 

    Google Scholar 
    Sun, X., Lu, Z., Li, F. & Crittenden, J. C. Analyzing spatio-temporal changes and tradeoffs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indicat. 94, 117–129. https://doi.org/10.1016/j.ecolind.2018.06.049 (2018).Article 

    Google Scholar 
    Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A. & Pereira, J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest. Ecol. Manag. 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003 (2012).Article 

    Google Scholar 
    Ugur, A. Dynamic land cover mapping of urbanized cities with Landsat 8 multi-temporal images: Comparative evaluation of classification algorithms and dimension reduction methods. Isprs Int. J. Geo-Inf. 8(3), 139. https://doi.org/10.3390/ijgi8030139 (2019).Article 

    Google Scholar 
    Chapelle, O. Training a support vector machine in the primal. Neural. Comput. 19(5), 1155. https://doi.org/10.1162/neco.2007.19.5.1155 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lin, Q. Y., Guo, J. Y., Yan, J. F. & Wang, H. Land use and landscape pattern changes of Weihai, China based on object-oriented SVM classification from Landsat MSS/TM/OLI images. Eur. J. Remote. Sens. 51(1), 1036–1048. https://doi.org/10.1080/22797254.2018.1534532 (2018).Article 

    Google Scholar 
    Devos, O., Ruckebusch, C., Duponchel, L. & Huvenne, J. P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometr. Intell. Lab. 96(1), 27–33. https://doi.org/10.1016/j.chemolab.2008.11.005 (2009).CAS 
    Article 

    Google Scholar 
    Heumann, B. W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote. Sens-Basel. 3(11), 2440–2460. https://doi.org/10.3390/rs3112440 (2011).ADS 
    Article 

    Google Scholar 
    Hsu, C., Chang, C. C. & Lin, C. J. A practical guide to support vector classification, 15. Department of Computer Science, National Taiwan University. https://doi.org/10.1111/j.1365-3016.1995.tb00168.x (2009).Aspinall, R. Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin valley, Montana. J. Environ. Manage. 72(1–2), 91–103. https://doi.org/10.1016/j.jenvman.2004.02.009 (2004).Article 
    PubMed 

    Google Scholar 
    Wu, W. & Zhang, J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62. https://doi.org/10.1016/j.apgeog.2012.10.012 (2013).Article 

    Google Scholar 
    Thomas, D. R., Zhu, P. C. & Decady, Y. J. Point estimates and confidence intervals for variable importance in multiple linear regression. J. Educ. Behav. Stat. 32(1), 61–91. https://doi.org/10.1002/bimj.201100134 (2007).Article 

    Google Scholar 
    Huang, B. & Boutros, P. C. The parameter sensitivity of random forests. BMC Bioinform. 17, 331. https://doi.org/10.1186/s12859-016-1228-x (2016).Article 

    Google Scholar 
    Pang, J., Chen, Y., He, S., Qiu, H. & Mao, L. Classification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithms. J. Tribol-T. Asme. 143(9), 1–28. https://doi.org/10.1115/1.4049257 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M., Hu, S., Ge, Y., Heuvelink, G. & Huang, X. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spat. Stat.-Neth. 42, 100461. https://doi.org/10.1016/j.spasta.2020.100461 (2020).MathSciNet 
    Article 

    Google Scholar 
    Jutidamrongphan, W. Determine the land-use land-cover changes, urban expansion and their driving factors for sustainable development in Gazipur Bangladesh. Atmosphere 12(10), 1353. https://doi.org/10.3390/atmos12101353 (2021).ADS 
    Article 

    Google Scholar 
    Liu, M. & Tian, H. China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009GB003687 (2010).Article 

    Google Scholar 
    Tong, Z., Yao, S., Hu, W. & Cui, F. Simulation of urban expansion in Guangzhou Foshan metropolitan area under the influence of accessibility. Scientia. Geographica. Sinica. 38(5), 737–746 (2018).
    Google Scholar 
    Poelmans, L. & Rompaey, A. V. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 34(1), 17–27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001 (2010).Article 

    Google Scholar 
    Galinato, S. P. & Gregma, I. The effects of government spending on deforestation due to agricultural land expansion and CO2 related emissions. Ecol. Econ. 122, 43–53. https://doi.org/10.1016/j.ecolecon.2015.10.025 (2016).Article 

    Google Scholar 
    Xie, X. F., Wu, T., Zhu, M., Jiang, G. J. & Xw, E. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925. https://doi.org/10.1016/j.ecolind.2020.106925 (2021).CAS 
    Article 

    Google Scholar 
    Miller, M. D. The mpacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 34, 171–179. https://doi.org/10.1016/j.apgeog.2011.11.010 (2012).ADS 
    Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/1/014025 (2013).Article 

    Google Scholar 
    Qiao, W. et al. Multi-dimensional expansion of urban space through the lens of land use: The case study of Nanjing city, China. J. Geogr. Sci. 29(5), 749–761. https://doi.org/10.1007/s11442-019-1625-y (2019).Article 

    Google Scholar 
    Yza, B., Lt, A. & Hw, A. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 329, 129488. https://doi.org/10.1016/j.jclepro.2021.129488 (2021).Article 

    Google Scholar  More

  • in

    Efficiency of the traditional practice of traps to stimulate black truffle production, and its ecological mechanisms

    Dataset 1: Analysis of truffle growers archivesWe selected eleven T. melanosporum orchards located across the South-West France, from Montpellier (43°44′01.4″N 3°42′13.2″E) to Jonzac (45°27′17.7″N, 0°25′26.9″W; Fig. 2). These sites were selected for (1) the quality of the records of fruitbody production and practices by truffle growers (Table S1), including the detail of inoculations since plantation (amount and frequency of added crushed sporocarps), (2) the use of truffle traps by the owners and the quality of the record from these devices, and (3) the presence of oaks (Quercus ilex, Q. pubescens and Q. suber) as the only hosts tree species. Based on the archives of truffle growers, including a systematic recording of truffle production within and outside traps, we reported at each study site the contribution of truffle traps to the annual fruitbody production of the entire truffle grounds, by using number and/or weight of collected fruitbodies within (Pin) and outside (Pout) truffle traps.Dataset 2: In situ experiment tracing the inoculation effectThree orchards located near Angoulème (45°74′35.5″N, − 0°63′78.4″W), Jonzac (45°44′09.8″N, 0°43′96.7″W), and Arles-sur-Tech (42°45′44.9″N, 2°62′89.4″W), hereafter referred to Site 1 to 3 (Fig. 2) were selected for testing both disturbance effect and inoculum effect on fruitbody production in truffle traps. These sites presented a high fruitbody production and a high Pin/Pout ratio, thus optimum conditions to test mechanisms underlying how truffle traps influence fruitbody production. Host trees were between 5 and 18 years old at the beginning of the experiment (Fig. 2). At each site, we selected three non-adjacent trees (four on Site 3) that displayed a continuous fruitbody production over the three previous years. Under each selected tree, we excavated, at two-thirds of the distance between the tree trunk and the limit of brûlé (a vegetation-poor zone that shows the extension mycelia in the soil40, eight equidistant truffle traps [20 × 20 cm large × 20 cm deep] as shown in Fig. 3a. Under each tree, two traps were filled with only a mixture of peat and vermiculite (hereafter referred as non-inoculated controls) to test for disturbance effect. The used mixture was identical to that which is currently applied in commercial orchards. In three other traps, 5 g of crushed material from a single black truffle fruitbody (including its gleba and spores) were added to the previous mixture (hereafter referred as one mating-type inoculum). In the three last traps, 5 g of crushed material from two ascocarps with gleba of opposite mating types (hereafter referred as two mating-type inoculum) were added to the previous mixture. We added the two mating-type condition to accurately test a potential contribution of the gleba (haploid and thus with a single mating type) on future production. As quoted in Introduction, maternal individuals with opposite mating types tend to exclude each other locally (spatial segregation of clusters of individuals of same mating types26. Thus, the two mating-type inoculum allows us to detect in each trap a maternal contribution by the introduced gleba, despite potential exclusion by pre-installed individuals of the locally dominant mating type in the surrounding. Moreover, it allows us to detect a paternal contribution by the introduced gleba of the mating type opposite to the locally dominant. The eight truffle traps were randomly arranged, so that two repetitions of same modality were always separated by a repetition of another modality (Fig. 3a).In March 2013, six freshly collected truffles (weighting  > 60 g) were molecularly analyzed for the mating type of their gleba as in18. On Site 1 and Site 2, the inoculum was made of fruitbodies collected at Site 1. On Site 3, fruitbodies used as inoculum originated from truffle grounds in Sarrion (Spain). In April 2013, truffles traps were installed as explained above (in all, 8 traps × 3 (or 4) trees × 3 sites) and monitored for two years by truffle growers. Harvesting was performed by trained dogs (one different dog per site) checking truffle traps and the surrounding brûlés at each visit of the orchard by truffle growers. When dogs detected truffles, a small hole was excavated to collect ascocarps without disturbing the trap further. At the end of January, 2015, all truffle traps were completely excavated, remnant truffles overlooked by dogs were systematically collected (Fig. 3b). Three soil aliquots were collected within all traps and pooled. All truffles and soil aliquots were frozen for subsequent DNA analysis.Molecular and genetic analysesDNA extractions, mating typing and genotyping were done as in18. Briefly, DNA was extracted from the gleba and from spores of each fruitbody to get access to the maternal and zygotic DNA, respectively. Simple sequence repeat (SSRs) genotyping was performed using 12 polymorphic markers and the mating-type locus as in18. Gleba extracts displaying apparent heterozygous genotypes, likely due to contamination by spore DNA were systematically discarded from further analyses. For each fruitbody, the haploid paternal genotype was then deduced by subtracting the haploid maternal genotype from the zygotic diploid genotype. This data set was used for relatedness estimations. We discarded from all further analysis the marker me11, which displayed more than 39% missing data, as well as all samples with missing data for at any locus.Multilocus genotypes comparisonsBased on the 11 remaining SSRs and the mating-type (Table S5 and Figure S2), MLGs were identified on all maternal and paternal haploid genomes using GenClone v.2.041, and the probability that MLGs represented more than once resulted from independent events of sexual reproduction was calculated (PSex41,42). On each site, clonal diversity was measured as R = (G − 1)/(N − 1) according to43, where N is the number of fruitbodies and G the number of MLGs. For testing whether the gleba of the inoculated fruitbody contributed, either paternally (H1) or maternally (H2) to the harvested fruitbodies (Fig. 1c), the inoculated maternal MLG was compared to the paternal and maternal MLG of the harvested fruitbodies.Relatedness estimationFor testing whether the spores of the inoculum, which carry many distinct haploid MLGs due to meiosis, had paternal or maternal contribution(s) to the harvested fruitbodies (H3; Fig. 1c), we used relatedness estimation.For testing whether spores of the inoculum had a paternal contribution, an individual relatedness estimate to the spore inoculum was computed for each paternal genome detected in truffle traps. Relatedness r here describes the expected frequency E[p_offpat] of each allele in a given genome, E[p_offpat] = p_pop + r * (p_inoc − p_pop), where p_pop is the allele frequency in the local population (here estimated from the glebas of other truffles collected under the focal tree), and p_inoc is the frequency of the allele in the inoculum. Thus, p_offpat takes values 0 or 1, and p_inoc takes values 0, 0.5 or 1, except when two fruitbodies were used as inoculum (two gleba mating types traps). Thus r = (p_offpat − p_pop)/(p_inoc − p_pop). An individual relatedness estimate for each genome is then obtained by summing over alleles and loci the observed values of the numerator and denominator in this expression. A population-level estimate is further obtained by summing numerators and denominators over the paternity events in each population.To test whether such estimates are compatible with the hypothesis that the paternal individuals are not from the inocula, we obtained the distribution of population-level relatedness estimates by simulating samples under this hypothesis: paternal genotypes were randomly simulated according to alleles frequencies in the local population. For each population, 10,000 samples were simulated, and p-values were estimated as the proportion of simulations with higher population-level relatedness with inocula than the observed one. Confidence intervals for these p-values were computed from the binomial distribution for 10,000 draws, and Bonferroni-corrected over the three populations.For testing whether spores of the inoculum had a maternal contribution (H4, Fig. 1c), we estimated the relatedness of the locally used spore inoculum to each maternal genome detected in truffle traps (deduced from the gleba), and we confronted it to simulated samples as previously but with one modification: if the focal fruitbody was harvested in a trap inoculated with the inoculum A1, all genomes of truffles from traps inoculated with the same inoculum (A1 or A1 + A2 + A3, see Fig. 3c.) were discarded from the estimation of p_pop.Assessment of T. melanosporum mycelium concentration in truffle trapsOn Sites 1, 2 and 3, soil samples were collected in all traps and in the surrounding brûlés at harvesting date (January, 2015). In collected soils, total DNA was extracted and quantified as in19. Briefly, after sieving and homogenizing soil collected in each trap and from out of the brûlés, aliquots (10 g) were analyzed as follows. After extraction with the kit Power Soil (MoBio Laboratories, Carlsbad, CA, USA), the extra-radical mycelium of T. melanosporum was quantified using quantitative Taqman™ PCR (qPCR) with the primers and probe described in44. Triplicate real-time PCR were performed on each sample using the same concentration of primer and the same thermocycling program as in19. Standards were prepared using fresh immature T. melanosporum ascocarp, and a standard curve was generated for each site by plotting serial tenfold dilutions against corresponding initial amount of ascocarp. Absolute quantification of mycelium biomass of T. melanosporum was expressed in mg of mycelium per g of soil.Statistical analysesStatistics were done using R version 4.0.445.Effect of truffle traps on fruitbody production—The contribution of truffle traps to the overall production of orchards was assessed by (1) data mining of truffle growers’ archives (Dataset 1) and (2) comparing the density of truffles harvested in traps (expressed in number of truffles per m2 per orchard; for each sampled tree, traps correspond to an investigated soil surface of s = 8 × 0.2 x 0.2 = 0.32 m2) with the density measured within surrounding brûlés (Dataset 1). On Dataset2, at each site, the area occupied by brûlés was evaluated by measuring in the field the surface of soil devoid of vegetation consecutively to spontaneous T. melanosporum brûlé.Fruitbody production under different conditions (i.e. non-inoculated controls versus one gleba mating type traps versus two gleba mating type traps) were compared using generalized linear mixed models with negative binominal family and log link (R, spam package46). The full model included the logarithm of the sampled area as offset to account for variations in this sampled area, interactions of trap-modality effects with site effect. Formal likelihood ratio tests are based on one-step deletions from this full model, applied to subsets of the data relevant for each hypothesis tested. Additional bootstrap tests (1000 iterations) were run to correct any bias in small sample likelihood ratio tests.Concentrations of T. melanosporum mycelium in soil—Similarly as above, the inoculum effect on mycelium concentrations was compared using generalized linear mixed models with Gamma log family.Plant materialThe use of plants in the present study complies with international, national and/or institutional guidelines. All permissions to collect T. melanosporum fruitbodies in truffle orchards were obtained. The formal identification of biological material used in the study (T. melanosporum fruitbodies) was undertaken by F. Richard and E. Taschen. Voucher specimens of all collected fruitbodies have been deposited in the Centre d’Ecologie Fonctionnelle et Evolutive herbarium in Montpellier (France).Ethical approvalAll co-authors approve the ethical statement regarding the submitted manuscript.Consent to participateAll co-authors consent to participate to the research and agree with the content of the submitted manuscript. All authors reviewed and submitted manuscript. More