More stories

  • in

    Effects of sediment flushing operations versus natural floods on Chinook salmon survival

    Morris, G. L. & Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use (McGraw Hill Professional, 1998).
    Google Scholar 
    White, R. Evacuation of Sediments from Reservoirs, HR Wallingford, http://www.thomastelford.com (Thomas Telford Publishing, 2001).Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2, 256–280 (2014).ADS 
    Article 

    Google Scholar 
    Schleiss, A. J., Franca, M. J., Juez, C. & De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 54, 595–614 (2016).Article 

    Google Scholar 
    Dahal, S., Crosato, A., Omer, A. Y. A. & Lee, A. A. Validation of model-based optimization of reservoir sediment releases by dam removal. J. Water Resour. Plan. Manag. 147, 04021033 (2021).Article 

    Google Scholar 
    Williams, G. P. & Wolman, M. G. Effects of dams and reservoirs on surface water hydrology—Changes in rivers downstream from dams. Natl. Water Summ. Hydrol. Events Surf. Water Resour. 2300, 83 (1986).
    Google Scholar 
    Toffolon, M., Siviglia, A. & Zolezzi, G. Thermal wave dynamics in rivers affected by hydropeaking. Water Resour. Res. https://doi.org/10.1029/2009WR008234 (2010).Article 

    Google Scholar 
    Stewart, G. B. Patterns and Processes of Sediment Transport Following Sediment-Filled Dam Removal in Gravel Bed Rivers. (PhD Thesis, Oregon State University, Oregon USA, 2006).Major, J. J. et al. Geomorphic Response of the Sandy River, Oregon, to Removal of Marmot Dam. U.S. Geological Survey Professional Paper, 64p https://pubs.usgs.gov/pp/1792/ (2012).Espa, P., Castelli, E., Crosa, G. & Gentili, G. Environmental effects of storage preservation practices: Controlled flushing of fine sediment from a small hydropower reservoir. Environ. Manag. 52, 261–276 (2013).ADS 
    Article 

    Google Scholar 
    Tena, A., Vericat, D. & Batalla, R. J. Suspended sediment dynamics during flushing flows in a large impounded river (the lower River Ebro). J Soils Sediments 14, 2057–2069 (2014).Article 

    Google Scholar 
    Antoine, G., Camenen, B., Jodeau, M., Némery, J. & Esteves, M. Downstream erosion and deposition dynamics of fine suspended sediments due to dam flushing. J. Hydrol. 585, 124763 (2020).Article 

    Google Scholar 
    Power, M., Dietrich, W. & Finlay, J. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Clarke, K. D., Pratt, T. C., Randall, R. G., Scruton, D. A. & Smokorowski, K. E. Validation of the flow management pathway: Effects of altered flow on fish habitat and fishes downstream from a hydropower dam. Can. Tech. Rep. Fish. Aquat. Sci. 2784, 111 (2008).
    Google Scholar 
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205 (2010).Article 

    Google Scholar 
    Juracek, K. E. The aging of America’s reservoirs: In-reservoir and downstream physical changes and habitat implications. JAWRA J. Am. Water Resour. Assoc. 51, 168–184 (2015).ADS 
    Article 

    Google Scholar 
    Brandt, S. A. & Swenning, J. Sedimentological and geomorphological effects of reservoir flushing: the Cachí Reservoir, Costa Rica, 1996. Geogr. Ann. Ser. B 81, 391–407 (1999).Article 

    Google Scholar 
    Grant, G. E., Schmidt, J. C. & Lewis, S. L. A geological framework for interpreting downstream effects of dams on rivers. In Water Science and Application (eds O’Connor, J. E. & Grant, G. E.) 203–219 (American Geophysical Union, 2003). https://doi.org/10.1029/007WS13.Chapter 

    Google Scholar 
    Petts, G. E. & Gurnell, A. M. Dams and geomorphology: Research progress and future directions. Geomorphology 71, 27–47 (2005).ADS 
    Article 

    Google Scholar 
    Newcombe, C. & MacDonald, D. D. Effects of suspended sediments on aquatic ecosystems. J. N. Am. J. Fish. Manag. 11, 72–82 (1991).Article 

    Google Scholar 
    Gilles, B. & Le Bail, P.-Y. Does light have an influence on fish growth?. Aquaculture 177, 129–152 (1999).Article 

    Google Scholar 
    Carolli, M., Bruno, M. C., Siviglia, A. & Maiolini, B. Responses of benthic invertebrates to abrupt changes of temperature in flume simulations. River Res. Appl. 28, 678–691 (2012).Article 

    Google Scholar 
    Bennel, D. H., Connor, W. P. & Eaton, C. A. Substrate composition and emergence success of fall Chinook salmon in the Snake river. Northwest Sci. 77, 93–99 (2003).
    Google Scholar 
    Jensen, D. W., Steel, E. A., Fullerton, A. H. & Pess, G. R. Impact of fine sediment on egg-to-fry survival of Pacific salmon: A meta-analysis of published studies. Rev. Fish. Sci. 17, 348–359 (2009).CAS 
    Article 

    Google Scholar 
    Bjornn, T. C. & Reiser, D. W. Habitat requirements of salmonids in streams. Am. Fish. Soc. Spec. Publ. 19, 83–138 (1991).
    Google Scholar 
    ASCE, N. Sediment and aquatic habitat in river systems. J. Hydraul. Eng. 118, 669–687 (1992).Article 

    Google Scholar 
    Louhi, P., Mäki-Petäys, A. & Erkinaro, J. Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors. River Res. Appl. 24, 330–339 (2008).Article 

    Google Scholar 
    Baxter, C. V. & Hauer, F. R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 57, 1470–1481 (2000).Article 

    Google Scholar 
    Peviani, M., Saccardo, I., Crosato, A. & Gentili, G. Natural and artificial floods connected with river habitat. in Ecohydraulics 2000. Proceedings
    of the 2nd International Symposium on Habitat Hydraulics, IAHR- Que´bec,
    Canada, vol. B 175–186 (1996).Crosa, G., Castelli, E., Gentili, G. & Espa, P. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 72, 85 (2009).Article 
    CAS 

    Google Scholar 
    Espa, P., Crosa, G., Gentili, G., Quadroni, S. & Petts, G. Downstream ecological impacts of controlled sediment flushing in an Alpine valley river: A case study. River Res. Appl. 31, 931–942 (2014).Article 

    Google Scholar 
    Lee, A. Modelling Salmon Spawning Habitat Response to Dam Removal. (MSc Thesis, IHE Delft, the Netherlands, 2017).van Oorschot, M. et al. Impact of dam operations on the habitat suitability of Plecoglossus altivelis downstream of the Funagira dam, Japan. In River Flow 2020 (eds Uijttewaal et al.) (2020 Taylor & Francis Group, CRC Press, 2020).
    Google Scholar 
    Newcombe, C. P. Suspended sediments in acquatic ecosystem: III effects as a function of concentration and duration of exposure. (1994).Newcombe, C. P. & Jensen, J. O. T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 16, 693–727 (1996).Article 

    Google Scholar 
    Hubert, W. A., Helzner, R. S., Lee, L. A. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Arctic grayling riverine populations. Western Energy and Land Use Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, US Department of Interior, Biological report 82 (10.110) (1985).Raleigh, R. F., Miller, W. J. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Chinook salmon. Fish and Wildlife Service, US Department of the Interior, Biological Report 82(10.122) www.nwrc.usgs.gov/wdb/pub/hsi/hsi-122.pdf (1986).Fisher, S., Gray, L., Grimm, N. & Busch, D. E. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. https://doi.org/10.2307/2937346 (1982).Article 

    Google Scholar 
    Lapointe, M., Eaton, B., Driscoll, S. & Latulippe, C. Modelling the probability of salmonid egg pocket scour due to floods. Can. J. Fish. Aquat. Sci. 57, 11 (2000).Article 

    Google Scholar 
    Baldwin, D. & Mitchell, A. M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: A synthesis. River Res. Appl. 16, 457–467 (2000).
    Google Scholar 
    Kowalski, D. The effects of stream flow on the trout populations of the Gunnison river. (2007).Konard, C. P. Effects of urban development on floods. U.S. Geological Survey—Water Resources Fact Sheet 076-03 https://pubs.usgs.gov/fs/fs07603/ (2016).Miller, J. D. & Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362 (2017).Article 

    Google Scholar 
    Poff, N. L. & Ward, J. V. Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46, 1805–1818 (1989).Article 

    Google Scholar 
    George, S. D., Baldigo, B. P., Smith, A. J. & Robinson, G. R. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river. Freshw. Biol. 60, 2511–2522 (2015).Article 

    Google Scholar 
    Carlson, A. K., Fincel, M. J., Longhenry, C. M. & Graeb, B. D. Effects of historic flooding on fishes and aquatic habitats in a Missouri river delta. J. Freshw. Ecol. 31, 271–288 (2016).Article 

    Google Scholar 
    Ríos-Pulgarín, M. I., Barletta, M. & Mancera-Rodríguez, N. J. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89, 102–130 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    United States Federal energy regulatory Commission (FERC). Application for Surrender of License, Bull Run Hydropower Project: Environmental Impact Statement. https://catalog.hathitrust.org/Record/100940309 (2003).Squier Associates. Sandy river sediment study, Bull Run Hydroelectric Project. (2000).Taylor, B. Salmon and Steelhead Runs and Related Events of the Clackamas River Basin–A Historical Perspective. Portland General Electric Company, 64 https://www.eaglecreekfriends.org/links-references (1999).Trimble, D. E. Geology of Portland, Oregon, and Adjacent Areas. Bulletin U.S. G.P.O. https://pubs.er.usgs.gov/publication/b1119. https://doi.org/10.3133/b1119. (1963).Sandy River basin Working Group. Sandy River basin aquatic habitat restoration strategy: An anchor habitat-based prioritization of restoration opportunities Oregon Trout. Portland, Oregon. Preprint at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5325660.pdf (2007).Lee, A., Crosato, A., Omer, A. Y. A. & Bregoli, F. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal. in AGU Fall meeting (2017).Healey, M. C. Life history of Chinook salmon (Oncorhynchus tshawytscha). Pacific Salmon Life Histories 311–394 (1991).Bourret, S. L., Caudill, C. C. & Keefer, M. L. Diversity of juvenile Chinook salmon life history pathways. Rev. Fish. Biol. Fish. 26, 375–403 (2016).Article 

    Google Scholar 
    Alderdice, D. & Velsen, F. Relation between temperature and incubation time for eggs of Chinook salmon (Oncorhynchus tshawytscha). J. Fish. Res. Board Can. 35, 69–75 (1978).Article 

    Google Scholar 
    Seattle Aquarium. Redd alert: Our Chinook salmon are hatching! |. Seattle Aquarium https://www.seattleaquarium.org/blog/redd-alert-our-chinook-salmon-are-hatching (2015).Whitman, L., Cannon, B. & Hart, S. Spring Chinook salmon in the Willamette and Sandy rivers: Sandy river basin Spring Chinook salmon spawning surveys. Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem, Oregon 97302, 30 https://odfw.forestry.oregonstate.edu/willamettesalmonidrme/sites/default/files/2016_sandy_basin_spring_chinook_spawning_survey.pdf (2016).Cramer, S. P. Fish and habitat surveys of the lower Sandy and Bull Run rivers. Report of SP Cramer&Associates, Inc. to Portland General Electric and Portland Water bureau, Portland, Oregon (1998).Westley, P. A. Documentation of en route mortality of summer chum salmon in the Koyukuk river, Alaska and its potential linkage to the heatwave of 2019. Ecol. Evol. 10, 10296–10304 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowerman, T. E., Keefer, M. L. & Caudill, C. C. Elevated stream temperature, origin, and individual size influence Chinook salmon prespawn mortality across the Columbia River Basin. Fish. Res. 237, 105874 (2021).Article 

    Google Scholar 
    Beechie, T. J. et al. Process-based principles for restoring river ecosystems. Bioscience 60, 209–222 (2010).Article 

    Google Scholar 
    Crosato, A. & Saleh, M. S. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf. Process. Landf. 36, 711–720 (2011).ADS 
    Article 

    Google Scholar 
    Schuurman, F., Marra, W. A. & Kleinhans, M. G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 118, 2509–2527 (2013).ADS 
    Article 

    Google Scholar 
    Singh, U., Crosato, A., Giri, S. & Hicks, M. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers. Adv. Water Resour. 104, 127–144 (2017).ADS 
    Article 

    Google Scholar 
    van ledden, M. Sand-Mud Segregation in Estuaries and Tidal Basins. (PhD Thesis, University of Technology Delft, 2003).Kandiah, A. Fundamental Aspects of Surface Erosion of Cohesive Soils. (University of California, Davis, 1974).Partheniades, E. Cohesive Sediments in Open Channels: Erosion, Transport and Deposition (Butterworth-Heinemann, 2009).
    Google Scholar 
    Jiang, J. An Examination of Estuarine Lutocline Dynamics. (PhD Thesis, University of Florida, USA, 1999).Exner, F. M. Uber die wechselwirkung zwischen wasser und geschiebe in flussen (about the interaction between water and bedload in rivers). Akad. Wiss. Wien Math. Naturwiss. Kl. 134, 165–204 (1925).
    Google Scholar 
    Ikeda, S. Incipient motion of sand particles on side slopes. J. Hydraul. Div. 108, 95–114 (1982).Article 

    Google Scholar 
    Bagnold, R. A. An approach to the sediment transport problem from general physics. Physiographic and hydraulic studies of rivers in US Geological Survey Professional Paper, vol. 422 I, 231–291 (1966).Stillwater Sciences. Numerical modeling of sediment transport in the Sandy river, Oregon following removal of Marmot dam. (2000).Ashida, K. & Michiue, M. Study on hydraulic resistance and bed transport rate in alluvial stream. Proc. Jpn. Soc. Civ. Eng. 201, 59–69 (1972).Article 

    Google Scholar 
    Panthi, M. Generation and Fate of Fine Sediment from Dam Flushing. (MSc Thesis, IHE Delft, Institute for Water Education, the Netherlands, 2020).Meyer-Peter, E. & Müller, R. Formulas for bed-load transport. in IAHSR 2nd Meeting, Stockholm, Appendix 2 (IAHR, 1948).Podolak, C. & Pittman, S. Marmot Dam Removal Geomorphic Monitoring & Modeling Project: Final Report. Sandy river basin watershed council. (2011).Keith, M. K. Reservoir Evolution Following the Removal of Marmot Dam on the Sandy River, Oregon. (MSc Thesis, Portland State University, Oregon, USA, 2012).Redding, J. M., Schreck, C. B. & Everest, F. H. Physiological effects on coho salmon and steelhead of exposure to suspended solids. Trans. Am. Fish. Soc. 116, 737–744 (1987).Article 

    Google Scholar 
    Lisle, T. E. Sediment transport and resulting deposition in spawning gravels, north coastal California. Water Resour. Res. 25, 1303–1319 (1989).ADS 
    Article 

    Google Scholar 
    Pitlick, J. & Wilcock, P. Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers. In Geomorphic Processes and Riverine Habitat (eds Dorava, J. M. et al.) 185–198 (American Geophysical Union, 2001).Chapter 

    Google Scholar 
    Toupin, L. Freshwater Habitats: Life in Freshwater Ecosystems. (Franklin Watts, Watts Library, 2005).Bovee, K. D. A guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. IFIP No. 12. FWS/OBS https://pubs.er.usgs.gov/publication/fwsobs82_26 (1982).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Vadas, R. L. & Orth, D. J. Formulation of habitat suitability models for stream fish guilds: Do the standard methods work?. Trans. Am. Fish. Soc. 130, 217–235 (2001).Article 

    Google Scholar 
    Moir, H. J., Gibbins, C. N., Soulsby, C. & Youngson, A. F. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output. River Res. Appl. 21, 1021–1034 (2005).Article 

    Google Scholar 
    Hauer, C. et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 98, 40–55 (2018).Article 

    Google Scholar 
    Koizumi, I., Kanazawa, Y. & Tanaka, Y. The fishermen were right: Experimental evidence for tributary refuge hypothesis during floods. Zool. Sci. 30, 375–379 (2013).Article 

    Google Scholar 
    Quadroni, S. et al. Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology 9, 1276–1288 (2016).Article 

    Google Scholar 
    Bond, M. H., Nodine, T. G., Beechie, T. J. & Zabel, R. W. Estimating the benefits of widespread floodplain reconnection for Columbia river Chinook salmon. Can. J. Fish. Aquat. Sci. 76, 1212–1226 (2019).Article 

    Google Scholar 
    Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. Verh. 29, 123–136 (2005).
    Google Scholar  More

  • in

    Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation

    Eda, M. Origin of the domestic chicken from modern biological and zooarchaeological approaches. Anim. Front. 11, 52–61 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    FAO. Status And Trends Of Animal Genetic Resources (Commission on genetic resources for food agriculture, Rome, 2019).Chen, G., Wang, K., Wang, J., Ding, C. & Yang, N. Poultry Genetic Resources in China (Shanghai Scientific and Technological Press, Shanghai, 2004).Wang, M. S. et al. Genomic analyses reveal potential independent adaptation to high altitude in tibetan chickens. Mol. Biol. Evol. 32, 1880–1889 (2015).CAS 
    PubMed 

    Google Scholar 
    Zhang, Q. et al. Genome resequencing identifies unique adaptations of tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biol. Evol. 8, 765–776 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, H., Wang, X. T., Chamba, Y., Ling, Y. & Wu, C. X. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult. Sci. 87, 2112–2116 (2008).CAS 
    PubMed 

    Google Scholar 
    Jia, C. L., He, L. J., Li, P. C., Liu, H. Y. & Wei, Z. H. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude. Poult. Sci. 95, 1660–1665 (2016).CAS 
    PubMed 

    Google Scholar 
    Hillier, L. W. et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).CAS 

    Google Scholar 
    Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).CAS 
    PubMed 

    Google Scholar 
    Wang, M. S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).CAS 
    PubMed 

    Google Scholar 
    Shen, Y. et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 128 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet 18, 563–575 (2017).CAS 
    PubMed 

    Google Scholar 
    Xu, J. et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 20, 243 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hoglund, A. et al. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat. Ecol. Evol. 4, 1713–1724 (2020).PubMed 

    Google Scholar 
    Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Gou, W., Ma, J. & Zhang, H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ 5, e3891 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Richards, E. J. Inherited epigenetic variation–revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).CAS 
    PubMed 

    Google Scholar 
    Kawakatsu, T. et al. Epigenomic diversity in a global collection of arabidopsis thaliana accessions. Cell 166, 492–505 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    Wang, M. et al. Whole-genome methylation analysis reveals epigenetic variation in cloned and donor pigs. Front. Genet. 11, 23 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).CAS 
    PubMed 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, M. et al. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics. 19, 598 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Genet. 11, 355–373 (2010).CAS 

    Google Scholar 
    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Mussmann, S. M. et al. Genetic rescue, the greater prairie chicken and the problem of conservation reliance in the Anthropocene. R. Soc. Open Sci. 4, 160736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).PubMed 

    Google Scholar 
    Bjornstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat. Commun. 9, 2648 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).CAS 
    PubMed 

    Google Scholar 
    Ding, D. et al. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat. Commun. 9, 4991 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, X. et al. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol. Biol. Evol. 33, 2670–2681 (2016).CAS 
    PubMed 

    Google Scholar 
    Hu, X. J. et al. The genome landscape of tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the qinghai-tibetan plateau. Mol. Biol. Evol. 36, 283–303 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, G. D. et al. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl Acad. Sci. USA 115, E5056–E5065 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xin, J. et al. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat. Commun. 11, 4928 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D. D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).PubMed 

    Google Scholar 
    Wang, M. S. et al. Ancient Hybridization with an unknown population facilitated high-altitude adaptation of Canids. Mol. Biol. Evol. 37, 2616–2629 (2020).CAS 
    PubMed 

    Google Scholar 
    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).CAS 
    PubMed 

    Google Scholar 
    Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).CAS 
    PubMed 

    Google Scholar 
    Vargas, J. D. et al. Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys. Acta 1651, 116–123 (2003).CAS 
    PubMed 

    Google Scholar 
    Rattner, A., Smallwood, P. M. & Nathans, J. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem. 275, 11034–11043 (2000).CAS 
    PubMed 

    Google Scholar 
    Amengual, J. et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 25, 948–959 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. 277, 36955–36961 (2002).CAS 
    PubMed 

    Google Scholar 
    Manabe, R. et al. Transcriptome-based systematic identification of extracellular matrix proteins. Proc. Natl Acad. Sci. USA 105, 12849–12854 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zou, X. et al. NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett. 585, 2410–2418 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252 (2012).CAS 
    PubMed 

    Google Scholar 
    Yoshimura, S-i., Gerondopoulo, A., Linford, A., Rigden, D. J. & Barr, F. A. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, L. J. et al. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124, 611–623 (2002).CAS 
    PubMed 

    Google Scholar 
    Shimizu, S. et al. Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J. Physiol. 570, 219–235 (2006).CAS 
    PubMed 

    Google Scholar 
    Foxler, D. E. et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat. Cell Biol. 14, 201–208 (2012).CAS 
    PubMed 

    Google Scholar 
    Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).CAS 
    PubMed 

    Google Scholar 
    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, e05255–e05255 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet. 9, 883–890 (2008).CAS 
    PubMed 

    Google Scholar 
    Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).CAS 
    PubMed 

    Google Scholar 
    Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, J. A., Watson, C. J., McCann, A. & Baugh, J. Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293–296 (2010).CAS 
    PubMed 

    Google Scholar 
    Guerrero-Bosagna, C. From epigenotype to new genotypes: relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin. Cell Dev. Biol. 97, 86–92 (2020).PubMed 

    Google Scholar 
    Furey, T. S. & Sethupathy, P. Genetics. Genetics driving epigenetics. Science 342, 705–706 (2013).CAS 
    PubMed 

    Google Scholar 
    Shimoda, L. A. & Undem, C. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir. Physiol. Neurobiol. 174, 221–229 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodman, D. M. et al. Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ. Res. 96, 864–872 (2005).CAS 
    PubMed 

    Google Scholar 
    Hui, A. S., Bauer, A. L., Striet, J. B., Schnell, P. O. & Czyzyk-Krzeska, M. F. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J. 20, 466–475 (2006).CAS 
    PubMed 

    Google Scholar 
    Mottet, D. et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J. Cell Physiol. 194, 30–44 (2003).CAS 
    PubMed 

    Google Scholar 
    Qi, H. et al. Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia. Cell Physiol. Biochem. 27, 251–262 (2011).CAS 
    PubMed 

    Google Scholar 
    Pandey, P., Mohammad, G., Singh, Y. & Qadar Pasha, M. A. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation. Appl. Clin. Genet. 8, 257–267 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Gou, W., Zhang, Y., Zhang, H. & Wu, C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp. Biochem Physiol. Part D. Genomics Proteomics 31, 100602 (2019).CAS 
    PubMed 

    Google Scholar 
    Tang, T. S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227–239 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mariani, C. J. et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 7, 1343–1352 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsai, Y. P. et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 15, 513 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Fan, S. et al. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J. Biol. Chem. 295, 16299–16313 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 

    Google Scholar 
    Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).CAS 
    PubMed 

    Google Scholar 
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, D. et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 15, R38 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar  More

  • in

    The effect of time regime in noise exposure on the auditory system and behavioural stress in the zebrafish

    Test animals and husbandryWild type adult zebrafish (AB line) were initially obtained from China Zebrafish Resource Center (CZRC, China) and reared at the zebrafish facility of the University of Saint Joseph, Macao. Fish were maintained in 10 L tanks in a standalone housing system (model AAB-074-AA-A, Yakos 65, Taiwan) with filtered and aerated water (pH balanced 7–8; 400–550 μS conductivity) at 28 ± 1 °C and under a 12:12 light: dark cycle. Animals were fed twice daily with live artemia and dry powder food (Zeigler, PA, USA). The fish used in this study were 6–8 months old, both males and females (1:1), with a total length of 2.2–3.1 cm. The total number of specimens tested was 30 for the auditory sensitivity measurements and inner ear morphological analysis (6 fish per experimental group), and 78 for the Novel Tank Diving assay (15-18 fish per group).All experimental procedures complied with the ethical guidelines regarding animal research and welfare enforced at the Institute of Science and Environment, University of Saint Joseph, and approved by the Division of Animal Control and Inspection of the Civic and Municipal Affairs Bureau of Macao (IACM), license AL017/DICV/SIS/2016. This study was conducted in compliance with the ARRIVE guidelines60.Noise treatmentsPrior to acoustic treatments, all subjects were transferred to 4 L isolation glass tanks that were placed in a quiet lab environment (Sound Pressure Level, SPL: ranging between 103 and 108 dB re 1 μPa) for a minimum of 7 days. These tanks had no filtering system but were subject to frequent water changes, and the light, temperature and water quality were kept similar to the stock conditions. This adaptation period was important to reduce potential effects of noise conditions from the zebrafish housing system.After this period, groups of six zebrafish were transferred into separate acoustic treatment glass tanks (dimensions: 59 cm length × 29 cm width × 47 cm height; 70 L)—Fig. 1 Supplementary, where they remained 24 h in acclimation. Each tank was equipped with an underwater speaker (UW30, Electro-Voice, MN, USA) housed between two styrofoam boards (dimensions: 3 cm thick × 29 cm width × 47 cm height) with a hole in the centre, positioned vertically in one side of the tank. Another similar sized board was positioned in the opposite side of the tank and fine sand was placed in the bottom to minimize transmission of playback vibrations into the tank walls. Each treatment tank was mounted on top of styrofoam boards placed over two granite plates spaced by rubber pads to reduce non-controlled vibrations.Four acoustic treatment tanks were prepared for this study to be used alternately between trials and cleaning procedures, but only two were used simultaneously. When two tanks were being used, one contained specimens under acclimation and the other fish under a specific acoustic treatment. The tanks were housed in a custom-made rack and placed at least 1 m apart to minimize acoustic interferences. The tanks were used randomly for the different treatments across the various trials.The speakers were connected to audio amplifiers (ST-50, Ai Shang Ke, China) that were connected to laptops running Adobe Audition 3.0 for windows (Adobe Systems Inc., USA). After the acclimation period, specimens were exposed to white noise playbacks (bandwidth: 100–3000 Hz) at 150 dB re 1 µPa for 24 h, starting in the morning between 10 and 11 a.m. The bandwidth adopted covered the best hearing range of zebrafish27, as well as the frequency range of most anthropogenic noise sources, such as pile driving and vessels2.Sound recordings and SPL measurements were made with a hydrophone (Brüel & Kjær type 8104, Naerum, Denmark; frequency range: 0.1 Hz–120 kHz, sensitivity of − 205 dB re 1 V/μPa) connected to a hand-held sound level meter (Brüel & Kjær type 2270). Noise level was adjusted with the speaker amplifier so that the intended amplitude (LZS, RMS sound level obtained with slow time and linear frequency weightings: 6.3 Hz–20 kHz) was achieved at the centre of the tanks before each treatment. A variation in SPL of ±10 dB was registered in the closest and farthest points (in relation to the speaker). The sound spectra of the noise treatments were relatively flat similar to the setup described in a prior study by Breitzler et al.27.Moreover, the acoustic treatments were calibrated with a tri-axial accelerometer (M20-040, frequency range 1–3 kHz, GeoSpectrum Technologies, NS, Canada) with the acoustic centre placed in the middle of the tank. The sound playback generated was about 120 dB re 1 m/s2, with most energy in the horizontal axis perpendicular to the speaker, which was verified based on previously described methods using a MATLAB script paPAM16.In this study four sound treatments were used with varying temporal patterns similar to Sabet et al.18—Fig. 1: continuous noise (CN); intermittent regular noise with a fast pulse rate—1 s pulses interspersed with 1 s silence (IN1,1); intermittent regular noise with a slow pulse rate—1 s pulses interspersed with 4 s silence (IN1,4) and intermittent random noise—1 s pulses interspersed with 1, 2, 3, 4, 5, 6 or 7 s silent intervals in randomized sequence (RN1,7) leading to a mean interval of 4 s. All intermittent patterns had 5 ms ramps to fade in and fade out pulses for smooth transitions. In the “control” treatment tank, the amplifier connected to the speaker was switched on but without playback.After each treatment, two specimens were tested for audiometry, two were tested with the NTD assay and another two were euthanized and dissected for inner ear morphological analysis.Auditory sensitivity measurementsAuditory Evoked Potential (AEP) recordings were conducted immediately after noise treatments. The AEP recording technique adopted followed previously described procedures27. The recordings were conducted in a rectangular plastic tank (50 cm length × 35 cm width × 23 cm height) equipped with an underwater speaker (UW30) positioned in the bottom and surrounded by fine sand. A custom-built sound stimulation system with enhanced performance at lower frequencies ( More

  • in

    Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis)

    Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Let. 6, 438–440 (2010).Article 

    Google Scholar 
    Gonzalez, V. & Banerjee, A. Molecular, ecological, and behavioural drivers of the bat-virus relationship. iScience 25, 104779 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brook, C. E. & Dobson, A. P. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23, 172–180 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kosoy, M. et al. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 16, 1875–1881 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos. Trans. R. Soc. Biol. Sci. 373, 20170089 (2018).Article 
    CAS 

    Google Scholar 
    Muehldorfer, K. Bats and bacterial pathogens: A review. Zoonoses Public Health 60, 93–103 (2013).Article 

    Google Scholar 
    Taylor, M. L. et al. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico. FEMS Immunol. Med. Microbiol. 45, 451–458 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. 110, 17415–17419 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, N., Bown, K., Timofte, D., Simpson, V. & Birtles, R. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 15, 1331–1333 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muehldorfer, K., Speck, S. & Wibbelt, G. Diseases in free-ranging bats from Germany. BMC Vet. Res. 7, 61 (2011).Article 

    Google Scholar 
    Muehldorfer, K., Wibbelt, G., Haensel, J., Riehm, J. & Speck, S. Yersinia species isolated from bats, Germany. Emerg. Infect. Dis. 16, 578–581 (2010).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227–227 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barlow, A., Jolliffe, T., Tomlin, M., Worledge, L. & Miller, H. Mycotic dermatitis in a vagrant parti-coloured bat (Vespertilio murinus) in Great Britain. Vet. Rec. 169, 614–614 (2011).PubMed 
    Article 

    Google Scholar 
    Simpson, V. R., Borman, A. M., Fox, R. I. & Mathews, F. Cutaneous mycosis in a Barbastelle bat (Barbastella barbastellus) caused by Hyphopichia burtonii. J. Vet. Diagn. Invest. 25, 551–554 (2013).PubMed 
    Article 

    Google Scholar 
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Hecht-Höger, A. et al. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol. Ecol. 29, 1745–1755 (2020).PubMed 
    Article 

    Google Scholar 
    Baker, M., Schountz, T. & Wang, L. F. Antiviral immune responses of bats: A review. Zoonoses Public Health 60, 104–116 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Baker, M. L. & Zhou, P. in Bats and Viruses Vol. 1 (eds Lin-Fa Wang & Christopher Cowled) Ch. 14, 327–348 (John Wiley & Sons, Inc., 2015).Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial function: Are bats ‘special’ as reservoirs for emerging viruses?. Curr. Opin. Virol. 1, 649–657 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Murphy, K. Janeway’s Immunobiology 8th edn. (Garland Science, 2012).
    Google Scholar 
    Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 6, 1045–1056 (2005).CAS 

    Google Scholar 
    Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).PubMed 
    Article 
    CAS 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: Characterization and seasonal variation. J. Ornithol. 148, S583–S591 (2007).Article 

    Google Scholar 
    Kozak, W., Conn, C. A. & Kluger, M. J. Lipopolysaccharide induces fever and depresses locomotor-activity in unrestrained mice. Am. J. Physiol. 266, R125–R135 (1994).PubMed 
    CAS 

    Google Scholar 
    Copeland, S. et al. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stockmaier, S., Dechmann, D. K. N., Page, R. A. & Teague O’Mara, M. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Let. 11, 20150576 (2015).Article 
    CAS 

    Google Scholar 
    Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B Biol. Sci. 270, 153–158 (2003).Article 

    Google Scholar 
    Sheldon, B. C. & Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).PubMed 
    Article 

    Google Scholar 
    Audebert, H. J., Pellkofer, T. S., Wimmer, M. L. & Haberl, R. L. Progression in lacunar stroke is related to elevated acute phase parameters. Eur. Neurol. 51, 125–131 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lee, K. A., Martin, L. B. & Wikelski, M. C. Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145, 244–251 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Owen-Ashley, N. T., Turner, M., Hahn, T. P. & Wingfield, J. C. Hormonal, behavioral, and thermoregulatory responses to bacterial lipopolysaccharide in captive and free-living white-crowned sparrows (Zonotrichia leucophrys gambelii). Horm. Behav. 49, 15–29 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Coon, C. A. C., Warne, R. W. & Martin, L. B. Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1418–R1425 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kimura, M. et al. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267, R1596–R1605 (1994).Article 
    CAS 

    Google Scholar 
    Gomez, C. R., Goral, J., Ramirez, L., Kopf, M. & Kovacs, E. J. Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 25, 581–585 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barrientos, R. M., Watkins, L. R., Rudy, J. W. & Maier, S. F. Characterization of the sickness response in young and aging rats following E. coli infection. Brain Behav Immun. 23, 450–454 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sköld-Chiriac, S., Nord, A., Tobler, M., Nilsson, J. -Å. & Hasselquist, D. Body temperature changes during simulated bacterial infection in a songbird: Fever at night and hypothermia during the day. J. Exp. Biol. 218, 2961–2969 (2015).PubMed 

    Google Scholar 
    Sköld-Chiriac, S., Nord, A., Nilsson, J. -Å. & Hasselquist, D. Physiological and behavioral responses to an acute-phase response in zebra finches: Immediate and short-term effects. Physiol. Biochem. Zool. 87, 288–298 (2014).PubMed 
    Article 

    Google Scholar 
    Fritze, M. et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open 8, bio046078 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Triana-Llanos, C., Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V. & Niño-Castro, A. The acute phase response elicited by a viral-like molecular pattern increases energy expenditure in Artibeus lituratus. Biologia 74, 667–673 (2019).Article 

    Google Scholar 
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).PubMed 
    CAS 

    Google Scholar 
    Allen, L. C. et al. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J. Comp. Physiol. B. 179, 315–323 (2009).PubMed 
    Article 

    Google Scholar 
    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ohmer, M. E. B. et al. Applied ecoimmunology: Using immunological tools to improve conservation efforts in a changing world. Conserv. Physiol. 9, coab074 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: Intergrating competence into reservoir host prediction. Trends Ecol. Evol. 35, P1062–P1065 (2020).Article 

    Google Scholar 
    Kacprzyk, J. et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterologica 19, 219–228 (2017).Article 

    Google Scholar 
    Langlois, M. R. & Delanghe, J. R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 42, 1589–1600 (1996).PubMed 
    Article 
    CAS 

    Google Scholar 
    Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11, e1005168 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fritze, M. et al. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. Dev. Comp. Immunol. 119, 104017 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Moreno, K. et al. Sick bats stay home alone: Fruit bats practice social distancing when faced with an immunological challenge. Ann. N. Y. Acad. Sci. 1505, 178–190 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi). Mamm. Biol. 82, 41–47 (2017).Article 

    Google Scholar 
    Voigt, C. C. et al. The immune response of bats differs between pre-migration and migration seasons. Sci. Rep. 10, 17384 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V., Triana-Llanos, C. & Niño-Castro, A. Metabolic cost of acute phase response in the frugivorous bat, Artibeus lituratus. Mamm. Res. 63, 397–404 (2018).Article 

    Google Scholar 
    Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus). PeerJ 5, e3570 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cabrera-Martínez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cabrera-Martinez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. Food restriction, but not seasonality, modulates the acute phase response of a neotropical bat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 229, 93–100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Stockmaier, S., Bolnick, D. I., Page, R. A. & Carter, G. G. An immune challenge reduces social grooming in vampire bats. Anim. Behav. 140, 141–149 (2018).Article 

    Google Scholar 
    Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8, e54023 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornithol. 148, 571–582 (2007).Article 

    Google Scholar 
    Becker, D. J. et al. Leukocyte profiles reflect geographic range limits and local food abundance in a widespread Neotropical bat. Integr. Comp. Biol. 59, 1176–1189 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).Article 

    Google Scholar 
    Melhado, G., Herrera, M. L. G. & Cruz-Neto, A. P. Bats respond to simulated bacterial infection during the active phase by reducing food intake. J. Exp. Zool. A 333, 536–542 (2020).Article 
    CAS 

    Google Scholar 
    Costantini, D. et al. Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats (Rousettus aegyptiacus). Conserv. Physiol. 10, coac028 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Viljoen, H., Bennett, N. C. & Lutermann, H. Life-history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole-rats. J. Zool. 285, 222–229 (2011).Article 

    Google Scholar 
    Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lilley, T. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. Lond. B Biol. Sci. 284, 20162232 (2017).
    Google Scholar 
    Mayberry, H. W., McGuire, L. P. & Willis, C. K. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J. Comp. Physiol. B. 188, 333–343 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).PubMed 
    Article 

    Google Scholar 
    Grimble, R. F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin. Sci. 91, 121–130 (1996).Article 
    CAS 

    Google Scholar 
    Schultz, E. M., Hahn, T. P. & Klasing, K. C. Photoperiod but not food restriction modulates innate immunity in an opportunistic breeder, Loxia curvirostra. J. Exp. Biol. 220, 722–730 (2016).PubMed 

    Google Scholar 
    Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin?. J. Cell Biol. 198, 773–783 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).Article 

    Google Scholar 
    Bouma, H. R., Carey, H. V. & Kroese, F. G. Hibernation: The immune system at rest?. J. Leukoc. Biol. 88, 619–624 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Crameri, G. et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4, e8266 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hecht, A. M. et al. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci. Rep. 5, 16604 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barclay, R. M. R. et al. Can external radiotransmitters be used to assess body temperature and torpor in bats?. J. Mammal. 77, 1102–1106 (1996).Article 

    Google Scholar 
    Pap, P. L., Czirják, G. Á., Vágási, C. I., Barta, Z. & Hasselquist, D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97, 891–901 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Heinrich, S. K. et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol. Open 5, 550–555 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heinrich, S. K. et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 7, 44837 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morell, V., Lundgren, E. & Gillott, A. Predicting severity of trauma by admission white blood cell count, serum potassium level, and arterial pH. South. Med. J. 86, 658–659 (1993).PubMed 
    Article 
    CAS 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. (R foundation for statistical computing, 2018).Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R Package Version 3, 57 (2007).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).
    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series

    Carson, R. The Sea Around Us. Oxford University Press, Oxford, UK 1951.Beverton, R. J. H. & Holt, S. J. A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In: Ciba Foundation Symposium – The Lifespan of Animals (Colloquia on Ageing, Vol. 5) 142–180 (John Wiley & Sons, Ltd, 2008).Kiørboe, T., Visser, A. & Andersen, K. H. A trait-based approach to ocean ecology. ICES Journal of Marine Science 75, 1849–1863 (2018).Article 

    Google Scholar 
    Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology 22, 241–253 (2006).Article 

    Google Scholar 
    Juan-Jordá, M. J., Mosqueira, I., Freire, J. & Dulvy, N. K. Life in 3-D: Life history strategies in tunas, mackerels and bonitos. Reviews in Fish Biology and Fisheries 23, 135–155 (2012).Article 

    Google Scholar 
    Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Scientific Reports 9 (2019).Pauly, D. Tropical fishes: patterns and propensities. Journal of Fish Biology 53, 1–17 (1998).ADS 

    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proceedings of the National Academy of Sciences 106, 13860–13864 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11, 149–158 (2010).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase https://fishbase.org/ (2021).Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American Fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49, 2196–2218 (1992).Article 

    Google Scholar 
    Cortés, E. Life History patterns and correlations in sharks. Reviews in Fisheries Science 8, 299–344 (2000).Article 

    Google Scholar 
    Juan-Jordá, M. J., Mosqueira, I., Freire, J., Ferrer-Jordá, E. & Dulvy, N. K. Global scombrid life history data set. Ecology 97, 809–809 (2016).Article 

    Google Scholar 
    Kindsvater, H. K., Mangel, M., Reynolds, J. D. & Dulvy, N. K. Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and Evolution 6, 2125–2138 (2016).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends in Ecology & Evolution 33, 676–688 (2018).Article 

    Google Scholar 
    Ricard, D., Minto, C., Jensen, O. P. & Baum, J. K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish and Fisheries 13, 380–398 (2011).Article 

    Google Scholar 
    Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? ‐ A global survey of scientific bottom trawl data. Global Change Biology 27, 220–236 (2020).ADS 
    Article 

    Google Scholar 
    Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA-A decision‐support tool applied to pelagic sharks. Conservation Letters 13 (2019).McAllister, M. K., Pikitch, E. K. & Babcock, E. A. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Canadian Journal of Fisheries and Aquatic Sciences 58, 1871–1890 (2001).Article 

    Google Scholar 
    Froese, R., Demirel, N., Coro, G. & Kleisner, K. M. & Winker, H. Estimating fisheries reference points from catch and resilience. Fish and Fisheries 18, 506–526 (2016).Article 

    Google Scholar 
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Scientific Data 4 (2017).Inchausti, P. & Halley, J. Investigating Long-Term Ecological Variability Using the Global Population Dynamics Database. Science 293, 655–657 (2001).CAS 
    Article 

    Google Scholar 
    Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology 23, 317–327 (2009).Article 

    Google Scholar 
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecological Applications 27, 2262–2276 (2017).Article 

    Google Scholar 
    Heinicke, S. et al. Advancing conservation planning for western chimpanzees using IUCN SSC A.P.E.S.-the case of a taxon-specific database. Environmental Research Letters 14, 064001 (2019).ADS 
    Article 

    Google Scholar 
    Horswill, C. et al. Global reconstruction of life‐history strategies: A case study using tunas. Journal of Applied Ecology 56, 855–865 (2019).Article 

    Google Scholar 
    Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data‐integrated life‐history model. Fish and Fisheries 21, 237–251 (2019).Article 

    Google Scholar 
    Brown, C. J. & Roff, G. Life-history traits inform population trends when assessing the conservation status of a declining tiger shark population. Biological Conservation 239, 108230 (2019).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biological Conservation 246, 108459 (2020).Article 

    Google Scholar 
    Guy, C. S. et al. A paradoxical knowledge gap in science for critically endangered fishes and game fishes during the sixth mass extinction. Scientific Reports 11 (2021).Compagno, L. J. V. Alternative life-history styles of cartilaginous fishes in time and space. In Alternative life-history styles of fishes 33–75 (Springer Netherlands, 1990).Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology & Evolution 2, 288–298 (2018).ADS 
    Article 

    Google Scholar 
    Yopak, K. E. et al. A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences 107, 12946–12951 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Mull, C. G., Yopak, K. E. & Dulvy, N. K. Maternal Investment, Ecological Lifestyle, and Brain Evolution in Sharks and Rays. The American Naturalist 195, 1056–1069 (2020).Article 

    Google Scholar 
    Mull, C. G., Pennel, M. W., Yopak, K. E. & Dulvy, N. K. Maternal investment evolves with larger body size and higher diversification rate in sharks and rays. BioRxiv TBC (2022).Dulvy, N. D. & Reynolds, J. D. Evolutionary transitions among egg-laying, live-bearing, and maternal inputs in sharks and rays. Proceedings of the Royal Society B: Biological Sciences 264, 1309–1315 (1997).ADS 
    Article 

    Google Scholar 
    Heithaus, M. R. et al. Advances in our understanding of the ecological importance of sharks and their relatives. In: Biology of sharks and their relatives, 3rd Ed. Carrier, J. C., Simpfendorfer, C. A., Heithaus, M. R., & Yopak, K. E. (Ed).Simpfendorfer, C. A., Heupel, M. R., White, W. T. & Dulvy, N. K. The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Marine and Freshwater Research 62, 518 (2011).CAS 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Current Biology 31, 4773–4787.e8 (2021).CAS 
    Article 

    Google Scholar 
    Cortés, E., Brooks, E. N. & Shertzer, K. W. Risk assessment of cartilaginous fish populations. ICES Journal of Marine Science 72, 1057–1068 (2014).Article 

    Google Scholar 
    D’Alberto, B. M., Carlson, J. K., Pardo, S. A. & Simpfendorfer, C. A. Population productivity of shovelnose rays: Inferring the potential for recovery. PLOS ONE 14, e0225183 (2019).Article 

    Google Scholar 
    Sharkipedia: elasmobranch traits & trends http://www.sharkipedia.org.Bibliography Database. Shark-References http://www.shark-references.com.Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology 88, 837–1037 (2016).CAS 
    Article 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583 (2007).Article 

    Google Scholar 
    Spalding, M. D. et al. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean & Coastal Management 60, 19–30 (2012).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. Extract data from plots, images, and maps https://automeris.io/WebPlotDigitizer/.Mull, C. G. et al. Sharkipedia: A database of shark and ray life history traits and abundance time-series. Zenodo https://doi.org/10.5281/zenodo.6656525 (2012). More

  • in

    Empirical analysis of the role of the environmental accountability system in energy conservation and emission reduction in China

    Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046270 (2011).Article 

    Google Scholar 
    Tutak, M. & Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 345, 131076 (2022).Article 

    Google Scholar 
    Acheampong, A. O. & Boateng, E. B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 225, 833–856 (2019).Article 

    Google Scholar 
    Zhou, L. A. Governing China’s local officials: An analysis of promotion tournament model. Econ. Res. J. 07, 36–50 (2007) (in Chinese).
    Google Scholar 
    Luo, Z. & Qi, B. The effects of environmental regulation on industrial transfer and upgrading and banking synergetic development—Evidence from water pollution control in the Yangtze River Basin. Econ. Res. J. 56(02), 174–189 (2021).
    Google Scholar 
    Blumstein, C., Krieg, B., Schipper, L. & York, C. Overcoming social and institutional barriers to energy conservation. Energy 5(4), 355–371 (1980).Article 

    Google Scholar 
    Zhang, L. Energy conservation and emission reduction: An inevitable choice of China’s energy strategy. Sustain. Energy 6, 21–30 (2016).ADS 
    Article 

    Google Scholar 
    Bhuiyan, M. A. H., Siwar, C., Ismail, S. M. & Islam, R. The role of government for ecotourism development: Focusing on east coast economic region. J. Soc. Sci. 7(4), 557 (2011).
    Google Scholar 
    Fan, G., Su, M. & Cao, J. An economic analysis of consumption and carbon emission responsibility. Econ. Res. J. 45(01), 4–14 (2010) (in Chinese).
    Google Scholar 
    Xie, J. G. & Jiang, P. S. Embodied energy in international trade of China: Calculation and decomposition. China Econ. Q. 13(04), 1365–1392 (2014) (in Chinese).
    Google Scholar 
    Wu, J., Cui, C., Mei, X., Xu, Q. & Zhang, P. Migration of manufacturing industries and transfer of carbon emissions embodied in trade: Empirical evidence from China and Thailand. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-14674-z (2021).Article 

    Google Scholar 
    Porter, M. E. & Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 9(4), 97–118 (1995).Article 

    Google Scholar 
    Zhang, X. P. & Cheng, X. M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68(10), 2706–2712 (2009).Article 

    Google Scholar 
    Wang, B. & Liu, G. T. Energy conservation, emission reduction and green economic growth in China: From the perspective of total factor productivity. China Ind. Econ. 05, 57–69 (2015) (in Chinese).
    Google Scholar 
    Cheng, Y. Q., Wang, Z. Y., Zhang, S. Z., Ye, X. Y. & Jiang, H. M. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geogr. Sin. 68(10), 1418–1431 (2013) (in Chinese).
    Google Scholar 
    Peng, X. & Cui, H. R. Research on the effects of energy structure adjustment in China on Carbon Intensity. J. Dalian Univ. Technol. (Soc. Sci. Ed.) 37(01), 11–16 (2016) (in Chinese).
    Google Scholar 
    Xiao, T. & Liu, H. Empirical research on industrial structure adjustment and energy conservation and emission reduction. Economist 09, 58–68 (2014) (in Chinese).
    Google Scholar 
    Sheng, P., He, Y. & Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 28(7), 673–686 (2017).Article 

    Google Scholar 
    Sun, H., Samuel, C. A., Amissah, J. C. K., Taghizadeh-Hesary, F. & Mensah, I. A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 212, 118637 (2020).Article 

    Google Scholar 
    He, J. K. Economic analysis and effectiveness evaluation on China’s CO2 emission mitigation target. Stud. Sci. Sci. 01, 9–17 (2011) (in Chinese).
    Google Scholar 
    Meng, W. et al. Study on the developmental strategy of the energy saving and environmental protection industry in China. Strat. Study CAE 18(04), 1–8 (2016) (in Chinese).
    Google Scholar 
    He, J., Wang, M. M., Zhang, Z. L., Li, M. & Shi, H. X. Equal attention should be paid to boyh construction and operation of buildings for energy efficiency and emission reduction: Findings from current data on resource and environment loads in China’s building industry. Sci. Technol. Rev. 36(05), 8–13 (2018) (in Chinese).
    Google Scholar 
    Xie, C. X. & Gao, Y. B. Research on innovative development path of energy conservation and emission reduction from the perspective of low carbon economy. China Resour. Compr. Util. 37(12), 92–94 (2019) (in Chinese).
    Google Scholar 
    Dong, J. F., Deng, C., Wang, X. M. & Zhang, X. L. Multilevel index decomposition of energy-related carbon emissions and their decoupling from economic growth in Northwest China. Energies 9(9), 680 (2016).Article 

    Google Scholar 
    Duan, Y. Q. & Xu, S. L. Command-based environmental regulation and heavy polluters’ investment: incentive or disincentive? A quasi-Natural experiment based on the new environmental protection law. J. Financ. Dev. Res. 07, 54–61 (2021) (in Chinese).
    Google Scholar 
    Cai, W. & Xu, F. The impact of the new environmental protection law on eco-innovation: Evidence from green patent data of Chinese listed companies. Environ. Sci. Pollut. Res. 29(7), 10047–10062 (2022).Article 

    Google Scholar 
    Ning, Y. et al. Energy conservation and emission reduction path selection in China: A simulation based on bi-level multi-objective optimization model. Energy Policy 137, 111116 (2020).Article 

    Google Scholar 
    Hughes, S., Giest, S. & Tozer, L. Accountability and data-driven urban climate governance. Nat. Clim. Change 10(12), 1085–1090 (2020).ADS 
    Article 

    Google Scholar 
    Feng, L., Chen, Z. & Chen, H. Does the central environmental protection inspectorate accountability system improve environmental quality?. Sustainability 14(11), 6575 (2022).Article 

    Google Scholar 
    Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 712, 136504 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z. & Vo, X. V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 207, 118162 (2020).Article 

    Google Scholar 
    Yang, Y. & Niu, X. Impact of the new “Environmental Protection Law” on the efficiency of listed companies in heavily polluting industries in China: Based on the research perspective of “Porter Hypothesis”. Manag. Rev. 33(10), 55–69 (2021).
    Google Scholar 
    Wong, C. W., Wong, C. Y., Boon-Itt, S. & Tang, A. K. Strategies for building environmental transparency and accountability. Sustainability 13(16), 9116 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565), 335–338 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Litman, T. Comprehensive evaluation of energy conservation and emission reduction policies. Transp. Res. Part A Policy Pract. 47, 153–166 (2013).Article 

    Google Scholar 
    Zhou, P., Ang, B. W. & Han, J. Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 32(1), 194–201 (2010).Article 

    Google Scholar 
    Steg, L. Promoting household energy conservation. Energy Policy 36(12), 4449–4453 (2008).Article 

    Google Scholar 
    Yang, Q. & Liu, H. J. Regional difference decomposition and influence factors of China’s carbon dioxide emissions. J. Quant. Tech. Econ. 29(05), 36–49 (2012) (in Chinese).
    Google Scholar 
    Yao, L. J. & Sun, C. Y. Italy’s low carbon economic development policy. Sci. Technol. Ind. China 11, 58–60 (2007) (in Chinese).
    Google Scholar 
    Li, L. et al. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 39(6), 3669–3679 (2011).Article 

    Google Scholar 
    Dong, F. et al. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 129, 187–201 (2018).Article 

    Google Scholar 
    Li, X., Hu, Z., Cao, J. & Xu, X. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy 161, 112733 (2022).Article 

    Google Scholar 
    Ehrlich, P. R. & Holdren, J. P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 171(3977), 1212–1217 (1971).ADS 
    PubMed 
    Article 

    Google Scholar 
    York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46(3), 351–365 (2003).Article 

    Google Scholar 
    Shao, S., Yang, L. L. & Cao, J. H. Study on influencing of CO2 emissions from industrial energy consumption: An empirical analysis based on STIRPAT model and industrial sectors’ dynamic panel data in Shanghai. J. Finance Econ. 36(11), 16–27 (2010) (in Chinese).
    Google Scholar 
    Tseng, S. W. Analysis of energy-related carbon emissions in Inner Mongolia, China. Sustainability 11(24), 7008 (2019).Article 

    Google Scholar 
    Lin, B. & Ouyang, X. Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry. Energy 68, 688–697 (2014).Article 

    Google Scholar 
    Wang, D., He, W. & Shi, R. How to achieve the dual-control targets of China’s CO2 emission reduction in 2030? Future trends and prospective decomposition. J. Clean. Prod. 213, 1251–1263 (2019).Article 

    Google Scholar 
    Card, D., & Krueger, A. B. Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania (1993).Abadie, A. & Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 93(1), 113–132 (2003).Article 

    Google Scholar 
    Kaul, A., Klößner, S., Pfeifer, G. & Schieler, M. Standard synthetic control methods: The case of using all preintervention outcomes together with covariates. J. Bus. Econ. Stat. 40(3), 1362–1376 (2022).MathSciNet 
    Article 

    Google Scholar 
    Lin, B. Q. & Li, J. L. Transformation of China’s energy structure under environmental governance constraints: A peak value analysis of coal and carbon dioxide. Soc. Sci. China 09, 84–107 (2015) (in Chinese).
    Google Scholar 
    Long, X., Naminse, E. Y., Du, J. & Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 52, 680–688 (2015).Article 

    Google Scholar 
    Zhang, W., Zhu, Q. G. & Gao, H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system. Econ. Res. J. 51(12), 62–75 (2016) (in Chinese).
    Google Scholar 
    Wen, Z., Zhang, L., Hou, J. & Liu, H. Mediating effect test procedure and it application. Acta Psychol. Sin. 36(5), 614–620 (2004).
    Google Scholar 
    He, Y., Yu, W. L. & Yang, M. Z. CEOs with rich career experience, corporate risk-taking and the value of enterprises. China Ind. Econ. 09, 155–173 (2019) (in Chinese).
    Google Scholar 
    Zhou, D. Q., Wang, Q., Su, B., Zhou, P. & Yao, L. X. Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis. Appl. Energy 166, 201–209 (2016).Article 

    Google Scholar 
    Waheed, R., Sarwar, S. & Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 5, 1103–1115 (2019).Article 

    Google Scholar 
    Yang, Y., Zhou, Y., Poon, J. & He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 211, 640–651 (2019).Article 

    Google Scholar 
    Apergis, N. & Payne, J. E. Coal consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 38(3), 1353–1359 (2010).Article 

    Google Scholar 
    Mujtaba, A., Jena, P. K., Bekun, F. V. & Sahu, P. K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 160, 112300 (2022).Article 

    Google Scholar 
    Wolde-Rufael, Y. Coal consumption and economic growth revisited. Appl. Energy 87(1), 160–167 (2010).Article 

    Google Scholar  More

  • in

    Ursids evolved early and continuously to be low-protein macronutrient omnivores

    The giant panda’s preference for culm over leaves occurred even though leaves had far more protein than did culm, which is inconsistent with the suggestion that giant pandas are high protein carnivores1. The giant panda’s preference for culm over leaves in the spring was likely driven by the increased availability of mono- and polysaccharides in culm relative to leaves31. This preference by giant pandas for a high-carbohydrate, low protein diet is similar to the brown bear’s preference for carbohydrate-rich but protein-poor berries or apples over protein- and energy-rich salmon, although both needed to be consumed to produce the most efficient diet2,10. The preference for culm over leaves created a protein ME in the diet of giant pandas from January to March (~ 20%) when digestible carbohydrates were most plentiful and for the entire year (27 ± 10%) that was comparable to the macronutrient proportions in giant panda milk and the milk and diets selected by other ursids (Table 1, Fig. 3) that minimize energy expenditure and maximize the efficiency of gain3.Table 1 The protein and fat metabolizable energy concentrations (%) in ursid milks and in the diets selected by brown bears, polar bears, and sloth bears when given ad libitum access to foods rich in protein, fat, and digestible carbohydrates (PFC) or protein and fat only (PF)1,3,4,29,32,40,54,55.Full size tableRelative to the suggestion that giant pandas are not well adapted to consuming the more omnivorous macronutrient proportions characteristic of the diets of other ursids1, captive giant pandas are often fed various combinations of bamboo and high-carbohydrate supplements that include rice, baby cereal, bread, beans, wheat, millet, apples, carrots, ground corn, sorghum, sugar cane, and sugar in addition to milk, eggs, vegetables, and various meats5,32,33. The dry matter of giant panda diets in five Chinese zoos in which successful reproduction occurred (i.e., Beijing Zoo, Chengdu Zoo, China Conservation and Research Center, Fuzhou Zoo, and Xian Zoo) averaged 11.6 ± 2.4% protein, 39.0 ± 13.6% neutral detergent fiber (NDF) or cell wall, 5.0 ± 2.0% fat, and 5.4 ± 0.6% ash32. If we estimate soluble carbohydrates as 100 – (NDF + protein + fat + ash)3, the soluble carbohydrate content was 39.0 ± 11.2%. This approach likely underestimates digestible carbohydrates in that it assumes a zero digestibility for the hemicellulose fraction of the NDF. However, even with these assumptions, the average macronutrient ME distribution was 19 ± 4% protein, 18 ± 7% fat, and 63 ± 18% carbohydrate, or again a low-protein macronutrient ratio typical of the other ursid diets (Table 1).Several errors may have been made in the previous giant panda study1 that likely influenced their conclusion. These included initially air-drying their bamboo samples in a dark room prior to laboratory drying and analyses34. When plants are cut and allowed to dry slowly, soluble carbohydrates are lost as they are metabolized to carbon dioxide, water, and energy until death of the plant cells35,36. The loss of soluble carbohydrates increases when drying occurs slowly, as would occur with air-drying in a dark room. Protein also may be metabolized, but the nitrogen remains and is only converted to different nitrogen-containing compounds, such as amides, free amino acids and peptides that would be part of a crude protein estimate36.Thus, if there are significant amounts of soluble carbohydrates in fresh bamboo, air-drying of bamboo samples will lead to an underestimate of the importance of carbohydrates and thereby an overestimate of the importance of protein. Indeed, starch accounted for 16 ± 11% of the digestible macronutrients and 23 ± 13% of the digestible carbohydrates in bamboo during the current study. Also, the previous study1 assumed a hemicellulose digestibility of 22%37, which significantly underestimated that found in our digestion studies (46 ± 9%).Another potential error in the previous study1 was in using a concept they termed “relative efficiencies” of macronutrient absorption in which the macronutrient profiles of bamboo were directly compared to that of giant panda feces. Such a comparison is often meaningless without knowing the amounts of food consumed and feces produced because the proportions of macronutrients in the feces reflect the extraordinarily complex interaction between the variable absorption of digestible products, passage of indigestible components, and excretion of metabolic products. Thus, only by providing data showing a close linkage between relative efficiencies and digestibility or measuring digestibility as we did can one be certain of estimating the relative importance of macronutrients.The macronutrient intake of wild sloth bears has not been measured, although the dietary proportions and energy content of termites, ants, and fruits have been estimated17. Soldiers and worker termites and ants are generally low in fat and high in protein (excluding the nitrogen in their chitin exoskeleton), whereas alate and alate nymphs (winged reproductive termites) can be very low in protein and high in fat (i.e.,  > 50% fat)38. Joshi et al.17 surmised that sloth bears consumed primarily termite eggs and defending soldiers based on the residues in bear feces and the absence of eggs and soldiers at termite mounds after sloth bear feeding bouts. Although not measured, the dry matter of termite eggs is likely high in both protein and fat, which would create a high fat ME because of the much greater energy content of fat than protein39. The high fruit diet of the summer will be low in protein and fat and high in carbohydrates if not supplemented with other fat-rich foods (e.g., grubs or insect larvae)17. Thus, depending on season and which stage of the ant and termite life cycle the bears consume, wild sloth bears could be consuming either high or low-protein or fat diets.The preference for fat that we observed differs markedly from current zoo diets. Zoo diets can be classified into two macronutrient types: 1) high carbohydrate, low protein, low fat diets that use grains, often in cooked porridges or soups, with fruits and vegetables or 2) diets having more modest or intermediate levels of protein, fat, and carbohydrates that include dog food, bear chows, or omnivore dry or canned products supplemented with fruits and vegetables (Fig. 3). Examples of the first type of diet are more common in Germany [e.g., Leipzig Zoo (ME protein 11%, fat 5%, and carbohydrate 84%)] and the various bear rescue centers in India [e.g., Bannerghatta Bear Rescue Centre (ME protein 10%, fat 9%, and carbohydrate 81%)]. Examples of the second type of diet are more common in US and other European zoos and have more protein and fat than the high grain diets but are much lower in fat than what bears selected in the current study22 (Fig. 3). Nevertheless, bears consuming all past and current zoo diets are prone to developing hepatobiliary cancer and inflammatory bowel disease.If these problems are dietary in origin and not due to something unique to feeding on termites and ants (e.g., development of a unique gastrointestinal microbiome or consumption of formic acid in ants or chitin in both ants and termites), there are two broad types of diets not fed in captivity (i.e., high protein diets and high fat diets) (Fig. 3). In evaluating if either one of those might be more suitable for sloth bears, the protein ME ratios of ursid milks and the diets voluntarily selected by brown bears, polar bears, giant pandas, and sloth bears are low and do not differ from each other (t(3) = 2.449, p = 0.092), which minimizes maintenance energy requirements and maximizes the efficiency of gain1,3,4,29,40 (Table 1). Additionally, brown bears and sloth bears prefer high fat, low carbohydrate diets when given a choice between foods rich in either carbohydrates or fats3 (Table 1, Fig. 3). This fat preference in the adult ursid diet is virtually identical to that occurring in ursid milks (t(2) = -0.726, p = 0.543) even though omnivorous ursids likely have a strong preference for sweet flavors41.While an understanding of the link between dietary macronutrient content and biliary cancer is lacking, we hypothesize that bears, such as polar bears and apparently sloth bears that prefer or evolved to consume high-fat diets, have high resting rates of bile production. Consequently, when sloth bears consume a high-carbohydrate, low-fat diet long term, bile is not secreted into the digestive tract as fast as it is being produced and may back up in the bile ducts, cause bile duct dilation and inflammation, and ultimately biliary cancer. An example of this process is a rare congenital disease in humans and other animals known as choledochal cyst disease. Sacs or outpocketings may develop along the bile ducts in this disease. Bile sitting in those sacs or in the bile ducts causes inflammation of the duct walls and, if not treated by surgical excision, biliary cancer42.If we assume the macronutrient characteristics of ursid milks and the preferences for low protein, low carbohydrate, high fat diets exhibited by brown bears, polar bears, and sloth bears are healthy, current and past sloth bear zoo diets have provided too little fat, too much digestible carbohydrate, and often too much protein (Fig. 3). While this mismatch between the diets fed in captivity and what sloth bears prefer might explain the high incidence of hepatobiliary cancer, inflammatory bowel disease, and poor reproduction world-wide, we cannot dismiss the possibility that the bears’ preference for avocados and fat and the avoidance of apples, baked yams, and digestible carbohydrates in the current study has nothing to do with their macronutrient content and would be unhealthy long-term. Thus, additional feeding studies are needed to determine if a high fat, low protein, low carbohydrate diet might be the key to improving the health, reproduction, and longevity of captive sloth bears.Finally, the selection of lower protein diets by giant pandas, polar bears, sloth bears, and brown bears and the often low-protein omnivorous diets of the other four ursids indicate that all ursids can modulate liver catabolic enzyme activity when needed to conserve protein. This would suggest that this ability to conserve protein occurred early in the evolution of ursids from a high protein carnivore ancestor and may have been critical to the spread of ursids world-wide by opening niches that could not be filled by another high protein carnivore. While all ursids at times may consume foods with a much higher protein content than that of a low protein omnivore, that selection process can only be evaluated relative to the other available dietary choices interacting with foraging and metabolic constraints and does not indicate their preferred diet is that of a high protein carnivore2,43,44. More

  • in

    Seed germination ecology of hood canarygrass (Phalaris paradoxa L.) and herbicide options for its control

    Effects of light intensity and temperatureThe germination of P. paradoxa (91 to 95%) and wheat (93 to 97%) was not affected by light intensity (data not shown). Our results conform to previous studies which revealed that light intensity had little role in influencing P. paradoxa germination24.The germination of wheat and P. paradoxa was influenced by temperature regimes (Fig. 1). At temperature regimes of 15/5 °C and 20/10 °C, germination of wheat and P. paradoxa did not vary. Seed germination in wheat remained similar at temperatures ranging between 15/5 °C to 30/20 °C. However, in P. paradoxa, germination was reduced at higher temperature regimes (35/25 C) compared with lower temperature regimes (15/5 °C to 25/15 °C). At the highest temperature regime (35/25 °C), the germination of wheat was 79%, while, at this temperature regime, the germination of P. paradoxa was only 1%. This suggests that wheat can germinate at high-temperature ranges, while, germination of P. paradoxa may be reduced at high temperatures (35/25 °C). These results implied that at the time of planting wheat in Australia if the air temperature is low, the chances of emergence of P. paradoxa are very high. This suggests that efforts should be made towards early control of P. paradoxa in wheat if the air temperature in the winter season falls early. These results also suggest that early planting of wheat could reduce the emergence of P. paradoxa as the prevailing temperature conditions are relatively high in early planting (e.g., end of April). In the Indo-Gangetic Plains, better control of P. minor was observed in the early planting of wheat (high-temperature conditions) due to less emergence of P. minor25.Figure 1Effect of alternating day/night temperatures (15/5 to 35/25 °C) on germination of Phalaris paradoxa and wheat seeds (incubated for 21 d) under light/dark (12-h photoperiod). LSD: Least significant difference at the 5% level of significance.Full size imagePrevious studies have also revealed that germination of P. paradoxa was highest at 10 °C and then failed to germinate at 30 °C 24,26, however, these studies were conducted at constant temperatures and the germination response of P. paradoxa was not studied in comparison with wheat in those studies.Effect of radiant heatThe germination of P. paradoxa seeds that were stored at room temperature (25 °C) was 97%, which reduced to 88% after exposure to the 100 °C pretreatment for 5 min and became nil at 150 °C (Fig. 2). About 88% of P. paradoxa at 100 °C suggests that it can tolerate heat stress for short periods.Figure 2Effect of high-temperature pretreatment for 5 min (℃) on germination of Phalaris paradoxa seeds. LSD: Least significant difference at the 5% level of significance.Full size imageGermination was nil at 150 °C and above, suggesting that burning could help in managing P. paradoxa, particularly in a no-till field where seeds are on the soil surface or at shallow depths. Exposure of seeds to fire could inhibit germination by desiccating the seed coat or by damaging the embryo27,28,29.Burning of residue in the fields could kill weed seeds and other pests in the topsoil layer30. Windrow burning proved to be an effective tool for killing weed seeds in paddocks31. However, the crop residue burning may cause environmental destruction by killing microbes and polluting the air. Also, it reduces the amount of soil organic matter due to the high heat, causing soil degradation. Therefore, these aspects should also be considered while formulating weed management strategies through crop residue burning. Burning may also release the dormancy of other weed seeds present in the subsoil and thus may increase infestation; therefore, this technique should be used cautiously32,33.Effect of osmotic stressGermination of P. paradoxa was highest (95%) in the control treatment and germination reduced to 75% at an osmotic potential of −0.8 MPa, and became nil at −1.6 MPa (Fig. 3). However, in wheat, germination did not reduce with an increase in water potential and it was 94% in the control treatment.Figure 3Effect of osmotic potential on germination of Phalaris paradoxa and wheat seeds at alternating day/night temperatures of 20/10 °C under 12 h photoperiod. Seeds were incubated for 21 d. LSD: Least significant difference at the 5% level of significance.Full size imageAt a very high concentration of PEG, the metabolic activity of P. paradoxa might be reduced due to water stress. Seed germination is affected when seeds are not able to get critical moisture threshold levels for imbibitions34,35. These results indicate that high water stress may inhibit the seed germination of P. paradoxa. However, under no water stress or mild water stress conditions, P. paradoxa may infest the wheat crop.Contrary to these results, previous studies reported that germination of P. paradoxa was reduced by 90% at an osmotic potential of −0.25 MPa25. Good germination of wheat at high osmotic potential indicates that the wheat variety used in this study may have water stress tolerance traits for germination. It was observed that wheat could germinate well (75%) at a high-water stress level (−1.6 MPa)36. This suggests that it is possible to menace P. paradoxa by growing stress-tolerant varieties of wheat and manipulating irrigation. In a previous study, less infestation of P. paradoxa was observed in drip-irrigated wheat crops due to optimal soil moisture conditions for the crop37.Effect of salt stressGermination of P. paradoxa was highest (93%) in the control treatment, and at a NaCl of 150 mM, germination was reduced to 76% (Fig. 4). Similarly, in wheat, germination was highest (94%) in the control treatment and at a salt concentration of 150 and 200 mM, germination was reduced to 84 and 79%, respectively. These results suggest that at a high salt concentration, P. paradoxa may infest the wheat crop owing to its ability to germinate under high salt concentrations.Figure 4Effect of sodium chloride concentration on germination of Phalaris paradoxa and wheat seeds at alternating day/night temperatures of 20/10 °C under 12 h photoperiod. Seeds were incubated for 21 d. LSD: Least significant difference at the 5% level of significance.Full size imageContrary to this, in Iran, it was observed that germination of P. paradoxa was reduced by 70% at a NaCl of 160 mM24. Most of the Australian soils are saline; therefore, it is quite possible that P. paradoxa in Australia might have developed traits for salt tolerance38. The variable response of populations of P. paradoxa to salt concentrations in Iran and Australia might be due to genetic differences between the P. paradoxa populations38. These observations suggest that P. paradoxa could invade the agroecosystem under the saline conditions of Australia.Effect of seed burial depth on emergenceGermination of P. paradoxa was very low (10%) on the soil surface, and seedling emergence was highest (74%) at a soil burial depth of 0.5 cm (Fig. 5). Seedling emergence was similar when seeds were buried in the soil at a depth ranging from 0.5 to 4 cm. Seedling emergence was 32% at a burial depth of 8 cm.Figure 5Effect of seed burial depth on seedling emergence of Phalaris paradoxa. LSD: Least significant difference at the 5% level of significance.Full size imageThe results from this experiment suggest that a no-till production system may inhibit the germination of P. paradoxa. This study also suggests that deep tillage ( > 4 cm) could reduce the emergence of P. paradoxa to some extent; therefore, inversion tillage could be a weed management strategy if the seedbank is in the shallow layer of the soil. It has been reported that the emergence of small-seeded weeds is reduced from deeper burial depths, as the soil-gas exchange is limited 21. However, it is important to know the seed longevity of this weed in different soil and environmental conditions when considering tillage operations39.Likewise, previous studies also reported that seed germination of P. paradoxa was lowest on the soil surface and no seedlings emerged from a soil depth of 10-cm2,40. Contrary to this in Iran, germination of P. paradoxa was found to be  > 65% on the soil surface 24.Evaluation of PRE-herbicidesResults revealed that cinmethylin, pyroxasulfone, and trifluralin provided 100% control of P. paradoxa. Atrazine, bixlozone, imazethapyr, isoxaflutole, prosulfocarb + s-metolachlor, and s-metolachlor were not found to be effective against P. paradoxa (Table 1). Pendimethalin and triallate controlled P. paradoxa by 80 and 42%, respectively, compared with the nontreated control.Table 1 Effect of PRE herbicides on the survival of Phalaris paradoxa and wheat seedlings (28 d after spray).Full size tableIn wheat, all tested herbicides performed similarly for plant survival except dimethenamid-P and prosulfocarb + s-metolachlor, which caused wheat mortality by 41 and 16%, respectively, compared with the nontreated control. These results suggest that pyroxasulfone, pendimethalin, and trifluralin can be successfully used for the management of P. paradoxa in wheat. Alternative use of these herbicides in wheat crops could provide sustainable weed control of P. paradoxa. In previous studies conducted in Australia, herbicides namely cinmethylin, pyroxasulfone, and trifluralin were found safe for wheat and provided excellent grass weed control41.Efficacy of PRE-herbicides in relation to crop residue coverCinmethylin, pendimethalin, and pyroxasulfone were proven to be very effective against P. paradoxa under no residue cover conditions (Table 2). However, at the residue cover of 6 t ha-1 (high output systems), the efficacy of these herbicides decreased and these three herbicides failed to provide effective control of P. paradoxa. At the residue cover of 2 t ha-1 (low output systems), the efficacy of pyroxasulfone in controlling P. paradoxa was not affected; however, cinmethylin and pendimethalin at the residue load of 2 t ha-1 did not control P. paradoxa. These results suggest that in a residue-retained, no-till system, pyroxasulfone could provide better control of P. paradoxa compared with cinmethylin and pendimethalin.Table 2 The interaction of PRE herbicides and wheat residue amount on the survival of Phalaris paradoxa seedlings at 28 d after spray.Full size tableThe crop residue binds some herbicides, which results in a reduced dose to target weeds and provides poor weed control42. A crop residue cover of 1 t ha-1 may prevent 50% of the herbicide from reaching the target weed seeds in the soil and thus provide poor weed control43.Efficacy of POST herbicides in relation to plant sizeWhen plants were sprayed at the 4-leaf stage, the herbicides clodinafop and propaquizafop were not effective against P. paradoxa compared with the other tested herbicides (Table 3). The efficacy of clethodim, glyphosate, haloxyfop, and paraquat in controlling P. paradoxa was not decreased even when plants were sprayed at the 10-leaf stage. In previous studies, poor control of P. paradoxa was observed with ACCase-inhibiting herbicides44,45. These results also suggest that under noncropped or fallow situations, early and late cohorts of P. paradoxa can be controlled successfully by delaying applications of clethodim, paraquat, haloxyfop, and glyphosate.Table 3 The interaction effect of plant size (large plants-10 leaves and small plants-4 leaves) and herbicide treatments on the survival of Phalaris paradoxa seedlings at 28 d after spray.Full size tableGermination of P. paradoxa at 25/15 °C (day/night) was lower compared with 20/10 °C. This suggests that early sowing of wheat (relatively high-temperature conditions) could reduce the emergence of P. paradoxa in fields. Phalaris paradoxa did not germinate after exposure to radiant heat of 150 °C (for 5 min), which suggests that burning may be a useful tool for managing P. paradoxa, particularly when seeds are on the soil surface or at the shallow surface. A high level of tolerance of P. paradoxa to water and salt stress was observed. These observations suggest that this weed can dominate under saline and water stress conditions in Australia. Low germination of P. paradoxa was observed on the soil surface, suggesting that a no-till system could provide better control of P. paradoxa. PRE herbicides cinmethylin, pyroxasulfone, pendimethalin, and trifluralin were effective for control of P. paradoxa in wheat; however, under a conservation tillage system, pyroxasulfone provided better control of P. paradoxa compared with other herbicides. Haloxyfop and clethodim were the most effective herbicides among the ACCase-inhibiting herbicides. Under noncropped or fallow land situations, larger plants of P. paradoxa can be successfully controlled with the application of clethodim, glyphosate, and paraquat. More