More stories

  • in

    Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude

    Plants increase their freezing resistance upon exposure to low temperatureThe freezing resistance (LT50 values) was found to vary ranging from − 6.9 °C (14-August-2017) to − 31.7 °C (04-November-2018) over the course of study period. The freezing resistance of leaves recorded during the 12 sampling time-points has been provided in Table 1 (also see39). The overlap of confidence intervals around the mean was examined for comparison of LT50 values for the different sampling time-points. Significant differences in freezing resistance were observed across the sampling time-points (Table 1). Leaves of R. anthopogon collected during summer [July and August (Air temperature and photoperiod was about 9.6 °C and 13 h day−1 respectively)] showed marginal resistance to freezing (LT50: − 7 °C) and thus, are more susceptible to freezing damage. Further, as the ambient air temperature and photoperiod decreased towards the end of growing season (i.e., October and November 2017 with air temperature and photoperiod of about − 1.1 °C and 10.5 h day−1 respectively), the plants acquired the highest freezing resistance (LT50: − 30 °C). Interestingly, a sharp increase in freezing resistance (− 29.4 °C) was observed in September 2018, when the daily mean air temperature decreased below 0 °C due to sudden snowfall (Supplementary Fig. S2). Comparison of LT50 values of all the leaf samples of R. anthopogon showed that cold de-acclimation occurred after the snowmelt during early spring in June (LT50: − 13.4 °C) with an increase in air temperature and photoperiod. These results demonstrated that R. anthopogon plants exhibit lowered freezing resistance during the warmer months [hence, these time-periods were referred as non-acclimation (NA)], progressively develop greater freezing resistance during the onset of winter season (hence, referred as cold acclimation) followed by an intermediate level of freezing resistance during the spring [hence, these time-periods were referred as de-acclimation (DA)].Table 1 The estimates of LT50, calculated by fitting sigmoidal curve to electrolyte leakage values of temperature treatments, recorded for leaves collected during the different sampling time-points (from August 22, 2017 to September 18, 2018).Full size tableDuring the acclimation period (i.e., late in the growing season), plants acquired the highest resistance to freezing (Fig. 1). The low electrolyte leakage (= high freezing resistance) observed during this period might be due to changes in cell wall properties (such as increase in lignification and suberization of cell walls), which provide resistance to diffusion of electrolytes from cells of the leaves to the extracellular water47. Moreover, high freezing resistance may also be attributed to high leaf toughness and sclerophyllous habit of this evergreen species48. Further, it was found that freezing resistance was the lowest during mid-summer period. This pattern could be explained by a trade-of between plant growth rates and freezing resistance, where warmer temperatures favour plant allocation to growth49. These observations corroborated well with earlier reports that showed a rapid increase in ‘freezing resistance’ during the transition from summer to early winter and vice versa50.Figure 1LT50 [black point (with solid fill) on the curve] calculated by fitting sigmoidal curve to relative electrolyte leakage (REL %) values recorded during the three different acclimation phases. GOF indicates ‘goodness of fit’ test values for the fitted sigmoidal curves.Full size imagePhotosynthetic rates are higher during non-acclimation and de-acclimation periodIt was found that PN of R. anthopogon varied in the range from 8.336 to 17.64 μmol(CO2)m−2 s−1 and E from 2.281 to 4.912 mol(H2O)m−2 s−1, throughout its growing season. The Gs of leaves was estimated to be in the range from 0.110 to 0.265 mol (H2O) m−2 s−1. WUE, a ratio of PN and E, varied between 52.21 and 87.68 (Table 2). The gas exchange parameters of R. anthopogon varied significantly among the sampling time-points [referred to here as different acclimation phases of the growing period of evergreen shrub (Fig. 2, Table 3)]. In particular, PN was significantly lower on 18-September-2018 (referred as cold acclimation phase), whereas it was higher on 31-August-2018 and 15-June-2018 (referred as NA and DA phases, respectively). Similarly, Gs of leaves was significantly lower during cold acclimation in comparison to the rest of the acclimation phases (i.e., NA and DA). Further, WUE was significantly higher during cold acclimation, while it was lower during both NA and DA (p ≤ 0.05) (Fig. 2).Table 2 Variability in leaf gas exchange parameters of R. anthopogon during the different acclimation phases (NA = Non-acclimation, LA = Late cold acclimation and DA = De-acclimation).Full size tableFigure 2Variability in leaf gas exchange parameters of R. anthopogon during the three acclimation phases [i.e., Non-acclimation (31 August, 2018), Cold acclimation (18 September, 2018) and De-acclimation (15 June, 2018)]. Different alphabets (a, b, c) represent statistically significant values (p  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees

    We confirm that Cuba is home to the world’s largest European honeybee population that has naturally become Varroa-resistant, with an estimated 220,000 colonies being maintained without any form of chemical treatment for over two decades19 although some drone-trapping occurred during the early years of the transition period This is despite the presence of the K-haplotype of the mite20 and the widespread occurrence of DWV19 throughout Cuba. Hence, the Cuban honeybee population is the first major case of Varroa-resistant European bees occupying an entire country of a large size (109,884 km2). In Europe the proportion of varroa-resistant honeybee populations in each country is highly variable21,22, but they still consist of small, isolated populations within any country. For example, the second largest known area of European Varroa-resistant honeybees is in North Wales, UK where 104 beekeepers have managed around 500 honey bee colonies over an area of 2500 km2 without treatment for over a decade23.It has long been established that sub-Sharan African and Africanised honeybees are Varroa-resistant and both populations cover much larger areas than Cuba, but these honeybee races are not capable of thriving in temperate regions or are rejected by beekeepers in Northern hemispheres. However, previous studies on African/Africanised and European honeybees4,5,6,9 all appear to have evolved with the same resistance mechanism7 and Cuban honeybees follow this pattern showing high recapping behaviour, high mite removal behaviour and low mite reproduction (Figs. 1, 4, Table 1).The strongest evidence that increased recapping behaviour is a direct response to the presence of Varroa, is the very low recapping rates in Varroa-naïve colonies. This is evidenced by the recapping baseline data that has now been collected from four different Varroa-naïve (Varroa free) honeybee populations (Australia, UK [two populations] and Hawaii [this study]) all producing similar results (Fig. 1). Across the four populations, a total of 9542 worker cells from 15 colonies have been studied with an average recapping rate of 2.0% (+ SD 3.2). Interestingly, only two of the colonies had atypical recapping rates of 8.5% and 10.7%, from Australia and Kauai respectively. This may suggest increased sensitivity in these colonies as no obvious causes e.g., wax moth or dead pupa, were detected in either colony. The data summary in Fig. 1 indicates that even in Varroa-treated populations the workers are still able to detect mite infested cells, but the average consistently falls significantly below that found in resistant populations. That is, in non-infested worker cells recapping rates are significantly higher in resistant populations in comparison to susceptible populations (Fig. 1) t4, 5 = − 4.185, p = 0.0023 as well as for infested cells t4, 5 = − 6.905, p = 0.00007.The ability of Cuban honeybees to detect infested cells causes not only high recapping levels but also high removal rates of artificially mite-infested cells. A mean removal rate of 81% is among one of the highest recorded in Apis mellifera7. The average control rate of 45% is driven by three colonies that all removed more than 75% of the controls, while the average of the remaining seven colonies was 28%. During the mite-removal studies in March 2022 natural Varroa infestation was 23%, whereas in December 2021 it was only 13%. This is due to decreasing worker brood rearing, caused by a shortage of nectar during the annual dry season. During this time there is an increase in hygienic behaviour in the colonies24, which could help explain the higher-than-expected removal of control cells.The reproductive ability of Varroa to produce viable i.e., mated, female offspring (r) in infested worker cells in resistant colonies in South Africa4 (r = 0.9), Brazil4 (r = 0.8), Mexico18 (r = 0.73), Europe3 (r = 0.84) is similar to the 0.87 found in Cuba (this study). In Cuba ‘r’ reduces to 0.77 when both single and multiple infested cells are considered. This reduction in mite reproduction, relative to susceptible colonies that have values of r greater than one, is directly linked to the increased ability of resistant workers to both detect and remove, by cannibalisation, the infested pupa. Hence, this ensures the invading mite fails to reproduce7 or reduces mite fertility due to the recapping process4. Although, in this study no significant difference was found in the reproduction of Varroa in recapped or non-recapped cells, supporting the findings of two previous studies5,9. Therefore, recapping may be playing a minor role in resistance. However, recapping remains the best indicator or ‘proxy’ of resistance within the vast majority of honeybee populations since it’s easier, quicker, and it requires less skill to measure recapping rates than mite removal rates. However, recapping is a highly variable trait7, hence both many cells (200–300) per colony and many colonies ( > 10) per population ideally need to be studied to help reduce the variablity, also in temperate countries measuring recapping when mite-infestation rates peak in autumn maximises detecting infested cells since the recapping of cells is spatially associated with infested cells11.Despite the current focus on what is happening in worker cells, studies focusing on the role of recapping in drone brood are still in their infancy with. Currently, data is only available from South Africa9 (Fig. 1) and now Cuba (this study). Interestingly, both studies indicate no significant difference in recapping rates between infested and non-infested brood. This is caused by some colonies performing no recapping of drone brood, while some colonies do recap cells but in a non-targeted manner. Whereas there is a significant increase in the size of the recapped area between infested (3.1 mm) and non-infested (2.3 mm) worker cells (Fig. 3), this does not occur in drone brood, as it appears that the holes are entirely exploratory. However, the lack of removal of infested drone brood may be playing an important role in mite-resistance (see below).The mite infestation of worker cells currently varies between 23 and 13% in Cuba (this study), roughly 25 years after it was first detected (1996). Whereas, in Mexico and Brazil, infestation rates of worker brood have fallen from around 20% in 1996/1999 down to 4% in 2018/197. Although, Varroa was first detected in Brazil much earlier, in 197225 and the Africanised honeybees adapted to the mite and spread northward replacing the susceptible European colonies. Therefore, we predict that the worker infestation rate in Cuba will continue to fall over the next 20 years, especially if high mite-removal rates persist. Correspondingly, we would expect to see the infestation rates of the drone brood (currently at 40%) to remain high as mites potentially avoid reproduction in worker cells. This potentially is a key, but currently overlooked part, of the resistance mechanism. Since an empirical model26 indicated that negative mite population growth occurs in (resistant) Africanised honeybee colonies only when the initial drone cells are present. This is thought to arise because mites also show a tenfold preference to reproduce in drone cells (which comprises only 1–5% of all the honeybee brood) and they soon become overcrowded as the mite population increases. This leads to inter-mite competition for the limited food and space, causing an increase in mite mortality27, resulting in negative reproductive success for mites entering these overcrowded drone cells. Thus, mite population growth in drone brood cells is limited by a density-dependent mechanism. In Cuba it has been observed that strong colonies typically with drone brood do not weaken during the drought season, whereas colonies without drone brood are weak and often die during the drought (APP personal comm).Although Cuban beekeepers have been aware of their mite-resistant honeybees for 15 to 20 years’, Cuba’s situation has only recently come to light16,18. The main reason for Varroa-resistance in Cuba is due to the centralised decision to allow natural resistance to evolve, as also was done successfully in South Africa3, rather than becoming locked into using miticides, as has happened throughout the Northern hemisphere. The CIAPI and Veterinarian Services central decision to ‘not treat’ was greatly assisted by all Cuban beekeepers being professional, registered and embedded within a strong locally based beekeeping community where colony movement and exchange of queens is within each province.There is also a large feral population and due to Cuba’s sub-tropical climate, queens are replaced annually in managed colonies because of almost continuous egg-laying, similar to honeybees in Hawaii. This rapid queen turnover speeds up natural selection relative to honeybee populations in more temperate climates. Finally, Cuba’s 60-year ban on honeybee importation has helped isolate the country from been invaded by Africanised bees which has occurred in many nearby regions (eg. Mexico, Southern USA, Puerto Rico, neighbouring Dominican Republic13 and Haiti (D. Macdonald, Apiary Inspector, Min. of Agi BC, Canada, pers. Comm.). Cuba has many managed European colonies coupled with many queen rearing stations. These colonies are productive and mild mannered. Thus, Cuba is an excellent example of the power of natural selection in honeybees when they are allowed to adapt naturally to Varroa with minimal human interference. More

  • in

    Role of saltmarsh systems in estuarine trapping of microplastics

    Coffaro, G. & Bocci, M. Resources competition between Ulva rigida and Zostera marina: A quantitative approach applied to the Lagoon of Venice. Ecol. Model. 102(1), 81–95 (1997).CAS 
    Article 

    Google Scholar 
    Araújo, C. V. et al. Feeding niche preference of the mudsnail Peringia ulvae. Mar. Freshw. Res. 66(7), 573–581 (2015).Article 

    Google Scholar 
    Whitfield, A. K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27(1), 75–110 (2017).Article 

    Google Scholar 
    Su, L. et al. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J. Hazard. Mater. 365, 716–724 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benassai, G. Introduction to Coastal Dynamics and Shoreline Protection (Wit Press, 2006).
    Google Scholar 
    Decho, A. W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 20(10–11), 1257–1273 (2000).ADS 
    Article 

    Google Scholar 
    Thompson, C. E., Amos, C. L. & Umgiesser, G. A comparison between fluid shear stress reduction by halophytic plants in Venice Lagoon, Italy and Rustico Bay, Canada—Analyses of in situ measurements. J. Mar. Syst. 51(1–4), 293–308 (2004).Article 

    Google Scholar 
    Neumeier, U. & Amos, C. L. Turbulence reduction by the canopy of coastal Spartina salt-marshes. J. Coast. Res. 53, 433–439 (2006).
    Google Scholar 
    Black, K. S., Tolhurst, T. J., Paterson, D. M. & Hagerthey, S. E. Working with natural cohesive sediments. J. Hydraul. Eng. 128(1), 2–8 (2002).Article 

    Google Scholar 
    Paterson, D. M. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 34(1), 223–234 (1989).ADS 
    Article 

    Google Scholar 
    Tolhurst, T.J., Jesus, B., Brotas, V. & Paterson, D.M. Diatom migration and sediment armouring—An example from the Tagus Estuary, Portugal. in Migrations and Dispersal of Marine Organisms. 183–193. (Springer, 2003).Tinoco, R. O. & Coco, G. Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves. Earth Surf. Dyn. 2(1), 83 (2014).ADS 
    Article 

    Google Scholar 
    Chen, Y. et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 318, 270–282 (2018).ADS 
    Article 

    Google Scholar 
    Cozzolino, L., Nicastro, K. R., Zardi, G. I. & Carmen, B. Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Sci. Total Environ. 723, 138018 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Widdows, J., Pope, N. D. & Brinsley, M. D. Effect of Spartina anglica stems on near-bed hydrodynamics, sediment erodability and morphological changes on an intertidal mudflat. Mar. Ecol. Prog. Ser. 362, 45–57 (2008).ADS 
    Article 

    Google Scholar 
    Marion, C., Anthony, E. J. & Trentesaux, A. Short-term (≤ 2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps. Estuar. Coast. Shelf Sci. 83(4), 475–484 (2009).ADS 
    Article 

    Google Scholar 
    Coulombier, T., Neumeier, U. & Bernatchez, P. Sediment transport in a cold climate salt marsh (St. Lawrence Estuary, Canada), the importance of vegetation and waves. Estuar. Coast. Shelf Sci. 101, 64–75 (2012).ADS 
    Article 

    Google Scholar 
    Neumeier, U. & Ciavola, P. Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J. Coast. Res. 20(2), 435–447 (2002).
    Google Scholar 
    Yao, W. et al. Micro-and macroplastic accumulation in a newly formed Spartina alterniflora colonized estuarine saltmarsh in southeast China. Mar. Pollut. Bull. 149, 110636 (2019).CAS 
    Article 

    Google Scholar 
    Fok, L. & Cheung, P. K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution. Mar. Pollut. Bull. 99(1–2), 112–118 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35(7), 1632–1640 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willis, K. A., Eriksen, R., Wilcox, C. & Hardesty, B. D. Microplastic distribution at different sediment depths in an urban estuary. Front. Mar. Sci. 4, 419 (2017).Article 

    Google Scholar 
    Stead, J. L. et al. Identification of tidal trapping of microplastics in a temperate salt marsh system using sea surface microlayer sampling. Sci. Rep. 10(1), 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Friend, P. L., Ciavola, P., Cappucci, S. & Santos, R. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Cont. Shelf Res. 23(17–19), 1899–1917 (2003).ADS 
    Article 

    Google Scholar 
    Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11(4), 251–257 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ockelford, A., Cundy, A. & Ebdon, J. E. Storm response of fluvial sedimentary microplastics. Sci. Rep. 10(1), 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Wang, J. Q. et al. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13(4), 586–599 (2010).CAS 
    Article 

    Google Scholar 
    Soulsby, R.L.. The bottom boundary layer of shelf seas. in Elsevier Oceanography Series. Vol. 35. 189–266. (Elsevier, 1983).Thompson, C. E., Amos, C. L., Lecouturier, M. & Jones, T. E. R. Flow deceleration as a method of determining drag coefficient over roughened flat beds. J. Geophys. Res. Oceans 109, C3 (2004).
    Google Scholar 
    Chirol, C. et al. The influence of bed roughness on turbulence: Cabras Lagoon, Sardinia, Italy. J. Mar. Sci. Eng. 3(3), 935–956 (2015).Article 

    Google Scholar 
    Kassem, H., Sutherland, T. F. & Amos, C. L. Hydrodynamic controls on the particle size of resuspended sediment from sandy and muddy substrates in British Columbia, Canada. J. Coast. Res. 37, 691 (2021).CAS 
    Article 

    Google Scholar 
    Nepf, H. M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123–142 (2012).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: A flume study on the intertidal macrophyte Spartina anglica. Oikos 118(2), 260–268 (2009).Article 

    Google Scholar 
    Amos, C. L. et al. The stability of tidal flats in Venice Lagoon—The results of in-situ measurements using two benthic, annular flumes. J. Mar. Syst. 51(1–4), 211–241 (2004).Article 

    Google Scholar 
    Amos, C. L., Feeney, T., Sutherland, T. F. & Luternauer, J. L. The stability of fine-grained sediments from the Fraser River Delta. Estuar. Coast. Shelf Sci. 45(4), 507–524 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Tolhurst, T.J., Gust, G., & Paterson, D.M. The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability. in Proceedings in Marine Science. Vol. 5. 409–425. (Elsevier, 2002).Brückner, M. Z. et al. Benthic species as mud patrol-modelled effects of bioturbators and biofilms on large-scale estuarine mud and morphology. Earth Surf. Proc. Land. 46(6), 1128–1144 (2021).ADS 
    Article 

    Google Scholar 
    Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8(1), 1–10 (2017).CAS 
    Article 

    Google Scholar 
    Andersen, T. J., Jensen, K. T., Lund-Hansen, L., Mouritsen, K. N. & Pejrup, M. Enhanced erodibility of fine-grained marine sediments by Hydrobia ulvae. J. Sea Res. 48(1), 51–58 (2002).ADS 
    Article 

    Google Scholar 
    Orvain, F., Sauriau, P. G., Sygut, A., Joassard, L. & Le Hir, P. Interacting effects of Hydrobia ulvae bioturbation and microphytobenthos on the erodibility of mudflat sediments. Mar. Ecol. Prog. Ser. 278, 205–223 (2004).ADS 
    Article 

    Google Scholar 
    Orvain, F., Sauriau, P. G., Bacher, C. & Prineau, M. The influence of sediment cohesiveness on bioturbation effects due to Hydrobia ulvae on the initial erosion of intertidal sediments: A study combining flume and model approaches. J. Sea Res. 55(1), 54–73 (2006).ADS 
    Article 

    Google Scholar 
    Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27(8), 1174–1189 (2007).ADS 
    Article 

    Google Scholar 
    Amos, C. L. et al. The stability of a mudflat in the Humber estuary, South Yorkshire, UK. Geol. Soc. Lond. Spec. Publ. 139(1), 25–43 (1998).ADS 
    Article 

    Google Scholar 
    Tolhurst, T. J., Black, K. S. & Paterson, D. M. Muddy sediment erosion: Insights from field studies. J. Hydraul. Eng. 135(2), 73–87 (2009).Article 

    Google Scholar 
    Quaresma, V. D. S., Bastos, A. C. & Amos, C. L. Sedimentary processes over an intertidal flat: A field investigation at Hythe flats, Southampton Water (UK). Mar. Geol. 241(1–4), 117–136 (2007).ADS 
    Article 

    Google Scholar 
    Helcoski, R., Yonkos, L. T., Sanchez, A. & Baldwin, A. H. Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ. Pollut. 256, 113391 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rochman, C. M. et al. Classify plastic waste as hazardous. Nature 494(7436), 169–171 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R., Lundebye, A. K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Barros, M. S. F., dos Santos Calado, T. C., Silva, A. S. & dos Santos, E. V. Ingestion of plastic debris affects feeding intensity in the rocky shore crab Pachygrapsus transversus Gibbes 1850 (Brachyura: Grapsidae). Int. J. Biodivers. Conserv. 12(1), 113–117 (2020).
    Google Scholar 
    Villagran, D. M., Truchet, D. M., Buzzi, N. S., Lopez, A. D. F. & Severini, M. D. F. A baseline study of microplastics in the burrowing crab (Neohelice granulata) from a temperate southwestern Atlantic estuary. Mar. Pollut. Bull. 150, 110686 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Townend, I. A Conceptual Model of Southampton Water. Vol 1. (Tech. Rep.). ABPmer report.. http://www.estuary-guide.net/pdfs/southampton_water_case_study.pdf. Accessed 21 May 2008 (ABP Marine Environmental Research Ltd., 2008).Amos, C. L., Grant, J., Daborn, G. R. & Black, K. Sea carousel—A benthic, annular flume. Estuar. Coast. Shelf Sci. 34(6), 557–577 (1992).ADS 
    Article 

    Google Scholar 
    Thompson, C. E., Amos, C. L., Jones, T. E. R. & Chaplin, J. The manifestation of fluid-transmitted bed shear stress in a smooth annular flume-a comparison of methods. J. Coast. Res. 1, 1094–1103 (2003).
    Google Scholar 
    Buls, T., Anderskouv, K., Friend, P. L., Thompson, C. E. & Stemmerik, L. Physical behaviour of Cretaceous calcareous nannofossil ooze: Insight from flume studies of disaggregated chalk. Sedimentology 64(2), 478–507 (2017).Article 

    Google Scholar 
    Tuprakay, S., Usahanunth, N. & Tuprakay, S. R. A study bakelite plastics waste from industrial process in concrete products as aggregate. Int. J. Struct. Civ. Eng. Res. 6(4), 7 (2017).
    Google Scholar 
    Thompson, C. E. L., Couceiro, F., Fones, G. R. & Amos, C. L. Shipboard measurements of sediment stability using a small annular flume—Core mini flume (CMF). Limnol. Oceanogr. Methods 11(11), 604–615 (2013).Article 

    Google Scholar 
    Kassem, H., Thompson, C. E., Amos, C. L. & Townend, I. H. Wave-induced coherent turbulence structures and sediment resuspension in the nearshore of a prototype-scale sandy barrier beach. Cont. Shelf Res. 109, 78–94 (2015).ADS 
    Article 

    Google Scholar 
    Kassem, H. et al. Observations of nearbed turbulence over mobile bedforms in combined, collinear wave-current flows. Water 12(12), 3515 (2020).CAS 
    Article 

    Google Scholar 
    Elgar, S., Raubenheimer, B. & Guza, R. T. Quality control of acoustic Doppler velocimeter data in the surfzone. Meas. Sci. Technol. 16(10), 1889 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Goring, D. G. & Nikora, V. I. Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng. 128(1), 117–126 (2002).Article 

    Google Scholar 
    Mori, N., Suzuki, T. & Kakuno, S. Noise of acoustic Doppler velocimeter data in bubbly flows. J. Eng. Mech. 133(1), 122–125 (2007).
    Google Scholar 
    Stapleton, K. R. & Huntley, D. A. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method. Earth Surf. Proc. Land. 20(9), 807–815 (1995).ADS 
    Article 

    Google Scholar 
    Dyer, K. Estuaries, A Physical Introduction. 2nd edn. https://doi.org/10.2307/1797104 (Wiley, 1997). More

  • in

    Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system

    Iron and carbon dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms a synthetic phototrophic communityThe synthetic microalgal-bacterial community based on the active exchange of iron and carbon was developed by screening multiple siderophore producer bacteria and dye decolorizer algae (Fig. 1; refer to Supplementary Data S1 for detailed results). Out of seven bacterial isolates obtained from untreated textile wastewater, five showed relatively high siderophore production in CAS agar plates and broth (Fig. S1). In broth, Serratia plymuthica PW1, Serratia liquefaciens PW71, and Ralstonia pickettii PW2 produced siderophores in decreasing order of concentration, i.e., 15.26 ± 1.3  > 13.28 ± 0.9  > 10.85 ± 0.7 µMmL−1 (Table 1). Arnow’s assay confirmed that S. plymuthica PW1 (81.10 ± 9.8 µMmL−1), R. pickettii PW2 (97.43 ± 16.8 µMmL−1), and S. liquefaciens PW71 (103.1 ± 8.3 µMmL−1) produced catecholate-type siderophores. On the other hand, Csaky’s assay confirmed that Stenotrophomonas maltophilia PW5 (37.86 ± 0.4 µMmL−1) and Stenotrophomonas maltophilia PW6 (17.73 ± 0.2 µMmL−1) produced hydroxamate-type of siderophores. Out of the five algal species, only freshwater microalgae Chlorella sorokiniana and Scenedesmus sp. showed the highest dye degradation potential; therefore, they were selected for further experiments (Data S1).Fig. 1: The study design explains different stages of experiments to develop a phototrophic community of previously non-associated algae and bacteria.The stages include (A) isolation of bacterial strains from textile wastewater collected from Panipat Industrial area, Haryana (India); B cultivation of freshwater and marine algal strains; C assessment of siderophore production in bacterial strains using Schwyn and Neilands’s universal Chrome Azurol S (CAS) assay; D assessment of dye degradation potential of algae strains using Acid Black 1 (AB1) dye; E interaction study between siderophore producing bacteria and dye degrader microalgae to identify bacterial strains that could sustain on algae-derived DOM secreted in algal exudates; F algal-bacterial co-culturability assessment to study different types of microbial interactions viz. antagonism, mutualism, or no interaction between the two organisms, and G identification of algal-bacterial model phototrophic community based on the active exchange of iron and DOM (refer to Data S1 for detailed results).Full size imageTable 1 Characterization of siderophore production in bacterial strains isolated from textile wastewater.Full size tableAfter that, the sterile exudates from C. sorokiniana and Scenedesmus sp. were used as the sole source of dissolved organic matter for bacterial growth and selection of appropriate microalgal-bacterial partners comprising the phototrophic community (Fig. 1E; Data S2). All five bacterial isolates grew well on the exudate of C. sorokiniana as a sole source of carbon. On the contrary, on exudates of Scenedesmus sp., S. plymuthica PW1 showed moderate growth in 20 h, while the growth of R. pickettii PW2 and S. liquefaciens PW71 remained insignificant. S. maltophilia PW5 and PW6 failed to grow in the exudate of Scenedesmus sp. (Fig. S2B).Finally, the compatibility between the phototrophic community of selected microalgae (C. sorokiniana/ Scenedesmus sp.) and siderophore-producer bacteria (S. plymuthica PW1/ R. pickettii PW2/ S. liquefaciens PW71) was tested by co-culturing them in iron limiting BBM media (BBM-Fe; without EDTA) (Fig. 1F). In the absence of EDTA, Fe precipitates rapidly as iron oxyhydroxides and becomes unavailable to microbes. Microalgal growth curves in co-culture assays were used to measure and compare population characteristics such as carrying capacity ‘k’, growth rate ‘r’, etc., in axenic and consortium setups. Algal growth parameters in co-culture with a bacterial partner were used to categorize their interaction as putative mutualistic, antagonistic, and neutral (Data S1, Tables S1 and S2) [42]. Under iron-limiting conditions, axenic C. sorokiniana experienced iron stress as the cell growth was 4.2 ± 0.4 × 106 cells mL−1 after 200 h incubation. On the other hand, axenic Scenedesmus sp. showed a significantly higher growth (11.3 ± 1.2 × 106 cells mL−1) than C. sorokiniana suggesting an effective iron uptake mechanism under iron-limiting conditions (k; t-test, p = 0.001) (Table S1). In contrast to the axenic microalgal culture, C. sorokiniana in co-culture with R. pickettii PW2 showed a significant increase in cell count at 200 h (6.2 ± 0.85 × 106 cells mL−1) (auc; p = 0.000). However, S. plymuthica PW1 exerted a negative effect on C. sorokiniana (Fig. 2A), as indicated by its significant increase in doubling time (p = 0.009) and reduction in auc (p = 0.001) (Fig. 3A). While S. liquefaciens PW71 remained neutral to C. sorokiniana (auc; p = 0.430) (Fig. 2A, Table 2). On the other hand, the interaction of Scenedesmus sp. with both R. pickettii PW2 and S. liquefaciens PW71 was neutral, while S. plymuthica PW1 showed a negative effect (Figs. 2A and 3A).Fig. 2: Assessment of algal and bacterial growth in co-culture experiments.A The growth curves represent the difference in the growth of C. sorokiniana when grown axenically or in co-culture with S. plymuthica PW1, R. pickettii PW2, and S. liquefaciens PW71 under iron limiting conditions. Whereas, the effect of bacteria on the growth of Scenedesmus sp. was less prominent. The difference in the CFUs of bacterial strains in axenic culture and co-culture suggests the growth-promoting effect of C. sorokiniana on S. plymuthica PW1 and R. pickettii PW2. B Anion-exchange chromatography suggests a difference in the glycosyl composition in the EPS of C. sorokiniana and Scenedesmus sp. C The area under curve (auc) of S. plymuthica PW1 and R. pickettii PW2 obtained after growth curves in different sugars. Here, ‘a’, ‘b’, etc., represent grouping after Tukey’s post hoc test.Full size imageFig. 3: Assessment of algal growth parameters in the algal-bacterial phototrophic community under iron-limiting conditions.A The confidence interval plots represent the significant difference in the growth parameters i.e., growth rate ‘r’, carrying capacity ‘k’, doubling time ‘Dt’, and area under curve ‘auc’, of C. sorokiniana (left panel) and Scenedesmus sp. (right panel) in algal-bacterial co-cultures w.r.t. to axenic culture (horizontal blue dashed line). The symbols ‘*’ and ‘**’ represent p values with statistical significance of ‘p  More

  • in

    Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly

    Insect rearingThe B. dorsalis strain collected from a carambola (Averrhoa carambola) orchard in Guangzhou, Guangdong Province, was reared under laboratory conditions (27 ± 1 °C, 12:12 h light:dark cycle, 70–80% RH). A maize-based artificial diet containing 150 g of corn flour, 150 g of banana, 0.6 g of sodium benzoate, 30 g of yeast, 30 g of sucrose, 30 g of paper towel, 1.2 mL of hydrochloric acid and 300 mL of water was used to feed the larvae. Adults were fed a solid diet (consisting of 50 g yeast and 50 g sugar) and 50 mL sterile water in a 35 cm × 35 cm × 35 cm wooden cage. For B. dorsalis, the female will start laying eggs once mated and the female will start mating 7 days after emergence. To make sure all females used in our study were gravid females, females were selected 10 day after emergence.Visualization of CF-BD with FISH and PCRFISH was carried out on dissected gut and ovary samples from B. dorsalis. The hybridization protocol for the gut and ovary was performed according to a previously described method32. Briefly, the gut and ovary were collected and immediately soaked in Carnoy’s fixative for 12 h. After sample fixation, proteinase K (2 mg/mL) treatment for 20 min at 37 °C and HCl (0.2 mol/L) treatment for 15 min at room temperature were performed successively. Then, followed by dehydration in ethanol, the samples were incubated in buffer (20 mM Tris-HCl (pH 8.0), 0.9 M NaCl, 0.01% sodium dodecyl sulfate, 30% formamide) containing 50 nM CF-BD specific probe (5′-AATGGCGTACACAAAGAG-3′) labeled with cy3 at the 5′ end for 90 min. After incubation, the samples were washed with buffer (0.1 M NaCl, 20 mM Tris/HCl (pH 8.0), 5 mM ethylenediaminetetraacetic acid (pH 8.0), 0.01% SDS) and observed under an epifluorescence microscope (Axiophot, Carl Zeiss, Shinjuku-ku, Japan).To further confirm CF-BD in rectum and ovary of mature females, rectums and ovaries of mature females were dissected and fixed in formalin fixation for 24 h. After soaking in graded alcohols and xylene, all samples were embedded in paraffin for section preparation. Samples were sliced into 4 µm each before pasting on the glass slide and then sent for FISH with the same probe (labeled with cy3 at the 5′ end) used above. Moreover, nested PCR was applied to detect CF-BD in 19 ovaries of mature females according to the method of Guo et al., 201733. Briefly, a 1149 bp region of gyrB gene of CF-BD was amplified by the specific outer primer gyrBP1-F (5′-CAGCCCACTCTGAACTGTAT-3′) and gyrBP1-R (5′-TCAGGGCGTTTTCTTCGATA-3′) under a temperature profile of 95 °C for 1 min, which was followed by 25 cycles of 95 °C for 30 s, 52 °C for 30 s, 72 °C for 90 s, and 72 °C for 5 min. Then, a 371 bp region of the gyrB gene of CF-BD was amplified by the specific inner primer gyrBP4-F (5′-ACGCTGGCTGAAGACTGCC-3′) and gyrBP4-R (5′-TGGATAGCGAGACCACGACG-3′) under a temperature profile of 95 °C for 2 min, which was followed by 35 cycles of 95 °C for 30 s, 57 °C for 30 s, 72 °C for 30 s, and 72 °C for 5 min.Influence of CF-BD on B. dorsalis ovary developmentTo evaluate the effect of CF-BD on ovary development, newly emerged B. dorsalis females were injected with streptomycin and CF-BD suspension (both dilute in sterile water). Specifically, 10 µL 25% glycerol solution containing CF-BD was added into 100 mL Luria-Bertani (LB) liquid medium and culturing for 1 day by shaking (180 rpm) in 30 °C incubator. After culturing, CF-BD was collected by centrifuging (3000 rpm, 15 min) the medium in a 50 mL centrifuge tube. Then collected CF-BD was re-suspended with 5 mL sterile water. CF-BD concentration was measured on a hemocytometer and CF-BD concentrations used in the following assays were prepared by diluting the original concentration with sterile water. A 0.5 mm inside diameter capillary needle with 1 μL streptomycin or CF-BD suspension was used for injection. The injection operation was carried out on a microinjector (Eppendorf FemtoJet), and every female was injected in the abdomen near the ovipositor. The concentrations of streptomycin used were 20 mg/mL, 10 mg/mL and 5 mg/mL, respectively. And CF-BD suspension concentrations were 3 × 107 cfu/mL, 1.5 × 107 cfu/mL and 7.5 × 106 cfu/mL, respectively. For control, the female fly was injected with 1 μL sterile water in the abdomen near the ovipositor. Then the development level of the ovary was assessed by comparing the width and length of ovary between streptomycin (or CF-BD suspension) injection flies and control. For CF-BD injected flies, developmental facilitation was observed for ovaries 2 days before the flies reached sexual maturity (flies will reach sexual maturity after 7 days). For antibiotic injected flies, ovaries were dissected after 7 days.Oviposition assaysThe method reported in previous studies was followed for the oviposition experiments17. Briefly, a 2-choice apparatus was assembled in a cage made up of wood and wire gauze (length: width: height = 60 cm: 60 cm: 60 cm) with two petri dishes (diameter: 3 cm) at the bottom of the cage (Fig. 2a). All devices were sterilized before each experiment. Fresh fruits of guava (Psidium guajava Linn.) and mango (Mangifera indica L.) were sourced from the local market in Guangzhou, China. These fruits were sterilized on the surface with ethanol and ground into puree with a sterilized grinder, and puree (2 g) was added to the sterilized Petri dishes of the cages (one dish with puree containing 100 μL CF-BD (0.8*108 cfu/mL) in sterile water, and one dish with puree containing 100 μL sterile water). Then the prepared cages were divided into two groups for different assays. Group 1: At 0 h, 50 gravid females of B. dorsalis were placed in the cages and egg numbers in the petri dishes were recorded after 2 h. Group 2: At 4 h, 50 gravid females of B. dorsalis were placed in the cages and egg numbers in the petri dishes were recorded after 2 h.To test the oviposition attraction of 3-HA, a 4-choice apparatus was assembled in a cage made up of wood and wire gauze (length: width: height = 60 cm: 60 cm: 60 cm) with four petri dishes (diameter: 3 cm) at the bottom of the cage. In the Petri dishes, 2 g puree, 2 g puree + 0.2 mg 3-HA, 2 g puree + 2 mg 3-HA and 2 g puree + 20 mg 3-HA were added. Then, the egg-laying behavior was observed31.To test the oviposition attraction of 3-HA to flies with genes knocked down, 20 females injected with dsRNA were placed into the above cage with two Petri dishes. In the Petri dishes, 2 g guava puree and 2 g guava puree + 20 mg 3-HA were added. Then, the egg-laying behavior was observed using the above method. Oviposition of normally reared females was performed as a control. The oviposition index was calculated using the following formula:Oviposition index = (O − C)/(O + C), where O is the number of eggs in the treatment and C is the number of eggs in the control.Volatile analysisThe volatile compounds in guava and mango purees were analyzed by GC–MS according to the method described in a previous study17. Briefly, 2 g puree mixed with sterile water or CF-BD was added into a 20 ml bottle, and then a 100-μm polydimethylsiloxane (PDMS) SPME fiber (Supelco) was used to extract the headspace volatiles for 30 min. GC–MS was performed with an Agilent 7890B Series GC system coupled to a quadruple-type-mass-selective detector (Agilent 5977B; transfer line 250 °C, source 230 °C, ionization potential 70 eV). The 3-HA concentrations in puree mixed with sterile water and CF-BD were measured with the standard curve drawn by the authentic standards of 3-HA. And 3-HA concentration in puree mixed with sterile water and CF-BD was compared with a paired sample Student’s t-test.Olfactometer bioassaysAn olfactometer consisting of a Y-shaped glass tube with a main arm (20 cm length*5 cm diameter) and two lateral arms (20 cm length, 5 cm diameter) was used. The lateral arms were connected to glass chambers (20 cm diameter, 45 cm height) in which the odor sources were placed. To ensure a supply of odor-free air, both arms of the olfactometer received charcoal-purified and humidified air at a rate of 1.3 L/min.To test the attraction effect of puree supplemented with CF-BD or 3-HA for females, puree mixed with CF-BD was prepared and placed in one odor glass chamber. In the control odor glass chamber, puree mixed with sterile water was placed. After 4 h, gravid females were individually released at the base of the olfactometer and allowed 5 min to show a selective response. The response was recorded when a female moved >3 cm into one arm and stayed for >1 min. Females that did not leave the base of the olfactometer were recorded as nonresponders. Only females that responded were included in the data analysis. Odor sources were randomly placed in one arm or the other at the beginning of the bioassay, and the experiment was repeated ten times. The system was washed with ethanol after every experiment. More than 100 females were selected for testing, and each female was used only once for each odor. A chi-square test was performed to compare the attraction difference between puree mixed with sterile water and CF-BD.Olfactory trap assaysThe attraction of purees supplemented with CF-BD to mature females was also tested. The test chamber was assembled with a plastic cylinder (120 × 30 cm) covered by a ventilated lid. The test chamber contained an odor-baited trap (2 g puree + 100 μL CF-BD (0.8*108 cfu/mL)) and a control trap (2 g puree + 100 μL sterile water). The traps were made of transparent plastic vials (20 × 6 cm) and were sealed with a yellow lid on which small entrances were present to let the flies in (Fig. 3a). After 0 h or 4 h of fermentation, 100 gravid females were released in the cage. The fly number in each trap bottle was recorded after 2 h. The number of flies was compared with a paired sample Student’s t-test.The attraction effect of puree supplemented with 3-HA on mature females was tested by placing four traps (2 g puree, 2 g puree + 0.2 mg 3-HA, 2 g puree + 2 mg 3-HA and 2 g puree + 20 mg 3-HA) in the test chamber. Then, the attraction effect was observed31.Video observation of egg-laying behaviorEgg-laying behavior was observed in a Petri dish. Briefly, guava puree was added to a centrifuge tube on which a hole was made. Then, one gravid female was placed into the petri dish, and the lid was closed. Above the petri dish, a camera was placed to record the behavior of the female before laying eggs.EAG analysisEAG analysis was performed to determine whether 3-HA could elicit electrogram responses in the ovipositors of gravid females and Obps knocked down gravid females. For EAG preparations, the ovipositor of a gravid female was cut off and mounted between two glass electrodes (one electrode connected with the ovipositor tip). The ovipositor tip was cut slightly to facilitate electrical contact. Dilution of 3-HA in ethanol (0.1, 1 and 10 mg/mL) was used as a stimulant. Ethanol was used as control. For each ovipositor, ethanol and 3-HA diluted in ethanol were used as stimulants. The signals from the ovipositors were analyzed with GC-EAD 2014 software (version 4.6, Syntech).Transcriptome sequencing and gene identificationTo identify the olfactory genes that contribute to B. dorsalis oviposition preference, the transcriptome sequencing results of the female ovipositors at different developmental times (0 day, 3 days, 6 days, 9 days and 12 days) were compared. For each time, 5 ovipositors were dissected for RNA extraction. In addition, five replicates were included for each time. In the next step, paired-end RNA-seq libraries were prepared by following Illumina’s library construction protocol. The libraries were sequenced on an Illumina HiSeq2000 platform (Illumina, USA). FASTQ files of raw reads were produced and sorted by barcodes for further analysis. Prior to assembly, paired-end raw reads (uploaded to National Genomics Data Center, Accession number: PRJCA004790) from each cDNA library were processed to remove adapters, low-quality sequences (Q  More

  • in

    No evidence that mandatory open data policies increase error correction

    Hardwicke, T. E. et al. Analytic reproducibility in articles receiving open data badges at the journal Psychological Science: an observational study. R. Soc. Open Sci. 8, 201494 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enserink, M. Sea of doubts. Science 372, 560–565 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buxton, R. T. et al. Avoiding wasted research resources in conservation science. Conserv. Sci. Pract. 3, 1–11 (2021).
    Google Scholar 
    Tai, T. C. & Robinson, J. P. W. Enhancing climate change research with open science. Front. Environ. Sci. 6, 1–5 (2018).Article 

    Google Scholar 
    Popkin, G. Data sharing and how it can benefit your scientific career. Nature 569, 445–447 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roche, D. G. et al. Slow improvement to the archiving quality of open datasets shared by researchers in ecology and evolution. Proc. R. Soc. B Biol. Sci. 289, 20212780 (2022).Article 

    Google Scholar 
    Tedersoo, L., Küngas, R., Oras, E., Köster, K. & Helen, E. Data sharing practices and data availability upon request differ across scientific disciplines. Sci. Data 8, 1–11 (2021).Article 

    Google Scholar 
    Christian, T. M., Gooch, A., Vision, T. & Hull, E. Journal data policies: exploring how the understanding of editors and authors corresponds to the policies themselves. PLoS ONE 15, 1–15 (2020).
    Google Scholar 
    Sholler, D., Ram, K., Boettiger, C. & Katz, D. S. Enforcing public data archiving policies in academic publishing: a study of ecology journals. Big Data Soc. 6, 1–18 (2019).Article 

    Google Scholar 
    Postma, E., Gonzalez‐Voyer, A. & Holman, L. A comment on The adaptive value of gluttony: predators mediate the life history trade‐offs of satiation threshold by Pruitt & Krauel (2010). J. Evol. Biol. 34, 1989–1993 (2021).PubMed 
    Article 

    Google Scholar 
    Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc. Natl Acad. Sci. USA 115, 2584–2589 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohrer, J. M. et al. Putting the self in self-correction: findings from the Loss-of-Confidence Project. Perspect. Psychol. Sci. 16, 1255–1269 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vazire, S. A toast to the error detectors. Nature 577, 9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roche, D. G. et al. Paths towards greater consensus building in experimental biology. J. Exp. Biol. 225, jeb243559 (2022).PubMed 
    Article 

    Google Scholar 
    Laurinavichyute, A., Yadav, H. & Vasishth, S. Share the code, not just the data: a case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. J. Mem. Lang. 125, 104332 (2022).Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Besançon, L., Bik, E., Heathers, J. & Meyerowitz-Katz, G. Correction of scientific literature: too little, too late! PLoS Biol. 20, e3001572 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holmes, N. P. I critiqued my past papers on social media—here’s what I learnt. Nature 595, 333 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teixeira da Silva, J. A. & Al-Khatib, A. Ending the retraction stigma: encouraging the reporting of errors in the biomedical record. Res. Ethics 17, 251–259 (2021).Article 

    Google Scholar 
    Minocher, R., Atmaca, S., Bavero, C., McElreath, R. & Beheim, B. Estimating the reproducibility of social learning research published between 1955 and 2018. R. Soc. Open Sci. 8, 210450 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montgomerie, R. From the Editor’s desk of The American Naturalist: data transparency 2020. The American Naturalist http://comments.amnat.org/2021/01/note-since-fall-2020-robert-montgomerie.html (2021).R Project. R version 4.0.3 https://cran.r-project.org/bin/windows/base/old/4.0.3/ (2020). More

  • in

    No evidence for long-range male sex pheromones in two malaria mosquitoes

    Alexander, R. D., Marshall, D. C. & Cooley, J. R. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. C. & Crespi, B. J.) 4–31 (Cambridge Univ. Press, 1997).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour (CABI Publishing, 1999).Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–298 (1969).Article 

    Google Scholar 
    Gibson, N. H. E. On the mating swarms of certain Chironomidae (Diptera). Trans. R. Entomol. Soc. Lond. 95, 263–294 (1945).Article 

    Google Scholar 
    Sivinski, J. M. & Petersson, E. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 294–309 (Cambridge Univ. Press, 1997).Shelly, T. E. & Whittier, T. S. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 273–293 (Cambridge Univ. Press, 1997).Savolainen, E. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Ann. Zool. Fennici 15, 17–52 (1978).
    Google Scholar 
    Howell, P. I. & Knols, B. G. J. J. Male mating biology. Malar. J. 8, S8 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol. Entomol. 5, 315–320 (1980).Article 

    Google Scholar 
    Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth. J. Zool. 34, 367–387 (1984).Article 

    Google Scholar 
    Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 276, 4215–4222 (2009).Article 

    Google Scholar 
    Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).Article 

    Google Scholar 
    della Torre, A. et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol. Biol. 10, 9–18 (2001).Article 
    PubMed 

    Google Scholar 
    della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tripet, F. et al. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10, 1725–1732 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).Article 
    PubMed 

    Google Scholar 
    Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sawadogo, P. S. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Persiani, A., Dideco, M. A. & Petrangeli, G. Osservzioni di laboratorio su polimorfismi da inversione originati da incroci tra popolazioni diverse di Anopheles gambiae s.s. Ann. Dell’Istituto Super. Di Sanita 22, 221–224 (1986).CAS 

    Google Scholar 
    Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).Article 
    PubMed 

    Google Scholar 
    Diabaté, A., Dabiré, K. R., Millogo, N. & Lehmann, T. Evaluating the effect of postmating isolation between molecular forms of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 44, 60–64 (2007).Article 
    PubMed 

    Google Scholar 
    Hahn, M. W., White, B. J., Muir, C. D. & Besansky, N. J. No evidence for biased co-transmission of speciation Islands in Anopheles gambiae. Philos. Trans. R. Soc. B Biol. Sci. 367, 374–384 (2012).Article 

    Google Scholar 
    Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 00, 1–19 (2017).
    Google Scholar 
    Lehmann, T. & Diabaté, A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect. Genet. Evol. 8, 737–746 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clements, A. N. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Feugère, L., Gibson, G., Manoukis, N. C. & Roux, O. Mosquito sound communication: are male swarms loud enough to attract females? J. R. Soc. Interface 18, 20210121 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit. Vectors 12, 589 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dao, A. et al. Assessment of alternative mating strategies in Anopheles gambiae: does mating occur indoors? J. Med. Entomol. 45, 643–652 (2008).PubMed 

    Google Scholar 
    Gomulski, L. Aspects of Mosquito Mating Behaviour. PhD thesis, Univ. London (1988).Kelly, D. W. & Dye, C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim. Behav. 53, 721–731 (1997).Article 

    Google Scholar 
    Bray, D. P., Alves, G. B., Dorval, M. E., Brazil, R. P. & Hamilton, J. G. C. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasit. Vectors 3, 16 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levi-Zada, A. et al. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males. Naturwissenschaften 101, 671–678 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjostad, L. B., Gaston, L. K. & Shorey, H. H. Temporal pattern of sex pheromone release by female Trichoplusia ni. J. Insect Physiol. 26, 493–498 (1980).Article 

    Google Scholar 
    Merlin, C. et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22, 502–514 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo, N. & Arzuffi, R. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andersson, J. et al. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964–970 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 4, 1395–1401 (2020).Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.187542 (2021).Verhulst, N. O. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5, e15829 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, S. K. & Kim, K. Human body-odor components and their determination. Trends Anal. Chem. 30, 784–796 (2011).CAS 
    Article 

    Google Scholar 
    Dormont, L., Bessiere, J. M., McKey, D. & Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216, 2783–2788 (2013).CAS 
    PubMed 

    Google Scholar 
    Dormont, L., Bessière, J. M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B. 878, 2643–2651 (2010).CAS 
    Article 

    Google Scholar 
    Filipiak, W. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath. Res. 8, 027111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Calenic, B. & Amann, A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 6, 357–376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cainap, C., Pop, L. A., Balacescu, O. & Cainap, S. S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 10, 1993–2009 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekel, A., Yakir, E. & Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 111, 103174 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS Negl. Trop. Dis. 9, e89818 (2014).
    Google Scholar 
    Wondwosen, B. et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar. J. 17, 90 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wondwosen, B. et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 6, 37930 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suh, E., Choe, D., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29, 693–702 (1995).CAS 
    Article 

    Google Scholar 
    Kruza, M., Lewis, A. C., Morrison, C. G. & Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: a modeling study. Indoor Air 27, 1001–1011 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tripet, F., Dolo, G., Traoré, S. & Lanzaro, G. C. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).Article 
    PubMed 

    Google Scholar 
    Facchinelli, L. et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar. J. 14, 271 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, G. Swarming behaviour of the mosquito Culex pipiens quinquefasciatus: a quantitative analysis. Physiol. Entomol. 10, 283–296 (1985).Article 

    Google Scholar 
    Bimbilé Somda, N. S. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).Article 
    PubMed 

    Google Scholar 
    Maïga, H. et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 132S, S102–S107 (2014).Article 

    Google Scholar 
    Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).Article 
    PubMed 

    Google Scholar 
    Goodrich, K. R., Zjhra, M. L., Ley, C. A. & Raguso, R. A. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in Pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167, 33–46 (2006).CAS 
    Article 

    Google Scholar 
    Iatrou, K. & Biessmann, H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem. Mol. Biol. 38, 268–274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pitts, R. J., Rinker, D. C., Jones, P. L., Rokas, A. & Zwiebel, L. J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12, 271 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, T. et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guidobaldi, F., May-Concha, I. J. & Guerenstein, P. G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108, 96–111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosqueira, B. et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 148, 162–169 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa). Malar. J. 17, 136 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Heal. 9, 1267–1273 (2004).Article 

    Google Scholar 
    Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lefèvre, T. et al. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop. Med. Int. Heal. 14, 228–236 (2009).Article 

    Google Scholar 
    Lefèvre, T. et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS ONE 5, e9546 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vantaux, A. et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front. Ecol. Evol. 3, 86 (2015).Article 

    Google Scholar 
    Nguyen, P. L. et al. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci. Rep. 7, 9415 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tienpont, B., David, F., Bicchi, C. & Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12, 577–584 (2000).CAS 
    Article 

    Google Scholar 
    Bicchi, C., Cordero, C., Iori, C., Rubiolo, P. & Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J. High. Resolut. Chromatogr. 23, 539–546 (2000).CAS 
    Article 

    Google Scholar 
    Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256–2273 (2018).Article 

    Google Scholar 
    Zellner, Bd’Acampora et al. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23, 297–314 (2008).Article 
    CAS 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar  More