More stories

  • in

    Seasonal variation in bull semen quality demonstrates there are heat-sensitive and heat-tolerant bulls

    Intra-bull semen quality variationTo understand variation in bull semen quality, we assessed 1271 ejaculates from 79 different bulls (11 different breeds) housed at Rockhampton stud farm, in the state of Queensland, Australia, over a period of 5 years (2014–2018). The raw data, together with the semen analysis and when the samples for each individual bull were collected is available in Supplementary 1. The climate in this area (23.3786° S, 150.5089° E) is considered sub-tropical, ranging from 16 °C in winter to over 30 °C in summer. A comprehensive semen analysis was undertaken, including sperm morphology and motility. To determine the variation in semen quality, we plotted the percentage of sperm normal forms for each bull that had 5 or more ejaculates taken annually. Morphology was used as a measure of sperm quality, as Söderquist et al.17 demonstrated that sperm motility is heavily influenced by the collection/collectors and, therefore potentially unreliable and irreproducible. This resulted in the analysis of 1178 ejaculates from 50 bulls, with an average of 23 ejaculates per bull. The percentage of sperm normal forms as a box and whiskers plot for each bull is given (Fig. 1). As shown, many bulls demonstrated extremely high variation between ejaculates, with several males ranging from  70% (considered an outright “pass” in terms of cryopreservation potential) of normal sperm morphology. On the contrary, some bulls appeared to produce consistent semen samples across the year.Figure 1Changes in sperm normal forms. Semen samples were taken from bulls via electroejaculation and the percentage sperm normal forms were counted. The data show a box and whiskers plot consisting of 50 bulls, each of which had at least 5 different ejaculates across a minimum one month. Each box and whiskers plot represents an individual Bull showing the median, upper and lower quartile range. Outliers are represented by individual dots.Full size imageTo determine the amplitude and the proportion of bulls demonstrating variation in the number of normal sperm forms, we measured the difference between the maximum and the minimum values recorded for each animal. From this analysis we found that: 9 (18%) bulls showed less than 20% variation in normal forms; 15 (30%) bulls had between 20–40% variation; 13 (26%) bulls were between 40–60% and for 13 (26%) bulls this number was over 60%. These data have major implications when interpreting semen analysis, since a bull could be classified as either fertile or infertile depending on which ejaculate was considered. This data also sheds light into why correlations between the vBBSE parameters such as morphology and the bull fertility are so variable.Seasonal effect on semen qualitySeveral sources of environmental influence have been suggested to affect bull sperm quality. These include feed availability (i.e., higher conception rates in rainy seasons)27, excessive protein intake28, day length29, thermal heat stress and age30,31. To better understand the dynamics of semen quality variation within our samples, we plotted sample “pass” and “fail” cryopreservation criteria against the month of collection. A raw bull semen sample is classified as “pass” when motility is above 60% and normal forms greater than 70%. When samples were between 30 and 60% motility and 50–70% normal forms, they were classified as a “compensatory” (or qualified) pass (q-pass). The compensatory pass relied on there being the ability to have at least 10 million motile normal forms of spermatozoa in each straw to allow for conception. An outright failure was given to any sample with less than 30% progressive motility or 50% normal forms. This allowed each ejaculate to be placed into a binary “pass” or “fail”.The data for the percentage of total males that “failed” within each month (1271 ejaculates) is shown (Fig. 2A). Clearly, there is a seasonal pattern, with over 90% pass rate in winter (June–August) that fell to 50% or lower in summer (Dec-Feb). Considering that all bulls were greater than 4 years old, housed on the same stud farm and received the same dietary supplement we found no relationship in terms of “pass” or “fail” rates to these parameters. Thus, the data clearly suggested that Temperature/Temperature-Humidity or day length were responsible for the increased failure rates seen during Summer. Therefore, to understand if there was any causal relationship, we correlated either the average monthly temperature (Fig. 2B) or daylight (Fig. 2C) with monthly failure rates. The data showed a correlation with monthly temperature (r2 = 0.55; and temperature-humidity index – see further modelling below) but not with daylight hours (r2 = 0.05). Combined, these data suggest that temperature was the most likely reason for increased failure rates during the warm/hot months.Figure 2Seasonal variation in the semen quality of 1271 bull semen ejaculates. Semen samples were taken from bulls via electroejaculation and a full semen analysis was undertaken. Each sample was then classified as a pass or fail as described in Materials and Methods. (A) The percentage failure rate for each month is shown for all bulls. The number above each column indicate how many semen ejaculates were processed that month. (B). Scatter plot showing the average monthly temperature of Rockhampton and the percentage of samples that fail/month. Line of best fit indicates and r2 = 0.55. (C) Scatter plot showing the average daily sunlight in Rockhampton and the percentage of samples that fail/month. Line of best fit indicates and r2 = 0.04.Full size imageChanges in normal sperm forms categorised by breedThe present study investigated 11 different breeds of cattle, and we reasoned that maybe one, or more breed(s) contributed to failure rates more than others. Therefore, we plotted the percentage of normal forms for every ejaculate against the breed (Fig. 3). All breeds showed similar variation except for the Belmont Red, Boran and Wagyu. However, a relatively small number of bulls from the Belmont Red and Boran breeds were assessed in this study, therefore, it is unclear if they are indeed more resistant to heat. In the case of the Wagyu, it is worth mentioning that only one animal exhibited poor sperm morphology in several ejaculates (Fig. 3 circled) during winter. A close inspection of the records showed that during this time the animal had a fever episode, with body temperature reaching 39.4 °C, and that the sperm morphology returned to normal in approximately 70 days.Figure 3Variation in Semen quality as judged by Bull breed. Semen sample was collected and analysed for sperm morphology. The animals were then separated according to breed and the percentage normal forms for each ejaculate are shown.Full size imageSome bulls are heat-sensitive, whilst others are heat-tolerantAnalysis of the present data clearly illustrated that some bulls showed marked variation in terms of their semen quality throughout the year (Fig. 1). Meanwhile, others demonstrated much less variation, and were reasonably consistent. To further clarify these differences, we closely analysed the percentage of sperm morphology from two bulls, both of whom had several ejaculates were taken throughout the year, including during and after summer (Fig. 4). There was a clear pattern, and evidence of two types of bulls. Prior to the summer season, bull 1 (Fig. 4, red), designated here as “heat-sensitive”, exhibited  > 70% normal forms of spermatozoa. This value decreases dramatically, reaching its lowest point (10%) mid-January, before undergoing a recovery by April ( > 70%). In contrast, bull 2 (Fig. 4, green) showed a consistent semen profile throughout the year. The data suggest this bull was more “heat-tolerant”.Figure 4Identification of Heat-Sensitive and Heat-Tolerant bulls. The percentage normal sperm morphology from two bulls, both Droughtmasters, which had several ejaculates taken over the course of the year were plotted against the month in which the semen sample was taken. The first bull (red) is an example of a heat-sensitive bull. The second bull (Green) an example of heat-tolerant response.Full size imageTo further explore the concept of “heat-tolerant” and “heat-sensitive” bulls, we subjected 20 Wagyu bulls to a single event of controlled heat stress (40 °C, 12 h). This experiment was performed during Winter, at Singleton (New South Wales, Australia, 32.5695° S, 151.1788° E), where the average temperature was 17 °C and never exceeded 18 °C. Prior to the heat stress event, baseline semen samples were taken from each animal. After heat stress, semen samples were taken every week for 11 weeks. During the experiment, two bulls were removed from the program due to infection and sickness whilst a 3rd bull was removed as it refused to co-operate with electroejaculation procedure. From the remaining bulls, we were able to reproduce the heat-sensitive and heat-tolerant bull phenomenon. The raw data from this work is given in Supplementary 1, and an example of the data is shown (Fig. 5). For 14 bulls, we found no difference in terms of their baseline samples, which were between 70–90% normal forms. This is consistent with the Wagyu bull characteristics and their heat-tolerance (Fig. 5, yellow, green, blue lines). Within these “heat-tolerant” bulls, there was a variation of 16–22% sperm normal forms. For the other three bulls, two of them showed a decline in sperm quality, which began 2–3 weeks after the heat event, dropping from a baseline of 85% and 90% normal forms to 55% and 59%, respectively (30–31% variation in normal forms; Fig. 5, grey and orange line). The third bull showed a greater degree of heat-sensitivity. Starting at 77% morphologically normal sperm, the spermiogram of this bull illustrated a rapid decrease in normal forms in a short time (2 weeks), reaching around 40% after 4–5 weeks. Sperm morphology remained at this level (37% variation in normal form) for four weeks, before recovery. These data show that under experimental condition, the phenomenon of heat-sensitive and heat-tolerant animals can be reproduced. Further, it appears that there are degrees of heat-sensitivity.Figure 5Heating of Wagyu bulls to identify heat-sensitive and heat-tolerant effect. Twenty Wagyu bulls all 3 years of age and over were heated to 40 °C for 12 h in an insulated barn. Before heating, bassline samples were taken (week 1). After heating, electroejaculation was used to collect semen every week for 11 weeks. For every sample, sperm morphology was counted by a qualified theriogenologist. The data show the percentage normal morphology for 5 bulls. The light blue line indicates a heat-sensitive bulls, whose morphology was affected by heat, then returned back to baseline. The orange and grey line represent two related bulls (same father) who also produced less than 70% normal forms. The yellow, green and dark blue lines represent three heat-tolerant bulls, whose semen profile did not drop below the 70% normal spermatozoa threshold.Full size imageEnvironmental heat stress leads to poor sperm quality 17 days laterSimilar to previous reports, we noted that sperm quality does not begin to deteriorate until 2–3 weeks after the heat stress event of the bulls32. Based on the timing of spermatogenesis, this is consistent with reports that meiotic cells are more susceptible to heat stress following a heating event, with poor quality spermatozoa appearing in the ejaculate around 2–3 weeks later. To better understand the relationship between a “heat-event” and the production of poor-quality spermatozoa, we modelled both maximum temperature and maximum temperature humidity index (THI) and their relationship to the proportion of morphologically normal spermatozoa. The THI is an index representing the effect of humidity on the heat stress of an animal. THI was obtained using the following formula:$$mathrm{THI}=0.8* frac{{T}_{max}}{100}+frac{left(humidity*left({t}_{max}-14.4right)right)}{1}+46.4$$where Tmax = maximum temperature, (oF), and H = relative humidity.We plotted the correlation between semen quality and Tmax on the day, and every day prior (up to 40 days) to semen collection (Fig. 6). This modelling demonstrated that poor semen quality was due to maximum daytime temperature 17 days prior (Fig. 6a, arrow). Notably, 1 day of heat-stress appears to be sufficient to cause poor sperm quality, since if we take the average of 2 (Fig. 6b) or 3-day maximal temperatures prior to collection (Fig. 6c) the correlation patterns were similar. Supplementary 3 shows further modelling for Tmax and THI using between 1 and 5-day average temperatures prior to semen collection.Figure 6Bull semen quality (as percentage sperm normal forms) is related to the temperature that occurred 17–19 days ago. Correlation between sperm quality and maximum Temperature (Tmax). The Y axis is the Pearson correlation coefficient and X axis represents the number of days before the day the sperm sample was taken. (a) Uses one day of Tmax data whilst (b) averages two and (c) averages three consecutive days of Tmax data. The arrow shows the best correlation between Tmax and poor sperm quality, which occurs around 17–19 days before the semen sample is collected.Full size imageUnderstanding the temperatures at which heat-sensitive bulls failTo determine the Tmax at which bulls in the paddock begin to produce poor quality spermatozoa, we modelled data using both parameters measured at 17 days prior to the heat event, and plotted samples from 12 heat-sensitive bulls (6 Brahmans, 4 Drought Masters and 2 Santa Gertrudis). The relationship between sperm morphology and Tmax 17 days prior to heat even was plotted, with a spline smoothing cure to show the mean quality as a function of Tmax (Fig. 7a). As the temperature increase, so the quality of sperm morphology decreases as expected. To gain further clarity, we next fitted a nominal logistic regression analysis to model the proportion of spermatozoa that would either pass, Q-pass or fail sperm cryopreservation criteria as a function of Tmax 17 days prior. Tmax effect was highly significant for both outcome categories, with both p  More

  • in

    Subsurface Archaea associated with rapid geobiological change in a model Yellowstone hot spring

    Acidification of CPHistorical geochemical data suggest that the water chemistry of Cinder Pool (CP) has been relatively stable from the time of first reported geochemical data in 1947 until autumn 2018, followed by pronounced acidification between winter and spring 2019 (Supplementary Data 1, Fig. 1a, b). Images and documentation dating to even earlier (1927) reveal the presence of cinders covering ~50% of the spring surface at that time, a temperature near boiling (91.5 °C), and a description of having high sulfate and chloride levels (although data was not provided), suggesting that its chemistry has been generally stable since its discovery1. Spring pH ranged between ~3.6 and 4.5 in 22 yearly measurements spanning 71 years (1947–2018; multiple measurements in the same year were averaged to represent each year) (Fig. 1b), while the pH has been subsequently measured after 2018 as low as 2.5 (Fig. 1b). A single pH measurement of 2.5 was also recorded in a 2003 publication27, although other measurements in 2003, 2000, and 2001 were more consistent with the long-term average (i.e., pH 4.2–4.3; Supplementary Data 1). Scrutiny of chemical data accompanying the pH 2.5 measurement in 2003 indicates a SO42− concentration (~48 mg L−1) that is considerably lower than would be expected for CP, even when the pH is much higher (SO42− = 80 mg L−1; pH = 4.2–4.3). Considering that sulfuric acid is the predominant buffer of pH in these systems7,28, the pH 2.5 reading in 2003 is considered questionable. Nevertheless, the 2018 shift in pH towards more acidic conditions was accompanied by a notable change in the appearance of CP. Prior to autumn 2018, the spring waters were cloudy gray with the considerable suspension of kaolinite clay particles20 and black cinders10. However, between autumn 2018 and spring 2019, the spring waters visibly turned blue-green and contained colloidal S° particles that were also deposited along the pool shelves, while the pool also lacked its characteristic black cinders (Fig. 1a). The spring has maintained this appearance since spring 2019 until at least July 2022.Fig. 1: Historical geochemistry of Cinder Pool (CP).a Top panel shows the visual change in the appearance of CP in 2016 (left) and 2020 (right). Scale bars in the bottom right are ∼1 m. b Measurements of pH (n = 21; black line) and sulfate (SO42−) concentrations (n = 12; red line) in CP waters between 1947 and 2021. Years with multiple measurements were averaged to represent the entire year. c Paired measurements of SO42− and chloride (Cl−) concentrations (n = 12) between 1947 and 2021 in the context of the same measurements for 488 YNP springs derived from previous studies. Paired points for CP are colored based on the year they were recorded (averaged for multiple measurements/year as described above). End member fluid compositions as described in the manuscript text are indicated based on the abbreviations: MO meteoric only, HO hydrothermal only, MG meteoric plus gas, HB hydrothermal plus boiling, HBG hydrothermal plus boiling plus gas. Points for 2016, 2018, 2019, 2020, and 2021 are indicated by “16”, “18”, “19”, “20”, and “21”, respectively.Full size imageThe source of fluids in YNP hot springs can be broadly defined by concentrations of sulfate (SO42−) and chloride (Cl−)2,7. These indicators have been previously used to define the source of YNP springs as either (1) hydrothermal only (HO) waters that have moderate concentrations of SO42− (~30 mg L−1 depending on the depth of boiling; described below) but high concentrations of Cl− (~300 mg L−1), (2) meteoric-only (MO) waters containing lower concentrations of both solutes, or (3) MO waters infused with gas (MG) that have lower Cl− concentrations and higher SO42− concentrations (Fig. 1c). Subsequent boiling and/or evaporation of HO waters can concentrate Cl− and SO42− to higher concentrations (termed hydrothermal plus boiling; HB), while additional gas input into HO or HB waters can lead to particularly high concentrations of both Cl− and SO42− (hydrothermal + boiling + gas; HBG)7 (Fig. 1c). Geochemical data from surveys spanning 1947 to 2018 suggest that CP was largely sourced by hydrothermal (HO) waters that have undergone boiling and/or evaporation (HB) during this time frame (Fig. 1c).HO and HB waters are typically circumneutral7, while CP (which is also sourced by HB waters) has maintained a moderately acidic pH of ~4 until autumn 2018 (Fig. 1b). Several other low pH HB waters have been previously observed within the NGB7. The moderately acidic pH in CP (prior to 2018) has been attributed to the hydrolysis of molten S° that occurs at depths of >18 m that leads to the formation of S2O32– 11. Oxygen (O2)-dependent oxidation of S2O32−, catalyzed by trace iron sulfide in the cinders, forms SxO62− that can then react with sulfide to yield S2O32− and S° 11. Alternatively, SxO62− can be disproportionated to form S2O32− and SO42− 11. The relative rates of these reactions in CP prior to 2018 are not known although similar concentrations of S2O32− measured between 1995 and 1997 suggest that rates of S° hydrolysis and rates of S2O32− formation have been relatively constant over yearly time scales11. The consumption of O2 by reaction with S2O32− and the consumption of sulfide involving reactions with SxO62− would limit the amount of sulfuric acid that could be formed, thereby maintaining a less acidic pH than other sulfuric acid buffered acidic springs in YNP7.Between November 2018 and March 2019, the pH of CP markedly decreased to 2.8 in 2019, 2.7 in 2020, and 2.6 in 2021. This coincided with a marked increase in SO42− concentrations of ~3–5 fold above historical ranges (Fig. 1b), while Cl− concentrations fluctuated without clear trends during this time (Supplementary Fig. 1c). Thus, CP transitioned from an HB water type to an HBG water type between autumn 2018 and spring 2019 and has remained this way since (Fig. 1c). This is interpreted to reflect a substantial increase in H2S/S° oxidation that results in the formation of SO42− and H+ (sulfuric acid). Several observations suggest a fundamental restructuring of CP’s unique sulfur cycling due to dramatic physical and chemical changes at this time. As described in more detail below, the molten S° layer was detected at a depth of 18 m in 2016. However, in 2020 and 2021 there was no evidence of molten S° at ~18 to 20 m depth as previously documented, and sampling equipment could be freely dropped to a depth of 22 m (length of the cable) without interruption. In the absence of the molten S° at depth, the S° hydrolysis product S2O32−, and the cinders that catalyze SxO62− formation from S2O32− and H2S, it is possible that such reactions that previously competed for H2S or O2 (i.e., those involving S2O32− and SxO62−) are no longer taking place in CP. This in turn would allow for sulfur compounds (H2S and S°) to now be oxidized, thereby contributing to spring acidification.Alternative scenarios underlying the dramatic changes in CP waters also warrant consideration, and the three most logical are presented below. First, it is possible that the waters sourcing CP may have shifted either via replacement of the primary source or by altered mixing of multiple water sources. Water isotope values (δ2H and δ18O) can be used to further deconvolute the sources of hydrothermal waters because distinctive isotope values are associated with distinct water sources and the various influences upon them including meteoric water recharge, boiling (and/or evaporation), and water–rock interactions7,29. The water isotope values measured among the measured depths in CP in 2020 were near the range of water isotope values observed in CP across multiple months in 201613 (depth-resolved water isotope measurements were not made in 2016). The 2020 CP water isotope values were slightly right-shifted relative to those of 2016, suggesting a minor increase in the evaporation and concentration of CP water isotopes between 2016 and 20207 (Supplementary Fig. 2). These data thus do not support the hypothesis that the source of waters in CP dramatically shifted between 2016 and 2020, consistent with the SO42− and Cl− measurements indicating that the primary change to CP waters was increased input or availability of H2S for oxidation.A second alternative explanation is that a change in the water level of CP could potentially alter residence times which could allow for more oxidation of sulfur compounds in the spring and increased acidification. Such a scenario would also likely result in increased evaporation and concentration of solutes. However, the minimal increase in water isotope values (Supplementary Fig. 2) and similar Cl− concentrations (Supplementary Fig. 1c) accompanying a ~3–5 fold increase in SO42− concentration pre- and post-acidification (Fig. 1b) argue that increased residence time was of minimal importance in acidification.A third possible explanation is that a change in the plumbing system of CP is now delivering more vapor phase gas that contributes H2S and acidity when oxidized. Such a scenario could be consistent with increased surface deformation, subsurface gas accumulation, and seismic activity that has been taking place near NGB just prior to these changes21, and the transition from HB-type to HBG-type waters in CP. Sulfur species isotope analyses would help deconvolute the sources of SO42− in CP, but samples for sulfur isotopic analyses were not collected prior to acidification. Thus, it is unclear if this process may also be contributing to the acidification of CP. Regardless, the disappearance of the molten S° cap either by consumption or displacement would in effect make H2S more available for oxidation, similar to increased vapor phase input. The acidification of hot springs involves the oxidation of H2S by O230. More specifically, partial oxidation of H2S at acidic pH (90% amino acid identity to other homologs from UYS MAGs), but that was only present on unbinned contig sequences. Proteins are grouped based on their functionalities and associations in complexes. TetH (tetrathionate hydrolase), SQO sulfide:quinone oxidoreductase, SOR sulfur oxygenase reductase, SoxABCD Sulfolobus oxidase, SoxM Sulfolobus oxidase, CbsAB cytochrome b 558/566, SoxLN cytochrome ba complex, DoxBCE Desulfurolobus oxidase, DoxAD/TQOab Desulfurolobus oxidase/thiosulfate-quinone oxidoreductase, HdrAB1C1B2C2 (heterodisulfide reductase), DsrE3 DsrE3 sulfurtransferase, Dld dihydrolipoamide dehydrogenase, LplA lipoate-protein ligase A, LbpA lipoate binding protein A/glycine cleavage system H protein, TusA tRNA 2-thiouridine synthesizing protein A, SreABC sulfur reductase, SAOR sulfite:acceptor oxidoreductase, HcaLS [NiFe]-hydrogenase group 1 g. SoxEFGHI and FoxABCDEFGH (ferrous iron oxidation) gene sets were also investigated, but not identified in any of the MAGs and not shown here for brevity. A complete description of the enzymes/proteins found in individual UYS MAGs is provided in Supplementary Data 4.Full size imageTo assess the potential role of the UYS in sulfur biogeochemical cycling, the metabolic functional potentials of these populations were evaluated in greater detail based on their reconstructed genomes (Fig. 5, Supplementary Data 3). The UYS encoded the capacity for autotrophy via full complements of enzymes involved in the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP-4HB) (Supplementary Data 4), consistent with the general potential for autotrophy in most other Sulfolobales36. Consistently, the SoxM subunit that has been suggested as a marker for (facultatively) heterotrophic growth of Sulfolobales37 was absent in all UYS MAGs (Fig. 5, Supplementary Data 4). Given that all known Acidilobus and Vulcanisaeta spp. are characterized heterotrophs without known autotrophic capacity38,39, the UYS are likely the sole primary producers in the CP surface and subsurface waters, consistent with their considerable dominance in CP water communities over time.Also consistent with almost all other Sulfolobales36, the UYS universally encode the ability to reduce O2 via terminal cytochrome oxidases, although not via Sulfolobus oxidase (SoxABCD) complexes that are common among many Sulfolobales36 but rather via Desulfurolobus oxidase complexes (DoxBCE) (Fig. 5, Supplementary Data 4). An additional terminal oxidase complex (CbsAB-SoxLN) was encoded in the 2020 CP MAGs along with several other UYS MAGs from other YNP springs, although homologs of CbsAB-SoxLN were not present in the 2016 CP MAGs or several others recovered from sediments of other hot springs (Fig. 5). Thus, a potentially important metabolic difference between the pre- and post-acidification (2016 and 2020, respectively) CP Sulfolobales was the ability to use different terminal cytochrome oxidase compliments for aerobic respiration. The capacity to use multiple terminal oxidases has been suggested as an adaptation to varying oxygen tensions/availabilities37,40 that likely substantively differed between the low ORP 2016 CP waters and the high ORP 2020 CP waters (Fig. 2c). Consequently, these data point to the ecological succession of UYS strains within CP that are, at least in part, related to strain-level differences in aerobic respiration capacities.A defining feature of most cultured Sulfolobales is the ability to grow chemolithoautotrophically by coupling the oxidation of sulfur compounds (e.g., S0) to aerobic respiration37. The slow kinetics associated with abiotic oxidation of S0 with O2 at temperatures More

  • in

    Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs

    Ahmad, M., Saleem, M. A. & Sayyed, A. H. Efficacy of insecticide mixtures against pyrethroid-and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest. Manag. Sci. 65, 266–274 (2009).CAS 

    Google Scholar 
    Shekhawat, S. S., Shafiq, A. M. & Basri, M. Effect of host plants on life table parameters of Spodoptera litura. Ind. J. Pure Appl. Biosci. 6, 324–332 (2018).
    Google Scholar 
    Sang, S. et al. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 72, 922–928 (2016).CAS 
    PubMed 

    Google Scholar 
    Ortega, D. S., Bacca, T., Silva, A. P. N., Canal, N. A. & Haddi, K. Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia. J. Stored Prod. Res. 92, 101802 (2021).CAS 

    Google Scholar 
    Li, L. Pest biological control: Goals throughout my life. Annu. Rev. Entomol. 67, 1–10 (2022).PubMed 

    Google Scholar 
    Razaq, M., Shah, F. M., Ahmad, S. & Afzal, M. in Pest management for agronomic crops. Agronomic Crops (ed. Hasanuzzaman M.) 365–384 (Springer, 2019).Shah, F. M. & Razaq, M. in From agriculture to sustainable agriculture: Prospects for improving pest management in industrial revolution 4.0. Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 4.0. Cham. (ed. Cham) 1–18 (Springer, 2020).Razaq, M. & Shah, F. M. in Biopesticides for management of arthropod pests and weeds. Biopesticides. Biopesticides Voulme 2: Advances in Bioinoculants 7–18 (Elsevier, 2022).Kishinevsky, M., Keasar, T. & Bar-Massada, A. Parasitoid abundance on plants: Effects of host abundance, plant species, and plant flowering state. Arthropod-Plant Interact. 11, 155–161 (2017).
    Google Scholar 
    Islam, Y. et al. Age-stage, two-sex life table and predation parameters of Harmonia axyridis Pallas (Coleoptera: Coccinellidae), reared on Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), at four different temperatures. Crop Prot. 2, 106029 (2022).
    Google Scholar 
    Furlong, M. J. & Zalucki, M. P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 20, 39–44 (2017).PubMed 

    Google Scholar 
    Islam, Y. et al. Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: The effect of temperature. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    Keva, O. et al. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs. Glo. Change Bio. 27, 282–296 (2021).ADS 
    CAS 

    Google Scholar 
    Chi, H. et al. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 40, 103–124 (2020).
    Google Scholar 
    Guedes, C. Preferência alimentar e estratégias de alimentação em Coccinellidae (Coleoptera). Oecol. Aust. 17, 59–80 (2013).
    Google Scholar 
    Hodek, I. & Honêk, A. Ecology of coccinellidae. Vol. 54 464 (Kulver Academic Publisher, 2013).Sutherland, A. M. & Parrella, M. P. Mycophagy in Coccinellidae: Review and synthesis. Biol. Control 51, 284–293 (2009).
    Google Scholar 
    Hagen, K. & Ks, H. The significance of predaceous Coccinellidae in biological and integrated control of insects. Entomophaga 7, 25–44 (1974).
    Google Scholar 
    Jawad, D. S., Rashid, Y. D. & Hamzah, A. G. in IOP Conference Series: Earth and Environmental Science. 012029 (IOP Publishing).Kumari, S., Suroshe, S. S., Kumar, D., Budhlakoti, N. & Yana, V. Foraging behaviour of Scymnus coccivora Ayyar against cotton mealybug Phenacoccus solenopsis Tinsley. Saudi J. Biol. Sci. 28, 3799–3805 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Alloush, A. A. Developmental duration and predation rate of the coccidophagous coccinellid Rhyzobius lophanthae (Blaisdell) (Coleoptera: Coccinellidae) on Aspidiotus nerii Bouche. Bull. Entomol. Res. 109, 612–616 (2019).PubMed 

    Google Scholar 
    Koch, R., Hutchison, W., Venette, R. & Heimpel, G. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 265–270 (2003).
    Google Scholar 
    Islam, Y., Shah, F. M., Güncan, A., DeLong, J. P. & Zhou, X. Functional response of Harmonia axyridis to the larvae of Spodoptera litura: The combined effect of temperatures and prey instars. Front. Plant Sci. 13, 849574 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Dixon, A. F. G. & Dixon, A. E. Insect predator-prey dynamics: ladybird beetles and biological control. (Cambridge University Press, 2000).Thompson, S. Nutrition and culture of entomophagous insects. Annu. Rev. Entomol. 44, 561–592 (1999).CAS 
    PubMed 

    Google Scholar 
    Chaudhary, D. D., Kumar, B. & Mishra, G. Functional response in Coccinellid beetles (Coleoptera: Coccinellidae) is modified by prey-density experience. Can. Entomol. 154, 55068 (2022).
    Google Scholar 
    Castro, C., Almeida, L. & Penteado, S. The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Fla. Entomol. 94, 923–932 (2011).
    Google Scholar 
    Noman, Q. M., Shah, F. M., Mahmood, K. & Razaq, M. Population dynamics of Tephritid fruit flies in citrus and mango orchards of Multan, Southern Punjab, Pakistan. Pakistan J. Zool. 54, 325–330 (2021).
    Google Scholar 
    Eliopoulos, P. & Stathas, G. Life tables of Habrobracon hebetor (Hymenoptera: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae): Effect of host density. J. Econ. Entomol. 101, 982–988 (2008).CAS 
    PubMed 

    Google Scholar 
    Yu, J.-Z., Chi, H. & Chen, B.-H. Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biol. Control 64, 1–9 (2013).
    Google Scholar 
    Roy, H. E. & Ten Brown, P. M. years of invasion: Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae) in Britain. Ecol. Entomol. 40, 336–348 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, R. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect. Sci. 3, 5689 (2003).
    Google Scholar 
    de Castro-Guedes, C. F., de Almeida, L. M., do Rocio, C. P. S. & Moura, M. O. Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Rev. Bras. Entomol. 60, 260–266 (2016).
    Google Scholar 
    Abdel-Salam, A. & Abdel-Baky, N. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). J. Appl. Entomol. 125, 455–462 (2001).
    Google Scholar 
    Islam, Y. et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects 11, 583 (2020).PubMed Central 

    Google Scholar 
    Di, N. et al. Predatory ability of Harmonia axyridis (Coleoptera: Coccinellidae) and Orius sauteri (Hemiptera: Anthocoridae) for suppression of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 12, 1063 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Saljoqi, A.-U.-R., Khan, J. & Ali, G. Rearing of Spodoptera litura (Fabricius) on different artificial diets and its parasitization with Trichogramma chilonis (Ishii). Pak. J. Zool. 47, 1104 (2015).
    Google Scholar 
    Brown, P. M. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): Distribution, dispersal and routes of invasion. Biocontrol 56, 623–641 (2011).
    Google Scholar 
    Chi, H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available from http://140.120.197.173/ecology/Download/TWOSEX-MSChart-B100000.rar. (2022).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).
    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24, 225–240 (1985).
    Google Scholar 
    Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 

    Google Scholar 
    Chi, H. & Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10–21 (2006).
    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014a).CAS 
    PubMed 

    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Erratum: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 1936 (2014b).CAS 

    Google Scholar 
    Chi, H. & Yang, T.-C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer)(Homoptera: Aphididae). Environ. Entomol. 32, 327–333 (2003).
    Google Scholar 
    Chi, H. CONSUME-MSChart: a computer program for consumption rate analysis based on the age stage, two-sex life table analysis. http://140.120.197.173/ecology/Download/CONSUME-MSChart.rar. (2022).Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).PubMed 

    Google Scholar 
    Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015).
    Google Scholar 
    Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).
    Google Scholar 
    Wei, M. et al. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 113, 2343–2353 (2020).PubMed 

    Google Scholar 
    Huang, H.-W., Chi, H. & Smith, C. L. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111, 1–9 (2018).PubMed 

    Google Scholar 
    Chi, H.Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83,
    1143–1150 (1990).
    Google Scholar 
    Chi, H. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. (http://140.120.197.173/Ecology/Download/TIMING-MSChart.rar). (2022).Mignault, M.-P., Roy, M. & Brodeur, J. Soybean aphid predators in Quebec and the suitability of Aphis glycines as prey for three Coccinellidae. BioControl 51, 89–106 (2006).
    Google Scholar 
    Brown, M. Intraguild responses of aphid predators on apple to the invasion of an exotic species, Harmonia axyridis. BioControl 48, 141–153 (2003).
    Google Scholar 
    Pervez, A., Chandra, S. & Kumar, R. Effect of dietary history on intraguild predation and cannibalism of ladybirds’ eggs. Int. J. Trop. Insect Sci. 41, 2637–2642 (2021).
    Google Scholar 
    Lundgren, J. G. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control 51, 294–305 (2009).
    Google Scholar 
    Yu, J.Z. et al. Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 111, 595–602 (2018).PubMed 

    Google Scholar 
    De Oliveira, R. T., dos Santos-Cividanes, T. M., Cividanes, F. J. & da Conceic, L. Harmonia axyridis Pallas (Coleoptera: Coccinellidae): Biological aspects and thermal requirements. Adv. Entomol. 2014, 5589 (2014).
    Google Scholar 
    Ali, S. et al. Using a two-sex life table tool to calculate the fitness of Orius strigicollis as a predator of Pectinophora gossypiella. Insects 11, 275 (2020).PubMed Central 

    Google Scholar 
    Merene, Y. Population dynamics and damages of onion thrips (Thripstabaci)(Thysanoptera: Thripidae) on onion in Northeastern Ethiopia. J. Entomol. Nematol. 7, 1–4 (2015).
    Google Scholar 
    Mou, D. F., Lee, C. C., Smith, C. & Chi, H. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579–591 (2015).
    Google Scholar 
    Farhadi, R., Allahyari, H. & Chi, H. Life table and predation capacity of Hippodamia variegata (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biol. Control 59, 83–89 (2011).
    Google Scholar 
    Hance, T., van Baaren, J., Vernon, P. & Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107–126 (2007).CAS 
    PubMed 

    Google Scholar 
    Ma, X., Zhu, J., Yan, W. & Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 781, 146777 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation

    Eda, M. Origin of the domestic chicken from modern biological and zooarchaeological approaches. Anim. Front. 11, 52–61 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    FAO. Status And Trends Of Animal Genetic Resources (Commission on genetic resources for food agriculture, Rome, 2019).Chen, G., Wang, K., Wang, J., Ding, C. & Yang, N. Poultry Genetic Resources in China (Shanghai Scientific and Technological Press, Shanghai, 2004).Wang, M. S. et al. Genomic analyses reveal potential independent adaptation to high altitude in tibetan chickens. Mol. Biol. Evol. 32, 1880–1889 (2015).CAS 
    PubMed 

    Google Scholar 
    Zhang, Q. et al. Genome resequencing identifies unique adaptations of tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biol. Evol. 8, 765–776 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, H., Wang, X. T., Chamba, Y., Ling, Y. & Wu, C. X. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult. Sci. 87, 2112–2116 (2008).CAS 
    PubMed 

    Google Scholar 
    Jia, C. L., He, L. J., Li, P. C., Liu, H. Y. & Wei, Z. H. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude. Poult. Sci. 95, 1660–1665 (2016).CAS 
    PubMed 

    Google Scholar 
    Hillier, L. W. et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).CAS 

    Google Scholar 
    Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).CAS 
    PubMed 

    Google Scholar 
    Wang, M. S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).CAS 
    PubMed 

    Google Scholar 
    Shen, Y. et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 128 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet 18, 563–575 (2017).CAS 
    PubMed 

    Google Scholar 
    Xu, J. et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 20, 243 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hoglund, A. et al. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat. Ecol. Evol. 4, 1713–1724 (2020).PubMed 

    Google Scholar 
    Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Gou, W., Ma, J. & Zhang, H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ 5, e3891 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Richards, E. J. Inherited epigenetic variation–revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).CAS 
    PubMed 

    Google Scholar 
    Kawakatsu, T. et al. Epigenomic diversity in a global collection of arabidopsis thaliana accessions. Cell 166, 492–505 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    Wang, M. et al. Whole-genome methylation analysis reveals epigenetic variation in cloned and donor pigs. Front. Genet. 11, 23 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).CAS 
    PubMed 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, M. et al. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics. 19, 598 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Genet. 11, 355–373 (2010).CAS 

    Google Scholar 
    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Mussmann, S. M. et al. Genetic rescue, the greater prairie chicken and the problem of conservation reliance in the Anthropocene. R. Soc. Open Sci. 4, 160736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).PubMed 

    Google Scholar 
    Bjornstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat. Commun. 9, 2648 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).CAS 
    PubMed 

    Google Scholar 
    Ding, D. et al. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat. Commun. 9, 4991 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, X. et al. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol. Biol. Evol. 33, 2670–2681 (2016).CAS 
    PubMed 

    Google Scholar 
    Hu, X. J. et al. The genome landscape of tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the qinghai-tibetan plateau. Mol. Biol. Evol. 36, 283–303 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, G. D. et al. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl Acad. Sci. USA 115, E5056–E5065 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xin, J. et al. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat. Commun. 11, 4928 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D. D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).PubMed 

    Google Scholar 
    Wang, M. S. et al. Ancient Hybridization with an unknown population facilitated high-altitude adaptation of Canids. Mol. Biol. Evol. 37, 2616–2629 (2020).CAS 
    PubMed 

    Google Scholar 
    Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).CAS 
    PubMed 

    Google Scholar 
    Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).CAS 
    PubMed 

    Google Scholar 
    Vargas, J. D. et al. Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys. Acta 1651, 116–123 (2003).CAS 
    PubMed 

    Google Scholar 
    Rattner, A., Smallwood, P. M. & Nathans, J. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem. 275, 11034–11043 (2000).CAS 
    PubMed 

    Google Scholar 
    Amengual, J. et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 25, 948–959 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. 277, 36955–36961 (2002).CAS 
    PubMed 

    Google Scholar 
    Manabe, R. et al. Transcriptome-based systematic identification of extracellular matrix proteins. Proc. Natl Acad. Sci. USA 105, 12849–12854 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zou, X. et al. NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett. 585, 2410–2418 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252 (2012).CAS 
    PubMed 

    Google Scholar 
    Yoshimura, S-i., Gerondopoulo, A., Linford, A., Rigden, D. J. & Barr, F. A. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, L. J. et al. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124, 611–623 (2002).CAS 
    PubMed 

    Google Scholar 
    Shimizu, S. et al. Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J. Physiol. 570, 219–235 (2006).CAS 
    PubMed 

    Google Scholar 
    Foxler, D. E. et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat. Cell Biol. 14, 201–208 (2012).CAS 
    PubMed 

    Google Scholar 
    Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).CAS 
    PubMed 

    Google Scholar 
    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, e05255–e05255 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet. 9, 883–890 (2008).CAS 
    PubMed 

    Google Scholar 
    Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).CAS 
    PubMed 

    Google Scholar 
    Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, J. A., Watson, C. J., McCann, A. & Baugh, J. Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293–296 (2010).CAS 
    PubMed 

    Google Scholar 
    Guerrero-Bosagna, C. From epigenotype to new genotypes: relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin. Cell Dev. Biol. 97, 86–92 (2020).PubMed 

    Google Scholar 
    Furey, T. S. & Sethupathy, P. Genetics. Genetics driving epigenetics. Science 342, 705–706 (2013).CAS 
    PubMed 

    Google Scholar 
    Shimoda, L. A. & Undem, C. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir. Physiol. Neurobiol. 174, 221–229 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodman, D. M. et al. Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ. Res. 96, 864–872 (2005).CAS 
    PubMed 

    Google Scholar 
    Hui, A. S., Bauer, A. L., Striet, J. B., Schnell, P. O. & Czyzyk-Krzeska, M. F. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J. 20, 466–475 (2006).CAS 
    PubMed 

    Google Scholar 
    Mottet, D. et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J. Cell Physiol. 194, 30–44 (2003).CAS 
    PubMed 

    Google Scholar 
    Qi, H. et al. Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia. Cell Physiol. Biochem. 27, 251–262 (2011).CAS 
    PubMed 

    Google Scholar 
    Pandey, P., Mohammad, G., Singh, Y. & Qadar Pasha, M. A. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation. Appl. Clin. Genet. 8, 257–267 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Gou, W., Zhang, Y., Zhang, H. & Wu, C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp. Biochem Physiol. Part D. Genomics Proteomics 31, 100602 (2019).CAS 
    PubMed 

    Google Scholar 
    Tang, T. S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227–239 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mariani, C. J. et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 7, 1343–1352 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsai, Y. P. et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 15, 513 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Fan, S. et al. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J. Biol. Chem. 295, 16299–16313 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 

    Google Scholar 
    Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).CAS 
    PubMed 

    Google Scholar 
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, D. et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 15, R38 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar  More

  • in

    Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord

    Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).ADS 
    Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science (80-) 281, 237–240 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental scale review of climate-driven species redistribution in marine systems. Glob. Chang. Biol. 685, 171–181 (2021).
    Google Scholar 
    Scanes, E., Scanes, P. R. & Ross, P. M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    Rodrigues, J. G. et al. Marine and coastal cultural ecosystem services: knowledge gaps and research priorities. One Ecosyst. 2 (2017).O’Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are marine ecological time series telling us about the ocean. A status report. IOC Tech. Ser. 129, 1–297 (2017).
    Google Scholar 
    Ajani, P. A., Davies, C. H., Eriksen, R. S. & Richardson, A. J. Global warming impacts micro-phytoplankton at a long-term Pacific Ocean Coastal Station. Front. Mar. Sci. 7, 878 (2020).Article 

    Google Scholar 
    Wiltshire, K. H. et al. Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33, 295–310 (2010).CAS 
    Article 

    Google Scholar 
    Benway, H. M. et al. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).Article 

    Google Scholar 
    Wilson, J. M., Chamberlain, E. J., Erazo, N., Carter, M. L. & Bowman, J. S. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ. Microbiol. 23, 3225 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28, 538–551 (1976).ADS 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci. Data 5, 180130 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buttigieg, P. L. et al. Marine microbes in 4D—Using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).PubMed 
    Article 

    Google Scholar 
    Chow, C.-E.T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the southern California Bight. ISME J. 7, 2259–2273 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krabberød, A. K. et al. Long-term patterns of an interconnected core marine microbiota. bioRxiv 2021.03.18.435965. https://doi.org/10.1101/2021.03.18.435965 (2021).Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed 
    Article 

    Google Scholar 
    Auladell, A. et al. Seasonal niche differentiation among closely related marine bacteria. ISME J. https://doi.org/10.1038/s41396-021-01053-2 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robicheau, B. M., Tolman, J., Bertrand, E. M. & LaRoche, J. Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic. ISME Commun. 2(1), 1–12 (2022).Article 

    Google Scholar 
    Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).ADS 
    Article 

    Google Scholar 
    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 1–11 (2017).Article 
    CAS 

    Google Scholar 
    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science (80-). 325, 747–750 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, D. A. et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science (80-). 326, 578–582 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Shan, S., Sheng, J., Thompson, K. R. & Greenberg, D. A. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model. Ocean Dyn. 61, 951–976 (2011).ADS 
    Article 

    Google Scholar 
    Petrie, B. & Yeats, P. Simple models of the circulation, dissolved metals, suspended solids and nutrients in Halifax Harbour. Water Qual. Res. J. 25, 325–350 (1990).CAS 
    Article 

    Google Scholar 
    WK, W. L. The State of Phytoplankton and Bacterioplankton at the Compass Buoy Station: Bedford Basin Monitoring Program 1992–2013. (Fisheries and Oceans Canada = Pêches et Océans Canada, 2014).Haas, S. et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc. Natl. Acad. Sci. 118, e2004877118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084-1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).Article 

    Google Scholar 
    Pernthaler, J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ. Microbiol. 19, 2133–2150 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science (80-) 336, 608–611 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wietz, M. et al. The polar night shift: Annual dynamics and drivers of microbial community structure in the Arctic Ocean. bioRxiv 2021.04.08.436999. https://doi.org/10.1101/2021.04.08.436999 (2021).Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science (80-). 348, 1261359 (2015).Article 
    CAS 

    Google Scholar 
    Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).PubMed 
    Article 

    Google Scholar 
    Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl. Acad. Sci. 115, E8266–E8275 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. 105, 7774–7778 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A. & Waite, A. M. Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. Limnol. Oceanogr. Lett. 3, 10–19 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. The vegan package. Commun. Ecol. Packag. 10, 719 (2007).
    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. 115, E6799–E6807 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west A tlantic O cean bacterioplankton. Environ. Microbiol. 17, 3642–3661 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raes, E. J. et al. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat. Commun. 12, 2213 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. 105, 17861–17866 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wong, H. L., MacLeod, F. I., White, R. A., Visscher, P. T. & Burns, B. P. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome 8, 1–14 (2020).Article 
    CAS 

    Google Scholar 
    De Cáceres, M. How to use the indicspecies package (ver. 1.7.1). R Proj. 2, 29 (2013).
    Google Scholar 
    Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 459–512 (2006).ADS 
    Article 

    Google Scholar 
    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).CAS 
    Article 

    Google Scholar 
    Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Z. et al. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME J. 14, 3136–3148 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16(6), 1479–1490 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science (80-) 333, 1296–1300 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Taguchi, S. & Platt, T. Assimilation of 14CO2 in the dark compared to phytoplankton production in a small coastal inlet. Estuar. Coast. Mar. Sci. 5, 679–684 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Platt, T. & Irwin, B. Phytoplankton Production and Nutrients in Bedford Basin, 1969–1970. (1971).Vega, S. et al. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances dark carbon fixation. MBio 10, e00216-e219 (2021).
    Google Scholar 
    Mattes, T. E., Ingalls, A. E., Burke, S. & Morris, R. M. Metabolic flexibility of SUP05 under low DO growth conditions. Environ. Microbiol. 23, 2823 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. 103, 12552–12557 (2006).Zorz, J. et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front. Microbiol. 10, 281 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2, e00127 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).PubMed 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, 191–16 (2017).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti L. & Shetty, S.A. Tools for Microbiome Analysis in R. Microbiome Package Version 1.7.21. R/Bioconductor http://microbiome.github.com/microbiome. (2017).Team, R. C. R: A Language and Environment for Statistical Computing. (2013).Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. 2018. Available odv. awi. (2015).Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. in Spherical Trigonometry. Vol. 1 (2017).Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Groemping, U. & Matthias, L. Package ‘relaimpo’. (2021).Clarke, K. R. & Gorley, R. N. Primer. Prim. Plymouth (2006).Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).Article 

    Google Scholar 
    Tichy, L. & Chytry, M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17, 809–818 (2006).Article 

    Google Scholar  More

  • in

    Effects of sediment flushing operations versus natural floods on Chinook salmon survival

    Morris, G. L. & Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use (McGraw Hill Professional, 1998).
    Google Scholar 
    White, R. Evacuation of Sediments from Reservoirs, HR Wallingford, http://www.thomastelford.com (Thomas Telford Publishing, 2001).Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2, 256–280 (2014).ADS 
    Article 

    Google Scholar 
    Schleiss, A. J., Franca, M. J., Juez, C. & De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 54, 595–614 (2016).Article 

    Google Scholar 
    Dahal, S., Crosato, A., Omer, A. Y. A. & Lee, A. A. Validation of model-based optimization of reservoir sediment releases by dam removal. J. Water Resour. Plan. Manag. 147, 04021033 (2021).Article 

    Google Scholar 
    Williams, G. P. & Wolman, M. G. Effects of dams and reservoirs on surface water hydrology—Changes in rivers downstream from dams. Natl. Water Summ. Hydrol. Events Surf. Water Resour. 2300, 83 (1986).
    Google Scholar 
    Toffolon, M., Siviglia, A. & Zolezzi, G. Thermal wave dynamics in rivers affected by hydropeaking. Water Resour. Res. https://doi.org/10.1029/2009WR008234 (2010).Article 

    Google Scholar 
    Stewart, G. B. Patterns and Processes of Sediment Transport Following Sediment-Filled Dam Removal in Gravel Bed Rivers. (PhD Thesis, Oregon State University, Oregon USA, 2006).Major, J. J. et al. Geomorphic Response of the Sandy River, Oregon, to Removal of Marmot Dam. U.S. Geological Survey Professional Paper, 64p https://pubs.usgs.gov/pp/1792/ (2012).Espa, P., Castelli, E., Crosa, G. & Gentili, G. Environmental effects of storage preservation practices: Controlled flushing of fine sediment from a small hydropower reservoir. Environ. Manag. 52, 261–276 (2013).ADS 
    Article 

    Google Scholar 
    Tena, A., Vericat, D. & Batalla, R. J. Suspended sediment dynamics during flushing flows in a large impounded river (the lower River Ebro). J Soils Sediments 14, 2057–2069 (2014).Article 

    Google Scholar 
    Antoine, G., Camenen, B., Jodeau, M., Némery, J. & Esteves, M. Downstream erosion and deposition dynamics of fine suspended sediments due to dam flushing. J. Hydrol. 585, 124763 (2020).Article 

    Google Scholar 
    Power, M., Dietrich, W. & Finlay, J. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Clarke, K. D., Pratt, T. C., Randall, R. G., Scruton, D. A. & Smokorowski, K. E. Validation of the flow management pathway: Effects of altered flow on fish habitat and fishes downstream from a hydropower dam. Can. Tech. Rep. Fish. Aquat. Sci. 2784, 111 (2008).
    Google Scholar 
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205 (2010).Article 

    Google Scholar 
    Juracek, K. E. The aging of America’s reservoirs: In-reservoir and downstream physical changes and habitat implications. JAWRA J. Am. Water Resour. Assoc. 51, 168–184 (2015).ADS 
    Article 

    Google Scholar 
    Brandt, S. A. & Swenning, J. Sedimentological and geomorphological effects of reservoir flushing: the Cachí Reservoir, Costa Rica, 1996. Geogr. Ann. Ser. B 81, 391–407 (1999).Article 

    Google Scholar 
    Grant, G. E., Schmidt, J. C. & Lewis, S. L. A geological framework for interpreting downstream effects of dams on rivers. In Water Science and Application (eds O’Connor, J. E. & Grant, G. E.) 203–219 (American Geophysical Union, 2003). https://doi.org/10.1029/007WS13.Chapter 

    Google Scholar 
    Petts, G. E. & Gurnell, A. M. Dams and geomorphology: Research progress and future directions. Geomorphology 71, 27–47 (2005).ADS 
    Article 

    Google Scholar 
    Newcombe, C. & MacDonald, D. D. Effects of suspended sediments on aquatic ecosystems. J. N. Am. J. Fish. Manag. 11, 72–82 (1991).Article 

    Google Scholar 
    Gilles, B. & Le Bail, P.-Y. Does light have an influence on fish growth?. Aquaculture 177, 129–152 (1999).Article 

    Google Scholar 
    Carolli, M., Bruno, M. C., Siviglia, A. & Maiolini, B. Responses of benthic invertebrates to abrupt changes of temperature in flume simulations. River Res. Appl. 28, 678–691 (2012).Article 

    Google Scholar 
    Bennel, D. H., Connor, W. P. & Eaton, C. A. Substrate composition and emergence success of fall Chinook salmon in the Snake river. Northwest Sci. 77, 93–99 (2003).
    Google Scholar 
    Jensen, D. W., Steel, E. A., Fullerton, A. H. & Pess, G. R. Impact of fine sediment on egg-to-fry survival of Pacific salmon: A meta-analysis of published studies. Rev. Fish. Sci. 17, 348–359 (2009).CAS 
    Article 

    Google Scholar 
    Bjornn, T. C. & Reiser, D. W. Habitat requirements of salmonids in streams. Am. Fish. Soc. Spec. Publ. 19, 83–138 (1991).
    Google Scholar 
    ASCE, N. Sediment and aquatic habitat in river systems. J. Hydraul. Eng. 118, 669–687 (1992).Article 

    Google Scholar 
    Louhi, P., Mäki-Petäys, A. & Erkinaro, J. Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors. River Res. Appl. 24, 330–339 (2008).Article 

    Google Scholar 
    Baxter, C. V. & Hauer, F. R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 57, 1470–1481 (2000).Article 

    Google Scholar 
    Peviani, M., Saccardo, I., Crosato, A. & Gentili, G. Natural and artificial floods connected with river habitat. in Ecohydraulics 2000. Proceedings
    of the 2nd International Symposium on Habitat Hydraulics, IAHR- Que´bec,
    Canada, vol. B 175–186 (1996).Crosa, G., Castelli, E., Gentili, G. & Espa, P. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 72, 85 (2009).Article 
    CAS 

    Google Scholar 
    Espa, P., Crosa, G., Gentili, G., Quadroni, S. & Petts, G. Downstream ecological impacts of controlled sediment flushing in an Alpine valley river: A case study. River Res. Appl. 31, 931–942 (2014).Article 

    Google Scholar 
    Lee, A. Modelling Salmon Spawning Habitat Response to Dam Removal. (MSc Thesis, IHE Delft, the Netherlands, 2017).van Oorschot, M. et al. Impact of dam operations on the habitat suitability of Plecoglossus altivelis downstream of the Funagira dam, Japan. In River Flow 2020 (eds Uijttewaal et al.) (2020 Taylor & Francis Group, CRC Press, 2020).
    Google Scholar 
    Newcombe, C. P. Suspended sediments in acquatic ecosystem: III effects as a function of concentration and duration of exposure. (1994).Newcombe, C. P. & Jensen, J. O. T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 16, 693–727 (1996).Article 

    Google Scholar 
    Hubert, W. A., Helzner, R. S., Lee, L. A. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Arctic grayling riverine populations. Western Energy and Land Use Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, US Department of Interior, Biological report 82 (10.110) (1985).Raleigh, R. F., Miller, W. J. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Chinook salmon. Fish and Wildlife Service, US Department of the Interior, Biological Report 82(10.122) www.nwrc.usgs.gov/wdb/pub/hsi/hsi-122.pdf (1986).Fisher, S., Gray, L., Grimm, N. & Busch, D. E. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. https://doi.org/10.2307/2937346 (1982).Article 

    Google Scholar 
    Lapointe, M., Eaton, B., Driscoll, S. & Latulippe, C. Modelling the probability of salmonid egg pocket scour due to floods. Can. J. Fish. Aquat. Sci. 57, 11 (2000).Article 

    Google Scholar 
    Baldwin, D. & Mitchell, A. M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: A synthesis. River Res. Appl. 16, 457–467 (2000).
    Google Scholar 
    Kowalski, D. The effects of stream flow on the trout populations of the Gunnison river. (2007).Konard, C. P. Effects of urban development on floods. U.S. Geological Survey—Water Resources Fact Sheet 076-03 https://pubs.usgs.gov/fs/fs07603/ (2016).Miller, J. D. & Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362 (2017).Article 

    Google Scholar 
    Poff, N. L. & Ward, J. V. Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46, 1805–1818 (1989).Article 

    Google Scholar 
    George, S. D., Baldigo, B. P., Smith, A. J. & Robinson, G. R. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river. Freshw. Biol. 60, 2511–2522 (2015).Article 

    Google Scholar 
    Carlson, A. K., Fincel, M. J., Longhenry, C. M. & Graeb, B. D. Effects of historic flooding on fishes and aquatic habitats in a Missouri river delta. J. Freshw. Ecol. 31, 271–288 (2016).Article 

    Google Scholar 
    Ríos-Pulgarín, M. I., Barletta, M. & Mancera-Rodríguez, N. J. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89, 102–130 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    United States Federal energy regulatory Commission (FERC). Application for Surrender of License, Bull Run Hydropower Project: Environmental Impact Statement. https://catalog.hathitrust.org/Record/100940309 (2003).Squier Associates. Sandy river sediment study, Bull Run Hydroelectric Project. (2000).Taylor, B. Salmon and Steelhead Runs and Related Events of the Clackamas River Basin–A Historical Perspective. Portland General Electric Company, 64 https://www.eaglecreekfriends.org/links-references (1999).Trimble, D. E. Geology of Portland, Oregon, and Adjacent Areas. Bulletin U.S. G.P.O. https://pubs.er.usgs.gov/publication/b1119. https://doi.org/10.3133/b1119. (1963).Sandy River basin Working Group. Sandy River basin aquatic habitat restoration strategy: An anchor habitat-based prioritization of restoration opportunities Oregon Trout. Portland, Oregon. Preprint at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5325660.pdf (2007).Lee, A., Crosato, A., Omer, A. Y. A. & Bregoli, F. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal. in AGU Fall meeting (2017).Healey, M. C. Life history of Chinook salmon (Oncorhynchus tshawytscha). Pacific Salmon Life Histories 311–394 (1991).Bourret, S. L., Caudill, C. C. & Keefer, M. L. Diversity of juvenile Chinook salmon life history pathways. Rev. Fish. Biol. Fish. 26, 375–403 (2016).Article 

    Google Scholar 
    Alderdice, D. & Velsen, F. Relation between temperature and incubation time for eggs of Chinook salmon (Oncorhynchus tshawytscha). J. Fish. Res. Board Can. 35, 69–75 (1978).Article 

    Google Scholar 
    Seattle Aquarium. Redd alert: Our Chinook salmon are hatching! |. Seattle Aquarium https://www.seattleaquarium.org/blog/redd-alert-our-chinook-salmon-are-hatching (2015).Whitman, L., Cannon, B. & Hart, S. Spring Chinook salmon in the Willamette and Sandy rivers: Sandy river basin Spring Chinook salmon spawning surveys. Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem, Oregon 97302, 30 https://odfw.forestry.oregonstate.edu/willamettesalmonidrme/sites/default/files/2016_sandy_basin_spring_chinook_spawning_survey.pdf (2016).Cramer, S. P. Fish and habitat surveys of the lower Sandy and Bull Run rivers. Report of SP Cramer&Associates, Inc. to Portland General Electric and Portland Water bureau, Portland, Oregon (1998).Westley, P. A. Documentation of en route mortality of summer chum salmon in the Koyukuk river, Alaska and its potential linkage to the heatwave of 2019. Ecol. Evol. 10, 10296–10304 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowerman, T. E., Keefer, M. L. & Caudill, C. C. Elevated stream temperature, origin, and individual size influence Chinook salmon prespawn mortality across the Columbia River Basin. Fish. Res. 237, 105874 (2021).Article 

    Google Scholar 
    Beechie, T. J. et al. Process-based principles for restoring river ecosystems. Bioscience 60, 209–222 (2010).Article 

    Google Scholar 
    Crosato, A. & Saleh, M. S. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf. Process. Landf. 36, 711–720 (2011).ADS 
    Article 

    Google Scholar 
    Schuurman, F., Marra, W. A. & Kleinhans, M. G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 118, 2509–2527 (2013).ADS 
    Article 

    Google Scholar 
    Singh, U., Crosato, A., Giri, S. & Hicks, M. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers. Adv. Water Resour. 104, 127–144 (2017).ADS 
    Article 

    Google Scholar 
    van ledden, M. Sand-Mud Segregation in Estuaries and Tidal Basins. (PhD Thesis, University of Technology Delft, 2003).Kandiah, A. Fundamental Aspects of Surface Erosion of Cohesive Soils. (University of California, Davis, 1974).Partheniades, E. Cohesive Sediments in Open Channels: Erosion, Transport and Deposition (Butterworth-Heinemann, 2009).
    Google Scholar 
    Jiang, J. An Examination of Estuarine Lutocline Dynamics. (PhD Thesis, University of Florida, USA, 1999).Exner, F. M. Uber die wechselwirkung zwischen wasser und geschiebe in flussen (about the interaction between water and bedload in rivers). Akad. Wiss. Wien Math. Naturwiss. Kl. 134, 165–204 (1925).
    Google Scholar 
    Ikeda, S. Incipient motion of sand particles on side slopes. J. Hydraul. Div. 108, 95–114 (1982).Article 

    Google Scholar 
    Bagnold, R. A. An approach to the sediment transport problem from general physics. Physiographic and hydraulic studies of rivers in US Geological Survey Professional Paper, vol. 422 I, 231–291 (1966).Stillwater Sciences. Numerical modeling of sediment transport in the Sandy river, Oregon following removal of Marmot dam. (2000).Ashida, K. & Michiue, M. Study on hydraulic resistance and bed transport rate in alluvial stream. Proc. Jpn. Soc. Civ. Eng. 201, 59–69 (1972).Article 

    Google Scholar 
    Panthi, M. Generation and Fate of Fine Sediment from Dam Flushing. (MSc Thesis, IHE Delft, Institute for Water Education, the Netherlands, 2020).Meyer-Peter, E. & Müller, R. Formulas for bed-load transport. in IAHSR 2nd Meeting, Stockholm, Appendix 2 (IAHR, 1948).Podolak, C. & Pittman, S. Marmot Dam Removal Geomorphic Monitoring & Modeling Project: Final Report. Sandy river basin watershed council. (2011).Keith, M. K. Reservoir Evolution Following the Removal of Marmot Dam on the Sandy River, Oregon. (MSc Thesis, Portland State University, Oregon, USA, 2012).Redding, J. M., Schreck, C. B. & Everest, F. H. Physiological effects on coho salmon and steelhead of exposure to suspended solids. Trans. Am. Fish. Soc. 116, 737–744 (1987).Article 

    Google Scholar 
    Lisle, T. E. Sediment transport and resulting deposition in spawning gravels, north coastal California. Water Resour. Res. 25, 1303–1319 (1989).ADS 
    Article 

    Google Scholar 
    Pitlick, J. & Wilcock, P. Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers. In Geomorphic Processes and Riverine Habitat (eds Dorava, J. M. et al.) 185–198 (American Geophysical Union, 2001).Chapter 

    Google Scholar 
    Toupin, L. Freshwater Habitats: Life in Freshwater Ecosystems. (Franklin Watts, Watts Library, 2005).Bovee, K. D. A guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. IFIP No. 12. FWS/OBS https://pubs.er.usgs.gov/publication/fwsobs82_26 (1982).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Vadas, R. L. & Orth, D. J. Formulation of habitat suitability models for stream fish guilds: Do the standard methods work?. Trans. Am. Fish. Soc. 130, 217–235 (2001).Article 

    Google Scholar 
    Moir, H. J., Gibbins, C. N., Soulsby, C. & Youngson, A. F. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output. River Res. Appl. 21, 1021–1034 (2005).Article 

    Google Scholar 
    Hauer, C. et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 98, 40–55 (2018).Article 

    Google Scholar 
    Koizumi, I., Kanazawa, Y. & Tanaka, Y. The fishermen were right: Experimental evidence for tributary refuge hypothesis during floods. Zool. Sci. 30, 375–379 (2013).Article 

    Google Scholar 
    Quadroni, S. et al. Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology 9, 1276–1288 (2016).Article 

    Google Scholar 
    Bond, M. H., Nodine, T. G., Beechie, T. J. & Zabel, R. W. Estimating the benefits of widespread floodplain reconnection for Columbia river Chinook salmon. Can. J. Fish. Aquat. Sci. 76, 1212–1226 (2019).Article 

    Google Scholar 
    Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. Verh. 29, 123–136 (2005).
    Google Scholar  More

  • in

    Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis)

    Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Let. 6, 438–440 (2010).Article 

    Google Scholar 
    Gonzalez, V. & Banerjee, A. Molecular, ecological, and behavioural drivers of the bat-virus relationship. iScience 25, 104779 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brook, C. E. & Dobson, A. P. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23, 172–180 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kosoy, M. et al. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 16, 1875–1881 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos. Trans. R. Soc. Biol. Sci. 373, 20170089 (2018).Article 
    CAS 

    Google Scholar 
    Muehldorfer, K. Bats and bacterial pathogens: A review. Zoonoses Public Health 60, 93–103 (2013).Article 

    Google Scholar 
    Taylor, M. L. et al. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico. FEMS Immunol. Med. Microbiol. 45, 451–458 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. 110, 17415–17419 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, N., Bown, K., Timofte, D., Simpson, V. & Birtles, R. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 15, 1331–1333 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muehldorfer, K., Speck, S. & Wibbelt, G. Diseases in free-ranging bats from Germany. BMC Vet. Res. 7, 61 (2011).Article 

    Google Scholar 
    Muehldorfer, K., Wibbelt, G., Haensel, J., Riehm, J. & Speck, S. Yersinia species isolated from bats, Germany. Emerg. Infect. Dis. 16, 578–581 (2010).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227–227 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barlow, A., Jolliffe, T., Tomlin, M., Worledge, L. & Miller, H. Mycotic dermatitis in a vagrant parti-coloured bat (Vespertilio murinus) in Great Britain. Vet. Rec. 169, 614–614 (2011).PubMed 
    Article 

    Google Scholar 
    Simpson, V. R., Borman, A. M., Fox, R. I. & Mathews, F. Cutaneous mycosis in a Barbastelle bat (Barbastella barbastellus) caused by Hyphopichia burtonii. J. Vet. Diagn. Invest. 25, 551–554 (2013).PubMed 
    Article 

    Google Scholar 
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Hecht-Höger, A. et al. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol. Ecol. 29, 1745–1755 (2020).PubMed 
    Article 

    Google Scholar 
    Baker, M., Schountz, T. & Wang, L. F. Antiviral immune responses of bats: A review. Zoonoses Public Health 60, 104–116 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Baker, M. L. & Zhou, P. in Bats and Viruses Vol. 1 (eds Lin-Fa Wang & Christopher Cowled) Ch. 14, 327–348 (John Wiley & Sons, Inc., 2015).Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial function: Are bats ‘special’ as reservoirs for emerging viruses?. Curr. Opin. Virol. 1, 649–657 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Murphy, K. Janeway’s Immunobiology 8th edn. (Garland Science, 2012).
    Google Scholar 
    Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 6, 1045–1056 (2005).CAS 

    Google Scholar 
    Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).PubMed 
    Article 
    CAS 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: Characterization and seasonal variation. J. Ornithol. 148, S583–S591 (2007).Article 

    Google Scholar 
    Kozak, W., Conn, C. A. & Kluger, M. J. Lipopolysaccharide induces fever and depresses locomotor-activity in unrestrained mice. Am. J. Physiol. 266, R125–R135 (1994).PubMed 
    CAS 

    Google Scholar 
    Copeland, S. et al. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stockmaier, S., Dechmann, D. K. N., Page, R. A. & Teague O’Mara, M. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Let. 11, 20150576 (2015).Article 
    CAS 

    Google Scholar 
    Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B Biol. Sci. 270, 153–158 (2003).Article 

    Google Scholar 
    Sheldon, B. C. & Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).PubMed 
    Article 

    Google Scholar 
    Audebert, H. J., Pellkofer, T. S., Wimmer, M. L. & Haberl, R. L. Progression in lacunar stroke is related to elevated acute phase parameters. Eur. Neurol. 51, 125–131 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lee, K. A., Martin, L. B. & Wikelski, M. C. Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145, 244–251 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Owen-Ashley, N. T., Turner, M., Hahn, T. P. & Wingfield, J. C. Hormonal, behavioral, and thermoregulatory responses to bacterial lipopolysaccharide in captive and free-living white-crowned sparrows (Zonotrichia leucophrys gambelii). Horm. Behav. 49, 15–29 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Coon, C. A. C., Warne, R. W. & Martin, L. B. Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1418–R1425 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kimura, M. et al. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267, R1596–R1605 (1994).Article 
    CAS 

    Google Scholar 
    Gomez, C. R., Goral, J., Ramirez, L., Kopf, M. & Kovacs, E. J. Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 25, 581–585 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barrientos, R. M., Watkins, L. R., Rudy, J. W. & Maier, S. F. Characterization of the sickness response in young and aging rats following E. coli infection. Brain Behav Immun. 23, 450–454 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sköld-Chiriac, S., Nord, A., Tobler, M., Nilsson, J. -Å. & Hasselquist, D. Body temperature changes during simulated bacterial infection in a songbird: Fever at night and hypothermia during the day. J. Exp. Biol. 218, 2961–2969 (2015).PubMed 

    Google Scholar 
    Sköld-Chiriac, S., Nord, A., Nilsson, J. -Å. & Hasselquist, D. Physiological and behavioral responses to an acute-phase response in zebra finches: Immediate and short-term effects. Physiol. Biochem. Zool. 87, 288–298 (2014).PubMed 
    Article 

    Google Scholar 
    Fritze, M. et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open 8, bio046078 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Triana-Llanos, C., Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V. & Niño-Castro, A. The acute phase response elicited by a viral-like molecular pattern increases energy expenditure in Artibeus lituratus. Biologia 74, 667–673 (2019).Article 

    Google Scholar 
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).PubMed 
    CAS 

    Google Scholar 
    Allen, L. C. et al. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J. Comp. Physiol. B. 179, 315–323 (2009).PubMed 
    Article 

    Google Scholar 
    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ohmer, M. E. B. et al. Applied ecoimmunology: Using immunological tools to improve conservation efforts in a changing world. Conserv. Physiol. 9, coab074 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: Intergrating competence into reservoir host prediction. Trends Ecol. Evol. 35, P1062–P1065 (2020).Article 

    Google Scholar 
    Kacprzyk, J. et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterologica 19, 219–228 (2017).Article 

    Google Scholar 
    Langlois, M. R. & Delanghe, J. R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 42, 1589–1600 (1996).PubMed 
    Article 
    CAS 

    Google Scholar 
    Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11, e1005168 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fritze, M. et al. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. Dev. Comp. Immunol. 119, 104017 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Moreno, K. et al. Sick bats stay home alone: Fruit bats practice social distancing when faced with an immunological challenge. Ann. N. Y. Acad. Sci. 1505, 178–190 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi). Mamm. Biol. 82, 41–47 (2017).Article 

    Google Scholar 
    Voigt, C. C. et al. The immune response of bats differs between pre-migration and migration seasons. Sci. Rep. 10, 17384 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V., Triana-Llanos, C. & Niño-Castro, A. Metabolic cost of acute phase response in the frugivorous bat, Artibeus lituratus. Mamm. Res. 63, 397–404 (2018).Article 

    Google Scholar 
    Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus). PeerJ 5, e3570 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cabrera-Martínez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cabrera-Martinez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. Food restriction, but not seasonality, modulates the acute phase response of a neotropical bat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 229, 93–100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Stockmaier, S., Bolnick, D. I., Page, R. A. & Carter, G. G. An immune challenge reduces social grooming in vampire bats. Anim. Behav. 140, 141–149 (2018).Article 

    Google Scholar 
    Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8, e54023 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornithol. 148, 571–582 (2007).Article 

    Google Scholar 
    Becker, D. J. et al. Leukocyte profiles reflect geographic range limits and local food abundance in a widespread Neotropical bat. Integr. Comp. Biol. 59, 1176–1189 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).Article 

    Google Scholar 
    Melhado, G., Herrera, M. L. G. & Cruz-Neto, A. P. Bats respond to simulated bacterial infection during the active phase by reducing food intake. J. Exp. Zool. A 333, 536–542 (2020).Article 
    CAS 

    Google Scholar 
    Costantini, D. et al. Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats (Rousettus aegyptiacus). Conserv. Physiol. 10, coac028 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Viljoen, H., Bennett, N. C. & Lutermann, H. Life-history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole-rats. J. Zool. 285, 222–229 (2011).Article 

    Google Scholar 
    Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lilley, T. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. Lond. B Biol. Sci. 284, 20162232 (2017).
    Google Scholar 
    Mayberry, H. W., McGuire, L. P. & Willis, C. K. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J. Comp. Physiol. B. 188, 333–343 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).PubMed 
    Article 

    Google Scholar 
    Grimble, R. F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin. Sci. 91, 121–130 (1996).Article 
    CAS 

    Google Scholar 
    Schultz, E. M., Hahn, T. P. & Klasing, K. C. Photoperiod but not food restriction modulates innate immunity in an opportunistic breeder, Loxia curvirostra. J. Exp. Biol. 220, 722–730 (2016).PubMed 

    Google Scholar 
    Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin?. J. Cell Biol. 198, 773–783 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).Article 

    Google Scholar 
    Bouma, H. R., Carey, H. V. & Kroese, F. G. Hibernation: The immune system at rest?. J. Leukoc. Biol. 88, 619–624 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Crameri, G. et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4, e8266 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hecht, A. M. et al. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci. Rep. 5, 16604 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barclay, R. M. R. et al. Can external radiotransmitters be used to assess body temperature and torpor in bats?. J. Mammal. 77, 1102–1106 (1996).Article 

    Google Scholar 
    Pap, P. L., Czirják, G. Á., Vágási, C. I., Barta, Z. & Hasselquist, D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97, 891–901 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Heinrich, S. K. et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol. Open 5, 550–555 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heinrich, S. K. et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 7, 44837 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morell, V., Lundgren, E. & Gillott, A. Predicting severity of trauma by admission white blood cell count, serum potassium level, and arterial pH. South. Med. J. 86, 658–659 (1993).PubMed 
    Article 
    CAS 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. (R foundation for statistical computing, 2018).Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R Package Version 3, 57 (2007).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).
    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Empirical analysis of the role of the environmental accountability system in energy conservation and emission reduction in China

    Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046270 (2011).Article 

    Google Scholar 
    Tutak, M. & Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 345, 131076 (2022).Article 

    Google Scholar 
    Acheampong, A. O. & Boateng, E. B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 225, 833–856 (2019).Article 

    Google Scholar 
    Zhou, L. A. Governing China’s local officials: An analysis of promotion tournament model. Econ. Res. J. 07, 36–50 (2007) (in Chinese).
    Google Scholar 
    Luo, Z. & Qi, B. The effects of environmental regulation on industrial transfer and upgrading and banking synergetic development—Evidence from water pollution control in the Yangtze River Basin. Econ. Res. J. 56(02), 174–189 (2021).
    Google Scholar 
    Blumstein, C., Krieg, B., Schipper, L. & York, C. Overcoming social and institutional barriers to energy conservation. Energy 5(4), 355–371 (1980).Article 

    Google Scholar 
    Zhang, L. Energy conservation and emission reduction: An inevitable choice of China’s energy strategy. Sustain. Energy 6, 21–30 (2016).ADS 
    Article 

    Google Scholar 
    Bhuiyan, M. A. H., Siwar, C., Ismail, S. M. & Islam, R. The role of government for ecotourism development: Focusing on east coast economic region. J. Soc. Sci. 7(4), 557 (2011).
    Google Scholar 
    Fan, G., Su, M. & Cao, J. An economic analysis of consumption and carbon emission responsibility. Econ. Res. J. 45(01), 4–14 (2010) (in Chinese).
    Google Scholar 
    Xie, J. G. & Jiang, P. S. Embodied energy in international trade of China: Calculation and decomposition. China Econ. Q. 13(04), 1365–1392 (2014) (in Chinese).
    Google Scholar 
    Wu, J., Cui, C., Mei, X., Xu, Q. & Zhang, P. Migration of manufacturing industries and transfer of carbon emissions embodied in trade: Empirical evidence from China and Thailand. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-14674-z (2021).Article 

    Google Scholar 
    Porter, M. E. & Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 9(4), 97–118 (1995).Article 

    Google Scholar 
    Zhang, X. P. & Cheng, X. M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68(10), 2706–2712 (2009).Article 

    Google Scholar 
    Wang, B. & Liu, G. T. Energy conservation, emission reduction and green economic growth in China: From the perspective of total factor productivity. China Ind. Econ. 05, 57–69 (2015) (in Chinese).
    Google Scholar 
    Cheng, Y. Q., Wang, Z. Y., Zhang, S. Z., Ye, X. Y. & Jiang, H. M. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geogr. Sin. 68(10), 1418–1431 (2013) (in Chinese).
    Google Scholar 
    Peng, X. & Cui, H. R. Research on the effects of energy structure adjustment in China on Carbon Intensity. J. Dalian Univ. Technol. (Soc. Sci. Ed.) 37(01), 11–16 (2016) (in Chinese).
    Google Scholar 
    Xiao, T. & Liu, H. Empirical research on industrial structure adjustment and energy conservation and emission reduction. Economist 09, 58–68 (2014) (in Chinese).
    Google Scholar 
    Sheng, P., He, Y. & Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 28(7), 673–686 (2017).Article 

    Google Scholar 
    Sun, H., Samuel, C. A., Amissah, J. C. K., Taghizadeh-Hesary, F. & Mensah, I. A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 212, 118637 (2020).Article 

    Google Scholar 
    He, J. K. Economic analysis and effectiveness evaluation on China’s CO2 emission mitigation target. Stud. Sci. Sci. 01, 9–17 (2011) (in Chinese).
    Google Scholar 
    Meng, W. et al. Study on the developmental strategy of the energy saving and environmental protection industry in China. Strat. Study CAE 18(04), 1–8 (2016) (in Chinese).
    Google Scholar 
    He, J., Wang, M. M., Zhang, Z. L., Li, M. & Shi, H. X. Equal attention should be paid to boyh construction and operation of buildings for energy efficiency and emission reduction: Findings from current data on resource and environment loads in China’s building industry. Sci. Technol. Rev. 36(05), 8–13 (2018) (in Chinese).
    Google Scholar 
    Xie, C. X. & Gao, Y. B. Research on innovative development path of energy conservation and emission reduction from the perspective of low carbon economy. China Resour. Compr. Util. 37(12), 92–94 (2019) (in Chinese).
    Google Scholar 
    Dong, J. F., Deng, C., Wang, X. M. & Zhang, X. L. Multilevel index decomposition of energy-related carbon emissions and their decoupling from economic growth in Northwest China. Energies 9(9), 680 (2016).Article 

    Google Scholar 
    Duan, Y. Q. & Xu, S. L. Command-based environmental regulation and heavy polluters’ investment: incentive or disincentive? A quasi-Natural experiment based on the new environmental protection law. J. Financ. Dev. Res. 07, 54–61 (2021) (in Chinese).
    Google Scholar 
    Cai, W. & Xu, F. The impact of the new environmental protection law on eco-innovation: Evidence from green patent data of Chinese listed companies. Environ. Sci. Pollut. Res. 29(7), 10047–10062 (2022).Article 

    Google Scholar 
    Ning, Y. et al. Energy conservation and emission reduction path selection in China: A simulation based on bi-level multi-objective optimization model. Energy Policy 137, 111116 (2020).Article 

    Google Scholar 
    Hughes, S., Giest, S. & Tozer, L. Accountability and data-driven urban climate governance. Nat. Clim. Change 10(12), 1085–1090 (2020).ADS 
    Article 

    Google Scholar 
    Feng, L., Chen, Z. & Chen, H. Does the central environmental protection inspectorate accountability system improve environmental quality?. Sustainability 14(11), 6575 (2022).Article 

    Google Scholar 
    Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 712, 136504 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z. & Vo, X. V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 207, 118162 (2020).Article 

    Google Scholar 
    Yang, Y. & Niu, X. Impact of the new “Environmental Protection Law” on the efficiency of listed companies in heavily polluting industries in China: Based on the research perspective of “Porter Hypothesis”. Manag. Rev. 33(10), 55–69 (2021).
    Google Scholar 
    Wong, C. W., Wong, C. Y., Boon-Itt, S. & Tang, A. K. Strategies for building environmental transparency and accountability. Sustainability 13(16), 9116 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565), 335–338 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Litman, T. Comprehensive evaluation of energy conservation and emission reduction policies. Transp. Res. Part A Policy Pract. 47, 153–166 (2013).Article 

    Google Scholar 
    Zhou, P., Ang, B. W. & Han, J. Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 32(1), 194–201 (2010).Article 

    Google Scholar 
    Steg, L. Promoting household energy conservation. Energy Policy 36(12), 4449–4453 (2008).Article 

    Google Scholar 
    Yang, Q. & Liu, H. J. Regional difference decomposition and influence factors of China’s carbon dioxide emissions. J. Quant. Tech. Econ. 29(05), 36–49 (2012) (in Chinese).
    Google Scholar 
    Yao, L. J. & Sun, C. Y. Italy’s low carbon economic development policy. Sci. Technol. Ind. China 11, 58–60 (2007) (in Chinese).
    Google Scholar 
    Li, L. et al. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 39(6), 3669–3679 (2011).Article 

    Google Scholar 
    Dong, F. et al. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 129, 187–201 (2018).Article 

    Google Scholar 
    Li, X., Hu, Z., Cao, J. & Xu, X. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy 161, 112733 (2022).Article 

    Google Scholar 
    Ehrlich, P. R. & Holdren, J. P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 171(3977), 1212–1217 (1971).ADS 
    PubMed 
    Article 

    Google Scholar 
    York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46(3), 351–365 (2003).Article 

    Google Scholar 
    Shao, S., Yang, L. L. & Cao, J. H. Study on influencing of CO2 emissions from industrial energy consumption: An empirical analysis based on STIRPAT model and industrial sectors’ dynamic panel data in Shanghai. J. Finance Econ. 36(11), 16–27 (2010) (in Chinese).
    Google Scholar 
    Tseng, S. W. Analysis of energy-related carbon emissions in Inner Mongolia, China. Sustainability 11(24), 7008 (2019).Article 

    Google Scholar 
    Lin, B. & Ouyang, X. Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry. Energy 68, 688–697 (2014).Article 

    Google Scholar 
    Wang, D., He, W. & Shi, R. How to achieve the dual-control targets of China’s CO2 emission reduction in 2030? Future trends and prospective decomposition. J. Clean. Prod. 213, 1251–1263 (2019).Article 

    Google Scholar 
    Card, D., & Krueger, A. B. Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania (1993).Abadie, A. & Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 93(1), 113–132 (2003).Article 

    Google Scholar 
    Kaul, A., Klößner, S., Pfeifer, G. & Schieler, M. Standard synthetic control methods: The case of using all preintervention outcomes together with covariates. J. Bus. Econ. Stat. 40(3), 1362–1376 (2022).MathSciNet 
    Article 

    Google Scholar 
    Lin, B. Q. & Li, J. L. Transformation of China’s energy structure under environmental governance constraints: A peak value analysis of coal and carbon dioxide. Soc. Sci. China 09, 84–107 (2015) (in Chinese).
    Google Scholar 
    Long, X., Naminse, E. Y., Du, J. & Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 52, 680–688 (2015).Article 

    Google Scholar 
    Zhang, W., Zhu, Q. G. & Gao, H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system. Econ. Res. J. 51(12), 62–75 (2016) (in Chinese).
    Google Scholar 
    Wen, Z., Zhang, L., Hou, J. & Liu, H. Mediating effect test procedure and it application. Acta Psychol. Sin. 36(5), 614–620 (2004).
    Google Scholar 
    He, Y., Yu, W. L. & Yang, M. Z. CEOs with rich career experience, corporate risk-taking and the value of enterprises. China Ind. Econ. 09, 155–173 (2019) (in Chinese).
    Google Scholar 
    Zhou, D. Q., Wang, Q., Su, B., Zhou, P. & Yao, L. X. Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis. Appl. Energy 166, 201–209 (2016).Article 

    Google Scholar 
    Waheed, R., Sarwar, S. & Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 5, 1103–1115 (2019).Article 

    Google Scholar 
    Yang, Y., Zhou, Y., Poon, J. & He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 211, 640–651 (2019).Article 

    Google Scholar 
    Apergis, N. & Payne, J. E. Coal consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 38(3), 1353–1359 (2010).Article 

    Google Scholar 
    Mujtaba, A., Jena, P. K., Bekun, F. V. & Sahu, P. K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 160, 112300 (2022).Article 

    Google Scholar 
    Wolde-Rufael, Y. Coal consumption and economic growth revisited. Appl. Energy 87(1), 160–167 (2010).Article 

    Google Scholar  More