More stories

  • in

    Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models

    Murphy, G. E. P., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 2170–2181. https://doi.org/10.1002/ece3.6055 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodward, G., Daniel, M., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055 (2010).Article 

    Google Scholar 
    Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).Article 

    Google Scholar 
    Gannon, J. E. & Stemberger, R. S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97, 16–35. https://doi.org/10.2307/3225681 (1978).Article 

    Google Scholar 
    Ferdous, Z. & Muktadir, S. K. M. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 6, 1815–1819 (2009).Article 

    Google Scholar 
    Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer Trophic State Index. Pol. J. Ecol. 60, 339–350 (2012).
    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2), 241–251 (2000).Article 

    Google Scholar 
    Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364. https://doi.org/10.1016/j.seares.2013.07.003 (2014).ADS 
    Article 

    Google Scholar 
    Carter, J. L. & Schindler, D. L. Responses of zooplankton populations to four decades of climate warming in Lakes of Southwestern Alaska. Ecosystems 15, 1010–1026. https://doi.org/10.1007/s10021-012-9560-0 (2012).CAS 
    Article 

    Google Scholar 
    Ejsmont-Karabin, J. & Węgleńska, T. Disturbances in zooplankton seasonality in Lake Gosławskie (Poland) affected by permanent heating and heavy fish stocking. Ekol. Pol. 36, 245–260 (1988).
    Google Scholar 
    Ejsmont-Karabin, J. et al. Rotifers in Heated Konin Lakes—A review of long-term observations. Water 12, 1660. https://doi.org/10.3390/w12061660 (2020).Article 

    Google Scholar 
    Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 43, 581–590. https://doi.org/10.1111/ecog.04631 (2020).Article 

    Google Scholar 
    Wang, L. et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?. Ecosystems 25, 656–662. https://doi.org/10.1007/s10021-021-00656-2 (2021).CAS 
    Article 

    Google Scholar 
    Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54(6), 2273–2282 (2009).ADS 
    Article 

    Google Scholar 
    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295. https://doi.org/10.1093/icesjms/fsn028 (2008).Article 

    Google Scholar 
    Visconti, A., Manca, M. & De Bernardi, R. Eutrophication-like response to climate warming: An analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J. Limnol. 67(2), 87–92 (2008).Article 

    Google Scholar 
    Vandysh, O. I. The effect of thermal flow of large power facilities on zooplankton community under subarctic conditions. Water Res. 36(3), 310–318. https://doi.org/10.1134/S0097807809030063 (2009).CAS 
    Article 

    Google Scholar 
    Alric, B. et al. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94(12), 2767–2780 (2013).Article 

    Google Scholar 
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Water 8, 341. https://doi.org/10.3390/w8080341 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884. https://doi.org/10.1038/nature02808 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535. https://doi.org/10.1111/j.1365-2745.2008.01355.x (2008).Article 

    Google Scholar 
    Adrian, A., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661. https://doi.org/10.1111/j.1365-2486.2006.01125.x (2006).ADS 
    Article 

    Google Scholar 
    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28(11), 1099–1105. https://doi.org/10.1093/plankt/fbl042 (2006).Article 

    Google Scholar 
    Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623. https://doi.org/10.1111/ele.12265 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, C. & Adrian, R. Exploring lake ecosystems: Hierarchy responses to long-term change?. Glob. Change Biol. 15, 1104–1115. https://doi.org/10.1111/j.1365-2486.2008.01833.x (2009).ADS 
    Article 

    Google Scholar 
    Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).Article 

    Google Scholar 
    Carter, J. L., Schindler, D. E. & Francis, T. B. Effects of climate change on zooplankton community interactions in an Alaskan lake. Climate Change Resp. 4, 3. https://doi.org/10.1186/s40665-017-0031-x (2017).Article 

    Google Scholar 
    Calbet, A. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325–331 (2008).Article 

    Google Scholar 
    Wollrab, S. et al. Climate change-driven regime shifts in a planktonic food web. Am. Natur. 197, 281–295. https://doi.org/10.1086/712813 (2021).Article 
    PubMed 

    Google Scholar 
    Recknagel, F., Adrian, R. & Köhler, J. Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Müggelsee (Germany) by means of evolutionary computation. Environ. Model. Softw. 146, 105224. https://doi.org/10.1016/j.envsoft.2021.105224 (2021).Article 

    Google Scholar 
    EEA. Projected changes in annual, summer and winter temperature. European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/projected-changes-in-annual-summer-1 (2014).IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 (1957).Article 

    Google Scholar 
    Ferrario, A. & Hämmerli, R. On Boosting: Theory and Applications. SSRN: https://ssrn.com/abstract=3402687 (2019).Meysman, F. J. R. & Bruers, S. Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Philos. Trans. R. Soc. B 365, 1405–1416. https://doi.org/10.1098/rstb.2009.0300 (2010).CAS 
    Article 

    Google Scholar 
    Yu, Q., Ji, W., Prihodko, L., Anchang, J. Y. & Hanan, N. P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 12, 217–2128. https://doi.org/10.1111/2041-210X.13686 (2021).Article 

    Google Scholar 
    Park, J. et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070 (2022).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Grbčić, L. et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 155, 105458. https://doi.org/10.1016/j.envsoft.2022.105458 (2022).Article 

    Google Scholar 
    Kruk, M., Artiemjew, P. & Paturej, E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecol. Inf. 66, 101462. https://doi.org/10.1016/j.ecoinf.2021.101462 (2021).Article 

    Google Scholar 
    Hebert, P. D. N. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349–356 (1982).
    Google Scholar 
    Eigen, M. & Winkler, R. Laws of the Game. How the Principles of Nature Govern Chance (Princeton University Press, 1993).
    Google Scholar 
    Tilman, A. R., Plotkin, J. B. & Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 11, 915. https://doi.org/10.1038/s41467-020-14531-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II (eds Kuhn, H. W. & Tucker, A. W.) 315–317 (Princeton University Press, 1953).
    Google Scholar 
    Lundberg, S. M. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
    Google Scholar 
    Štrumbelj, E. & Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 http://dl.acm.org/citation.cfm?id=1756006.1756007 (2010).Gan, G., Ma, C. & Wu, J. Data clustering: Theory, algorithms, and applications. ASA-SIAM Ser. Stat. Appl. Math. https://doi.org/10.1137/1.9780898718348 (2007).Article 
    MATH 

    Google Scholar 
    Riechert, S. E. & Hammerstein, P. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14, 377–409. https://doi.org/10.1146/annurev.es.14.110183.002113 (1983).Article 

    Google Scholar 
    Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).Book 

    Google Scholar 
    Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303(5659), 793–799. https://doi.org/10.1126/science.1093411 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Maloney, K. O., Schmid, M. & Weller, D. E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 3, 116–128. https://doi.org/10.1111/j.2041-210X.2011.00124.x (2012).Article 

    Google Scholar 
    Cao, H., Recknagel, F. & Orr, P. T. Parameter optimization algorithms for evolving rule models applied to freshwater ecosystems. IEEE Trans. Evol. Comput. 18, 793–806. https://doi.org/10.1109/TEVC.2013.2286404 (2014).Article 

    Google Scholar 
    Naqshbandi, N., Iranmanesh, M. & Askari Hesni, M. Effects of environmental factors on species diversity of rotifers using biodiversity indicators and canonical correlation analysis (CCA). J. Aquat. Ecol. 7, 66–75 https://www.sid.ir/en/journal/ViewPaper.aspx?id=661950 (2017).Weisse, M. & Frahm, A. Species-specific interactions between small planctonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plank. Res. 23, 1329–1338 (2001).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962).Article 

    Google Scholar 
    Pomerleau, C., Sastri, A. R. & Beisner, B. E. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. J. Plankton Res. 37, 712–726. https://doi.org/10.1093/plankt/fbv045 (2015).Article 

    Google Scholar 
    Hopcroft, R. R., Kosobokova, K. N. & Pinchuk, A. I. Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res. II(57), 27–39. https://doi.org/10.1016/j.dsr2.2009.08.003 (2010).ADS 
    Article 

    Google Scholar 
    Neumann, L. S. et al. Connectivity between coastal and oceanic zooplankton from Rio Grande do Norte in the Tropical Western Atlantic. Front. Mar. Sci. 6, 00287. https://doi.org/10.3389/fmars.2019.00287 (2019).Article 

    Google Scholar 
    Benedetti, F., Ayata, S.-D., Irisson, J.-O., Adloff, F. & Guilhaumon, F. Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Divers. Distrib. 25, 568–581. https://doi.org/10.1111/ddi.12857 (2019).Article 

    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).CAS 
    Article 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Jasnos, K., Kołba, P., Biernat, H. & Noga, B. The results of the hydrogeological research leading to know and develop the resources of thermal water in the Kleszczów district. Modelowanie Inżynierskie 45, 14 (2012).
    Google Scholar 
    Rybak, J. I. & Błędzki, L. A Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
    Google Scholar 
    Kim, H.-W., Hwang, S.-J. & Joo, G.-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22, 1559–1577 (2000).CAS 
    Article 

    Google Scholar 
    Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).Article 

    Google Scholar 
    Obertegger, U. & Flaim, G. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly?. Hydrobiologia 823, 79–91. https://doi.org/10.1007/s10750-018-3697-6 (2018).Article 

    Google Scholar 
    Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–atlas of species. Polish freshwater fauna (University of Łódź, Łódź, 2004).
    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).ADS 
    Article 

    Google Scholar 
    Huntley, M. E. & Lopez, M. D. Temperature-dependent production of marine copepods: A global synthesis. Am. Nat. 140, 201–242. https://doi.org/10.1086/285410 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olonscheck, D., Hofmann, M., Worm, B. & Schellnhuber, H. J. Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions. Environ. Res. Lett. 8, 014043. https://doi.org/10.1088/1748-9326/8/1/014043 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Goldman revisited: Faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr. 58, 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kruk, M., Kobos, J., Nawrocka, L. & Parszuto, K. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic). J. Mar. Syst. 180, 49–58. https://doi.org/10.1016/j.jmarsys.2018.01.003 (2018).Article 

    Google Scholar 
    Santer, B. & Hansen, A.-M. Diapause of Cyclops vicinus (Uljanin) in Lake Søbyga˚ rd: Indication of a risk-spreading strategy. Hydrobiologia 560, 217–226. https://doi.org/10.1007/s10750-005-1067-7 (2006).Article 

    Google Scholar 
    Mayer, J. et al. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342(343), 165–174 (1997).Article 

    Google Scholar 
    Galir Balkić, A., Ternjej, I. & Špoljar, M. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology 11, 1917. https://doi.org/10.1002/eco.1917 (2018).Article 

    Google Scholar 
    Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 27, 279–291. https://doi.org/10.1111/fme.12411 (2020).Article 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).Article 

    Google Scholar 
    von Flössner, D. Krebstiere (Branchiopoda, Fischläuse, Branchiura (VEB Gustav Fischer Verlag, Jena, 1972).
    Google Scholar 
    Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband, 52–570, (Gebrüder Borntraeger, Berlin, 1978).Streble H. & Krauter D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers. (Kosmos Gesellschaft der Naturfreunde Franckh’sche Verlagshandlung, Stuttgart, 1978).Błędzki, L. A. & Rybak, J. I. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. (Springer, Switzerland, 2016).Bottrell, H. H. et al. Review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
    Google Scholar 
    Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
    Google Scholar 
    APHA. Standard methods for the examination of water and wastewater, 20th ed.. (American Public Health Association, Washington, DC, 1999).Wei, Z.-G. et al. Comparison of methods for picking the operational taxonomic units from amplicon sequences. Front. Microbiol. 24, 644012. https://doi.org/10.3389/fmicb.2021.644012 (2021).Article 

    Google Scholar 
    Sgalella. Kaggle. https://www.kaggle.com/sgalella/correlation-heatmaps-with-hierarchical-clustering (2019).Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    Article 

    Google Scholar 
    Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. 22 ACM SIGKDD Conference on Knowledge, Discovery and Data mining, 12–17 August, San Francisco. https://doi.org/10.1145/2939672.2939785 (2016).Kirpal, E. Kaggle. https://www.kaggle.com/eshaan90/ensembles-and-model-stacking (2019).Brownlee, J. Github. https://github.com/datamangit/codes_for_articles/blob/master/Explain%20your%20model%20with%20the%20SHAP%20values%20for%20article.ipynb (2021).Rathi, P. Toward Data Science. https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21 (2020). More

  • in

    Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Filipiak, M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects (ed. Ulyshen, M. D.) 429–470 (Springer, 2018).
    Google Scholar 
    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).PubMed 

    Google Scholar 
    Oberle, B. et al. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob. Change Biol. 26, 864–875 (2020).ADS 

    Google Scholar 
    Guo, C., Yan, E. & Cornelissen, J. H. C. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.06.003 (2022).Article 
    PubMed 

    Google Scholar 
    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).PubMed 

    Google Scholar 
    Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 117, 1–8 (2020).
    Google Scholar 
    Tláskal, V. et al. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078-20 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use (Springer, 2006).
    Google Scholar 
    Arantes, V. & Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 1158, 3–21 (2014).CAS 

    Google Scholar 
    Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    Fukami, T. et al. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed 

    Google Scholar 
    Wang, J. Y. et al. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 50, 110–127 (2018).CAS 

    Google Scholar 
    Venugopal, P., Junninen, K., Linnakoski, R., Edman, M. & Kouki, J. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For. Ecol. Manag. 360, 341–351 (2016).
    Google Scholar 
    Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    Freschet, G. T., Weedon, J. T., Aerts, R., van Hal, J. R. & Cornelissen, J. H. C. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. J. Ecol. 100, 161–170 (2012).
    Google Scholar 
    Chang, C. et al. Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods Ecol. Evol. 11, 828–838 (2020).
    Google Scholar 
    Hervé, V., Mothe, F., Freyburger, C., Gelhaye, E. & Frey-Klett, P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 86, 358–363 (2014).
    Google Scholar 
    Williamson, G. B. & Wiemann, M. C. Measuring wood specific gravity…Correctly. Am. J. Bot. 97, 519–524 (2010).PubMed 

    Google Scholar 
    Van Der Wal, A., Gunnewiek, P. J. A. K., Cornelissen, J. H. C., Crowther, T. W. & De Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere 7, e01393 (2016).
    Google Scholar 
    Saint-Germain, M., Buddle, C. M. & Drapeau, P. Substrate selection by saprophagous wood-borer larvae within highly variable hosts. Entomol. Exp. Appl. 134, 227–233 (2010).
    Google Scholar 
    Lettenmaier, L. et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia https://doi.org/10.1007/s00442-022-05141-8 (2022).Article 
    PubMed 

    Google Scholar 
    Gao, S. et al. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 74, 1–13 (2017).
    Google Scholar 
    Arnstadt, T. et al. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 382, 129–142 (2016).
    Google Scholar 
    Gessner, M. O. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition (eds Bärlocher, F. et al.) 247–255 (Springer, 2020). https://doi.org/10.1007/978-3-030-30515-4_27.Chapter 

    Google Scholar 
    Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    Strid, Y., Schroeder, M., Lindahl, B., Ihrmark, K. & Stenlid, J. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol. 7, 47–58 (2014).
    Google Scholar 
    Hagge, J. et al. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 286, 20191744 (2019).
    Google Scholar 
    Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. Insect–fungus interactions in dead wood. In Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
    Google Scholar 
    Leach, J. G., Ork, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, art47 (2014).
    Google Scholar 
    Shigo, A. L. & Marx, H. G. Compartmentalization of decay in trees (1977).De Ligne, L. et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022).
    Google Scholar 
    Freyburger, C., Longuetaud, F., Mothe, F., Constant, T. & Leban, J. M. Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 66, 804 (2009).
    Google Scholar 
    Wei, Q., Leblon, B. & La Rocque, A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 41, 2120–2140 (2011).
    Google Scholar 
    Fuchs, A., Schreyer, A., Feuerbach, S. & Korb, J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 50, 63–66 (2004).
    Google Scholar 
    Choi, B., Himmi, S. K. & Yoshimura, T. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT). Holzforschung 71, 535–542 (2017).CAS 

    Google Scholar 
    Bélanger, S. et al. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs. J. Econ. Entomol. 106, 1331–1338 (2013).PubMed 

    Google Scholar 
    Pereira Junior, A. & Garcia de Carvalho, M. An initial study in wood tomographic image classification using the SVM and CNN techniques. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).Kautz, M., Peter, F. J., Harms, L., Kammen, S. & Delb, H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. https://doi.org/10.1007/s10340-022-01490-8 (2022).Article 

    Google Scholar 
    Ehnström, B. & Axelsson, R. Insektsgnag i bark och ved (ArtDatabanken SLU, 2002).
    Google Scholar 
    Philpott, T. J., Prescott, C. E., Chapman, W. K. & Grayston, S. J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 315, 121–128 (2014).
    Google Scholar 
    Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).
    Google Scholar 
    Deflorio, G., Johnson, C., Fink, S. & Schwarze, F. W. M. R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 255, 2373–2383 (2008).
    Google Scholar 
    Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R. & Herrmann, H. J. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115, 919–932 (2011).CAS 
    PubMed 

    Google Scholar 
    Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. https://doi.org/10.1109/ISBI.2011.5872394 (2011).Dodds, K. J., Graber, C. & Stephen, F. M. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ. Entomol. 30, 17–22 (2001).
    Google Scholar 
    Graham, S. A. Temperature as a limiting factor in the life of subcortical insects. J. Econ. Entomol. 17, 377–383 (1924).
    Google Scholar 
    Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).
    Google Scholar 
    Šnajdr, J. et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).
    Google Scholar 
    Möller, G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin (Freie Universität Berlin, 2009).
    Google Scholar 
    Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).CAS 
    PubMed 

    Google Scholar 
    Steger, C., Ulrich, M. & Wiedemann, C. Machine Vision Algorithms and Applications (Wiley, 2008).
    Google Scholar 
    Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).
    Google Scholar 
    Jansche, M. Maximum expected F-measure training of logistic regression models. In Proceedings of the conference on human language technology and empirical meth-ods in natural language processing 692–699 (Association for Computational Linguistics, 2005).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chollet, F. Keras. https://github.com/fchollet/keras (2015).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow.org. (2015).R Core Team. R: A language and environment for statistical computing (2020). More

  • in

    Hardship at birth alters the impact of climate change on a long-lived predator

    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Field, C.B. et al. eds) vol. 9781107025 109–230 (Cambridge University Press, 2012).Tan, X., Gan, T. Y. & Horton, D. E. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Glob. Chang. Biol. 24, 4696–4708 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000).ADS 
    Article 

    Google Scholar 
    Van de Pol, M., Jenouvrier, S., Cornelissen, J. H. C. & Visser, M. E. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–16 (2017).Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).Article 

    Google Scholar 
    Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–10 (2017).Sergio, F., Blas, J. & Hiraldo, F. Animal responses to natural disturbance and climate extremes: a review. Glob. Planet. Change. 161, 28–40 (2018).ADS 
    Article 

    Google Scholar 
    Aghakouchak, A. et al. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    Boyce, M. S. et al. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 
    Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645 (2008).Article 

    Google Scholar 
    Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1000–1001 (2007).Article 
    CAS 

    Google Scholar 
    Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).PubMed 
    Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Environmental variability, life-history covariation and cohort effects in the red-billed chough Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 72, 36–46 (2003).Article 

    Google Scholar 
    Hamel, S., Gaillard, J. M., Festa-Bianchet, M. & Côté, S. D. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90, 1981–1995 (2009).PubMed 
    Article 

    Google Scholar 
    Kordosky, J. R. et al. Landscape of stress: tree mortality influences physiological stress and survival in a native mesocarnivore. PLoS One. 16, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).PubMed 
    Article 

    Google Scholar 
    Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taborsky, B. The influence of juvenile and adult environments on life-history trajectories. Proc. R. Soc. B Biol. Sci. 273, 741–750 (2006).Article 

    Google Scholar 
    Hayward, A. D., Rickard, I. J. & Lummaa, V. Influence of early-life nutrition on mortality and reproductive success during a subsequent famine in a preindustrial population. Proc. Natl Acad. Sci. 110, 13886–13891 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A. & Spencer, H. G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20, 527–533 (2005).PubMed 
    Article 

    Google Scholar 
    Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. R. Soc. B Biol. Sci. 272, 671–677 (2005).Article 

    Google Scholar 
    Grafen, A. On the uses of data on lifetime reproductive success. in Reproductive Success (ed. T. H. Clutton-Brock) 454–471 (Chicago University Press, 1988).Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape lifehistory traits and population dynamics. Ecol. Monogr. 85, 605–623 (2015).Article 

    Google Scholar 
    McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Douhard, M. et al. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proc. R. Soc. B Biol. Sci. 281, 1–8 (2014).Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66 (2014).PubMed 
    Article 

    Google Scholar 
    Zimmer, C., Larriva, M., Boogert, N. J. & Spencer, K. A. Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci. Rep. 7, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Krause, E. T., Honarmand, M., Wetzel, J. & Naguib, M. Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female zebra finches. PLoS One. 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Martin, T. G. et al. Acting fast helps avoid extinction. Conserv. Lett. 5, 274–280 (2012).Article 

    Google Scholar 
    Lewontin, R. C. & Cohen, D. On population growth in a randomly varying environment. Proc. Natl Acad. Sci. 62, 1056–1060 (1969).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sæther, B. E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).Article 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. Am. Nat. 163, 579–590 (2004).PubMed 
    Article 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130, 1346–1358 (2021).Article 

    Google Scholar 
    Bakker, V. J., Doak, D. F. & Ferrara, F. J. Understanding extinction risk and resilience in an extremely small population facing climate and ecosystem change. Ecosphere 12, 1–20 (2021).Beissinger, S. R. Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol. Appl. 5, 618–631 (1995).Article 

    Google Scholar 
    Simberloff, D. Small and declining populations. in Conservation science and action (ed. Sutherland, W. J.) 116–134 (Blackwell, 1998).Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ. 2015, 1–20 (2015).
    Google Scholar 
    Whitfield, S. M. et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc. Natl Acad. Sci. 104, 8352–8356 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, (2017).González, L. M., Margalida, A., Sánchez, R. & Oria, J. Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol. Conserv. 129, 477–486 (129AD).García, F. & Marín, C. Doñana: water and biosphere. (Spanish Ministry of the Environment, 2006).Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Schmidt, G. et al. The state of water in Doñana: an evaluation of the state of the water and of the ecosystems of the protected space. (WWF/Adena, Madrid, 2017).Camacho, C. et al. Groundwater extraction poses extreme threat to Doñana World Heritage Site. Nat. Ecol. Evol. 6, 654–655 (2022).Navedo, J. G., Piersma, T., Figuerola, J. & Vansteelant, W. Spain’s Doñana World Heritage Site in danger. Science 376, 144 (2022).ADS 
    PubMed 
    Article 

    Google Scholar 
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change. 63, 90–104 (2008).ADS 
    Article 

    Google Scholar 
    Goubanova, K. & Li, L. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob. Planet. Change 57, 27–42 (2007).ADS 
    Article 

    Google Scholar 
    Hertig, E. & Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob. Planet. Change. 151, 36–48 (2017).ADS 
    Article 

    Google Scholar 
    Bustamante, J., Pacios, F., Díaz-Delgado, R. & Aragonés, D. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 90, 2219–2225 (2009).Article 

    Google Scholar 
    Veiga, J. P. & Hiraldo, F. Food habits and the survival and growth of nestlings in two sympatric kites (Milvus milvus and Milvus migrans). Ecography (Cop.). 13, 62–71 (1990).Article 

    Google Scholar 
    Viñuela, J. & Bustamante, J. Effect of growth and hatching asynchrony on the fledging age of Black and Red Kites. Auk 109, 748–757 (1992).Article 

    Google Scholar 
    Newton, I., Davis, P. E. & Davis, J. E. Age of first breeding, dispersal and survival of Red Kites Milvus milvus in Wales. Ibis (Lond. 1859). 131, 16–21 (1989).Article 

    Google Scholar 
    Katzenberger, J., Gottschalk, E., Balkenhol, N. & Waltert, M. Density-dependent age of first reproduction as a key factor for population dynamics: stable breeding populations mask strong floater declines in a long-lived raptor. Anim. Conserv. 24, 862–875 (2021).Article 

    Google Scholar 
    Sergio, F., Tavecchia, G., Blas, J., Tanferna, A. & Hiraldo, F. Demographic modeling to fine-tune conservation targets: importance of pre-adults for the decline of an endangered raptor. Ecol. Appl. 31, 1–12 (2021).Article 

    Google Scholar 
    Sergio, F. et al. Protected areas under pressure: decline, redistribution, local eradication and projected extinction of a threatened predator, the red kite, in Doñana National Park, Spain. Endanger. Species Res. 38, 189–204 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Preservation of wide-ranging top predators by site-protection: black and red kites in Doñana National Park. Biol. Conserv. 125, 11–21 (2005).Article 

    Google Scholar 
    Sofaer, H. R., Chapman, P. L., Sillett, T. S. & Ghalambor, C. K. Advantages of nonlinear mixed models for fitting avian growth curves. J. Avian Biol. 44, 469–478 (2013).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Anderson, D. R. Model based inference in the life sciences: a primer on evidence (Springer, 2008).White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird. Study. 46, S120–S139 (1999).Article 

    Google Scholar 
    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).Article 

    Google Scholar 
    Caswell, H. Matrix population models (Sinauer, 2001).Ballerini, T., Tavecchia, G., Pezzo, F., Jenouvrier, S. & Olmastroni, S. Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea. Front. Ecol. Evol. 3, 1–11 (2015).Bateson, P. et al. Developmental plasticity and human health. Nature 430, 419–421 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons

    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar 
    Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. The forms and fitness cost of senescence: Age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. Am. Nat. 179, E15–E27 (2011).Article 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. Biol. Sci. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Millon, A., Petty, S. J. & Lambin, X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J. Anim. Ecol. 79, 426–435 (2010).CAS 
    Article 

    Google Scholar 
    Newton, I. & Rothery, P. Senescence and reproductive value in Sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    Boonekamp, J. J., Salomons, M., Bouwhuis, S., Dijkstra, C. & Verhulst, S. Reproductive effort accelerates actuarial senescence in wild birds: An experimental study. Ecol. Lett. 17, 599–605 (2014).Article 

    Google Scholar 
    Péron, G., Gimenez, O., Charmantier, A., Gaillard, J.-M. & Crochet, P.-A. Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proc. R. Soc. B Biol. Sci. 277, 2849–2856 (2010).Article 

    Google Scholar 
    Pyle, P., Nur, N., Sydeman, W. J. & Emslie, S. D. Cost of reproduction and the evolution of deferred breeding in the western gull. Behav. Ecol. 8, 140–147 (1997).Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Age specific reproductive performance in red-billed chough Pyrrhocorax pyrrhocorax: Patterns and processes in a natural population. J. Anim. Ecol. 72, 765–776 (2003).Article 

    Google Scholar 
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).ADS 
    Article 

    Google Scholar 
    Nussey, D. H. et al. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1–18 (2007).Article 

    Google Scholar 
    Cam, E. & Monnat, J. Y. Apparent inferiority of first-time breeders in the kittiwake: The role of heterogeneity among age classes. J. Anim. Ecol. 69, 380–394 (2000).Article 

    Google Scholar 
    Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis (Lond. 1859). 158, 227–248 (2016).Clutton-Brock, T. H. Reproductive success: Studies of individual variation in contrasting breeding systems. (The university of Chicago Press, 1988).Ringsby, T. H., Sæther, B. & Solberg, E. J. Factors affecting juvenile survival in house sparrow passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J.-A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 399–410 (2008).Article 

    Google Scholar 
    Crawley, M. J. The R Book. (John Wiley & Sons, Ltd, 2007). https://doi.org/10.1002/9780470515075Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).Article 

    Google Scholar 
    Forslund, P. & Pärt, T. Age and reproduction in birds–hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    Article 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).Article 

    Google Scholar 
    Sergio, F. et al. Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic Appl. Ecol. 12, 107–115 (2010).Article 

    Google Scholar 
    Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).Article 

    Google Scholar 
    Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. 50, 1–14 (2019).Article 

    Google Scholar 
    Nielsen, J. T. & Drachmann, J. Age-dependent reproductive performance in Northern Goshawks Accipiter gentilis. Ibis (Lond. 1859). 145, 1–8 (2003).Zuberogoitia, I. et al. Population trends of Peregrine Falcon in Northern Spain–results of a long-term monitoring project. Ornis Hungarica 26, 51–68 (2018).Article 

    Google Scholar 
    Macdonald, D. W. The ecology of carnivore social behaviour. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    Sergio, F. & Boto, A. Nest dispersion, diet, and breeding success of Black Kites (Milvus migrans) in the Italian pre-Alps. J. Raptor Res. 33, 207–217 (1999).
    Google Scholar 
    Sergio, F. & Newton, I. Occupancy as a measure of habitat quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    Millon, A. et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: A long-term demographic study on tawny owls. Glob. Chang. Biol. 20, 1770–1781 (2014).ADS 
    Article 

    Google Scholar 
    Krüger, O. Long-term demographic analysis in goshawk accipiter gentilis: The role of density dependence and stochasticity. Oecologia 152, 459–471 (2007).ADS 
    Article 

    Google Scholar 
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: Food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).Article 

    Google Scholar 
    Froy, H., Phillips, R. A., Wood, A. G., Nussey, D. H. & Lewis, S. Age-related variation in reproductive traits in the wandering albatross: Evidence for terminal improvement following senescence. Ecol. Lett. 16, 642–649 (2013).Article 

    Google Scholar 
    McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. Age-specific reproduction in a long-lived species- the combined effects of senescence and individual quality. Proc. R. Soc. B 275, 963–970 (2008).CAS 
    Article 

    Google Scholar 
    Dixon, A. et al. Seasonal variation in gonad physiology indicates juvenile breeding in the Saker Falcon (Falco cherrug). Avian Biol. Res. 14, 39–47 (2021).Article 

    Google Scholar 
    Newton, I. & Mearns, R. Population ecology of peregrines in South Scotland. in Peregrine falcon populations. Their management and recovery. (eds. Cade, T. J., Enbderson, J. H., Thelander, C. G. & White, C. M.) 651–665 (The Peregrine Fund Inc., 1988).Brommer, J. E., Pietiäinen, H. & Kolunen, H. The effect of age at first breeding on Ural owl lifetime reproductive success and fitness under cyclic food conditions. J. Anim. Ecol. 67, 359–369 (1998).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E., González-Oreja, J. A., Calvo, J. F. & Zabala, J. The relationship between brood size and prey selection in a Peregrine Falcon population located in a strategic region on the Western European Flyway. J. Ornithol. 154, 73–82 (2013).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus : A key for long-term monitoring programmes. Munibe Ciencias Nat. 61, 117–127 (2013).
    Google Scholar 
    Zabala, J. & Zuberogoitia, I. Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PLoS ONE 9, e90254 (2014).ADS 
    Article 

    Google Scholar 
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: A review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).Article 

    Google Scholar 
    McDonald, T. L. & White, G. C. A comparison of regression models for small counts. J. Wildl. Manage. 74, 514–521 (2010).Article 

    Google Scholar 
    Zabala, J. et al. Accounting for food availability reveals contaminant-induced breeding impairment, food-modulated contaminant effects, and endpoint-specificity of exposure indicators in free ranging avian populations. Sci. Total Environ. 791, 148322 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. (Springer-Verlag, 2002).Toms, J. D. & Lesperance, M. L. Piecewise regresion: A tool for identifying ecological tresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Van De Pol, M. & Verhulst, S. Age–dependent traits: A new statistical model to separate within–and between–individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6Therneau, T. A Package for Survival Analysis in S. (2014). More

  • in

    Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology

    Sloan, R. E. in Essays on palaeontology in honour of Loris Shano Russell (ed C. S. Churcher) 134–155 (Royal Ontario Museum, 1976).Dodson, P. J. A faunal review of the Judith River (Oldman) Formation, Dinosaur Provincial Park, Alberta. Mosasaur 1, 89–118 (1983).
    Google Scholar 
    Clemens, W. A. in Dynamics of extinction (ed D. K. Elliott) 63–85 (John Wiley & Sons, 1986).Dodson, P. J. & Tatarinov, L. P. in The Dinosauria (eds D. B. Weishampel, P. J. Dodson, & H. Osmólska) 55–62 (University of California Press, 1990).Lehman, T. M. in Dinofest International (eds D. L. Wolberg, E. Stump, & G. D. Rosenberg) 223–240 (Philadelphia Academy of Natural Sciences, 1997).Lehman, T. M. in Mesozoic Vertebrate Life (eds D. H. Tanke & K. Carpenter) 310–328 (Indiana University Press, 2001).Sampson, S. D. et al. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS ONE 5, e12292. https://doi.org/10.1371/journal.pone.0012292 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol. Rev. 86, 157–181. https://doi.org/10.1111/j.1469-185X.2010.00139.x (2011).Article 
    PubMed 

    Google Scholar 
    Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Spec. Publ 358, 209–240. https://doi.org/10.1144/SP358.14 (2011).Article 

    Google Scholar 
    Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007 (2014).ADS 
    Article 

    Google Scholar 
    Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J. & Savin, S. M. Does ice drive early Maastrichtian eustasy?. Geology 27, 783. https://doi.org/10.1130/0091-7613(1999)027%3c0783:dideme%3e2.3.co;2 (1999).ADS 
    Article 

    Google Scholar 
    Catuneanu, O., Sweet, A. R. & Miall, A. D. Reciprocal stratigraphy of the Campanian-Paleocene Western Interior of North America. Sediment. Geol. 134, 235–255. https://doi.org/10.1016/S0037-0738(00)00045-2 (2000).ADS 
    Article 

    Google Scholar 
    Smith, R. L. Ash flows. Geol. Soc. Am. Bull. 71, 795–841. https://doi.org/10.1130/0016-7606(1960)71[795:af]2.0.co;2 (1960).ADS 
    Article 

    Google Scholar 
    Smedes, H. W. Geology and igneous petrology of the northern Elkhorn mountains. 116 (United States Geological Survey Professional Paper 510 1966).Rutland, C., Smedes, H. W., Tilling, R. I. & Greenwood, W. R. in Cordilleran volcanism, plutonism, and magma generation at various crustal levels, Montana and Idaho. 28th International Geological Congress, Field Trip Guidebook T337 (ed D. W. Hyndman) 16–31 (American Geophysical Union, 1989).Harlan, S. S. et al. 40Ar/39Ar and K-Ar Geochronology and Tectonic Significance of the Upper Cretaceous Adel Mountain Volcanics and Spatially Associated Tertiary Igneous Rocks, Northwestern Montana. 29 (United States Geological Survey Professional Paper 1696, 2005).Breyer, J. A. et al. Evidence for late cretaceous volcanism in Trans-Pecos Texas. J. Geol. 115, 243–251. https://doi.org/10.1086/510640 (2007).ADS 
    Article 

    Google Scholar 
    Jennings, G. R., Lawton, T. E. & Clinkscales, C. A. Late cretaceous U-Pb tuff ages from the, Skunk Ranch Formation and their implications for age of Laramide deformation, Little Hatchet Mountains, southwestern New Mexico, USA. Cretac. Res. 43, 18–25. https://doi.org/10.1016/j.cretres.2013.02.001 (2013).Article 

    Google Scholar 
    Roberts, E. M. & Hendrix, M. S. Taphonomy of a petrified forest in the Two Medicine Formation (Campanian), northwest Montana: implications for palinspastic restoration of the Boulder batholith and Elkhorn Mountains Volcanics. Palaios 15, 476–482. https://doi.org/10.2307/3515516 (2000).ADS 
    Article 

    Google Scholar 
    Sewall, J. O. et al. Climate model boundary conditions for four Cretaceous time slices. Clim. Past. 3, 647–657. https://doi.org/10.5194/cp-3-647-2007 (2007).Article 

    Google Scholar 
    Bertog, J. Stratigraphy of the lower Pierre Shale (Campanian): implications for the tectonic and eustatic controls on facies distributions. J. Geol. Res. 2010, 910243. https://doi.org/10.1155/2010/910243 (2010).ADS 
    Article 

    Google Scholar 
    Fricke, H. C., Foreman, B. Z. & Sewall, J. O. Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous. Earth Planet. Sci. Lett. 289, 11–21. https://doi.org/10.1016/j.epsl.2009.10.018 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Obradovich, J. D. in Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kaufman) 379–396 (Geological Association of Canada Special Paper 39, 1993).Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS Zonal Table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States Based on Ammonites, Inoceramids, and Radiometric Ages. (United States Geological Survey Open-File Report 2006–1250, 2006).Rogers, R. R., Swisher, C. C. & Horner, J. R. 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A. Can J Earth Sci 30, 1066–1075. https://doi.org/10.1139/e93-090 (1993).CAS 
    Article 

    Google Scholar 
    Goodwin, M. B. & Deino, A. L. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Can. J. Earth Sci. 26, 1384–1391. https://doi.org/10.1139/e89-118 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomas, R. G., Eberth, D. A., Deino, A. L. & Robinson, D. Composition, radioisotopic ages, and potential significance of an altered volcanic ash (bentonite) from the Upper Cretaceous Judith River Formation, Dinosaur Provincial Park, southern Alberta, Canada. Cretac. Res. 11, 125–162. https://doi.org/10.1016/s0195-6671(05)80030-8 (1990).CAS 
    Article 

    Google Scholar 
    Roberts, E. M., Deino, A. L. & Chan, M. A. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretac. Res. 26, 307–318. https://doi.org/10.1016/j.cretres.2005.01.002 (2005).Article 

    Google Scholar 
    Fassett, J. E. & Steiner, M. B. in Mesozoic Geology and Paleontology of the Four Corners Region (eds O. Anderson, B. S. Kues, & S. G. Lucas) 239–247 (New Mexico Geological Society 48th Field Conference Guidebook, 1997).Sprain, C. J., Renne, P. R., Wilson, G. P. & Clemens, W. A. High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geol. Soc. Am. Bull. 127, 393–409. https://doi.org/10.1130/B31076.1 (2015).ADS 
    Article 

    Google Scholar 
    Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 452, 272–280. https://doi.org/10.1016/j.epsl.2016.07.041 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, T. T. et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth Planet. Sci. Lett. 446, 37–44. https://doi.org/10.1016/j.epsl.2016.04.007 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Blakey, R. C. Paleogeography and Paleotectonics of the Western Interior Seaway, Jurassic-Cretaceous of North America. (American Association of Petroleum Geologists Search and Discovery Article 30392, 2014).Archibald, J. D. Dinosaur Extinction and the End of an Era: What the Fossils Say 240 (Columbia University Press, London, 1996).
    Google Scholar 
    Currie, P. J. & Russell, D. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 537–569 (Indiana University Press, 2005).Eberth, D. A. & Hamblin, A. P. Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the upper Judith River Group (Belly River Wedge) of southern Alberta, Saskatchewan, and northern Montana. Can. J. Earth Sci. 30, 174–200. https://doi.org/10.1139/e93-016 (1993).ADS 
    Article 

    Google Scholar 
    Eberth, D. A. in Dinosaur Provincial Park: A spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) Ch. 3, 54–82 (Indiana University Press, 2005).Eberth, D. A. Origin and significance of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43, 459–477. https://doi.org/10.1046/j.1365-3091.1996.d01-15.x (1996).ADS 
    Article 

    Google Scholar 
    Russell, D. A. A new specimen of Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can. J. Earth Sci. 6, 595–612. https://doi.org/10.1139/e69-059 (1969).ADS 
    Article 

    Google Scholar 
    Dodson, P. Sedimentology and taphonomy of Oldman formation (Campanian), Dinosaur-Provincial-Park, Alberta (Canada). Palaeogeogr. Palaeocl. 10, 21–000. https://doi.org/10.1016/0031-0182(71)90044-7 (1971).Article 

    Google Scholar 
    Farlow, J. O. Consideration of trophic dynamics of a late cretaceous large dinosaur community (Oldman formation). Ecology 57, 841–857. https://doi.org/10.2307/1941052 (1976).Article 

    Google Scholar 
    Beland, P. & Russell, D. A. Paleoecology of Dinosaur-Provincial-Park (Cretaceous), Alberta, interpreted from distribution of articulated vertebrate remains. Can. J. Earth Sci. 15, 1012–1024. https://doi.org/10.1139/e78-109 (1978).ADS 
    Article 

    Google Scholar 
    MacDonald, M., Currie, P. J. & Spencer, W. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 478–485 (Indiana University Press, 2005).Eberth, D. A., Brinkman, D. B. & Barkas, V. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 495–508 (Indiana University Press, 2010).Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Megaherbivorous dinosaur turnover in the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeogr. Palaeocl. 350, 124–138. https://doi.org/10.1016/j.palaeo.2012.06.024 (2012).Article 

    Google Scholar 
    Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr Palaeocl 372, 108–122. https://doi.org/10.1016/j.palaeo.2012.06.027 (2013).Article 

    Google Scholar 
    Eberth, D. A. & Getty, M. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 501–536 (Indiana University Press, 2005).Brown, C. M., Herridge-Berry, S., Chiba, K., Vitkus, A. & Eberth, D. A. High-resolution (centimetre-scale) GPS/GIS-based 3D mapping and spatial analysis of in situ fossils in two horned-dinosaur bonebeds in the Dinosaur Park Formation (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada. Can. J. Earth Sci. 58, 225–246. https://doi.org/10.1139/cjes-2019-0183 (2021).ADS 
    Article 

    Google Scholar 
    Eberth, D. A., Braman, D. R. & Tokaryk, T. T. Stratigraphy, Sedimentology and vertebrate paleontology of the Judith River Formation (Campanian) near Muddy Lake, West-Central Saskatchewan. Bull. Can. Petrol. Geol. 38, 387–406 (1990).
    Google Scholar 
    Rogers, R. R. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana; nonmarine response to the Claggett and Bearpaw marine cycles. J. Sediment. Res. 68, 615–631. https://doi.org/10.2110/jsr.68.604 (1998).ADS 
    Article 

    Google Scholar 
    Rogers, R. R. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of Northwestern Montana: evidence for drought-related mortality. Palaios 5, 394–413. https://doi.org/10.2307/3514834 (1990).ADS 
    Article 

    Google Scholar 
    Falcon-Lang, H. J. Growth interruptions in silicified conifer woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: implications for palaeoclimate and dinosaur palaeoecology. Palaeogeogr. Palaeocl. 199, 299–314. https://doi.org/10.1016/S0031-0182(03)00539-X (2003).Article 

    Google Scholar 
    Horner, J. R. & Makela, R. Nest of juveniles provides evidence of family-structure among dinosaurs. Nature 282, 296–298. https://doi.org/10.1038/282296a0 (1979).ADS 
    Article 

    Google Scholar 
    Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61. https://doi.org/10.1038/358059a0 (1992).ADS 
    Article 

    Google Scholar 
    Sampson, S. D. Two new horned dinosaurs from the Upper Cretaceous Two Medicine Formation of Montana; With a phylogenetic analysis of the Centrosaurinae (Ornithischia:Ceratopsidae). J. Vertebr. Paleontol. 15, 743–760. https://doi.org/10.1080/02724634.1995.10011259 (1995).Article 

    Google Scholar 
    Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M. & Moore, J. R. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci. Rep. 7, 44942. https://doi.org/10.1038/srep44942 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, J. P., Ryan, M. J. & Evans, D. C. A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the “Styracosaurus-line” dinosaurs. R. Soc. Open Sci. 7, 200284. https://doi.org/10.1098/rsos.200284 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foreman, B. Z., Rogers, R. R., Deino, A. L., Wirth, K. R. & Thole, J. T. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretac. Res. 29, 373–385. https://doi.org/10.1016/j.cretres.2007.07.001 (2008).Article 

    Google Scholar 
    Varricchio, D. J. et al. in Large Meteorite Impacts and Planetary Evolution IV Vol. 465 (eds R. L. Gibson & W. U. Reimold) 269–299 (Geological Society of America Special Paper 465, 2010).Meek, F. B. & Hayden, F. V. Descriptions of new species of acephala and gasteropoda, from the tertiary formations of Nebraska Territory, with some general remarks on the geology of the country about the sources of the Missouri River. Ceratites Americanus. Proc. Acad. Nat. Sci. Phila. 8, 111–126 (1856).
    Google Scholar 
    Hayden, F. V. Notes explanatory of a map and section illustrating the geologic structure of the country bordering the Missouri River from the mouth of the Platte River to Fort Benton. Proc. Acad. Natl. Sci. Phila. 9, 109–148 (1857).
    Google Scholar 
    Hayden, F. V. in [Fourth Annual] Preliminary Report of the United States Geological Survey of Wyoming and portions of contiguous Territories 85–98 (U.S. Geological Survey, 1871).Dawson, G. M. in Report on the Geology and Resources of the Region in the Vicinity of the Forty-Ninth Parallel, from the Lake of the Woods to the Rocky Mountains 1–18 (British North American Boundary Commission, 1875).Stanton, T. W., Hatcher, J. B. & Knowlton, F. H. Geology and Paleontology of the Judith River Beds (United States Geological Survey Bulletin No. 257, 1905).Bowen, C. F. in Shorter Contributions to General Geology 1914 95–153 (United States Geological Survey Professional Paper 90, 1915).Waage, K. M. in The Cretaceous System in the Western Interior of North America: The Proceedings of an International Symposium Organized by the Geological Association of Canada, Saskatoon, Saskatchewan, May 23–26, 1973 (ed W. G. E. Caldwell) 55–81 (Geological Association of Canada Special paper 13, 1975).Leidy, J. Notice of remains of extinct reptiles and fishes, discovered by Dr. FV Hayden in the Bad Lands of the Judith River, Nebraska Territory. Proc. Acad. Nat. Sci. Phila. 8, 72–73. https://doi.org/10.5281/zenodo.1038128 (1856).Article 

    Google Scholar 
    Leidy, J. Extinct vertebrata from the Judith River and Great Lignite formations of Nebraska. Trans. Am. Philos. Soc. 11, 139–154. https://doi.org/10.2307/3231936 (1860).Article 

    Google Scholar 
    Cope, E. D. On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana. Proc. Acad. Natl. Sci. Phila. 28, 340–359 (1876).
    Google Scholar 
    Sternberg, C. H. Notes on the fossil vertebrates collected on the Cope expedition to the Judith River and Cow Island beds, Montana, in 1876. Science 40, 134–135. https://doi.org/10.1126/science.40.1021.134 (1914).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sahni, A. The vertebrate fauna of the Judith River Formation, Montana. Bull. Am. Mus. Nat. Hist. 147, 325–412 (1972).
    Google Scholar 
    Tschudy, B. D. Palynology of the upper Campanian (Cretaceous) Judith River Formation, north-central Montana. 42 (United States Geological Survey Professional Paper 770, 1973).Case, G. R. A new Selachian Fauna from the Judith River formation (Campanian) of Montana. Palaeontogr. Abt. A Band A 160, 176–205 (1978).
    Google Scholar 
    Horner, J. R. A new hadrosaur (Reptilia, Ornithischia) from the Upper Cretaceous Judith River Formation of Montana. J. Vertebr. Paleontol. 8, 314–321. https://doi.org/10.1080/02724634.1988.10011714 (1988).Article 

    Google Scholar 
    Fiorillo, A. R. & Currie, P. J. Theropod teeth from the Judith River formation (Upper Cretaceous) of south-central Montana. J. Vertebr. Paleontol. 14, 74–80. https://doi.org/10.1080/02724634.1994.10011539 (1994).Article 

    Google Scholar 
    Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156. https://doi.org/10.1671/0272-4634(2005)025[0144:Niotco]2.0.Co;2 (2005).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R., Backlund, R., Dwyer, C. N. & Echt, S. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeogr. Palaeocl. 266, 13–27. https://doi.org/10.1016/j.palaeo.2008.03.030 (2008).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R. & Gates, T. A. Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities. Paleobiology 35, 270–288. https://doi.org/10.1666/08025.1 (2009).Article 

    Google Scholar 
    Tweet, J. S., Chin, K., Braman, D. R. & Murphy, N. L. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River formation of Montana. Palaios 23, 624–635. https://doi.org/10.2110/palo.2007.p07-044r (2008).ADS 
    Article 

    Google Scholar 
    Ryan, M. J., Evans, D. C., Currie, P. J. & Loewen, M. A. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs. Naturwissenschaften 101, 505–512. https://doi.org/10.1007/s00114-014-1183-1 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086. https://doi.org/10.1098/rsos.161086 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiba, K., Ryan, M. J., Fanti, F., Loewen, M. A. & Evans, D. C. New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River formation (Campanian, Montana). J. Paleontol. 92, 272–288. https://doi.org/10.1017/jpa.2017.62 (2017).Article 

    Google Scholar 
    Rogers, R. R. et al. Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. J. Geol. 124, 99–135. https://doi.org/10.1086/684289 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawton, T. F., Pollock, S. L. & Robinson, R. A. J. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the late cretaceous fluvial systems of southwestern Utah, USA. J. Sediment. Res. 73, 389–406. https://doi.org/10.1306/100702730389 (2003).ADS 
    Article 

    Google Scholar 
    Jinnah, Z. A. et al. New 40Ar/39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits formations on the Kaiparowits Plateau, Utah: implications for regional correlation, provenance, and biostratigraphy. Cretac. Res. 30, 287–299. https://doi.org/10.1016/j.cretres.2008.07.012 (2009).Article 

    Google Scholar 
    Beveridge, T. L. et al. Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 591, 110876. https://doi.org/10.1016/j.palaeo.2022.110876 (2022).Article 

    Google Scholar 
    Jinnah, Z. A. & Roberts, E. M. Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, USA. J. Sediment. Res. 81, 266–283. https://doi.org/10.2110/jsr.2011.22 (2011).ADS 
    Article 

    Google Scholar 
    Gregory, H. E. & Moore, R. C. The Kaiparowits region, a geographic and geologic reconnaissance of parts of Utah and Arizona. Report No. 164, 161 (United States Geological Survey Professional Paper 164, 1931).Lohrengel, C. F. II. Palynology of Kaiparowits Formation, Garfield County, Utah. AAPG Bull. 53, 729–729. https://doi.org/10.1306/5d25c75f-16c1-11d7-8645000102c1865d (1969).Article 

    Google Scholar 
    Roberts, E. M. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment. Geol. 197, 207–233. https://doi.org/10.1016/j.sedgeo.2006.10.001 (2007).ADS 
    Article 

    Google Scholar 
    Lawton, T. F. & Bradford, B. A. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from Zircon U-Pb geochronology and petrography. J. Sediment. Res. 81, 495–512. https://doi.org/10.2110/jsr.2011.45 (2011).ADS 
    Article 

    Google Scholar 
    Beveridge, T. L., Roberts, E. M. & Titus, A. L. Volcaniclastic member of the richly fossiliferous Kaiparowits Formation reveals new insights for regional correlation and tectonics in southern Utah during the latest Campanian. Cretac. Res. https://doi.org/10.1016/j.cretres.2020.104527 (2020).Article 

    Google Scholar 
    Titus, A. L. et al. in Interior Western United States (ed C. M. Dehler) 1–28 (Geological Society of America Field Guide 6, 2005).Titus, A. L. & Loewen, M. A. At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Indiana University Press, 2013).Cifelli, R. L. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). J. Vertebr. Paleontol. 10, 295–319. https://doi.org/10.1080/02724634.1990.10011816 (1990).Article 

    Google Scholar 
    Eaton, J., Cifelli, R., Hutchison, J. H., Kirkland, J. & Parrish, J. in Vertebrate Paleontology in Utah (ed D. D. Gillette) 345–353 (Utah Geological Survey Miscellaneous Publication 99–1, 1999).Zanno, L. E. & Sampson, S. D. A new oviraptorosaur (Theropoda, Maniraptora) from the Late Cretaceous (Campanian) of Utah. J. Vertebr. Paleontol. 25, 897–904. https://doi.org/10.1671/0272-4634(2005)025[0897:Anotmf]2.0.Co;2 (2005).Article 

    Google Scholar 
    Gates, T. A. & Sampson, S. D. A new species of Gryposaurus (Dinosauria : Hadrosauridae) from the late Campanian Kaiparowits Formation, southern Utah, USA. Zool J Linn Soc-Lond 151, 351–376. https://doi.org/10.1111/j.1096-3642.2007.00349.x (2007).Article 

    Google Scholar 
    Sampson, S. D., Lund, E. K., Loewen, M. A., Farke, A. A. & Clayton, K. E. A remarkable short-snouted horned dinosaur from the Late Cretaceous (late Campanian) of southern Laramidia. Proc. Biol. Sci. 280, 20131186. https://doi.org/10.1098/rspb.2013.1186 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carr, T. D., Williamson, T. E., Britt, B. B. & Stadtman, K. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften 98, 241–246. https://doi.org/10.1007/s00114-011-0762-7 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanno, L. E., Varricchio, D. J., O’Connor, P. M., Titus, A. L. & Knell, M. J. A new troodontid theropod, Talos sampsoni gen. et sp. Nov., from the Upper Cretaceous Western Interior Basin of North America. PLoS ONE 6, e24487. https://doi.org/10.1371/journal.pone.0024487 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loewen, M. A., Irmis, R. B., Sertich, J. J., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS ONE 8, e79420. https://doi.org/10.1371/journal.pone.0079420 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiersma, J. P. & Irmis, R. B. A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. Nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA. Peerj 6, e5016. https://doi.org/10.7717/peerj.5016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Titus, A. L. et al. Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness. PeerJ 9, e11013. https://doi.org/10.7717/peerj.11013 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, E., Sampson, S., Deino, A., Bowring, S. & Buchwaldt, R. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 85–106 (Indiana University Press, 2013).Fassett, J. E. & Hinds, J. S. Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado. Report No. 676, 76 (United States Geological Survey Professional Paper 676, 1971).Fassett, J. E. in Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah (eds M. A. Kirschbaum, L. N. R. Roberts, & L. Biewick) Q1-Q132 (U.S. Geological Survey Professional Paper 1625–B, 2000).Flynn, A. G. et al. Early Paleocene magnetostratigraphy and revised biostratigraphy of the Ojo Alamo Sandstone and Lower Nacimiento Formation, San Juan Basin, New Mexico, USA. GSA Bull. 132, 2154–2174. https://doi.org/10.1130/b35481.1 (2020).Article 

    Google Scholar 
    Hay, O. P. On the habits and the pose of the Sauropodous dinosaurs, especially of Diplodocus. Am. Nat. 42, 672–681. https://doi.org/10.1086/278992 (1908).Article 

    Google Scholar 
    Gilmore, C. W. in Shorter Contributions to General Geology 1916 279–308 (United States Geological Survey Professional Paper 98-Q, 1916).Gilmore, C. W. On the Replilia of the Kirtland formation of New Mexico, with descriptions of new species of fossil turtles. Proc. U.S. Natl. Mus. 83, 159–188 (1935).Article 

    Google Scholar 
    Hunt, A. P. Integrated vertebrate, invertebrate and plant taphonomy of the Fossil Forest area (Fruitland and Kirtland formations: Late Cretaceous), San-Juan-County, New-Mexico, USA. Palaeogeogr. Palaeocl. 88, 85–107. https://doi.org/10.1016/0031-0182(91)90016-K (1991).Article 

    Google Scholar 
    Hunt, A. P. & Lucas, S. G. in New Mexico Geological Society 43rd Field Conference Guidebook Vol. 43 (eds S. G. Lucas, B. S. Kues, T. E. Williamson, & A. P. Hunt) 217–239 (New Mexico Geological Society, 1992).Fassett, J. E. & Heizler, M. T. in The Geology of the Ouray-Silverton Area (eds K. E. Karlstrom et al.) 115–121 (68th New Mexico Geological Society Field Conference Guidebook, 2017).Folinsbee, R., Lipson, J. & Baadsgaard, H. Potassium-argon dates of upper cretaceous ash falls, Alberta, Canada. Ann. N. Y. Acad. Sci. 91, 352. https://doi.org/10.1111/j.1749-6632.1961.tb35475.x (1961).ADS 
    Article 

    Google Scholar 
    Lerbekmo, J. F. Petrology of the belly river formation, southern Alberta foothills. Sedimentology 2, 54–86. https://doi.org/10.1111/j.1365-3091.1963.tb01200.x (1963).ADS 
    Article 

    Google Scholar 
    Min, K. W., Renne, P. R. & Huff, W. D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 185, 121–134. https://doi.org/10.1016/S0012-821x(00)00365-4 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362. https://doi.org/10.1016/0012-821x(77)90060-7 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Samson, S. D. & Alexander, E. C. Calibration of the interlaboratory 40Ar-39Ar dating standard, Mmhb-1. Chem. Geol. 66, 27–34. https://doi.org/10.1016/0168-9622(87)90025-X (1987).CAS 
    Article 

    Google Scholar 
    Deino, A. & Potts, R. Single-crystal 40Ar/39Ar dating of the Olorgesailie formation, Southern Kenya Rift. J. Geophys. Res. 95, 8453. https://doi.org/10.1029/JB095iB06p08453 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Renne, P. R. et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145, 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504. https://doi.org/10.1126/science.1154339 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fowler, D. W. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE 12, e0188426. https://doi.org/10.1371/journal.pone.0188426 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turrin, B. D. et al. in American Geophysical Union, Fall Meeting Vol. 2016 V23A–2969 (San Francisco, California, 2016).Phillips, D., Matchan, E. L., Dalton, H. & Kuiper, K. F. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine—closing the interlaboratory gap. Chem. Geol. 597, 120815. https://doi.org/10.1016/j.chemgeo.2022.120815 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Eberth, D. A. & Kamo, S. L. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian-Maastrichtian), Red Deer River valley, Alberta, Canada. Can. J. Earth Sci. 57, 1220–1237. https://doi.org/10.1139/cjes-2019-0019 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Gale, A. S. et al. in Geologic Time Scale 2020 (eds F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg) 1023–1086 (Elsevier, 2020).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480. https://doi.org/10.1016/j.gca.2015.05.026 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501. https://doi.org/10.1016/j.gca.2015.02.040 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Lu, J. et al. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc. Natl. Acad. Sci. U.S.A. 118, e2109895118. https://doi.org/10.1073/pnas.2109895118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, B., Harlow, G. E., Wohletz, K., Zhou, Z. & Meng, J. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. Nat. Commun. 5, 3151. https://doi.org/10.1038/ncomms4151 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gates, T. A. et al. Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America. Palaeogeogr. Palaeocl. 291, 371–387. https://doi.org/10.1016/j.palaeo.2010.03.008 (2010).Article 

    Google Scholar 
    Eaton, J. G. in Stratigraphy, depositional environments; and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway (eds J. Dale Nations & J. G. Eaton) 47–63 (Geological Society of America Special Paper 260, 1991).Sankey, J. T. Late Campanian southern dinosaurs, Aguja Formation, Big Bend, Texas. J. Paleontol. 75, 208–215. https://doi.org/10.1666/0022-3360(2001)075%3c0208:Lcsdaf%3e2.0.Co;2 (2001).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. G. Vertebrate faunal succession in the Upper Cretaceous, San Juan Basin, New Mexico, with implications for correlations within the north American western interior. J. Vertebr. Paleontol. 23, 102a–102a (2003).
    Google Scholar 
    Currie, P. J. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 3–33 (Indiana University Press, 2005).Kirkland, J. I. & Deblieux, D. D. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 117–140 (Indiana University Press, 2010).Miller, I. M., Johnson, K., Kline, D. E., Nichols, D. J. & Barclay, R. in At the Top of the Grand Staircase: The Late Cretaceous of southern Utah (eds A. Titus & M. Loewen) 107–131 (Indiana University Press, 2013).Tapanila, L. & Roberts, E. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 132–152 (Indiana University Press, 2013).Schmitt, J. & Varricchio, D. J. Volcano-tectonic partitioning of Laramidia: Influence on Campanian terrestrial environments and ecosystems. Program and Abstracts. J. Vertebr. Paleontol. 31, 188. https://doi.org/10.1080/02724634.2011.10635174 (2011).Article 

    Google Scholar 
    Burgener, L. et al. An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America. GSA Bull. https://doi.org/10.1130/b35904.1 (2021).Article 

    Google Scholar 
    Sullivan, R. M. Revision of the dinosaur Stegoceras Lambe (Ornithischia, Pachycephalosauridae). J. Vertebr. Paleontol. 23, 181–207. https://doi.org/10.1671/0272-4634(2003)23[181:ROTDSL]2.0.CO;2 (2003).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. The Kirtlandian land-vertebrate “age”-faunal composition, temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of western North America. N. M. Mus. Nat. Hist. Sci. Bull. 35, 7–29 (2006).
    Google Scholar 
    Lucas, S. G., Sullivan, R. M., Lichtig, A., Dalman, S. & Jasinski, S. E. in Cretaceous Period: Biotic Diversity and Biogeography Vol. New Mexico Museum of Natural History and Science Bulletin 71 (eds S. G. Lucas & A. Khosla) 195–213 (2016).Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901. https://doi.org/10.1111/pala.12492 (2020).Article 

    Google Scholar 
    Maidment, S. C. R., Dean, C. D., Mansergh, R. I. & Butler, R. J. Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc. Biol. Sci. 288, 20210692. https://doi.org/10.1098/rspb.2021.0692 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loughney, K. M. & Badgley, C. The influence of depositional environment and basin history on the taphonomy of mammalian assemblages from the Barstow Formation (middle Miocene), California. Palaios 35, 175–190. https://doi.org/10.2110/palo.2019.067 (2020).ADS 
    Article 

    Google Scholar 
    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl. Acad. Sci. 113, 5036–5040. https://doi.org/10.1073/pnas.1521478113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833. https://doi.org/10.1038/s41467-021-23754-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therrien, F. O. & Fastovsky, D. E. Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15, 194–211. https://doi.org/10.1669/0883-1351(2000)015%3c0194:poetcf%3e2.0.co;2 (2000).ADS 
    Article 

    Google Scholar 
    Hoke, G. D., Schmitz, M. D. & Bowring, S. A. An ultrasonic method for isolating nonclay components from clay-rich material. Geochem. Geophys. Geosyst. 15, 492–498. https://doi.org/10.1002/2013GC005125 (2014).ADS 
    Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geol. Soc. Am. Bull. 123, 2142–2159. https://doi.org/10.1130/b30433.1 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Widmann, P., Davies, J. H. F. L. & Schaltegger, U. Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U-Pb age. Chem. Geol. 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krogh, T. E. Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494. https://doi.org/10.1016/0016-7037(73)90213-5 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003479 (2011).Article 

    Google Scholar 
    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003478 (2011).Article 

    Google Scholar 
    Machlus, M. L. et al. A strategy for cross-calibrating U-Pb chronology and astrochronology of sedimentary sequences: an example from the Green River Formation, Wyoming, USA. Earth Planet. Sci. Lett. 413, 70–78. https://doi.org/10.1016/j.epsl.2014.12.009 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614. https://doi.org/10.1126/science.1215507 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. & Bowring, S. A. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889 (1971).ADS 
    Article 

    Google Scholar 
    Nasdala, L. et al. GZ7 and GZ8—two zircon reference materials for SIMS U-Pb geochronology. Geostand. Geoanal. Res. 42, 431–457. https://doi.org/10.1111/ggr.12239 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C Appl. Stat. 57, 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x (2008).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009 (2008).ADS 
    Article 

    Google Scholar  More

  • in

    Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration

    External datasetsWoody biomass carbon dataThe dataset by ref. 16 maps annual global woody biomass carbon densities for 2000–2019 at a spatial resolution of ~10 km. The annual estimates represent averages for the tropical regions and growing-season (April–October) averages for the extra-tropical regions. Ref. 16 analyse global trends of gains and losses in woody biomass carbon for 2000–2019. Overall, they find that grid cells with (significant) net gains of vegetation carbon are by a factor of 1.4 more abundant than grid cells with net losses of vegetation carbon, indicating that there is a global greening trend when only considering the areal extent of biomass gains and not the magnitude of carbon gains. Their regionally distinct analysis of trends shows that almost all regions, except for the tropical moist forests in South America and parts of Southeast Asia, experienced net gains in biomass carbon. On the country scale, the largest net increase in biomass carbon is shown in China, which is mainly attributed to the large-scale afforestation programs in the southern part of the country and increased carbon uptake of established forests. On the other hand, the largest vegetation carbon losses are shown for Brazil and Indonesia, which is partly attributed to deforestation, degradation, and drought events. All of the mentioned trends have been found to be significant16. The decreasing carbon sink in Brazil is in line with ref. 44, who, considering both natural and anthropogenic fluxes, show that the southeastern Amazon has even turned from a carbon sink to a carbon source, mainly owing to fire emissions from forest clearing. Isolating carbon fluxes in intact, old-growth Amazonian rainforests (i.e., SLAND,B), ref. 45 also find evidence for a significantly decreasing carbon sink due to the negative effects of increasing temperatures and droughts on carbon uptake since the 1990s.The dataset was remapped to the BLUE resolution of 0.25∘ through conservative remapping (i.e., area-weighted averaging).ERA-5 dataThe ERA-5 variables were downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/home). Monthly air temperature (Ta) at 2 m height was averaged over each year, and annual precipitation was calculated by taking the sum of the monthly total precipitation (P). Both variables were regridded from the original resolution of ~0.1° to 0.25° resp. to the TRENDY resolution of 0.5° through conservative remapping.TRENDY dataWe used the TRENDY model ensemble version 8 (conducted for the 2019 GCB; ref. 8). We used net biome production (NBP) and annual vegetation carbon stocks (cVeg) for 2000–2018 from four different model setups (S2, S3, S5, and S6) and eight resp. 13 DGVMs (depending on the data available). The selection of DGVMs is done as in ref. 19 (Supplementary Tab. 3), but we included one additional model (ISAM) for the S2 simulations. The terrestrial biomass carbon sink (SLAND,B) was calculated for 13 DGVMs following the GCB 2020 approach, i.e., from the S2 simulation, which is the simulation without LULCC (i.e., fixed pre-industrial land cover) under transient environmental conditions (climate, nitrogen deposition, CO2 evolution). SLAND,B is the annual difference of cVeg and makes no statements about the further fate of biomass if cVeg decreases. SLAND,B, therefore, should not be interpreted as equivalent to the flux to/from the atmosphere, since parts of cVeg may be transferred to litter, dead wood, or soil. The same applies to our BLUE estimates of SLAND,B, ensuring comparability between our BLUE estimates and the TRENDY estimates. Increases (decreases) of cVeg between two years are a net uptake (release) of carbon from the terrestrial biosphere. The global sums of biomass carbon stocks under transient climate and CO2 were calculated from the S3 setup (LULCC under historical environmental conditions), whereas the S5 setup provides biomass carbon under constant present-day environmental forcing (closest to the classical bookkeeping approach). In line with the GCB, ELUC was calculated under historical environmental conditions as the difference in NBP between the S2 and S3 simulations (ELUC = NBP_S2 – NBP_S3). ELUC under constant present-day environmental forcing was calculated as the difference in NBP between the S6 (fixed pre-industrial land cover under present-day environmental forcing) and S5 simulations (ELUC = NBP_S6 – NBP_S5)19. All datasets were remapped to a common resolution of 0.5∘ through conservative remapping (area-weighted average) for the data analysis.Assimilation of observed woody biomass carbon in BLUEThe observed woody biomass carbon densities by ref. 16 are assimilated in BLUE in several steps.Carbon transfer in the default setup of BLUEThe BLUE simulation is started in AD 850. Biomass and soil vegetation carbon densities are based on ref. 17, which are converted to exponential time constants. A detailed explanation of the exponential model can be found in ref. 5.While in the default setup, changes are only due to LULCC, our assimilation approach now introduces environmental effects on woody vegetation carbon by assimilating the observed woody biomass carbon densities in BLUE from 2000 onward according to the methodological considerations explained below.Calculation of woody biomass carbon densities for different land cover types and PFTsWithin each 0.25° cell of the global grid, the (remapped) woody biomass carbon density from ref. 16 must be the sum of woody biomass carbon stored in all woody PFTs of all woody land cover types. The distribution of the woody biomass carbon across PFTs and land cover types is achieved by distributing the observed (i.e., actual) woody biomass carbon densities (ρBa) from ref. 16 across the two land cover types (j) and the eight PFTs (l) that can be woody vegetation (primary land, called virgin, “v” in BLUE and secondary, “s”, land) according to the fraction of total woody biomass carbon (fB) contained in each land cover type and each PFT (fB,j,l) as estimated by BLUE. fB,j,l varies for different PFTs and land cover types, depending on their history of LULCC and their potential for carbon uptake (i.e., the potential carbon densities).fB,j,l is extracted from the default simulations for the first year of the time series (i.e., 2000) and calculated for subsequent years from the BLUE simulations using the assimilated woody vegetation carbon densities for that year:$${f}_{B,j,l}(t)=frac{{C}_{B,j,l}(t)}{{C}_{B}(t)}$$
    (1)
    where CB is the woody biomass carbon stock.Consequently, the assimilated woody biomass carbon stock per cover type and PFT (CB_as,j,l) at each time step can be calculated as:$${C}_{B_as,j,l}(t)={rho }_{Ba}(t);*;A;*;{f}_{B,j,l}(t)$$
    (2)
    with j{v, s}; l{1. . 8}; t{2000. . 2019}. A is the area per grid cell.Thresholds for excluding inconsistent woody biomass carbon densitiesWe eliminate unrealistically large values for woody biomass carbon densities that our assimilation framework produces. Woody biomass carbon densities in BLUE that exceed the highest value (~374 t ha−1) of the original dataset indicate inconsistencies between the observed woody biomass carbon estimates and the fractional grid cell areas per PFT and land cover types that BLUE simulates. To account for uncertainties related to the criteria for exclusion of grid cells, multiple threshold approaches are applied and the results are compared. To maintain a temporally and spatially consistent time series of woody biomass carbon, grid cells that are excluded according to the chosen threshold approach are interpolated through linear barycentric interpolation. A first approach relies on a uniform upper threshold of More

  • in

    Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions

    We focused on the Northern High Latitudes (NHL, latitude > 50°N, excluding Greenland) due to their importance for carbon (CO2-C, the same hereafter)-climate feedbacks in the Earth system. To minimize the potential human influence on the CO2 cycle, we excluded areas under agricultural management (croplands, cropland/natural vegetation mosaic, and urban types), and considered only pixels of natural vegetation defined from the MODIS MCD12Q1 (v006) based IGBP land cover classification. Our main focus was the NHL permafrost region because permafrost plays a critical role in the ecology, environment, and society in the NHL. Permafrost, or permanently frozen ground, is defined as ground (soil, sediment, or rock) that remains at or below 0 °C for at least two consecutive years. The occurrence of permafrost is primarily controlled by temperature and has a strong effect on hydrology, soils, and vegetation composition and structure. Based on the categorical permafrost map from the International Permafrost Association58, the permafrost region (excluding permanent snow/ice and barren land), including sporadic (10–50%), discontinuous (50–90%), and continuous ( >90%) permafrost, encompasses about 15.7 × 106 km2, accounts for 57% of the NHL study dominion, and is dominated by tundra (shrubland and grass) and deciduous needleleaf (i.e., larch) forest that is regionally abundant in Siberia. The NHL non-permafrost region covers about 11.9 × 106 km2 and is dominated by mixed and evergreen needleleaf boreal forests (Fig. S1).Atmospheric CO2 inversions (ACIs)ACIs provide regionally-integrated estimates of surface-to-atmosphere net ecosystem CO2 exchange (NEEACI) fluxes by utilizing atmospheric CO2 concentration measurements and atmospheric transport models59. ACIs differ from each other mainly in their underlying atmospheric observations, transport models, spatial and temporal flux resolutions, land surface models used to predict prior fluxes, observation uncertainty and prior error assignment, and inversion methods. We used an ensemble mean of six different ACI products, each providing monthly gridded NEEACI at 1-degree spatial resolution, including Carbon‐Tracker 2019B (2000-2019, CT2019)60, Carbon‐Tracker Europe 2020 (2000–2019, CTE2020)61, Copernicus Atmosphere Monitoring Service (1979–2019, CAMS)62, Jena CarboScope (versions s76_v4.2 1976–2017, and s85_v4.2 1985-2017)63,64, and JAMSTEC (1996–2017)65. The monthly gridded ensemble mean NEEACI at 1-degree spatial resolution was calculated using the available ACIs from 1980-2017. Monthly ACI ensemble mean NEEACI data were summed to seasonal and annual values, and used to calculate the spatial and temporal trends of net CO2 uptake, and to investigate its relationship to climate and environmental controls.Productivity datasetDirect observations of vegetation productivity do not exist at a circumpolar scale. We therefore used two long-term gridded satellite-based estimates of vegetation productivity, including gross primary production (GPP) derived using a light use efficiency (LUE) approach (LUE GPP, 1982–1985)21,66 and satellite observations of Normalized Difference Vegetation Index (NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS NDVI, 1982–1985)67. LUE GPP (monthly, 0.5° spatial resolution, 1982–2015) is calculated from satellite observations of NDVI from the Advanced Very High-Resolution Radiometer (AVHRR; 1982 to 2015) combined with meteorological data, using the MOD17 LUE approach. LUE GPP has been extensively validated with a global array of eddy-flux tower sites68,69,70 and tends to provide better estimates in ecosystems with greater seasonal variability at high latitudes. Following66,71, we used the ensemble mean of GPP estimates from three of the most commonly used meteorological data sets: National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis; NASA Global Modeling and Assimilation Office (GMAO) Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2); and European Center for Medium-Range Weather Forecasting (ECMWF). GIMMS NDVI (bimonthly, 1/12 spatial resolution, 1982–2015) provides the longest satellite observations of vegetation “greenness”, and is widely used in studies of phenology, productivity, biomass, and disturbance monitoring as it has proven to be an effective surrogate of vegetation photosynthetic activity72.The gridded GPP data were resampled to 1-degree resolution at monthly time scales, to be consistent with NEEACI, and used to test (H1) whether greater temperature sensitivity of vegetation productivity explains the different trends in net CO2 uptake across the NHL. LUE GPP was also used to calculate monthly total ecosystem respiration (TER) as the difference between GPP and NEEACI (i.e., TERresidual =  GPP– NEEACI) from 1982-2015, as global observations of respiration do not exist. The NEEACI, GPP and TERresidual were used as observation-constrained top-down CO2 fluxes to investigate mechanisms underlying the seasonal CO2 dynamics in the structural equation modeling and additional decision tree-based analysis.Eddy Covariance (EC) measurements of bottom-up CO2 fluxesA total of 48 sites with at least three years of data representing the major NHL ecosystems were obtained from the FLUXNET2015 database (Table S1 and Fig. S1). EC measurements provide direct observations of net ecosystem CO2 exchange (NEE) and estimate the GPP and TER flux components of NEE using other climate variables. Daily GPP and TER were estimated as the mean value from both the nighttime partitioning method73 and the light response curve method74. More details on the flux partitioning and gap-filling methods used are provided by75. Daily fluxes were summed into seasonal and annual values and used to compare with trends from ACIs (Fig. S7), to estimate the climate and environmental controls on the CO2 cycle in the pathway analysis (Fig. 5), and to calculate the net CO2 uptake sensitivity to spring temperature (Fig. S14).Ensemble of dynamic global vegetation models (TRENDY simulations)The TRENDY intercomparison project compiles simulations from state-of-the-art dynamic global vegetation models (DGVMs) to evaluate terrestrial energy, water, and net CO2 exchanges76. The DGVMs provide a bottom-up approach to evaluate terrestrial CO2 fluxes (e.g., net biome production [NBP]) and allow deeper insight into the mechanisms driving changes in carbon stocks and fluxes. We used monthly NBP, GPP, and TER (autotrophic + heterotrophic respiration; Ra + Rh) from ten TRENDY v7 DGVMs76, including CABLE-POP, CLM5.0, OCN, ORCHIDEE, ORCHIDEE-CNP, VISIT, DLEM, LPJ, LPJ-GUESS, and LPX. We analyzed the “S3” simulations that include time-varying atmospheric CO2 concentrations, climate, and land use. All simulations were based on climate forcing from the CRU-NCEPv4 climate variables at 6-hour resolution. CO2 flux outputs were summarized monthly at 1-degree spatial resolution from 1980 to 2017. Monthly ensemble mean NBP, GPP, and TER were summed to seasonal and annual values, and then used to compare with observation-constrained ACI top-down CO2 fluxes (Figs. 4 and 5).Satellite data-driven carbon flux estimates (SMAP L4C)We also used a much finer spatio-temporal simulation of carbon fluxes from the NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon product (L4C) to quantify the temperature and moisture sensitivity of NHL CO2 exchange77. The SMAP L4C provides global operational daily estimates of NEE and component CO2 fluxes for GPP and TER at 9 km resolution since 2015; whereas, an offline version of the L4C model provides a similar Nature Run (NR) carbon flux record over a longer period (2000-present), but without the influence of SMAP observational inputs. The L4C model has been calibrated against FLUXNET tower CO2 flux measurements and shows favorable performance and accuracy in high latitude regions4,77. In this analysis, daily gridded CO2 fluxes at 9-km resolution from the L4C NR record were summed to seasonal and annual values, and used to calculate the sensitivity of net C uptake in response to spring temperature (Fig. S14).CO2 fluxes in this analysis are defined with respect to the biosphere so that a positive value indicates the biosphere is a net sink of CO2 absorbed from the atmosphere. The different data products described above use different terminology (e.g., NEE, NBP) with slightly different meanings; however, they all provide estimates of net land-atmosphere CO2 exchange78.Climate, tree cover, permafrost, and soil moisture dataMonthly gridded air temperatures at 0.5-degree spatial resolution from 1980 to 2017 were obtained from the Climate Research Unit (CRU TS v4.02) at the University of East Anglia79. Air temperature was summarized at seasonal and annual scales to calculate temperature sensitivities of net CO2 uptake and to investigate the mechanism underlying the seasonal CO2 dynamics.Percent tree cover (%TC) at 0.05-degree spatial resolution was averaged over a 35-year (1982-2016) period using annual %TC layers derived from the Advanced Very High-Resolution Radiometer (AVHRR) (Fig. 1a)42. %TC was binned using 5% TC intervals to assess its relation to net CO2 uptake, or aggregated at a regional scale (e.g., TC  > 50% or TC  90%), discontinuous permafrost (DisconP, 10% < P  90%), discontinuous (DisconP, 10% < P  0.05 indicate a good fitting model), Bentler’s comparative fit index (CFI, where CFI ≈ 1 indicates a good fitting model), and the root mean square error of approximation (RMSEA; where RMSEA ≤ 0.05 and p  > 0.1 indicate a good fitting model). The standardized regression coefficient can be interpreted as the relative influences of exogenous (independent) variables. The R2 indicates the total variation in an endogenous (dependent) variable explained by all exogenous (independent) variables.Direct and legacy effects of temperature on seasonal net CO2 uptakeBecause landscape thawing and snow conditions regulate the onset of vegetation growth and influence the seasonal and annual CO2 cycles in the NHL24,84, we also analyzed the legacy effects of spring (May–Jun) temperature on seasonal net CO2 uptake. We regressed seasonal and annual net CO2 uptake from the site-level EC observations, regional-level ACI ensemble, and the TRENDY NBP ensemble against spring (May-June) air temperature. For EC observations, net CO2 uptake (i.e., NEE) and air temperature were summarized from site-level measurements. For the ACIs and TRENDY ensemble, net CO2 uptake (i.e., NEEACI and NBP) was summarized as regional means from the ACIs and TRENDY ensemble outputs, and air temperature was summarized as regional means from CRU temperature. The slope of the regression line was interpreted as the spring temperature sensitivity of the CO2 cycle. Simple linear regression was used here mainly due to the strong influence of spring temperature on the seasonal and annual CO2 cycle in NHL ecosystems30. Temperature sensitivity (γ: g C m−2 day−1 K−1) is the change in net CO2 flux (g C m−2 day−1) in response to a 1-degree temperature change. The sensitivity of net CO2 uptake to warm spring anomalies was calculated for different seasons (EGS, LGS, and annual) and regions (i.e., permafrost and non-permafrost), and the T-test was used to test for the difference in γ among different regions, seasons, and datasets. Similarly, direct effects of temperature on net CO2 uptake were calculated using the same season data (Fig. S14).Observationally-constrained estimates (EC and ACIs) showed that the sensitivity of net CO2 uptake in the EGS to spring temperature is positive (γ  > 0) and not statistically different (p  > 0.05) between permafrost and non-permafrost regions (({gamma }_{{ACI}}^{{np}})=0.125 ± 0.020 gC m−2 d−1 K−1; ({gamma }_{{EC}}^{{np}}) = 0.052 ± 0.013 gC m−2 d−1 K−1). In contrast, the sensitivity of net CO2 uptake in LGS to spring temperature is negative (γ  More