More stories

  • in

    Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions

    We focused on the Northern High Latitudes (NHL, latitude > 50°N, excluding Greenland) due to their importance for carbon (CO2-C, the same hereafter)-climate feedbacks in the Earth system. To minimize the potential human influence on the CO2 cycle, we excluded areas under agricultural management (croplands, cropland/natural vegetation mosaic, and urban types), and considered only pixels of natural vegetation defined from the MODIS MCD12Q1 (v006) based IGBP land cover classification. Our main focus was the NHL permafrost region because permafrost plays a critical role in the ecology, environment, and society in the NHL. Permafrost, or permanently frozen ground, is defined as ground (soil, sediment, or rock) that remains at or below 0 °C for at least two consecutive years. The occurrence of permafrost is primarily controlled by temperature and has a strong effect on hydrology, soils, and vegetation composition and structure. Based on the categorical permafrost map from the International Permafrost Association58, the permafrost region (excluding permanent snow/ice and barren land), including sporadic (10–50%), discontinuous (50–90%), and continuous ( >90%) permafrost, encompasses about 15.7 × 106 km2, accounts for 57% of the NHL study dominion, and is dominated by tundra (shrubland and grass) and deciduous needleleaf (i.e., larch) forest that is regionally abundant in Siberia. The NHL non-permafrost region covers about 11.9 × 106 km2 and is dominated by mixed and evergreen needleleaf boreal forests (Fig. S1).Atmospheric CO2 inversions (ACIs)ACIs provide regionally-integrated estimates of surface-to-atmosphere net ecosystem CO2 exchange (NEEACI) fluxes by utilizing atmospheric CO2 concentration measurements and atmospheric transport models59. ACIs differ from each other mainly in their underlying atmospheric observations, transport models, spatial and temporal flux resolutions, land surface models used to predict prior fluxes, observation uncertainty and prior error assignment, and inversion methods. We used an ensemble mean of six different ACI products, each providing monthly gridded NEEACI at 1-degree spatial resolution, including Carbon‐Tracker 2019B (2000-2019, CT2019)60, Carbon‐Tracker Europe 2020 (2000–2019, CTE2020)61, Copernicus Atmosphere Monitoring Service (1979–2019, CAMS)62, Jena CarboScope (versions s76_v4.2 1976–2017, and s85_v4.2 1985-2017)63,64, and JAMSTEC (1996–2017)65. The monthly gridded ensemble mean NEEACI at 1-degree spatial resolution was calculated using the available ACIs from 1980-2017. Monthly ACI ensemble mean NEEACI data were summed to seasonal and annual values, and used to calculate the spatial and temporal trends of net CO2 uptake, and to investigate its relationship to climate and environmental controls.Productivity datasetDirect observations of vegetation productivity do not exist at a circumpolar scale. We therefore used two long-term gridded satellite-based estimates of vegetation productivity, including gross primary production (GPP) derived using a light use efficiency (LUE) approach (LUE GPP, 1982–1985)21,66 and satellite observations of Normalized Difference Vegetation Index (NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS NDVI, 1982–1985)67. LUE GPP (monthly, 0.5° spatial resolution, 1982–2015) is calculated from satellite observations of NDVI from the Advanced Very High-Resolution Radiometer (AVHRR; 1982 to 2015) combined with meteorological data, using the MOD17 LUE approach. LUE GPP has been extensively validated with a global array of eddy-flux tower sites68,69,70 and tends to provide better estimates in ecosystems with greater seasonal variability at high latitudes. Following66,71, we used the ensemble mean of GPP estimates from three of the most commonly used meteorological data sets: National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis; NASA Global Modeling and Assimilation Office (GMAO) Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2); and European Center for Medium-Range Weather Forecasting (ECMWF). GIMMS NDVI (bimonthly, 1/12 spatial resolution, 1982–2015) provides the longest satellite observations of vegetation “greenness”, and is widely used in studies of phenology, productivity, biomass, and disturbance monitoring as it has proven to be an effective surrogate of vegetation photosynthetic activity72.The gridded GPP data were resampled to 1-degree resolution at monthly time scales, to be consistent with NEEACI, and used to test (H1) whether greater temperature sensitivity of vegetation productivity explains the different trends in net CO2 uptake across the NHL. LUE GPP was also used to calculate monthly total ecosystem respiration (TER) as the difference between GPP and NEEACI (i.e., TERresidual =  GPP– NEEACI) from 1982-2015, as global observations of respiration do not exist. The NEEACI, GPP and TERresidual were used as observation-constrained top-down CO2 fluxes to investigate mechanisms underlying the seasonal CO2 dynamics in the structural equation modeling and additional decision tree-based analysis.Eddy Covariance (EC) measurements of bottom-up CO2 fluxesA total of 48 sites with at least three years of data representing the major NHL ecosystems were obtained from the FLUXNET2015 database (Table S1 and Fig. S1). EC measurements provide direct observations of net ecosystem CO2 exchange (NEE) and estimate the GPP and TER flux components of NEE using other climate variables. Daily GPP and TER were estimated as the mean value from both the nighttime partitioning method73 and the light response curve method74. More details on the flux partitioning and gap-filling methods used are provided by75. Daily fluxes were summed into seasonal and annual values and used to compare with trends from ACIs (Fig. S7), to estimate the climate and environmental controls on the CO2 cycle in the pathway analysis (Fig. 5), and to calculate the net CO2 uptake sensitivity to spring temperature (Fig. S14).Ensemble of dynamic global vegetation models (TRENDY simulations)The TRENDY intercomparison project compiles simulations from state-of-the-art dynamic global vegetation models (DGVMs) to evaluate terrestrial energy, water, and net CO2 exchanges76. The DGVMs provide a bottom-up approach to evaluate terrestrial CO2 fluxes (e.g., net biome production [NBP]) and allow deeper insight into the mechanisms driving changes in carbon stocks and fluxes. We used monthly NBP, GPP, and TER (autotrophic + heterotrophic respiration; Ra + Rh) from ten TRENDY v7 DGVMs76, including CABLE-POP, CLM5.0, OCN, ORCHIDEE, ORCHIDEE-CNP, VISIT, DLEM, LPJ, LPJ-GUESS, and LPX. We analyzed the “S3” simulations that include time-varying atmospheric CO2 concentrations, climate, and land use. All simulations were based on climate forcing from the CRU-NCEPv4 climate variables at 6-hour resolution. CO2 flux outputs were summarized monthly at 1-degree spatial resolution from 1980 to 2017. Monthly ensemble mean NBP, GPP, and TER were summed to seasonal and annual values, and then used to compare with observation-constrained ACI top-down CO2 fluxes (Figs. 4 and 5).Satellite data-driven carbon flux estimates (SMAP L4C)We also used a much finer spatio-temporal simulation of carbon fluxes from the NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon product (L4C) to quantify the temperature and moisture sensitivity of NHL CO2 exchange77. The SMAP L4C provides global operational daily estimates of NEE and component CO2 fluxes for GPP and TER at 9 km resolution since 2015; whereas, an offline version of the L4C model provides a similar Nature Run (NR) carbon flux record over a longer period (2000-present), but without the influence of SMAP observational inputs. The L4C model has been calibrated against FLUXNET tower CO2 flux measurements and shows favorable performance and accuracy in high latitude regions4,77. In this analysis, daily gridded CO2 fluxes at 9-km resolution from the L4C NR record were summed to seasonal and annual values, and used to calculate the sensitivity of net C uptake in response to spring temperature (Fig. S14).CO2 fluxes in this analysis are defined with respect to the biosphere so that a positive value indicates the biosphere is a net sink of CO2 absorbed from the atmosphere. The different data products described above use different terminology (e.g., NEE, NBP) with slightly different meanings; however, they all provide estimates of net land-atmosphere CO2 exchange78.Climate, tree cover, permafrost, and soil moisture dataMonthly gridded air temperatures at 0.5-degree spatial resolution from 1980 to 2017 were obtained from the Climate Research Unit (CRU TS v4.02) at the University of East Anglia79. Air temperature was summarized at seasonal and annual scales to calculate temperature sensitivities of net CO2 uptake and to investigate the mechanism underlying the seasonal CO2 dynamics.Percent tree cover (%TC) at 0.05-degree spatial resolution was averaged over a 35-year (1982-2016) period using annual %TC layers derived from the Advanced Very High-Resolution Radiometer (AVHRR) (Fig. 1a)42. %TC was binned using 5% TC intervals to assess its relation to net CO2 uptake, or aggregated at a regional scale (e.g., TC  > 50% or TC  90%), discontinuous permafrost (DisconP, 10% < P  90%), discontinuous (DisconP, 10% < P  0.05 indicate a good fitting model), Bentler’s comparative fit index (CFI, where CFI ≈ 1 indicates a good fitting model), and the root mean square error of approximation (RMSEA; where RMSEA ≤ 0.05 and p  > 0.1 indicate a good fitting model). The standardized regression coefficient can be interpreted as the relative influences of exogenous (independent) variables. The R2 indicates the total variation in an endogenous (dependent) variable explained by all exogenous (independent) variables.Direct and legacy effects of temperature on seasonal net CO2 uptakeBecause landscape thawing and snow conditions regulate the onset of vegetation growth and influence the seasonal and annual CO2 cycles in the NHL24,84, we also analyzed the legacy effects of spring (May–Jun) temperature on seasonal net CO2 uptake. We regressed seasonal and annual net CO2 uptake from the site-level EC observations, regional-level ACI ensemble, and the TRENDY NBP ensemble against spring (May-June) air temperature. For EC observations, net CO2 uptake (i.e., NEE) and air temperature were summarized from site-level measurements. For the ACIs and TRENDY ensemble, net CO2 uptake (i.e., NEEACI and NBP) was summarized as regional means from the ACIs and TRENDY ensemble outputs, and air temperature was summarized as regional means from CRU temperature. The slope of the regression line was interpreted as the spring temperature sensitivity of the CO2 cycle. Simple linear regression was used here mainly due to the strong influence of spring temperature on the seasonal and annual CO2 cycle in NHL ecosystems30. Temperature sensitivity (γ: g C m−2 day−1 K−1) is the change in net CO2 flux (g C m−2 day−1) in response to a 1-degree temperature change. The sensitivity of net CO2 uptake to warm spring anomalies was calculated for different seasons (EGS, LGS, and annual) and regions (i.e., permafrost and non-permafrost), and the T-test was used to test for the difference in γ among different regions, seasons, and datasets. Similarly, direct effects of temperature on net CO2 uptake were calculated using the same season data (Fig. S14).Observationally-constrained estimates (EC and ACIs) showed that the sensitivity of net CO2 uptake in the EGS to spring temperature is positive (γ  > 0) and not statistically different (p  > 0.05) between permafrost and non-permafrost regions (({gamma }_{{ACI}}^{{np}})=0.125 ± 0.020 gC m−2 d−1 K−1; ({gamma }_{{EC}}^{{np}}) = 0.052 ± 0.013 gC m−2 d−1 K−1). In contrast, the sensitivity of net CO2 uptake in LGS to spring temperature is negative (γ  More

  • in

    Nocturnal plant respiration is under strong non-temperature control

    Literature values of R
    To and Q10 of leaf respirationData of RTo were read from texts, tables, and figures in all available literature (18 species; Supplementary Tables 1, 2) when measured more than once within a period of darkness in lab- and field studies where measurement temperature, To, was kept constant. The RTo-initial was defined as the initial measurement of RTo for each study/species, and further values of RTo at later points within the same night of the same study were read as well.Apparent- and inherent temperature sensitivities (Q10, Equation 1; Fig. 2b) were obtained from all available literature (ten species; Supplementary Table 2) where in the same study/species, both nocturnal values of Q10,app and of Q10,inh were obtained in response to long-term natural T-changes in the environment during the night (hours) and nocturnal values were obtained in response to short-term artificial T-changes (max 30 min), respectively.Measurements of R
    To and Q10 of leaf respirationIn the field (United Kingdom, Denmark, Panama, Colombia and Brazil), RTo (µmol CO2 m−2 s−1) in 16 species (Supplementary Tables 1, 3) was measured through nocturnal periods at constant To (controlled either by block-T or leaf-T) with infra-red gas analysers (Li-Cor-6400(XT) or Li-Cor-6800, Lincoln, Nebraska, USA). Mature, attached leaves positioned in the sunlight throughout the day were chosen. Target [CO2] in the leaf cuvette was set to ambient, ranging from 390 to 410 ppm, depending on when measurements were made, and target RH = 65 ± 10%, with a flow rate of 300 µmol s–1. The RTo-initial was defined as RTo at first measurement after darkness 30 min after sunset (to conservatively avoid light-enhanced dark respiration, LEDR50,51. Leak tests were conducted prior to measurements52. The temporal resolution of measurements varied between every three minutes to once per hour for the different species. Data were subsequently binned in hourly bins.Measurements to derive Q10,inh and Q10,app were conducted in two species in a T-controlled growth cabinet and in six species in the field (Supplementary Table 2), where Q10,inh was measured in response to 10–30 min of artificial changes in T and Q10,app was calculated from measurements of RT in response to T of the environment (growth cabinet or field) at the beginning of the night and again at the end of the night (hours apart).Tree level measurements in whole-tree chambersThe night-time respiratory efflux of the entire above-ground portion (crown and bole) in large growing trees of Eucalyptus tereticornis was measured in whole-tree chambers (WTCs) in Richmond, New South Wales (Australia, (33°36ʹ40ʺS, 150°44ʹ26.5ʺE). The WTCs are large cylindrical structures topped with a cone that enclose a single tree rooted in soil (3.25 m in diameter, 9 m in height, volume of ~53 m3) and under natural sunlight, air temperature and humidity conditions. An automated system measured the net exchange of CO2 between the canopy and the atmosphere within each chamber at 15-min resolution. During the night, we used the direct measurements of CO2 evolution (measured with an infra-red gas analyser; Licor 7000, Li-Cor, Inc., Lincoln, NE)53,54 as a measure of respiration.Due to the high noise-to-signal ratio in the CO2-exchange measurements from this system when analysing the high-resolution temporal variation through each night, we chose to only analyse temporal variation in tree-RT for the nights when tree-RT-initial were amongst the top 10% of CO2-exchange signals for the entire data set. The resulting data spanned 62 nights and included hourly average measurements from three replicate chambers.Data analysis of R
    To
    Measurements of nocturnal leaf respiration under constant temperature conditions (RTo) were divided by the initial rate of respiration (RTo-initial) at the onset of each night. Hourly means of RTo/RTo-initial were calculated for each leaf replicate to remove measurement noise and reduce bias due to the measurement of some species at more frequent intervals throughout the night. For species with multiple leaf replicates, these hourly means of RTo/RTo-initial were then combined to create hourly averages of RTo/RTo-initial at the species level. For each species, these values were plotted as a function of time to demonstrate how RTo/RTo-initial decreases with time since the onset of darkness, from sunset until sunrise (Supplementary Fig. 1). For each species, hourly means of RTo/RTo-initial plotted as a function of time were linearised by log-transforming data and the slope of the relationship determined. To test whether the slopes of the lines differed significantly within plant functional groups (woody, non-woody), species originating from the same biome (temperate, tropical) or species measured under the same conditions (lab, field), the slopes of the lines for all species from a given functional group, biome or measurement condition were tested pairwise against each other using the slope, standard error and sample size (number of points on the x-axis) for each line and applying a 0.05 cut-off for p values after Bonferroni correction for multiple testing. 11 out of 701 comparisons came out as being significantly different, which is why within-group slope differences were considered to be overall non-significant for this analysis. t-tests were used to test whether the slopes differed between plant functional groups (tree, non-woody), species originating from different biomes (temperate, tropical) and species measured under different environmental conditions (lab, field). In these tests, the degrees of freedom varied according to the different sample sizes. Since RTo/RTo-initial plotted as a function of time always starts at 1, the intercepts do not differ between species. t-tests were performed on linearised power functions by log-transforming data in order to test potential differences between lab and field, origin of species, between woody and non-woody species and between temperate and tropical biomes. Since these functions were statistically indistinguishable in each pairing, all measurements of nocturnal leaf respiration under constant temperature conditions (n = 967 nights, 31 species) were collated into a single plot. The data were binned hourly since some studies had very few measurements on half-hourly steps. A power function was fitted with a weighting of each hourly binned value using 1/(standard error of the mean). The power function was chosen as it, better than the exponential- or linear function, can capture both sudden steep- as well as slower decrease in RTo/RTo-initial in different species. The 95% confidence interval of the power function, following the new model equation, overlaps with all the 95% confidence intervals of the hourly binned values (Fig. 1a). All data analysis, including statistical analysis and figures were performed using Python version 3.9.4.Evaluation of new equationWe performed four sets of simulations (S1-S4) using different representations of leaf and plant respiration as outlined in Supplementary Table 4. Evaluation of Equation 4 (S2; Equation 3 from Fig. 1a merged with Equation 1) in comparison with Equation 1 (S1) and Equation 5 (S4) in comparison with Equation 2 (S3), respectively, for predictions of nocturnal variation in response to natural variation in temperature, was conducted by use of independent sets of leaf level data and tree scale data. The effect of including variable nocturnal RTo is estimated as the difference between S1 and S2 and between S3 and S4, respectively.The first data set used for the evaluation consists of nine broad-leaf species for which spot measurements of leaf respiration under ambient conditions were taken at sunset and before sunrise in the field (Fig. 1b and Supplementary Fig. 2a). Of these nine species, three species (Fig. 1c) were further measured throughout the night at ambient conditions. Further, whole-tree measurements measured throughout the night at ambient conditions (Supplementary Fig. 3a–d) were also used for evaluation. Finally, comparisons of Q10,inh with Q10,app in another ten species were used to test if RTo appeared constant as assumed in Equation 1 (Supplementary Tables 2, 3 and Fig. 2b).To validate the suitability of Equation 4 and Equation 5 over equations with full temporal control, modelled respiration values were compared against observed measurements for three species at the leaf level (Supplementary Fig. 2b–d) and for Eucalyptus tereticornis at the whole-tree level using three chamber replicates and during 62 nights using hourly measurements (Supplementary Fig. 3a–d). Linear fits were applied, using ordinary least squares regressions, to plots of normalised respiration (({R}_{T}/{R}_{{T}_{0}})) predicted by the four models against the observed values. The first measurements of the night were excluded from the fits, as these were necessarily equal to unity. The standardised residuals (S) in Supplementary Figs. 2c, 3b are calculated using the equation ({S}_{i}=({R}_{{{{{{{rm{modelled}}}}}}}_{i}}/{R}_{{{{{{{rm{Modelled}}}}}}}_{0}}-{R}_{{T}_{i}}/{R}_{{T}_{0}})/sqrt{(mathop{sum }nolimits_{i}^{N}{({R}_{{{{{{{rm{modelled}}}}}}}_{i}}/{R}_{{{{{{{rm{Modelled}}}}}}}_{0}}-{R}_{{T}_{i}}/{R}_{{T}_{0}})}^{2})/{df}}), for the residual of the ith measurement, where the sum is over all measurements, df is the number of degrees of freedom, and Rmodelled are the respiration values modelled by the four equations in Supplementary Table 4.Evaluation is done by comparing observed and simulated RT/RT, initial. We evaluate the nocturnal evolution of RT/RT, initial and use (i) one-to-one line figures that include fitted regression line, R2, p value and RMSE, (ii) Taylor diagrams and (iii) use plots of standardised residuals against temperature and hours since darkness for a qualitative assessment of the simulations, to identify whether there are any model biases at specific times or temperatures. Model evaluation, statistical analysis and figures were done using python version 3.9.4.Global scale modelling of plant R and NPP
    We applied the novel formulation derived in this study (Equation 4 and Equation 5) to quantify the impact of incorporating variable RTo on simulated plant R and NPP globally using the JULES land surface model32,33 following simulations outlined in Supplementary Table 4.Plant respiration in JULES and simulations for this study: The original leaf respiration representation in JULES follows either eqn 1 ({{R}_{T}={R}_{{T}_{0}}{Q}}_{10}^{(T-{T}_{0})/10}) with Q10 = 2 and To = 25 oC or Equation 1 with an additional denominator ({{R}_{T}={R}_{{T}_{0}}{Q}}_{10}^{(T-{T}_{0})/10}/leftlfloor left(1+{e}^{0.3(T-{T}_{{upp}})}right)times left(1+{e}^{0.3({T}_{{low}}-T)}right)rightrfloor) (Equation 6). For the purpose of this application, we have used Equation 1 to represent leaf respiration in standard JULES simulations. The remaining components of maintenance respiration in JULES, i.e. fine root and wood are represented as a function of leaf to root and leaf to wood nitrogen ratios and leaf respiration rates following RT (β + (Nr + Ns)/Nl) (Equation 6) with RT as leaf respiration, Nr, Ns and Nl as root, stem and leaf Nitrogen content respectively and β as a soil water factor (Equation 42 in ref. 32). This implies that any variation in leaf respiration is passed to root and wood respiration as well30,31,35. Growth respiration is estimated as a fraction (25%) of the difference between GPP and maintenance respiration (Rm) expressed as Rg = 0.25 (GPP-Rm).JULES version 5.2 was modified to simulate leaf and plant respiration using the various descriptions (Equations 1–5) outlined in the modelling protocol in Supplementary Table 4. JULES uses standard astronomical equations to calculate the times of sunrise and sunset on a given day at each grid point. We used the model leaf temperature and RT at the timestep at or immediately preceding sunset to represent Tsunset, and RT,sunset and at every timestep through the night, the time since sunset (h) was updated. We performed global simulations for the period 2000–2018 with JULES, using the global physical configuration GL8, which is an update from GL755. We used WFDEI meteorological forcing data56 available at 0.5-degree spatial resolution and 3-h temporal resolution, and disaggregated and run in JULES with a 15 min timestep. Simulations were performed using nine plant functional types (PFTs)33. To isolate the effects of the new formulation on simulated Rp and NPP from possible impacts on leaf area index (LAI) or vegetation dynamics, we prescribed vegetation phenology via seasonal LAI fields and vegetation fractional cover based on the European Space Agency’s Land Cover Climate Change Initiative (ESA LC_CCI) global vegetation distribution57, processed to the JULES nine PFTs and re-gridded to the WFDEI grid. Annual variable fields of CO2 concentrations are based on annual mean observations from Mauna Loa58. JULES was spun up using the three cycles of the 2000–2018 meteorological forcing data to equilibrate the soil moisture stores. The mean annual output of Rp and NPP over the study period (2000–2018) is computed for all simulations and the effect of the new formulation is presented as the difference between the temporal mean of simulations with and without nocturnal variation in whole plant RTo for NPP and vice versa for Rp and as percentage respect to simulations without nocturnal variation in RTo. Results are presented for grid cells where grid level NPP is >50 g m−2 yr −1 in the standard simulations to avoid excessively large % effects at very low NPP. Output from JULES was analysed and plotted using python version 2.7.16.PermitsNo permit was required in Denmark as measurements were taken in private land (of author) and public land and measurements were non-destructive. Data were collected under the Panama Department of the Environment (current name MiAmbiente) research permit under the name of Dr Kaoru Kitajima. Permit number: SE/P-16-12. Data in Brazil were collected under the minister of Environment (Ministério do Meio Ambiente—MMA), Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Sistema de Autorização e Informação em Biodiversidade—SISBIO permit number 47080-3. No permit was required in Colombia as measurements were taken on private land, no plant samples were collected, and trees were part of an existing experiment for which one of the co-authors is the lead. No access permits were required in the UK as they were conducted on the campus of own university plus in their own private garden.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Estimating long-term spatial distribution of Plodia interpunctella in various food facilities at Rajshahi Municipality, Bangladesh, through pheromone-baited traps

    Nansen, C., Phillips, T. W., Parajuleeb, M. N. & Franqui, R. A. Comparison of direct and indirect sampling procedures for Plodia interpunctella in a maize storage facility. J. Stored Prod. Res. 40, 151–168 (2004).Article 

    Google Scholar 
    Gerken, A. R. & Campbell, J. F. Using long-term capture data to predict Trogoderma variabile Ballion and Plodia interpunctella (Hübner) population patterns. Insects 10, 93. https://doi.org/10.3390/insects10040093 (2019).Article 
    PubMed Central 

    Google Scholar 
    Athanassiou, C. G. & Buchelos, C. T. Grain properties and insect distribution trends in silos of wheat. J. Stored Prod Res. 88, 101632 (2020).Article 

    Google Scholar 
    Campbell, J., Mullen, M. & Dowdy, A. Monitoring stored-product pests in food processing plants with pheromone trapping, contour mapping, and mark-recapture. J. Econ. Entomol. 95, 1089–1101 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arbogast, R. T., Weaver, D. K., Kendra, P. E. & Brenner, R. J. Implications of spatial distribution of insect populations in storage ecosystems. Environ. Entomol. 27, 202–216 (1998).Article 

    Google Scholar 
    Brenner, R. J., Focks, D. A., Arbogast, R. T., Weaver, D. K. & Shuman, D. Practical use of spatial analysis in precision targeting for integrated pest management. Am. Entomol. 44, 79–102 (1998).Article 

    Google Scholar 
    Arbogast, R. T., Kendra, P. E., Mankin, R. W. & McGovern, J. E. Monitoring insect pests in retail stores by trapping and spatial analysis. J. Econ. Entomol. 93, 1531–1542 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthur, F. & Phillips, T.W. Stored-product insect pest management and control. In Food Plant Sanitation; Hui, Y.H., Bruinsma, B.L., Gorham, J.R., Nip, W.-K., Tong, P.S., Ventresca, P., Eds.; Marcel Dekker, Inc, pp. 341–348(2003).Campbell, J. F., Toews, M. D., Arthur, F. H. & Arbogast, R. T. Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and impact of fumigation. J. Econ. Entomol. 103, 991–1001 (2010).PubMed 
    Article 

    Google Scholar 
    Doud, C. W. & Phillips, T. W. Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills. J. Econ. Entomol. 93, 1842–1847 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, J. & Mullen, M. Distribution and dispersal behavior of Trogoderma variabile and Plodia interpunctella outside a food processing plant. J. Econ. Entomol. 97, 1455–1464 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larson, Z., Subramanyam, B. & Herrman, T. Stored-product insects associated with eight feed mills in the Midwestern United States. J. Econ. Entomol. 101, 998–1005 (2008).PubMed 
    Article 

    Google Scholar 
    Trematerra, P., Paula, M. C., Sciarretta, A. & Lazzari, S. Spatio-temporal analysis of insect pests infesting a paddy rice storage facility. Neotrop. Entomol. 33, 469–479 (2004).Article 

    Google Scholar 
    Arthur, F. H., Campbell, J. F. & Toews, M. D. Distribution, abundance, and seasonal patterns of Plodia interpunctella (Hübner) in a commercial food storage facility. J. Stored Prod. Res. 53, 7–14 (2013).Article 

    Google Scholar 
    McKay, T., White, A. L., Starkus, L. A., Arthur, F. H. & Campbell, J. F. Seasonal patterns of stored-product insects at a rice mill. J. Econ. Entomol. 110, 1366–1376 (2017).PubMed 
    Article 

    Google Scholar 
    Roesli, R., Subramanyam, B., Fairchild, F. J. & Behnke, K. C. Trap catches of stored-product insects before and after heat treatment in a pilot feed mill. J. Stored Prod. Res. 39, 521–540 (2003).Article 

    Google Scholar 
    Campbell, J., Ching’oma, G.M., Toews, M.D. & Ramaswamy, S. Spatial distribution and movement patterns of stored-product insects. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paulo, Brazil, 15–18 October 2006; Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., Santos, J.P.D., Biagi, J.D., Celaro, J.C., Faroni, L.R.D., Bortolini, L.D.F., Eds.; Brazilian Post-harvest Association—ABRAPOS: Passo Fundo, RS, Brazil, p. 18 (2006).Trematerra, P., Gentile, P., Brunetti, A., Collins, L. & Chambers, J. Spatio-temporal analysis of trap catches of Tribolium confusum du Val in a semolina-mill, with a comparison of female and male distributions. J. Stored Prod. Res. 43, 315–322 (2007).Article 

    Google Scholar 
    Semeao, A. A., Campbell, J. F., Whitworth, R. J. & Sloderbeck, P. E. Influence of environmental and physical factors on capture of Tribolium castaneum (Coleoptera: Tenebrionidae) in a flour mill. J. Econ. Entomol. 105, 686–702 (2012).PubMed 
    Article 

    Google Scholar 
    Campbell, J.F., Perez-Mendoza, J. &Weier, J. Insect Pest Management Decisions in Food Processing Facilities. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University, pp. 219–232 (2012).Mohandass, S., Arthur, F. H., Zhu, K. & Throne, J. E. Biology and management of Plodia interpunctella (Lepidoptera:Pyralidae) in stored products. J. Stored Prod. Res. 43, 302–311 (2007).Article 

    Google Scholar 
    Hamlin, J.C., Reed, W.D. & Phillips, M.E. Biology of the Indianmeal Moth on Dried Fruits in California. USDA Technical Bulletin No. 242, (1931)Hagstrum, D.W. & Subramanyam, B. Review of Stored-Product Insect Resource. AACC International (2009).Soderstrom, T., Stoica, P. & Trulsson, E. Instrumental variable methods for closed loop systems. IFAC 10th Triennial World Congress, Munich, FRG. pp. 363–368(1987).Johnson, J. A., Valero, K. A., Hannel, M. M. & Gill, R. F. Seasonal occurrence of post harvest dried fruit insects and their parasitoids in a culled fig warehouse. J. Econ. Entomol. 93, 1380–1390 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nansen, C., Subramanyam, B. & Roesli, R. Characterizing spatial distribution of trap captures of beetles in retail pet stores using SADIE® software. J. Stored Prod. Res. 40, 471–483 (2004).Article 

    Google Scholar 
    Phillips, T.W., Berbert, R.C. &Cuperus, G.W. Post-harvest integrated pest management. In: Francis, F.J. (Ed.), Encyclopedia of Food Science and Technology. 2nd ed. Wiley Inc., pp. 2690–2701(2000).Phillips,T.W., Cogan, P.M. & Fadamiro, H.Y. Pheromones. In: Subramanyam, B., Hagstrum, D.W. (Eds.), Alternatives to Pesticides in Stored-product IPM. Kluwer Academic Publishers, pp. 273–302 (2000).Mullen, M. A. & Dowdy, A. K. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 37, 231–235 (2001).PubMed 
    Article 

    Google Scholar 
    Nansen, C. & Phillips, T. W. Ovipositional responses of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to oils. Ann. Entomol. Soc. Am. 96, 524–531 (2003).Article 

    Google Scholar 
    Hagstrum, D. W. Using five sampling methods to measure insect distribution and abundance in bins storing wheat. J. Stored Prod. Res. 36, 253–262 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Athanassiou, C. G., Kavallieratos, N. G., Sciarretta, A. & Trematerra, P. Mating disruption of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in a storage facility: spatio-temporal distribution changed after long-term application. J. Stored Prod. Res. 67, 1–12 (2016).Article 

    Google Scholar 
    Lee, W. H., Jung, J. M., Kim, J., Lee, H. & Jung, S. Analysis of the spatial distribution and dispersion of Plodia interpunctella (Lepidoptera: Pyralidae) in South Korea. J. Stored Prod. Res. 86, 101577 (2020).Article 

    Google Scholar 
    Gerken, A.R. & Campbell, J.F. Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities. Ann. Entomol. Soc. Am. saab049(2021).Athanassiou, C. G. & Buchelos, CTh. Detection of stored-wheat beetle species and estimation of population density using unbaited probe traps and grain trier samples. Ent. Exp. et Applic. 98, 67–78 (2001).Article 

    Google Scholar 
    Subramanyam, B. & Hagstrum, D.W. Sampling. In: Subramanyam B. & Hagstrum D.W. (eds), Integrated Management of Insects in Stored Products. Marcel Dekker Inc., pp. 135–193 (1995).Morrison, W. R. et al. Aeration to manage insects in wheat stored in the Balkan peninsula: Computer simulations using historical weather data. Agronomy 10, 1927 (2020).Article 

    Google Scholar 
    Toews, M. D., Campbell, J. F. & Arthur, F. H. Temporal dynamics and response to fogging or fumigation of stored-product Coleoptera in a grain processing facility. J. Stored Prod. Res. 42, 480–498 (2006).Article 

    Google Scholar 
    Buckman, K. A., Campbell, J. F. & Subramanyam, B. Tribolium castaneum (Coleoptera: Tenebrionidae) associated with rice mills: Fumigation efficacy and population rebound. J. Econ. Entomol. 106, 499–512 (2013).PubMed 
    Article 

    Google Scholar 
    Campbell, J. F., Buckman, K. A., Fields, P. G. & Subramanyam, Bh. Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities. J. Econ. Entomol. 108, 2125–2140 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levene, H. Robust tests for equality of variances. In Ingram Olkin; Harold Hotelling; et al. (eds.). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. pp. 278–292(1960).SAS Institute. SAS/STAT 9.2 User’s guide. SAS Institute (2008).Taylor, L. R. Aggregation, variance and mean. Nature 189, 732–735 (1961).ADS 
    Article 

    Google Scholar 
    Iwao, S. A new method of sequential sampling to classify populations according to a critical density. Res. Popln. Ecol. 16, 281–288 (1975).
    Google Scholar 
    Green, R. H. Measurement of non-randomness in spatial distribution. Res. Popln. Ecol. 8, 1–17 (1966).
    Google Scholar 
    Hillhouse, T. L. & Pitre, H. N. Comparison of sampling techniques to obtain measurements of insect populations on soybeans. J. Econ. Entomol. 67, 411–414 (1974).Article 

    Google Scholar 
    Cassie, R. M. Frequency distribution models in the ecology of plankton and other organisms. J. Anim. Ecol. 31, 65–92 (1962).Article 

    Google Scholar 
    Southwood, T. R. E. Ecological Methods, with Particular Reference to the Study of Insect Population (Chapman and Hall, 1995).
    Google Scholar 
    Costa, M. G., Barbosa, J. C., Yamamoto, P. T. & Leal, R. M. Spatial distribution of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in citrus orchards. Scientia Agric 67, 546–554 (2010).Article 

    Google Scholar 
    Patil, G. P. & Stiteler, W. M. Concepts of aggregation and their quantification: A critical review with some new result and applications. Pop. Ecol. 15, 238–254 (1974).Article 

    Google Scholar 
    David, F. N. & Moor, P. G. Notes on contagious distribution in plant populations. Ann. Bot. 18, 47–53 (1954).Article 

    Google Scholar 
    Lloyd, M. Mean crowding. J. Anim. Ecol. 36, 1–30 (1967).Article 

    Google Scholar 
    Southwood, T. R. E. & Henderson, P. A. Ecological Methods 3rd edn. (Blackwell Sciences, 2000).
    Google Scholar 
    Feng, M. G. & Nowierski, R. M. Spatial distribution and sampling plans for four species of cereal aphids (Homoptera: Aphididae) infesting spring wheat in southwestern Idaho. J. Econ. Entomol. 85, 830–837 (1992).Article 

    Google Scholar  More

  • in

    Waste slag benefits for correction of soil acidity

    Structural characterization of slag samplesThe FTIR spectra of granulated blast furnace slag (Sample 1), waste slag dumped in landfill (Sample 2) and combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3) are presented in Fig. 1.Figure 1FTIR spectra of slag samples.Full size imageBy analysing the spectrum (detailed figure) in the range of 700–1100 cm−1, it can be found that there are obvious absorption peaks in the spectrum of all the slag samples. The granulated blast furnace slag shows the characteristic absorption bands at 3640, 1418, 980, 944, 861, 753 and 710 cm−1. The band at 3640 cm−1 is assigned to the stretching vibration of the hydroxyl group originated from the weakly absorbed water molecules on the slag surface24. The characteristic absorption bands at 1418, 861 and 710 cm−1 are ascribed to the asymmetric stretching mode and bending mode of carbonate group, respectively and the band at 980 cm−1 are attributable to the stretching vibrations of Si–O25. The band at 944 and 752 cm−1 represent the internal vibration of [SiO4]4− and [AlO4]5− tetrahedral and comes from Si (Al)–O-antisymmetric stretching vibration26.The different vibration modes for the sample of waste slag can be observed in the FTIR spectrum. The absorption bands shown are at 1418, 873, 712, 667 and 419 cm−1. The peak at 1418 cm−1 is assigned to the asymmetric stretching mode and bending mode of carbonate group. Calcite phase is confirmed by characteristic peaks at 712 cm−1 (ʋ2 out of plane bending vibration of the CO3−2 ion) and 873 cm−1 peak (ʋ2 split in-plane bending vibrations of the CO3−2 ion27. Calcium aluminate phase is identified by characteristic peak at 419 cm−128. Peak around 667 cm−1 is described as absorption band for different M–O (metal oxide) such as Al–O, Fe–O, Mg–O etc.29.In the case of combination of both 50% granulated blast furnace slag and 50% waste slag dumped in landfill the intensity of absorption peaks is smaller in comparison with Sample 1 and Sample 2 of slag. The characteristic absorption peaks (978 and 753 cm−1) which correspond with characteristic peaks of Sample 1 are shifted compared to the Sample 1, assigned to the stretching vibrations of Si–O and to the Si (Al)–O-antisymmetric stretching vibration, respectively, can provide important evidence of chemical interaction between Sample 1 and Sample 2. The decrease of the intensity of the bands appearing at 875 and 709 cm−1 cans be attributed to overlapping the vibrations of the CO3−2 ion from calcite phase.Figure 2 presents the SEM micrographs of the slag samples (Sample 1–3). One can see the characteristic morphology- the sizes and the forms of the slag samples.Figure 2SEM images of slag samples.Full size imageAt larger magnifications it can be observed that the surface is rough and uneven, and one can notice rounded grain-like rugged formations. The slag samples display aggregated particles with average diameter of a few microns. Also, in these rounded formations it can be seen different morphologies like spheres, rods, boards specific each compound/phase from metallurgical slags.Figure 3 illustrates the EDX elemental analysis of granulated blast furnace slag (Sample 1), waste slag dumped in landfill (Sample 2) and combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3).Figure 3EDX elemental map of slag samples.Full size imageOne can observe that the predominant elements in the examined area are constated in carbon, oxygen, calcium, and iron, confirming the FTIR spectra.Figure 4 shows EDX spectra of slag samples recorded on different selected punctual area, to obtain more information about the elemental composition of specific areas. For all the tested slag samples have similar elements content.Figure 4EDX spectra analysis of slag samples.Full size imageThe selected punctual areas are highlighted thus: the spheric structure are with yellow line and the structure like boards are with green line for all the analysed slag samples. In the case of Sample 1 for both structures the values of chemical elements present are similar and the silicon has a higher value at spheric structure which can be correlated with the presence of silica (SiO2). The higher content of calcium reveals that the Sample 1 is blast furnace slag dominated by calcium and silicon compositions. In the case of slag dumped in landfill (Sample 2) the content of carbon increase for both structures and some chemical elements like titanium, barium, manganese doesn`t appear in EDX spectra and the explanation for this phenomenon is that the slag was dumped in landfill for more than 30 years. One can observe for combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3) that the values of all the chemical elements for both spheric and board-like structure are between the first two samples, confirming the FTIR spectra regarding chemical interaction between Sample 1.XRD patterns of the slag samples with the phases identified are shown in Fig. 5. Sample 1 show minor peaks of free CaO and MgO, which may be deleterious and cause reduction in strength. The phases and amorphous contents of the Sample 1 granulated blast furnace slag are broadly consistent with literature30. Sample 3 of slag consists of crystalline phase – Ca2Mg2SiO7, Ca2Fe2AlO5, CaCO3 and CaO as observed by the XRD analysis. In terms of the relations of phase thermal equilibrium, the compounds identified form an isomorphic series of melilites that is specific to basic metallurgical slags.Figure 5X-ray diffraction patterns of slag samples.Full size imageIn Table 1 are presented the values expressed as ppm of chemical element detected in slag samples (Sample 1, 2 and 3).Table 1 XRF analysis of the slag samples.Full size tableThe results show a large quantity of calcium in all three samples of slag. Also, the elements detected such as Fe, Al, Mg and Si are in accordance with XRD spectra.Physical–chemical characterization of soil-slag mixturesThe chemical composition of the major elements that compound the soil, soil- slag and slag samples was determined by XRF. The values expressed as ppm of chemical elements are presented in Table 2. In the case of soil sample the content of the main constituents is iron, titanium, manganese, and potentially toxic elements (PTE) such as arsenic, zinc, copper, and cobalt. For soil-slag 1 with weight ratio soil: slag (1:1) it can be observed the disappearance of the potentially toxic elements (PTE) founded in soil sample and the decrease of concentration value of zinc. When the weight ratio of slag increases at 3 (soil-slag 2 sample) the values of main component increased in accordance with values of slag sample, but in the case of soil-slag 3 sample where the weight ratio of soil is bigger (3) it can be observed the cobalt presence. Based on these XRF results we can say that take place an elimination of potentially toxic elements in contaminated soil by applying slag in a bigger proportion.Table 2 XRF analysis of the soil-slag samples.Full size tableWith the aid of a pH meter, CONSORT C 533 the important parameters of soil and slag solutions were measured as: the pH, conductivity, and the salinity, as shown in Table 3. The data presented in Table 3 suggest that the soil sampled has the pH = 5.2 corresponding to a medium acid soil, which does not sustain a high fertility and is not able to offer proper conditions for crops. Also, the pH of soil has important influence on soil fertility, decreases the availability of essential elements and the activity of soil microorganisms which can determine calcium and magnesium deficiency in plants and decreases phosphorous availability. The pH value of slag solution (12.5) corresponds as strongly basic character which is beneficial in amelioration process of acidic soils and the presence of this type of slag sustain the improving of soil characteristics, too. For the soil-slag samples the pH value increase with the increasing of the weight ratio of slag and the mixtures soil-slag obtained can be framed into the category of weakly alkaline soils.Table 3 The physical–chemical characteristics of soil and slag solutions.Full size tableThe data given in Table 4 show that the humidity of soil is bigger and decreases in soil-slag samples with adding of slag content. The values of total soil-slag porosity are between 40 and 50% and depends on the density and apparent density of the soil being influenced by the mineralogical composition, the content of organic matter and the degree of compaction and loosening of the soil, the crystalline structure of soil minerals.Table 4 The physical–chemical characteristics of soil-slag samples.Full size tableConsidering the structural and morphological characterization of the investigated slag samples we propose a recipe of blast furnace slag and of waste slag dumped in landfill in accordance with the waste directive 2008/98/EC regarding the strategic goal of EU to a complete elimination of the disposal of wastes. The slag dump of Steel Plant of Galati has an enormous quantity of unused waste slag which may be mixed with granulated blast furnace slag, to save the natural resources used as raw materials in the metallurgical technological process.The presence of Ca2+ in the composition of the slag can maintain high alkalinity in the soil for a long time in the natural environment. The alkaline pH of the soil may contribute to a decrease the available concentration of heavy metals by reducing metal mobility and bonding metals into more stable fractions. One of the objectives of this research is improving the quality of the environment by using the mixture between two different slags on agricultural lands and reintroducing them in the agricultural centre, especially in acid soils. Acidic soils are characterized by an acidic pH that has spread in recent years due to excessive fertilizers or far too aggressive work31. The production is significantly influenced, and the treatment of acid soils is usually done using a series of natural materials (lime, dolomite), the consumption being approx. 20 t/hectare depending on the acidity of the soil and the nature of the plants grown on the respective surfaces.Our research consists in improving the characteristics and qualities of the acidic soils and helping to reintroduce it into the agricultural circuit by transforming a waste into a new material friendly-environmental, the mixture of blast furnace slag and waste slag dumped in landfill. More

  • in

    Troubled biodiversity plan gets billion-dollar funding boost

    Countries have yet to agree to protect at least 30% of land, a crucial target proposed in the global biodiversity deal.Credit: Roberto Schmidt/AFP via Getty

    A beleaguered global deal to save the environment got a financial boost last week when Germany announced that it was upping its funding for international biodiversity conservation to €1.5 billion (US$1.49 billion) a year — an increase of €0.87 billion — making it the largest national financial pledge yet to save nature. The announcement came at a 20 September meeting in New York City, where political leaders, businesses and conservation and Indigenous-rights groups came together to rally momentum and support ahead of the United Nations biodiversity summit in Montreal, Canada, in December.Conservationists welcomed the extra funding, but warned that other wealthy countries must also reach deeper into their pockets to ensure that nations agree on a new biodiversity agreement, called the Post-2020 Global Biodiversity Framework. Estimates suggest that an additional US$700 billion annually is needed to protect the environment.Concerns over insufficient financing for global biodiversity conservation have stalled negotiations and threaten to derail attempts to finalize a deal in Montreal. The forthcoming summit will be the 15th meeting of the Conference of the Parties (COP15) to the UN’s Convention on Biological Diversity.Announcing the new funds, German Chancellor Olaf Scholz said: “With this contribution, we want to send a strong signal for an ambitious outcome of the biodiversity COP-15.”Claire Blanchard, head of global advocacy at WWF, a conservation group, told Nature that the extra funding “is highly significant” and sends an important signal that rich countries are prepared to step up.But she adds: “More signals of this kind will be needed to create the environment conducive to constructive dialogue in the negotiation room.”Andrew Deutz, a specialist in biodiversity law and finance at the Nature Conservancy, a conservation group in Arlington, Virginia, says he expects further funding announcements to come in the run up to and at the COP15.Other pledgesSeveral key political leaders, including Justin Trudeau, Canada’s prime minister, echoed calls for rich nations to make urgent progress to secure the biodiversity deal. Trudeau urged countries to agree on two crucial targets proposed in the biodiversity framework, both to be met by 2030: to halt and reverse biodiversity loss, and to protect at least 30% of land and seas.The new funding was bolstered by other pledges and developments, including a promise from a partnership of some of the world’s wealthiest private philanthropic foundations and charities to add to the $5 billion they have already committed to conservation, if other countries promise more funds.The partnership — which includes the Bezos Earth Fund, an environmental fund financed by entrepreneur Jeff Bezos — has already spent around $1 billion of its promised financing over the past two years, says Cristián Samper, head of the Wildlife Conservation Society, a not-for-profit group. Samper was speaking on behalf of the partnership at the meeting in New York City.Frans Timmermans, vice-president of the European Commission, reaffirmed that Europe would double its international biodiversity funding to $1.13 billion annually — a promise originally announced in September last year. Timmermans told the meeting that the European Union would set out more details about the funding soon.Funding shortfallAlso at the meeting, a group of four countries comprising Ecuador, Gabon, the Maldives and the United Kingdom launched a joint 10-point plan to bridge the biodiversity finance gap, which is estimated at $700 billion annually.The plan sets out the financial commitments and policy reforms needed to finance biodiversity on the required scale. For example, it encourages wealthy and lower-income nations to allocate new funds for biodiversity and to quickly deliver on their existing financial pledges. It requires donor countries to ensure that funds for overseas development do no harm to biodiversity. And it asks countries to dedicate a portion of their national funding for climate change to activities that also protect and conserve nature.The plan also commits countries to ensuring that public finance is invested in ways that benefit biodiversity, and to reviewing national subsidies and redirecting those that are harmful to nature. It calls on businesses to assess and disclose commercial risks associated with biodiversity decline, and to set quantitative targets to reduce their impact on the natural world. And it encourages multilateral development banks — such as the World Bank in Washington DC — and international financial institutions to ensure that their investments benefit biodiversity, and asks that they report on their biodiversity funding in time for COP-15.So far, 15 countries, including Canada, Germany and Norway, as well as the EU have endorsed the plan.“The plan provides a clear pathway for bridging the global biodiversity finance gap. Its significance lies in the political signal it sends,” says Blanchard.António Guterres, secretary-general of the UN, urged political leaders to “act now and at scale” to secure biodiversity financing and ensure agreement on the framework. “If negotiations continue at their slow pace, we are headed to failure,” he told the meeting. More

  • in

    Pleistocene climate variability in eastern Africa influenced hominin evolution

    White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742–747 (2003).Article 

    Google Scholar 
    McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005).Article 

    Google Scholar 
    Potts et al. Increased ecological resource variability during a critical transition in hominin evolution. Sci. Adv. 6, eabc8975 (2020).Article 

    Google Scholar 
    Faith, J. T. et al. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. 36, 797–807 (2021).Article 

    Google Scholar 
    Mounier, A. & Lahr, M. M. Deciphering African late Middle Pleistocene hominin diversity and the origin of our species. Nat. Commun. 10, 10–13 (2019).Article 

    Google Scholar 
    Cohen, A. et al. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits. Sci. Drill. 21, 1–16 (2016).Article 

    Google Scholar 
    Foerster, V. et al. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quat. Int. 274, 25–37 (2012).Article 

    Google Scholar 
    Fischer, M. L. et al. Determining the pace and magnitude of lake level changes in southern Ethiopia over the last 20,000 years using lake balance modeling and SEBAL. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00197 (2020).Roberts, H. M. et al. Using multiple chronometers to establish a long, directly-dated lacustrine record: constraining >600,000 years of environmental change at Chew Bahir, Ethiopia. Quat. Sci. Rev. 266, 107025 (2021).Article 

    Google Scholar 
    Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. https://doi.org/10.1002/jqs.3137 (2019).Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).Article 

    Google Scholar 
    Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).Article 

    Google Scholar 
    Schaebitz, F. et al. Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal. Commun. Earth Environ. 2, 1–10 (2021).Article 

    Google Scholar 
    Lahr, M. M. & Foley, R. A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearb. Phys. Anthropol. 41, 137–176 (1998).Article 

    Google Scholar 
    Duesing, W. et al. Multiband wavelet age modeling for a 293 m (600 kyr) sediment core from Chew Bahir basin, southern Ethiopian Rift. Front. Earth Sci. 9, 1–15 (2021).Article 

    Google Scholar 
    Foerster, V. et al. Towards an understanding of climate proxy formation in the Chew Bahir basin, Southern Ethiopian Rift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 501, 111–123 (2018).Article 

    Google Scholar 
    Kaboth-Bahr, S. et al. Paleo-ENSO influence on African environments and early modern humans. Proc. Natl Acad. Sci. USA 118, e2018277118 (2021).Article 

    Google Scholar 
    Duesing, W. et al. Changes in the cyclicity and variability of the eastern African paleoclimate over the last 620 kyrs. Quat. Sci. Rev. 273, 107219 (2021).Article 

    Google Scholar 
    Herbert, T., Cleaveland Peterson, L., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).Article 

    Google Scholar 
    Trauth, M. H. et al. High- and low-latitude forcing of Plio–Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).Article 

    Google Scholar 
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).Article 

    Google Scholar 
    Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720–725 (1991).Article 

    Google Scholar 
    Owen, R. B. et al. Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc. Natl Acad. Sci. USA 115, 11174–11179 (2018).Article 

    Google Scholar 
    Grant, K. M. et al. A 3 million year index for North African humidity/aridity and the implication of potential pan-African humid periods. Quat. Sci. Rev. 171, 100–118 (2017).Article 

    Google Scholar 
    Trauth, M. H. et al. Recurring types of variability and transitions in the ~620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia. Quat. Sci. Rev. 266, 106777 (2021).Article 

    Google Scholar 
    Wagner, B. et al. Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 573, 256–260 (2019).Article 

    Google Scholar 
    Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009).Article 

    Google Scholar 
    Pearson, O. M., Royer, D. F., Grine, F. E. & Fleagle, J. G. A description of the Omo I postcranial skeleton, including newly discovered fossils. J. Hum. Evol. 55, 421–437 (2008).Article 

    Google Scholar 
    Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B. & Hutchings, W. K. Chronological and behavioural contexts of the earliest Middle Stone Age in the Gademotta Formation, Main Ethiopian Rift. Quat. Int. 331, 6–19 (2014).Article 

    Google Scholar 
    McBrearty, S. & Tryon, C. in Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age (eds Hovers, E. & Kuhn, S. L.) Ch. 14 (Springer, 2006).Clark, J. D., Beyene, Y. & WoldeGabriel, G. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752 (2003).Article 

    Google Scholar 
    de la Torre, I., Mora, R., Arroyo, A. & Benito-Calvo, A. Acheulean technological behaviour in the Middle Pleistocene landscape of Mieso (East-Central Ethiopia). J. Hum. Evol. 76, 1–25 (2014).Article 

    Google Scholar 
    Vidal, C. et al. Age of the oldest known Homo sapiens from eastern Africa. Nature 601, 579–583 (2022).Article 

    Google Scholar 
    Sahle, Y. et al. in Modern Human Origins and Dispersal (eds. Sahle, Y. et al.) 73–104 (Kerns Verlag, 2019).Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. B 359, 183–195 (2004).Article 

    Google Scholar 
    Brandt, S., Hildebrand, E., Vogelsang, R., Wolfhagen, J. & Wong, H. A new MIS 3 radiocarbon chronology for Mochena Borago Rockshelter, SW Ethiopia: implications for the interpretation of Late Pleistocene chronostratigraphy and human behavior. J. Archaeol. Sci. Rep. 11, 352–369 (2017).
    Google Scholar 
    Creanza, N., Kolodny, O. & Feldman, M. W. Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires. J. R. Soc. Interface 14, 20170171 (2017).Article 

    Google Scholar 
    Derex, M., Perreault, C. & Boyd, R. Divide and conquer: intermediate levels of population fragmentation maximize cultural accumulation. Phil. Trans. R. Soc. B 373, 20170062 (2018).Article 

    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).Article 

    Google Scholar 
    Grove, M. Environmental complexity, life history, and encephalisation in human evolution. Biol. Phil. 32, 395–420 (2017).Article 

    Google Scholar 
    Haidle, M. N. et al. The Nature of Culture: an eight-grade model for the evolution and expansion of cultural capacities in hominins and other animals. J. Anthropol. Sci. 93, 43–70 (2015).
    Google Scholar 
    Brooks, A. S. et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science 360, 90–94 (2018).Article 

    Google Scholar 
    Murren, C. J., Julliard, R., Schichting, C. D., & Clobert, J. in Dispersal (eds Clobert, J. et al.) 261–273 (Oxford Univ. Press, 2001).Grove, M. et al. Climatic variability, plasticity, and dispersal: a case study from Lake Tana, Ethiopia. J. Hum. Evol. 87, 32–47 (2015).Article 

    Google Scholar 
    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).Article 

    Google Scholar 
    Tryon, C. A. The Middle/Later Stone Age transition and cultural dynamics of Late Pleistocene East Africa. Evol. Anthropol. 28, 267–282 (2019).Article 

    Google Scholar 
    Grove, M. & Blinkhorn, J. Neural networks differentiate between Middle and Later Stone Age lithic assemblages in eastern Africa. PLoS ONE 15, e0237528–27 (2020).Article 

    Google Scholar 
    Grove, M. & Blinkhorn, J. Testing the integrity of the Middle and Later Stone Age cultural taxonomic division in eastern Africa. J. Paleolit. Archaeol. 4, 14 (2021).Article 

    Google Scholar 
    Assefa, Z., Lam, Y. M. & Mienis, H. K. Symbolic use of terrestrial gastropod opercula during the Middle Stone Age at Porc-Epic Cave, Ethiopia. Curr. Anthropol. 49, 746–756 (2008).Article 

    Google Scholar 
    Assefa, Z. et al. Engraved ostrich eggshell from the Middle Stone Age contexts of Goda Buticha, Ethiopia. J. Archaeol. Sci. Rep. 17, 723–729 (2018).
    Google Scholar 
    Laskar, J. et al. A long term numerical solution for the insolation quantities of Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Campisano, C. et al. The Hominin Sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift System and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology https://doi.org/10.1130/abs/2017am-295426 (2017).Davidson, A. The Omo River Project: Reconnaissance Geology and Geochemistry of Parts of Ilubabor, Kefa, Gemu Gofa and Sidamo (Ethiopian Institute of Geological Surverys, 1983).Noren, A. HSPDP-CHB_public. OSF https://doi.org/10.17605/OSF.IO/M8QU5 (2022).Gebregiorgis, D. et al. Modern sedimentation and authigenic mineral formation in the Chew Bahir basin, southern Ethiopia: implications for interpretation of late Quaternary paleoclimate records. Front. Earth Sci. 9, 244 (2021).Article 

    Google Scholar 
    Folk, R. L. & Ward, W. C. Brazos River bar [Texas]: a study in the significance of grain size parameters. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    Blott, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).Article 

    Google Scholar 
    Opitz, S. et al. Holocene lake stages and thermokarst dynamics in a discontinuous permafrost affected region, north-eastern Tibetan Plateau. J. Asian Earth Sci. 76, 85–94 (2013).Article 

    Google Scholar 
    Opitz, S. et al. Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes. Catena 137, 203–218 (2016).Article 

    Google Scholar 
    Viehberg, F. A. et al. Environmental change during MIS 4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion. Quat. Sci. Rev. 202, 139–153 (2018).Article 

    Google Scholar 
    Koerting, F. et al. Drill core mineral analysis by means of the hyper spectral imaging spectrometer HySpex, XRD and ASD in proximity of the Mytina Maar, Czech Republic. Int. Arch. Photogram. Remote Sens. Spatial Inf. XL-1/W5, 417–424 (2015).Giosan, L., Flood, R. D. & Aller, R. C. Paleoceanographic significance of sediment color on western North Atlantic drifts: I. Origin of color. Mar. Geol. 189, 25–41 (2002).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Löwemark, L. et al. Normalizing XRF-scanner data: a cautionary note on the interpretation of high resolution records from organic-rich lakes. J. Asian Earth Sci. 40, 1250–1256 (2011).Article 

    Google Scholar 
    Lyle, M. et al. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning. Proc. Integr. Ocean Drill. Program 320/321, 1–19 (2012).
    Google Scholar 
    Schlolaut, G. et al. An extended and revised Lake Suigetsu varve chronology from ∼50 to ∼10 ka bp based on detailed sediment micro-facies analyses. Quat. Sci. Rev. 200, 351–366 (2018).Article 

    Google Scholar 
    Surdam, R. C. & Eugster, H. P. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geol. Soc. Am. Bull. 87, 1739–1752 (1976).Article 

    Google Scholar 
    Davies, S. J., Lamb, H. F. & Roberts, S. J. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 189–226 (Springer, 2015).Elbert, E. et al. Late Holocene air temperature variability reconstructed from sediments of Laguna Escondida, Patagonia, Chile (45° 30’ S). Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 482–492 (2013).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio–Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Trauth, M. H. et al. Abrupt or gradual? Change point analysis of the Late Pleistocene–Holocene climate record from Chew Bahir, southern Ethiopia. Quat. Res. 90, 321–330 (2018).Article 

    Google Scholar  More

  • in

    Experimental evidence for core-Merge in the vocal communication system of a wild passerine

    Study site and animalsWe studied n = 64 flocks of Japanese tits in mixed deciduous-coniferous forests in Nagano and Gumma (36°17-31’N, 138°26-39’E), Japan. Although most of the birds had not been individually colour-ringed, all the experimental trials were conducted at least 400 m apart; previous observations on colour-ringed individuals showed that this distance was enough to ensure the collection of data from different individuals30. In this site, one of the major predators of small birds is the bull-headed shrike, which is often mobbed by small birds including Japanese tits.Playback stimulusTo test whether Japanese tits recognize an alert-recruitment call sequence as a single unit, we prepared four treatments: (i) one-speaker playback of alert-recruitment call sequences, (ii) two-speaker playback of alert-recruitment call sequences with alert and recruitment calls played from different speakers, (iii) one-speaker playback of recruitment-alert call sequences, (iv) two-speaker playback of recruitment-alert call sequences with recruitment and alert calls played from different speakers (Fig. 3). We created sound files for these treatments using the software program Audacity 2.1.3 (http://www.audacityteam.org). For one-speaker treatments, we composed mono sound files where call sequences were repeated onto a single channel, whereas for two-speaker treatments, we composed stereo sound files where either alert or recruitment calls were repeated onto the right or left channels, respectively. All the files contained an equal number of alert calls (30 calls) and recruitment calls (30 calls) at the same rate (one call every 3 s), resulting in 90-s of stimuli (Fig. 3), which corresponds to the range of the natural calling rate of alert-recruitment sequences during mobbing by Japanese tits10. For all stimuli, within-call-sequence intervals between alert and recruitment calls were constant (0.1 s), which is within the range of intervals of these calls in natural call sequences11,17. In contrast, between-call-sequence intervals varied from 1.50 to 1.81 (median = 1.68) due to the difference in call length, but were constant across playback stimuli within the same “block” where the four treatments were created using the same call exemplars (see below). While alert calls are composed of three distinct note types, recruitment calls are strings of the same note type that vary in repetition number. Since the repetition number can vary depending on predator type10, we conducted predator exposure experiments to Japanese tit flocks (n = 12) and recorded call sequences towards a bull-headed shrike life-like specimen. In response to a shrike specimen, tits produced alert-recruitment call sequences with a recruitment note repetition number ranging from 5 to 15. Since the interquartile range of repetition number was 6.75 to 10, we used recruitment calls with 7–10 notes as playback stimuli in this study. In consideration for the possible influence of sound editing procedure, we created all the stimuli in the same manner; we copied alert and recruitment call parts separately from recording files, and pasted them onto background noise files to produce all four types of stimuli. Playback amplitudes were constant across treatments, 70 dB at 1.0 m measured using a sound level meter (SM-325, AS ONE Corporation). Therefore, the differences between treatments only depend on whether these calls are produced as sequences from the same source and how the calls are ordered.We carefully designed experiments to control for the possibility that individual-based acoustic features in alert and recruitment calls might influence tits’ responses. First, we prepared 16 unique sets of alert and recruitment calls using either calls from the same bird (n = 8 source individuals, n = 8 unique call sets) or from two different birds (n = 16 source individuals, n = 8 unique call sets). Then, we created the four types of treatments (i.e., alert-recruitment call sequences from the same speaker, from different speakers, and in reversed order from the same speaker and from different speakers) from each of the alert-recruitment call sets, resulting in 16 blocks of playback stimuli (Supplementary Table 3). This allows us to test the possible influence of individual-based acoustic variation on receivers’ responses.We were also careful to avoid the possible influence of population-level signatures of acoustic features: we only used Japanese tits’ call sequences that had been previously recorded from the same study population. We saved the sound files in .wav format (16-bit accuracy, 48-kHz sampling rate) onto a playback device (iPhone 8, Apple Inc.). We used the default Music app (Apple Inc.) to playback the sound files.ExperimentWe (TNS and YKM) conducted experimental trials from 26 October to 4 December 2020 and during the period of 0800 and 1600 h (Japan Standard Time). We did not conduct trials under wet and windy weather conditions, since these may influence behavioural patterns of forest birds31. First, we searched for and located a flock of Japanese tits. Upon finding a flock, we fixed a taxidermic specimen of bull-headed shrike in a perching posture on the branch at 1.8 ± 0.2 m (mean ± s.d., n = 64) above the ground. Then, we placed either one or two Bluetooth speakers (SoundLink Micro, BOSE) on tree branches at 1.6 ± 0.2 m (mean ± s.d., n = 96) above the ground, and oriented them upwards to control for the possible influence of directionality. We set the distance between the shrike specimen and the speaker(s) at 5 m. For trials with two speakers, we set the distance between speakers at 10 m, mimicking the situation in which two birds are calling (Fig. 3). The shrike specimen was first covered with a black cloth and was exposed by removing the cloth just before each trial.We began playbacks when at least two Japanese tits were present within 15 m from the shrike specimen. During 90-s of playbacks, we recorded (i) whether birds approached within 2-m of the shrike specimen during the playback and (ii) whether birds exhibited wing flicking displays12,13. We counted the number of individuals within 15 m from the shrike during 90-s of playbacks and considered it as flock size. During trials, we sat on the ground at ca. 10 m from the shrike specimen to decrease the influence of the observers’ presence on bird behaviour. To account for the inter-observer reliability32, we calculated intra-class correlation coefficient (ICC; icc function in the R package irr) between us. The lowest ICC was 0.998, indicating high degree of inter-observer reliability for the two behavioural measurements. We also video-recorded the responses of tits using a digital video camera (FDR-AX60, SONY). After completion of each trial, we checked the video recording and made an on-the-spot confirmation of the exact location at which each bird made the closest approach to the shrike specimen during the 90-s of playbacks. Then, using a tape measure, we recorded the minimum approach distance of birds to the shrike specimen. Thus, our final data set consisted of the most reliable observations confirmed by two experimenters and video evidence.The order of trials was randomized within each block (n = 16 blocks), each of which is composed of a unique alert-recruitment call set but includes four treatments differing in the number of speakers and call order. Therefore, responses to all four treatments were observed under largely similar conditions. In a few trials, the first bird to approach the shrike specimen was from a heterospecific species, such as a varied tit (n = 1) or a long-tailed tit (n = 1). To account for the possibility that these birds evoke mobbing behaviour in Japanese tits, we only used the data from instances where the first individual to approach the shrike was a Japanese tit. Otherwise, we repeated the same treatment at a different site.We used 64 unique playbacks created from 16 unique sets of alert-recruitment calls for 64 trials in order to avoid pseudoreplication33. We prepared two specimens of male bull-headed shrikes and used each of them for the equal number of trials. We did not use specimens of female shrikes since females migrate from the study site in late summer and only males were observed during the study period.Statistical analysisWe analyzed the effect of playback treatments on the mobbing behaviours of Japanese tits using generalized linear mixed models in R34,35. We used the proportions of Japanese tits in flocks that (i) approached within 2-m of the shrike specimen and (ii) exhibited wing flicking displays. For the analysis of predator approach, we prepared two vectors (i.e., the number of Japanese tits that approached the shrike specimen and the number of Japanese tits that did not approach the shrike specimen). Then, we created a single response variable by binding together these two vectors using cbind function. Similarly, for the analysis of wing flicking displays, we created a single response variable by binding two vectors (i.e., the number of tits that exhibit wing flicking and the number of tits that did not exhibit wing flicking). We fitted playback treatments as a fixed term, and flock size (maximum number of Japanese tits observed during 90-s of playback) and the way of creating playback stimuli (whether the two call types were recorded from a single individual or two individuals) as covariates. We also included identity of alert-recruitment call sets that were used for creating playback stimuli (i.e., call sets from either one or two source individuals) and identity of shrike specimens as random terms. We used a binomial error distribution and logit-link function (glmer in the R package lme4) for these models. Statistical significance was calculated by log-likelihood ratio tests using anova in the R package stats. We further conducted post-hoc pairwise comparisons between treatments by using estimated marginal means (emmeans in the R package emmeans). When making pairwise comparisons, we adjusted p-values by applying a false discovery rate control for multiple testing36. All tests were two-sided and the significance level was set at α = 0.05. Exact p-values are reported when p ≥ 0.0001.Ethics statementAll protocols were approved by the ethics committee of Kyoto University, the Ministry of the Environment, and the Forestry Agency of Japan, and adhered to Guidelines for the Use of Animals of the Association for the Study of Animal Behaviour/Animal Behavior Society37.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Gastric acid and escape to systemic circulation represent major bottlenecks to host infection by Citrobacter rodentium

    Woodward SE, Krekhno Z, Finlay BB. Here, There, and Everywhere: How Pathogenic Escherichia coli Sense and Respond to Gastrointestinal Biogeography. Cell Microbiol. 2019;21:e13107.CAS 
    Article 

    Google Scholar 
    Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, et al. Citrobacter rodentium: Infection, Inflammation and the Microbiota. Nat Rev Microbiol. 2014;12:612–23.CAS 
    Article 

    Google Scholar 
    Mowat AM, Agace WW. Regional Specialization Within the Intestinal Immune System. Nat Rev Immunol. 2014;14:nri3738.Article 

    Google Scholar 
    Population Dynamics – Latest Research and News | Nature [Internet]. [cited 2017 Nov 5]. Available from: https://www.nature.com/subjects/population-dynamicsAbel S, Abel zur Wiesch P, Davis BM, Waldor MK. Analysis of Bottlenecks in Experimental Models of Infection. PLoS Pathog. 2015;11:e1004823.Global Burden of Disease Study. 2013 Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet Lond Engl 2015;386:743–800.Article 

    Google Scholar 
    WHO | Diarrhoeal Disease [Internet]. WHO. [cited 2017 Oct 22]. Available from: http://www.who.int/mediacentre/factsheets/fs330/en/.Crepin VF, Collins JW, Habibzay M, Frankel G. Citrobacter rodentium Mouse Model of Bacterial Infection. Nat Protoc. 2016;11:1851–76.CAS 
    Article 

    Google Scholar 
    Bhinder G, Sham HP, Chan JM, Morampudi V, Jacobson K, Vallance BA. The Citrobacter rodentium Mouse Model: Studying Pathogen and Host Contributions to Infectious Colitis. J Vis Exp. 2013;19:e50222.
    Google Scholar 
    Barthold SW, Coleman GL, Bhatt PN, Osbaldiston GW, Jonas AM. The Etiology of Transmissible Murine Colonic Hyperplasia. Lab Anim Sci. 1976;26:889–94.CAS 
    PubMed 

    Google Scholar 
    Deng W, Vallance BA, Li Y, Puente JL, Finlay BB. Citrobacter rodentium Translocated Intimin Receptor (Tir) is an Essential Virulence Factor Needed for Actin Condensation, Intestinal Colonization and Colonic Hyperplasia in Mice. Mol Microbiol. 2003;48:95–115.CAS 
    Article 

    Google Scholar 
    Schauer DB, Falkow S. Attaching and Effacing Locus of a Citrobacter freundii Biotype That Causes Transmissible Murine Colonic Hyperplasia. Infect Immun. 1993;61:2486–92.CAS 
    Article 

    Google Scholar 
    Elliott SJ, Yu J, Kaper JB. The Cloned Locus of Enterocyte Effacement From Enterohemorrhagic Escherichia coli O157:H7 is Unable to Confer the Attaching and Effacing Phenotype Upon E. coli K-12. Infect Immun. 1999;67:4260–3.CAS 
    Article 

    Google Scholar 
    Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. The Per Regulon of Enteropathogenic Escherichia coli: Identification of a Regulatory Cascade and a Novel Transcriptional Activator, the Locus of Enterocyte Effacement (LEE)-Encoded Regulator (Ler). Mol Microbiol. 1999;33:296–306.CAS 
    Article 

    Google Scholar 
    Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli Contains a Putative Type III Secretion System Necessary for the Export of Proteins Involved in Attaching and Effacing Lesion Formation. Proc Natl Acad Sci. 1995;92:7996–8000.CAS 
    Article 

    Google Scholar 
    Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and Effacing Activities of Rabbit and Human Enteropathogenic Escherichia coli in Pig and Rabbit Intestines. Infect Immun. 1983;41:1340–51.CAS 
    Article 

    Google Scholar 
    Abel S, Abel zur Wiesch P, Chang HH, Davis BM, Lipsitch M, Waldor MK. Sequence Tag–based Analysis of Microbial Population Dynamics. Nat Methods. 2015;12:223–6.CAS 
    Article 

    Google Scholar 
    Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and Estimation Procedures. Am J Hum Genet. 1967;19:233–57. 3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE, et al. Deciphering the Landscape of Host Barriers to Listeria monocytogenes Infection. Proc Natl Acad Sci . 2017;114:6334–9.CAS 
    Article 

    Google Scholar 
    Hullahalli K, Waldor MK. Pathogen Clonal Expansion Underlies Multiorgan Dissemination and Organ-Specific Outcomes During Murine Systemic Infection. eLife 2021;10:e70910.CAS 
    Article 

    Google Scholar 
    Petty NK, Feltwell T, Pickard D, Clare S, Toribio AL, Fookes M, et al. Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux. PLOS Pathog. 2011;7:e1002018.CAS 
    Article 

    Google Scholar 
    Yasutomi E, Hoshi N, Adachi S, Otsuka T, Kong L, Ku Y, et al. Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria. Dig Dis Sci. 2018;63:881–9.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Krimbas CB, Tsakas S. The Genetics of Dacus Oleae. v. Changes of Esterase Polymorphism in a Natural Population Following Insecticide Control-Selection or Drift? Evol Int J Org Evol. 1971;25:454–60.Article 

    Google Scholar 
    Peter BM, Slatkin M. Detecting Range Expansions From Genetic Data. Evol Int J Org Evol. 2013;67:3274–89.Article 

    Google Scholar 
    Schwarz R, Kaspar A, Seelig J, Künnecke B. Gastrointestinal Transit Times in Mice and Humans Measured with 27Al and 19F Nuclear Magnetic Resonance. Magn Reson Med. 2002;48:255–61.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS One. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Petty NK, Bulgin R, Crepin VF, Cerdeño-Tárraga AM, Schroeder GN, Quail MA, et al. The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli. J Bacteriol. 2010;192:525–38.CAS 
    Article 

    Google Scholar 
    Mundy R, Pickard D, Wilson RK, Simmons CP, Dougan G, Frankel G. Identification of a Novel Type IV Pilus Gene Cluster Required for Gastrointestinal Colonization of Citrobacter rodentium. Mol Microbiol. 2003;48:795–809.CAS 
    Article 

    Google Scholar 
    Darwin AJ, Miller VL. Identification of Yersinia enterocolitica Genes Affecting Survival in an Animal Host Using Signature-Tagged Transposon Mutagenesis. Mol Microbiol. 1999;32:51–62.CAS 
    Article 

    Google Scholar 
    Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae Genes Involved in Intestinal Colonization and Adhesion Using Signature-Tagged Mutagenesis. Infect Immun. 2002;70:4729–34.CAS 
    Article 

    Google Scholar 
    Wiles S, Dougan G, Frankel G. Emergence of a ‘Hyperinfectious’ Bacterial State After Passage of Citrobacter rodentium Through the Host Gastrointestinal Tract. Cell Microbiol. 2005;7:1163–72.CAS 
    Article 

    Google Scholar 
    Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G, et al. Organ Specificity, Colonization and Clearance Dynamics In Vivo Following Oral Challenges with the Murine Pathogen Citrobacter rodentium. Cell Microbiol. 2004;6:963–72.CAS 
    Article 

    Google Scholar 
    Kitamoto S, Nagao-Kitamoto H, Kuffa P, Kamada N. Regulation of Virulence: The Rise and Fall of Gastrointestinal Pathogens. J Gastroenterol. 2016;51:195–205.Article 

    Google Scholar 
    Takumi K, de Jonge R, Havelaar A. Modelling Inactivation of Escherichia coli by Low pH: Application to Passage Through the Stomach of Young and Elderly People. J Appl Microbiol. 2000;89:935–43.CAS 
    Article 

    Google Scholar 
    Pienaar JA, Singh A, Barnard TG. Acid-Happy: Survival and Recovery of Enteropathogenic Escherichia coli (EPEC) in Simulated Gastric Fluid. Micro Pathog. 2019;128:396–404.CAS 
    Article 

    Google Scholar 
    McConnell EL, Basit AW, Murdan S. Measurements of Rat and Mouse Gastrointestinal pH, Fluid and Lymphoid Tissue, and Implications for In-Vivo Experiments. J Pharm Pharm. 2008;60:63–70.CAS 
    Article 

    Google Scholar 
    Tan A, Petty NK, Hocking D, Bennett-Wood V, Wakefield M, Praszkier J, et al. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species. Infect Immun. 2015;83:1384–95.CAS 
    Article 

    Google Scholar 
    Sanchez KK, Chen GY, Schieber AMP, Redford SE, Shokhirev MN, Leblanc M, et al. Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen. Cell 2018;175:146–.e15.CAS 
    Article 

    Google Scholar 
    Cunningham R, Jones L, Enki DG, Tischhauser R. Proton Pump Inhibitor Use as a Risk Factor for Enterobacteriaceal Infection: A Case-Control Study. J Hosp Infect. 2018;100:60–4.CAS 
    Article 

    Google Scholar 
    Kelly OB, Dillane C, Patchett SE, Harewood GC, Murray FE. The Inappropriate Prescription of Oral Proton Pump Inhibitors in the Hospital Setting: A Prospective Cross-Sectional Study. Dig Dis Sci. 2015;60:2280–6.CAS 
    Article 

    Google Scholar 
    Federici S, Suez J, Elinav E. Our Microbiome: On the Challenges, Promises, and Hype. Results Probl Cell Differ. 2020;69:539–57.CAS 
    Article 

    Google Scholar  More