Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis)
Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Let. 6, 438–440 (2010).Article
Google Scholar
Gonzalez, V. & Banerjee, A. Molecular, ecological, and behavioural drivers of the bat-virus relationship. iScience 25, 104779 (2022).PubMed
PubMed Central
Article
CAS
Google Scholar
Brook, C. E. & Dobson, A. P. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23, 172–180 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Kosoy, M. et al. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 16, 1875–1881 (2010).PubMed
PubMed Central
Article
Google Scholar
Becker, D. J. et al. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos. Trans. R. Soc. Biol. Sci. 373, 20170089 (2018).Article
CAS
Google Scholar
Muehldorfer, K. Bats and bacterial pathogens: A review. Zoonoses Public Health 60, 93–103 (2013).Article
Google Scholar
Taylor, M. L. et al. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico. FEMS Immunol. Med. Microbiol. 45, 451–458 (2005).PubMed
Article
CAS
Google Scholar
Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. 110, 17415–17419 (2013).ADS
PubMed
PubMed Central
Article
Google Scholar
Evans, N., Bown, K., Timofte, D., Simpson, V. & Birtles, R. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 15, 1331–1333 (2009).PubMed
PubMed Central
Article
Google Scholar
Muehldorfer, K., Speck, S. & Wibbelt, G. Diseases in free-ranging bats from Germany. BMC Vet. Res. 7, 61 (2011).Article
Google Scholar
Muehldorfer, K., Wibbelt, G., Haensel, J., Riehm, J. & Speck, S. Yersinia species isolated from bats, Germany. Emerg. Infect. Dis. 16, 578–581 (2010).Article
Google Scholar
Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227–227 (2009).PubMed
Article
CAS
Google Scholar
Barlow, A., Jolliffe, T., Tomlin, M., Worledge, L. & Miller, H. Mycotic dermatitis in a vagrant parti-coloured bat (Vespertilio murinus) in Great Britain. Vet. Rec. 169, 614–614 (2011).PubMed
Article
Google Scholar
Simpson, V. R., Borman, A. M., Fox, R. I. & Mathews, F. Cutaneous mycosis in a Barbastelle bat (Barbastella barbastellus) caused by Hyphopichia burtonii. J. Vet. Diagn. Invest. 25, 551–554 (2013).PubMed
Article
Google Scholar
Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS
PubMed
Article
CAS
Google Scholar
Hecht-Höger, A. et al. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol. Ecol. 29, 1745–1755 (2020).PubMed
Article
Google Scholar
Baker, M., Schountz, T. & Wang, L. F. Antiviral immune responses of bats: A review. Zoonoses Public Health 60, 104–116 (2013).PubMed
Article
CAS
Google Scholar
Baker, M. L. & Zhou, P. in Bats and Viruses Vol. 1 (eds Lin-Fa Wang & Christopher Cowled) Ch. 14, 327–348 (John Wiley & Sons, Inc., 2015).Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial function: Are bats ‘special’ as reservoirs for emerging viruses?. Curr. Opin. Virol. 1, 649–657 (2011).PubMed
PubMed Central
Article
CAS
Google Scholar
Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).PubMed
Article
CAS
Google Scholar
Murphy, K. Janeway’s Immunobiology 8th edn. (Garland Science, 2012).
Google Scholar
Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 6, 1045–1056 (2005).CAS
Google Scholar
Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).PubMed
PubMed Central
CAS
Google Scholar
Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).PubMed
Article
CAS
Google Scholar
Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: Characterization and seasonal variation. J. Ornithol. 148, S583–S591 (2007).Article
Google Scholar
Kozak, W., Conn, C. A. & Kluger, M. J. Lipopolysaccharide induces fever and depresses locomotor-activity in unrestrained mice. Am. J. Physiol. 266, R125–R135 (1994).PubMed
CAS
Google Scholar
Copeland, S. et al. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).PubMed
PubMed Central
CAS
Google Scholar
Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Stockmaier, S., Dechmann, D. K. N., Page, R. A. & Teague O’Mara, M. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Let. 11, 20150576 (2015).Article
CAS
Google Scholar
Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B Biol. Sci. 270, 153–158 (2003).Article
Google Scholar
Sheldon, B. C. & Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).PubMed
Article
CAS
Google Scholar
Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).PubMed
Article
Google Scholar
Audebert, H. J., Pellkofer, T. S., Wimmer, M. L. & Haberl, R. L. Progression in lacunar stroke is related to elevated acute phase parameters. Eur. Neurol. 51, 125–131 (2004).PubMed
Article
CAS
Google Scholar
Lee, K. A., Martin, L. B. & Wikelski, M. C. Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145, 244–251 (2005).ADS
PubMed
Article
Google Scholar
Owen-Ashley, N. T., Turner, M., Hahn, T. P. & Wingfield, J. C. Hormonal, behavioral, and thermoregulatory responses to bacterial lipopolysaccharide in captive and free-living white-crowned sparrows (Zonotrichia leucophrys gambelii). Horm. Behav. 49, 15–29 (2006).PubMed
Article
CAS
Google Scholar
Coon, C. A. C., Warne, R. W. & Martin, L. B. Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1418–R1425 (2011).PubMed
Article
CAS
Google Scholar
Kimura, M. et al. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267, R1596–R1605 (1994).Article
CAS
Google Scholar
Gomez, C. R., Goral, J., Ramirez, L., Kopf, M. & Kovacs, E. J. Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 25, 581–585 (2006).PubMed
Article
CAS
Google Scholar
Barrientos, R. M., Watkins, L. R., Rudy, J. W. & Maier, S. F. Characterization of the sickness response in young and aging rats following E. coli infection. Brain Behav Immun. 23, 450–454 (2009).PubMed
PubMed Central
Article
Google Scholar
Sköld-Chiriac, S., Nord, A., Tobler, M., Nilsson, J. -Å. & Hasselquist, D. Body temperature changes during simulated bacterial infection in a songbird: Fever at night and hypothermia during the day. J. Exp. Biol. 218, 2961–2969 (2015).PubMed
Google Scholar
Sköld-Chiriac, S., Nord, A., Nilsson, J. -Å. & Hasselquist, D. Physiological and behavioral responses to an acute-phase response in zebra finches: Immediate and short-term effects. Physiol. Biochem. Zool. 87, 288–298 (2014).PubMed
Article
Google Scholar
Fritze, M. et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open 8, bio046078 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
Triana-Llanos, C., Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V. & Niño-Castro, A. The acute phase response elicited by a viral-like molecular pattern increases energy expenditure in Artibeus lituratus. Biologia 74, 667–673 (2019).Article
Google Scholar
Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).PubMed
CAS
Google Scholar
Allen, L. C. et al. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J. Comp. Physiol. B. 179, 315–323 (2009).PubMed
Article
Google Scholar
Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
Ohmer, M. E. B. et al. Applied ecoimmunology: Using immunological tools to improve conservation efforts in a changing world. Conserv. Physiol. 9, coab074 (2021).PubMed
PubMed Central
Article
Google Scholar
Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: Intergrating competence into reservoir host prediction. Trends Ecol. Evol. 35, P1062–P1065 (2020).Article
Google Scholar
Kacprzyk, J. et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterologica 19, 219–228 (2017).Article
Google Scholar
Langlois, M. R. & Delanghe, J. R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 42, 1589–1600 (1996).PubMed
Article
CAS
Google Scholar
Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11, e1005168 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Fritze, M. et al. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. Dev. Comp. Immunol. 119, 104017 (2021).PubMed
Article
CAS
Google Scholar
Moreno, K. et al. Sick bats stay home alone: Fruit bats practice social distancing when faced with an immunological challenge. Ann. N. Y. Acad. Sci. 1505, 178–190 (2021).ADS
PubMed
PubMed Central
Article
Google Scholar
Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi). Mamm. Biol. 82, 41–47 (2017).Article
Google Scholar
Voigt, C. C. et al. The immune response of bats differs between pre-migration and migration seasons. Sci. Rep. 10, 17384 (2020).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V., Triana-Llanos, C. & Niño-Castro, A. Metabolic cost of acute phase response in the frugivorous bat, Artibeus lituratus. Mamm. Res. 63, 397–404 (2018).Article
Google Scholar
Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus). PeerJ 5, e3570 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Cabrera-Martínez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
Cabrera-Martinez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. Food restriction, but not seasonality, modulates the acute phase response of a neotropical bat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 229, 93–100 (2019).PubMed
Article
CAS
Google Scholar
Stockmaier, S., Bolnick, D. I., Page, R. A. & Carter, G. G. An immune challenge reduces social grooming in vampire bats. Anim. Behav. 140, 141–149 (2018).Article
Google Scholar
Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8, e54023 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornithol. 148, 571–582 (2007).Article
Google Scholar
Becker, D. J. et al. Leukocyte profiles reflect geographic range limits and local food abundance in a widespread Neotropical bat. Integr. Comp. Biol. 59, 1176–1189 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).Article
Google Scholar
Melhado, G., Herrera, M. L. G. & Cruz-Neto, A. P. Bats respond to simulated bacterial infection during the active phase by reducing food intake. J. Exp. Zool. A 333, 536–542 (2020).Article
CAS
Google Scholar
Costantini, D. et al. Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats (Rousettus aegyptiacus). Conserv. Physiol. 10, coac028 (2022).PubMed
PubMed Central
Article
Google Scholar
Viljoen, H., Bennett, N. C. & Lutermann, H. Life-history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole-rats. J. Zool. 285, 222–229 (2011).Article
Google Scholar
Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Lilley, T. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. Lond. B Biol. Sci. 284, 20162232 (2017).
Google Scholar
Mayberry, H. W., McGuire, L. P. & Willis, C. K. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J. Comp. Physiol. B. 188, 333–343 (2018).PubMed
Article
CAS
Google Scholar
Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).PubMed
Article
Google Scholar
Grimble, R. F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin. Sci. 91, 121–130 (1996).Article
CAS
Google Scholar
Schultz, E. M., Hahn, T. P. & Klasing, K. C. Photoperiod but not food restriction modulates innate immunity in an opportunistic breeder, Loxia curvirostra. J. Exp. Biol. 220, 722–730 (2016).PubMed
Google Scholar
Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin?. J. Cell Biol. 198, 773–783 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).Article
Google Scholar
Bouma, H. R., Carey, H. V. & Kroese, F. G. Hibernation: The immune system at rest?. J. Leukoc. Biol. 88, 619–624 (2010).PubMed
Article
CAS
Google Scholar
Crameri, G. et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4, e8266 (2009).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).PubMed
Article
CAS
Google Scholar
Hecht, A. M. et al. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci. Rep. 5, 16604 (2015).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Barclay, R. M. R. et al. Can external radiotransmitters be used to assess body temperature and torpor in bats?. J. Mammal. 77, 1102–1106 (1996).Article
Google Scholar
Pap, P. L., Czirják, G. Á., Vágási, C. I., Barta, Z. & Hasselquist, D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97, 891–901 (2010).ADS
PubMed
Article
CAS
Google Scholar
Heinrich, S. K. et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol. Open 5, 550–555 (2016).PubMed
PubMed Central
Article
Google Scholar
Heinrich, S. K. et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 7, 44837 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
Morell, V., Lundgren, E. & Gillott, A. Predicting severity of trauma by admission white blood cell count, serum potassium level, and arterial pH. South. Med. J. 86, 658–659 (1993).PubMed
Article
CAS
Google Scholar
R Core Team. A Language and Environment for Statistical Computing. (R foundation for statistical computing, 2018).Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R Package Version 3, 57 (2007).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).
Google Scholar
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet
PubMed
MATH
Article
Google Scholar More