More stories

  • in

    Ultrasonic antifouling devices negatively impact Cuvier’s beaked whales near Guadalupe Island, México

    Long-term acoustic data collectionPassive acoustic monitoring was conducted from November 19, 2018 to October 3, 2020, with 683 days of recording effort overall (Supplementary Table 2), using a High-frequency Acoustic Recording Package (HARP)37. The HARP was deployed in Bahía Norte, Guadalupe Island, located approximately 150 miles offshore of México’s Baja California Peninsula (Fig. 1). The HARP was bottom-mounted and deployed to a depth of approximately 1100 m, with a calibrated hydrophone suspended ~30 m above the seafloor. The same hydrophone was used for both deployments to facilitate data comparison. The omnidirectional hydrophone sensor (ITC-1042, International Transducer Corporation, Santa Barbara, CA) had an approximately flat (±3 dB) hydrophone sensitivity from 10 Hz to 100 kHz of −200 dB re V/μPa. The sensor was connected to a custom-built preamplifier board and bandpass filter. The calibrated system response was corrected for during analysis. Data were sampled continuously at a 200 kHz sampling rate with 16-bit quantization, effectively monitoring a frequency range of 10 Hz–100 kHz.Automatic detection and manual classification of beaked whale echolocation clicksBeaked whales can be acoustically identified by their echolocation clicks38. These signals are frequency-modulated (FM) upswept pulses, which appear to be species-specific and are distinguishable by their spectral and temporal features. Cuvier’s beaked whale echolocation signals are well differentiated from the acoustic signals of other beaked whale species. They are polycyclic with a characteristic FM pulse upsweep, peak frequency around 40 kHz, and uniform inter-pulse interval of about 0.4–0.5 s39,40. Additionally, Cuvier’s beaked whale FM pulses have characteristic spectral peaks at approximately 17 and 23 kHz.Beaked whale FM pulses were detected in the HARP data with an automated method using the MATLAB-based (Mathworks, Natick, MA) custom software program Triton (https://github.com/MarineBioAcousticsRC/Triton) and other MATLAB custom routines. After all potential echolocation signals were identified with a Teager–Kaiser energy detector41,42, an expert system discriminated between delphinid clicks and beaked whale FM pulses. A decision about presence or absence of beaked whale signals was based on detections within a 75 s segment. Only segments with more than seven detections were used in further analysis. All echolocation signals with a peak and center frequency below 32 and 25 kHz, respectively, a duration less than 355 μs, and a sweep rate of More

  • in

    Stable ocean redox during the main phase of the Great Ordovician Biodiversification Event

    Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Ø. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 249–270 (2019).
    Google Scholar 
    Alroy, J. Colloquium paper: dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. USA 105, 11536–11542 (2008). Suppl 1.CAS 

    Google Scholar 
    Servais, T., Cascales-Miñana, B. & Harper, D. A. T. The Great Ordovician Biodiversification Event (GOBE) is not a single event. Paleontological Res. 25, 315–328 (2021).Miller, A. I. & Foote, M. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996).CAS 

    Google Scholar 
    Sepkoski, J. J. A compendium of marine fossil genera. vol. 2002 (Paleontological Research Institution, 2002).Zhan, R. & Harper, D. A. T. Biotic diachroneity during the Ordovician Radiation: evidence from South China. Lethaia 39, 211–226 (2006).
    Google Scholar 
    Fan, J. et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020).CAS 

    Google Scholar 
    Deng, Y. et al. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician mass extinction: Perspectives from South China. Earth-Sci. Rev. 220, 103743 (2021).
    Google Scholar 
    Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proc. R. Soc. B: Biol. Sci. 286, 3–8 (2019).
    Google Scholar 
    Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl. Acad. Sci. USA 116, 7207–7213 (2019).CAS 

    Google Scholar 
    Sepkoski, J. J. A factor analytic description of the phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).
    Google Scholar 
    Sepkoski, J. J. & Sheehan, P. M. Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations. in Biotic interactions in recent and fossil benthic communities (eds. Tevesz, M. J. S. & McCall, P. L.) 673–717 (Plenum Press, 1983).Harper, D. A. T. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 148–166 (2006).
    Google Scholar 
    Stigall, A. L., Bauer, J. E., Lam, A. R. & Wright, D. F. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global Planet. Change 148, 242–257 (2017).
    Google Scholar 
    Copper, P. Coral Reefs Reports Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science 321, 550–554 (2008).CAS 

    Google Scholar 
    Lindström, M. The Ordovician climate based on the study of carbonate rocks. in Aspects of the Ordovician System, Paleontological Contribution of the University of Oslo (ed. Bruton, D. L.) vol. 295 81–88 (Universitetsforlaget, 1984).Rasmussen, C. M. Ø., Nielsen, A. T. & Harper, D. A. T. Ecostratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods. Geological Mag. 146, 717–731 (2009).
    Google Scholar 
    Dabard, M. P. et al. Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436, 96–111 (2015).
    Google Scholar 
    Rasmussen, C. M. Ø. et al. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).CAS 

    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
    Google Scholar 
    Saltzman, M. R., Edwards, C. T., Adrain, J. M. & Westrop, S. R. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43, 807–811 (2015).CAS 

    Google Scholar 
    Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience 10, 925–929 (2017).CAS 

    Google Scholar 
    Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of earth’s second oxygen revolution. Ann. Rev. Ecol. Evolut. Syst. 46, 215–235 (2015).
    Google Scholar 
    Dahl, T. W. et al. Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago. Geochem. Perspect. Lett. 210–220 (2017).Dahl, T. W. et al. Atmosphere-ocean oxygen and productivity dynamics during early animal radiations. Proc. Natl. Acad. Sci. 116, 19352–19361 (2019).CAS 

    Google Scholar 
    Nursall, J. R. Oxygen as a prerequisite to the origin of the metazoa. Nature 183, 1170–1172 (1959).Knoll, A. H. Biological and Biogeochemical Preludes to the Ediacaran Radiation. In Origin and Early Evolution of the Metazoa (eds. Lipps, J. H. & Signor, P. W.) 53–84 (Springer US, 1992).Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl. Acad. Sci. 108, 17631–17634 (2011).CAS 

    Google Scholar 
    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl. Acad. Sci. USA 113, 2360–2365 (2016).CAS 

    Google Scholar 
    Zhang, F. et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).CAS 

    Google Scholar 
    Andersen, M. B., Stirling, C. H. & Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 82, 799–850 (2017).CAS 

    Google Scholar 
    Chen, X. et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochimica et Cosmochimica Acta 237, 294–311 (2018).CAS 

    Google Scholar 
    Zhang, F. et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review. Geochimica et Cosmochimica Acta 287, 27–49 (2020).CAS 

    Google Scholar 
    Stylo, M. et al. Uranium isotopes fingerprint biotic reduction. Proc. Natl. Acad. Sci. 112, 5619–5624 (2015).CAS 

    Google Scholar 
    Basu, A. et al. Microbial U isotope fractionation depends on the U(VI) reduction rate. Environ. Sci. Technol. 54, 2295–2303 (2020).CAS 

    Google Scholar 
    Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).CAS 

    Google Scholar 
    Dahl, T. W. et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet. Sci. Lett. 401, 313–326 (2014).CAS 

    Google Scholar 
    Tissot, F. L. H. & Dauphas, N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochimica et Cosmochimica Acta 167, 113–143 (2015).CAS 

    Google Scholar 
    Romaniello, S. J., Herrmann, A. D. & Anbar, A. D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy. Chem. Geology 362, 305–316 (2013).CAS 

    Google Scholar 
    Chen, X., Romaniello, S. J., Herrmann, A. D., Samankassou, E. & Anbar, A. D. Biological effects on uranium isotope fractionation (238U/235U) in primary biogenic carbonates. Geochimica et Cosmochimica Acta 240, 1–10 (2018).CAS 

    Google Scholar 
    Tissot, F. L. H. et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta 242, 233–265 (2018).CAS 

    Google Scholar 
    Lindskog, A. & Eriksson, M. E. Megascopic processes reflected in the microscopic realm: sedimentary and biotic dynamics of the Middle Ordovician “orthoceratite limestone” at Kinnekulle, Sweden. Gff 139, 163–183 (2017).
    Google Scholar 
    Jaanusson, V. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6, 11–34 (1973).
    Google Scholar 
    Bergström, S. M., Chen, X., Gutiérrez-marco, J. C. & Dronov, A. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97–107 (2008).
    Google Scholar 
    Lindskog, A., Lindskog, A. M., Johansson, J. V., Ahlberg, P. & Eriksson, M. E. The Cambrian–Ordovician succession at Lanna, Sweden: stratigraphy and depositional environments. Estonian J. Earth Sci 67, 133 (2018).
    Google Scholar 
    Bábek, O. et al. Redox geochemistry of the red ‘orthoceratite limestone’ of Baltoscandia: Possible linkage to mid-Ordovician palaeoceanographic changes. Sedimentary Geology 420, 105934 (2021).
    Google Scholar 
    Azmy, K. et al. Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: Implications for correlations with St. George Group in western Newfoundland (Canada) and beyond. Sedimentary Geology 225, 67–81 (2010).CAS 

    Google Scholar 
    Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proc Natl Acad Sci USA 115, 5896–5901 (2018).CAS 

    Google Scholar 
    Dahl, T. W., Hammarlund, E. U., Rasmussen, C. M. Ø., Bond, D. P. G. & Canfield, D. E. Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies. Earth-Sci. Rev. 220, 103748 (2021).CAS 

    Google Scholar 
    Del Rey, Á., Havsteen, J., Bizzarro, M., Connelly, J. & Dahl, T. W. Untangling the diagenetic history of Uranium isotopes in marine carbonates: a case study tracing d238U of late Silurian oceans using calcitic brachiopod shells. Geochimica et Cosmochimica Acta 2020, 93–110.Rasmussen, J. A., Thibault, N. & Mac Ørum Rasmussen, C. Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations.Nat Commun12, 6430 (2021).CAS 

    Google Scholar 
    Ainsaar, L. et al. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 189–201 (2010).
    Google Scholar 
    Wu, R., Calner, M. & Lehnert, O. Integrated conodont biostratigraphy and carbon isotope chemostratigraphy in the Lower-Middle Ordovician of southern Sweden reveals a complete record of the MDICE. Geological Mag. 154, 334–353 (2017).CAS 

    Google Scholar 
    Lindskog, A., Eriksson, M. E., Bergström, S. M. & Young, S. A. Lower–Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlation and palaeoenvironmental development. Lethaia 52, 204–219 (2019).
    Google Scholar 
    Rasmussen, C. M. Ø., Hansen, J. & Harper, D. A. T. Baltica: A mid Ordovivian diversity hotspot. Historical Biology 19, 255–261 (2007).
    Google Scholar 
    Zhang, J. Lithofacies and stratigraphy of the Ordovician Guniutan Formation in its type area, China. Geol. J. 31, 201–215 (1996).
    Google Scholar 
    Eriksson, M. E. et al. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) ‘Täljsten’ interval, south-central Sweden. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367–368, 89–103 (2012).
    Google Scholar 
    Lindström, M., Jun-Yuan, C. & Jun-Ming, Z. Section at Daping reveals Sino-Baltoscandian parallelism of facies in the Ordovician. Geologiska Föreningen i Stockholm Förhandlingar 113, 189–205 (1991).
    Google Scholar 
    Edward, O. et al. A Baltic perspective on the early to early late ordovician δ13 C and δ18 O Records and its paleoenvironmental significance. Paleoceanog and Paleoclimatol 37, e2021PA004309 (2022).Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    Google Scholar 
    Gueguen, B. et al. The chromium isotope composition of reducing and oxic marine sediments. Geochimica et Cosmochimica Acta 184, 1–19 (2016).CAS 

    Google Scholar 
    Weyer, S. et al. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta 72, 345–359 (2008).CAS 

    Google Scholar 
    Condon, D. J., McLean, N., Noble, S. R. & Bowring, S. A. Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica et Cosmochimica Acta 74, 7127–7143 (2010).CAS 

    Google Scholar 
    Wang, X., Planavsky, N. J., Reinhard, C. T., Hein, J. R. & Johnson, T. M. A cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts. Am. J. Sci. 315, 64–83 (2016).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).
    Google Scholar 
    Scotese, C. R. Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection), Maps 73-80, Volumes 5, The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL. (2014). More

  • in

    Ecological and evolutionary dynamics of multi-strain RNA viruses

    Gupta, S. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucharski, A. J., Andreasen, V. & Gog, J. R. Capturing the dynamics of pathogens with many strains. J. Math. Biol. 72, 1–24 (2016).PubMed 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Comput. Biol. 9, e1003308 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gog, J. R. & Grenfell, B. T. Dynamics and selection of many-strain pathogens. Proc. Natl Acad. Sci. USA 99, 17209–17214 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Recker, M., Pybus, O. G., Nee, S. & Gupta, S. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc. Natl Acad. Sci. USA 104, 7711–7716 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jang, Y., Seo, T. & Seo, S. H. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch. Virol. 165, 1141–1150 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salvesen, H. A. & Whitelaw, C. B. A. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manage. 7, 23 (2021).Article 

    Google Scholar 
    Ma, W., Kahn, R. E. & Richt, J. A. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J. Mol. Genet. Med. 03, 158–166 (2009).CAS 
    Article 

    Google Scholar 
    Mancera Gracia, J. C., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Regenmortel, M. H. V. Virus species and virus identification: past and current controversies. Infect. Genet. Evol. 7, 133–144 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lazebnik, T. & Bunimovich-Mendrazitsky, S. Generic approach for mathematical model of multi-strain pandemics. PLoS ONE 17, e0260683 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Sandeman, M., Recker, M. & Gupta, S. The antigenic evolution of influenza: drift or thrift? Phil. Trans. R. Soc. B 368, 20120200 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pitzer, V. E. et al. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc. Natl Acad. Sci. USA 108, 19353–19358 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Temporal dynamics of co-circulating lineages of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 10, 2486 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Axford, R. F. E., Nicholas, F. W. & Owen, J. B. Breeding for Disease Resistance in Farm Animals 3rd edn (CABI, 2010); https://doi.org/10.1079/9781845935559.0000Domingo, E. & Schuster, P. in Quasispecies: From Theory to Experimental Systems (eds Domingo, E. & Schuster, P.) 1–22 (Springer, 2015); https://doi.org/10.1007/82_2015_453Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N., Trible, B. R., Kerrigan, M. A., Tian, K. & Rowland, R. R. R. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound. Infect. Genet. Evol. 40, 167–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S. Identification of Genetic Mutations that Confer Escape from Innate or Adaptive Host Immune Responses During PRRSV Infection In Vivo NPB #12-173 (National Pork Board, 2014).Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dou, D., Revol, R., Östbye, H., Wang, H. & Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9, 1581 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hamilton, B. S., Whittaker, G. R. & Daniel, S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4, 1144–1168 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, K. et al. Virus–host interactions in foot-and-mouth disease virus infection. Front. Immunol. 12, 571509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa057 (2020).Wang, G., Wang, Y., Shang, Y., Zhang, Z. & Liu, X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol. J. 12, 9 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7, a016303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Theofilopoulos, A., Baccala, R., Beutler, B. & Kono, D. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, S. N. & Rouse, B. T. in Clinical Immunology (eds Rich, R. R. et al.) 421–431 (Elsevier, 2008); https://doi.org/10.1016/B978-0-323-04404-2.10027-2Chen, X. et al. Host immune response to influenza A virus infection. Front. Immunol. 9, 320 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Agrawal, B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 2631 (2019)iCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharma, S. & Thomas, P. G. The two faces of heterologous immunity: protection or immunopathology. J. Leukoc. Biol. 95, 405–416 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spackman, E. & Sitaras, I. Animal Influenza Virus (Springer, 2020).Anderson, C. S., McCall, P. R., Stern, H. A., Yang, H. & Topham, D. J. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics 19, 51 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cai, Z., Zhang, T. & Wan, X.-F. Concepts and applications for influenza antigenic cartography. Influenza Other Respi. Viruses 5, 204–207 (2011).PubMed Central 

    Google Scholar 
    Wang, P. et al. Predicting influenza antigenicity by matrix completion with antigen and antiserum similarity. Front. Microbiol. 9, 2500 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hirst, G. K. Studies of antigenic differences among strains of influenza by means of red cell agglutination. J. Exp. Med. 78, 407–423 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendra, J. A., Tohma, K., Ford-Siltz, L. A., Lepore, C. J. & Parra, G. I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl Acad. Sci. USA 118, e2015874118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, S. M., Katzelnick, L. & Bedford, T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife 8, e42496 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, Y. et al. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Sci. Rep. 7, 1545 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zeller, M. A. et al. Machine learning prediction and experimental validation of antigenic drift in h3 influenza A viruses in swine. mSphere 6, e00920–e00920 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S. et al. Five challenges in modelling interacting strain dynamics. Epidemics 10, 31–34 (2015).PubMed 
    Article 

    Google Scholar 
    Elliott, P. et al. Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science 374, eabl9551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianco, S., Shaw, L. B. & Schwartz, I. B. Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19, 043123 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Poon, A. F. Y. et al. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS ONE 8, e78122 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, M. S. et al. Improving bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingman, J. F. C. On the genealogy of large populations. J. Appl. Probab. 19, 27–43 (1982).Article 

    Google Scholar 
    Griffiths, R. C. & Tavare, S. Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).Article 

    Google Scholar 
    Magee, D., Suchard, M. A. & Scotch, M. Bayesian phylogeography of influenza A/H3N2 for the 2014–15 season in the United States using three frameworks of ancestral state reconstruction. PLoS Comput. Biol. 13, e1005389 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Müller, N. F., Rasmussen, D. & Stadler, T. MASCOT: parameter and state inference under the marginal structured coalescent approximation. Bioinformatics 34, 3843–3848 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, L., Neher, R. A. & Shraiman, B. I. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. Elife 8, e44205 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Phylogenetic structure and sequential dominance of sub-lineages of PRRSV type-2 lineage 1 in the United States. Vaccines 9, 608 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kistler, K. E. & Bedford, T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. Elife 10, e64509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bedford, T. et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 2014, e01914 (2014).Article 

    Google Scholar 
    de Carvalho Ferreira, H. C. et al. An integrative analysis of foot-and-mouth disease virus carriers in Vietnam achieved through targeted surveillance and molecular epidemiology. Transbound. Emerg. Dis. 64, 547–563 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Huang, J. H. et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008–2010. Am. J. Trop. Med. Hyg. 87, 349–358 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Höckerstedt, L. M., Siren, J. P. & Laine, A.-L. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J. Evol. Biol. 31, 844–852 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papaïx, J., Burdon, J. J., Lannou, C. & Thrall, P. H. Evolution of pathogen specialisation in a host metapopulation: joint effects of host and pathogen dispersal. PLoS Comput. Biol. 10, e1003633 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A.-L. Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology 95, 703–714 (2014).PubMed 
    Article 

    Google Scholar 
    Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics 14, 289 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wargo, A. R. & Kurath, G. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2, 538–545 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dayarian, A. & Shraiman, B. I. How to infer relative fitness from a sample of genomic sequences. Genetics 197, 913–923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. Elife 3, e03568 (2014).PubMed Central 
    Article 

    Google Scholar 
    Doumayrou, J., Thébaud, G., Vuillaume, F., Peterschmitt, M. & Urbino, C. Mapping genetic determinants of viral traits with FST and quantitative trait locus (QTL) approaches. Virology 484, 346–353 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagylaki, T. Fixation indices in subdivided populations. Genetics 148, 1325–1332 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tubiana, L., Božič, A. L., Micheletti, C. & Podgornik, R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys. J. 108, 194–202 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jordan-Paiz, A., Franco, S. & Martínez, M. A. Impact of synonymous genome recoding on the HIV life cycle. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.606087 (2021).Cuevas, J. M., Domingo-Calap, P. & Sanjuán, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Su, Y. C. F. et al. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat. Commun. 6, 7952 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kryazhimskiy, S., Dieckmann, U., Levin, S. A. & Dushoff, J. On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Comput. Biol. 3, e159 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peralta, R., Vargas-De-León, C., Cabrera, A. & Miramontes, P. Dynamics of high-risk nonvaccine human papillomavirus types after actual vaccination scheme. Comput. Math. Methods Med. 2014, 542923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ranjeva, S. L. et al. Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc. Natl Acad. Sci. USA 114, 13573–13578 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguiar, M., Stollenwerk, N. & Kooi, B. W. The stochastic multi-strain dengue model: analysis of the dynamics. AIP Conf. Proc. 1389, 1224 (2011).Blower, S. M., Aschenbach, A. N., Gershengorn, H. B. & Kahn, J. O. Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7, 1016–1020 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharomi, O. & Gumel, A. B. Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn. 2, 323–345 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B., Drake, J. M. & Rohani, P. An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinformatics 12, 87 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sofonea, M. T., Alizon, S. & Michalakis, Y. From within-host interactions to epidemiological competition: a general model for multiple infections. Phil. Trans. R. Soc. B 370, 20140303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanderWaal, K. L. & Ezenwa, V. O. Heterogeneity in pathogen transmission: mechanisms and methodology. Funct. Ecol. 30, 1606–1622 (2016).Article 

    Google Scholar 
    Cobey, S. & Pascual, M. Consequences of host heterogeneity, epitope immunodominance, and immune breadth for strain competition. J. Theor. Biol. 270, 80–87 (2011).PubMed 
    Article 

    Google Scholar 
    Aguiar, M., Ballesteros, S., Kooi, B. W. & Stollenwerk, N. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. J. Theor. Biol. 289, 181–196 (2011).PubMed 
    Article 

    Google Scholar 
    Breban, R., Drake, J. M. & Rohani, P. A general multi-strain model with environmental transmission: invasion conditions for the disease-free and endemic states. J. Theor. Biol. 264, 729–736 (2010).PubMed 
    Article 

    Google Scholar 
    Kamo, M. & Sasaki, A. The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228–241 (2002).Martcheva, M. A non-autonomous multi-strain SIS epidemic model. J. Biol. Dyn. 3, 235–251 (2009).PubMed 
    Article 

    Google Scholar 
    Pugliese, A. On the evolutionary coexistence of parasite strains. Math. Biosci. 177–178, 355–375 (2002).PubMed 
    Article 

    Google Scholar 
    Roche, B. & Rohani, P. Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics 2, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    Korobeinikov, A. & Dempsey, C. A continuous phenotype space model of RNA virus evolution within a host. Math. Biosci. Eng. 11, 919–927 (2014).Article 

    Google Scholar 
    Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A. & Liu, W. M. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta, S., Swinton, J. & Anderson, R. M. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. B 256, 231–238 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koelle, K., Khatri, P., Kamradt, M. & Kepler, T. B. A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J. R. Soc. Interface 7, 1257–1274 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lion, S. & Gandon, S. Spatial evolutionary epidemiology of spreading epidemics. Proc. R. Soc. B 283, 20161170 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, e1000536 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lipsitch, M., Colijn, C., Cohen, T., Hanage, W. P. & Fraser, C. No coexistence for free: neutral null models for multistrain pathogens. Epidemics 1, 2–13 (2009).PubMed 
    Article 

    Google Scholar 
    Read, J. M. & Keeling, M. J. Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B 270, 699–708 (2003).Article 

    Google Scholar 
    Eshelman, C. M. et al. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Phil. Trans. R. Soc. B 365, 2503–2513 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makau, D. N. et al. Integrating animal movements with phylogeography to model the spread of PRRS virus in the US. Virus Evol. https://doi.org/10.1093/ve/veab060 (2021).Kistler, K. E., Huddleston, J. & Bedford, T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545–555 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Roossinck, M. J. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol. 78, 10582–10587 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife 7, e35962 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nelson, M. I. et al. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog. 2, e125 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369, 582–587 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    da Silva Filipe, A. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat. Microbiol. 6, 112–122 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obermeyer, F. et al. Analysis of 2.1 million SARS-CoV-2 genomes identifies mutations associated with transmissibility. Science 376, 1327–1332 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl Acad. Sci. USA 111, 10767–10772 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).CAS 
    Article 

    Google Scholar 
    Clay, P. A. & Rudolf, V. H. W. How parasite interaction strategies alter virulence evolution in multi‐parasite communities. Evolution 73, 2189–2203 (2019).PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Doeschl-Wilson, A. B. & Woolliams, J. A. Uses and implications of field disease data for livestock genomic and genetics studies. Front. Genet. 3, 114 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez‐Nevado, C., Lam, T. T. Y., Holmes, E. C. & Pagán, I. The impact of host genetic diversity on virus evolution and emergence. Ecol. Lett. 21, 253–263 (2018).PubMed 
    Article 

    Google Scholar 
    Schulte, R. D., Makus, C. & Schulenburg, H. Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26, 1836–1840 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duxbury, E. M. L. et al. Host–pathogen coevolution increases genetic variation in susceptibility to infection. Elife 8, e46440 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ganusov, V. V., Bergstrom, C. T. & Antia, R. Within‐host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213–223 (2002).PubMed 
    Article 

    Google Scholar 
    González, R., Butković, A. & Elena, S. F. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evol. 5, vez024 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Regoes, R. R., Nowak, M. A. & Bonhoeffer, S. Evolution of virulence in a heterogeneous host population. Evolution 54, 64–71 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yates, A., Antia, R. & Regoes, R. R. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc. R. Soc. B 273, 3075–3083 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rochman, N. D. et al. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2104241118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).PubMed 
    Article 

    Google Scholar 
    Gidari, A. et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. J. Infect. 83, 467–472 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Changrob, S. et al. Cross-neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike. MBio https://doi.org/10.1128/mBio.02975-21 (2021).Vidal, S. J. et al. Correlates of neutralization against SARS-CoV-2 variants of concern by early pandemic sera. J. Virol. 95, e0040421 (2021).PubMed 
    Article 

    Google Scholar 
    Muik, A. et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152–1153 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bushman, M., Kahn, R., Taylor, B. P., Lipsitch, M. & Hanage, W. P. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 184, 6229–6242 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koopman, J. S., Simon, C. P., Getz, W. M. & Salter, R. Modeling the population effects of escape mutations in SARS-CoV-2 to guide vaccination strategies. Epidemics 36, 100484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Author Correction: Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams

    Correction to: Nature Ecology & Evolution https://doi.org/10.1038/s41559-019-0970-7, published online 2 September 2019.The Journal would like to note that the authors first made contact in September 2019 to raise the concerns that follow, and the Journal apologizes both for the delay in relaying these corrections publicly and for the changed instances that prevent making corrections to the original article itself. What follows is the Author correction.In the version of this article initially published, we made several errors in our R analysis code, and in the text and figures. First, the number of species with negative net dispersal velocity (net DV) were incorrectly calculated, resulting in slight changes in Fig. 2 and Supplementary Fig. 6, and in the text. The amended figures are provided below (Figs. 1–7). Changes to the text under the ‘DVs’ subsection of Results are: “When considering the mainstem pathway, we estimate that the mobile subpopulations of 134 (old version: 124) and 185 (old version: 174) (RCP 4.5 and 8.5, respectively) species will experience dispersal deficits in at least 50% of their southern Appalachian range, whereas these estimates increase to 229 (old version: 226) and 231 (old version: 232) species for the stationary subpopulation. Slow-climate-velocity tributaries reduce the number of species experiencing dispersal deficits by 99.3% (old version: 99.2%) and 90.3% (old version: 16.9%) (RCP 4.5 and 8.5, respectively) for the mobile component and 17.9% (old version: 90.8%) and 12.1% (old version: 12.9%) for the stationary component (Fig. 2a,b).” The two large discrepancies in dispersal deficit values (90.3% vs. 16.9%; 17.9% vs. 90.8%) were solely consequences of original text errors (16.9% and 90.8% values were erroneously switched), and not differences in calculations; therefore, the results did not change.Fig. 1Figure 2, original and corrected.Full size imageFig. 2Figure 3c,d, original and corrected.Full size imageFig. 3Figure 4, original and corrected.Full size imageFig. 4Figure 5, original and corrected.Full size imageFig. 5Supplementary Figure 6, original.Full size imageFig. 5Supplementary Figure 6, corrected.Full size imageFig. 6Supplementary Figure 8, original.Full size imageFig. 6Supplementary Figure 8, corrected.Full size imageFig. 7Supplementary Figure 9, original.Full size imageFig. 7Supplementary Figure 9, corrected.Full size imageSecond, we made errors when plotting Fig. 3c,d. Boxplots of mean change in habitat suitability were plotted instead of median change as specified in the caption; further, whiskers did not include the entire range of values. The amended figure is provided below. We would like to correct associated errors in text; specific changes are: “Our ENMs estimate a median 15.1% (old version: mean 14.1%) reduction (range −42.5% to +16.6% [old version: −51.6% to +2.4%] across 233 species) in habitat suitability associated with the tributary pathway compared with only a 3.8% (old version: 1.6%) reduction (−11.0% to +12.3% [old version: −7.9% to +1.8%]) for the mainstem pathway due to differing non-temperature habitat conditions (Fig. 3a,b).”Third, we made errors when plotting Fig. 4 and Supplementary Fig. 8. Specifically, net DV values were incorrectly rescaled; one extinct species was erroneously included in the plot; and the number of species in each quadrant was counted incorrectly. The amended figures are shown below. We would like to add a sentence (“The y-axes are inverse hyperbolic sine (asinh)-transformed”) to the caption of Fig. 4 to describe the y-axis scaling in the amended figures. There were two other text errors in the caption. The phrase “Mean net DV” should have been “Median net DV,” whereas the phrase “mean habitat suitability” should have read “median change in habitat suitability.” Therefore, the corrected Fig. 4 caption should read: “Species-level mismatch between net DV and upstream habitat suitability. a–d, Median net DV of mobile (a,b) and stationary subpopulations under the RCP 8.5 scenario plotted as a function of median change in habitat suitability for mainstem (a,c) and tributary (b,d) dispersal pathways. Each point represents a species and is computed as the median response across all projected occupied reaches. Red and blue numbers correspond to the number of species in each of the four quadrants. The y-axes are inverse hyperbolic sine (asinh)-transformed. e–h, Four species highlighting the diversity in dispersal-based and habitat suitability-based vulnerability: streamline chub (e); brook trout (f); flathead catfish (g); blacknose dace (h). Credit: David Neely (e–h)”. These corrections did not change our inferences.Fourth, there were errors in rescaling and plotting net DV values and in the calculation of quadrant percentages in Fig. 5 and Supplementary Fig. 9. The amended figures are shown below. We would like to add two sentences at the end of Fig. 5 caption to provide greater detail on plotting methods: “The y-axes of the scatterplots are inverse hyperbolic sine (asinh)-transformed. For clarity, the scatterplots show net DV values ≥ −13,000 and ≤ 130, and change in habitat suitability values ≤ 100, representing >99.5% of all observations.” There was one other text error in the caption: the phrase “mean habitat suitability” should have read “mean change in habitat suitability.” Therefore, the corrected Fig. 4 caption should read: “Community-level mismatch between net DV and upstream habitat suitability. a–d, Mean net DV of mobile (a,b) and stationary (c,d) subpopulations under the RCP 8.5 scenario plotted as a function of mean change in habitat suitability for mainstem (a,c) and tributary (b,d) dispersal pathways. Each point (scatterplot) and reach (map) is computed as the mean response for all species projected to occur within the reach. Quadrant numbers represent percentage of reaches in the quadrant. Colours associated with the upper-right quadrant correspond to ‘safe’ reaches where community members can keep pace with ISVs and habitat suitability increases. Colours associated with the lower-left quadrant correspond to ‘vulnerable’ reaches where community members cannot keep pace with ISVs and habitat suitability declines. The y-axes of the scatterplots are inverse hyperbolic sine (asinh)-transformed. For clarity, the scatterplots show net DV values ≥ −13,000 and ≤ 130, and change in habitat suitability values ≤ 100, representing >99.5% of all observations.” These corrections did not change our inferences.Fifth, there was an error in the last sentence of the “Calculating net DVs” subsection in Methods: “Last, we calculated the mean net DV for each species (species-specific DV) by averaging net DVs at all occupied reaches, as well as the community-wide net DV at each stream reach (reach-specific DV) by averaging the net DVs of all species at each reach.” This sentence should have read “Last, we calculated the median net DV for each species (species-specific DV) across all occupied reaches, as well as the mean community-wide net DV at each stream reach (reach-specific DV) by averaging the net DVs of all species at each reach.”Corrections of calculation errors yielded results that were similar to those in the original analysis whereas corrections of plotting and text errors did not affect our original inferences. Therefore, these errors did not change the overall results and conclusions of the article. We sincerely apologize for any misunderstanding and inconvenience caused by these errors. More

  • in

    Correlating gut microbial membership to brown bear health metrics

    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. PNAS 104, 10075–10079 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Roederer, J. G. & Malone, T. F. (eds) Resilience of Ecosystems: Local Surprise and Global Change 228–269 (Cambridge University Press, 1985).
    Google Scholar 
    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).PubMed 
    Article 

    Google Scholar 
    Lafferty, D. J. R., Belant, J. L. & Phillips, D. L. Testing the niche variation hypothesis with a measure of body condition. Oikos 124, 732–740 (2015).Article 

    Google Scholar 
    Mangipane, L. S. et al. Dietary plasticity in a nutrient-rich system does not influence brown bear (Ursus arctos) body condition or denning. Polar Biol. 41, 763–772 (2018).Article 

    Google Scholar 
    Mangipane, L. S. et al. Dietary plasticity and the importance of salmon to brown bear (Ursus arctos) body size and condition in a low Arctic ecosystem. Polar Biol. 43, 825–833 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    McKenney, E. A., Koelle, K., Dunn, R. R. & Yoder, A. D. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cani, P. D. & Delzenne, N. M. Interplay between obesity and associated metabolic disorders: New insights into the gut microbiota. Curr. Opin. Pharmacol. 9, 737–743 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arinell, K. et al. Brown bears (Ursus arctos) seem resistant to atherosclerosis­despite highly elevated plasma lipids during hibernation and active state. Clin. Transl. Sci. 5, 269–272 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nelson, R. A. Protein and fat metabolism in hibernating bears. Fed. Proc. 39, 2955–2958 (1980).CAS 
    PubMed 

    Google Scholar 
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenney, E. A., Maslanka, M., Rodrigo, A. & Yoder, A. D. Bamboo specialists from two mammalian orders (primates, carnivora) share a high number of low-abundance gut microbes. Microb. Ecol. 76, 272–284 (2018).PubMed 
    Article 

    Google Scholar 
    Edwards, M. A., Derocher, A. E., Hobson, K. A., Branigan, M. & Nagy, J. A. Fast carnivores and slow herbivores: Differential foraging strategies among grizzly bears in the Canadian Arctic. Oecologia 165, 877–889 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Levi, T. et al. Community ecology and conservation of bear-salmon ecosystems. Front. Ecol. Evol. 8, 513304 (2020).Article 

    Google Scholar 
    Milakovic, B. & Parker, K. L. Quantifying carnivory by grizzly bears in a multi-ungulate system. J. Wildl. Manage. 77, 39–47 (2013).Article 

    Google Scholar 
    Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201–214 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hashimoto, T., Hussien, R. & Brooks, G. A. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: Evidence of a mitochondrial lactate oxidation complex. Am. J. Physiol.-Endocrinol. Metab. 290, E1237–E1244 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker, S. & The, H. C. Recent insights into Shigella: A major contributor to the global diarrhoeal disease burden. Curr. Opin. Infect. Dis. 31, 449–454 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, K.-E. et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome 8, 107 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waites, K. B., Schelonka, R. L., Xiao, L., Grigsby, P. L. & Novy, M. J. Congenital and opportunistic infections: Ureaplasma species and Mycoplasma hominis. Semin. Fetal Neonatal. Med. 14, 190–199 (2009).PubMed 
    Article 

    Google Scholar 
    Barboza, P. S., Farley, S. D. & Robbins, C. T. Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanus and U. arctos). Can. J. Zool. 75, 2129. https://doi.org/10.1139/z97-848 (2011).Article 

    Google Scholar 
    Johanne Hansen, M. et al. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears. Int. J. Syst. Evol. Microbiol. 65, 3683–3689 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Waldram, A. et al. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 8, 2361–2375 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardie, J. M. & Whiley, R. A. The genus Streptococcus. In The Genera of Lactic Acid Bacteria (eds Wood, B. J. B. & Holzapfel, W. H.) 55–124 (Springer, 1995).Chapter 

    Google Scholar 
    Li, F., Wang, M., Wang, J., Li, R. & Zhang, Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front. Cell. Infect. Microbiol. 9, 206 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. G. & Lee, A. The role of Helicobacter species in newly recognized gastrointestinal tract diseases of animals. Lab. Anim. Sci. 47, 222–255 (1997).CAS 
    PubMed 

    Google Scholar 
    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, e0124618 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, C. E. & Hume, I. D. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78, 393–427 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hilderbrand, G. V. et al. Plasticity in physiological condition of female brown bears across diverse ecosystems. Polar Biol. 41, 773–780 (2018).Article 

    Google Scholar 
    Ley, R. E. et al. Obesity alters gut microbial ecology. PNAS 102, 11070–11075 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Magne, F. et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 103, 91–93 (1969).Article 

    Google Scholar 
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trujillo, S. M. et al. Intrinsic and extrinsic factors influence on an omnivore’s gut microbiome. PLoS ONE 17, e0266698 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hilderbrand, G. V. et al. Body size and lean mass of brown bears across and within four diverse ecosystems. J. Zool. 305, 53–62 (2018).Article 

    Google Scholar 
    Wilson, R. R., Gustine, D. D. & Joly, K. Evaluating potential effects of an industrial road on winter habitat of caribou in North-Central Alaska. Arctic 67, 472–482 (2014).Article 

    Google Scholar 
    Gasaway, W. C. et al. The role of predation in limiting moose at low densities in Alaska and Yukon and implications for conservation. Wildl. Monogr. 12, 3–59 (1992).
    Google Scholar 
    Taylor, W. P., Reynolds, H. V. & Ballard, W. B. Immobilization of grizzly bears with tiletamine hydrochloride and zolazepam hydrochloride. J. Wildl. Manage. 53, 978–981 (1989).Article 

    Google Scholar 
    Farley, S. D. & Robbins, C. T. Development of two methods to estimate body composition of bears. Can. J. Zool. 72, 220–226 (1994).Article 

    Google Scholar 
    Hilderbrand, G. V., Robbins, C. T. & Farley, S. D. Response: Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 76, 2301–2303 (1998).Article 

    Google Scholar 
    McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ 8, e9593 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. U.S.A. 106, 22427–22432 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 9, 2068–2077 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Simpson, E. H. Measurement of diversity. Nature 163, 688–688 (1949).ADS 
    MATH 
    Article 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Hamidi, B., Wallace, K., Vasu, C. & Alekseyenko, A. V. Wd∗$Wd*-test: Robust distance-based multivariate analysis of variance. Microbiome 7, 51 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alekseyenko, A. V. Multivariate Welch t-test on distances. Bioinformatics 32, 3552–3558 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Bacterial diversity in surface sediments of collapsed lakes in Huaibei, China

    Zhang, Bo. et al. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer. Front. Environ. Sci. Eng. 13, 20 (2019).Article 

    Google Scholar 
    Li, Y. et al. Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes. Pol. J. Environ. Stud. 26, 181–188 (2017).CAS 
    Article 

    Google Scholar 
    Li, J. et al. Analysis of heavy metal sources and health risk assessment of typical coal mine collapsed lakes in Huaibei Coalfield, Anhui Province, China. Polish J. Environ. Stud. 29, 3193–3202 (2020).CAS 
    Article 

    Google Scholar 
    James, I. P. & Jennifer, B. H. M. Conceptual challenges in microbial community ecology. Philos. Trans. R. Soc. B 375, 20190241 (2020).Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Falkowski Paul, G., Fenchel, T. & Delong Edward, F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95, 6578 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkes, R. J. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wurzbacher, C. et al. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome 5, 41 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369 (2009).CAS 
    Article 

    Google Scholar 
    Strauss, E. A., Mitchell, N. L. & Lamberti, G. A. Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH. Can. J. Fish. Aquat. Sci. 59, 554–563 (2002).CAS 
    Article 

    Google Scholar 
    Seymour, J. R., Seuront, L. & Mitchell, J. G. Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuar. Coast. Shelf Sci. 73, 651–666 (2007).ADS 
    Article 

    Google Scholar 
    Aciego Pietri, J. C. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).CAS 
    Article 

    Google Scholar 
    Pavloudi, C., Kristoffersen, J. B., Oulas, A., De Troch, M. & Arvanitidis, C. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane’s “species minimum” concept. PeerJ 5, e3687 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wei, G., Li, M., Li, F., Li, H. & Gao, Z. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Appl. Microbiol. Biotechnol. 100, 9683–9697 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. Ten years of next-generation sequencing technology. Trends Genet. 30, 418–426 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sadaiappan, B., Prasannakumar, C., Subramanian, K. & Mahendran, S. Metagenomic data of vertical distribution and abundance of bacterial diversity in the hypersaline sediments of Mad Boon-mangrove ecosystem, Bay of Bengal. Data Brief 22, 716–721 (2019).PubMed 
    Article 

    Google Scholar 
    Kim, K. Microbial diversity analysis of sediment from Nakdong River Estuary in the republic of Korea using 16s rRNA gene amplicon sequencing. Microbiol. Resour. Announc. 7, e01186-e11118 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y., Liu, Y., Dumont, M. & Conrad, R. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microb. Ecol. 73, 101–110 (2017).PubMed 
    Article 

    Google Scholar 
    Palmer, M. A., Covich, A. P., Lake, S., Biro, P. & Bund, W. JVd. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity. Bioscience 50, 1062–1075 (2000).Article 

    Google Scholar 
    Silveira, R. et al. Bacteria and archaea communities in Cerrado natural pond sediments. Microb. Ecol. 81, 563–578 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galand, P. E. et al. Disturbance increases microbial community diversity and production in marine sediments. Front. Microbiol. 7, 1950 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dai, Y. et al. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl. Microbiol. Biotechnol. 100, 4161–4175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, Y. et al. Macrophyte identity shapes water column and sediment bacterial community. Hydrobiologia https://doi.org/10.1007/s10750-019-3930-y (2019).Article 

    Google Scholar 
    Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S. & Nautiyal, C. S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450–460 (2012).PubMed 
    Article 

    Google Scholar 
    Huang, W. et al. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. MicrobiologyOpen 8, e00644 (2019).PubMed 
    Article 

    Google Scholar 
    Ji, B., Liang, J., Ma, Y., Zhu, L. & Liu, Y. Bacterial community and eutrophic index analysis of the East Lake. Environ. Pollut. 252, 682–688 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, H. et al. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–448 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. The molecular characteristics of dissolved organic matter in urbanized river sediments and their environmental impact under the action of microorganisms. Sci Total Environ 827, 154289 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Adhikari, N. P., Adhikari, S., Liu, X., Shen, L. & Gu, Z. Bacterial diversity in alpine lakes: A review from the third pole region. J. Earth Sci. 30, 387–396 (2019).CAS 
    Article 

    Google Scholar 
    Wang, P. et al. Shift in bacterioplankton diversity and structure: Influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Sci. Rep. 7, 12529 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Molecular characterization of bacterial communities associated with sediments in the Laurentian Great Lakes. J. Great Lakes Res. 40, 640–645 (2014).CAS 
    Article 

    Google Scholar 
    Yang, J., Jiang, H., Dong, H. & Liu, Y. A comprehensive census of lake microbial diversity on a global scale. Sci. China Life Sci. 62, 1320–1331 (2019).PubMed 
    Article 

    Google Scholar 
    Aida, M.-R. & Coker, J. A. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Research 3, 168 (2014).Article 

    Google Scholar 
    Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 144, 300–306 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaci, A., Petit, F., Fournier, M., Cécillon, S. & Berthe, T. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core. Environ. Sci. Pollut. Res. 23, 4095–4110 (2016).CAS 
    Article 

    Google Scholar 
    Hamed, A. et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol. Ecol. 91, 1–11 (2015).
    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, Q., Zhao, X. & Hu, C. ISO10390: 2005 soil quality-determination of pH. Pollut. Control Technol. 1, 53–55 (2006).
    Google Scholar 
    Bremner, J. Total nitrogen. Methods of soil analysis: Part 2 chemical microbiological properties. Agron. Ser. 9, 1149–1178 (1965).CAS 

    Google Scholar 
    O’halloran, I. & Cade-Menun, B. Total and organic phosphorus. Soil Sampling Methods Anal. 2, 265–291 (2008).
    Google Scholar 
    Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Can. Res. 73, 5905–5913 (2013).CAS 
    Article 

    Google Scholar 
    Tanja, M. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 21, 2957–2963 (2011).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Nave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J. & Glckner, F. O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. Bioinformatics 12, 35–30 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Diversity of endophytic bacterial microbiota in grapevine shoot xylems varies depending on wine grape-growing region, cultivar, and shoot growth stage

    Preliminary experiment using grapevine shoot samplesTo determine whether the profiles of endophytic bacterial microbiota vary widely between shoot samples collected from the same grapevine plant or between shoot samples collected from different grapevine plants of the same cultivar grown in the same vineyard, a preliminary experiment was performed. Microbiome analysis demonstrated that the profiles of endophytic bacterial microbiota were similar between two shoot samples collected from the same Chardonnay or Koshu grapevine plant (Fig. S2). In addition, the profiles of endophytic bacterial microbiota in shoot samples collected from different Chardonnay or Koshu grapevine plants cultivated in the same vineyard were also similar (Fig. S2). These results suggest that the profiles of endophytic bacterial microbiota in shoot samples collected from different grapevine plants of the same cultivar grown in the same vineyard were uniform. On the basis of this finding, we collected one shoot sample from a grapevine plant, at two different shoot growth stages (shoot elongation stage and véraison), of each cultivar grown in the eleven vineyards located in major grapevine-growing regions in Japan.Weather dataGDDs from April 1 to October 31, 2020 demonstrated that Minamisanriku and Ueda belonged to Region III on the Winkler Index and that Komoro, Shobara, and Saijo belonged to Region IV on the Winkler Index (Supplementary Table 2). Only Urausu belonged to Region II on the Winkler Index. Five vineyards including Kofu, Kai, Katsunuma, Izumo, and Omishima belonged to Region V on the Winkler Index, suggesting that Chardonnay, Pinot Noir, and Cabernet Sauvignon were cultivated under extremely high temperatures in those vineyards. Precipitation from April 1 to October 31, 2020 exceeded 1700 mm in Shobara, the highest among the vineyards (Supplementary Table 2).Amplicon sequences collected from grapevine shoot xylemsA total of 7,019,600 amplicon sequences from 52 samples were collected (Supplementary Table 3). We identified a total of 1305 OTUs on the basis of the conventional criterion of 99% sequence similarity. Irrespective of cultivar, grapevine-growing region, and shoot growth stage, Alphaproteobacteria, Gammaproteobacteria, and Oxyphotobacteria were predominant in shoot xylems (Fig. 1). Actinobacteria, Bacteroidia, Bacilli, and Clostridia were the endophytic bacteria detected in the shoot xylems.Figure 1Endophytic bacterial microbiota in shoot xylems of cultivars grown in the same vineyard. Endophytic bacterial microbiota in the shoot xylems of each cultivar collected from nine vineyards were identified and evaluated at the class level. Data are presented as relative abundance (%). KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir, SES shoot elongation stage, V véraison.Full size imageComparison of endophytic bacterial microbiota in grapevine shoot xylems of cultivars grown in the same vineyardShoot samples of two or more cultivars were collected from nine vineyards (Urausu, Katsunuma, Kofu, Kai, Komoro, Ueda, Izumo, Shobara, and Saijo) and evaluated (Fig. 1). Below are the detailed results for each vineyard.Urausu (Hokkaido Prefecture)At the shoot elongation stage, more than 90% of endophytic bacteria in Chardonnay and Pinot Noir shoot xylems belonged to class Gammaproteobacteria. Oxyphotobacteria was also detected in the shoot xylems albeit at a very low proportion (1% and 2% in Chardonnay and Pinot Noir, respectively). At véraison, the proportion of Oxyphotobacteria increased and reached 75% and 74% in Chardonnay and Pinot Noir shoot xylems, respectively. Overall, the profiles of endophytic bacterial microbiota were very similar between Chardonnay and Pinot Noir cultivated in Urausu at each shoot growth stage.Katsunuma (Yamanashi Prefecture)At the shoot elongation stage, Gammaproteobacteria was predominant in Koshu and Cabernet Sauvignon shoot xylems, although Oxyphotobacteria and Bacilli were detected as well. At véraison, the proportion of Oxyphotobacteria increased and reached 48% and 75% in Koshu and Cabernet Sauvignon shoot xylems, respectively. The proportion of Alphaproteobacteria also increased at véraison (37% and 15% in Koshu and Cabernet Sauvignon, respectively). Overall, the profiles of endophytic bacterial microbiota were similar between Koshu and Cabernet Sauvignon cultivated in Katsunuma at each shoot growth stage.Kofu (Yamanashi Prefecture)Shoot samples of Koshu, Chardonnay, Pinot Noir, and Cabernet Sauvignon were collected from Kofu. At the shoot elongation stage, Gammaproteobacteria was predominant (approximately 90%) in Koshu and Pinot Noir shoot xylems, whereas more than 80% of endophytic bacteria in Chardonnay and Cabernet Sauvignon shoot xylems belonged to class Oxyphotobacteria. At véraison, the profiles of endophytic bacterial microbiota were similar among the four cultivars grown in Kofu, and Oxyphotobacteria was predominant.Kai (Yamanashi Prefecture)Irrespective of the shoot growth stage, Gammaproteobacteria was predominant in Chardonnay and Cabernet Sauvignon shoot xylems. Although Gammaproteobacteria was also predominant in the Koshu shoot xylems at the shoot elongation stage, the proportions of Oxyphotobacteria and Alphaproteobacteria increased in Koshu shoot xylems at véraison (57% and 32%, respectively).Komoro (Nagano Prefecture)Irrespective of the cultivar (Chardonnay, Pinot Noir, and Cabernet Sauvignon), the profiles of endophytic bacterial microbiota in shoot xylems were very similar at each shoot growth stage, and Oxyphotobacteria was predominant. More than 80% of endophytic bacteria in the shoot xylems at véraison belonged to class Oxyphotobacteria.Ueda (Nagano Prefecture)The profiles of endophytic bacterial microbiota in shoot xylems at the shoot elongation stage were similar among Chardonnay, Pinot Noir, and Cabernet Sauvignon, whereas the profile in Chardonnay shoot xylems at véraison was different from those in Pinot Noir and Cabernet Sauvignon shoot xylems. Gammaproteobacteria (76%) was predominant in Chardonnay shoot xylem at véraison. In Pinot Noir and Cabernet Sauvignon shoot xylems at véraison, more than 70% of endophytic bacteria belonged to class Oxyphotobacteria.Izumo (Shimane Prefecture)Unlike other vineyards, there was no similarity of profiles between cultivars (Chardonnay and Cabernet Sauvignon) and between shoot growth stages. Gammaproteobacteria and Oxyphotobacteria were predominant in Chardonnay shoot xylems at the shoot elongation stage and véraison, respectively. In Cabernet Sauvignon shoot xylems, Gammaproteobacteria (36% and 52% at the shoot elongation stage and véraison, respectively) and Oxyphotobacteria (34% and 43% at the shoot elongation stage and véraison, respectively) were predominant irrespective of the shoot growth stage.Shobara (Hiroshima Prefecture)Similarly to Urausu and Katsunuma, Gammaproteobacteria was predominant in Chardonnay and Cabernet Sauvignon shoot xylems at the shoot elongation stage. The proportion of Oxyphotobacteria increased at véraison; more than 70% of endophytic bacteria in Chardonnay and Cabernet Sauvignon shoot xylems at véraison belonged to class Oxyphotobacteria. Overall, the profiles of endophytic bacterial microbiota were similar between Chardonnay and Cabernet Sauvignon cultivated in Shobara at each shoot growth stage.Saijo (Hiroshima Prefecture)Similarly to Urausu, Katsunuma, and Shobara, Gammaproteobacteria (89%, 89%, and 98% in Koshu, Pinot Noir, and Cabernet Sauvignon shoot xylems, respectively) was predominant at the shoot elongation stage and Oxyphotobacteria (60%, 56%, and 63% in Koshu, Pinot Noir, and Cabernet Sauvignon shoot xylems, respectively), at véraison. Overall, the profiles of endophytic bacterial microbiota were similar among Koshu, Pinot Noir, and Cabernet Sauvignon cultivated in Saijo at each shoot growth stage.Comparison of endophytic bacterial microbiota in grapevine shoot xylems of cultivars grown in different vineyardsThe profiles of endophytic bacterial microbiota in the shoot xylems of Koshu, Chardonnay, Pinot Noir, and Cabernet Sauvignon cultivated in different vineyards were evaluated (Fig. 2). In Koshu shoot xylems, the profiles of endophytic bacterial microbiota were similar at each shoot growth stage irrespective of the vineyard. Gammaproteobacteria (73–89%) was predominant in Koshu shoot xylems at the shoot elongation stage, whereas Oxyphotobacteria (48–63%) and Alphaproteobacteria (19–37%) were predominant at véraison. At the shoot elongation stage, Pinot Noir cultivated in Komoro showed different diversity of endophytic bacterial microbiota from Pinot Noir cultivated in the other vineyards. At véraison, the profiles of endophytic bacterial microbiota in Pinot Noir shoot xylems were similar irrespective of the vineyard. Gammaproteobacteria (76–98%) was predominant in Pinot Noir shoot xylems at the shoot elongation stage, whereas Oxyphotobacteria (56–81%) was predominant at véraison. In contrast to Koshu and Pinot Noir, the profiles of endophytic bacterial microbiota in Chardonnay and Cabernet Sauvignon shoot xylems showed diversity and complexity among vineyards. At the shoot elongation stage, Oxyphotobacteria was predominant in Chardonnay shoot xylems at Minamisanriku (70%) and Kofu (85%), whereas Gammaproteobacteria was predominant in the other vineyards. At véraison, more than 95% of endophytic bacteria in shoot xylems of Chardonnay cultivated in Minamisanriku and Omishima belonged to class Gammaproteobacteria. In the case of Cabernet Sauvignon, although Oxyphotobacteria and Gammaproteobacteria were predominant in shoot xylems at both shoot elongation stage and véraison, their proportions drastically varied among vineyards.Figure 2Endophytic bacterial microbiota in shoot xylems of cultivars grown in the different vineyards. Endophytic bacterial microbiota in the shoot xylems of each cultivar collected from different vineyards were identified and evaluated at the class level. Data are presented as relative abundance (%). KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir, SES shoot elongation stage, V véraison, UR Urausu, MS Minamisanriku, KF Kofu, KA Kai, KN Katsunuma, KM Komoro, UE Ueda, SH Shobara, IZ Izumo, SA Saijo, OM Omishima.Full size imageComparison of endophytic bacterial microbiota in grapevine shoot xylems between shoot elongation stage and véraisonThe profiles of endophytic bacterial microbiota in the shoot xylems, regardless of the cultivar, at each shoot growth stage were evaluated (Fig. 3). The profiles of endophytic bacterial microbiota in grapevine shoot xylems at the shoot elongation stage were diverse and complex. Although Oxyphotobacteria and Gammaproteobacteria were predominant in the shoot xylems at the shoot elongation stage, various endophytic bacteria including those belonging to classes Actinobacteria, Bacteroidia, Bacilli, Clostridia, and Alphaproteobacteria existed in the shoot xylems as well. In contrast, the profiles of endophytic bacterial microbiota in grapevine shoot xylems at véraison showed far less variation than those at the shoot elongation stage. Oxyphotobacteria, Alphaproteobacteria, and Gammaproteobacteria accounted for more than 95% of endophytic bacteria in the shoot xylems at véraison.Figure 3Endophytic bacterial microbiota in grapevine shoot xylems at shoot elongation stage and véraison. Endophytic bacterial microbiota in the shoot xylems collected at the shoot elongation stage and véraison were identified and evaluated at the class level. Data are presented as relative abundance (%). UR Urausu, MS Minamisanriku, KF Kofu, KA Kai, KN Katsunuma, KM Komoro, UE Ueda, SH Shobara, IZ Izumo, SA Saijo, OM Omishima, KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir.Full size imageAlpha diversity of endophytic bacterial microbiota in grapevine shoot xylemsOTUs, Chao1 index, and Shannon index were used as indexes of alpha diversity of endophytic bacterial microbiota among cultivars, shoot growth stages, and vineyards (Fig. 4). The medians of OTUs were similar among the four cultivars (60.5 for Koshu and Pinot Noir, and 62.5 for Chardonnay and Cabernet Sauvignon). The medians of the Chao1 index were also comparable among the four cultivars (60 for Koshu and Pinot Noir, 63 for Chardonnay, and 65 for Cabernet Sauvignon). The median of the Shannon index (2.8) was highest for Koshu, whereas those for Pinot Noir, Chardonnay, and Cabernet Sauvignon were similar (2.0, 1.9, and 2.1, respectively). These results suggest that Koshu shoot xylems had a higher diversity of endophytic bacterial microbiota than Pinot Noir, Chardonnay, and Cabernet Sauvignon shoot xylems.Figure 4Alpha diversity of endophytic bacterial microbiota in grapevine shoot xylems. Alpha diversity analyses of cultivars, shoot growth stages, and vineyards were performed. Upper panels, OTUs; middle panels, Chao1 index; lower panels, Shannon index. Cross (×) indicates the average for each sample. KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir, SES shoot elongation stage, V véraison, UR Urausu, MS Minamisanriku, KF Kofu, KA Kai, KN Katsunuma, KM Komoro, UE Ueda, SH Shobara, IZ Izumo, SA Saijo, OM Omishima.Full size imageThe medians of OTUs and Chao1 index at the shoot elongation stage were comparable to those at véraison. The median of the Shannon index at the shoot elongation stage (3.0) was higher than that at véraison (1.7), indicating that grapevine shoot xylems at the shoot elongation stage had a higher diversity of endophytic bacterial microbiota than those at véraison.The medians of OTUs and Chao1 index were the highest for Ueda (74.5 and 75, respectively), whereas those were the lowest for Komoro (49.5 and 50, respectively). The medians of the Shannon index were lowest and highest for Minamisanriku (1.2) and Ueda (3.9), respectively. These results suggest that a large number of endophytic bacterial species existed in the shoot xylems of grapevine cultivated in Ueda, and that Ueda had the highest diversity of endophytic bacterial microbiota among the vineyards tested.Beta diversity of endophytic bacterial microbiota in grapevine shoot xylemsPCoA demonstrated that the plots of Koshu and Pinot Noir were relatively close to each other at the shoot elongation stage and very close to each other at véraison irrespective of the vineyard (Fig. 5), suggesting that the profiles of endophytic bacterial microbiota in Koshu and Pinot Noir shoot xylems were similar irrespective of both shoot growth stage and vineyard. Although the plots of Chardonnay and Cabernet Sauvignon in each vineyard were widely scattered at the shoot elongation stage, they were very close to each other at véraison. These results suggest that the profiles of endophytic bacterial microbiota in grapevine shoot xylems at véraison were uniform irrespective of the vineyard.Figure 5Principal coordinate analysis of endophytic bacterial microbiota in grapevine shoot xylems. Circles (○) and squares (□) indicate endophytic bacterial microbiota at the shoot elongation stage and véraison, respectively. KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir.Full size imagePERMANOVA demonstrated that the p-values for all combinations of cultivars exceeded 0.05 (Supplementary Table 4). In contrast, there was a significant difference (p = 0.001) between the shoot elongation stage and véraison. Although three of fifty-five combinations of vineyards showed significant differences (p = 0.04 for Komoro and Izumo, p = 0.007 for Komoro and Kai, and p = 0.034 for Kai and Kofu), there was no significant difference between most of the combinations. These results suggest that the variations of endophytic bacterial microbiota in grapevine shoot xylems greatly depended on the shoot growth stage.Cluster analysis of endophytic bacterial microbiota in grapevine shoot xylemsCluster analysis of endophytic bacterial microbiota in grapevine shoot xylems in various cultivars, shoot growth stages, and vineyards was performed by MDS (Figs. 6 and 7). Cladistic analysis was also conducted using a group average method. Except for Kai and Komoro, nine vineyards were very close to each other in the position map and eight vineyards formed a cluster in the cladogram (Fig. 6A). The four cultivars in the vineyards tested were widely scattered in the position map (Fig. 6B). On the other hand, Koshu and Pinot Noir at the shoot elongation stage, cultivated in Kofu, were close to each other in the position map and formed a cluster in the cladogram (Fig. 7A). Chardonnay and Cabernet Sauvignon at the shoot elongation stage, cultivated in Kofu, were close to each other but apart from Koshu and Pinot Noir, and formed a cluster in the cladogram. Interestingly, at véraison, the four cultivars were very close to each other in the position map (Fig. 7B).Figure 6Multidimensional scaling analysis of endophytic bacterial microbiota in grapevine shoot xylems among vineyards or cultivars. (A) Vineyards. (B) Cultivars. Left, position map. Right, cladogram. UR Urausu, MS Minamisanriku, KF Kofu, KA Kai, KN Katsunuma, KM Komoro, UE Ueda, SH Shobara, IZ Izumo, SA Saijo, OM Omishima, KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir.Full size imageFigure 7Multidimensional scaling analysis of endophytic bacterial microbiota in grapevine shoot xylems among cultivars grown in Kofu vineyard. (A) Shoot elongation stage. (B) Véraison. Left, position map. Right, cladogram. KO Koshu, CH Chardonnay, CS Cabernet Sauvignon, PN Pinot Noir.Full size imageNext, MDS and cladistic analysis of each cultivar in the vineyards were performed (Fig. 8). The distances among vineyards cultivating Koshu were small irrespective of the shoot growth stage (Fig. 8A). The distances among vineyards cultivating Pinot Noir were also small at the shoot elongation stage, and were further decreased at véraison (Fig. 8B). In contrast, the distances among vineyards cultivating Chardonnay and Cabernet Sauvignon were large at the shoot elongation stage (Fig. 8C,D). Although the distances among some vineyards (Urausu, Kofu, Kai, Izumo, and Shobara for Chardonnay, and Ueda, Kofu, Katsunuma, Komoro, and Shobara for Cabernet Sauvignon) decreased at véraison, they were large compared with Koshu and Pinot Noir.Figure 8Multidimensional scaling analysis of endophytic bacterial microbiota in grapevine shoot xylems among vineyards cultivating each cultivar. (A) Koshu. (B) Pinot Noir. (C) Chardonnay. (D) Cabernet Sauvignon. Left, position map. Right, cladogram. UR Urausu, MS Minamisanriku, KF Kofu, KA Kai, KN Katsunuma, KM Komoro, UE Ueda, SH Shobara, IZ Izumo, SA Saijo, OM Omishima.Full size image More

  • in

    1-Octanol emitted by Oecophylla smaragdina weaver ants repels and deters oviposition in Queensland fruit fly

    Leston, D. & Leston, D. The ant mosaic-tropical tree crops and the limiting of pests and diseases. PANS Pest Artic. News Summ. 19, 311–341 (1973).Article 

    Google Scholar 
    Huang, H. T. & Yang, P. A tropical ant is used to control insect pests in southern China. Bioscience 37, 665–671 (1987).Article 

    Google Scholar 
    Peng, R. K. & Christian, K. The weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the Northern Territory of Australia. Int. J. Pest Manag. 50, 107–114 (2004).Article 

    Google Scholar 
    Peng, R. K. & Christian, K. The control efficacy of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), on the mango leafhopper, Idioscopus nitidulus (Hemiptera: Cicadellidea) in mango orchards in the northern territory). Int. J. Pest Manag. 51, 297–304 (2005).Article 

    Google Scholar 
    Peng, R. K. & Christian, K. Effective control of Jarvis’s fruit fly, Bactrocera jarvisi (Diptera: Tephritidae), by the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), in mango orchards in the Northern Territory of Australia. Int. J. Pest Manag. 52, 275–282 (2006).Article 

    Google Scholar 
    Peng, R. K. & Christian, K. The effect of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), on the mango seed weevil, Sternochetus mangiferae (Coleoptera: Curculionidae), in mango orchards in the Northern Territory of Australia. Int. J. Pest Manag. 53, 15–24 (2007).Article 

    Google Scholar 
    Blüthgen, N. & Stork, N. E. Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Aust. Ecol. 32, 93–104 (2007).Article 

    Google Scholar 
    Davidson, D. W., Lessard, J. P., Bernau, C. R. & Cook, S. C. The tropical ant mosaic in a primary Bornean rain forest. Biotropica 39, 468–475 (2007).Article 

    Google Scholar 
    Peng, R. K., Christian, K. & Gibb, K. The effect of colony isolation of the predacious ant, Oecophylla smaragdina (f.) (Hymenoptera: Formicidae), on protection of cashew plantations from insect pests. Int. J. Pest Manag. 45, 189–194 (1999).Article 

    Google Scholar 
    Peng, R. K., Christian, K. & Gibb, K. Ecology of the fruit spotting bug, Amblypelta lutescens lutescens Distant (Hemiptera: Coreidae) in cashew plantations, with particular reference to the potential for its biological control. Aust. J. Entomol. 44, 45–51 (2005).Article 

    Google Scholar 
    Van Mele, P. & Cuc, N. T. T. Evolution and status of Oecophylla smaragdina (Fabricius) as a pest control agent in citrus in the Mekong Delta, Vietnam. Int. J. Pest Manag. 46, 295–301 (2000).Article 

    Google Scholar 
    Van Mele, P., Cuc, N. T. T. & VanHuis, A. Direct and indirect influences of the weaver ant Oecophylla smaragdina on citrus farmers’ pest perceptions and management practices in the Mekong Delta, Vietnam. Int. J. Pest Manag. 48, 225–232 (2002).Article 

    Google Scholar 
    Kumaresan, V. Prevention of rhinoceros beetle (Oryctes rhinoceros) in coconut palm using red ants. J. Bombay Nat. Hist. Soc. 93, 308–309 (1996).
    Google Scholar 
    Way, M. J. & Khoo, K. C. Relationships between Helopeltis theobromae damage and ants with special reference to Malaysian cocoa small holdings. J. Plant Prot. Trop. 6, 1–11 (1989).
    Google Scholar 
    Way, M. J. & Khoo, K. C. Colony dispersion and nesting habits of the ants, Dolichoderus thoracicus and Oecophylla smaragdina (Hymenoptera: Formicidae), in relation to their success as biological control agents on cocoa. Bull. Entomol. Res. 81, 341–350 (1991).Article 

    Google Scholar 
    Van Mele, P. Biological Control with the Weaver Ant, Oecophylla longinoda, in Africa: A Review of Research and Development Efforts to Link Farmers to Organic Markets. Outlooks Pest Manag. 19, 180–183 (2008).Article 

    Google Scholar 
    Van Mele, P., Vayssieres, J. F., Tellingen, E. V. & Vrolijks, J. Effects of an African weaver ant, Oecophylla longinoda, in controlling mango fruit flies (Diptera: Tephritidae) in Benin. J. Econ. Entomol. 100, 695–701 (2007).PubMed 
    Article 

    Google Scholar 
    Van Mele, P., Vayssieres, J. F., Adandonon, A. & Sinzogan, A. Ant cues affect the oviposition behaviour of fruit flies (Diptera: Tephritidae) in Africa. Physiol. Entomol. 34, 256–261 (2009).Article 

    Google Scholar 
    Kempraj, V., Park, S. P. & Taylor, P. W. Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Sci. Rep. 10, 7297 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kempraj, V., Park, S. J. & Faveri, D. S. Overlooked scents: Chemical profile of soma, volatile emissions and trails of the green tree ant, Oecophylla smaragdina. Molecules 25, 2112 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Burks, R. L. & Lodge, D. M. Cued in: Advances and opportunities in freshwater chemical ecology. J. Chem. Ecol. 28, 1901–1917 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fink, P. Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshw. Behav. Physiol. 40, 155–168 (2007).CAS 
    Article 

    Google Scholar 
    Spencer, M., Blaustein, L. & Cohen, J. E. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83, 669–679 (2002).Article 

    Google Scholar 
    Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biswas, M. J. H., Mainali, B., Park, S. J., Taylor, P. & Rempoulakis, P. Electrophysiological responses to cuelure of raspberry ketone-fed Queensland fruit fly. J. Econ. Entomol. 113, 2832–2839 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kats, L. B. & Dill, L. M. The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).Article 

    Google Scholar 
    Brönmark, C. & Hansson, L. A. Chemical communication in aquatic systems: An introduction. Oikos 88, 103–109 (2000).Article 

    Google Scholar 
    Dicke, M. & Grostal, P. Chemical detection of natural enemies by arthropods: An ecological perspective. Annu. Rev. Ecol. Syst. 32, 1–23 (2001).Article 

    Google Scholar 
    Van Donk, E. Chemical information transfer in freshwater plankton. Ecol. Inform. 2, 112–120 (2007).Article 

    Google Scholar 
    Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed 
    Article 

    Google Scholar 
    Tollrian, R. & von Elert, E. Enrichment and purification of Chaoborus kairomone from water: Further steps toward its chemical characterization. Limnol. Oceanogr. 39, 788–796 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Von Elert, E. & Loose, C. J. Predator-induced diel vertical migration in Daphnia: Enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22, 885–895 (1996).Article 

    Google Scholar 
    Kusch, J. Self-recognition as the original function of an amoeban defense-inducing kairomone. Ecology 80, 715–720 (1999).Article 

    Google Scholar 
    Peerzada, N., Pakkiyaretnam, T. & Renaud, S. Volatile constituents of the Green Ant Oecophylla smaragdina. Agric. Biol. Chem. 54, 3335–3336 (1990).CAS 

    Google Scholar 
    Keegans, S. J., Billen, J. & Morgan, E. D. Volatile secretions of the green tree ant Oecophylla smaragdina (Hymenoptera: Formicidae). Comp. Biochem. Physiol. Part B Biochem. 100, 681–685 (1991).Article 

    Google Scholar 
    Kraus, B. effects of honey-bee alarm pheromone compounds on the behaviour of Varroa jacobsoni. Apidologie 21, 127–134 (1990).CAS 
    Article 

    Google Scholar 
    Brossut, R. Allomonal secretions in cockroaches. J. Chem. Ecol. 9, 143–158 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ali, A. et al. Insecticidal and biting deterrent activities of Magnolia grandiflora essential oil and selected pure compounds against Aedes aegypti. Molecules 25, 1359 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, J., Yang, B., Chang, Y., Zhang, Y. & Wang, G. Identification of a general odorant receptor for repellents in the Asian corn borer Ostrinia furnacalis. Front. Physiol. 11, 1–43. https://doi.org/10.3389/fphys.2020.00176 (2020).CAS 
    Article 

    Google Scholar 
    Sievert, T. et al. Bank vole alarm pheromone chemistry and effects in the field. Oecologia 196, 667–677 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fletcher, B. S. & Watson, C. A. The ovipositional response of the tephritid fruit fly, Dacus tryoni to 2-Chloroethanol in laboratory bioassays. Ann. Entomol. Soc. Am. 67, 21–23 (1974).CAS 
    Article 

    Google Scholar 
    Eisemann, C. H. & Rice, M. J. Attractants for the gravid Queensland fruit fly Dacus tryoni. Entomol. Exp. Appl. 62, 125–130 (1992).CAS 
    Article 

    Google Scholar 
    Devescovi, F., Hurtado, J. & Taylor, W. P. Mating-induced changes in responses of female Queensland fruit fly to male pheromones and fruit: A mechanism for mating-induced sexual inhibition. J. Insect Physiol. 129, 104195 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kempraj, V., Park, S. P. & Taylor, P. W. γ-Octalactone, an effective oviposition stimulant of Bactrocera tryoni. J. Appl. Entomol. 143, 1205–1209 (2019).CAS 
    Article 

    Google Scholar 
    Jayanthi, P. D. K. et al. Oviposition site-selection by Bactrocera dorsalis is mediated through an innate recognition template tuned to γ-octalactone. PLoS ONE 9, e85764 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Weldon, C. V. & Taylor, P. W. Sexual development of wild and mass-reared male Queensland fruit fly in response to natural food sources. Entomol. Exp. Appl. 139, 17–24 (2011).Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar  More