More stories

  • in

    Lost trees, booster benefits — the week in infographics

    Treasure our treesNearly one-third of tree species are threatened with extinction. This is more than twice the number of threatened mammals, birds, amphibians and reptiles combined.The loss of tree species is often overlooked, as our News Feature reports. In 2021, after a huge tree-hunting exercise called the Global Tree Assessment, plant conservationists announced that they had found 58,497 tree species, of which 17,510 were threatened. Since then, almost 2,800 of those have been labelled critically endangered. Some 142 species are thought to be extinct in the wild.

    Killer cancersThis chart shows some of the results from the largest study yet of the link between cancer burden and risk factors. Researchers used extensive data on death and disability from more than 200 countries to estimate that potentially avoidable risk factors were responsible for more than 44% of global cancer deaths in 2019. Of these, tumours of the lung, trachea and bronchus were the leading cause of death.Smoking, alcohol use and a high body-mass index were the risk factors with the biggest contribution to cancer. The findings emphasize familiar health advice not to smoke, drink too much or become overweight.

    New breed of vaccinesIt was hoped that a new breed of COVID-19 vaccine — based on Omicron variants of the virus SARS-CoV-2 — would offer substantially greater protection than older vaccines that are based on the strain of the virus that emerged in 2019. But an analysis of data from several studies suggests that updated boosters offer much the same level of protection as does an extra dose of the older vaccines. The study is a preprint that has not yet been peer reviewed.The team’s modelling showed that, in a population where half of people are already protected against a symptomatic SARS-CoV-2 infection through previous vaccination or infection, an updated vaccine booster bumped protection up to 90%, compared with 86% protection provided by an extra dose of the original vaccine. For protection against severe disease, however, the difference was less than 1%. But the relative benefits of variant-based boosters could grow stronger if a new variant appears, as our News story explains. More

  • in

    Marine predators aggregate in anticyclonic ocean eddies

    RESEARCH BRIEFINGS
    07 September 2022

    A diverse range of marine predators — including tunas, billfishes and sharks — in the North Pacific Ocean cluster together in clockwise-rotating eddies, seemingly to hunt deep-ocean prey, which are unusually abundant there. This suggests that there is a relationship between the foraging opportunities of predators and the energetics of this marine biome. More

  • in

    Reply to: The risks of overstating the climate benefits of ecosystem restoration

    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda & Agnieszka E. LatawiecInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda, Agnieszka E. Latawiec, Robin L. Chazdon & Carlos Alberto de M. ScaramuzzaPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Renato Crouzeilles & Fabio R. ScaranoBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgSchool of Biological Sciences, University of Queensland, St Lucia, Queensland, AustraliaHawthorne L. BeyerAgricultural Science Center, Federal University of Santa Catarina, Florianópolis, BrazilCatarina JakovacInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré Braga JunqueiraDepartment of Geography, Fluminense Federal University, Niterói, BrazilEduardo LacerdaDepartment of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, PolandAgnieszka E. LatawiecSchool of Environmental Sciences, University of East Anglia, Norwich, UKAgnieszka E. LatawiecDepartment of Zoology, University of Cambridge, Cambridge, UKAndrew Balmford, Stuart H. M. Butchart & Paul F. DonaldInternational Union for Conservation of Nature (IUCN), Gland, SwitzerlandThomas M. BrooksWorld Agroforestry Center (ICRAF), University of The Philippines, Los Baños, The PhilippinesThomas M. BrooksInstitute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaThomas M. BrooksBirdLife International, Cambridge, UKStuart H. M. Butchart & Paul F. DonaldDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USARobin L. ChazdonWorld Resources Institute, Global Restoration Initiative, Washington, DC, USARobin L. ChazdonTropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaRobin L. ChazdonInstitute of Social Ecology, University of Natural Resources and Life Sciences Vienna, Vienna, AustriaKarl-Heinz Erb & Christoph PlutzarDepartment of Forest Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro BrancalionRSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Edinburgh, UKGraeme Buchanan & Paul F. DonaldSecretariat of the Convention on Biological Diversity (SCBD), Montreal, Quebec, CanadaDavid CooperInstituto Multidisciplinario de Biología Vegetal, CONICET and Universidad Nacional de Córdoba, Córdoba, ArgentinaSandra DíazUnited Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UKValerie Kapos & Lera MilesBiodiversity and Natural Resources (BNR) program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaDavid Leclère, Michael Obersteiner & Piero ViscontiDivision of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Vienna, AustriaChristoph PlutzarB.B.N.S. wrote the first version of the paper. All authors provided input on subsequent versions of the Reply. More

  • in

    Anticyclonic eddies aggregate pelagic predators in a subtropical gyre

    Chaigneau, A., Gizolme, A. & Grados, C. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106–119 (2008).ADS 
    Article 

    Google Scholar 
    McGillicuddy, D. J. Jr et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Dufois, F. et al. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2, 1–7 (2016).Article 

    Google Scholar 
    Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7, e30161 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–333 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584–591 (2015).Article 

    Google Scholar 
    Della Penna, A. & Gaube, P. Mesoscale eddies structure mesopelagic communities. Front. Mar. Sci. 7, 454 (2020).ADS 
    Article 

    Google Scholar 
    Braun, C. D. et al. The functional and ecological significance of deep diving by large marine predators. Ann. Rev. Mar. Sci. 14, 129–159 (2022).PubMed 
    Article 

    Google Scholar 
    McGillicuddy, D. J. Jr Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125–159 (2016).PubMed 
    Article 

    Google Scholar 
    Fennell, S. & Rose, G. Oceanographic influences on deep scattering layers across the North Atlantic. Deep-Sea Res. Part I Oceanogr. Res. Pap. 105, 132–141 (2015).ADS 
    Article 

    Google Scholar 
    Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Part II Topical Stud. Oceanogr. 140, 55–73 (2017).ADS 
    Article 

    Google Scholar 
    Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Natl Acad. Sci. USA 116, 17187–17192 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doyle, T. K. et al. Leatherback turtles satellite-tagged in European waters. Endanger. Species Res. 4, 23–31 (2008).Article 

    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Polovina, J. J., Abecassis, M., Howell, E. A. & Woodworth, P. Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996-2006. Fish. Bull. 107, 523–531 (2009).
    Google Scholar 
    Royer, T. C. Ocean eddies generated by seamounts in the North Pacific. Science 199, 1063–1064 (1978).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y. et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. Part I Oceanogr. Res. Pap. 68, 54–67 (2012).ADS 
    Article 

    Google Scholar 
    Bernstein, R. L. & White, W. B. Time and length scales of baroclinic eddies in the central North Pacific Ocean. J. Phys. Oceanogr. 4, 613–624 (1974).ADS 
    Article 

    Google Scholar 
    Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).Article 

    Google Scholar 
    Woodworth, P. A. et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar. Mammal Sci. 28, 638–647 (2012).Article 

    Google Scholar 
    Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE 12, e0172839 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chambault, P. et al. Swirling in the ocean: immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic Gyre. Prog. Oceanogr. 175, 345–358 (2019).ADS 
    Article 

    Google Scholar 
    Gaube, P., McGillicuddy Jr, D., Chelton, D., Behrenfeld, M. & Strutton, P. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220 (2014).Waga, H., Kirawake, T. & Ueno, H. Impacts of mesoscale eddies on phytoplankton size structure. Geophys. Res. Lett. 46, 13191–13198 (2019).ADS 
    Article 

    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Chen, Y.-lL. et al. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean. Deep Sea Res. Part I 106, 68–84 (2015).CAS 
    Article 

    Google Scholar 
    Harke, M. J. et al. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ. Microbiol. 23, 4807–4822 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawco, N. J. et al. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochem. Cycles 35, e2021GB007112 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Madigan, D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).Article 

    Google Scholar 
    Arostegui, M., Gaube, P. & Braun, C. Movement ecology and stenothermy of satellite-tagged shortbill spearfish (Tetrapturus angustirostris). Fish. Res. 215, 21–26 (2019).Article 

    Google Scholar 
    Lehodey, P., Senina, I. & Murtugudde, R. A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008).ADS 
    Article 

    Google Scholar 
    Varghese, S. P., Somvanshi, V. S. & Dalvi, R. S. Diet composition, feeding niche partitioning and trophic organisation of large pelagic predatory fishes in the eastern Arabian Sea. Hydrobiologia 736, 99–114 (2014).CAS 
    Article 

    Google Scholar 
    Ward, P. & Myers, R. A. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat.Sci. 62, 1130–1142 (2005).Article 

    Google Scholar 
    Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lima, I. D., Olson, D. B. & Doney, S. C. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107, 25-1–25-21 (2002).Article 

    Google Scholar 
    Spall, S. A. & Richards, K. J. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. model formulation and initial experiments. Deep-Sea Res. Part I Oceanogr. Res. Pap. 47, 1261–1301 (2000).ADS 
    Article 

    Google Scholar 
    Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P. & Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052756 (2012).Article 

    Google Scholar 
    Guidi, L. et al. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2012JG001984 (2012).Article 

    Google Scholar 
    Chow, C. H., Cheah, W., Tai, J. H. & Liu, S. F. Anomalous wind triggered the largest phytoplankton bloom in the oligotrophic North Pacific Subtropical Gyre. Sci. Rep. 9, 15550 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guo, M., Xiu, P., Chai, F. & Xue, H. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres. Geophys. Res. Lett. 46, 13217–13226 (2019).ADS 
    Article 

    Google Scholar 
    Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).ADS 
    Article 

    Google Scholar 
    Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Marine Sci. 3, 31 (2016).
    Google Scholar 
    Bigelow, K., Musyl, M. K., Poisson, F. & Kleiber, P. Pelagic longline gear depth and shoaling. Fish. Res. 77, 173–183 (2006).Article 

    Google Scholar 
    Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat.Sci. 70, 1723–1740 (2013).Article 

    Google Scholar 
    Woodworth-Jefcoats, P. A., Polovina, J. & Drazen, J. Synergy among oceanographic variability, fishery expansion, and longline catch composition in the central North Pacific Ocean. Fish. Bull. 116, 228–239 (2018).Article 

    Google Scholar 
    Boggs, C. H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips. Fish. Bull. 90, 642–658 (1992).
    Google Scholar 
    Walsh, W. A. & Brodziak, J. Applications of Hawaii longline fishery observer and logbook data for stock assessment and fishery research. NOAA Tech. Memo. 57, 62 (2016).
    Google Scholar 
    Walsh, W. A. & Brodziak, J. Billfish CPUE standardization in the Hawaii longline fishery: model selection and multimodel inference. Fish. Res. 166, 151–162 (2015).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Fitchett, M., Cantrell, D. L. & Merrifield, M. Ecological responses to blue water MPAs. PLoS ONE 15, e0235129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Portner, E. J., Polovina, J. J. & Choy, C. A. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox). Deep-Sea Research Part I 125, 40–51 (2017).ADS 
    Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 http://florianhartig.github.io/DHARMa/ (2020).Jackson, C. H. Multi-state models for panel data: the msm package for R. J. Stat. Softw. https://doi.org/10.18637/jss.v038.i08 (2011).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using ’Eigen’ and S4. R package version 1.1-25 https://github.com/lme4/lme4/ (2020).Lenth, R. et al. emmeans: Estimated marginal means, aka least-squares mean. R package version 1.7.2 https://github.com/rvlenth/emmeans (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org/ More

  • in

    Effects of foliar application of selenium and potassium-humate on oat growth in Baloza, North Sinai, Egypt

    Effects of Se and K-humate on nitrogen concentrationsThe N concentration in the soil varied in availability and total content in oat straw and seeds after the foliar application of Se and K-humate. Se alone increased the availability of N in the soil in the following order: Se3  > Se2  > Se1  > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used.Table 2 Effect of selenium and K-humate on nitrogen content.Full size tableThe total N-straw content increased as a result of an increased content of N-plant (Table 2). Differences were found to be insignificant between Se concentrations of 12 × 10−3 mM, 63 × 10−3 mM, and controls. Likewise, the simultaneous application of K-humate showed insignificant differences between Se concentrations of 63 × 10−3 mM and 88 × 10−3 mM. Insignificant differences were noted between the control and Se concentration of 12 × 10−3 mM and the Se concentration of 63 × 10−3 and 88 × 10−3 mM using the sum of means. The total N-seeds content increased for application rates of 12 × 10−3–88 × 10−3 mM, and the simultaneous application of K-humate augmented this increase. The application rate dependency of the effects of Se and K-humate application was identical to that observed in N-soil and N-straw. No significant differences among Se and K-humate applications were observed. An insignificant difference was observed among the sum of means for Se and K-humate applications at concentrations of 63 × 10−3 and 88 × 10−3 mM.The application of Se caused proportional increases in N-soil, N-straw, and N-seeds, and the simultaneous application of K-humate improved this effect. Previously, the application of Se resulted in an increase in the accumulation of NPK which altered N and K distribution. However, the distribution of P was not affected19. Furthermore, the application of Se ultimately resulted in an increase in the accumulation of N, calcium (Ca), K, and Mn20. A significant increase in concentrations of N and S in the rice grain plants grown under N-limiting conditions was also observed while the Ca that have been treated with Se regardless of N supply21. Thus, a synergistic interaction between Se and N in total grain proteins was reported21.Effects of Se and K-humate on PThe effect of applications of different Se concentrations without K-humate on the available P-soil showed a reduction in the following order: Se3  > Se2  > Se1  > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments.Table 3 Effect of selenium and K-humate on phosphorous content.Full size tableFoliar application of Se increased total P-straw. An insignificant difference was found between the control and Se concentrations of 12 × 10−3 and 63 × 10−3 mM, which was similar to findings observed after the application of K-humate. Moreover, insignificant differences were observed between the applications of Se and Se + K-humate. An insignificant effect was found between control and Se concentrations of (12 × 10−3 and 63 × 10−3 mM), and K-humate application using the sum of means.The application of Se having concentrations ranging from 12 × 10−3 to 88 × 10−3 mM resulted in increased P-seeds and the addition of K-humate augmented this effect (Table 3). The effect of Se and K-humate applications showed a decrease in the following order: Se3  > Se2  > Se1  > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect.Consistently, concentrations of P and Ca increased in response to the application of selenite-Se (Na2SeO3⋅5H2O) to maize seedlings22, and the application of Se led to an increase in the accumulation of NPK, with alteration of N and K distribution. However, the distribution of P was not influenced19.Effects of the foliar application of Se and K-humate on KDifferent application rates of Se without humate increased K-soil and this effect showed a decrease in the following order: Se3  > Se2  > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM.Table 4 Effect of selenium and K-humate on potassium content.Full size tableThe foliar application of Se led to a slight increase in the total K-straw content (Table 4). An insignificant change was observed for Se concentrations from 12 × 10−3 to 88 × 10−3 mM, and similar results were found with the additional application of K-humate.The application of Se at concentrations from 12 × 10−3 to 88 × 10−3 mM resulted in a slight increase in K-seeds, and the additional application of K-humate only slightly increased the accumulation of K (Table 4). An insignificant difference was observed between Se alone and with K-humate. Similar findings were noted when the sum of means was used for analysis. Se application rates thus produce a proportional increase in K-soil but not in K-straw or K-seeds. Comparable data were noted after K-humate addition. Concentrations of K previously decreased in response to selenite-Se (Na2SeO3⋅5H2O) application to maize seedlings; however, magnesium (Mg) concentrations did not change22. Moreover, the application of Se led to the accumulation of NPK and altered N and K distribution without affecting the P distribution19. Consistently, the application of Se ultimately resulted in increasing K accumulation20.Effects of Se and K-humate application on oat growthApplication of Se improved the yield, which was assessed as kg × 10−3/feddan (Table 5). Higher concentrations of Se produced a higher yield of oat. The effect of Se showed a reduction in the following order: Se3  > Se2  > Se1  > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24.Table 5 Effect of Se and K-humate application on oat growth.Full size tableEffects of Se and K-humate applications on OMS (%) and non-enzymatic antioxidants and total phenols in oat plantsThe total OMS content increased with increasing Se concentrations, perhaps due to stimulation of root growth or microbial biomass. This effect showed a decrease in the following order: Se3  > Se2  > Se1  > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings.Table 6 Effect of selenium and K-humate application on organic matter in soil (OMS), non-enzymatic antioxidant, and total phenols in oats.Full size tableSe positively enhanced the total phenol content with effects decreasing in the following order: Se3  > Se2  > Se1  > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20.Effects of Se and K-humate applications on Se contentAfter the application of Se, Se-soil concentrations increased. The effects of Se concentrations decreased in the following order: Se3  > Se2  > Se1  > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3  > Se2  > Se1  > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis.Table 7 Effects of Se and K-humate applications on Se content.Full size tableEffects of Se and K-humate application on Cr contentThe highest concentrations of Cr were observed in control plants followed by Se2  > Se3  > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control  > Se3  > Se2  > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2  > Se3  > Se2  > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences.Table 8 Effects of Se and K-humate application on Cr content.Full size tableEffects of Se and K-humate applications on Fe contentVariable effects were produced using different application rates of Se on Fe-straw, and this effect was observed in the following order: Se3  > Se1  > control  > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control  > Se3  > Se2  > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21.Table 9 Effects of Se and K-humate applications on Fe content.Full size tableEffects of Se and K-humate application on Mn contentApplication of Se reduced the Mn-straw content, and this effect was observed in the following order: control  > Se2  > Se1  > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control  > Se1  > Se3  > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control  > Se2  > Se3  > Se1. K-humate addition altered this order to be in the following order: control  > Se2  > Se1  > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21.Table 10 Effects of Se and K-humate application on Mn content.Full size tableEffect of Se and K-humate applications on Zn content in oat plantsApplication of Se2—the middle concentration of Se—resulted in highest accumulation in Zn-straw, and this effect was observed in the following order: Se2  > Se1  > control  > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control  > Se3  > Se1  > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25.Table 11 Effect of Se and K-humate applications on Zn containing oat plant.Full size tableEffects of Se and K-humate application on Cu contentIncreasing concentrations of Se from 12 × 10−3 to 88 × 10−3 mM increased the concentration of Cu-seed, and this effect was observed in the following order: Se1  > control  > Se2  > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1  > Se2  > control  > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3  > Se1  > control  > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21.
    Table 12 Effects of Se and K-humate application on Cu content.Full size table More

  • in

    High-resolution global maps of tidal flat ecosystems from 1984 to 2019

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bishop, M. J., Murray, N. J., Swearer, S. & Keith, D. A. In The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups (eds D. A. Keith, J. R. Ferrer-Paris, E. Nicholson, & R. T. Kingsford) (IUCN, 2020).Keith, D. A. et al. Earth’s ecosystems: a function-based typology for conservation and sustainability. Nature (In review).Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M. & Fuller, R. A. Continental scale mapping of tidal flats across East Asia using the Landsat Archive. Remote Sensing 4, 3417–3426, https://doi.org/10.3390/Rs4113417 (2012).Article 

    Google Scholar 
    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Fron. Ecol. Environ. 12, 267–272, https://doi.org/10.1890/130260 (2014).Article 

    Google Scholar 
    Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481, https://doi.org/10.1111/aec.12211 (2015).Article 

    Google Scholar 
    Dhanjal-Adams, K. et al. Distribution and protection of intertidal habitats in Australia. Emu 116, 208–214 (2015).Article 

    Google Scholar 
    Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749, https://doi.org/10.1126/science.abm9583 (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031 (2017).Article 

    Google Scholar 
    Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).Article 

    Google Scholar 
    Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci Total Environ 619–620, 249–257, https://doi.org/10.1016/j.scitotenv.2017.11.034 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ying, Q. et al. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sens. Environ. 194, 161–176, https://doi.org/10.1016/j.rse.2017.03.022 (2017).Article 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noble, S. et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units AU – Sayre, Roger. Journal of Operational Oceanography, 1–10, https://doi.org/10.1080/1755876X.2018.1529714 (2018).Sayre, R. et al. A global ecological classification of coastal segment units to complement marine biodiversity observation network assessments. Oceanography 34, 120–129 (2021).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853, https://doi.org/10.1126/science.1244693 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4, 730–735, https://doi.org/10.1038/nclimate2277 (2014).Article 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111, https://doi.org/10.1126/science.aau3445 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422, https://doi.org/10.1038/nature20584 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792, https://doi.org/10.1016/j.rse.2020.111792 (2020).Article 

    Google Scholar 
    Yamazaki, D., Trigg, M. A. & Ikeshima, D. Development of a global ~ 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 171, 337–351, https://doi.org/10.1016/j.rse.2015.10.014 (2015).Article 

    Google Scholar 
    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361, https://doi.org/10.1016/j.rse.2014.10.015 (2015).Article 

    Google Scholar 
    Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sensing 10, 1669 (2018).Article 

    Google Scholar 
    Worthington, T. A. et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2, 429–443, https://doi.org/10.1016/j.oneear.2020.04.018 (2020).Article 

    Google Scholar 
    Worthington, T. A. et al. A global typology of mangroves and its relevance for ecosystem services and deforestation. Scientific reports (2020).Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12, e0179302, https://doi.org/10.1371/journal.pone.0179302 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12, 40–45, https://doi.org/10.1038/s41561-018-0279-1 (2019).CAS 
    Article 

    Google Scholar 
    Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588, https://doi.org/10.1126/science.aat0636 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lyons, M. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation (2020).Li, J. et al. A global coral reef probability map generated using convolutional neural networks. Coral Reefs https://doi.org/10.1007/s00338-020-02005-6 (2020).Article 

    Google Scholar 
    Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291, https://doi.org/10.1126/science.aaf2201 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244, https://doi.org/10.1126/science.1257484 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv Biol 35, 325–335, https://doi.org/10.1111/cobi.13520 (2021).Article 
    PubMed 

    Google Scholar 
    Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).CAS 
    Article 

    Google Scholar 
    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Chang Biol 26, 5844–5855, https://doi.org/10.1111/gcb.15275 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, A. C. & McLachlan, A. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ. Conserv. 29, 62–77, https://doi.org/10.1017/s037689290200005x (2002).Article 

    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790, https://doi.org/10.1073/pnas.1606102113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, N. K., Woodworth, B. K., Phinn, S. R., Murray, N. J. & Fuller, R. A. Global protected-area coverage and human pressure on tidal flats. Conserv Biol, https://doi.org/10.1111/cobi.13638 (2021).Murray, N. J. et al. Myanmar’s terrestrial ecosystems: Status, threats and conservation opportunities. Biol. Conserv. 252, 108834, https://doi.org/10.1016/j.biocon.2020.108834 (2020).Article 

    Google Scholar 
    Jackson, M. V. et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J Environ Manage 278, 111549, https://doi.org/10.1016/j.jenvman.2020.111549 (2021).Article 
    PubMed 

    Google Scholar 
    Davidson, N. C. & Finlayson, C. M. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research 70, 1195–1200, https://doi.org/10.1071/MF19010 (2019).Article 

    Google Scholar 
    Duan, H. et al. Identifying new sites of significance to waterbirds conservation and their habitat modification in the Yellow and Bohai Seas in China. Global Ecology and Conservation, e01031 (2020).Jung, M. et al. A global map of terrestrial habitat types. Scientific Data 7, 256, https://doi.org/10.1038/s41597-020-00599-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keith, D. et al. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups. (The International Union for the Conservation of Nature (IUCN), Gland, 2020).Fink, D. et al. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol. Appl. 30, e02056, https://doi.org/10.1002/eap.2056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Convention on Biological Diversity. Indicators for the post-2020 Global Biodiversity Framework. (Convention on Biological Diversity, 2021).Murray, NJ. et al. High-resolution global maps of tidal flat ecosystems from 1984 to 2019, Figshare, https://doi.org/10.6084/m9.figshare.c.5884598.v1 (2022).Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. (US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 2009).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, Rg200410.1029/2005rg000183 (2007).Article 

    Google Scholar 
    Mcowen, C. et al. A global map of saltmarshes. Biodiversity Data Journal 5, https://doi.org/10.3897/BDJ.5.e11764 (2017).Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20, 154–159, https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).Article 

    Google Scholar 
    US Geological Survey. Product Guide: Landsat 4–7 Surface Reflectance (LEDAPS) Product (2018).US Geological Survey. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product (2018).Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine learning 45, 5–32 (2001).Article 

    Google Scholar 
    Murray, N. J. et al. Code and data supplement to “High-resolution global maps of tidal flat ecosystems from 1984 to 2019”. Zenodo https://doi.org/10.5281/zenodo.6332960 (2020).Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. (CRC press, 2008).Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J. & Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 208, 145–153, https://doi.org/10.1016/j.rse.2018.02.026 (2018).Article 

    Google Scholar 
    Sagar, S., Roberts, D., Bala, B. & Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195, 153–169, https://doi.org/10.1016/j.rse.2017.04.009 (2017).Article 

    Google Scholar 
    Lee, J. et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci Total Environ 793, 148568, https://doi.org/10.1016/j.scitotenv.2021.148568 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Z., Xu, N., Li, Y. & Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 269, 112799, https://doi.org/10.1016/j.rse.2021.112799 (2022).Article 

    Google Scholar 
    Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 1–7 (2021).Article 

    Google Scholar 
    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140003, https://doi.org/10.1098/rstb.2014.0003 (2015).Article 

    Google Scholar 
    Keith, D. A. et al. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters 8, 214–226, https://doi.org/10.1111/conl.12167 (2015).Article 

    Google Scholar 
    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change 139, 15–30 (2016).Article 

    Google Scholar 
    Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M. & Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing 14, 1034 (2022).Article 

    Google Scholar 
    US Geological Survey. Landsat 4–7 Collection 1 (C1) Surface Reflectance (LEDAPS) Product Guide. Version 3.0. (USGS, 2020).Xu, C. & Liu, W. Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States from 1984 to 2020 using Google Earth Engine. Environmental Advances 7, 100147, https://doi.org/10.1016/j.envadv.2021.100147 (2022).Article 

    Google Scholar 
    Wang, X. X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nature Sustainability 4, 1076-+, https://doi.org/10.1038/s41893-021-00793-5 (2021).Article 

    Google Scholar 
    Fitton, J. M., Rennie, A. F., Hansom, J. D. & Muir, F. M. E. Remotely sensed mapping of the intertidal zone: a Sentinel-2 and Google Earth Engine methodology. Remote Sensing Applications: Society and Environment, 100499, https://doi.org/10.1016/j.rsase.2021.100499 (2021).Murray, N. J., Kennedy, E., Álvarez-Romero, J. G. & Lyons, M. B. Data freshness in ecology and conservation. Trends in Ecology and Evolution 36, 485–487, https://doi.org/10.1016/j.tree.2021.03.005 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Fission in a colonial marine invertebrate signifies unique life history strategies rather than being a demographic trait

    Hughes, T. P. & Jackson, J. B. C. Do corals lie about their age? Some demographic consequences of partial mortality, fission and fusion. Science 209, 713–715 (1980).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hughes, R. N. A. Functional Biology of Clonal Animals 331 (Chapman and Hall, 1989).
    Google Scholar 
    Karlson, R. H. Fission and the dynamics of genets and ramets in clonal cnidarian populations. Hydrobiologia 216, 235–240 (1991).Article 

    Google Scholar 
    Hughes, T. P. & Jackson, J. B. C. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55(2), 141–166 (1985).Article 

    Google Scholar 
    Blanquer, A., Uriz, M. J. & Caujapé-Castells, J. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Mar. Ecol. Prog. Ser. 380, 95–102 (2009).Article 
    ADS 

    Google Scholar 
    Bely, A. E. & Wray, G. A. Evolution of regeneration and fission in annelids: Insights from engrailed- and orthodenticle-class gene expression. Development 128, 2781–2791 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burton, P. M. & Finnerty, J. R. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev. Genes Evol. 219, 79–87 (2009).PubMed 
    Article 

    Google Scholar 
    Zattara, E. E. & Bely, A. E. Phylogenetic distribution of regeneration and asexual reproduction in Annelida: Regeneration is ancestral and fission evolves in regenerative clades. Invertebr. Biol. 135(4), 400–414 (2016).Article 

    Google Scholar 
    Dolmatov, I. Y., Afanasyev, S. V. & Boyko, A. V. Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS ONE 13(4), 0195836 (2018).Article 
    CAS 

    Google Scholar 
    Jackson, J. B. C. & Hughes, T. P. Adaptive strategies of coral-reef invertebrates. Am. Sci. 73(3), 265–274 (1985).ADS 

    Google Scholar 
    Garrabou, J. Life-history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Mar. Ecol. Prog. Ser. 178, 193–204 (1999).Article 
    ADS 

    Google Scholar 
    Elahi, R. & Edmunds, P. J. Consequences of fission in the coral Siderastrea siderea: Growth rates of small colonies and clonal input to population structure. Coral Reefs 26(2), 271–276 (2007).Article 
    ADS 

    Google Scholar 
    Jackson, J. B. C., Thorp, J. H. & Gibbons, J. W. Overgrowth competition between encrusting cheilostome ectoprocts in a Jamaican cryptic reef environment. J. Anim. Ecol. 48, 805–823 (1979).Article 

    Google Scholar 
    Karlson, R. H. Dynamics of Coral Communities. Population and Community Biology Series Vol. 23, 1–250 (Kluwer Academic Publishers, 1999).Book 

    Google Scholar 
    Acosta, A., Sammarco, P. W. & Duarte, L. F. New fission processes in the zoanthid Palythoa caribaeorum: Description and quantitative aspects. Bull. Mar. Sci. 76(1), 1–26 (2005).
    Google Scholar 
    Babcock, R. C. Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol. Monogr. 61(3), 225–244 (1991).Article 

    Google Scholar 
    Tanner, J. E. The influence of clonality on demography: Patterns in expected longevity and survivorship. Ecology 82(7), 1971–1981 (2001).Article 

    Google Scholar 
    Linacre, N. A. & Keough, M. J. Demographic effects of fragmentation history in modular organisms: Illustrated using the bryozoan Mucropetraliella ellerii (MacGillivray). Ecol. Model. 170(1), 61–71 (2003).Article 

    Google Scholar 
    Brito-Millán, M., Vermeij, M. J., Alcantar, E. A. & Sandin, S. A. Coral reef assessments based on cover alone mask active dynamics of coral communities. Mar. Ecol. Prog. Ser. 630, 55–68 (2019).Article 
    ADS 

    Google Scholar 
    Geller, J. B., Fitzgerald, L. J. & King, C. E. Fission in sea anemones: Integrative studies of life cycle evolution. Integr. Comp. Biol. 45(4), 615–622 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunter, T. The energetics of asexual reproduction: Pedal laceration in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943). J. Exp. Mar. Biol. Ecol. 83(2), 127–147 (1984).Article 

    Google Scholar 
    Bak, R. P. M., Sybesma, J. & Van Duyl, F. C. The ecology of the tropical compound ascidian Trididemnum solidum. II. Abundance, growth and survival. Mar. Ecol. Prog. Ser. 6, 43–52 (1981).Article 
    ADS 

    Google Scholar 
    Rinkevich, B. & Weissman, I. L. A long-term study of fused subclones of a compound ascidian. The resorption phenomenon. J. Zool. 213, 717–733 (1987).Article 

    Google Scholar 
    Stoner, D. S. Fragmentation: A mechanism for the stimulation of the genet growth rates in an encrusting colonial ascidian. Bull. Mar. Sci. 45, 277–287 (1989).ADS 

    Google Scholar 
    Lambert, G. Ecology and natural history of the protochordates. Can. J. Zool. 83(1), 34–50 (2005).Article 

    Google Scholar 
    López-Legentil, S., Erwin, P. M., Velasco, M. & Turon, X. Growing or reproducing in a temperate sea: Optimization of resource allocation in a colonial ascidian. Invertebr. Biol. 132(1), 69–80 (2013).Article 

    Google Scholar 
    Fidler, A. E., Bacq-Labreuil, A., Rachmilovitz, E. N. & Rinkevich, B. Efficient dispersal and substrate acquisition traits in a marine invasive species via transient chimerism and colony mobility. Peer J. 6, e5006 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Grosberg, R. K. Life-history variation within a population of the colonial ascidian Botryllus schlosseri. 1. The genetic and environmental control of seasonal variation. Evolution 42, 900–920 (1988).PubMed 

    Google Scholar 
    Stocker, L. J. & Underwood, A. J. The relationship between the presence of neighbours and rates of sexual and asexual reproduction in a colonial invertebrate. J. Exp. Mar. Biol. Ecol. 149(2), 191–205 (1991).Article 

    Google Scholar 
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 107, 221–231 (2017).PubMed 
    Article 

    Google Scholar 
    Reem, E., Douek, J. & Rinkevich, B. A critical deliberation of the “species complex” status of the globally-spread colonial ascidian Botryllus schlosseri. J. Mar. Biol. Ass. UK in press (2022).Rinkevich, B. Senescence in Modular Animals—Botryllid Ascidians as a Unique Aging System. In The Evolution of Senescence in the Tree of Life (eds Salguero-Gomez, R. et al.) 220–237 (Cambridge University Press, 2017).Chapter 

    Google Scholar 
    Rinkevich, B. & Shapira, M. An improved diet for inland broodstock and the establishment of an inbred line from Botryllus schlosseri, a colonial sea squirt (Ascidiacea). Aquat. Living Resour. 11(3), 163–171 (1998).Article 

    Google Scholar 
    Manni, L. et al. Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. Dev. Biol. 448(2), 293–308 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ben-Hamo, O., Rosner, A., Rabinowitz, C., Oren, M. & Rinkevich, B. Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress protein mortalin. Dev. Biol. 433(1), 33–46 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinkevich, B. & Weissman, I. L. The fate of Botryllus (Ascidiacea) larvae cosettled with parental colonies: Beneficial or deleterious consequences?. Biol. Bull. 173, 474–488 (1987).PubMed 
    Article 

    Google Scholar 
    Rinkevich, B., Porat, R. & Goren, M. On the development and reproduction of Botryllus schlosseri (Tunicata) colonies from the eastern Mediterranean Sea: Plasticity of life history traits. Invertebr. Reprod. Dev. 34, 207–218 (1998).Article 

    Google Scholar 
    Rinkevich, B., Porat, R. & Goren, M. Ecological and life history characteristics of Botryllus schlosseri (Tunicata) populations inhabiting undersurface shallow water stones. Mar. Ecol. 19, 129–145 (1998).Article 
    ADS 

    Google Scholar 
    Rinkevich, B. & Weissman, I. L. Retreat Growth in the Ascidian Botryllus schlosseri. The Consequences of Non-self Recognition. In Invertebrate Historecognition (ed. Grosberg, R. K.) 93–109 (Plenum Press, 1988).Chapter 

    Google Scholar 
    Voskoboynik, A., Reznick, A. Z. & Rinkevich, B. Rejuvenescence and extension of an urochordate life span following a single, acute administration of an anti-oxidant, butylated hydroxytoluene. Mech. Ageing Dev. 123, 1203–1210 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    Stearns, S. C. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften 87(11), 476–486 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Healy, K., Ezard, T. H., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3(8), 1217–1224 (2019).PubMed 
    Article 

    Google Scholar 
    Engelen, A. H., Breeman, A. M., Olsen, J. L., Stam, W. T. & Åberg, P. Life history flexibility allows Sargassum polyceratium to persist in different environments subjected to stochastic disturbance events. Coral Reefs 24(4), 670–680 (2005).Article 
    ADS 

    Google Scholar 
    Lailvaux, S. P. & Husak, J. F. The life history of whole-organism performance. Q. Rev. Biol. 89(4), 285–318 (2014).PubMed 
    Article 

    Google Scholar 
    Christie, M. R., McNickle, G. G., French, R. A. & Blouin, M. S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc. Natl. Acad. Sci. USA 115(17), 4441–4446 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, J. M. et al. Parent age, lifespan and offspring survival: Structured variation in life history in a wild population. J. Anim. Ecol. 79(4), 851–862 (2010).PubMed 

    Google Scholar 
    Steiner, U. K., Tuljapurkar, S. & Orzack, S. H. Dynamic heterogeneity and life history variability in the kittiwake. J. Anim. Ecol. 79(2), 436–444 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beauplet, G., Barbraud, C., Dabin, W., Kussener, C. & Guinet, C. Age specific survival and reproductive performances in fur seals: Evidence of senescence and individual quality. Oikos 112, 430–441 (2006).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. USA 113(1), 230–235 (2016).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Pianka, E. R. On r and K selection. Am. Nat. 104(940), 592–597 (1970).Article 

    Google Scholar 
    Hughes, P. W. Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecol. Evol. 7(20), 8232–8261 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson, C. An ecological driver for the macroevolution of morphological polymorphism within colonial invertebrates. J. Exp. Zool. B Mol. Dev. Evol. 336(3), 231–238 (2021).PubMed 
    Article 

    Google Scholar 
    Sæther, B. E., Ringsby, T. H. & Roskaft, E. Life-history variation, population processes and priorities in species conservation: Towards a reunion of research paradigms. Oikos 77, 217–226 (1996).Article 

    Google Scholar 
    Monro, K. & Marshall, D. J. Faster is not always better: Selection on growth rate fluctuates across life history and environments. Am. Nat. 183(6), 798–809 (2014).PubMed 
    Article 

    Google Scholar 
    Kaliszewicz, A., Johst, K., Grimm, V. & Uchmański, J. Predation effects on the evolution of life-history traits in a clonal oligochaete. Am. Nat. 166(3), 409–417 (2005).PubMed 
    Article 

    Google Scholar 
    Herrera-Cubilla, A., Dick, M. H., Sanner, J. & Jackson, J. B. C. Neogene Cupuladriidae of tropical America. I: Taxonomy of recent Cupuladria from opposite sides of the Isthmus of Panama. J. Paleontol. 80, 245–263 (2006).Article 

    Google Scholar 
    Bingham, B. L., Dimond, J. L. & Muller-Parker, G. Symbiotic state influences life-history strategy of a clonal cnidarian. Proc. R. Soc. B 281(1789), 20140548 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chalmandrier, L. et al. Linking functional traits and demography to model species-rich communities. Nat. Commun. 12, 2724 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Ben-Shlomo, R. Invasiveness, chimerism and genetic diversity. Mol. Ecol. 26, 6502–6509 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watanabe, H. Studies on the regulation in fused colonies in Botryllus primigenus (Ascidiae Compositae). Sci. Rep. Tokyo Bunrika Daigaku Sect. B 7, 183–198 (1953).
    Google Scholar 
    Lauzon, R. J., Rinkevich, B., Patton, C. W. & Weissman, I. L. A morphological study of non-random senescence in a colonial urochordate. Biol. Bull. 198, 367–378 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Changes in limiting factors for forager population dynamics in Europe across the last glacial-interglacial transition

    Metcalf, C. J. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).PubMed 
    Article 

    Google Scholar 
    French, J. C., Riris, P., Fernandez-Lopez de Pablo, J., Lozano, S. & Silva, F. A manifesto for palaeodemography in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190707 (2021).PubMed 
    Article 

    Google Scholar 
    French, J. C. Demography and the Palaeolithic archaeological record. J. Archaeol. Method Th. 23, 150–199 (2016).Article 

    Google Scholar 
    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses – The Tasmanian case. Am. Antiquity 69, 197–214 (2004).Article 

    Google Scholar 
    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shennan, S. Demography and cultural innovation: a model and its implications for the emergence of modern human culture. Camb. Archaeol. J. 11, 5–16 (2001).Article 

    Google Scholar 
    Jorgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).Article 

    Google Scholar 
    Jorgensen, E. K. & Riede, F. Convergent catastrophes and the termination of the Arctic Norwegian Stone Age: a multi-proxy assessment of the demographic and adaptive responses of mid-Holocene collectors to biophysical forcing. Holocene 29, 1782–1800 (2019).ADS 
    Article 

    Google Scholar 
    Riede, F. Lateglacial and Postglacial Pioneers in Northern Europe (Archaeopress, 2014).Tallavaara, M. & Seppä, H. Did the mid-Holocene environmental changes cause the boom and bust of hunter-gatherer population size in eastern Fennoscandia? Holocene 22, 215–225 (2011).ADS 
    Article 

    Google Scholar 
    Kavanagh, P. H. et al. Hindcasting global population densities reveals forces enabling the origin of agriculture. Nat. Hum. Behav. 2, 478–484 (2018).PubMed 
    Article 

    Google Scholar 
    Tallavaara, M., Luoto, M., Korhonen, N., Jarvinen, H. & Seppa, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bliege Bird, R. & Codding, B. F. Promise and peril of ecological and evolutionary modelling using cross-cultural datasets. Nat. Ecol. Evol. 6, 1–3 (2021).Hamilton, M. J. & Tallavaara, M. Statistical inference, scale and noise in comparative anthropology. Nat. Ecol. Evol. 6, 122 (2022).PubMed 
    Article 

    Google Scholar 
    Gurven, M. D. & Davison, R. J. Periodic catastrophes over human evolutionary history are necessary to explain the forager population paradox. Proc. Natl Acad. Sci. USA 116, 12758–12766 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tallavaara, M. & Jorgensen, E. K. Why are population growth rate estimates of past and present hunter-gatherers so different? Philos. T R Soc. B 376, 20190708 (2021).Blackman, F. F. Optima and limiting factors. With two diagrams in the text. Ann. Bot. Lond. 19, 281–296 (1905).Article 

    Google Scholar 
    Maier, A. et al. Cultural evolution and environmental change in Central Europe between 40 and 15 ka. Quat. Int. 581-582, 225–240 (2021).Article 

    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-Garcia, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Binford, L. R. Archaeology as anthropology. Am. Antiquity 28, 217–225 (1962).Article 

    Google Scholar 
    Lowe, J. J. et al. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 27, 6–17 (2008).ADS 
    Article 

    Google Scholar 
    Bocquet-Appel, J. P., Demars, P. Y., Noiret, L. & Dobrowsky, D. Estimates of upper Palaeolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).Article 

    Google Scholar 
    Fort, J., Pujol, T. & Cavalli-Sforza, L. L. Palaeolithic populations and waves of advance (Human range expansions). Camb. Archaeol. J. 14, 53–61 (2004).Article 

    Google Scholar 
    Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190714 (2021).PubMed 
    Article 

    Google Scholar 
    de Pablo, J. F. L. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets. (Univ. California Press, 2019).Johnson, A. L. Exploring adaptive variation among hunter-gatherers with Binford’s frames of reference. J. Archaeol. Res. 22, 1–42 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl Acad. Sci. USA 115, 1232–1237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front Ecol. Environ. 1, 412–420 (2003).Article 

    Google Scholar 
    Cade, B. S., Terrell, J. W. & Schroeder, R. L. Estimating effects of limiting factors with regression quantiles. Ecology 80, 311–323 (1999).Article 

    Google Scholar 
    Burman, P., Chow, E. & Nolan, D. A cross-validatory method for dependent data. Biometrika 81, 351–358 (1994).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190218 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie, D. J. Energy and large-scale patterns of animal-species and plant-species richness. Am. Nat. 137, 27–49 (1991).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2010).Harcourt, A. Human Biogeography (Univ. California Press, 2012).Marlowe, F. W. Hunter-gatherers and human evolution. Evol. Anthropol. 14, 54–67 (2005).Article 

    Google Scholar 
    Belovsky, G. E. An optimal foraging-based model of hunter-gatherer population-dynamics. J. Anthropol. Archaeol. 7, 329–372 (1988).Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Ohlemuller, R. Climate. Running out of climate space. Science 334, 613–614 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol. Evol. 29, 572–580 (2014).PubMed 
    Article 

    Google Scholar 
    Wobst, H. M. The archaeo-ethnology of hunter-gatherers or the tyranny of the ethnographic record in archaeology. Am Antiquity 43, 303–309 (1978).Maier, A. et al. Demographic estimates of hunter-gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 425, 49–61 (2016).Article 

    Google Scholar 
    Riede, F. Oxford Handbook of the Archaeology and Anthropology of Hunter-Gatherers (Oxford Univ. Press, 2014).Jochim, M., Herhahn, C. & Starr, H. The Magdalenian colonization of southern Germany. Am. Anthropol. 101, 129–142 (1999).Article 

    Google Scholar 
    Arts, N. & Deeben, J. On the Northwestern Border of Late Magdalenian Territory: Ecology and Archaeology of Early Late Glacial Band Societies in Northwestern Europe. In Late Glacial in Central Europe. Culture and Environment. (eds Burdukiewicz, J. M. & Kobusiewicz, M.) (Polska Akademia Nauk, Warszawa 1987).Maier, A. Population and settlement dynamics from the Gravettian to the Magdalenian. Mitteilungen der Ges. f.ür. Urgesch. 26, 83–101 (2017).
    Google Scholar 
    Maier, A., Liebermann, C. & Pfeifer, S. J. Beyond the Alps and Tatra Mountains-the 20-14 ka repopulation of the northern mid-latitudes as inferred from palimpsests deciphered with keys from Western and Central Europe. J. Paleolit. Archaeol. 3, 398–452 (2020).Article 

    Google Scholar 
    Gamble, C., Davies, W., Pettitt, P. & Richards, M., Climate change. and evolving human diversity in Europe during the last glacial. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 243–253 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Proceedings of the Prehistoric Society. (Cambridge Univ. Press).Bellwood, P. S. First Farmers: the Origins of Agricultural Societies. (Blackwell, Oxford 2005).d’Errico, F. et al. The origin and evolution of sewing technologies in Eurasia and North America. J. Hum. Evol. 125, 71–86 (2018).PubMed 
    Article 

    Google Scholar 
    Moseler, F. Brandstrukturen im späten Magdalénien: Betrieb, Nutzung und Funktion (Verlag des Römisch-Germanischen Zentralmuseums, 2020).Simova, I. & Storch, D. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity-productivity relationship. Ecography 40, 239–252 (2017).Rosenzweig, M. L. Net primary productivity of terrestrial communities – prediction from climatological data. Am. Nat. 102, 67 (1968).Article 

    Google Scholar 
    Jensen, H. J. & Møberg, T. Et røgeri fra ældre stenalder ved Bølling Sø? Midtjyske Fortaellinger 2007, 51–62 (2008).Holst, D. Hazelnut economy of early Holocene hunter-gatherers: a case study from Mesolithic Duvensee, northern Germany. J. Archaeol. Sci. 37, 2871–2880 (2010).Article 

    Google Scholar 
    Boethius, A. Something rotten in Scandinavia: the world’s earliest evidence of fermentation. J. Archaeol. Sci. 66, 169–180 (2016).Article 

    Google Scholar 
    Dyson‐Hudson, R. & Smith, E. A. Human territoriality: an ecological reassessment. Am. Anthropol. 80, 21–41 (1978).Article 

    Google Scholar 
    Finlayson, C. The water optimisation hypothesis and the human occupation of the mid-latitude belt in the Pleistocene. Quat. Int 300, 22–31 (2013).Article 

    Google Scholar 
    Laland, K. N. & Brown, G. R. Niche construction, human behavior, and the adaptive-lag hypothesis. Evol. Anthropol. 15, 95–104 (2006).Article 

    Google Scholar 
    Laland, K. N. & O’Brien, M. J. Niche construction theory and archaeology. J. Archaeol. Method Th. 17, 303–322 (2010).Article 

    Google Scholar 
    Riede, F. Handbook of Evolutionary Research in Archaeology (Springer, 2019).Jöris, O. & Terberger, T. Zur Rekonstruktion eines Zeltes mit Trapezförmigem Grundriss am Magdalénien-Fundplatz Gönnersdorf/Mittelrhein: Eine» Quadratur des Kreises «? Arch.äologisches Korrespondenzblatt 31, 163–172 (2001).
    Google Scholar 
    Salomon, H., Vignaud, C., Lahlil, S. & Menguy, N. Solutrean and Magdalenian ferruginous rocks heat-treatment: accidental and/or deliberate action? J. Archaeol. Sci. 55, 100–112 (2015).CAS 
    Article 

    Google Scholar 
    Nakazawa, Y., Straus, L. G., Gonzalez-Morales, M. R., Solana, D. C. & Saiz, J. C. On stone-boiling technology in the Upper Paleolithic: behavioral implications from an Early Magdalenian hearth in El Miron Cave, Cantabria, Spain. J. Archaeol. Sci. 36, 684–693 (2009).Article 

    Google Scholar 
    Pedersen, J., Maier, A. & Riede, F. A punctuated model for the colonisation of the Late Glacial margins of northern Europe by Hamburgian hunter-gatherers. Quart.är. 65, 85–104 (2018).
    Google Scholar 
    Whallon, R. Social networks and information: non-“utilitarian” mobility among hunter-gatherers. J. Anthropol. Archaeol. 25, 259–270 (2006).Article 

    Google Scholar 
    Leal Filho, W. et al. Impacts of climate change to African indigenous communities and examples of adaptation responses. Nat. Commun. 12, 6224 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heitz, C. F., Hinz, M., Laabs, J. & Hafner, A. Mobility as resilience capacity in northern Alpine Neolithic settlement communities. Archaeol. Rev. Camb. 36, 75–106 (2021).
    Google Scholar 
    Riede, F., Oetelaar, G. A. & VanderHoek, R. From crisis to collapse in hunter-gatherer societies. A comparative investigation of the cultural impacts of three large volcanic eruptions on past hunter-gatherers. Crisis to Collapse–The Archaeology of Social Breakdown. Louvain-la-Neuve: UCL Presses Universitaires De Louvian 23–39 (2017).Halstead, P., O’Shea, J. & O’Shea, J. M. Bad Year Economics: Cultural Responses to Risk and Uncertainty. (Cambridge Univ. Press, 2004).Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burke, A. et al. The archaeology of climate change: the case for cultural diversity. Proc Natl Acad Sci USA 118, e2108537118 (2021).Binford, L. R. Willow smoke and dogs tails – Hunter-gatherer settlement systems and archaeological site formation. Am. Antiquity 45, 4–20 (1980).Article 

    Google Scholar 
    Birdsell, J. B. Some environmental and cultural factors influencing the structuring of Australian aboriginal populations. Am. Nat. 87, 171–207 (1953).Article 

    Google Scholar 
    Kelly, R. L. The Lifeways of Hunter-Gatherers: The Foraging Spectrum (Cambridge Univ. Press, 2013).Penington, R. Hunter-gatherer demography. In Hunter-Gatherers: An Interdisciplinary Perspective. (eds. Panter-Brick, C., Layton, R. H. & Rowley-Conwy, P.) (Cambridge University Press, Cambridge, 2001).Wobst, H. M. Locational relationships in Paleolithic society. J. Hum. Evol. 5, 49–58 (1976).Article 

    Google Scholar 
    Richards, M. P., Pettitt, P. B., Stiner, M. C. & Trinkaus, E. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc. Natl Acad. Sci. USA 98, 6528–6532 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drucker, D. & Bocherens, H. Carbon and nitrogen stable isotopes as tracers of change in diet breadth during Middle and Upper Palaeolithic in Europe. Int J. Osteoarchaeol. 14, 162–177 (2004).Article 

    Google Scholar 
    Kretschmer, I. Demographische Untersuchungen zu Bevölkerungsdichten, Mobilität und Landnutzungsmustern im späten Jungpaläolithikum (Verlag Marie Leidorf GmbH, 2015).Langley, M. C. & Street, M. Long range inland-coastal networks during the Late Magdalenian: evidence for individual acquisition of marine resources at Andernach-Martinsberg, German Central Rhineland. J. Hum. Evol. 64, 457–465 (2013).PubMed 
    Article 

    Google Scholar 
    Lanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biala 1 open-air site (Podhale Region, southern Poland). Quat. Int 512, 113–132 (2019).Article 

    Google Scholar 
    Cziesla, E. Robbenjagd in Brandenburg? Gedanken zur Verwendung großer Widerhakenspitzen. Ethnographisch-archaologische Z. 48, 1–48 (2007).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Le Cook, B. & Manning, W. G. Thinking beyond the mean: a practical guide for using quantile regression methods for health services research. Shanghai Arch. Psychiatry 25, 55 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Yee, T. W. & Mitchell, N. D. Generalized additive-models in plant ecology. J. Veg. Sci. 2, 587–602 (1991).Article 

    Google Scholar 
    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model 157, 89–100 (2002).Article 

    Google Scholar 
    Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984 (2000).Article 

    Google Scholar 
    Drexler, M. & Ainsworth, C. H. Generalized additive models used to predict species abundance in the Gulf of Mexico: an ecosystem modeling tool. PLos ONE 8, e64458 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moisen, G. G. & Frescino, T. S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Model 157, 209–225 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2006).Zuur, A. F. A Beginner’s Guide to Generalized Additive Models with R (Highland Statistics Limited, 2012).Team, R. C. R: a language and environment for statistical computing. (2013).Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    AlejoOrdonez/PaleoPopDen: (Version NatCommV0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.6962693 (2022).Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 325, 310–314 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. Sci. Data 3, 160048 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peltier, W. R., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).ADS 
    Article 

    Google Scholar 
    Vermeersch, P. M. European population changes during the Marine Isotope Stages 2 and 3. Quat. Int 137, 77–85 (2005).Article 

    Google Scholar 
    Gamble, C., Davies, W., Pettitt, P., Hazelwood, L. & Richards, M. The archaeological and genetic foundations of the European population during the late glacial: Implications for ‘agricultural thinking’. Camb. Archaeol. J. 15, 193–223 (2005).Article 

    Google Scholar 
    Steele, J. Radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densities. J. Archaeol. Sci. 37, 2017–2030 (2010).Article 

    Google Scholar 
    Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).Article 

    Google Scholar 
    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).Article 

    Google Scholar 
    Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Acad. Sci. USA 110, 443–447 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J. et al. Package ‘raster’. R package 734, (2015).Lewin-Koh, N. J. et al. Package ‘maptools’. Internet: http://cran.r-project.org/web/packages/maptools/maptools.pdf (2012).Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).Article 

    Google Scholar 
    Lieth, H.Primary Productivity of the Biosphere (Springer, 1975). More