More stories

  • in

    Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana

    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell W, Mitchell R. Chemotactic and growth response of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41:880–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Windler M, Bova D, Kryvenda A, Straile D, Gruber A, Kroth PG. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol Res. 2014;62:269–81.Article 

    Google Scholar 
    Buhmann MT, Schulze B, Forderer A, Schleheck D, Kroth PG. Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. J Phycol. 2016;52:463–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Tol HM, Amin SA, Armbrust EV. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 2017;11:31–42.PubMed 
    Article 
    CAS 

    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grossart H-P, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Crenn K, Duffieux D, Jeanthon C. Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Front Microbiol. 2018;9:2879.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schäfer H, Abbas B, Witte H, Muyzer G. Genetic diversity of ‘satellite’ bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 2002;42:25–35.PubMed 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci. 2020;117:3656–3662.Stock W, Blommaert L, De Troch M, Mangelinckx S, Willems A, Vyverman W, et al. Host specificity in diatom-bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol. 2019;95:fiz171.Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife. 2016;5:e17473.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77.PubMed 
    Article 
    CAS 

    Google Scholar 
    Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, et al. Plasmid curing and the loss of grip – the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol. 2015;38:120–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Paul C, Pohnert G. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One. 2011;6:e21032.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stock F, Bilcke G, De Decker S, Osuna-Cruz CM, Van den Berge K, Vancaester E, et al. distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds. Front Microbiol. 2020;11:1240.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guillard RRL Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals: proceedings — 1st conference on culture of marine invertebrate animals greenport. Boston, MA: Springer US; 1975. p. 29–60.Rasband WS (2016). ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA. Available at: http://imagej.nih.gov/ij/, 1997–2015.DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CAS 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.Article 
    CAS 

    Google Scholar 
    Alexa A, Rahnenfuhrer J (2021). topGO: Enrichment analysis for gene ontology. R package version 2.46.0.Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” InterJournal, Complex Systems, 1695. https://igraph.org.Wei Q, Khan IK, Ding Z, Yerneni S, Kihara D. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinform. 2017;18:177.Article 
    CAS 

    Google Scholar 
    Shapiro HM (2003). Physical parameters and their uses. In: Shapiro HM (ed). Practical Flow Cytometry. John Wiley & Sons, Inc.: New York, NY, USA, pp. 273-85.Clercq AD, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol. 2006;41:293–313.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Whalen KE, Kirby C, Nicholson RM, O’Reilly M, Moore BS, Harvey EL. The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci Rep. 2018;8:15498.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016;10:1742–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel ZV, Irwin AJ, Schofield O. Resource limitation alters the ¾ size scaling of metabolic rates in phytoplankton. Mar Ecol Prog Ser. 2004;273:269–80.Article 

    Google Scholar 
    De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Ólafsson E. Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol. 2006;332:1–11.Article 

    Google Scholar 
    Finkel ZV. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr. 2001;46:86–94.CAS 
    Article 

    Google Scholar 
    Wilhelm T, Said M, Naim V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes. 2020;11:642.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gelot C, Magdalou I, Lopez BS. Replication stress in mammalian cells and its consequences for mitosis. Genes. 2015;6:267–98.Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. – Genet. Toxicol. Environ. Mutagen. 2008;651:14–29.CAS 

    Google Scholar 
    Van de Meene AML, Pickett-Heaps JD. Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. Eur J Phycol. 2004;39:93–104.Article 

    Google Scholar 
    Pollara SB, Becker JW, Nunn BL, Boiteau R, Repeta D, Mudge MC, et al. Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality. mSphere. 2021;6:e00009–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Von Dassow P, Petersen TW, Chepurnov VA, Virginia Armbrust E. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol. 2008;44:335–49.Article 
    CAS 

    Google Scholar 
    Pokrzywinski KL, Tilney CL, Warner ME, Coyne KJ. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Sci Rep. 2017;7:45102.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durkin CA, Mock T, Armbrust EV. Chitin in diatoms and its association with the cell wall. Eukaryot Cell. 2009;8:1038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wildermuth MC. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol. 2010;13:449–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cho J-C, Giovannoni SJ. Croceibacter atlanticus gen. nov., sp. nov., A Novel Marine Bacterium in the Family Flavobacteriaceae. Syst Appl Microbiol. 2003;26:76–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol. 2021;30:1110–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 2017;543:555–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy SF, Ziv N, Siegal ML. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012;10:e1001325.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blair PM, Land ML, Piatek MJ, Jacobson DA, Lu T-YS, Doktycz MJ, et al. Exploration of the biosynthetic potential of the populus microbiome. mSystems. 2018;3:e00045–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F, Müller DB, et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol. 2018;3:909–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Qureshi A, Faulkner DJ, Azam F. 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol. 2003;69:568–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese EJ. Hormesis: from mainstream to therapy. Cell Commun Signal. 2014;8:289–91.Article 

    Google Scholar 
    Chen WM, Sheu FS, Sheu SY. Novel l-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzym Microb Technol. 2011;49:372–9.CAS 
    Article 

    Google Scholar 
    El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, et al. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front Cell Infect Microbiol. 2017;7:364.Ricci V, Giannouli M, Romano M, Zarrilli R. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J Gastroenterol. 2014;20:630–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Teeling H, Fuchs Bernhard M, Becher D, Klockow C, Gardebrecht A, Bennke Christin M, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China

    Spatial–temporal characteristics of land use changeAs shown in Fig. 2, cultivated land was the dominant land use type in Shandong Province during the past 40 years, which accounted for 69.86% (1980), 69.98% (1990), 69.25% (2000), 68.00% (2010) and 66.88% (2020) respectively. Moreover, it was found that the area of cultivated land, forest land, grassland, unused land and ocean gradually decreased, whereas the water area and URL (urban and rural industrial and mining residential land) increased obviously. In particular, grassland decreased by 7542.87 km2 in the past 40 years with a decline rate of 37.18%, which was much higher than cultivated land and forest land. This phenomenon was attributed to the fact that cultivated land and forest land were less susceptible to encroachment as their high vegetation coverage, while grassland was easily occupied by other land types. The serious occupation by other land types has led to a significant reduction in unused land with a very high decline ratio of 64.32% from 2010 to 2020. In contrast to unused land, URL increased significantly at this period (Fig. 3), which was due to the rapidly economic development.Figure 2Land use type map of Shandong Province from 1980 to 2020.Full size imageFigure 3Sankey diagram of land use transfer in different periods.Full size imageThe total area of land use conversion in Shandong Province was 86,909 km2 during the past 40 years, the most drastic change was observed from 2010 to 2020. On the one hand, the major project of new and old kinetic energy conversion in Shandong Province had been implemented since 2000, which led to the expansion of urban land and dramatic changes in land use patterns. On the other hand, social, economic, technological and other factors had a direct impact on land use change by influencing people’s decision-making on land use (e.g., demand for land products, investment in land, protection of land resources, etc.)45,46,47,48. Statistics showed that GDP (Gross Domestic Product) and population density of Shandong Province had increased significantly since 21st century. The GDP of 2010–2020 was about 10 times that of 1980–2000 and population density had also increased by 1.4 times (Data from: Shandong statistical yearbook, http://tjj.shandong.gov.cn/col/col6279/index.html). As the most direct reflection of human activities, land use change was obviously affected by factors such as agricultural cultivation, industrial and mining construction, and urbanization driven by population growth49,50.The most significant changes of land use type were URL (increased by 17.75%), grassland (decreased by 8.72%) and cultivated land (decreased by 7.26%) over the past forty years. URL was mostly converted from cultivated land (26,306 km2) and grassland (1684 km2), which reflected the serious situation of occupying cultivated land in the process of urbanization in Shandong Province. It was caused by tight land use scale and relatively flat terrain of grassland. Besides, the range of land use type in the four periods also exhibited great variations. The conversion of land use from 1980 to 1990 was concentrated in the Yellow River Delta, Laizhou Bay and Weishan Lake, for the same as 1990–2000. At the period of 2000 to 2010, the conversion types concentrated in Bohai Bay and Yellow River Delta. The land use conversion was violent and widely distributed from 2010 to 2020, which was different from previous periods from 1980 to 2010. The conversion of cultivated land → URL and URL → cultivated land were widely distributed in Shandong Province, while another conversion of grassland → cultivated land and forest → cultivated land were concentrated in the Central and South Shandong Mountains and Jiaodong Hills. In addition, the conversion of cultivated land → water area and URL → water area were concentrated in Bohai Bay, Yellow River Delta and Laizhou Bay. Ample water, flat terrain and fertile soils in these bays and deltas facilitates agricultural cultivation and other productive activities. Therefore, the conversion of land use types from 1980 to 2010 was mainly concentrated here (Fig. 4). Specifically, the conversion of water area → URL was 1083 km2 from 1980 to 1990, unused land → water area was 925 km2 from 1990 to 2000, cultivated land → water area was 687 km2 from 2000 to 2010. However, the pattern of land use change dominated by natural factors has been broken in the process of increasing demand for social development and continuous advancement of science and technology. The conversion of land use types has become more dispersed in spatial distribution and the types of conversion have become more diverse.Figure 4Spatial distribution map of land use conversion types in different periods.Full size imageIn fact, one issue of concern in the early exploitation of water was the ecological problems caused by over-exploitation. For example, the cut-off of the Yellow River downstream made it difficult to guarantee the water security of industrial and agricultural production and residential life in the areas along the way. At the same time, the safety of coastal ecosystems was threatened and the phenomenon of soil salinization had become more serious. To alleviate these problems, government and the public have taken a series of measures such as establishing the Yellow River Delta National Nature Reserve was established in 1992, returning farmland to lakes and wetlands, and improving the landscape pattern of rivers and lakes by carrying out ecological treatment in the coastal zone of rivers and lakes51,52. By 2020, the area of water has increased by 50% compared to 1980, while many ecological security issues have been mitigated.Spatial–temporal characteristics of habitat degradationThe spatial–temporal variation of land use types were conducted to explore the variation trend of its habitat quality in Shandong Province. The InVEST-HQ was applied to obtain layers of habitat degradation in different periods. According to the interval range of 0–0.03, 0.03–0.07 and 0.07–0.18, habitat degradation was divided into three levels: slight, moderate and high degradation35,38.As shown in Fig. 5, the habitat quality in Shandong Province was dominated by moderate degradation, with the proportion of 73.30% (1980), 73.25% (1990), 72.49% (2000), 70.45% (2010) and 64.33% (2020), respectively. The spatial pattern of habitat quality was consistent with cultivated land, indicating that cultivated land who was affected by natural and anthropogenic activities exhibited moderate degradation. The proportion of moderate degradation has decreased due to cultivated land have been encroached upon for construction in the process of development, thus habitat degradation has become more and more serious. Although some of the moderate degraded areas were also converted to slight degraded areas, the area of conversion was very small compared to its conversion to high degraded areas.Figure 5Distribution map of habitat degradation in Shandong Province from 1980 to 2020.Full size imageThe proportion of slight degradation ranges from 22.38% to 24.89%, it was concentrated in the Yellow River Delta, the Central and South of Shandong Mountains, Weishan Lake and Jiaodong Hills, which was less disturbed by human activities. Compared with 1980, the proportion of slight degraded areas increased marginally in 2020, and its change was a fluctuating process. The proportion of slight degraded areas decreased from 1980 to 1990, and its proportion slowly increased from 1990 to 2020. This dynamic change process could be verified according to the spatial distribution characteristics in the Yellow River Delta. The habitat quality of the Yellow River Delta, which originally showed slight degradation, showed high degradation in 1990, 2000 and 2010.The proportion of high degradation ranges from 4.03% to 10.78%, which was concentrated in the built-up area of the city where human activities were more intensive. The proportion of high degraded areas has been increasing, indicating that the habitat has been degraded severely and its quality has declined. As the proportion of high degraded areas raised, two patterns of their spatial distribution also emerged. First spatial pattern was concentrated in urban built-up areas because of the high degree of human exploitation of land, which led to significant habitat degradation. The second pattern was a circle structure with “slight degradation” as the center and “high degradation-moderate degradation-slight degradation” outward, which was similar to the spatial distribution structure of habitat degradation in Fujian Province studied by Li et al.40. The circle structure was formed in 2010, and the distribution range was significantly expanded in 2020. The reason for the formation was that the built-up land in the city center has been severely damaged, and the possibility of re-degradation was reduced, instead showing “slight degradation”. However, the adjacent urban areas were more threatened and severely degraded, presenting “high degradation”. With the increase of distance, habitat threat and degradation decreased gradually, displaying “slight degradation”.Spatial–temporal evolution characteristics of habitat qualityThe InVEST-HQ was used to obtain layers of habitat quality in different periods. As summarized in Table 4, habitat quality was divided into five levels by the interval range: low (0–0.2), relatively low (0.2–0.4), medium (0.4–0.6), relative high (0.6–0.8), and high (0.8–1.0)35,38.Table 4 The proportion of habitat quality level at different periods in Shandong Province.Full size tableOur study concluded that the level of habitat quality in Shandong Province declined from 1980 to 2020.The results showed an overall decline of 4.75% in Shandong Province. Among them, the most significant rate of decline was observed in 2010–2020 (1.86%), which was similar to the phase change characteristics of land use types. At this period, the “Development Plan of Yellow River Delta Efficient Ecological Economic Zone” and the “Development Plan of Shandong Peninsula Blue Economic Zone” have become national development strategies. The demonstration area of “Bohai granary” and the restructuring of steel industry were carried out simultaneously. Meanwhile, the Beijing-Shanghai high-speed railway (Shandong section), Qingdao Jiaozhou Bay Bridge, Jiaozhou Bay Tunnel have strengthened the connection between Shandong Province and the outside world. As a result, rapid development has led to a rapid decline in the quality of its habitat. The rate of decline in 1980–1990 (1.43%) and 2000–2010 (1.42%) was comparable and the rate of decline in 1990–2000 was the lowest at 0.12%, which was significantly related to the development level of cities in each period. The period of 1980–1990 and 2000–2010 were in the initial and rapid promotion stages of reform and opening-up respectively. The initial stage was led by rural reform, and urban reform was launched on a pilot basis. The rapid advancement stage was led by urban reform, and economic development entered a healthy track of steady progress. Therefore, the proportion of habitat quality changes in the two periods was comparable. The period of 1990–2000 was in the exploration and transition stage of reform and opening-up, whose development process was relatively stable, resulting in the lowest rate of change in habitat quality.The average value of habitat quality in Shandong Province was 1980 (0.5091), 1990 (0.5018), 2000 (0.5012), 2010 (0.4941) and 2020 (0.4849), which decreased during the entire period. Habitat quality was dominated by medium-level throughout the whole period, with the proportion in 1980 (68.95%), 1990 (68.54%), 2000 (67.74%), 2010 (66.37%) and 2020 (65.47%). The land type in this category was mainly cultivated land (Fig. 6), which was continuous encroachment during the study period, resulting in a decrease in the percentage of medium-level habitat quality. From 1980 to 2020, the percentage of low-level habitat quality increased from 12.67% to 17.44%, and the relatively low-level decreased from 0.46% to 0.23%. The main reason was the continuous increasing of construction land and the degree of habitat threat led to the decreasing of habitat suitability. Therefore, the area of low-level habitat quality showed an increasing trend. Low and relative low-level habitat quality areas were concentrated in the urban areas of coastal and inland cities, and the Yellow River Delta. Urban areas, with a large scale of industry, commerce and population, also have a high level of urbanization. The original natural habitat has been modified during the development process, which resulted low-level habitat quality. The habitat quality of the Yellow River Delta was dynamic. The low-level pattern formed by early over-exploitation was improved in later conservation and development. The proportion of high-level habitat quality increased from 11.64% to 12.98%, and the relatively high-level decreased from 6.28% to 3.88%. In terms of spatial distribution, it was concentrated in the Central and South Shandong Mountains, Jiaodong Hills, the Yellow River Delta (2020), Weishan Lake and Wulian Mountain. These areas were dominated by mountains and well-protected water, which had high habitat suitability and were less stressed by surrounding construction land, thus maintaining high-level habitat quality. The increase of high-level habitat quality was due to the influence of water with high habitat suitability, which expanded a lot in the past 40 years, leading to the spread of high-level regional habitat quality, especially in the Yellow River Delta.Figure 6Distribution map of habitat quality in Shandong Province from 1980 to 2020.Full size imageThe value of Moran’s I was 0.3935 (1980), 0.3852 (1990), 0.4031 (2000), 0.4186 (2010) and 0.4644 (2020), respectively, which revealed that the spatial agglomeration of habitat quality in Shandong Province was characterized by agglomeration, and the trend of agglomeration increased obviously after 2000.As shown in Fig. 7, the habitat quality in Shandong Province exhibited obvious spatial heterogeneity, and spatial distribution of cold and hot spot was consistent with the topographic features. Hot spot (high-value area of habitat quality) presented “two primary and two secondary + Yellow River Delta”. Two primary hot spots distributed in the Central and South Shandong Mountains and the Jiaodong Hills, the two secondary hot spots located in Weishan Lake and Wulian Mountain. The formation of above hot spot was mainly due to high altitudes or steep slopes conferred favorable habitat quality, which was associated with the accessibility of human activities. Human accessibility at high altitudes or steep slopes was limited, so it was unlikely to cause major interference with the original environment53,54. However, the formation of other hot spot in Yellow River Delta was due to protective human activities. Cold spot (low-value area of habitat quality) was scattered in the northwestern Plain of Shandong Province, provincial capital metropolitan area and peninsula urban agglomeration which was dominated by cultivated land and built-up land in the cities that was affected by agricultural cultivation and industrial activities.Figure 7Distribution map of hot and cold spots of habitat quality in Shandong Province from 1980 to 2020.Full size imageOverall, the spatial distribution pattern of habitat quality in Shandong Province was relatively stable and affected by many factors, among which land use change was the most important one9,40,55. The most dominant land type in Shandong Province was cultivated land, which was concentrated in the northwest plain. Influenced by agricultural farming, the habitat quality of cultivated land presented medium-level category. At the same time, the habitat quality of some cultivated land has decreased due to the influence of construction land intrusion. The high vegetation coverage and rich species diversity of mountains and hills make their natural habitat quality superior. With the development of urban economy, the scale of construction land in coastal lowlands as well as inland urban areas continued to expand. The increase in population density as well as the intensity of land use activities has led to the expansion of regional dehabitatization. In addition, the dynamic changes in the habitat quality of the Yellow River Delta indicated that differences in the degree of land use change led to a variety of impacts on habitat quality. Therefore, habitat quality improvement and ecological protection should be based on local regional resource endowments and follow the concept of comprehensive, coordinated and sustainable development. Administration should formulate differentiated ecological protection strategies. For urban land development, authorities should increase the intensive utilization of construction land, limit the development boundaries of urban land and increase the greening rate inside urban land, such as equipped with urban green space park and other ecological land. In order to ensure the efficiency of agricultural production in Shandong Province, authorities should pay special attention to the conservation of cultivated land and to the development of ecological agriculture56. For natural ecosystems such as forest and grassland, authorities should improve the natural reserve system57. The vegetation ecological restoration project should be carried out according to local conditions. Drawing on the effective experience of ecological changes in the Yellow River Delta, we would take it as a typical example in future development and adopt corresponding administrative methods to coordinate the relationship between economy and habitat quality and change the dilemma of low-level habitat quality areas. Therefore, it is necessary to implement reasonable and effective territorial space planning to achieve regional sustainable development. More

  • in

    Decoupled Asian monsoon intensity and precipitation during glacial-interglacial transitions on the Chinese Loess Plateau

    MaterialsWeinan city is located in the middle reaches of the Yellow River and in the southern part of the Loess Plateau (34°13’–35°52’N, 108°58’–110°35’E) (Fig. 1). It has a temperate semihumid, semiarid climate. The modern MAT observations indicate a value of 13.8 °C, and MAP is 570 mm; these values were obtained from the China meteorological data network, comprising the meteorological data of 2000–2015 (http://data.cma.cn/). Weinan has four distinct seasons, with hot and rainy conditions occurring in the same season. Much of the annual precipitation falls from June to August. The Weinan profile contains 42.8 m of loess–paleosol sequences (LPSs), including five paleosol layers from S0–S4 and five loess layers from L1–L5 and covering five glacial–interglacial cycles. The sampling method involved collecting one sample every 10 cm without interruption. A total of 427 samples were collected from this profile.Modern brGDGTs dataset and MAP datasetPreviously published brGDGTs data from surface soil samples were extracted using an established brGDGT-MAP model. The surface soil samples contain various types of soil and cover nearly all climatic and latitudinal zones. These datasets contain 712 surface soil samples, which all have separated 5-methyl and 6-methyl brGDGTs isomers (Table 1). To reduce the errors in collecting data from different laboratories, the MAP datasets we entered into the brGDGT-MAP model were all published in their previous studies, and we calculated the fractional abundances of each brGDGTs compound for each sample (Table 1), although there were no data regarding changes in soil occurring based on the brGDGTs indices among various laboratories. To eliminate and test the error of the previous MAP dataset, in this study, we also extracted each soil site’s multiyear MAP (1990–2020) through TerraClimate, which is a dataset of high-spatial-resolution monthly climate for global terrestrial surfaces (1/24°, ∼4 km)48. TerraClimate datasets reveal significant advances in the overall mean absolute error and enhance spatial realism compared with coarser resolution gridded datasets. Supplementary Fig. 3 shows that the two MAP datasets have high correlations, with only a few sites exhibiting large deviations. In this study, we entered these two MAP datasets into the DLNN model to obtain the most suitable DLNN-MAP model.Grain-size and magnetic susceptibility measurementsSamples at 10-cm intervals were dried in an oven at 40 °C for 3 days. Then, 0.2 g of each sample was weighed using a clean beaker with an electronic balance. Then, 10 ml of 30% H2O2 and 10 ml 10% HCl were added to remove organic matter and carbonate, respectively. Before the grain-size measurement, 0.05 mol/L (NaPO3)6 was added, and the solutions were placed in an ultrasonic machine for 10 min. The magnetic susceptibility of the samples were measured with an MS-2B Bartington meter. The grain-size was measured using a Mastersizer 2000 produced by Marvern Company in the UK, with an error of less than 1%.ChronologyWe used the ages of LPS control points on the Loess Plateau to obtain the age of each sample in the Weinan profile40. We used the magnetic susceptibility as an indicator of the accumulation rate39 combined with the U–230Th-dated oxygen isotope records from Sanbao caves in central China14. Each sample’s magnetic susceptibility was analyzed at 10-cm intervals (Supplementary Fig. 7). The calculation was as follows:$${T}_{{{{{{rm{m}}}}}}}={T}_{1}+frac{left({sum }_{i=1}^{m}{a}_{i}{s}_{i}right)left({T}_{2}-{T}_{1}right)}{{sum }_{i=1}^{n}{a}_{i}{s}_{i}}$$
    (1)
    where T1 and T2 indicate the ages of the control points, ai indicates the thickness of the layer, and si indicates the magnetic susceptibility of the layer.GDGTs analysisLipids in a total of 238 LPS samples were extracted, including the 198 samples reported in ref. 49. Forty samples at depths from 34.9 m to 43.7 m were selected every 20 cm intervals from the Weinan profile, and dried in an oven at 40 °C for 3 days. Afterward, the loess and paleosol samples were ground into powder and passed through a 60-mesh sieve. Each sample was weighed and extracted with 80 ml of methanol: dichloromethane (DCM) (1:9, v/v) using accelerated solvent extractors (ASE 100 or 150, Dionex, USA). The temperature and pressure were set at 100 °C and 1400 psi, respectively. Then, the lipid extracts were condensed in a rotary evaporator at 40 °C and separated into apolar and polar fractions on a flash silica gel column (0.7 cm i.d. and 1.5 g activated silica gel) chromatography using n-hexane and methanol as eluents, respectively. All polar components were passed through a 0.45-µm PTFE syringe filter. All apolar and polar compositions were dried under a gentle stream of nitrogen gas.The GDGTs were analyzed by using an Agilent 1200 series liquid chromatography-atmospheric pressure chemical ionization-6460A triple quadrupole mass spectrometry (LC-APCI-MS/MS). Ten microlitres of C46 GTGTs (0.001157 μg/μl) were added to each polar fraction, and the samples were then dissolved in 300 μl of n-hexane: iso-isopropanol (IPA) (98.2:1.8, v/v)). Two silica gel columns in series (150 mm × 2.1 mm, 1.9 μm, Thermo Finnigan; USA) were used for the separation of 5-methyl and 6-methyl brGDGTs, with the column temperature kept at 40 °C. The mass spectrometry settings were as follows: the vaporizer pressure 60 psi, the vaporizer temperature 400 °C, the flow rate of dry gas (N2) 6 l/min, drying gas temperature 200 °C, the capillary voltage 3500 V, the corona current 5 μA (∼3200 V), and a single-ion monitoring mode (SIM) was used50, targeting the protonated molecular ions ([M + H]+) 1304, 1302, 1300, 1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1020, 1018, and 744.The MATmr proxy was calculated to identify the changes that occurred in the mean annual temperature in the Weinan section over the last 430 ka. The calculation was as follows24,51.$${{MAT}}_{{mr}} =7.17+17.1*[{Ia}]+25.9*[{Ib}]+34.4*[{Ic}]-28.6*[{IIa}],(n=222,,{R}^{2} \ =0.68,; {RM}{SE}=4.6 {deg} {{{rm{C}}}},,P ; < ; 0.01)$$ (2) $${{MAT}}_{{mr}}=5.58+17.91*[{Ia}]-18.77*[{IIa}]$$ (3) $${MAT}({SSM})= 20.9-13.4*[{IIa}+{IIa}^{{prime}}]-17.2*[{IIIa}+{IIIa}^{{prime}}]\ -17.5*[{IIb}+{IIb}^{{prime}}]+11.2*[{Ib}]$$ (4) $${MAAT}=0.81-5.67*{CBT}+31.0*{MBT}^{{prime}}$$ (5) The soil pH was calculated using the following formulas24.$${pH}=7.15+1.59*{CBT}^{{prime}}(n=221,,{R}^{2}=0.85,,{RMSE}=0.52,, P , < ,0.0001)$$ (6) $${{CBT}}^{{prime} }=-{{log }}frac{{Ic}+{II}{a}^{{prime}}+{II}{b}^{{prime}}+{{IIc}}^{{prime} }+{{IIIa}}^{{prime} }+{III}{b}^{{prime} }+{{IIIc}}^{{prime} }}{{Ia}+{Ib}+{Ic}}$$ (7) SWC is well correlated with MBT’ when IR6ME  > 0.5, and these proxies were calculated using the following expressions:$${{MBT}}^{{prime} }=frac{({Ia}+{Ib}+{Ic})}{({Ia}+{Ib}+{Ic}+{IIa}+{{IIa}}^{{prime} }+{IIb}+{{IIb}}^{{prime} }+{IIc}+{{IIc}}^{{prime} }+{IIIa}+{IIIa}^{prime} )}$$
    (8)
    $${{IR}}_{6{ME}}=frac{sum (C6-{methylated; brGDGTs})}{sum {brGDGTs}}$$
    (9)
    $${{MBT}^{prime} }_{6{ME}}=frac{({Ia}+{Ib}+{Ic})}{({Ia}+{Ib}+{Ic}+{{IIa}}^{{prime} }+{{IIb}}^{{prime} }+{{IIc}}^{{prime} }+{IIIa}^{prime} )}$$
    (10)
    where the Roman numerals indicate different brGDGTs structures (Supplementary Fig. 1).Principal component analysis (PCA)CANOCO version 5 software was utilized to reveal the relationships among various environmental factors. The first PCA figure (Fig. 3a) was generated for the environmental factors MAT, MAPc, SWC, and pH. These variables are based on the same dataset (238 LSPs samples from Weinan profile) without any data transformation. The second PCA figure (Fig. 3b) was generated for the environmental factors MAT, MAP (based on 10Be), SWC and pH, which were all in the transition of the glacial–interglacial after 430 ka BP on the CLP. As the two LSPs profile had similar sedimentation rates, we obtained the same chronological control through linear interpolation in those transition periods. All datasets passed the Gaussian distribution test in this study.Cross wavelet analysisCompared with wavelet special analysis, cross wavelet analysis is even more complicated. The wavelet cross-spectrum can be defined as follows:$${CS}left(b,, a right)={m}_{1c}(b,, a){m}_{2c}(b,, a)$$
    (11)
    where ({m}_{1c}) and ({m}_{2c}) describe the covarying fractions of the overall spectra given by:$${m}_{1}left(b,, a right)={m}_{1c}left(b,, a right)+{m}_{1i}(b,, a)$$
    (12)
    $${m}_{2}left(b,, a right)={m}_{2c}left(b,, a right)+{m}_{2i}left(b,, a right)$$
    (13)
    where ({m}_{1i}) and ({m}_{2i}) are independent contributions to the variance.Overall, this is a multipart function that may be decomposed into amplitude and phase:$${CS}left(b,, a right)={{{{{rm{|}}}}}}{CS}left(b,, a right){{{{{rm{|}}}}}}{{exp }}(i;{{arg }}({CS}(b,, a)))$$
    (14)
    In this study, a and b represent the array of reconstructed MAPc and the Sanbao speleothem δ18O, respectively.Multiple regression linear modelTo compare the precision of the DLNN-MAP model we established, we set up a multiple regression linear model based on all 6-methyl brGDGTs except Ib. The basis of the model is defined as:$$y=a+{b}_{1}{x}_{1}+{b}_{2}{x}_{2}ldots+{b}_{n}{x}_{n}$$
    (15)
    where y represents MAP, x represents all 6-methyl brGDGTs and Ia and Ic, and a, b1, b2…bn represent the partial regression coefficients. n represents the number of 6-methyl we entered into the model (in this study, n = 8).The multiple correlation coefficient (R) was defined as follows:$$R=sqrt{frac{{sum }_{i=1}^{n}{({hat{y}}_{i}-bar{y})}^{2}}{{sum }_{i=1}^{n}{({y}_{i}-bar{y})}^{2}}}$$
    (16)
    where ({y}_{i}) represents the actual observed value, ({hat{y}}_{i}) represents the calculation value and (bar{y}) represents the mean value of all observed data.The t statistic is used to test the validity of regression coefficients, and it can be defined as follows:$${t}_{{b}_{j}}=frac{{b}_{j}}{{s}_{{b}_{j}}}$$
    (17)
    $${s}_{{b}_{j}}=sqrt{{p}_{{jj}}}*s$$
    (18)
    $$s=sqrt{frac{1}{n-m-1}mathop{sum }limits_{i=1}^{n}{({y}_{i}-{hat{y}}_{i})}^{2}}$$
    (19)
    $$P={({p}_{{jj}})}^{-1}=mathop{sum }limits_{i=1}^{n}({x}_{{ij}}-{bar{x}}_{j})({x}_{{ik}}-{bar{x}}_{k})$$
    (20)
    where ({b}_{j}) represents the regression coefficient of ({x}_{j}), n represents the number of samples and m represents the number of variables.The F statistic is used to test the linear relationship of variables and can be defined as follows:$$F=frac{1}{m{s}^{2}}mathop{sum }limits_{i=1}^{n}{({hat{y}}_{i}-bar{y})}^{2}$$
    (21)
    The variance inflation factor (VIF) is used to measure collinearity between variables and can be defined as follows:$${{VIF}}_{j}=frac{1}{1-{R}_{j}^{2}}$$
    (22)
    As shown in Supplementary Fig. 5, we found no obvious collinearity between different variables. However, there are fewer contributions in IIc’, IIIa’, IIIb’, and IIIc’ in the multiple regression linear model we established, and the value of t cannot attain the 95% confidence level (Table 2). The results of both the training dataset and extrapolated experimental dataset (Supplementary Fig. 6), although they seem good (R2 = 0.44 and 0.46, respectively), still have a considerable gap compared with the DLNN-MAP model. Especially when MAP  > 1500 mm, the multiple linear model is unable to forecast the real MAP. These results all indicate that the MAP influence on the brGDGTs compounds is not a simple linear relationship; instead, we suggest that there are complex pilot processes between them.Table 2 List of the parameters of the multiple linear modelFull size tableDLNN modelsDLNNs usually contain an input layer, a few hidden layers, and an output layer. A conceptual structure of the DLNN model was established for forecasting MAP values. The first layer accepts input signals that are various combinations of brGDGTs. The relationships among different variables are processed and analyzed in the hidden layers. The final class output is presented in the output layer; in this study, the output is the MAP reconstruction at the study site.The rectified linear unit (ReLU) activation function is applied in each neuron of the hidden layer, which is computationally simpler than the traditionally applied sigmoid function. The function of the ReLU activation function is given as follows:$$fleft(xright)=left{begin{array}{c}x,, x , > , 0 \ 0,, x , le , 0end{array}right.={{{{{rm{max }}}}}}(0,, x)$$
    (23)
    where x represents an input signal to a neuron and f represents the activation function.Furthermore, the bias between the measured and forecasted output values is reflected by the loss function. The loss function applied herein is the MAE (mean absolute error), which is given as follows:$${MAE}=frac{1}{N}mathop{sum }limits_{i=1}^{n}{{{{{rm{|}}}}}}T-Y{{{{{rm{|}}}}}}$$
    (24)
    where N is the number of training data points, and T and Y represent the measured output value and the forecasted class value, respectively.To realize the backpropagation framework, the derivative of the ReLU activation function needs to be acquired. According to the definition of the ReLU, the derivative is shown as follows.$$f{^prime} left(xright)=left{begin{array}{c}1,; x , > , 0 \ 0,; x , le , 0end{array}right.$$
    (25)
    Given a minibatch of m training samples obtained from the training set {x(1), x(2)…, x(m)} and their corresponding targets T(i) (i = 1,2…, m), the gradient used in the backpropagation framework is shown as follows:$$f=frac{1}{m}mathop{sum }limits_{i=1}^{n}frac{partial L}{partial w}$$
    (26)
    where L is the loss function; w represents the network weights; and n = 1 is the number of output values (MAP).In addition, considering that the adaptive moment estimation algorithm (Adam) was proven to be an effective neural network training method with a fast convergence speed and great classification performance, we applied this algorithm to train the DLNN model for MAP forecasting in this study. Adam has two biased equations, which are shown as follows:$$a={rho }_{1}a+(1-{rho }_{1})g$$
    (27)
    $$b={rho }_{2}b+(1-{rho }_{2})gtimes g$$
    (28)
    where ({rho }_{1}=0.9) and ({rho }_{2}=0.999) are exponential decay rates; g is the gradient; and (times) represents an elementwise product operator.After this calculation, the correct biases in the above two moments are given as follows:$${a}_{c}=frac{a}{1-{rho }_{1}^{t}}$$
    (29)
    $${b}_{c}=frac{b}{1-{rho }_{2}^{t}}$$
    (30)
    where t represents the current time step.Moreover, the update of the network weights is shown as follows:$${triangle }_{w}=-lambda frac{{a}_{c}}{sqrt{{b}_{c}}+epsilon }$$
    (31)
    where (lambda=0.001) represents the learning rates and (epsilon={10}^{-8}) is a constant used to ensure numerical stability.Eventually, the DLNN parameters can be updated according to the following formula.$$w ,=, w ,+, {triangle }_{w}$$
    (32)
    brGDGT-MAP modelsWe entered 9 brGDGTs compounds (all 6-methyl brGDGTs; each compound entered in the model is the percentage of all brGDGTs in the surface soil) into the input layer of the DLNN; these compounds are closely related to soil moisture. Then, we selected 533 surface soil samples as the training dataset and 179 surface soil samples as the validation dataset, both of which satisfied the principle of randomness. We assessed the precision of the model using forecast data R2 and root mean square error (RMSE) values.Through several parameters applied in the DLNN model, we found that the frequency of training and the number of neurons play the most significant roles in the brGDGT-MAP models. In addition, four hidden layers containing the other DLNN parameters allow the model to become more stable (detailed parameters are shown in Supplementary Fig. 7). To test the best frequency of training and the number of neurons in each hidden layer, we set a series of gradients to test the model to find the most suitable combination. As shown in Supplementary Fig. 8, for the frequency of training, we set the minimum and maximum training times to 1000 and 1500, respectively, with 100 times as the interval. We also set the numbers of neurons from 160 to 260 with a 20-neuron interval.Testing the weights of different compounds in the DLNN model and determining whether it was essential to eliminate some compounds that may make the dataset redundant were also required. Based on the model in which the Ib parameter was removed, we also set a series of experiments to test the effects of the different 6-methyl isomers on the predicted MAP values. Then, we made seven attempts to test the forecast effect of the brGDGT-MAP models by removing the Ic, IIa’, IIb’, IIc’, IIIa’, IIIb’, and IIIc’ parameters (Supplementary Fig. 9). Then, we obtained the best brGDGT-MAP model (Supplementary Fig. 10).Comparison of various ANN structuresTo improve the accuracy of our brGDGT-MAP models and the models’ universality, we also tested more complex ANN structures and then compared them with our DLNN models.RNNA recurrent neuron network (RNN) is an artificial neural network in which nodes are directionally connected into loops. The essential feature of RNN is that there are both internal feedback connections and feedforward connections between processing units. The inner structure of RNN is similar to that of the human brain, which can learn to transform a lifetime of sensory input streams into an efficient sequence of motor outputs (Supplementary Fig. 11a). Therefore, the basis of the RNN is defined as follows:$${h}_{t}=fleft(U ,*, {X}_{t}+W ,*, {h}_{t-1}right)$$
    (33)
    $${o}_{t}={softmax}(V ,{h}_{t})$$
    (34)
    where Xt represents the input value at time t; ot represents the output value at time t; ht represents the memory value at time t; and U, V, and W are the parameters of this network. For the motivative function, we chose softmax.LSTMLong short-term memory networks (LSTM) are a special type of RNN that can learn long-term dependence and contain three gates (forget gate, input gate and output gate) and one memory cell. The horizontal line above the box is called the cell state, and it acts as a conveyor belt to control the flow of information to the next moment (Supplementary Fig. 11b). Therefore, the basis of LSTM is defined as follows:$${C}_{t}={f}_{t}*{C}_{t-1}+{i}_{t}*{widetilde{C}}_{t}$$
    (35)
    where ({C}_{t-1}) represents the knowledge state of the model at time t − 1 and ({widetilde{C}}_{t}) represents the newly acquired information after entering new observations. ({f}_{t}) and ({i}_{t}) represent the weight parameters of ({C}_{t-1}) and ({widetilde{C}}_{t}), respectively.$${f}_{t}=sigma ({W}_{f}cdot left[{h}_{t-1},, {x}_{t}right]+{b}_{f})$$
    (36)
    $${i}_{t}=sigma ({W}_{f}cdot left[{h}_{t-1},, {x}_{t}right]+{b}_{i})$$
    (37)
    $$kern0.9pc {widetilde{C}}_{t}={{tanh }}({W}_{c}cdot left[{h}_{t-1},, {x}_{t}right]+{b}_{c})$$
    (38)
    where ({h}_{t-1}) represents the output value at time t − 1 and ({x}_{t}) represents the new input value at time t. ({W}_{f}) represents the motivative function in this study. We used tanh as the motivative function when our model was learning. Each new input may not have a positive impact on the machine, but it may also have a negative impact., ({b}_{f}), ({b}_{i}) and ({b}_{c}) represent the random disturbances (white noise).GRUAs mentioned above, the LSTM is proposed to overcome RNN’s inability to address remote dependence and the gate recurrent unit (GRU), a variant of the LSTM, keeps the effect of the LSTM while making the structure simpler.Compared with the LSTM, the GRU only has two gates (update (zt) and reset (rt) gates). The update gate is used to control the degree to which the state information at the previous moment is brought into the current state. The larger the value of the update gate is, the more state information at the previous moment is brought in. The reset gate is used to control the degree to which the state information at the previous moment is ignored (Supplementary Fig. 11c). Therefore, the basis of the LSTM is defined as follows:$${r}_{t}=sigma ({W}_{r}cdot [{h}_{t-1},, {x}_{t}])$$
    (39)
    $${z}_{t}=sigma ({W}_{z}cdot [{h}_{t-1},, {x}_{t}])$$
    (40)
    $${widetilde{h}}_{t}={tanh }({W}_{widetilde{h}}cdot [{{r}_{t}*h}_{t-1},, {x}_{t}])$$
    (41)
    $${h}_{t}=left(1-{z}_{t}right)*{{r}_{t}*h}_{t-1}+{z}_{t}*{widetilde{h}}_{t}$$
    (42)
    $${y}_{t}=sigma ({W}_{o}cdot {h}_{t})$$
    (43)
    where [] represents the connection of two vectors and * represents the multiplication of matrix elements. The xt and yt represent the input and output values at time t, respectively.It can be seen from the above formula that the parameters to be learned are the weight parameters of Wr, Wz, Wh, and Wo. The first three weights are spliced; therefore, they need to be segmented during learning. These can be defined as follows:$${W}_{r}={W}_{{rx}}+{W}_{{rh}}$$
    (44)
    $${W}_{z}={W}_{{zx}}+{W}_{{zh}}$$
    (45)
    $${W}_{widetilde{h}}={W}_{widetilde{h}x}+{W}_{widetilde{h}h}$$
    (46)
    As we can find in the RNN, LSTM, and GRU models we reconstructed (Supplementary Fig. 12), the training datasets all show extraordinarily high R2 values (0.99, 0.99, and 0.99, respectively) and low RMSE values (0.36, 0.23, and 0.16, respectively). However, the validation datasets do not show good prediction ability compared with the DLNN. These results indicate that the two ANN structures are not suitable for MAP prediction based on brGDGTs, although their inner structures are more complex than those of the DLNN. The reason we suggested is that the RNN, LSTM and GRU are more appropriate to the massive amounts of data and the data that have obvious spatiotemporal characteristics. The great prediction precision in the training dataset and the poor performance in the extrapolated datasets indicate that the models based on the RNN, LSTM and GRU have significant overfitting. As a result, compared with other ANN structures, we concluded that our DLNN model is the most suitable one to forecast MAP based on brGDGTs.Environmental indicators of n-alkanes proxiesLong-chain n-alkanes in plant leaf waxes are universal in terrestrial environments and can deliver signals of variations in plant sources and past climate. They are widely distributed in surface soils and Quaternary sediments, especially in LPSs. In this study, due to the insufficient samples in Weinan profile, we only analyzed n-alkanes components for 40 LPS samples, which contain ages between 340 and 430 ka BP.Instrumental measurementsFor the apolar fractions, a total of 40 samples in this study, mainly containing n-alkanes, were all investigated utilizing a Shimadzu 2010 gas chromatograph (GC) equipped with a flame ionization detector (FID) and a DB-5 fused silica capillary column (60 m (times) 0.32 mm (times) 0.25 μm film thickness) with helium as the carrier gas. The temperature of the GC oven was enhanced from 70 to 300 °C at a rate of 3 °C/min. Then, this temperature (300 °C) was maintained for 30 min. Finally, the concentrations of the n-alkane homologs were evaluated by assessing the peak area of the n-alkanes to that of the internal standard (cholane).Long-term paleoclimatic changeThe carbon preference index (CPI) evaluates the relative abundances of odd vs. even-numbered n-alkanes. The CPI increases as the environmental aridity increases. The CPI indicated warm–wet periods and cold-dry periods in paleoclimate and corresponded well with the loess–paleosol cycle52. The average chain length (ACL) value is the weighted average of the different carbon chain lengths. The lower ACL value corresponds to the lower temperature in the research of LPSs. The variations in the ACL value have good coordination with the magnetic susceptibility and particle size. The n-alkane CPI53 and ACL54 are calculated as follows:$${CPI}(1)=frac{({C}_{23}+{C}_{25}+{C}_{27}+{C}_{29}+{C}_{31})+({C}_{25}+{C}_{27}+{C}_{29}+{C}_{31}+{C}_{33})}{2({C}_{24}+{C}_{26}+{C}_{28}+{C}_{30}+{C}_{32})}$$
    (47)
    $${CPI}left(2right)=frac{1}{2}left(frac{{C}_{25}+{C}_{27}+{C}_{29}+{C}_{31}+{C}_{33}}{{C}_{24}+{C}_{26}+{C}_{28}+{C}_{30}+{C}_{32}}+frac{{C}_{25}+{C}_{27}+{C}_{29}+{C}_{31}+{C}_{33}}{{C}_{26}+{C}_{28}+{C}_{30}+{C}_{32}+{C}_{34}}right)$$
    (48)
    $${ACL}=frac{{23C}_{23}+{25C}_{25}+{27C}_{27}+{29C}_{29}+31{C}_{31}+{33C}_{33}}{{C}_{23}+{C}_{25}+{C}_{27}+{C}_{29}+{C}_{31}{+C}_{33}}$$
    (49)
    Figure 13 shows the variations in CPI (Supplementary Fig. 13a) and ACL (Supplementary Fig. 13b) values in the Weinan profile from 340 to 430 ka BP. Compared with the MAP (Supplementary Fig. 13c) and SWC (Fig. 2e) reconstructions based on brGDGTs, we found that they all had a peak at ∼350 ka BP, which indicates relatively high soil moisture at approximately 350 ka BP.MAP reconstruction in the XRD sectionIn this section, we test the brGDGT-MAP model in the Xiangride (XRD) profile, which is located in the margin region of the East Asian monsoon (Fig. 1). With robust chronological control, we reconstructed the rainfall changes in 7000 years BP (Supplementary Fig. 14b). We found that MAP was ∼200 mm in the late Holocene, which approaches multiple modern observations in this region (180 mm). Moreover, we suggest that this region experienced the most humid period in the mid-Holocene, when the rainfall reached 600 mm. Afterward, the precipitation declined from 6000 to 4000 years BP and then increased and reached a peak value at ∼3000 years BP. Then, it had a drought trend until modern times.We discovered that our brGDGT-MAP model could precisely capture rainfall dynamics based on the Weinan profile (Supplementary Fig. 14a) and XRD profile (Supplementary Fig. 14b). Combined with the most acceptable rainfall records in the Holocene (i.e., 10Be (Supplementary Fig. 14c), pollen in Gonghai (Fig. 1 and Supplementary Fig. 14d), and Dongge cave δ18O (Fig. 1 and Supplementary Fig. 14e)), we found the same precipitation peak values in the early Holocene and mid-Holocene. In addition, they all revealed a drought trend throughout the whole Holocene. We suggest that brGDGTs can become a robust proxy to reconstruct precipitation in the Holocene. More

  • in

    Ecological resilience of restored peatlands to climate change

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).
    Google Scholar 
    Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Bonn, A. et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 9, 54–65 (2014).Article 

    Google Scholar 
    Martin-Ortega, J., Allott, T. E., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).Article 

    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Chimner, R. A., Cooper, D. J., Wurster, F. C. & Rochefort, L. An overview of peatland restoration in North America: where are we after 25 years? Restor. Ecol. 25, 283–292 (2017).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).Article 

    Google Scholar 
    Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6034 (2020).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7 (2018).CAS 
    Article 

    Google Scholar 
    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).Article 

    Google Scholar 
    Scheffer, M. Critical transitions in nature and society (Princeton University, 2009).Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).CAS 
    Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Rydin, H., Jeglum, J. K. & Bennett, K. D. The biology of peatlands, 2nd edition (Oxford University Press, 2013).Kim, J. et al. Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front. Earth Sci. 8, 717 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge University Press, In Press).Belyea, L. R. Non-linear dynamics of peatlands and potential feedbackson the climate system, in Northern Peatlands and Carbon Cycling (A, Baird. et al. eds), pp 5–18 (American Geophysical Union Monograph Series, 2009).Holden, J. et al. Overland flow velocity and roughness properties in peatlands. Water Resour. Res. 44, https://doi.org/10.1029/2007WR006052 (2008).Holden, J., Wallage, Z. E., Lane, S. N. & McDonald, A. T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 402, 103–114 (2011).Article 

    Google Scholar 
    Glaser, P. H. et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 18, GB1003 (2004).Article 
    CAS 

    Google Scholar 
    Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross‐scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).Article 

    Google Scholar 
    Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).Article 

    Google Scholar 
    Holden, J., Evans, M. G., Burt, T. P. & Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 35, 1764–1778 (2006).CAS 
    Article 

    Google Scholar 
    Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—a meta study. Hydrol. Process. 33, 101–114 (2019).Article 

    Google Scholar 
    Gałka, M., Tobolski, K., Górska, A. & Lamentowicz, M. Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: implications for ecological restoration. Holocene 27, 130–141 (2017).Article 

    Google Scholar 
    Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol. Lett. 15, https://doi.org/10.1098/rsbl.2019.0043 (2019).van der Velde, Y. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.210174211 (2021).Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    Article 

    Google Scholar 
    Minayeva, T. Y. & Sirin, A. A. Peatland biodiversity and climate change. Biol. Bull. Rev. 2, 164–175 (2012).Article 

    Google Scholar 
    Minayeva, T. Y., Bragg, O. & Sirin, A. A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 19, 1–36 (2017).
    Google Scholar 
    Andersen, R., Chapman, S. J. & Artz, R. R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 1, 979–994 (2013).Article 
    CAS 

    Google Scholar 
    van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).Article 

    Google Scholar 
    Hugron, S. & Rochefort, L. Sphagnum mosses cultivated in outdoor nurseries yield efficient plant material for peatland restoration. Mires Peat 20, 1–6 (2018).
    Google Scholar 
    Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In: Shaw A. J. & Goffinet B. (eds) Bryophyte biology, pp 312–343 (Cambridge University Press, 2002).Yu, Z. et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene 13, 801–808 (2003).Article 

    Google Scholar 
    Chiapusio, G. et al. Sphagnum species module their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J. Chem. Ecol. 44, 1146–1157 (2018).CAS 
    Article 

    Google Scholar 
    Sherwood, J. H. et al. Effect of drainage and wildfire on peat hydrophysical properties. Hydrol. Process. 27, 1866–1874 (2013).Article 

    Google Scholar 
    Tanneberger, F., Flade, M., Preiksa, Z. & Schröder, B. Habitat selection of the globally threatened aquatic warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management. Ibis 152, 347–358 (2010).Article 

    Google Scholar 
    Kreyling, J. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 1–8 (2021).Article 
    CAS 

    Google Scholar 
    Ritson, J. P. et al. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning–a research agenda. Sci. Total Environ. 759, https://doi.org/10.1016/j.scitotenv.2020.143467 (2021).Secco, E. D., Haapalehto, T., Haimi, J., Meissner, K. & Tahvanainen, T. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires Peat 18, https://doi.org/10.19189/MaP.2016.OMB.231 (2016).Basiliko, N. et al. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 31, https://doi.org/10.3389/fmicb.2013.00215 (2013).Barber, K. E. Peat stratigraphy and climatic change. vol 219, (AA Balkema, 1981).Quinton, W. L. & Roulet, N. T. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic Alpine Res. 30, 285–294 (1998).Article 

    Google Scholar 
    Eppinga, M. B., Rietkerk, M., Wassen, M. J. & De Ruiter, P. C. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol. 200, 53–68 (2009).Article 

    Google Scholar 
    Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant– soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).CAS 
    Article 

    Google Scholar 
    Fenton, N. J. Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory. Botany 94, 1009–1014 (2016).Article 

    Google Scholar 
    Xu, L. X. et al. Maintain spatial heterogeneity, maintain biodiversity—a seed bank study in a grazed alpine fen meadow. Land Degrad. Dev. 28, 1376–1385 (2017).Article 

    Google Scholar 
    Laine, J., Vasander, H. & Laiho, R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 1, 785–802 (1995).
    Google Scholar 
    Gatis, N. et al. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea‐dominated peatland. Ecohydrology 9, 407–420 (2016).CAS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. Journal of Ecology 104, 621–636 (2016).Article 

    Google Scholar 
    Liu, H., Gao, C. & Wang, G. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Sci. Total Environ. 643, 1031–1040 (2018).CAS 
    Article 

    Google Scholar 
    Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).CAS 
    Article 

    Google Scholar 
    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).Article 

    Google Scholar 
    Strack, M. et al. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites? Mires Peat 17, 1–18 (2016).
    Google Scholar 
    Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Global Change Biol. 24, 5751–5768 (2018).Article 

    Google Scholar 
    Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, https://doi.org/10.19189/MaP.2018.DW.346 (2019).Schwieger, S. et al. Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 24, 1093–1109 (2021).CAS 
    Article 

    Google Scholar 
    Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor. Ecol. 21, 363–371 (2013).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol. Eng. 68, 279–290 (2014).Article 

    Google Scholar 
    Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 23, 13706–13717 (2016).Article 

    Google Scholar 
    Karofeld, E., Kaasik, A. & Vellak, K. Growth characteristics of three Sphagnum species in restored extracted peatland. Restor. Ecol. 28, 1574–1583 (2020).Article 

    Google Scholar 
    Purre, A. H., Ilomets, M., Truus, L., Pajula, R. & Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 28, 1584–1595 (2020).Article 

    Google Scholar 
    Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935 (2021).CAS 
    Article 

    Google Scholar 
    Ketcheson, S. J. & Price, J. S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31, 1263–1274 (2011).Article 

    Google Scholar 
    McCarter, C. P. R. & Price, J. S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 55, 73–81 (2013).Article 

    Google Scholar 
    Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philos. Transac. R. Soc. B 375, https://doi.org/10.1098/rstb.2019.0685 (2020).Blier‐Langdeau, A., Guêné‐Nanchen, M., Hugron, S. & Rochefort, L. The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire. Restor. Ecol. 30, https://doi.org/10.1111/rec.13545 (2022).Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol. Manage. 11, 3–20 (2003).CAS 
    Article 

    Google Scholar 
    Lavoie, C., St-Louis, A. & Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: Five years of monitoring. Wetlands Ecol. Manage. 13, 621–633 (2005).Article 

    Google Scholar 
    Poulin, M., Rochefort, L., Quinty, F. & Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Botany 83, 539–557 (2005).Article 

    Google Scholar 
    Quinty, F., LeBlanc, M.-C. & Rochefort, L. Peatland Restoration Guide—PERG, CSPMA and APTHQ (Université Laval, 2020).Wagner, D. J. & Titus, J. E. Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62, 182–187 (1984).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Declaring success in Sphagnum peatland restoration: identifying outcomes from readily measurable vegetation descriptors. Mires Peat 24, 1–16 (2019).
    Google Scholar 
    Scotland National Peatland Plan. Working for our future. https://www.nature.scot/doc/scotlands-national-peatland-plan-working-our-future#:~:text=The%202020%20Challenge%20for%20Scotland’s,more%20resilient%20to%20climate%20change (2020).Wilkie, N. M. & Mayhew, P. W. The management and restoration of damaged blanket bog in the north of Scotland. Bot. J. Scotl. 55, 125–133 (2003).Article 

    Google Scholar 
    Hancock, M. H., Klein, D., Andersen, R. & Cowie, N. R. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21, 167–178 (2018).Article 

    Google Scholar 
    Harris, A. & Baird, A. J. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035–1054 (2019).Article 

    Google Scholar 
    Bradley, A. V., Andersen, R., Marshall, C., Sowter, A. & Large, D. J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 10, 261–277 (2022).Article 

    Google Scholar 
    Gaffney, P. P., Hancock, M. H., Taggart, M. A. & Andersen, R. Measuring restoration progress using pore-and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage. 219, 239–251 (2018).CAS 
    Article 

    Google Scholar 
    Hermans, R. et al. Climate benefits of forest-to-bog restoration on deep peat–Policy briefing. Climate X Change 1–5, https://www.climatexchange.org.uk/media/3654/climate-benefits-of-forest-to-bog-restoration-on-deep-peat.pdf (2019).Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).
    Google Scholar 
    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1–5 (2020).Article 
    CAS 

    Google Scholar 
    Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).CAS 
    Article 

    Google Scholar 
    Klimkowska, A. et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS One 14, https://doi.org/10.1371/journal.pone.0215645 (2019).Huth, V. et al. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 30, https://doi.org/10.1111/rec.13490 (2022).Schimelpfenig, D., Cooper, D. J. & Chimner, R. A. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol. 22, 257–265 (2014).Article 

    Google Scholar 
    Laine, A. M., Tolvanen, A., Mehtätalo, L. & Tuittila, E. S. Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol. Evol. 6, 6880–6891 (2016).Article 

    Google Scholar 
    Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).Article 

    Google Scholar 
    Schneider, R. R., Devito, K., Kettridge, N. & Bayne, E. Moving beyond bioclimatic envelope models:50 integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the51 western Canadian boreal plain: Western boreal ecosystem transitions under climate change. Ecohydrology 9, 899–908 (2016).Article 

    Google Scholar 
    Blundell, A. & Holden, J. Using palaeoecology to support blanket peatland management. Ecol. Indic. 49, 110–120 (2005).Article 

    Google Scholar 
    Newman, S. et al. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub‐tropical peatland. Ecol. Monogr. 87, 578–599 (2017).Article 

    Google Scholar 
    Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M. & Waddington, J. M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aaa136 (2018).Hokanson, K. J. et al. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 11, https://doi.org/10.1002/eco.1942 (2018).IPCC. Global warming of 1.5 °C (IPCC, 2018).Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Change 70, https://doi.org/10.1016/j.gloenvcha.2021.102323 (2021).Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, https://doi.org/10.1002/adsu.202000146 (2021).Loisel, J. & Walenta, J. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6, 486–488 (2022).Article 

    Google Scholar 
    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Terzano, D. Community‐led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 3, https://doi.org/10.1111/rec.13642 (2022). More

  • in

    A chocoholic’s best friends are the birds and the bats

    .readcube-buybox { display: none !important;}
    Chocolate, a serious contender for the world’s most beloved food, is made from the seed kernels of the cacao tree (Theobroma cacao). But despite its popularity, Justine Vansynghel at the University of Würzburg in Germany and her colleagues found that nobody had quantified how species living on small-scale cacao farms collectively affect production1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-02908-0

    References

    Subjects

    Latest on: More

  • in

    Collecting critically endangered cliff plants using a drone-based sampling manipulator

    Cliffs present a unique flora that has been little studied until now mainly because of the inherent difficulties to access this unique environment, as shown in Fig. 2. The techniques currently used to access plants on steep slopes and cliffs (e.g., abseiling, helicopter) are generally dangerous, costly and time consuming. Using a small aerial manipulator to sample plants on the cliffs can represent many advantages, including safety and portability, as well as the capability of reaching otherwise inaccessible locations easily, quickly and at low cost.Figure 2Examples of the cliff habitats of some critically endangered species on the Kauaʻi Island along with the count of known individuals as of February 2022.Full size imageHowever, several technical challenges make it difficult to develop suitable aerial manipulators for this task. Indeed, the sampling of plants on cliffs necessarily leads to significant collision risks, as well as contact forces and moments during sampling that can destabilize the drone. The samples collected would also need to be accessed from the side of the aerial platform22. Any weight (e.g., sampling tool, collected samples) located horizontally away from the center of mass of the drone creates large additional demands on the propulsion system of most drones. To collect specific plant parts in windy conditions (e.g., scion, flowers, seeds, etc.), precise and fast motion is required even in degraded Global Navigation Satellite System (GNSS) coverage near the cliffs. The great diversity of plant species and morphology found on cliffs, as well as the variety of targeted sections of plant, also represent a major design challenge. Finally, to maximize the adoption of this tool, it is also desirable that scientists with minimal training could use this platform. The next sections describe how these challenges were addressed through the development of the Mamba.Suspended sampling platformThere are a multitude of configurations that could have been explored to sample plants on cliffs. Some drones have manipulators rigidly attached to their structure20,23. However, these manipulators tend to have a limited reach to keep the center of mass within the propeller footprint and to minimize the inertia of the system. This could result in a high collision risk with the propellers in the uneven terrain found on cliffs. The contact forces created during the sampling operation also generate destabilizing moments through manipulators rigidly attached to the drone. To address these challenges, concepts involving a compliant manipulator operated from specialized drones were also explored10. Alternatively, some aerial manipulators were also passively suspended under the drone through a long rod21,24. This keeps the drone above potential obstacles within the environment, significantly reducing the operator’s mental demand and stress while also reducing the disturbances transmitted to the drone to a downward force aligned with the rod and yaw torque. To maintain these advantages while providing better precision, some projects have developed cable suspended platforms equipped with thrusters25,26. As these platforms do not have to counter gravity, the thrusters can be positioned to fight external disturbances more efficiently (e.g., wind, contact forces, drone movements). Existing systems however only stabilize the suspended platform close to its equilibrium point.The chosen concept for the Mamba, illustrated at Fig. 3, consists of a suspended platform that can stabilize itself far from its natural equilibrium to provide a large workspace. The lifting drone in this system stays safely away and above from steep cliff faces, while supporting the platform and providing rough positioning in space through better GNSS coverage. The platform is suspended 10 m below the lifting drone using four attachment points to prevent pitch and roll motions. The cable also acts as a low pass filter, isolating the platform from the fast drone movements required to fight wind disturbances. The suspended platform design can then focus on fast and precise positioning, while also being tolerant to contacts during sampling. To do so, four pairs of bidirectional actuators are used to control the motion in the plane of the pendulum (i.e., x and y translation, as well as yaw). Two pairs of actuators are installed in the x-direction to provide sufficient force to reach plants as far as 4 m from the equilibrium position. This corresponds to roughly 3.3 m from the tip of the lifting drone’s propellers.Figure 3(a) General concept of the Mamba and lifting drone during transit and sampling on cliffs. (b) Side view of the Mamba showing the components and cable installations. (c) Top view showing the antagonist thrusters configuration. (d) Close-up of the sampling tool and 2 degrees of freedom (DOF) wrist specifically designed to sample small fragile plants.Full size imageSince the Mamba is self-powered and has its own communication system, the lifting drone function is simply to lift the platform and hold it in place. This made it possible to select amongst the many commercially available products to accelerate the development of the Mamba. The DJI M300 was chosen as it comes equipped with a 360° optical obstacle avoidance vision system, an IP45 rating, and a flight time of 20 min with the Mamba attached (3.3 kg). It also advertised a four constellation GNSS receiver for better coverage around buildings, structures, and cliffs.Precise control in windsWinds under 20 km/h represent a gentle breeze on the Beaufort scale. At this level, the wind only moves the leaves, and not the branches, which allows for ideal sampling conditions. According to historical weather data from 2020, daily maximum winds are less than 20 km/h for 40 to 70% of the year, depending on the exact location on Kauaʻi Island (i.e., Lihuʻe International airport, as reported by the National Oceanic and Atmospheric Administration, and the Makaha Ridge Weather Station, as reported in the MesoWest database). This also implies that Kauaʻi experiences stronger winds on certain days which would make precise sampling difficult. Wind conditions are also more challenging near cliff faces, with increased turbulence and vertical airflow along the cliff.To allow operations on most days, while providing precise positioning and fast rejection of wind disturbances, the actuators of the Mamba are oriented in the horizontal plane. This allows the actuator forces to directly affect the motion of the suspended platform. Each actuator of the Mamba consists of a pair of brushless DC motors and 23 cm propellers capable of producing 7 N of force. The motors are installed in opposite directions, are always idling at their minimum rotation speed, and are commanded to only create force in their preferred direction. This antagonistic configuration avoids the low-velocity dead zone of a brushless motor during thrust reversal. This makes it possible to quickly revert the direction of the thrust and nearly triples the bandwidth of the actuators to approximately 2.5 Hz27. This configuration, however, comes at the expense of added mass and components.The Mamba is equipped with a flight controller that includes a control system, and a state estimator. To avoid degraded GNSS coverage issues, the state estimator only uses data from a high accuracy inertial measurement unit (IMU) to estimate the attitude of the platform. This provides the relative position of the platform with respect to the drone and is sufficient for teleoperation. Three separated proportional-derivative controllers are used for each of the DOF controlled by the actuators. This control system also provides attitude-hold assistance (i.e., pitch and roll, which correspond to x and y displacements, as well as yaw). This implies that if the user does not send any commands, the suspended platform maintains its current state.Figure 4 illustrates the stabilization accuracy of the Mamba when moving along a representative trajectory when suspended indoors from a 5.7 m cable (limited by ceiling height). This experiment confirmed that the sampling tool can maintain a position at a horizontal reach of 2.25 m with a precision of about 5 cm for 30 s. As the horizontal reach and precision are limited by the cable angular displacements (e.g., component of weight acting on the pendulum, IMU angular resolution), the resulting workspace when operating with a 10 m long cable would reach a radius of 4 m with a positioning accuracy of about 9 cm. To account for potential external disturbances like wind, the sampling tool was designed with an opening of 15 cm. This creates some margin for the pilot to align the target with the sampling mechanism. Field trials detailed below demonstrated that the Mamba actuators and controller could maintain a sufficiently stable position to sample plants in winds During the sampling phase, wind speed averaged 15.7 km/h with a standard deviation of 6.8 km/h, while wind gusts reached an average of 20.1 km/h with a standard deviation of 6.5 km/h. The maximum average wind speed recorded during sampling was 28 km/h with gusts up to 37 km/h. This represents a lower bound of the system performance, as no failure resulted from the wind conditions experienced during the trials. The a ttached Supplementary Video also demonstrates the stability of the system.Figure 4Representative motion of the sampling tool within its workspace based only on feedback from a high accuracy IMU and recorded using a motion capture system. The natural equilibrium point is at (0,0). The experiment starts with a 90° rotation around the z axis, followed by a forward movement along the x-axis of the Mamba and a lateral movement along its y-axis. The system then maintains this position for 30 s without any user inputs. Produced in MATLAB R2021a.Full size imageTeleoperated sampling of cliffs habitatsPlants growing on Kauaʻi cliffs exhibit a wide morphological variety. For this project, targets ranged from small herbaceous plants such as Euphorbia eleanoriae (plants  More

  • in

    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).Article 

    Google Scholar 
    Dahl, P. H., de Jong, C. A. & Popper, A. N. The underwater sound field from impact pile driving and its potential effects on marine life. Acoust. Today. 11, 18–25 (2015).
    Google Scholar 
    Mooney, T. A., Andersson, M. H. & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 33, 82–95 (2020).Article 

    Google Scholar 
    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, A. P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    Jones, I. T., Stanley, J. A. & Mooney, T. A. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Mar. Pollut. Bull. 150, 110792 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, L. & Elliott, M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci. Total. Environ. 595, 255–268 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawkins, A. D., Hazelwood, R. A., Popper, A. N. & Macey, P. C. Substrate vibrations and their potential effects upon fishes and invertebrates. J. Acoust. Soc. Am. 149, 2782–2790 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Popper, A. N. et al. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 151, 205–215 (2022).PubMed 
    Article 

    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean. Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Roberts, L., Cheesman, S., Breithaupt, T. & Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 538, 185–195 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc. Natl. Acad. Sci. 114, E8537–E8546 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Wijsman, J.W.M., Troost, K., Fang, J. & Roncarati, A. Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, (Eds. Small, A.D., Ferrerira, J.G., Grant, J., Petersen, J.K., Strand, O.) 7–26 (Springer, Cham, 2019).Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: Present status and challenges. Renew. Sust. Energ. Rev. 29, 780–792 (2014).Article 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Mar. Policy. 48, 172–183 (2014).Article 

    Google Scholar 
    Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. & Gevorgian, V. 2018 offshore wind technologies market report. US Department of Energy (2019).Lacroix, D. & Pioch, S. The multi-use in wind farm projects: more conflicts or a win-win opportunity?. Aquat. Living. Resour. 24, 129–135 (2011).Article 

    Google Scholar 
    FishstatJ. FishStatJ-Software for Fishery and Aquaculture Statistical Time Series. FAO Fisheries Division [online], Rome. Accessed April 10, 2022. (2020).Flanders Marine Institute. Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at https://www.marineregions.org/ (2019).Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. & Mikkelsen, K. K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A 373, 20140100 (2015).ADS 
    Article 

    Google Scholar 
    Bruns, B., Stein, P., Kuhn, C., Sychla, H. & Gattermann, J. Hydro sound measurements during the installation of large diameter offshore piles using combinations of independent noise mitigation systems. Proceedings of the Inter-noise Conference 1–10 (Melbourne, Australia, 2014).Hunt, H. L. & Scheibling, R. E. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269–301 (1997).ADS 
    Article 

    Google Scholar 
    Pilditch, C. A. & Grant, J. Effect of variations in flow velocity and phytoplankton concentration on sea scallop (Placopecten magellanicus) grazing rates. J. Exp. Mar. Biol. Ecol. 240, 111–136 (1999).Article 

    Google Scholar 
    Chauvaud, L., Thouzeau, G. & Paulet, Y. M. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Biol. Ecol. 227, 83–111 (1998).Article 

    Google Scholar 
    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic Sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13, e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hawkins, A. D., Pembroke, A. E. & Popper, A. N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish. Biol. Fish. 25, 39–64 (2015).Article 

    Google Scholar 
    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    Sabet, S. S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change. Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Hubert, J., Booms, E., Witbaard, R. & Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 547, 151668 (2022).Article 

    Google Scholar 
    Robson, A. A., Chauvaud, L., Wilson, R. P. & Halsey, L. G. Small actions, big costs: the behavioural energetics of a commercially important invertebrate. J. R. Soc. Interface. 9, 1486–1498 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, G. E. & Gruffydd, L. D. The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar. Biol. 10, 87–93 (1971).Article 

    Google Scholar 
    Livingstone, D. R., Dezwaan, A. & Thompson, R. J. Aerobic metabolism octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 70, 35–44 (1981).Article 

    Google Scholar 
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa Spain. Aquac. Rep. 9, 68–73 (2018).Article 

    Google Scholar 
    Wilson, R., Reuter, P. & Wahl, M. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147, 1165–1172 (2005).Article 

    Google Scholar 
    Comeau, L. A. & Babarro, J. M. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquac. Int. 22, 1215–1227 (2014).CAS 
    Article 

    Google Scholar 
    Comeau, L. A., Mayrand, E. & Mallet, A. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269–2279 (2012).Article 

    Google Scholar 
    Palmer, B. A. et al. The image-forming mirror in the eye of the scallop. Science 358, 1172–1175 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chappell, D. R., Horan, T. M. & Speiser, D. I. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B. 288, 20211730 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mat, A. M., Massabuau, J. C., Ciret, P. & Tran, D. Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol. Int. 29, 857–867 (2012).PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods. Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Dickie, L. M. & Medcof, J. C. Causes of mass mortalities of scallops (Placopecten magellanicus) in the southwestern Gulf of St Lawrence. J. Fish. Res. Board. Can. 20, 451–482 (1963).Article 

    Google Scholar 
    Coleman, S., Cleaver, C., Morse, D., Brady, D. C. & Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquac. Rep. 20, 100684 (2021).Article 

    Google Scholar 
    Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES. J. Mar. Sci. 77, 890–900 (2020).Article 

    Google Scholar 
    ISO, 18406. Underwater acoustics measurement of radiated underwater sound from percussive pile driving. International Organization for Standardization (Geneva, Switzerland), 1–33 (2017).Madsen, P. T. Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J. Acoust. Soc. Am. 117, 3952–3957 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R.V. emmeans: Estimated marginal means, aka least squares means. R package version 1.3.5.1. Retrieved from http://CRAN.R-project.org/package=emmeans (2019).Kragh, I. M. et al. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 222, jeb216606 (2019).PubMed 
    Article 

    Google Scholar 
    Warner, R. M. Spectral Analysis of Time-Series Data (Guilford Press, 1998).
    Google Scholar 
    Fisher, R. A. Tests of significance in harmonic analysis. Proc. Math. Phys. Eng. Sci. 125, 54–59 (1929).MATH 

    Google Scholar  More

  • in

    A georeferenced rRNA amplicon database of aquatic microbiomes from South America

    Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).ADS 
    Article 

    Google Scholar 
    Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).CAS 
    Article 

    Google Scholar 
    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).ADS 
    Article 

    Google Scholar 
    White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).ADS 
    Article 

    Google Scholar 
    Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).
    Google Scholar 
    Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).ADS 
    Article 

    Google Scholar 
    Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).Article 

    Google Scholar 
    Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).
    Google Scholar 
    Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).Article 

    Google Scholar 
    Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).
    Google Scholar 
    Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).Article 

    Google Scholar 
    Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).Article 

    Google Scholar 
    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).PubMed 
    Article 

    Google Scholar 
    Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).CAS 
    Article 

    Google Scholar 
    Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
    Google Scholar 
    Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).Article 

    Google Scholar 
    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).Article 

    Google Scholar 
    Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).CAS 
    Article 

    Google Scholar 
    Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).Article 

    Google Scholar 
    Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).Article 

    Google Scholar 
    Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).PubMed 
    Article 

    Google Scholar 
    Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).CAS 
    Article 

    Google Scholar 
    Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).ADS 
    Article 

    Google Scholar 
    Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).ADS 
    Article 

    Google Scholar 
    Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).
    Google Scholar 
    Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).Article 

    Google Scholar 
    Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).CAS 
    Article 

    Google Scholar 
    Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 
    Article 

    Google Scholar 
    Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).
    Google Scholar 
    Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).Article 

    Google Scholar 
    Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).Article 
    CAS 

    Google Scholar 
    Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).ADS 
    Article 

    Google Scholar 
    Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).Article 

    Google Scholar 
    Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).Article 

    Google Scholar 
    Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).Article 

    Google Scholar 
    Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).Article 
    CAS 

    Google Scholar 
    Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).
    Google Scholar 
    Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).Article 
    CAS 

    Google Scholar 
    ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015). More