More stories

  • in

    Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species

    Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
    Google Scholar 
    Cowles, H. C. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the Dune Floras. Bot. Gaz. 27, 95–117 (1899).Article 

    Google Scholar 
    Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26 (1926).Article 

    Google Scholar 
    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Budowski, G. Studies on Forest Succession in Costa Rica und Panama. Ph.D. Thesis, Yale University, New Haven (1961).Opler, P. A., Baker, H. G. & Frankie, G. W. Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems. Biotropica 12, 40–46 (1980).Article 

    Google Scholar 
    Clements, F. E. Plant Succession: An Analysis of Development in Vegetation (Carnegie Institute, Washington, 1916).Book 

    Google Scholar 
    Grigg, R. W. & Maragos, J. E. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).Article 

    Google Scholar 
    Tomascik, T., Van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).ADS 
    Article 

    Google Scholar 
    McClanahan, T. R. Primary succession of coral-reef algae: Differing patterns on fished versus unfished reefs. J. Exp. Mar. Biol. Ecol. 218, 77–102 (1997).Article 

    Google Scholar 
    Reaka-Kudia, M. L. The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding and Proteting our Biological Resources (eds Reaka-Kudla, M. et al.) 83–108 (Joseph Henry Press, 1997).
    Google Scholar 
    Ginsburg, R. N. Geological and biological roles of cavities in coral reefs. In Perspectives on Coral Reefs (ed. Barnes, D. J.) 148–153 (Australian Institute of Marine Science, Manuka, A.C.T., Australia, 1983).Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap—Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobluk, D. R. & Van Soest, R. W. M. Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull. Mar. Sci. 44, 1207–1235 (1989).
    Google Scholar 
    Richter, C. & Wunsch, M. Cavity-dwelling suspension feeders in coral reefs – A new link in reef trophodynamics. Mar. Ecol. Prog. Ser. 188, 105–116 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Wunsch, M., Al-Moghrabi, S. M. & Kötter, I. Communities of coral reef Cavities in Jordan, Gulf of Aqaba (Red Sea). In Proceedings of 9th International Coral Reef Symposium, Vol. 1 (2000).Kornder, N. A. et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs 40, 1137–1153 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Goeij, J. M. & Van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).ADS 
    Article 

    Google Scholar 
    Slattery, M., Gochfeld, D. J., Easson, C. G. & O’Donahue, L. R. K. Facilitation of coral reef biodiversity and health by cave sponge communities. Mar. Ecol. Prog. Ser. 476, 71–86 (2013).ADS 
    Article 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-) 342, 108–110 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Rix, L. et al. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589, 85–96 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (Springer, 2017). https://doi.org/10.1007/978-3-319-59008-0_8.Choi, D. R. Ecological succession of reef cavity-dwellers (coelobites) in coral rubble. Bull. Mar. Sci. 35, 72–79 (1984).
    Google Scholar 
    Jackson, J. B. C. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. Am. Nat. 111, 743–767 (1977).Article 

    Google Scholar 
    Kobluk, D. R. Cryptic faunas in reefs: Ecology and geologic importance. Palaios 3, 379–390 (1988).ADS 
    Article 

    Google Scholar 
    Hooper, J. N. A. & Van Soest, R. W. M. Class Demospongiae Sollas, 1885. In Systema Porifera (2002). https://doi.org/10.1007/978-1-4615-0747-5_3.Rützler, K. The role of sponges in the mesoamerican barrier-reef ecosystem, Belize. Adv. Mar. Biol. 61, 211–271 (2012).PubMed 
    Article 

    Google Scholar 
    Wulff, J. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv. Mar. Biol. 61, 273–344 (2012).PubMed 
    Article 

    Google Scholar 
    Riesgo, A. et al. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool. Scr. 43, 101–117 (2014).Article 

    Google Scholar 
    Pawlik, J. R., Chanas, B., Toonen, R. J. & Fenical, W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127, 183–194 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Leong, W. & Pawlik, J. R. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar. Ecol. Prog. Ser. 406, 71–78 (2010).ADS 
    Article 

    Google Scholar 
    Maldonado, M. & Bergquist, P. R. Phylum porifera. In Atlas of Marine Invertebrates (ed. Young, C.) 21–50 (Academic, 2002).
    Google Scholar 
    Lanna, E. & Klautau, M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J. Mar. Biol. Assoc. U. K. 98, 505–514 (2018).Article 

    Google Scholar 
    Lanna, E., Monteiro, L. C. & Klautau, M. Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In Porifera Research: Biodiversity, Innovation and Sustainability 413–418 (2007).Calazans, V. P. S. B. & Lanna, E. Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge. Mar. Biodivers. 49, 2837–2850 (2019).Article 

    Google Scholar 
    Zimmerman, T. L. & Martin, J. W. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).Article 

    Google Scholar 
    Brainard, R. et al. Autonomous reef monitoring structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).Knowlton, N. et al. Coral reef biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance 65–74 (2010). https://doi.org/10.1002/9781444325508.ch4.Timmers, M. A., Vicente, J., Webb, M., Jury, C. P. & Toonen, R. J. Sponging up diversity: Evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environ. DNA https://doi.org/10.1002/edn3.163 (2020).Article 

    Google Scholar 
    Vicente, J. et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs https://doi.org/10.1007/s00338-021-02109-7 (2021).Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13 (2015).Article 

    Google Scholar 
    Franklin, E. C., Jokiel, P. L. & Donahue, M. J. Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121–132 (2013).ADS 
    Article 

    Google Scholar 
    Jury, C. et al. Experimental reef communities persist under future ocean acidification and warming. Res. Sq. (2021).Gorospe, K. D. et al. Local biomass baselines and the recovery potential for Hawaiian coral reef fish communities. Front. Mar. Sci. 5, 162 (2018).Article 

    Google Scholar 
    Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118(39), e2103275118 (2021).
    Wörheide, G. & Erpenbeck, D. DNA taxonomy of sponges—Progress and perspectives. J. Mar. Biol. Assoc. U. K. 87, 1629–1633 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://doi.org/10.1017/CBO9781107415324.004.Oksanen, J. et al. Package vegan. Community Ecology Packaging version 2, 1-295 (2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models (2020).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Ribeiro, B., Padua, A., Paiva, P. C., Custódio, M. R. & Klautau, M. Exploitation of micro refuges and epibiosis: Survival strategies of a calcareous sponge. J. Mar. Biol. Assoc. U. K. 98, 495–503 (2018).Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne’ohe bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
    Google Scholar 
    Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    Maldonado, M., Giraud, K. & Carmona, C. Effects of sediment on the survival of asexually produced sponge recruits. Mar. Biol. 154, 631–641 (2008).CAS 
    Article 

    Google Scholar 
    Eckman, J. E. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28, 241–257 (1983).ADS 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities. Ecol. Lett. 14, 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Falter, J. L., Atkinson, M. J. & Merrifield, M. A. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49, 1820–1831 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Sale, P. F. Coexistence of coral reef fishes—A lottery for living space. Environ. Biol. Fish. 3, 85–102 (1978).Article 

    Google Scholar 
    Karlson, R. H. & Jackson, J. B. C. Competitive networks and community structure: A simulation study. Ecology 62, 670–678 (1981).Article 

    Google Scholar 
    Hixon, M. A. Predation as a process structuring coral reef fish communities. In The Ecology of Fishes on Coral Reefs (1991). https://doi.org/10.1016/b978-0-08-092551-6.50022-2.Hobson, E. S. Feeding patterns among tropical reef fishes. Am. Sci. 63, 382–392 (1975).ADS 

    Google Scholar 
    Bailey-Brock, J. H. Fouling community development on an artificial reef in Hawaiian waters. Bull. Mar. Sci. 44, 580–591 (1989).
    Google Scholar 
    Vicente, J., Toonen, R. J. & Bowen, B. W. Hawaiian green turtles graze on bioeroding sponges at Maunalua Bay, O‘ahu, Hawai‘i, Galaxea. J. Coral Reef Stud. 21, 3–4 (2019).Article 

    Google Scholar 
    Vicente, J., Osberg, A., Marty, M. J., Rice, K. & Toonen, R. J. Influence of sponge palatability on the feeding preferences of the endemic Hawaiian tiger cowrie for indigenous and introduced sponges. Mar. Ecol. Prog. Ser. 647, 109–122 (2020).ADS 
    Article 

    Google Scholar 
    Klumpp, D., McKinnon, A. & Mundy, C. Motile cryptofauna of a coral reef: Abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 45, 95–108 (1988).ADS 
    Article 

    Google Scholar 
    Carpenter, R. C. Invertebrate predators and grazers. In Life and Death of Coral Reefs (1997). https://doi.org/10.1007/978-1-4615-5995-5_9.Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_18.Ďuriš, Z., Horká, I., Juračka, P. J., Petrusek, A. & Sandford, F. These squatters are not innocent: The evidence of parasitism in Sponge-Inhabiting shrimps. PLoS ONE 6, e21987 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pawlik, J. R. A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). Mar. Ecol. 4, 65–79 (1983).ADS 
    Article 

    Google Scholar 
    Degoeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212, 3892–3900 (2009).CAS 
    Article 

    Google Scholar 
    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9, e109486 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-). 364, 1189–1192 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Buss, L. W. & Jackson, J. B. C. Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113, 223–234 (1979).Article 

    Google Scholar 
    Vicente, J., Ríos, J. A., Zea, S. & Toonen, R. J. Molecular and morphological congruence of three new cryptic Neopetrosia spp in the Caribbean. PeerJ 7, e6371–e6381 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Reply to ‘Reduction in grain pollen indicates population decline, but not necessarily Black Death mortality’

    Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. 6, 297–306 (2022).CAS 
    Article 

    Google Scholar 
    Benedictow, O. J. The Complete History of the Black Death (The Boydell Press, 2021).Palermo, L. Mercati del Grano a Roma tra Medioevo e Rinascimento. Il Mercato Distrettuale del Grano in Età Comunale (Istituto Nazionale di Studi Romani, 1990).Cortonesi, A. I cereali nell’Italia del tardo medioevo. Note sugli aspetti qualitativi del consumo. Riv. Stor. Agricol. 37, 3–30 (1997).
    Google Scholar 
    Nanni, P. in The Crisis of the 14th Century. Teleconnections Between Environmental and Societal Change? (eds Bauch M. & Schenk G. J.) 169–189 (De Gruyter, 2020).Lagerås, P. Environment, Society and the Black Death: An Interdisciplinary Approach to the Late-Medieval Crisis in Sweden (Oxbow Books, 2016).Roosen, J. & Curtis, D. The ‘light touch’ of the Black Death in the southern Netherlands: an urban trick? Econ. Hist. Rev. 72, 32–56 (2019).Article 

    Google Scholar 
    Preiser-Kapeller, J. Der Lange Sommer und die Kleine Eiszeit: Klima, Pandemien und der Wandel der Alten Welt 500–1500 n. Chr. (Mandelbaum, 2021).Sadori, L. The Lateglacial and Holocene vegetation and climate history of Lago di Mezzano (central Italy). Quat. Sci. Rev. 202, 30–44 (2018).Article 

    Google Scholar 
    Cortonesi, A. Ruralia. Economie e Paesaggi del Medioevo Italiano (Il Calamo, 1995).Cortonesi, A. L’olivo nell’Italia medievale. Reti Medievali Riv. 6, 1–29 (2005).
    Google Scholar 
    Mensing, S. A. et al. Historical ecology reveals landscape transformation coincident with cultural development in central Italy since the Roman Period. Sci. Rep. 8, 2138 (2018).Article 

    Google Scholar 
    Cortonesi, A. in Il Paesaggio Agrario Italiano Medievale: Storia e Didattica, 113–120 (Istituto Alcide Cervi, 2011). More

  • in

    A Cryptochrome adopts distinct moon- and sunlight states and functions as sun- versus moonlight interpreter in monthly oscillator entrainment

    l-cry mutants show higher spawning synchrony than wild-type animals under non-natural light conditionsIn order to test for a functional involvement of L-Cry in monthly oscillator function, we generated two l-cry mutant alleles (Δ34 and Δ11bp) (Fig. 1a) using TALENs28. In parallel, we generated a monoclonal antibody against Platynereis L-Cry. By testing mutant versus wildtype worms with the anti-L-Cry antibody in Western blots (Fig. 1b) and immunohistochemistry (Fig. 1e–j), we verified the absence of L-Cry protein in mutants. Furthermore, we confirmed that the staining of the antibody in wildtype worms (Fig. 1e–h) matches the regions where l-cry mRNA is expressed (Fig. 1d). These tests confirmed that the engineered l-cry mutations result in loss-of-function alleles. In turn, they validate the specificity of the raised anti-L-Cry antibody.Fig. 1: l-cry–/– mutants are loss-of-function alleles.a Overview of the l-cry genomic locus for wt and mutants. Both mutant alleles result in an early frameshift and premature stop codons. The Δ34 allele has an additional 9 bp deletion in exon 3. b Western Blots of P. dumerilii heads probed with anti-L-Cry antibody. In the context of further investigations such Western blots of mutant versus wild types have been performed more than 10 times with highly consistent results. Also see further analyses in this manuscript and ref. 36. c overview of P. dumerilii. d whole mount in situ hybridization against l-cry mRNA on worm head. ae, anterior eye; pe, posterior eye. e–j Immunohistochemistry of premature wild-type (e–h) and mutant (i, j) worm heads sampled at zt19/20 using anti-L-Cry antibody (green) and Hoechst staining (magenta), dorsal views, anterior up. e, f: z-stack images (maximal projections of 50 layers, 1.28 µm each) in the area highlighted by the rectangle in (d), whereas (g–j) are single layer images of the area highlighted by the white rectangles in (e, f). In the context of further investigations such stainings of mutant versus wild types have been performed more than 10 times with highly consistent results. Also see further analyses in this manuscript and ref. 36.Full size imageWe next assessed the circalunar maturation timing of wild types and l-cry mutant populations in conventional culture conditions, i.e. worms grown under typical indoor room lighting (named here artificial sun- and moonlight, Supplementary Fig. 1b).We expected either no phenotype (if L-Cry was not involved in circalunar clock entrainment) or a decreased spawning precision (if L-Cry was functioning as moonlight receptor in circalunar clock entrainment). Instead we observed an increased precision of the entrained worm population:We analyzed the maturation data using two statistical approaches, linear and circular statistics. We used the classical linear plots5 and statistics to compare the monthly spawning data distribution (Fig. 2a–c, i). This revealed a clear difference between mutant animals, which exhibited a stronger spawning peak at the beginning of the NM phase, compared to their wildtype and heterozygous counterparts (Fig. 2a–c, Kolmogorov–Smirnov test on overall data distribution, Fig. 2i).Fig. 2: L-Cry shields the circalunar clock from light that is not naturalistic moonlight.a–d, j Spawning of l-cry +/+ (a), l-cry +/– (Δ34) (b) and l-cry −/−(Δ34/ Δ34) (c) animals over the lunar month in the lab with 8 nights of artificial moonlight (a–c), under natural conditions in the sea (d, replotted from ref. 34,50,) and in the lab using naturalistic sun- and moonlight (j, 8 nights moonlight). e–h, k Data as in (a–d, j) as circular plot. 360° correspond to 30 days of the lunar month. The arrow represents the mean vector, characterized by the direction angle µ and r (length of µ). r indicates phase coherence (measure of population synchrony). p-values inside the plots: result of Rayleigh Tests. Significance indicates non-random distribution of data points. The inner circle represents the Rayleigh critical value (p = 0.05). i–l Results of two-sided multisample statistics on spawning data shown in (a–h, j, k). The phase differences in days can be calculated from the angle between the two mean vectors (i.e. 12°= 1 day).Full size imageWe then analyzed the same data using circular statistics (as the monthly cycle is repeating, see details in Methods section), which allowed us to describe the data with the mean vector (defined by the direction angle µ and its length r, shown as arrows in Fig. 2e–g). The phase coherence r (ranging from 0 to 1) serves as a measure for synchrony of the population data. As expected for entrained populations, all genotypes distributed their spawning across a lunar month significantly different from random (Fig. 2e–g, p values in circles, Rayleigh’s Uniformity test29). In line with the observed higher spawning peak of the l-cry−/− mutants in the linear plots, the circular analysis revealed a significant difference in spawning distribution (Mardia–Watson-Wheeler test, for details see Methods section) and higher spawning synchrony of mutants (r = 0.614) than in wild types and heterozygotes (r = 0.295 and r = 0.222) (Fig. 2i). The specificity of this phenotype of higher spawning precision for l-cry homozygous mutants was confirmed by analyses on trans-heterozygous l-cry (Δ34/Δ11) mutants (Supplementary Fig. 2), and by the fact that such a phenotype is not detectable in any other light receptor mutant available in Platynereis (r-opsin130: Supplementary Fig. 3a, b, e, f, i; c-opsin131: Supplementary Fig. 3c, d, g, h, i, Go-opsin: refs. 32, 33).The higher spawning synchrony of l-cry mutants under artificial light mimics the spawning precision of wild-type at its natural habitatThis increased spawning precision of l-cry mutants under artificial (but conventional indoor) laboratory light conditions let us wonder about the actual population synchrony of the worms under truly natural conditions. The lunar spawning synchrony of P. dumerilii at the Bay of Naples (the origin of our lab culture) has been worked on for more than 100 y. This allowed us to re-investigate very detailed spawning data records from the worms’ natural habitat published prior to environmental/light pollution. For better accessibility and comparability we combined all months and replotted the data published in 192934 (Fig. 2d, h, I; see details in Methods section; r = 0.631). This analysis revealed that the higher spawning synchrony in l-cry–/– worms mimics the actual spawning synchrony of P. dumerillii populations in their natural habitat34 (compare Fig. 2c, g with 2d, h.)Given that recent, non-inbred isolates from the same habitat as our lab inbred strains (which is the same habitat as the data collected in ref. 34) exhibit a broad spawning distribution under standard worm culture light conditions (which includes the bright artificial moonlight)35, we hypothesized that the difference in spawning synchrony between wildtype laboratory cultures and populations in their natural habitat is caused by the rather bright nocturnal light stimulus typically used for the standard laboratory culture (Supplementary Fig. 1a vs. b).Lunar spawning precision of wild-type animals depends on naturalistic moonlight conditionsWe next tested the resulting prediction that naturalistic moonlight should increase the spawning precision of the wildtype population, using naturalistic sun- and moonlight devices we specifically designed based on light measurements at the natural habitat of P. dumerilii31 (Supplementary Fig. 1a, c). We assessed the impact of the naturalistic sun- and moonlight (Supplementary Fig. 1a, c) on wildtype animals, maintaining the temporal aspects of the lab light regime (i.e. 8 nights of “full moon”). Indeed, merely adjusting the light intensity to naturalistic conditions increased the precision and phase coherence of population-wide reproduction: After several months under naturalistic sun- and moonlight, wildtype worms spawned with a major peak highly comparable to the wildtype precision reported at its natural habitat (Fig. 2d, h vs. j, k), and also exhibited an increased population synchrony (r = 0.398 compared to r = 0.295 under standard worm room light conditions). This increased similarity to the spawning distribution at the natural habitat (“Sea”) is confirmed by statistical analyses (Fig. 2l): The phase difference (angle between the two mean vectors) is only one day (corresponding to 12°). In contrast, the spawning distribution of wild types under standard worm room light versus naturalistic light conditions is highly significantly different in linear and circular statistical tests and has a phase difference of 7.7 days (Fig. 2l).These findings show that it is the naturalistic light that is critical for a highly precise entrainment of the monthly clock of wild-type worms. Given that l-cry–/– animals reach this high precision with the artificial light (i.e. standard lab light) implies that in wildtype L-Cry blocks artificial, but not naturalistic full-moonlight from efficiently synchronizing the circalunar clock. This block is removed in l-cry–/– animals, leading to a better synchronization of the l-cry–/– population. This finding suggests that L-Cry’s major role could be that of a gatekeeper controlling which ambient light is interpreted as full-moonlight stimulus for circalunar clock entrainment.
    l-cry functions as a light signal gatekeeper for circalunar clock entrainmentA prediction of this hypothesis is that mutants should entrain better to an artificial full-moonlight stimulus provided out-of-phase than their wild type counterparts (in which L-Cry should block the “wrong” moonlight at least partially from re-entraining the circalunar oscillator).We thus compared the spawning rhythms of l-cry+/+ and l-cry–/– worms under a re-entrainment paradigm, where we provided our bright artificial culture full-moonlight at the time of the subjective new moon phase (Fig. 3a). In order to compare the spawning data distribution relative to the initial full moon (FM) stimulus, as well as to the new full moon stimulus (i.e. new FM), we used two nomenclatures for the months: months with numbers are analyzed relative to the initial nocturnal light stimulus (i.e. FM), whereas months with letters are analyzed relative to the new (phase-shifted) nocturnal light stimulus (i.e. new FM, Fig. 3a). When the nocturnal light stimulus is omitted (to test for the oscillator function) we then refer to ‘free-running FM’ (FR-FM) or ‘new free-running FM’ (new FR-FM), respectively (Fig. 3a). Using these definitions, the efficiency of circalunar clock re-entrainment will be reflected in the similarity of spawning data distributions between month 1 and month D, i.e. the more similar the distribution, the more the population has shifted to the new phase.Fig. 3: l-cry−/− mutants entrain the circalunar clock faster than wt to a high-intensity artificial moonlight stimulus.a Nocturnal moonlight exposure protocol of lunar phase shift (entrained by 8 nights, phased shifted by 6 nights of artificial culture moon, light green). b, c Number of mature animals (percent per month, rolling mean with a window of 3 days) of l-cry wild-type (b) and homozygous mutant (c) animals. p-values indicate results of Kolomogorov–Smirnov tests. Dark blue arrowheads- old FM phase: wt show a spawning minimum, indicative that the worms are not properly phase shifted. Mutants spawn in high numbers, but don’t spawn at the old NM indicated by light blue arrowhead. Also compare to initial FM and NM in months 1,2. d, e Circular plots of the data shown in (b) and (c). Each circle represents one lunar month. Each dot represents one mature worm. The arrow represents the mean vector characterized by the direction angle µ and r. r (length of µ) indicates phase coherence (measure of population synchrony). The inner circle represents the Rayleigh critical value (p = 0.05). f, g Results of two-sided multisample statistics of data in (d, e). Phase differences in days can be calculated from the angle between the two mean vectors (i.e. 12°= 1 day).Full size imageWhen using the artificial nocturnal light conditions, the re-entrainment of l-cry–/– animals was both faster and more complete than for their wildtype relatives, as predicted from our gate keeper hypothesis. This is evident from the linear data analysis and Kolmogorov–Smirnov tests when comparing the month before the entrainment (month 1) with two months that should be shifted after the entrainment (months C,D, Fig. 3b, c, f, g).Most notably, while l-cry−/− worms were fully shifted in month D (Fig. 3c: compare boxes and see complete lack of spawning at the light blue arrowhead indicating the old NM/new FR-FM phase versus massive spawning at new NM phase around dark blue arrowhead), wildtype animals were still mostly spawning according to the initial lunar phase (Fig. 3b: compare boxes and see spawning at the light blue arrowhead versus almost lack of spawning at dark blue arrowhead). The faster re-entrainment of l-cry–/–, compared to l-cry+/+ animals is also confirmed by the Mardia–Watson-Wheeler test (see Methods section for details). For l-cry+/+ animals, the comparisons of the spawning distributions before and after re-entrainment show a 1000-fold (months 1 versus C) and tenfold (months 1 versus D) higher statistical significance difference than the corresponding comparisons for l-cry−/− worms (Fig. 3f, g). Consistently, the phase differences in days calculated from the angle between the two mean vectors from the circular analysis is smaller in the mutants than in the wild types when comparing the phase of the month before the entrainment (month 1) with two months after the entrainment (months C, D) (Fig. 3d–g). The fact that there are still differences in the mutant population before and after entrainment is likely due to the fact that even the mutants are not fully re-entrained. However, they have shifted more robustly in response to an artificial nocturnal light stimulus than the wild types. This provides further evidence that in wildtype worms L-Cry indeed blocks the “wrong” light from entering into the circalunar clock and thus functions as a light gatekeeper.L-Cry functions mainly as light interpreter, while its contribution as direct moonlight entraining photoreceptor is (at best) minorWe next tested to which extent L-Cry is itself a sensor for the re-entrainment signal under naturalistic light conditions. Based on the finding that l-cry−/− worms can still re-entrain the circalunar oscillator (see above), it is clear that even if L-Cry also directly contributed to the entrainment, it cannot be the only moonlight receptor mediating entrainment. With the experiments below, we aimed to test if L-Cry has any role as an entraining photoreceptor to the monthly oscillator.Thus, we tested how the circalunar clock is shifted in response to a re-entrainment with naturalistic moonlight in Platynereis wt versus l-cry−/− worms. For this, animals initially raised and entrained under standard worm room light conditions of artificial sun- and moonlight (Supplementary Fig. 1b, e) were challenged by a deviating FM stimulus of 8 nights of naturalistic moonlight (Fig. 4a, Supplementary Fig. 1c, e). This re-entraining stimulus was repeated for three consecutive months (Fig. 4a).Fig. 4: l-cry has a minor contribution as entraining photoreceptor to circalunar clock entrainment.a Nocturnal moonlight exposure protocol of lunar phase shift with 8 nights of naturalistic moonlight (dark green). Number of mature animals (percent per month, rolling mean with a window of 3 days) of l-cry wild-type (b) and mutant (c) animals. p-values: Kolomogorov–Smirnov tests. Black arrowheads indicate spawning-free intervals of the wildtype, which shifted to the position of the new FM (under free-running conditions: FR-FM). d, e Data as in (b, c) plotted as circular data. 360° correspond to 30 days of the lunar month. The arrow represents the mean vector characterized by the direction angle µ and r. r (length of µ) indicates phase coherence (measure of population synchrony). p values are results of Rayleigh Tests: Significance indicates non-random distribution of data points. The inner circle represents the Rayleigh critical value (p = 0.05). f, g Results of two-sided multisample statistics on spawning data shown in (a–e). Phase differences in days can be calculated from the angle between the two mean vectors (i.e. 12°= 1 day).Full size imageThe resulting spawning distribution was analyzed for the efficacy of the naturalistic moonlight to phase-shift the circalunar oscillator. In order to test if the animals had shifted their spawning to the new phase, we again compared the spawning pattern before the exposure to the new full moon stimulus (months with numbers: data distribution analyzed relative to the initial/old FM, see Fig. 4a for an overview) to the spawning pattern after the exposure to the new full moon stimulus (months with letters: data distribution analyzed relative to the new FM, Fig. 4a). The more similar the data distributions of month 1 is to the months C, D, the more the population was shifted to the new phase.The first re-entraining full moon stimulus (Fig. 4b, first dark green box) is given in the middle of the main spawning period. The nocturnal light itself does not cause immediate effects on the number of spawning worms (Fig. 4b, see also Fig. 2b, c), but the repeated exposure resulted in a noticeable shift of the spawning distribution indicating a phase shift of the monthly oscillator in wildtype. Already at the third re-entraining full moon stimulus, wildtype animals exhibited a completely shifted spawning pattern (Fig. 4b, d-d″, month 1, 2 vs. month C). This is supported by statistical analyses: When comparing the months 1 and 2 (relative to the old FM before the shift) to the month C (relative to the new FM after the shift), both the Kolmogorov–Smirnov test (Fig. 4b: gray rectangles, 4f) and the Mardia–Watson–Wheeler test of the same data were non-significant (Fig. 4f), indicative of the population shifting to the new phase. Consistently, the direction angle (µ) of the mean vectors before and after the shift was highly similar, resulting in a phase difference of only 0.2 days between months 1 and C and 0.5 days between month 2 and month C (Fig. 4f, for details see methods). The month under circalunar free-running conditions (month D) supports this observation, albeit with lower statistical support (Fig. 4b, d″, f).Of note, wild-type worms would eventually reach the high spawning precision found under naturalistic moonlight only after several more months based on independent experiments (Fig. 2j, k).When we analyzed the spawning distribution of l-cry mutants in the same way as the wild types, we found that the data distribution exhibited significant differences in the linear Kolmogorov–Smirnov test when comparing months 1 and 2 before the shift to the months C and D after the shift (Fig. 4c: gray rectangles, Fig. 4g); as well as in the phase distribution in the circular analyses when comparing the months before the shift (months 1 and 2) with the last months of the shift (months C,D) (Fig. 4e, e′ versus e″, e‴, g). The populations also exhibited a noticeable phase difference of ≥3.5 days (Fig. 4g).Based on the statistical significant difference in the re-entrainment of l-cry–/–, but not wild-type populations under a naturalistic sun- and moonlight regime, we conclude that L-Cry also likely contributes to circalunar entrainment as a photoreceptor. However, as these differences are rather minor, compared to the much stronger differences seen under artificial light regime, we conclude that its major role is the light gatekeeping function.In an independent study that focused on the impact of moonlight on daily timing, we identified r-Opsin1 as a lunar light receptor that mediates moonlight effects on the worms’ ~24 h clock36. We tested if r-opsin1 is similarly important for mediating the moonlight effects on the monthly oscillator of the worm, analyzed here. This is not the case. r-opsin1–/– animals re-entrain as well as wildtype worms under naturalistic light conditions (Supplementary Fig. 4). This adds to and is also consistent with our above observation that the spawning distribution is un-altered between r-opsin1–/– and wildtype animals under artificial light conditions (Supplementary Fig. 3a, b, e, f). This finding also further enforces the notion that monthly and daily oscillators use distinct mechanisms, but both require L-Cry as light interpreter.L-Cry discriminates between naturalistic sun- and moonlight by forming differently photoreduced statesGiven that the phenotype of l-cry–/– animals suggests a role of L-Cry as light gatekeeper, i.e. only allowing the ‘right’ light to most efficiently impact on the circalunar oscillator, we next investigated how this could function on the biochemical and cell biological level.While we have previously shown that Pdu-L-Cry is degraded upon light exposure in S2 cell culture15, it has remained unclear if L-Cry has the spectral properties and sensitivity to sense moonlight and whether this would differ from sunlight sensation. To test this, we purified full length L-Cry from insect cells (Supplementary Fig. 5a–c). Multi-angle light scattering (SEC-MALS) analyses of purified dark-state L-Cry revealed a molar mass of about 130 kDa, consistent with the formation of an L-Cry homodimer (theoretical molar mass of L-Cry monomer is 65.6 kDa) (Fig. 5a). Furthermore, purified L-Cry binds Flavin Adenine Dinucleotide (FAD) as its chromophore (Supplementary Fig. 5d, e). We then used UV/Vis absorption spectroscopy to analyze the FAD photoreaction of purified L-Cry in presence of 1 mM TCEP to prevent protein oxidation. The absorption spectrum of dark-state L-Cry showed maxima at 450 nm and 475 nm, consistent with the presence of oxidized FAD (Supplementary Fig. 5f, black line). As basic starting point to analyze its photocycle, L-Cry was photoreduced using a LED (PerkinElmer ACULED Dyo) with a blue-light dominated spectrum and spectral peak at 450 nm (Supplementary Fig. 1d, d′, henceforth referred to as “blue-light”) for 110 s37. The light-activated spectrum showed that blue-light irradiation of L-Cry leads to the complete conversion of FADox into an anionic FAD radical (FADo-) with characteristic FADo- absorption maxima at 370 nm and 404 nm and reduced absorbance at 450 nm (Supplementary Fig. 5f, blue spectrum, black arrows). In darkness, L-Cry reverted back to the dark-state with time constants of 2 min (18 °C), 4 min (6 °C) and 4.7 min (ice) (Supplementary Fig. 5g–k).Fig. 5: L-Cry forms differently photoreduced sunlight- and moonlight states.a Multi-Angle Light Scattering (MALS) analyses of dark-state L-Cry fractionated by size exclusion chromatography (SEC). Black dashed line: normalized UV absorbance, solid line: normalized scattering signal. The molar mass of about 130 kDa derived from MALS (mass signal shown in red) corresponds to an L-Cry homodimer. b Absorption spectrum of L-Cry in darkness (black) and after sunlight exposure (orange). Additional timepoints: Supplementary Fig. 6a. c Dark recovery of L-Cry after 20 min sunlight on ice. Absorbance at 450 nm in Supplementary Fig. 6b. d, e Absorption spectra of L-Cry after exposure to naturalistic moonlight for different durations. f Full spectra of dark recovery after 6 h moonlight. Absorbance at 450 nm: Supplementary Fig. 6d. g Absorption spectrum of L-Cry after 6 h of moonlight followed by 20 min of sunlight. h Absorption spectrum of L-Cry after 20 min sunlight followed by moonlight first results in dark-state recovery. Absorbance at 450 nm: Supplementary Fig. 6e. i Absorption spectrum of L-Cry after 20 min sunlight followed by 4 h and 6 h moonlight builds up the moonlight state. j Model of L-Cry responses to sunlight (orange), moonlight (green) and darkness (black). Only transitions between stably accumulating states are shown. Absorbances in (b–i) were normalized when a shift in the baseline occurred between different measurements of the same measurement set, which is then indicated on the Y-axis as “normalized absorbance”.Full size imageWe then investigated the response of L-Cry to ecologically relevant light, i.e. sun- and moonlight using naturalistic sun- and moonlight devices that we designed based on light measurements at the natural habitat of P. dumerilii31 (Supplementary Fig. 1a, c, e). Upon naturalistic sunlight illumination, FAD was photoreduced to FADo-, but with slower kinetics than under the stronger blue-light source, likely due to the intensity differences between the two lights (Supplementary Fig. 1c–e).While blue-light illumination led to a complete photoreduction within 110 s (Supplementary Fig. 5f), sunlight induced photoreduction to FADo- was completed after 5–20 min (Fig. 5b) and did not further increase upon continued illumation for up to 2 h (Supplementary Fig. 6a). Dark recovery kinetics had time constants of 3.2 min (18 °C) and 5 min (ice) (Fig. 1c, Supplementary Fig. 6b, c).As the absorbance spectrum of L-Cry overlaps with that of moonlight at the Platynereis natural habitat (Supplementary Fig. 1a), L-Cry has the principle spectral prerequisite to sense moonlight. However, the most striking characteristic of moonlight is its very low intensity (5.8 × 1010 photons/cm2/s at −5m, Supplementary Fig. 1a–e). To test if Pdu-L-Cry is sensitive enough for moonlight, we illuminated purified L-Cry with our custom-built naturalistic moonlight, closely resembling full-moonlight intensity and spectrum at the Platynereis natural habitat (Supplementary Fig. 1a, c, e). Naturalistic moonlight exposure up to 2.75 h did not markedly photoreduce FAD, notably there was no difference between 1 h and 2.75 h (Fig. 5d). However, further continuous naturalistic moonlight illumination of 4 h and longer resulted in significant changes (Fig. 5d), whereby the spectrum transitioned towards the light activated state of FADo- (note peak changes at 404 nm and at 450 nm). This photoreduction progressed further until 6 h naturalistic moonlight exposure (Fig. 5d). No additional photoreduction could be observed after 9 h and 12 h of naturalistic moonlight exposure (Fig. 5e), indicating a distinct state induced by naturalistic moonlight that reaches its maximum after ~6 h, when about half of the L-Cry molecules are photoreduced. This time of ~6 h is remarkably consistent with classical work showing that a minimum of ~6 h of continuous nocturnal light is important for circalunar clock entrainment, irrespective of the preceding photoperiod5. The dark recovery of L-Cry after 6 h moonlight exposure occurred with a time constant of 6.7 min at 18 °C (Fig. 5f, Supplementary Fig. 6d). Given that both sunlight and moonlight cause FAD photoreduction, but with different kinetics and different final FADo- product/FADox educt ratios, we wondered how purified L-Cry would react to transitions between naturalistic sun- and moonlight (i.e. during “sunrise” and “sunset”).Mimicking the sunrise scenario, L-Cry was first illuminated with naturalistic moonlight for 6 h followed by 20 min of sunlight exposure. This resulted in an immediate enrichment of the FADo- state (Fig. 5g). Hence, naturalistic sunlight immediately photoreduces remaining oxidized flavin molecules, that are characteristic of moonlight activated L-Cry, to FADo-, to reach a distinct fully reduced sunlight state.In contrast, when we next mimicked the day-night transition (“sunset”) by first photoreducing with naturalistic sunlight (or strong blue-light) and subsequently exposed L-Cry to moonlight, L-Cry first returned to its full dark-state within about 30 min (naturalistic sunlight: τ = 7 min (ice), Fig. 5h, Supplementary Fig. 6e; blue-light: τ = 9 min (ice), Supplementary Fig. 6f–h), despite the continuous naturalistic moonlight illumination. Prolonged moonlight illumination then led to the conversion of dark-state L-Cry to the moonlight state (Fig. 5i, Supplementary Fig. 6f). Hence, fully photoreduced sunlight-state L-Cry first has to return to the dark-state before accumulating the moonlight state characterized by the stable presence of the partial FADo- product/FADox educt. In contrast to sunlight-state L-Cry, moonlight-state L-Cry does not return to the oxidized (dark) state under naturalistic moonlight (Fig. 5e), i.e. moonlight maintains the moonlight state, but not the sunlight state. We note, that a partially photoreduced L-Cry state may be formed transiently during dark-state recovery of the sunlight state under moonlight. However, this transiently occurring partially photoreduced L-Cry state would differ from the “true” moonlight state (e.g. by an allosteric change) preventing its accumulation (see discussion and Supplementary Fig. 6i).Given that L-Cry forms a homodimer and moonlight photoreduces about half of the FAD molecules, we propose that the moonlight state corresponds to a half-reduced FADo- FADox dimer, where FAD is only photoreduced in one L-Cry monomer, whereas in the sunlight state both monomers are photoreduced (FADo- FADo-) (Fig. 5j). This implies that the quantum yield for FADox to FADo- photoreduction differs between the two L-Cry monomers. One monomer (referred to as “A” in Fig. 5j) acts as “very low intensity light sensor” with a high quantum yield ΦA. Hence, the very low photon number provided after 6 h of moonlight illumination is sufficient to photoreduce its flavin co-factor, resulting in the partially photoreduced FADo- FADox moonlight state (Fig. 5j).For direct comparison, our naturalistic moonlight’s emission (in the main absorbance range of L-Cry: 330 nm–510 nm) is 5.4 × 1010 photons/cm2/s (Supplementary Fig. 1e), which accumulates to ~1.2 × 1015 photons/cm2 in the 6 h required to reach the half-reduced moonlight state (Fig. 5d, e). For naturalistic sunlight, emitting ~7.5 × 1014 photons/cm2/s (330–510 nm), at least 5 min of sunlight illumination (i.e. > ~1.8 × 1017 photons/cm2) are required to photoreduce the flavin in both L-Cry monomers in order to reach the fully photoreduced FADo- FADo- sunlight state (Fig. 5b, j). Thus, the second L-Cry monomer (monomer “B” in Fig. 5j) has a significantly lower quantum yield ΦB for FAD photoreduction (ΦB  More

  • in

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
    Google Scholar 
    United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.PubMed 

    Google Scholar 
    Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.PubMed 

    Google Scholar 
    Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience. 2022;25:103821.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bounaffaa M, Florio A, le Roux X, Jayet PA. Economic and environmental analysis of maize inoculation by plant growth promoting rhizobacteria in the French Rhône-Alpes region. Ecol Econ. 2018;146:334–46.
    Google Scholar 
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    Mallon C, van Elsas J, Salles J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23:719–29.CAS 
    PubMed 

    Google Scholar 
    Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.
    Google Scholar 
    Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.PubMed 

    Google Scholar 
    Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.
    Google Scholar 
    Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;43:293–323.
    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    Sherr BF, Sherr EB, Berman T. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol. 1983;45:1196–201.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.CAS 
    PubMed 

    Google Scholar 
    Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.CAS 

    Google Scholar 
    Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.PubMed 
    PubMed Central 

    Google Scholar 
    Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 2003;16:851–8.CAS 
    PubMed 

    Google Scholar 
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol. 2008;22:714–9.
    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience. 2022;25:1–17.
    Google Scholar 
    Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a strain isolated from the endosphere of potato. Genome Announc. 2016;4:e00031.PubMed 
    PubMed Central 

    Google Scholar 
    Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and bacteria. World Intelectual Property Organization; 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017105238.Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:1–11.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 

    Google Scholar 
    Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control. 2009;48:140–6.
    Google Scholar 
    Gao Z. Soil protists: from traits to ecological functions. University of Utrecht; 2020. https://dspace.library.uu.nl/handle/1874/400054.Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.
    Google Scholar 
    Wright DA, Killham K, Glover LA, Prosser JI. Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright D, Killham K, Glover L, Biota JP-SS. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil structure/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.
    Google Scholar 
    Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host models to study the interaction with pathogens. Front Cell Infect Microbiol. 2019;9:47.PubMed 
    PubMed Central 

    Google Scholar 
    Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Front Microbiol. 2018;9:857.PubMed 
    PubMed Central 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritz K. The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.CAS 
    PubMed 

    Google Scholar 
    Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Front Microbiol. 2020;11:3164.
    Google Scholar 
    Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1–7.
    Google Scholar 
    Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.
    Google Scholar 
    van Elsas J, Chiurazzi M, Mallon C, Elhottova D, Krištůfek V, Salles J. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 

    Google Scholar 
    Horňák K, Corno G. Every coin has a back side: invasion by limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS ONE. 2012;7:e51576.PubMed 
    PubMed Central 

    Google Scholar 
    Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:1–8.
    Google Scholar 
    Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.CAS 
    PubMed 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 

    Google Scholar 
    Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.PubMed 

    Google Scholar 
    Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol. 2019;3:919–27.PubMed 

    Google Scholar 
    van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Modern soil microbiology. 3rd ed. Boca Raton: CRC Press; 2019.Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE. 2012;7:e365969.
    Google Scholar 
    Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States

    Smol, J. P. & Stoermer, E. F. The Diatoms: Application for the Environmental and Earth Sciences (Cambridge University Press, 2010).Charles, D. F. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66, 994–111 (1985).Article 

    Google Scholar 
    Whitehead, D. R., Charles, D. F., Jackson, S. T., Reed S. E. & Sheehan, M. C. In Diatoms and Lake Acidity (eds J. P. Smol et al.) 251–274 (W. Junk, 1986).Whitehead, D. R. et al. The developmental history of Adirondack (N.Y.) lakes. J. Paleolimnol. 2, 185–206 (1989).ADS 
    Article 

    Google Scholar 
    Whitehead, D. R., Charles, D. F. & Goldstein, R. A. The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): an introduction to the synthesis of the project. J. Paleolimnol. 3, 187–194 (1990).ADS 
    Article 

    Google Scholar 
    Dixit, S. S. et al. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8, 27–47 (1993).ADS 
    Article 

    Google Scholar 
    Dixit, S. S. & Smol, J. P. Diatom evidence of past water quality changes in Adirondack seepage lakes (New York, USA). Diatom Res. 1, 113–129 (1995).Article 

    Google Scholar 
    Allen, A. P. et al. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. Aquat. 56, 2029–2040 (1999).Article 

    Google Scholar 
    Pither, J. & Aarssen, L. W. The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradient. J. Biogeogr. 32, 503–513 (2005).Article 

    Google Scholar 
    Winegardner, A. K., Legendre, P., Beisner, B. E. & Gregory-Eaves, I. Diatom diversity patterns over the past c. 150 years across the conterminous United States of America: Identifying mechanisms behind beta diversity. Global Ecol. Biogeogr. 26, 1303–1315 (2017).Article 

    Google Scholar 
    Dixit, S. S. & Smol, J. P. Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW). Environ. Monit. Assess. 31, 275–37 (1994).PubMed 

    Google Scholar 
    Dixit, S. S. et al. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquatic Sci. 56, 131–152 (1999).Article 

    Google Scholar 
    Stevenson, R. J., Zalack, J. & Wolin, J. A multimetric index of lake diatom condition using surface sediment assemblages. Freshw. Sci. 32, 1005–1025 (2013).Article 

    Google Scholar 
    Liu, B. & Stevenson, R. J. Improving assessment accuracy for lake biological condition by classifying lakes with diatom typology, varying metrics and modeling multimetric indices. Sci. Total Environ. 609, 263–271 (2017).ADS 
    Article 

    Google Scholar 
    Herlihy, A. T. et al. Using multiple approaches to develop nutrient criteria for lakes in the conterminous USA. Freshw. Sci. 32, 367–384 (2013).Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnol. Oceanogr. 58, 945–950 (2013).ADS 
    Article 

    Google Scholar 
    McDonald, C. P. et al. Comment on Bachmann et al. (2013): A nonrepresentative sample cannot describe the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2226–2230 (2014).ADS 
    Article 

    Google Scholar 
    Smith, V. H. et al. Comment: Cultural eutrophication of natural lakes in the United States is real and widespread. Limnol. Oceanogr. 59, 2217–2225 (2014).ADS 
    Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. Response to comments: Quantification of the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2231–2239 (2014).ADS 
    Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V., Croteau, A. C. & Canfield, D. E. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Environ. Monit. Assess. 189, 206 (2017).Article 

    Google Scholar 
    Stager, J. C., Leavitt, P. R. & Dixit, S. S. Assessing impacts of past human activity on the water quality of Upper Saranac lake, New York. Lake Reserv. Manag. 13, 175–184 (1997).Article 

    Google Scholar 
    Dixit, S. S., Dixit, A. S., Smol, J. P., Hughes, R. M. & Paulsen, S. G. Water Quality Changes from Human Activities in Three Northeastern USA Lakes. Lake Reserv. Manag. 16, 35–321 (2000).Article 

    Google Scholar 
    Köster, D. et al. Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat. Ecosyst. Health 8, 117–131 (2005).Article 

    Google Scholar 
    Enache, M. D., Charles, D. F., Belton, T. J. & Callinan, C. W. Total phosphorus changes in New York and New Jersey lakes (USA) inferred from sediment cores. Lake Reserv. Manag. 28, 293–310 (2012).Article 

    Google Scholar 
    Rowell, H. C. et al. Quantitative paleolimnological inference models applied to a high-resolution biostratigraphic study of lake degradation and recovery, Onondaga Lake, New York (USA). J Paleolimnol. 55, 241–258 (2016).Article 

    Google Scholar 
    Tyree, M. A., Bishop, I. W., Hawkins, C. P., Mitchell, R. & Spaulding, S. A. Reduction of taxonomic bias in diatom species data. Limnol. Oceanogr. Methods 18, 271–279 (2020).Article 

    Google Scholar 
    Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. J. North Am. Benthol. Soc. 27, 906–919 (2008).Article 

    Google Scholar 
    Thomson, S. A. et al. Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. Org. Divers. Evol. 21, 623–630 (2021).Article 

    Google Scholar 
    Spaulding, S. A. et al. Diatoms of North America https://diatoms.org/ (2020).Lee, S. S., Bishop, I. W., Spaulding, S. A., Mitchell, R. M. & Yuan, L. L. Taxonomic harmonization may reveal a stronger association between diatom assemblages and total phosphorus in large datasets. Ecol. Indic. 102, 166–174 (2019).Article 

    Google Scholar 
    Cumming, B. F. et al. How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) since Preindustrial Times? Can. J. Fish. Aquat. 49, 128–141 (1992).Article 

    Google Scholar 
    Larsen, D. P., Stevens, D. L., Selle, A. R. & Paulsen, S. G. Environmental Monitoring and Assessment Program, EMAP-Surface Waters: A northeast lakes pilot. Lake Reserv. Manag. 7, 1–11 (1991).Article 

    Google Scholar 
    Hughes, R. M., Paulsen, S. G. & Stoddard, J. L. EMAP-surface waters: A multiassemblage, probability survey of ecological integrity in the USA. Hydrobiologia 422, 429–443 (2000).Article 

    Google Scholar 
    Larsen, D. P., Thornton, K. W., Urquhart, N. S. & Paulsen, S. G. The role of sample surveys for monitoring the condition of the nation’s lakes. Environ. Monit. Assess. 32, 101–34 (1994).Article 

    Google Scholar 
    U.S. Environmental Protection Agency. Environmental Monitoring & Assessment Program. Northeast Lakes 1991-94 Data Sets. https://archive.epa.gov/emap/archive-emap/web/html/nelakes.html (2016).U.S. Environmental Protection Agency. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. Report No. EPA-841-R-09-001. (U.S. Environmental Protection Agency, 2009).U.S. Environmental Protection Agency. 2012 National Lakes Assessment. Field Operations Manual. Report No. EPA 841-B-11-003. (U.S. Environmental Protection Agency, 2011)Charles, D. F., Knowles, C. & Davis, R. S. Protocols for the Analysis of Algal Samples Collected as Part of the U.S. Geological Survey National Water-Quality Assessment Program. https://water.usgs.gov/nawqa/protocols/algprotocol/algprotocol.pdf Report (2002).Krammer, K. Diatoms of Europe V. 1. (Gantner Verlag, 2000)Lange-Bertalot, H. Diatoms of Europe V. 2. (Gantner Verlag, 2001)Krammer, K. Diatoms of Europe V. 3. (Gantner Verlag, 2002)Krammer, K. Diatoms of Europe V. 4. (Gantner Verlag, 2003)Siver, P. A. & Hamilton, P. B. Iconographia Diatomologica V. 22. (Gantner Verlag, 2011).Levkov, Z., Metzeltin, D. & Pavlov, A. Diatoms of Europe V. 7. (Gantner Verlag, 2013)Levkov, Z., Mitić-Kopanja, D. & Reichardt, E. Diatoms of Europe V. 8. (Koeltz Botanical Books, 2016).Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. Freshwater Benthic Diatoms of Central Europe (Koeltz Botanical Books, 2017).Guiry, M. D. & Guiry, G. M. AlgaeBase https://www.algaebase.org (2021).Kociolek, J. P. et al. DiatomBase http://www.diatombase.org (2021).De Cáceres, M. Package ‘indicspecies’ https://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf (2020).Legendre, P. & Birks, H. J. B. In Tracking Environmental Change Using Lake Sediments. V. 5: Data Handling and Numerical Techniques (eds Birks H. J. B. et al.) 201–248 (Springer Dordrecht, 2012).Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ https://cran.r-project.org/web/packages/vegan/vegan.pdf (2020).Spaulding, S. A. Diatom Laboratory: Research Labs & Groups: INSTAAR: CU-Boulder https://instaar.colorado.edu/research/labs-groups/diatom-laboratory//research-detail (2021).Conservation Gateway. Northeast Lake and Pond Classification System. http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/Pages/Northeast-Lakes.aspx (2021).Soranno, P. & Cheruvelil, K. LAGOS-NE-LIMNO v1.087.3: A module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 1925–2013. Environmental Data Initiative https://doi.org/10.6073/pasta/08c6f9311929f4874b01bcc64eb3b2d7 (2019).U.S. Geological Survey. National Hydrography Dataset (NHD). USGS Unnumbered Series. (U.S. Geological Survey, 2001).Potapova, M. G., Lee, S. S., Spaulding, S. A. & Schulte, N. O. A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States. U.S. EPA Office of Research and Development (ORD) https://doi.org/10.23719/1524246 (2022).U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2007 (data and metadata files) https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2010).U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2017 (data and metadata files). http://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2021). More

  • in

    The Holocene temperature conundrum answered by mollusk records from East Asia

    Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).ADS 
    Article 

    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).ADS 
    Article 

    Google Scholar 
    Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).ADS 
    Article 

    Google Scholar 
    Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).ADS 
    Article 

    Google Scholar 
    Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).Article 

    Google Scholar 
    Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).Article 

    Google Scholar 
    Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).ADS 
    Article 

    Google Scholar 
    Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).PubMed 
    Article 

    Google Scholar 
    Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).CAS 

    Google Scholar 
    Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).CAS 

    Google Scholar 
    Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).CAS 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).Article 

    Google Scholar 
    Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).Article 

    Google Scholar 
    Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).Article 

    Google Scholar 
    Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).
    Google Scholar 
    Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).ADS 
    Article 

    Google Scholar 
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).ADS 
    Article 

    Google Scholar 
    Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).CAS 

    Google Scholar 
    Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).Article 

    Google Scholar 
    Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).ADS 
    Article 

    Google Scholar 
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).Article 

    Google Scholar 
    Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).ADS 
    Article 

    Google Scholar 
    Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).ADS 

    Google Scholar 
    Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).ADS 
    Article 

    Google Scholar 
    de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).ADS 

    Google Scholar 
    Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).Article 

    Google Scholar 
    James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).Article 

    Google Scholar 
    Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).Article 

    Google Scholar 
    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).ADS 
    MATH 
    Article 

    Google Scholar 
    Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).ADS 
    Article 

    Google Scholar 
    Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).ADS 
    Article 

    Google Scholar 
    Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).ADS 
    Article 

    Google Scholar 
    Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).Article 

    Google Scholar 
    Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).
    Google Scholar 
    Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).Article 

    Google Scholar 
    Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).
    Google Scholar 
    Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).Article 

    Google Scholar 
    Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).ADS 
    Article 

    Google Scholar 
    Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).Article 

    Google Scholar 
    Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).Article 

    Google Scholar 
    Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).Article 

    Google Scholar  More

  • in

    Revisiting implementation of multiple natural enemies in pest management

    Model equationsOur host-parasite mathematical model involves the following host population components: ‘susceptible’ hosts denoted by (S), and hosts infected by k distinct types of parasites ((k=1,2,…,n)), the corresponding population numbers of infected hosts are denoted by (I_{i_1,i_2,…,i_k}), where each index (i_j) can take a value from 1, …, n (to avoid repeated counting of the same infection configuration, we require throughout the paper that (i_1 More

  • in

    Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. https://doi.org/10.1038/359139a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211. https://doi.org/10.1016/0198-0149(90)90038-w (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323. https://doi.org/10.1357/0022240943077145 (1994).Article 

    Google Scholar 
    Jackson, G. Coagulation Theory and Models of Oceanic Plankton Aggregation (CRC Press, 2005).
    Google Scholar 
    Grossart, H. P., Kiorboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: Growth and interactions. Appl. Environ. Microb. 69, 3500–3509. https://doi.org/10.1128/aem.69.6.3500-3509.2003 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047. https://doi.org/10.1128/AEM.69.6.3036 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast pacific. Deep Sea Res. A 34, 267–285. https://doi.org/10.1016/0198-0149(87)90086-0 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Buesseler, K. O. et al. VERTIGO (vertical transport in the global ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539. https://doi.org/10.1016/j.dsr2.2008.04.024 (2008).ADS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiorboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 266, 194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230. https://doi.org/10.3354/ame010223 (1996).Article 

    Google Scholar 
    Kellogg, C. T. E. et al. Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: Elevated hydrolytic enzyme activity on sinking aggregates. Polar Biol. 34, 2007–2023. https://doi.org/10.1007/s00300-011-1015-0 (2011).Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599. https://doi.org/10.1038/nrmicro2386 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiao, N. & Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 77, 7439–7444. https://doi.org/10.1128/AEM.05640-11 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698. https://doi.org/10.1038/nrmicro3326 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581. https://doi.org/10.1073/pnas.1512307113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851. https://doi.org/10.1038/s41467-020-16620-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65, 514–522 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 115, E6799–E6807. https://doi.org/10.1073/pnas.1802470115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jurgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297. https://doi.org/10.3389/fmicb.2015.01297 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziervogel, K., Steen, A. D. & Arnosti, C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7, 1007–1015. https://doi.org/10.5194/bg-7-1007-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214. https://doi.org/10.1073/pnas.0709765105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Perez, M. et al. Genomes of surface isolates of Alteromonas macleodii: The life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696. https://doi.org/10.1038/srep00696 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471. https://doi.org/10.1128/AEM.02570-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bachmann, J. et al. Environmental drivers of free-living vs particle-attached bacterial community composition in the mauritania upwelling system. Front. Microbiol. 9, 2836. https://doi.org/10.3389/fmicb.2018.02836 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100. https://doi.org/10.1016/s0168-6496(01)00206-9 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514. https://doi.org/10.1111/1462-2920.12466 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 4354. https://doi.org/10.1126/sciadv.aaz4354 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708. https://doi.org/10.1038/s41396-020-00880-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11. https://doi.org/10.3354/meps179001 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. https://doi.org/10.4319/lo.2000.45.7.1467 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 116, 23309–23316. https://doi.org/10.1073/pnas.1908512116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. https://doi.org/10.4319/lo.2001.46.2.0267 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965. https://doi.org/10.1038/ncomms11965 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiorboe, T., Grossart, H. P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006. https://doi.org/10.1128/AEM.68.8.3996-4006.2002 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaqué, D., Duarte, C. M. & Marrasé, C. Influence of algal population dynamics on phytoplankton colonization by bacteria: Evidence from two diatom species. Mar. Ecol. Prog. Ser. 65, 201–203. https://doi.org/10.3354/meps065201 (1990).ADS 
    Article 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Bacterial production and growth efficiencies: Direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. https://doi.org/10.4319/lo.2000.45.2.0436 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Duhamel, S. et al. Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 4, 941–956. https://doi.org/10.5194/bg-4-941-2007 (2007).ADS 
    Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309. https://doi.org/10.1146/annurev-marine-122414-033938 (2016).ADS 
    Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: Bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527. https://doi.org/10.3389/fmars.2020.00527 (2020).Article 

    Google Scholar 
    Thomas, T. et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3, e3252. https://doi.org/10.1371/journal.pone.0003252 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varbanets, L. D. et al. The black sea bacteria-producers of hydrolytic enzymes. Mikrobiol. Z. 73, 9–15 (2011).CAS 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360. https://doi.org/10.1111/j.1462-2920.2012.02787.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gram, L., Grossart, H. P., Schlingloff, A. & Kiorboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116. https://doi.org/10.1128/AEM.68.8.4111 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N. et al. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396. https://doi.org/10.1111/1462-2920.14954 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10, 2582–2592. https://doi.org/10.1038/ismej.2016.66 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H. P. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 127–140. https://doi.org/10.3354/ame015127 (1998).Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318. https://doi.org/10.4319/lo.2001.46.6.1309 (2001).ADS 
    Article 

    Google Scholar 
    Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085. https://doi.org/10.1038/s41467-021-23875-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hygum, B. H., Petersen, J. W. & Søndergaard, M. Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. https://doi.org/10.1093/plankt/19.1.97 (1997).CAS 
    Article 

    Google Scholar 
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812. https://doi.org/10.1038/nrmicro1750 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 2569. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N., Weber, P. K., Alonso-Saez, L., Moran, X. A. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11, 641–650. https://doi.org/10.1038/ismej.2016.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8(1), 15472. https://doi.org/10.1038/ncomms15472 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624. https://doi.org/10.5194/bg-7-2613-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193. https://doi.org/10.4319/lo.2009.54.1.0182 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Schneider, B., Schlitzer, R., Fischer, G. & Nöthig, E.-M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002gb001871 (2003).Article 

    Google Scholar 
    Jannasch, H. W. & Wirsen, C. O. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43, 1116–1124. https://doi.org/10.1128/AEM.43.5.1116-1124.1982 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep Sea Res. II(49), 2109–2123. https://doi.org/10.1016/s0967-0645(02)00030-9 (2002).ADS 
    Article 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085. https://doi.org/10.5194/bg-10-4073-2013 (2013).ADS 
    Article 

    Google Scholar 
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms I Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).CAS 
    Article 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 11 (1999).Article 

    Google Scholar 
    Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Manz, W., Amann, R., Vancanneyt, M., Schleifer, K.-H. & Ludwig, W. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. https://doi.org/10.1099/13500872-142-5-1097 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 (1995).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. https://doi.org/10.1128/AEM.56.6.1919-1925.1990 (1990).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866. https://doi.org/10.1073/pnas.0809329105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polerecky, L. et al. Look@NanoSIMS: A tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023. https://doi.org/10.1111/j.1462-2920.2011.02681.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Musat, N. et al. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. https://doi.org/10.1016/j.syapm.2014.02.002 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: Magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15264 (2020).Article 
    PubMed 

    Google Scholar  More