More stories

  • in

    Slower-growing species promote interspecific cooperation and coexistence under acid stress through cross-feeding

    AbstractAcid stress is a central environmental factor shaping the structure and function of microbial communities worldwide. However, there is a lack of predictive understanding of how microbial communities respond physiologically and metabolically to acid stress. Here, we find that higher acid stress favors slower-growing species, promoting population growth and coexistence. Our experiments show that acid stress influences the spatial structure of communities, wherein coexistence is ordered over centimeter-length scales and determined by growth-tolerance trade-offs. We find that interspecific interactions are highly dynamic during acid stress changes, with shifts from competition to cooperation, enhancing resilience under high-stress intensities. Slower-growing species may bolster interspecific coexistence through stress-dependent excretion and cross-feeding of public goods. We construct a resource-consumer-based mathematical model to unravel the processes experienced by species in stress-induced coexistence and their distinct physiological states. Finally, our pairwise bacterial-fungal interaction experiments elucidate universalities in stress-induced coexistence between closely related and phylogenetically distant species with complementary phenotypic profiles. Overall, our work provides insights into how acid stress affects physiological and metabolic responses, as well as overall fitness, resilience, and coexistence.

    Data availability

    All data that support the findings of this study are provided in the Supplementary Information, Source Data file, and databases. Raw mass spectral data is deposited to MassIVE and accessible with the accession code MSV000099939. Source data are provided with this paper, and can also be found at https://doi.org/10.5281/zenodo.1732030972. Source data are provided as a Source Data file. Source data are provided with this paper.
    Code availability

    Based on the mathematical model provided in the Supplementary Notes, the code can be found at https://zenodo.org/records/17330958.
    ReferencesThe Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).
    Google Scholar 
    Liu, W., Cremer, J., Li, D., Hwa, T. & Liu, C. An evolutionarily stable strategy to colonize spatially extended habitats. Nature 575, 664–668 (2019).
    Google Scholar 
    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).
    Google Scholar 
    Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 38, 828–831 (2020).
    Google Scholar 
    Cheng, M., Chen, D., Parales, R. E. & Jiang, J. Oxygenases as powerful weapons in the microbial degradation of pesticides. Annu. Rev. Microbiol. 76, 325–348 (2022).
    Google Scholar 
    Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).
    Google Scholar 
    Gopaulchan, D. et al. A defined microbial community reproduces attributes of fine flavour chocolate fermentation. Nat. Microbiol. 10, 2130–2152 (2025).
    Google Scholar 
    Ruan, Z. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat. Commun. 15, 4694 (2024).
    Google Scholar 
    Hu, S. et al. A synergistic consortium involved in rac-dichlorprop degradation as revealed by DNA stable isotope probing and metagenomic analysis. Appl. Environ. Microbiol. 87, e0156221 (2021).
    Google Scholar 
    Widdig, M. et al. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil. Biol. Biochem. 151, 108041 (2020).Xun, W. et al. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat. Commun. 10, 3833 (2019).
    Google Scholar 
    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).
    Google Scholar 
    Hu, N., Bourdeau, P. E. & Hollander, J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat. Commun. 15, 3400 (2024).
    Google Scholar 
    Lampe, R. H. et al. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. Nat. Commun. 14, 7215 (2023).
    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).
    Google Scholar 
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 111, E139–E148 (2014).
    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. Isme J. 13, 836–846 (2019).
    Google Scholar 
    De Vos, W. M. et al. Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota. Nat. Microbiol. 9, 1812–1827 (2024).
    Google Scholar 
    Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).
    Google Scholar 
    Tecon, R. et al. Bridging the holistic-reductionist divide in microbial ecology. mSystems 4, 10–1128 (2019).Zhao, Y. et al. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat. Commun. 14, 5394 (2023).
    Google Scholar 
    Michielsen, S., Vercelli, G. T., Cordero, O. X. & Bachmann, H. Spatially structured microbial consortia and their role in food fermentations. Curr. Opin. Biotechnol. 87, 103102 (2024).
    Google Scholar 
    Luo, N. et al. The collapse of cooperation during range expansion of Pseudomonas aeruginosa. Nat. Microbiol. 9, 1220–1230 (2024).
    Google Scholar 
    Grandel, N. E., Reyes Gamas, K. & Bennett, M. R. Control of synthetic microbial consortia in time, space, and composition. Trends Microbiol. 29, 1095–1105 (2021).
    Google Scholar 
    Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).
    Google Scholar 
    Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. USA 116, 15979–15984 (2019).
    Google Scholar 
    García, F. C. et al. The temperature dependence of microbial community respiration is amplified by changes in species interactions. Nat. Microbiol. 8, 272–283 (2023).
    Google Scholar 
    Li, S. et al. Regulation of species metabolism in synthetic community systems by environmental pH oscillations. Nat. Commun. 14, 7507 (2023).
    Google Scholar 
    Gänzle, M. G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2, 106–117 (2015).
    Google Scholar 
    Wang, Y., Zhang, C., Liu, F., Jin, Z. & Xia, X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit. Rev. Food Sci. Nutr. 63, 5841–5855 (2022).Yanni, D., Márquez-Zacarías, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, R545–r550 (2019).
    Google Scholar 
    Chacón, J. M., Möbius, W. & Harcombe, W. R. The spatial and metabolic basis of colony size variation. Isme J. 12, 669–680 (2018).
    Google Scholar 
    Gude, S. et al. Bacterial coexistence driven by motility and spatial competition. Nature 578, 588–592 (2020).
    Google Scholar 
    Liao, H., Luo, Y., Huang, X. & Xia, X. Dynamics of quality attributes, flavor compounds, and microbial communities during multi-driven-levels chili fermentation: interactions between the metabolome and microbiome. Food Chem. 405, 134936 (2023).
    Google Scholar 
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).
    Google Scholar 
    Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).
    Google Scholar 
    Burkart, T., Willeke, J. & Frey, E. Periodic temporal environmental variations induce coexistence in resource competition models. Phys. Rev. E 108, 034404 (2023).
    Google Scholar 
    Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).
    Google Scholar 
    Herschend, J. et al. In vitro community synergy between bacterial soil isolates can be facilitated by pH Stabilization of the Environment. Appl. Environ. Microbiol. 84, e01450–18 (2018).Souza, A. L. & Patti, G. J. A protocol for untargeted metabolomic analysis: from sample preparation to data processing. Methods Mol. Biol. 2276, 357–382 (2021).
    Google Scholar 
    Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).
    Google Scholar 
    Liu, Y., Tang, H., Lin, Z. & Xu, P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 33, 1484–1492 (2015).
    Google Scholar 
    Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).
    Google Scholar 
    Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. Isme J. 10, 2557–2568 (2016).
    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
    Google Scholar 
    Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).
    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, e346 (2017).
    Google Scholar 
    Daudé, D., Remaud-Siméon, M. & André, I. Sucrose analogs: an attractive (bio)source for glycodiversification. Nat. Prod. Rep. 29, 945–960 (2012).
    Google Scholar 
    Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. Isme J. 15, 1722–1734 (2021).
    Google Scholar 
    Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).
    Google Scholar 
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6, e28983 (2011).
    Google Scholar 
    Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl. Acad. Sci. USA 104, 19926–19930 (2007).
    Google Scholar 
    Datta, M. S., Korolev, K. S., Cvijovic, I., Dudley, C. & Gore, J. Range expansion promotes cooperation in an experimental microbial metapopulation. Proc. Natl. Acad. Sci. USA 110, 7354–7359 (2013).
    Google Scholar 
    Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).
    Google Scholar 
    Abreu, C. I., Dal Bello, M., Bunse, C., Pinhassi, J. & Gore, J. Warmer temperatures favor slower-growing bacteria in natural marine communities. Sci. Adv. 9, eade8352 (2023).
    Google Scholar 
    Frey, E. Evolutionary game theory: theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).
    Google Scholar 
    West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).
    Google Scholar 
    Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. Isme J. 12, 1072–1083 (2018).
    Google Scholar 
    Di Martino, R., Picot, A. & Mitri, S. Oxidative stress changes interactions between 2 bacterial species from competitive to facilitative. PLoS Biol. 22, e3002482 (2024).
    Google Scholar 
    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
    Google Scholar 
    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).
    Google Scholar 
    Schink, S. J. et al. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. Mol. Syst. Biol. 18, e10704 (2022).
    Google Scholar 
    Kaleta, C., Schäuble, S., Rinas, U. & Schuster, S. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol. J. 8, 1105–1114 (2013).
    Google Scholar 
    Guan, N. et al. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl. Microbiol. Biotechnol. 101, 3991–4008 (2017).
    Google Scholar 
    Russell, J. B. & Diez-Gonzalez, F. The effects of fermentation acids on bacterial growth. Adv. Micro. Physiol. 39, 205–234 (1998).
    Google Scholar 
    Iffland-Stettner, A. et al. A genome-scale metabolic model of marine heterotroph Vibrio splendidus strain 1A01. mSystems 8, e0037722 (2023).
    Google Scholar 
    Young, J. W. et al. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc. 7, 80–88 (2011).
    Google Scholar 
    Skinner, S. O., Sepúlveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8, 1100–1113 (2013).
    Google Scholar 
    Ikeda, T. P., Shauger, A. E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259, 589–607 (1996).
    Google Scholar 
    Liao, H. et al. Slower-growing species promote interspecific cooperation and coexistence under acid stress through cross-feeding. Zenodo https://doi.org/10.5281/zenodo.17320309 (2025).Download referencesAcknowledgementsThis work was funded by a grant from the National Natural Science Foundation of China (31972064 (X.X.)), the Basic Research Program of Jiangsu (BK20252085 (X.X.), BK20251603 (H.L.)), and Jiangsu Funding Program for Excellent Postdoctoral Talent (2025ZB880 (H.L.)).Author informationAuthor notesThese authors contributed equally: Hui Liao, Liming Wu.Authors and AffiliationsThe Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangnan, ChinaHui Liao, Yi Luo, Hussain Asif, Xinlei Huang & Xiaole XiaCollege of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, ChinaLiming Wu & Xiaole XiaAuthorsHui LiaoView author publicationsSearch author on:PubMed Google ScholarLiming WuView author publicationsSearch author on:PubMed Google ScholarYi LuoView author publicationsSearch author on:PubMed Google ScholarHussain AsifView author publicationsSearch author on:PubMed Google ScholarXinlei HuangView author publicationsSearch author on:PubMed Google ScholarXiaole XiaView author publicationsSearch author on:PubMed Google ScholarContributionsH.L., L.W., Y.L., and X.H. performed the experiments. H.L. analyzed the experimental data. A.H. and X.X. carried out manuscript revisions. X.X. directed the study. H.L. and L.W. wrote the manuscript, and all authors read and approved the final manuscript.Corresponding authorCorrespondence to
    Xiaole Xia.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks Wenping Cui, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleLiao, H., Wu, L., Luo, Y. et al. Slower-growing species promote interspecific cooperation and coexistence under acid stress through cross-feeding.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67395-zDownload citationReceived: 02 August 2024Accepted: 28 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41467-025-67395-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Defensive responses of titan triggerfish to tiger sharks at a provisioned reef

    AbstractTitan triggerfish (Balistoides viridescens) are among the most territorial reef fishes, known for aggressively defending nests from intruders. In the Maldives’ Fuvahmulah atoll, where tiger sharks (Galeocerdo cuvier) aggregate in high numbers year-round, we opportunistically documented 10 interactions between these species from February to August 2024 during daily diving operations. Video footage from experienced divers was analyzed to identify and categorize aggressive behaviors, defined as bites (rapid, forceful closure of the jaws on the shark’s body) and chases (short pursuits following an aggressive display). All observed aggression was initiated by titan triggerfish, most often targeting the caudal fin of individual tiger sharks. Biting accounted for 70% of interactions, with chases comprising the remainder; over half of bites were immediately followed by a chase. Several interactions occurred near the new moon, coinciding with the species’ nesting period, suggesting that many of these interactions may have been linked to breeding-season territoriality; however, the opportunistic nature of the observations precluded any formal analysis of lunar phase patterns. These behaviors likely function as risk-based defense, exploiting anatomical vulnerabilities to deter much larger predators. The high frequency of these interactions in a location with artificially dense tiger shark populations suggests that provisioning and predator aggregation may increase the likelihood of such cross-trophic encounters. By linking detailed behavioral observations with the ecological context of predator aggregation, this study highlights the defensive capabilities of titan triggerfish and raises questions about how ecotourism-driven changes in predator distribution influence the behavior of non-target reef species.

    Data availability

    Data and data sets are available from the corresponding author upon reasonable request.
    ReferencesHiatt, R. W. & Strasburg, D. W. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30, 65–127 (1960).
    Google Scholar 
    Meyer, C. G., Papastamatiou, Y. P. & Holland, K. N. A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galápagos sharks (Carcharhinus galapagensis) at French frigate Shoals, Hawaii. Mar. Biol. 157, 1857–1868 (2010).
    Google Scholar 
    Tietbohl, M. D., Tricas, T. C. & Bernal, D. Intentional partial beaching in a coral reef fish: A newly recorded hunting behavior of Titan triggerfish, balistoides viridescens. J. Fish. Biol. 97, 566–570 (2020).
    Google Scholar 
    Lobel, P. S. & Johannes, R. E. Nesting behavior of triggerfishes (Balistidae): Description of nest, spawning, and parental care. Environ. Biol. Fishes. 5, 273–277 (1980).
    Google Scholar 
    Gladstone, W. Lek-like spawning, parental care and mating periodicity of the triggerfish Pseudobalistes flavimarginatus (Balistidae). Environ. Biol. Fish. 41, 385–398 (1994).
    Google Scholar 
    Vossgaetter, L. et al. Non-invasive methods characterise the world’s largest tiger shark aggregation in Fuvahmulah. Maldives Sci. Rep. 14, 21998 (2024).
    Google Scholar 
    Sulikowski, J. A. et al. Reproductive ecology of tiger sharks (Galeocerdo cuvier) in the central Indian ocean: Evidence for gestation at a provisioning site. Front. Mar. Sci. 11, 1500176 (2024).
    Google Scholar 
    Clua, E., Buray, N., Legendre, P., Mourier, J. & Planes, S. Behavioural response of sicklefin lemon sharks negaprion acutidens to underwater feeding for ecotourism purposes. Mar. Ecol. Prog Ser. 414, 257–266 (2010).
    Google Scholar 
    Lester, E. K., Langlois, T. J., Simpson, S. D., McCormick, M. I. & Meekan, M. G. Reef-wide evidence that the presence of sharks modifies behaviours of teleost mesopredators. Ecosphere 12, e03301 (2021).
    Google Scholar 
    Froese, R. & Pauly, D. (eds). FishBase. Balistoides viridescens (Lacepède, 1801). (2025). Available at: https://www.fishbase.se/summary/5046 Accessed 13.Jan, R. Q. & Ho, C. H. Feeding habits of the Titan triggerfish, balistoides viridescens, in Southern Taiwan. J. Mar. Sci. Technol. 16, 38–42 (2008).
    Google Scholar 
    Hemingson, C. R. & Bellwood, D. R. Patterns of predator vulnerability: A predator functional group framework for coral reef fishes. Oikos 130, 1425–1435 (2021).
    Google Scholar 
    Courter, J. R. & Ritchison, G. Mobbing calls increase stress-related behavior in raptors: Implications for anti-predator community dynamics. Behav. Ecol. 23, 302–308 (2012).
    Google Scholar 
    Consla, R. et al. Mobbing call efficacy across avian predators and habitat contexts. Ethology 118, 863–872 (2012).
    Google Scholar 
    Jelley, S. L. & Moreau, C. S. Nonlethal aggression as a community defense mechanism in ant societies. Proc. R. Soc. B 290, 20230236 (2023).Madin, E. M. P., Gaines, S. D., Madin, J. S. & Warner, R. R. Fishing indirectly structures macroalgal assemblages by altering herbivore behavior. Am. Nat. 176, 785–801 (2010).
    Google Scholar 
    Feary, D. A., Pratchett, M. S., Emslie, M. J. & Fowler, A. M. Predator invasion alters community structure in coral reef fish assemblages. Ecology 88, 2291–2300 (2007).
    Google Scholar 
    Ruppert, J. L. W., Stat, M., Forsman, Z. H. & Toonen, R. J. The conservation implications of predator aggregation at coral reefs. Conserv. Lett. 6, 294–302 (2013).
    Google Scholar 
    Download referencesAcknowledgementsWe want to extend our sincere gratitude to the individuals who contributed to this study by providing valuable video footage of interactions between titan triggerfish and tiger sharks. This study could not have been completed without the support of Fuvahmulah Dive School and Pelagic Divers Fuvahmulah, and the authors are grateful for their assistance. The authors extend special thanks to Mathieu Noé, Anoos, Sadhar Suresh, Nikita Kornilov, and Ahmed Ashhal Abdulla for capturing and sharing the essential videos that formed the foundation of this research. Their efforts were crucial in documenting the behavioral dynamics observed in this study. We also thank Luca Asshauer and Max Kimble for their assistance with the artistic figures included in this manuscript. Additionally, we thank Gonzalo Araujo for their insightful feedback during the analysis process. This research would not have been possible without the support and contributions of all those involved. The study was conducted following the guidelines and under the research permits issued by the Ministry of Fisheries, Marine Resources and Agriculture, Maldives (annually renewable permit: 30-D/PRIV/2021/190). The methods were non-invasive, ensuring no harm was caused to the animals involved.FundingThis research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.Author informationAuthor notesThese authors jointly supervised this work: Filippo Bocchi and Nathan Perisic.Authors and AffiliationsNature Friends of Maldives NGO, Fuvahmulah, MaldivesFilippo Bocchi & Ahmed InahFuvahmulah Dream NGO, Fuvahmulah, MaldivesNathan Perisic & Tatiana IvanovaAuthorsFilippo BocchiView author publicationsSearch author on:PubMed Google ScholarNathan PerisicView author publicationsSearch author on:PubMed Google ScholarAhmed InahView author publicationsSearch author on:PubMed Google ScholarTatiana IvanovaView author publicationsSearch author on:PubMed Google ScholarContributionsNathan Perisic and Filippo Bocchi were responsible for the analysis, manuscript writing, and review. Ahmed Inah and Tatiana Ivanova contributed to the study’s inception, preparation of the manuscript, and review.Corresponding authorCorrespondence to
    Nathan Perisic.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Supplementary Material 5Supplementary Material 6Supplementary Material 7Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleBocchi, F., Perisic, N., Inah, A. et al. Defensive responses of titan triggerfish to tiger sharks at a provisioned reef.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31560-7Download citationReceived: 19 August 2025Accepted: 03 December 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41598-025-31560-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsSpecies interactionIndian oceanSharksTropical ecologyTriggerfishSupplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Supplementary Material 5Supplementary Material 6Supplementary Material 7 More

  • in

    Barrier impermeability is associated with migratory ungulate survival rates

    AbstractBarriers can affect the movement, migratory patterns, and demographic rates of ungulates. Even in highly remote areas with relatively little development, like northwest Alaska, isolated roads can alter the movements of ungulates such as caribou (Rangifer tarandus). Here, a solitary, 80-km long industrial road connecting a large zinc and lead mine to a port affects caribou migrations. Using location and survival data from 366 GPS collared, adult female caribou representing > 850 caribou-years from 2010 to 2023, we assessed whether caribou whose fall movements were altered by the road experienced higher mortality risk compared to those whose movements were unaltered. Of the 101 caribou-years that came within 20 km of the road, 58% displayed altered movements. The survival rate of caribou whose movements were unaltered by the road was 20% higher than those caribou whose movements were altered by it, though difference was not significant (p > 0.05). Increased movements, delayed migration, and/or changes in habitat selection related to altered movements could still have energetic and demographic consequences. Caribou that crossed or circumvented the road had significantly higher survival rates (78.5% survived until calving) than caribou that did not cross or circumvent the road (i.e., it acted as an impermeable barrier and the caribou wintered north of it; 57.9%). Given our results, we posit that enhancing the permeability of roads could improve the survival of caribou in the region.

    Data availability

    Survival data used for this analysis will be made available in the NPS’ publicly-accessible database (IRMA; https://irma.nps.gov) upon manuscript acceptance.
    ReferencesFryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).
    Google Scholar 
    Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490. https://doi.org/10.1139/cjz-2013-0076 (2014).
    Google Scholar 
    Mariani, P., Krivan, V., MacKenzie, B. R. & Mullon, C. The migration game in habitat network: the case of tuna. Theoretical Ecol. 9, 219–232 (2016).
    Google Scholar 
    Van Moorter, B. et al. Consequences of barriers and changing seasonality on population dynamics and harvest of migratory ungulates. Theoretical Ecol. 13, 595–605. https://doi.org/10.1007/s12080-020-00471-w (2020).
    Google Scholar 
    Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).
    Google Scholar 
    Wilcove, D. S., Wikelski, M. & Going, going, gone: is animal migration disappearing? PLoS Biol. 6, 1361–1364 (2008).
    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).
    Google Scholar 
    Ito, T. Y. et al. Fragmentation of the habitat of wild ungulates by anthropogenic barriers in Mongolia. PLoS ONE. 8, e56995. https://doi.org/10.1371/journal.pone.0056995 (2013).
    Google Scholar 
    Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569. https://doi.org/10.1126/science.abf0998 (2021).
    Google Scholar 
    Klein, D. R. Reaction of reindeer to obstructions and disturbances: experience in Scandinavia May aid in anticipating problems with caribou in Canada and Alaska. Science 173, 393–398 (1971).
    Google Scholar 
    Sawyer, H. et al. A framework for Understanding semi-permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50, 68–78 (2013).
    Google Scholar 
    Beyer, H. L. et al. You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals. J. Anim. Ecol. 85, 43–53 (2016).
    Google Scholar 
    Xu, W., Gigliotti, L. C., Royauté, R., Sawyer, H. & Middleton, A. D. Fencing amplifies individual differences in movement with implications on survival for two migratory ungulates. J. Anim. Ecol. 92, 677–689. https://doi.org/10.1111/1365-2656.13879 (2023).
    Google Scholar 
    Harrington, J. L. & Conover, M. R. Characteristics of ungulate behavior and mortality associated with wire fences. Wildl. Soc. Bull. 34, 1295–1305 (2006).
    Google Scholar 
    Rey, A., Novaro, A. J. & Guichón, M. L. Guanaco (Lama guanicoe) mortality by entanglement in wire fences. J. Nat. Conserv. 20, 280–283 (2012).
    Google Scholar 
    Wilson, R. R., Parrett, L. S., Joly, K. & Dau. J. R Effects of roads on individual caribou movements during migration. Biol. Conserv. 195, 2–8. https://doi.org/10.1016/j.biocon.2015.12.035 (2016).
    Google Scholar 
    Boulanger, J. et al. Estimating the effects of roads on migration: a barren-ground caribou case study. Can. J. Zool. 102, 476–493. https://doi.org/10.1139/cjz-2023-0121 (2024).
    Google Scholar 
    Eacker, D. R., Jakes, A. F. & Jones, P. F. Spatiotemporal risk factors predict landscape-scale survivorship for a Northern ungulate. Ecosphere 14, e4341. https://doi.org/10.1002/ecs2.4341 (2023).
    Google Scholar 
    Severson, J. P., Vosburgh, T. C. & Johnson, H. E. Effects of vehicle traffic on space use and road crossings of caribou in the Arctic. Ecol. Appl. 33, e2923. https://doi.org/10.1002/eap.2923 (2023).
    Google Scholar 
    Bråthen, K. A. et al. Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems 10, 773–789 (2007).
    Google Scholar 
    Bernes, C., Bråthen, K. A., Forbes, B. C., Speed, J. D. M. & Moen, J. What are the impacts of reindeer/caribou (Rangifer Tarandus L.) on Arctic and alpine vegetation? A systematic review. Environ. Evid. 4, 4. https://doi.org/10.1186/s13750-014-0030-3 (2015).
    Google Scholar 
    Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-51884-5 (2019). Article 15333.
    Google Scholar 
    Cameron, M. D., Eisaguirre, J. M., Breed, G. A., Joly, K. & Kielland, K. Mechanistic movement models identify continuously updated autumn migration cues in Arctic caribou. Mov. Ecol. 9, 54. https://doi.org/10.1186/s40462-021-00288-0 (2021).
    Google Scholar 
    Joly, K. & Cameron, M. D. Early fall and late winter diets of migratory caribou in Northwest Alaska. Rangifer 38, 27–38. https://doi.org/10.7557/2.38.1.4107 (2018).
    Google Scholar 
    Webber, Q. M. R., Ferraro, K. M., Hendrix, J. G. & Vander Wal, E. What do caribou eat? A review of the literature on caribou diet. Can. J. Zool. 100, 197–207. https://doi.org/10.1139/cjz-2021-0162 (2022).
    Google Scholar 
    Joly, K., Cameron, M. D. & White, R. G. Behavioral adaptation to seasonal resource scarcity by caribou (Rangifer tarandus) and its role in partial migration. J. Mammal. 106, 96–104. https://doi.org/10.1093/jmammal/gyae100 (2025).
    Google Scholar 
    Gordon, B. C. 8000 years of caribou and human seasonal migration in the Canadian barrenlands. Rangifer Special Issue. 16, 155–162 (2005).
    Google Scholar 
    Borish, D. et al. Relationships between Rangifer and Indigenous well-being in the North American Arctic and subarctic: a review based on the academic published literature. Arctic 75, 86–104 (2022).
    Google Scholar 
    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).
    Google Scholar 
    Bartsch, A. et al. Expanding infrastructure and growing anthropogenic impacts along Arctic Coasts. Environ. Res. Lett. 16, 115013. https://doi.org/10.1088/1748-9326/ac3176 (2021).
    Google Scholar 
    Panzacchi, M. et al. Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J. Anim. Ecol. 85, 32–42. https://doi.org/10.1111/1365-2656.12386 (2016).
    Google Scholar 
    Smith, A. & Johnson, C. J. Why didn’t the caribou (Rangifer Tarandus groenlandicus) cross the winter road? The effect of industrial traffic on the road-crossing decisions of caribou. Biodivers. Conserv. 32, 2943–2959. https://doi.org/10.1007/s10531-023-02637-4 (2023).
    Google Scholar 
    Joly, K. & Cameron, M. D. Caribou vital sign annual report for the Arctic Network Inventory and Monitoring Program. Sci. Rep. https://doi.org/10.36967/2306687 (2024).
    Google Scholar 
    Joly, K. et al. Caribou and reindeer migrations in the changing Arctic. Anim. Migrations. 8, 156–167. https://doi.org/10.1515/ami-2020-0110 (2021).
    Google Scholar 
    Graham, M. Feds approve key step towards expansion at major Northwest Alaska zinc mine. Northern J. https://www.adn.com/business-economy/2024/12/14/feds-approve-key-step-toward-expansion-at-major-northwest-alaska-zinc-mine/ (2024).Dau, J. Western Arctic herd. In Caribou Management Report of Survey and Inventory activities, 1 July 2000–30 June 2002. Study 3.0 (ed. Healy, C.) 204–251 (Alaska Department of Fish and Game, 2003).
    Google Scholar 
    Gunn, A. Voles, lemmings and caribou-population cycles revisited? Rangifer Special Issue. 14, 105–111 (2003).
    Google Scholar 
    Joly, K., Klein, D. R., Verbyla, D. L., Rupp, T. S. & Chapin, F. S. III Linkages between large-scale climate patterns and the dynamics of Alaska caribou populations. Ecography 34, 345–352. https://doi.org/10.1111/j.1600-0587.2010.06377.x (2011).
    Google Scholar 
    Teck Resources Limited. Red Dog. https://www.teck.com/operations/united-states/operations/red-dog/ (2024).Macander, M. J., Swingley, C. S., Joly, K. & Raynolds, M. Landsat-based snow persistence map for Northwest Alaska. Remote Sens. Environ. 163, 23–31. https://doi.org/10.1016/j.rse.2015.02.028 (2015).
    Google Scholar 
    Swanson, D. K. Trends in greenness and snow cover in alaska’s Arctic National Parks, 2000–2016. Remote Sens. 9, 514. https://doi.org/10.3390/rs9060514 (2017).
    Google Scholar 
    Joly, K., Gurarie, E., Hansen, D. A., Cameron, M. D. & M D Seasonal patterns of Spatial fidelity and Temporal consistency in the distribution and movements of a migratory ungulate. Ecol. Evol. 11, 8183–8200. https://doi.org/10.1002/ece3.7650 (2021).
    Google Scholar 
    Prichard, A. K. et al. Achieving a representative sample of marked animals: a Spatial approach to evaluating post-capture randomization. Wildl. Soc. Bull. 47 (1), e1398. https://doi.org/10.1002/wsb.1398 (2023).
    Google Scholar 
    Fullman, T. J., Gustine, J. K., Cameron, M. D. & D. D. & Behavioral responses of migratory caribou to semi-permeable roads in Arctic Alaska. Sci. Rep. 15, 24712. https://doi.org/10.1038/s41598-025-10216-6 (2025).
    Google Scholar 
    Xu, W., Dejid, N., Herrmann, V., Sawyer, H. & Middleton, A. D. Barrier behaviour analysis (BaBA) reveals extensive effects of fencing on wide-ranging ungulates. J. Appl. Ecol. 58, 690–698 (2021).
    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. (Springer, 2000).Therneau, T. M. A package for survival analysis in R. Manual. https://CRAN. R-project.org/package = survival (2022).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2024).Cameron, M. D., Joly, K., Breed, G. A., Parrett, L. S. & Kielland, K. Movement-based methods to infer parturition events in migratory ungulates. Can. J. Zool. 96, 1187–1195. https://doi.org/10.1139/cjz-2017-0314 (2018).
    Google Scholar 
    Kelsall, J. P. The Migratory Barren-Ground Caribou Of Canada. 339 (Queen’s Printer, 1968).Bergerud, A. T. Rutting behaviour of Newfoundland caribou. In The Behaviour Of Ungulates And Its Relation To Management. V. Geist and F. Walther, editors. International Union for Conservation of Nature and Natural Resources. 395–435 (1974).Whitten, K. R., Garner, G. W., Mauer, F. J. & Harris, R. B. Productivity and early calf survival in the Porcupine caribou herd. J. Wildl. Manage. 56, 201–212 (1992).
    Google Scholar 
    Gurarie, E. et al. Evidence for an adaptive, large-scale range shift in a long-distance terrestrial migrant. Glob. Change Biol. 30, e17589. https://doi.org/10.1111/gcb.17589 (2024).
    Google Scholar 
    Miller, F. L., Jonkel, C. J. & Tessier, G. D. Group cohesion and leadership response by barren-ground caribou to man-made barriers. Arctic 25, 193–202 (1972). https://www.jstor.org/stable/40508046
    Google Scholar 
    Bart, J., Fligner, M. A. & Notz, W. I. Sampling and Statistical Methods for Behavioral Ecologists. 330 (Cambridge University Press, 1998).Fancy, S. G. & White, R. G. Energy expenditures for locomotion by barren-ground caribou. Can. J. Zool. 65, 122–128. https://doi.org/10.1139/z87-018 (1987).
    Google Scholar 
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2009.01528.x (2009).
    Google Scholar 
    Wasser, S. K., Keim, J. L., Taper, M. L. & Lele, S. R. The influences of Wolf predation, habitat loss, and human activity on caribou and moose in the Alberta oil sands. Front. Ecol. Environ. 9, 546–551. https://doi.org/10.1890/100071 (2011).
    Google Scholar 
    Cameron, R. D. & Ver Hoef, J. M. Predicting parturition rate of caribou from autumn body mass. J. Wildl. Manage. 58, 674–679 (1994).
    Google Scholar 
    Gerhart, K. L., Russell, D. E., Van DeWetering, D., White, R. G. & Cameron, R. D. Pregnancy of adult caribou (Rangifer tarandus): evidence for lactational infertility. J. Zool. 242, 17–30 (1997).
    Google Scholar 
    Johnson, C. J., Venter, O., Ray, J. C. & Watson, J. E. M. Growth-inducing infrastructure represents transformative yet ignored keystone environmental decisions. Conserv. Lett. 13, e12696. https://doi.org/10.1111/conl.12696 (2020).
    Google Scholar 
    Download referencesAcknowledgementsWe thank A. Hansen (Alaska Department of Fish and Game) for his ongoing collaboration that makes our long-term monitoring program possible. We also thank the many people that have helped deploy GPS collars over the years. Funding for this project was provided by the National Park Service, the Alaska Department of Fish and Game, and NSF Navigating the New Arctic grant 212727 (Fate of the Caribou). We thank H. Johnson, A. Hansen, S. Karpovich, and N. Edmison for reviews of a previous draft of this manuscript.Author informationAuthors and AffiliationsArctic Inventory and Monitoring Program, National Park Service, Gates of the Arctic National Park and Preserve, Fairbanks, AK, USAKyle Joly & Matthew D. CameronCollege of Environmental Science and Forestry, State University of New York, Syracuse, NY, USAChloe Beaupré, Nicole Barbour & Eliezer GurarieThe Wilderness Society, Anchorage, AK, USATimothy J. FullmanAuthorsKyle JolyView author publicationsSearch author on:PubMed Google ScholarChloe BeaupréView author publicationsSearch author on:PubMed Google ScholarTimothy J. FullmanView author publicationsSearch author on:PubMed Google ScholarMatthew D. CameronView author publicationsSearch author on:PubMed Google ScholarNicole BarbourView author publicationsSearch author on:PubMed Google ScholarEliezer GurarieView author publicationsSearch author on:PubMed Google ScholarContributionsData acquisition: KJ and MDC. Data management: KJ, MDC, and CB. Conceptualization and data interpretation: all authors. Data Analysis: CB, EG, TJF, KJ, and MDC. Original draft: KJ. Manuscript review, revision, and submission approval: all authors.Corresponding authorCorrespondence to
    Eliezer Gurarie.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleJoly, K., Beaupré, C., Fullman, T.J. et al. Barrier impermeability is associated with migratory ungulate survival rates.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31911-4Download citationReceived: 21 April 2025Accepted: 05 December 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41598-025-31911-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsAlaskaCaribouMortality riskPermeabilityRangifer tarandusRoads More

  • in

    Conventional approaches to indicators and metrics undermine urban climate adaptation

    AbstractMeasurement is essential for effective adaptation management and operation, and indicators and metrics (I&M) have a pivotal role. Surprisingly, systematic efforts to assess advances in the provision of adaptation I&M are scarce, and those that do exist often lack in-depth analysis of the types, characteristics, and applicability of the collected information. Here, we analyse 137 publications and 901 I&M sourced in the scientific literature (2007–2022) to measure adaptation to climate change in urban areas where governments are increasingly placing efforts to prepare populations and infrastructures. A lack of common terminology, standardisation, and guidelines has resulted in a field that is complex to track and understand. This complexity has led to a fragmented methodological landscape, marked by diverse, context-dependent, and occasionally conflicting approaches to the development of I&M. We argue that conventional approaches to I&M are largely inadequate and must better emphasise quantifiability, long-term assessment, and alignment with policy objectives.

    Data availability

    Data generated or analysed during this study are included in this published article (and its Supplementary Information) and online repositories. The information available through online repositories includes the dataset of publications and indicators and connected metadata, which can be found online at DOI [10.5281/zenodo.10663610] (https://doi.org/10.5281/zenodo.10663610).
    ReferencesPeters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).
    Google Scholar 
    New, M. et al. Decision-Making Options for Managing Risk. In Proc. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 2539–2654 https://doi.org/10.1017/9781009325844.026 (Cambridge University Press, 2022).Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).
    Google Scholar 
    Eriksen, S. et al. Adaptation interventions and their effect on vulnerability in developing countries: help, hindrance or irrelevance?. World Dev. 141, 105383 (2021).
    Google Scholar 
    Sparkes, E. & Werners, S. E. Monitoring, evaluation and learning requirements for climate-resilient development pathways. Curr. Opin. Environ. Sustain. 64, 101329 (2023).
    Google Scholar 
    Fisher, S. Much ado about nothing? Why adaptation measurement matters. Clim. Dev. 16, 161–167 (2024).
    Google Scholar 
    Goodwin, S., Olazabal, M., Castro, A. J. & Pascual, U. Measuring the contribution of nature-based solutions beyond climate adaptation in cities. Glob. Environ. Change 89, 102939 (2024).
    Google Scholar 
    Amorim-Maia, A. T. & Olazabal, M. Beyond adjustment: a new paradigm for climate change adaptation in a complex world. Glob. Environ. Change 93, 103027 (2025).
    Google Scholar 
    Nalau, J. & Verrall, B. Mapping the evolution and current trends in climate change adaptation science. Clim. Risk Manag. 100290 https://doi.org/10.1016/j.crm.2021.100290 (2021).Hale, T. N. et al. Sub- and non-state climate action: a framework to assess progress, implementation and impact. Clim. Policy 21, 406–420 (2021).
    Google Scholar 
    Arnott, J. C., Moser, S. C. & Goodrich, K. A. Evaluation that counts: a review of climate change adaptation indicators & metrics using lessons from effective evaluation and science-practice interaction. Environ. Sci. Policy 66, 383–392 (2016).
    Google Scholar 
    Goonesekera, S. M. & Olazabal, M. Climate adaptation indicators and metrics: State of local policy practice. Ecol. Indic. 145, 109657 (2022).
    Google Scholar 
    Klostermann, J. et al. Towards a framework to assess, compare and develop monitoring and evaluation of climate change adaptation in Europe. Mitig. Adapt. Strateg. Glob. Change 23, 187–209 (2018).
    Google Scholar 
    Leiter, T. Do governments track the implementation of national climate change adaptation plans? An evidence-based global stocktake of monitoring and evaluation systems. Environ. Sci. Policy 125, 179–188 (2021).
    Google Scholar 
    Beauchamp, E. & Józefiak, I. Next Steps for Defining a Monitoring, Evaluation, and Learning System for the Global Goal on Adaptation by COP 28. https://www.iisd.org/publications/report/global-goal-on-adaptation-monitoring-evaluation-learning-framework-cop-28 (2023).Canales, N., Klein, R. J. T., Bakhtaoui, I. & Macura, B. Assessing adaptation progress for the global stocktake. Nat. Clim. Change 1–2 https://doi.org/10.1038/s41558-023-01656-x (2023).Adaptation Committee. Approaches to Reviewing the Overall Progress Made in Achieving the Global Goal on Adaptation. https://unfccc.int/process-and-meetings/bodies/constituted-bodies/adaptation-committee-ac/publications-bulletin-adaptation-committee (2021).Leiter, T. Too little, too slow? Climate adaptation at the United Nations climate change negotiations since the adoption of the Paris Agreement. Carbon Clim. Law Rev. 16, 243–258 (2023).
    Google Scholar 
    Dodman, D. et al. Cities, settlements and key infrastructure supplementary material. In Proc. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) (IPCC, 2023).Berrang-Ford, L. et al. Tracking global climate change adaptation among governments. Nat. Clim. Change 9, 440 (2019).
    Google Scholar 
    Olazabal, M., Galarraga, I., Ford, J., Sainz de Murieta, E. & Lesnikowski, A. Are local climate adaptation policies credible? A conceptual and operational assessment framework. Int. J. Urban Sustain. Dev. 11, 277–296 (2019).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).Reckien, D. et al. Quality of urban climate adaptation plans over time. npj Urban Sustain 3, 1–14 (2023).
    Google Scholar 
    Biesbroek, R. & Lesnikowski, A. Unpacking symbolic policy-making for the first Global Stocktake under the Paris Agreement. npj Clim. Action 2, 1–3 (2023).
    Google Scholar 
    Olazabal, M., Ruiz de Gopegui, M., Tompkins, E. L., Venner, K. & Smith, R. A cross-scale worldwide analysis of coastal adaptation planning. Environ. Res. Lett. 14, 124056 (2019).
    Google Scholar 
    Solecki, W. & Rosenzweig, C. Indicators and monitoring systems for urban climate resiliency. Clim. Change https://doi.org/10.1007/s10584-020-02947-4 (2020).Tyler, S. et al. Indicators of urban climate resilience: a contextual approach. Environ. Sci. Policy 66, 420–426 (2016).
    Google Scholar 
    Kabisch, N. et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, 39 (2016).
    Google Scholar 
    Sanchez Martinez, G., von der Pahlen, M. T., Kendrovski, V., Linares, C. & Diaz, J. Indicators to monitor policy progress in health adaptation to climate change: do they really do the job? Eur. J. Public Health 30, Supplement_5 (2020).Salehi, S. et al. Climate change adaptation: a systematic review on domains and indicators. Nat. Hazards 96, 521–550 (2019).
    Google Scholar 
    Feldmeyer, D. et al. Indicators for monitoring urban climate change resilience and adaptation. Sustainability 11, 2931 (2019).
    Google Scholar 
    Granceri Bradaschia, M., Longato, D., Maragno, D. & Musco, F. Climate change adaptation mainstreaming through strategic environmental assessments. An in-depth analysis of environmental indicators from spatial plans in Friuli Venezia Giulia Region (Italy). Environ. Impact Assess. Rev. 109, 107650 (2024).
    Google Scholar 
    Chmutina, K., Lizarralde, G., von Meding, J. & Bosher, L. Standardised indicators for “resilient cities”: the folly of devising a technical solution to a political problem. Int. J. Disaster Resil. Built Environ. 14, 514–535 (2023).
    Google Scholar 
    Pearce-Higgins, J. W. et al. A framework for climate change adaptation indicators for the natural environment. Ecol. Indic. 136, 108690 (2022).
    Google Scholar 
    Kuhlicke, C. et al. Spinning in circles? A systematic review on the role of theory in social vulnerability, resilience and adaptation research. Glob. Environ. Change 80, 102672 (2023).
    Google Scholar 
    Lindner, R., Hernantes, J. & Jaca, C. Foster the application of ISO standards on climate change adaptation in cities. J. Stand. 3, 1 (2024).J. B. A. Consulting. Review of Climate Resilience Mainstreaming into Regulatory and Voluntary Standards, National Guidance, and Other Sectoral/Industry Codes of Practice. https://www.ukclimateresilience.org/projects/review-of-standards-guidance-and-codes-of-practice-for-enhancing-climate-resilience/ (2020).Pringle, P. & Leiter, T. Pitfalls and potential of measuring climate change adaptation through adaptation metrics. In Proc. Adaptation metrics: Perspectives on measuring, aggregating and comparing adaptation results (eds. Christiansen, L., Martinez, G. & Naswa, P.) 29 (UNEP DTU, 2018).Laurien, F., Martin, J. G. C. & Mehryar, S. Climate and disaster resilience measurement: persistent gaps in multiple hazards, methods, and practicability. Clim. Risk Manag. 37, 100443 (2022).
    Google Scholar 
    Vincent, K. & Cundill, G. The evolution of empirical adaptation research in the global South from 2010 to 2020. Clim. Dev. 14, 25–38 (2022).
    Google Scholar 
    Zall Kusek, J. & Rist, R. C. Ten Steps to a Results-Based Monitoring and Evaluation System: A Handbook for Development Practitioners (World Bank Group, 2004).OECD. Measuring Progress in Adapting to a Changing Climate: Insights from OECD Countries. https://doi.org/10.1787/8cfe45af-en (OECD, 2024).Olazabal, M. & Ruiz De Gopegui, M. Adaptation planning in large cities is unlikely to be effective. Landsc. Urban Plan. 206, 103974 (2021).
    Google Scholar 
    Ruiz de Gopegui Aramburu, M., Olazabal, M. & Broto, V. C. Examining climate justice in urban public space adaptation: a thematic synthesis of the literature. J. City Clim. Policy Econ. 2, 271–315 (2024).
    Google Scholar 
    Brugnach, M. & Hoek, R. van den. Embracing ambiguity in climate change adaptation for more effective responses to new uncertain shorescapes conditions. Mar. Policy 152, 105626 (2023).
    Google Scholar 
    Bartelet, H. A., Barnes, M. L., Bakti, L. A. A. & Cumming, G. S. Operationalizing and measuring climate change adaptation success. Ecol. Soc. 30, 1 (2025).Revi, A. et al. Transformative adaptation in cities. One Earth 3, 384–387 (2020).
    Google Scholar 
    Brooks, N. & Fisher, S. Tracking Adaptation and Measuring Development: A Step-by-Step Guide. http://pubs.iied.org/10100IIED.html (2014).Dupuits, E., Garcés, A., Llambí, L. D. & Bustamante, M. Strategies for monitoring and evaluation of climate change adaptation: localizing global approaches into Andean realities. npj Clim. Action 3, 19 (2024).
    Google Scholar 
    Sainz de Murieta, E., Galarraga, I. & Olazabal, M. How well do climate adaptation policies align with risk-based approaches? An assessment framework for cities. Cities 103018 https://doi.org/10.1016/j.cities.2020.103018 (2020).Sharifi, A. A critical review of selected tools for assessing community resilience. Ecol. Indic. 69, 629–647 (2016).
    Google Scholar 
    Westman, L. et al. Compound urban crises. Ambio 51, 1402–1415 (2022).
    Google Scholar 
    Turner, S., Moloney, S., Glover, A. & Fünfgeld, H. A Review of the Monitoring and Evaluation Literature for Climate Change Adaptation (RMIT University Centre for Urban Research, 2014).Download referencesAcknowledgementsMO, AM and WL have been funded by the European Union (ERC, IMAGINE adaptation, 101039429). Their research is also supported by the María de Maeztu Excellence Unit 2023-2027 Ref. CEX2021-001201-M, funded by MCIN/AEI/10.13039/501100011033; and by the Basque Government through the BERC 2022-2025 program. MO would like to acknowledge the support of the grant RYC2022-037585-I funded by MCIU/AEI/10.13039/501100011033 and ESF+. LG, AV and MO are members of the SAREN Research Group funded by the Basque Government IT1619-22 and AV is funded by UPV/EHU PIF 2020 grant. This work was originally conceived during discussions of the Cities Committee of the International Platform of Adaptation Metrics (IPAM), led by MO.Author informationAuthors and AffiliationsBasque Centre for Climate Change (BC3), Leioa, SpainMarta Olazabal, Andressa V. Mansur & William LewisIKERBASQUE, Basque Foundation for Science, Bilbao, SpainMarta OlazabalIndependent Researcher, New Delhi, IndiaSamraj SahayIndiana University, O’Neill School of Public and Environmental Affairs, Bloomington, IN, USALaura Helmke-LongUniversity Iuav of Venice, Department of Architecture and Arts, Venice, ItalyMassimiliano Granceri BradaschiaUniversity of the Basque Country (UPV/EHU), School of Engineering, Bilbao, SpainAne Villaverde & Leire GarmendiaNagoya University, Graduate School of Civil and Environmental Engineering, Nagoya, JapanPrince Dacosta AboagyeHiroshima University, The IDEC Institute & Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima, JapanAyyoob SharifiSchool of Architecture and Design, Lebanese American University, Beirut, LebanonAyyoob SharifiIpsos Centre for Development Research and Evaluation, Ipsos, Accra, GhanaObed AsamoahKenyatta University, Department of Spatial and Environmental Planning, Nairobi, KenyaPatricia MwangiUniversity of the Basque Country (UPV/EHU), Bilbao, SpainBorja IzaolaBritish Red Cross, West Point House, Edinburgh, United KingdomEllie MurtaghAdaptation Leader, Washington, DC, USAIra FeldmanAuthorsMarta OlazabalView author publicationsSearch author on:PubMed Google ScholarAndressa V. MansurView author publicationsSearch author on:PubMed Google ScholarSamraj SahayView author publicationsSearch author on:PubMed Google ScholarLaura Helmke-LongView author publicationsSearch author on:PubMed Google ScholarMassimiliano Granceri BradaschiaView author publicationsSearch author on:PubMed Google ScholarAne VillaverdeView author publicationsSearch author on:PubMed Google ScholarLeire GarmendiaView author publicationsSearch author on:PubMed Google ScholarPrince Dacosta AboagyeView author publicationsSearch author on:PubMed Google ScholarAyyoob SharifiView author publicationsSearch author on:PubMed Google ScholarObed AsamoahView author publicationsSearch author on:PubMed Google ScholarPatricia MwangiView author publicationsSearch author on:PubMed Google ScholarWilliam LewisView author publicationsSearch author on:PubMed Google ScholarBorja IzaolaView author publicationsSearch author on:PubMed Google ScholarEllie MurtaghView author publicationsSearch author on:PubMed Google ScholarIra FeldmanView author publicationsSearch author on:PubMed Google ScholarContributionsM.O. Conceptualisation; methodology; data collection stage 1; Data collection stage 2; data curation; formal analysis; writing—original draft; writing—review and editing; visualisation; supervision; funding acquisition. A.M. Data collection stage 2; data curation; formal analysis; visualisation; writing—review and editing. S.S. Methodology; data collection stage 1; data collection stage 2; formal analysis; writing—review and editing; visualisation. L.H.L. Data collection stage 1; Data collection stage 2; formal analysis; writing—review and editing. M.G. Methodology; data collection stage 1; data collection stage 2; visualisation. A.V. Methodology; data collection stage 1; data collection stage 2; writing—review and editing. L.G. Methodology; data collection stage 1; data collection stage 2; writing—review and editing. P.D.A. Data collection stage 1; data collection stage 2; writing—review and editing. A.S. Data collection stage 1; data collection stage 2; writing—review and editing. O.A. Data collection stage 1; data collection stage 2. P.M. Data collection stage 2; writing—review and editing. W.L. Data curation; writing—review and editing. B.I. Data collection stage 1. E.M. Data collection stage 1. I.F. Data collection stage 2.Corresponding authorCorrespondence to
    Marta Olazabal.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationNPJURBANSUSTAIN-01070-T Supplementary InformationRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleOlazabal, M., Mansur, A.V., Sahay, S. et al. Conventional approaches to indicators and metrics undermine urban climate adaptation.
    npj Urban Sustain (2025). https://doi.org/10.1038/s42949-025-00310-zDownload citationReceived: 23 September 2025Accepted: 17 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s42949-025-00310-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    High-frequency observations during Adriatic mucilage event reveal unique phytoplankton traits and diversity response

    Abstract

    Mucilage aggregation is a striking phenomenon in the northern Adriatic Sea, reappearing massively in surface waters on the Istrian coast in 2024 after 20 years. Formed through polymerization of exuded sugars during microphytoplankton blooms, mucilage events are hard to capture with traditional monitoring. Here, we used real-time in situ sensors, satellite data and daily pulse-shape flow cytometry to analyze phytoplankton dynamics during this event. Mucilage formation was linked to rising temperatures and Po River-induced salinity drops. Microphytoplankton species like Cerataulina pelagica, Cylindrotheca closterium, Thalassionema spp., and Gonyaulax fragilis showed as important taxa in each different phase of the phenomenon. Aggregates consisted mainly of single cells. Mucilage periods featured low diversity and thicker, more complex cells, unlike autumn blooms which showed higher diversity, chain-forming colonies, and more pigments. Our findings highlight the key role of microphytoplankton and single cells in mucilage dynamics and the influence of environmental factors like temperature, wind and freshwater inputs on phytoplankton structure and biomass in coastal ecosystems.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.
    ReferencesIvančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. 57, 1721–1731 (2012).
    Google Scholar 
    Mozetič, P. et al. Recent trends towards oligotrophication of the Northern Adriatic: evidence from chlorophyll a time series. Estuaries Coasts. 33, 362–375 (2010).
    Google Scholar 
    Cozzi, S. & Giani, M. River water and nutrient discharges in the Northern Adriatic sea: current importance and long term changes. Cont. Shelf Res. 31, 1881–1893 (2011).
    Google Scholar 
    Ivančić, I. et al. Seasonal variations in extracellular enzymatic activity in marine snow-associated microbial communities and their impact on the surrounding water. FEMS Microbiol. Ecol 94, (2018).Kaltenböck, E. & Herndl, G. J. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. IV. Dissolved nutrients and the autotrophic community associated with marine snow. Mar. Ecol. Prog Ser. 87, 147–147 (1992).
    Google Scholar 
    Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12, 1–13 (2021).
    Google Scholar 
    Syrski Sulle Masse Glutinose: Osservate Nei Mesi Di Giugno E Luglio 1872 Nella Parte Settentrionale dell’Adriatico. (1872).Umani, S. F., Ghirardelli, E. & Specchi, M. Gli Episodi Di‘ Mare Sporco’ nell’Adriatico Dal 1729 Ai Giorni Nostri (Ufficio stampa e pubbliche relazioni della Regione Friuli-Venezia Giulia, 1989).ARPAE. (Agenzia regionale per la prevenzione, l’ambiente e l’energia dell’Emilia-Romagna), Qualità ambientale delle acque marine in Emilia-Romagna Rapporto annuale 2014, 152 pp.ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2002, Centro Stampa della Giunta Regionale, 50 pp. (2003).ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2003, Centro Stampa della Giunta Regionale, 48 pp. (2004).ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). 2005 EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2004, Centro Stampa della Giunta Regionale, 60 pp.ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2006, Centro Stampa della Giunta Regionale,170 pp. (2007).ARPAE (Agenzia regionale per la prevenzione e l’ambiente dell’Emilia-Romagna). 2009 EUTROFIZZAZIONE DELLE ACQUE COSTIERE DELL’EMILIA-ROMAGNA Rapporto 2007, Centro Stampa della Giunta Regionale, 171 pp.Castracane, F. Sopra la straordinaria apparenza presentata dal mare Adriatico nella seconda metà del luglio 1872. Atti Accademia Pontificia De’ Nuovi Lincei 3–8 (XXVI, 1873). Roma.Castracane, F. Straordinario Fenomeno Della vita Del mare osservato nell’adriatico Nella estate Del 1880. Atti Accad. Pontificia De’ Nuovi Lincei. XXXIV, 9–19 (1881). Roma.
    Google Scholar 
    Castracane, F. Una raccolta Di diatomee Alla imboccatura Del Porto Canale Di Fano. (Nota). Roma LI, 67–72 (1898).
    Google Scholar 
    Cori, D. J. & Steuer, A. Beobachtungen U¨ber Das Plankton Des Triester Golfes in Den Jahren 1899 Und 1900. Zoologischer Anzeiger N. 637. De Toni G.B., 1891. Il Curioso Fenomeno Della Poltiglia in Mare – Il Mare Sporco. 17–18La Venezia, (1901).Toni, D. Il curioso Fenomeno Della poltiglia in mare – il mare sporco. «La Venezia. «La Venezia» 17–18 (1891).Forti, A. Alcune osservazioni Sul mare Sporco ed in particolare Sul Fenomeno Avvenuto nel 1905. Nuovo Giornale Botanico Italiano N S XIII, (1906).Hadjal, M. et al. Those floating materials in the Northern Adriatic sea: observations from satellites. Sci. Total Environ. 984, 179662 (2025).
    Google Scholar 
    Le Mucillagini nell’Adriatico e nel Tirreno. ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale https://www.isprambiente.gov.it/it/pubblicazioni/quaderni/ricerca-marina/le-mucillaggini-nelladriatico-e-nel-tirrenoMorenos, L. Le diverse Ipotesi Sul Fenomeno Del mare Sporco Nell. «Notarisia» Di D Levi VIII, (1892).Morenos, L. Risposta Ad Uno Scritto Critico Del Sig. (1883).Renier, D. A. La Materia Che Infestò Il Nostro Golfo Nel 1872, Ricomparsa Nel 1891 (Tipografia L. Duse, 1891).Rinaldi, A. Aggregati mucillaginosi Nei Mari italiani. I casi Dell’adriatico e Del Tirreno nel quadriennio 1988–1991. La Crisi Del mediterraneo in Seguito Alla fioritura Di masse algali. Accad. Internazionale Di Scienze E Tecniche Subacquee. 9, 47–60 (1992).
    Google Scholar 
    Schreiber, B. Osservazioni Su Di Un principio Di ‘Mar sporco’ in Una Valle Lagunare Veneta. 123–131 (1928).Stachowitsch, M. Mass mortality in the Gulf of trieste: the course of community destruction. Mar. Ecol. 5, 243–264 (1984).
    Google Scholar 
    Stachowitsch, M., Fanuko, N. & Richter, M. Mucous aggregates in the Adriatic sea: an overview of stages and occurrences. Mar. Ecol. (P S Z. N I). 11, 327–350 (1990).
    Google Scholar 
    Zanardini, G. & Zanon, V. Atti dell’Ist. Venez. X serie IV, pag. 1885. Esame di un campione di ‘Mare sporco’ del golfo di Fiume. Memorie della Pontificia Accademia delle Scienze dei Nuovi Lincei 15, 449–473 (1872). (1931).Zavodnik, D. Benthic communities in the Adriatic sea: reflects of pollution. Thalassia Jugoslavica. 13, 413–422 (1977).
    Google Scholar 
    Rinaldi, A., Vollenweider, R. A., Montanari, G., Ferrari, C. R. & Ghetti, A. Mucilages in Italian seas: the Adriatic and Tyrrhenian Seas, 1988–1991. Sci. Total Environ. 165, 165–183 (1995).
    Google Scholar 
    Giani, M. et al. The organic matrix of pelagic mucilaginous aggregates in the Tyrrhenian sea (Mediterranean sea). Mar. Chem. 132–133, 83–94 (2012).
    Google Scholar 
    Yardımcı, F., Esi, Ç. & Ertürk., A. A Shap-Based Analysis of Remote Sensing Indices for Marine Mucilage Detection and Mapping. (2024).Savun-hekimoğlu, B. & Gazioğlu, C. Mucilage problem in the Semi-Enclosed seas: recent outbreak in the sea of Marmara. Int. J. Environ. Geoinformatics. 8, 402–413 (2021).
    Google Scholar 
    MacKenzie, L., Sims, I., Beuzenberg, V. & Gillespie, P. Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, new Zealand. Harmful Algae. 1, 69–83 (2002).
    Google Scholar 
    Taylor, F. J., Taylor, N. J. & Walsby, J. R. A bloom of the planktonic diatom, Cerataulina pelagica, off the Coast of Northeastern New Zealand in 1983, and its contribution to an associated mortality of fish and benthic fauna. Int. Rev. Gesamt Hydrobiol. 70, 773–795 (1985).
    Google Scholar 
    Vilibić, I. et al. Extraordinary mucilage event in the Northern Adriatic in 2024—a glimpse into the future climate? Estuar. Coast Shelf Sci. 317, 109222 (2025).
    Google Scholar 
    Stachowitsch, M., Fanuko, N. & Richter, M. Mucus aggregates in the Adriatic sea: an overview of stages and occurrences. Mar. Ecol. 11, 327–350 (1990).
    Google Scholar 
    Precali, R. et al. Mucilaginous aggregates in the Northern Adriatic in the period 1999–2002: typology and distribution. Sci. Total Environ. 353, 10–23 (2005).
    Google Scholar 
    Mecozzi, M., Pietrantonio, E., Di Noto, V. & Pápai, Z. The Humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation. Mar. Chem. 95, 255–269 (2005).
    Google Scholar 
    Kovac, N. et al. Chemical composition of macroaggregates in the Northern Adriatic sea. Org. Geochem. 35, 1095–1104 (2004).
    Google Scholar 
    Kovač, N., Viers, J., Faganeli, J., Bajt, O. & Pokrovsky, O. S. Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites 13, (2023).Najdek, M., Debobbis, D., Mioković, D. & Ivančić, I. Fatty acid and phytoplankton compositions of different types of mucilaginous aggregates in the Northern Adriatic. J. Plankton Res. 24, 429–441 (2002).
    Google Scholar 
    Totti, C. et al. Phytoplankton size-distribution and community structure in relation to mucilage occurrence in the Northern Adriatic sea. Mucilages Adriatic Tyrrhenian Seas. 353, 204–217 (2005).
    Google Scholar 
    Revelante, N. & Gilmartin, M. The phytoplankton composition and population enrichment in gelatinous ‘macroaggregates’ in the Northern Adriatic during the summer of 1989. J. Exp. Mar. Bio Ecol. 146, 217–233 (1991).
    Google Scholar 
    Najdek, M., Blažina, M., Djakovac, T. & Kraus, R. The role of the diatom Cylindrotheca closterium in a mucilage event in the Northern Adriatic sea: coupling with high salinity water intrusions. J. Plankton Res. 27, 851–862 (2005).
    Google Scholar 
    Pistocchi, R. et al. Relevance of the dinoflagellate Gonyaulax fragilis in mucilage formations of the Adriatic sea. Sci. Total Environ. 353, 307–316 (2005).
    Google Scholar 
    Pompei, M. et al. Correlation between the presence of Gonyaulax fragilis (Dinophyceae) and the mucilage phenomena of the Emilia-Romagna Coast (northern Adriatic Sea). Harmful Algae. 2, 301–316 (2003).
    Google Scholar 
    Uta Passow. Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar. Ecol. Prog Ser. 236, 1–12 (2002).
    Google Scholar 
    Fukao, T., Kimoto, K. & Kotani, Y. Production of transparent exopolymer particles by four diatom species. Fish. Sci. 76, 755–760 (2010).
    Google Scholar 
    Degobbis, D., Malej, A. & Umani, S. F. The mucilage phenomenon in the Northern Adriatic Sea. A critical review of the present scientific hypotheses. Ann. Ist Super Sanita. 35, 373–381 (1999).
    Google Scholar 
    Russo, A. et al. Meteorological and oceanographic conditions in the Northern Adriatic sea during the period June 1999–July 2002: influence on the mucilage phenomenon. Mucilages Adriatic Tyrrhenian Seas. 353, 24–38 (2005).
    Google Scholar 
    Urbani, R., Magaletti, E., Sist, P. & Cicero, A. M. Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: effect of P-depletion and growth status. Sci. Total Environ. 353, 300–306 (2005).
    Google Scholar 
    Dubelaar, G. B., Gerritzen, P. L., Beeker, A. E., Jonker, R. R. & Tangen, K. Design and first results of cytobuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37, 247–254 (1999).
    Google Scholar 
    Dubelaar, G. B. J. & Gerritzen, P. L. CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci. Mar. 64, 255–265 (2000).
    Google Scholar 
    Thyssen, M. et al. Interoperable vocabulary for marine microbial flow cytometry. Frontiers Mar. Science 9, (2022).Fragoso, G. M., Poulton, A. J., Pratt, N. J., Johnsen, G. & Purdie, D. A. Trait-based analysis of subpolar North Atlantic phytoplankton and plastidic ciliate communities using automated flow cytometer. Limnol. Oceanogr. 64, 1763–1778 (2019).
    Google Scholar 
    Pomati, F. et al. Individual cell based traits obtained by scanning Flow-Cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom. PLoS One. 8, e71677 (2013).
    Google Scholar 
    Margalef, R., Estrada, M. & Blasco, D. Functional Morphology of Organisms Involved in Red Tides, as Adapted to Decaying Turbulence. (1979).Glibert, P. M. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae. 55, 25–30 (2016).
    Google Scholar 
    Winkler, L. W. Die bestimmung des Im Wasser gelösten sauerstoffes. Ber Dtsch. Chem. Ges. 21, 2843–2854 (1888).
    Google Scholar 
    Sòria-Perpinyà, X. et al. Assessment of Sentinel-2-MSI atmospheric correction processors and in situ spectrometry waters quality algorithms. Remote Sens. (Basel) 14, (2022).Ivanda, A., Šerić, L., Bugarić, M. & Braović, M. Mapping Chlorophyll-a concentrations in the Kaštela Bay and Brač channel using ridge regression and Sentinel-2 satellite images. Electronics (Basel) 10, (2021).Ansper, A. & Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European union water framework directive reporting purposes. Remote Sens. (Basel) 11, (2019).Li, J., Carlson, R. R., Knapp, D. E. & Asner, G. P. Shallow coastal water turbidity monitoring using planet Dove satellites. Remote Sens. Ecol. Conserv. 8, 521–535 (2022).
    Google Scholar 
    Mansaray, A. S. et al. Comparing planetscope to Landsat-8 and Sentinel-2 for sensing water quality in reservoirs in agricultural watersheds. Remote Sens. (Basel). 13, 1847 (2021).
    Google Scholar 
    Wasehun, E. T., Beni, L. H., Di Vittorio, C. A., Zarzar, C. M. & Young, K. R. L. Comparative analysis of Sentinel-2 and planetscope imagery for chlorophyll-a prediction using machine learning models. Ecol. Inf. 85, 102988 (2025).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Preprint at (2023). https://www.r-project.org/Oksanen, J. et al. vegan: Community Ecology Package. Preprint at (2022). https://cran.r-project.org/package=veganGalili, T. Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics Preprint at. https://doi.org/10.1093/bioinformatics/btv428 (2015).
    Google Scholar 
    Kolde, R. & pheatmap Pretty Heatmaps. Preprint at (2019). https://cran.r-project.org/package=pheatmapTang, Y., Horikoshi, M. & Li, W. Ggfortify unified interface to visualize statistical result of popular R packages. The R Journal 8 Preprint at httpsjournal.r-project.org (2016).Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A. & Crise, A. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic sea. Ocean. Sci. 10, 771–797 (2014).
    Google Scholar 
    Mihanović, H. et al. Observation, preconditioning and recurrence of exceptionally high salinities in the Adriatic sea. Front. Mar. Sci. 8 (2021). Ricci, F. et al. Variability of hydrographic and biogeochemical properties in the North-western Adriatic coastal waters in relation to river discharge and climate changes. Chemosphere 361, 142486 (2024).
    Google Scholar 
    Vlašiček, I. et al. Cluster analysis of long-term phytoplankton data from the Northern Adriatic reveals environmental influences and disruptions in seasonal patterns. Front Ecol. Evol. 13 (2025). Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar Coast Shelf Sci 115, (2012). Godrijan, J., Marić, D., Tomažić, I., Precali, R. & Pfannkuchen, M. Seasonal phytoplankton dynamics in the coastal waters of the north-eastern Adriatic sea. J. Sea Res. 77, 32–44 (2013).
    Google Scholar 
    Bernardi Aubry, F. & Acri, F. Phytoplankton seasonality and exchange at the inlets of the lagoon of Venice (July 2001–June 2002). Lagoon Venice Circulation Water Exch. Ecosyst. Functioning. 51, 65–76 (2004).
    Google Scholar 
    Cabrini, M., Umani, S. F. & Honsell, G. Mucilaginous aggregates in the Gulf of Trieste (Northern Adriatic Sea): analysis of the phytoplanktonic communities in the period June—August 1989. in Marine Coastal Eutrophication (eds Vollenweider, R. A., Marchetti, R. & Viviani, R.) 557–568 (Elsevier, Amsterdam, (1992).
    Google Scholar 
    Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic sea in the period 2003–2006. Mar. Ecol. 29, 449–468 (2008).
    Google Scholar 
    Kumar, M. et al. Mixotrophic growth of a ubiquitous marine diatom. Sci. Adv. 10, eado2623 (2024).
    Google Scholar 
    Hasle, G. R. The marine, planktonic diatom family Thalassionemataceae: morphology, taxonomy and distribution. Diatom Res. 16, 1–82 (2001).
    Google Scholar 
    Kraus, R. & Supić, N. Sea dynamics impacts on the macroaggregates: A case study of the 1997 mucilage event in the Northern Adriatic. Prog Oceanogr. 138, 249–267 (2015).
    Google Scholar 
    Neri, F., Romagnoli, T., Accoroni, S., Huang, B. & Totti, C. Phytoplankton and environmental drivers at a long-term offshore station in the Northern Adriatic sea (1988–2018). Cont. Shelf Res. 242, 104746 (2022).
    Google Scholar 
    Flander-Putrle, V. & Malej, A. The evolution and phytoplankton composition of mucilaginous aggregates in the Northern Adriatic sea. Harmful Algae. 7, 752–761 (2008).
    Google Scholar 
    Bernardi Aubry, F., Acri, F., Bastianini, M., Finotto, S. & Pugnetti, A. Differences and similarities in the phytoplankton communities of two coupled transitional and marine ecosystems (the lagoon of Venice and the Gulf of Venice – Northern Adriatic Sea). Front Mar. Sci 9, (2022).Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. in Fifty Years after the ‘Homage To Santa Rosalia’: Old and New Paradigms on Biodiversity in Aquatic Ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, Dordrecht, (2010).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 36, 276–293 (2022).
    Google Scholar 
    Cai, S. et al. Salinity threshold for phosphorus limitation in an estuary-coast continuum. Front Mar. Sci. 11, (2024). Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. Benefits, costs and taxonomic distribution of marine phytoplankton body size. J. Plankton Res. 39, 494–508 (2017).
    Google Scholar 
    Riegman, R., Kuipers, B. R., Noordeloos, A. A. M. & Witte, H. J. Size-differential control of phytoplankton and the structure of plankton communities. Neth. J. Sea Res. 31, 255–265 (1993).
    Google Scholar 
    Acevedo-Trejos, E., Brandt, G., Bruggeman, J. & Merico, A. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Sci. Rep. 5, 8918 (2015).
    Google Scholar 
    Cantarero, S. et al. Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment. Biogeosciences 21, 3927–3958 (2024).
    Google Scholar 
    Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant. Physiol. 167, 118–136 (2015).
    Google Scholar 
    Napoléon, C., Raimbault, V. & Claquin, P. Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. PLoS One. 8, e66423 (2013).
    Google Scholar 
    Key, T. et al. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol. 12, 95–104 (2010).
    Google Scholar 
    Bagby, S. C. & Chisholm, S. W. Response of Prochlorococcus to varying CO2:O2 ratios. ISME J. 9, 2232–2245 (2015).
    Google Scholar 
    Basterretxea, G., Font-Muñoz, J. S. & Tuval, I. Phytoplankton orientation in a turbulent ocean: A microscale perspective. Front Mar. Sci 7, (2020).McFarland, M., Nayak, A. R., Stockley, N., Twardowski, M. & Sullivan, J. Enhanced light absorption by horizontally oriented diatom colonies. Front Mar. Sci 7, (2020).Luigi Naselli-Flores & Rossella Barone. Invited Review – Fight on Plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogam Algol. 32, 157–204 (2011).
    Google Scholar 
    Finkel, Z. V. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol. Oceanogr. 46, 86–94 (2001).
    Google Scholar 
    Pahlow, M., Riebesell, U. & Wolf-Gladrow, D. A. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol. Oceanogr. 42, 1660–1672 (1997).
    Google Scholar 
    Fisher, N. L. & Halsey, K. H. Mechanisms that increase the growth efficiency of diatoms in low light. Photosynth Res. 129, 183–197 (2016).
    Google Scholar 
    Vanucci, S. Do mucilage events influence pico- and nanoplankton size and structure in the Adriatic sea? Chem. Ecol. 19, 299–320 (2003).
    Google Scholar 
    Wikner, J., Vikström, K. & Verma, A. Regulation of marine plankton respiration: A test of models. Front Mar. Sci 10–2023, (2023).Download referencesAcknowledgementsThis work was funded by the Croatian Science Foundation (HRZZ) Projects: Life Strategies of Phytoplankton in the Northern Adriatic (UIP-2014-09-6563) and Molecular Life Strategies of Phytoplankton in the Northern Adriatic ADRILife (UIP-2020-02-7868). Lana Grižančić is supported by the HRZZ project DOK-2021-02-5104.The study was also supported by the H2020 program project JERICO-S3 and the Interreg Italy-Croatia projects AdriaClim, Cascade, ALIENA, Marless and BRIGANTINE from the European Union regional development funds. We thank the crew of R/V Vila Velebita and R/V Burin for help during sampling.We are grateful to Denis Škalic and Victor Stinga Perusco for their assistance with data acquisition and sensor maintenance, and to Marija Fornažar for her expert advice on flow cytometry.Author informationAuthors and AffiliationsCenter for Marine Research, Ruđer Bošković Institute, Rovinj, CroatiaIvan Vlašiček, Daniela Marić Pfannkuchen, Mirta Smodlaka Tanković, Ana Baričević, Tjaša Kogovšek, Nataša Kužat, Mia Knjaz, Lana Grižančić, Ivan Podolšak, Ariana Turković & Martin PfannkuchenSeaCras, Zagreb, CroatiaRobert Šulc, Robert Kopal & Mario ŠpadinaAlgebra Bernays University, Zagreb, CroatiaRobert KopalAuthorsIvan VlašičekView author publicationsSearch author on:PubMed Google ScholarDaniela Marić PfannkuchenView author publicationsSearch author on:PubMed Google ScholarMirta Smodlaka TankovićView author publicationsSearch author on:PubMed Google ScholarAna BaričevićView author publicationsSearch author on:PubMed Google ScholarTjaša KogovšekView author publicationsSearch author on:PubMed Google ScholarNataša KužatView author publicationsSearch author on:PubMed Google ScholarMia KnjazView author publicationsSearch author on:PubMed Google ScholarLana GrižančićView author publicationsSearch author on:PubMed Google ScholarIvan PodolšakView author publicationsSearch author on:PubMed Google ScholarAriana TurkovićView author publicationsSearch author on:PubMed Google ScholarRobert ŠulcView author publicationsSearch author on:PubMed Google ScholarRobert KopalView author publicationsSearch author on:PubMed Google ScholarMario ŠpadinaView author publicationsSearch author on:PubMed Google ScholarMartin PfannkuchenView author publicationsSearch author on:PubMed Google ScholarContributionsI.V. designed the research, analysed samples and *in situ* data and discussed results. D.M.P. contributed to the research design, discussion and approved the manuscript. (M.S.T, A.B., T.K., N.K., M.K., L.G., I.P., and A.T.) contributed to the discussion and approved the manuscript. (R.Š., M.Š. and R.K.) contributed with analysis of satellite derived data and approved the manuscript. M.P. led the research team and helped in designing of the study and discussion of results.Corresponding authorCorrespondence to
    Daniela Marić Pfannkuchen.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleVlašiček, I., Pfannkuchen, D.M., Tanković, M.S. et al. High-frequency observations during Adriatic mucilage event reveal unique phytoplankton traits and diversity response.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31369-4Download citationReceived: 21 May 2025Accepted: 02 December 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41598-025-31369-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Identification of a deep-branching lineage of algae using environmental plastid genomes

    AbstractMarine algae underpin entire ocean ecosystems. Yet algae in culture poorly represent their large environmental diversity, and we have a limited understanding of their convoluted evolution by endosymbiosis. Here, we perform a phylogeny-guided plastid genome-resolved metagenomic survey of Tara Oceans expeditions. We present a curated resource of 660 new non-redundant plastid genomes of environmental marine algae, vastly expanding plastid genome diversity within major algal groups, including many without closely related reference genomes. Notably, we recover four plastid genomes, including one near-complete, forming a deep-branching plastid lineage of nano-size algae that we informally name leptophytes. This group is globally distributed and generally rare, although it can reach relatively high abundance in the Arctic. A near-complete mitochondrial genome showing strong co-occurrence with leptophyte plastids is also recovered and assigned to this group. Leptophytes encompass the enigmatic plastid group DPL2, one of the very few known plastid groups not clearly belonging to major algal groups and previously known only from 16S rDNA sequences. Comparative organellar genomics and phylogenomics indicate that leptophytes are sister to haptophytes, and raise the intriguing possibility that cryptophytes acquired their plastids from haptophytes. Collectively, our study demonstrates that metagenomics can reveal hidden organellar diversity, and improve models of plastid evolution.

    Data availability

    The 937 metagenomes from Tara Oceans used in the study are publicly available at the EBI under project PRJEB402. Data our study generated has been deposited in an online repository: https://doi.org/10.17044/scilifelab.2821217381. This link provides access to the individual FASTA files from each plastid and mitochondrial genome used in our study (including the 660 non-redundant ptMAGs and 34 mtMAGs), the co-assembly of the top six samples where Lepto-01 was most abundant, individual gene alignments, concatenated and trimmed alignments, and maximum-likelihood and Bayesian tree files for the phylogenomic dataset. Source Data for Fig. 4, Supplementary Figs. 10-12, and Supplementary Fig. 22 can be found on the linked GitHub repository, while source data for Supplementary Figs. 2-6 is provided as Supplementary Data 1.
    Code availability

    All scripts used for genome annotation and phylogenetic analyses are available on GitHub: https://github.com/burki-lab/ptMAGs with the identifier: 10.5281/zenodo.1763560482.
    ReferencesAndersen, R. A. Diversity of eukaryotic algae. Biodivers. Conserv. 1, 267–292 (1992).
    Google Scholar 
    Archibald, J. M. The puzzle of plastid evolution. Curr. Biol. 19, R81–R88 (2009).
    Google Scholar 
    Irisarri, I., Strassert, J. F. H. & Burki, F. Phylogenomic insights into the origin of primary plastids. Syst. Biol. 71, 105–120 (2022).
    Google Scholar 
    Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).
    Google Scholar 
    Penot, M., Dacks, J. B., Read, B. & Dorrell, R. G. Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae. Appl. Phycol. 3, 340–359 (2022).
    Google Scholar 
    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 113, E1516–E1525 (2016).
    Google Scholar 
    Dorrell, R. G. et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6, e23717 (2017).
    Google Scholar 
    Stiller, J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Commun. 5, 5764 (2014).
    Google Scholar 
    Ševčíková, T. et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5, 10134 (2015).
    Google Scholar 
    Keeling, P. J. et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol 12, e1001889 (2014).
    Google Scholar 
    Moreira, D. & López-García, P. The rise and fall of Picobiliphytes: how assumed autotrophs turned out to be heterotrophs. BioEssays 36, 468–474 (2014).
    Google Scholar 
    Kawachi, M. et al. Rappemonads are haptophyte phytoplankton. Curr. Biol. 31, 2395–2403 (2021).
    Google Scholar 
    Choi, C. J. et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr. Biol. 27, R15–R16 (2017).
    Google Scholar 
    Schön, M. E. et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat. Commun. 12, 6651 (2021).
    Google Scholar 
    Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).
    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).
    Google Scholar 
    Ruscheweyh, H.-J. et al. Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 10, 212 (2022).
    Google Scholar 
    Dmitrijeva, M. et al. The mOTUs online database provides web-accessible genomic context to taxonomic profiling of microbial communities. Nucleic Acids Res. 53, D797–D805 (2025).
    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).
    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for’omics data. PeerJ 3, e1319 (2015).
    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
    Google Scholar 
    Kim, J. I. et al. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol. Evol. 9, 1859–1872 (2017).
    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    Google Scholar 
    Muñoz-Gómez, S. A. & Slamovits, C. H. Plastid Genomes in the Myzozoa. in Advances in Botanical Research (eds Chaw, S.-M. & Jansen, R. K.) vol. 85 55–94 (Academic Press, 2018).Matsuo, E. et al. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front. Plant Sci. 13, 918543 (2022).
    Google Scholar 
    Kamikawa, R. et al. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol. Evol. 7, 1133–1140 (2015).
    Google Scholar 
    de Vries, J. & Archibald, J. M. Plastid genomes. Curr. Biol. 28, R336–R337 (2018).
    Google Scholar 
    Ha, J.-S. et al. Plastid genome evolution of two colony-forming benthic Ochrosphaera neapolitana Strains (Coccolithales, Haptophyta). Int. J. Mol. Sci. 24, 10485 (2023).
    Google Scholar 
    Baños, H., Susko, E. & Roger, A. J. Is Over-parameterization a problem for profile mixture models? Syst. Biol. 73, 53–75 (2024).
    Google Scholar 
    Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. 72, 767–780 (2023).
    Google Scholar 
    Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 640, 974–981 (2025).
    Google Scholar 
    Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).
    Google Scholar 
    Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2020).
    Google Scholar 
    Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).
    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
    Google Scholar 
    Pierella Karlusich, J. J. et al. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol. Ecol. Resour. 23, 16–40 (2023).
    Google Scholar 
    Hirakawa, Y. & Ishida, K.-I. Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biol. Evol. 6, 974–980 (2014).
    Google Scholar 
    Shrestha, B. et al. Global metagenomics reveals plastid diversity and unexplored algal lineages. bioRxiv 2025.03644651 https://doi.org/10.1101/2025.03.28.644651 (2025).Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).
    Google Scholar 
    McFadden, G. I. The cryptomonad nucleomorph. Protoplasma 254, 1903–1907 (2017).
    Google Scholar 
    Tanifuji, G. et al. Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set. Genome Biol. Evol. 3, 44–54 (2011).
    Google Scholar 
    Rice, D. W. & Palmer, J. D. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4, 31 (2006).
    Google Scholar 
    Khan, H. et al. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24, 1832–1842 (2007).
    Google Scholar 
    Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).
    Google Scholar 
    Ponce-Toledo, R. I., Moreira, D., López-García, P. & Deschamps, P. Molecular phylogeny of the SELMA translocation machinery recounts the evolution of complex photosynthetic eukaryotes. Mol. Biol. Evol. msaf167 https://doi.org/10.1093/molbev/msaf167 (2025).Pietluch, F., Mackiewicz, P., Ludwig, K. & Gagat, P. A new model and dating for the evolution of complex plastids of red alga origin. Genome Biol. Evol. 16, evae192 (2024).
    Google Scholar 
    Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).
    Google Scholar 
    Gaïa, M. et al. Closest relatives of poxviruses are spread in the gut of humans and animals worldwide: the egoviruses. 2024.03.23.586382 Preprint at https://doi.org/10.1101/2024.03.23.586382 (2025).Martinez-Gutierrez, C. A. & Aylward, F. O. Phylogenetic signal, congruence, and uncertainty across bacteria and archaea. Mol. Biol. Evol. 38, 5514–5527 (2021).
    Google Scholar 
    Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023).
    Google Scholar 
    Puerta, M. V. S., Bachvaroff, T. R. & Delwiche, C. F. The complete plastid genome sequence of the haptophyte emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12, 151–156 (2005).
    Google Scholar 
    Butenko, A., Lukeš, J., Speijer, D. & Wideman, J. G. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol. 22, 15 (2024).
    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    Google Scholar 
    Lang, B. F. et al. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front. Plant Sci. 14, 1222186 (2023).
    Google Scholar 
    Greiner, S., Lehwark, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–W64 (2019).
    Google Scholar 
    Janouškovec, J., Horák, A., Oborník, M., Lukeš, J. & Keeling, P. J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 107, 10949–10954 (2010).
    Google Scholar 
    Ponce-Toledo, R. I. et al. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Curr. Biol. 27, 386–391 (2017).
    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    Google Scholar 
    Kozlov, A., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    Google Scholar 
    Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 34, 3929–3930 (2018).
    Google Scholar 
    Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).
    Google Scholar 
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    Google Scholar 
    Liu, C. et al. The influence of the number of tree searches on maximum likelihood inference in phylogenomics. Syst. Biol. 73, 807–822 (2024).
    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
    Google Scholar 
    Yu, G. Using GGTREE to visualize data on tree-like structures. Curr Protoc Bioinform 69, e96 (2020).
    Google Scholar 
    Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238 (2019).
    Google Scholar 
    Boyer, T. P. et al. World ocean database 2013. National Oceanographic Data Center (U.S.), Ocean Climate Laboratory https://doi.org/10.7289/V5NZ85MT (2013).Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).
    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
    Google Scholar 
    Mahé, F., Henry, N., de Vargas, C., Tara Oceans Consortium, C. & Tara Oceans Expedition, P. rDNA 18S V9 metabarcoding tables (Swarm) for Tara Oceans Expedition (2009-2013), including Tara Polar Circle Expedition (2013). Zenodo (2022).Zavadska, D., Henry, N., Auladell, A., Berney, C. & Richter, D. J. Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes. PLOS ONE 19, e0303697 (2024).
    Google Scholar 
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).Aphalo, P. ggpmisc: Miscellaneous Extensions to ‘ggplot2’. (Springer, 2025).Shulgina, Y. & Eddy, S. R. Codetta: predicting the genetic code from nucleotide sequence. Bioinformatics 39, btac802 (2022).
    Google Scholar 
    Jamy, M. Data for ‘Identification of a deep-branching lineage of algae using environmental plastid genomes’. figshare https://doi.org/10.17044/scilifelab.28212173 (2025).Jamy, M. Code for ‘Identification of a deep-branching lineage of algae using environmental plastid genomes’. Zenodo https://doi.org/10.5281/zenodo.17635604 (2025).Keeling, P. J. & Eglit, Y. Openly available illustrations as tools to describe eukaryotic microbial diversity. PLoS Biol. 21, e3002395 (2023).
    Google Scholar 
    Download referencesAcknowledgementsWe thank Shinichi Sunagawa for having facilitated the recovery of relevant data from the mOTU metagenomic database maintained by his research group at the Department of Biology at ETH Zürich. We thank A. Roger, H. Baños, and C. McCarthey for discussions, and for kindly providing custom scripts for running the phylogenetic models MEOW and GF-MIX. We thank J.E. Dharamshi for discussions about phylogenetic analyses. Our survey was made possible by the sampling and sequencing efforts of the Tara Oceans Project. Tara Oceans (which includes the Tara Oceans and Tara Oceans Polar Circle expeditions) would not exist without the leadership of the Tara Oceans Foundation and the continuous support of 23 institutes (https://oceans.taraexpeditions.org/). This article is contribution number 164 of Tara Oceans. Phylogenetic analyses were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS 2024/5-197), partially funded by the Swedish Research Council through grant agreement no. 2022-06725. M.J. was supported by the Swedish Research Council (International Postdoc grant 2022-00351). FB’s research is supported by grants from the European Research Council (ERC consolidator grant 101044505), the Swedish Research Council VR (2021-04055), and Science for Life Laboratory. TD’s research is supported by a grant from the l’Agence Nationale de la Recherche (ANR-23-CE02-0022). We also thank the commitment of the CNRS and Genoscope/CEA. Some of the computations were performed using the platine, titane and curie HPC machine provided through GENCI grants (t2011076389, t2012076389, t2013036389, t2014036389, t2015036389 and t2016036389).FundingOpen access funding provided by Uppsala University.Author informationAuthor notesEric Pelletier & Tom O. DelmontPresent address: Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOsee, Paris, FranceAuthors and AffiliationsDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, SwedenMahwash JamyDepartment of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, SwedenThomas Huber & Fabien BurkiGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, FranceThibault Antoine, Eric Pelletier & Tom O. DelmontResearch Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOsee, Paris, FranceThibault AntoineDepartment of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, SwitzerlandHans-Joachim RuscheweyhGlobal Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandLucas PaoliAuthorsMahwash JamyView author publicationsSearch author on:PubMed Google ScholarThomas HuberView author publicationsSearch author on:PubMed Google ScholarThibault AntoineView author publicationsSearch author on:PubMed Google ScholarHans-Joachim RuscheweyhView author publicationsSearch author on:PubMed Google ScholarLucas PaoliView author publicationsSearch author on:PubMed Google ScholarEric PelletierView author publicationsSearch author on:PubMed Google ScholarTom O. DelmontView author publicationsSearch author on:PubMed Google ScholarFabien BurkiView author publicationsSearch author on:PubMed Google ScholarContributionsF.B. and T.O.D. conceived the project. T.O.D. characterised the ptMAGs. M.J., F.B. and T.H., performed phylogenetic analyses. T.A., E.P. and T.O.D. created the plastid genomic database and performed surveys for nucleomorphs. H.J.R. and L.P. retrieved relevant data from mOTUs. M.J. and T.H. annotated the ptMAGs, and E.P. performed mapping analyses. F.B., M.J., and T.O.D. wrote the manuscript with input from all the authors.Corresponding authorsCorrespondence to
    Tom O. Delmont or Fabien Burki.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks John Archibald and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescriptions of Additional Supplementary FilesSupplementary Dataset 1Supplementary Dataset 2Supplementary Dataset 3Supplementary Dataset 4Supplementary Dataset 5Supplementary Dataset 6Reporting SummaryTransparent Peer Review fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleJamy, M., Huber, T., Antoine, T. et al. Identification of a deep-branching lineage of algae using environmental plastid genomes.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67401-4Download citationReceived: 06 February 2025Accepted: 28 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41467-025-67401-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    The soil microbiome as an indicator of ecosystem multifunctionality in European soils

    AbstractThe role of soil microorganisms in supporting multiple ecosystem functions (multifunctionality) remains poorly understood across diverse environmental conditions. Here, we investigate 484 soils from 27 European countries spanning a range of climatic and edaphic contexts. We assess the contribution of climate, soil properties, and soil microbiome traits (i.e., the relative abundance of co-occurring taxa) to explain six key functional proxies related to soil structure, biochemical activity, and productivity. We find the highest multifunctionality values in grasslands, woodlands, loamy and acidic soils, and temperate humid regions, and the lowest in croplands, alkaline soils, and drier regions. Soil properties explain 12–31% of variation in multifunctionality, with microbial biomass and nitrogen content emerging as the strongest predictors. The soil microbiome accounts for 2–14% of unique variance in multifunctionality but explains more than 25% of variation in enzymatic activities and primary productivity in clay-rich soils and soils originating from temperate dry regions. Specific taxa, particularly within Actinobacteria, Acidobacteria, and the fungal genus Mortierella consistently emerge as strong predictors of ecosystem multifunctionality. Our findings highlight that ecosystem multifunctionality is jointly shaped by soil properties and microbial communities. We argue that specific taxa hold potential as context-dependent indicators for multifunctionality monitoring across environmental gradients.

    Data availability

    The data that supports the findings of this study are freely available in figshare with the identifier https://doi.org/10.6084/m9.figshare.28645625. Raw DNA sequences can be accessed through the European Soil Data Centre (ESDAC) portal: https://esdac.jrc.ec.europa.eu/content/soil-biodiversity-dna-bacteria-and-fungi. The raw data (DNA sequences) generated in this study have been deposited in the Sequence Read Archive (SRA) database under BioProject ID PRJNA952168. Detailed information on the taxonomic composition of bacterial and fungal modules is available as Supplementary Dataset 1. Detailed information on Structural Equation Models (SEMs) results is availabel as Supplementary Dataset 2.
    Code availability

    Code used to perform all analyses described in this study is freely available at https://github.com/fromerob/Multifunctionality.git.
    ReferencesAnthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl. Acad. Sci. 120, e2304663120 (2023).
    Google Scholar 
    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—a global review. Geoderma 262, 101–111 (2016).
    Google Scholar 
    Calzolari, C. et al. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 261, 190–203 (2016).
    Google Scholar 
    Greiner, L., Keller, A., Grêt-Regamey, A. & Papritz, A. Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69, 224–237 (2017).
    Google Scholar 
    Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol 21, 6–20 (2023).
    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021).
    Google Scholar 
    Creamer, R. E., Barel, J. M., Bongiorno, G. & Zwetsloot, M. J. The life of soils: Integrating the who and how of multifunctionality. Soil Biol. Biochem 166, 108561 (2022).
    Google Scholar 
    Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).
    Google Scholar 
    Romero, F., Jiao, S. & van der Heijden, M. G. A. Impact of microbial diversity and pesticide application on plant growth, litter decomposition and carbon substrate use. Soil Biol. Biochem. 208, 109866 (2025).
    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
    Google Scholar 
    Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).
    Google Scholar 
    Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636, 690–696 (2024).
    Google Scholar 
    George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).
    Google Scholar 
    Riggi, L. G. A. et al. Establishing assessment criteria for soil bioindicators: insights from case studies in Europe. Ecol. Indic. 178, 114063 (2025).
    Google Scholar 
    Tang, B. et al. Mycorrhization enhances plant growth and stabilizes biomass allocation under drought. Glob. Change Biol. 30, e17438 (2024).
    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial richness and composition independently drive soil multifunctionality. Funct. Ecol. 31, 2330–2343 (2017).
    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).
    Google Scholar 
    van Zanten, H. H. E. et al. Circularity in Europe strengthens the sustainability of the global food system. Nat. Food 4, 320–330 (2023).
    Google Scholar 
    Labouyrie, M. et al. Interaction effects of pH and land cover on soil microbial diversity are climate-dependent. Environ. Microbiol. 26, e16572 (2024).Siles, J. A. et al. Land use interacts with climate to influence microbial diversity-to-biomass ratios across Europe via soil organic carbon and nitrogen. Mol. Ecol. n/a, e17806 (2025).
    Google Scholar 
    Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).
    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).
    Google Scholar 
    Ishimoto, C. K. et al. Microbial co-occurrence network and its key microorganisms in soil with permanent application of composted tannery sludge. Sci. Total Environ. 789, 147945 (2021).
    Google Scholar 
    Toju, H., Tanabe, A. S. & Sato, H. Network hubs in root-associated fungal metacommunities. Microbiome 6, 116 (2018).
    Google Scholar 
    Xu, Z. et al. Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality. Sci. Total Environ. 878, 162972 (2023).
    Google Scholar 
    M, H. S. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol 83, e02826–16 (2016).
    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils. Vol. 13 (Prentice Hall Upper Saddle River, 2008).L, L. C., Micah, H., Rob, K. & Noah, F. Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    Google Scholar 
    Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil Sci. 72, 1624–1639 (2021).
    Google Scholar 
    Wittwer, R. A. et al. Organic and conservation agriculture promote ecosystem multifunctionality. Sci. Adv. 7, eabg6995 (2021).
    Google Scholar 
    Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil Sci. 72, 1640–1654 (2021).
    Google Scholar 
    Scurlock, J. M. O., Johnson, K. & Olson, R. J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 8, 736–753 (2002).
    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
    Google Scholar 
    Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).
    Google Scholar 
    Bahram, M. et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13, 1430 (2022).
    Google Scholar 
    Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).
    Google Scholar 
    Peng, Z. et al. Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nat. Commun. 15, 3624 (2024).
    Google Scholar 
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
    Google Scholar 
    Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).
    Google Scholar 
    Henderson, K. A., Bauch, C. T. & Anand, M. Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proc. Natl. Acad. Sci. 113, 14552–14559 (2016).
    Google Scholar 
    Orgiazzi, A. et al. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).
    Google Scholar 
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).
    Google Scholar 
    Yeung, V., Miller, D. D. & Rutzke, M. A. Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. Food Anal. 129, 150 (2017).
    Google Scholar 
    Moeys, J. The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data. CRAN. R-Project 1–104 (2018).Fernández-Ugalde, O. et al. LUCAS 2018 Soil Module—Presentation of Dataset and Results. https://doi.org/10.2760/215013 (Publications Office of the European Union, 2022).Panagos, P. et al. Soil bulk density assessment in Europe. Agric. Ecosyst. Environ. 364, 108907 (2024).
    Google Scholar 
    Morita, H. & Akao, S. The effect of soil sample size, for practical DNA extraction, on soil microbial diversity in different taxonomic ranks. PLoS ONE 16, e0260121 (2021).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
    Google Scholar 
    Tedersoo, L. & Anslan, S. Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. Environ. Microbiol Rep. 11, 659–668 (2019).
    Google Scholar 
    Özkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome 10, 1–14 (2022).
    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    Google Scholar 
    Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).
    Google Scholar 
    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    Google Scholar 
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 1–13 (2008).
    Google Scholar 
    Smith, L. C. et al. Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).
    Google Scholar 
    Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).
    Google Scholar 
    Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).
    Google Scholar 
    Seybold, C. A. & Herrick, J. E. Aggregate stability kit for soil quality assessments. Catena 44, 37–45 (2001).
    Google Scholar 
    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 1, (2016).Rosseel, Y. et al. Package ‘lavaan’. Retrieved June 17, 2017 (2017).
    Google Scholar 
    Download referencesAcknowledgementsF.R. acknowledges funding from the Novo Nordisk Foundation through a Postdoctoral fellowship (grant reference number NNF24OC0094454). The LUCAS Survey is coordinated by Unit E4 of the Statistical Office of the European Union (EUROSTAT). The LUCAS Soil sample collection is supported by the Directorate-General Environment (DG-ENV), Directorate-General Agriculture and Rural Development (DG-AGRI) and Directorate-General Climate Action (DG-CLIMA) of the European Commission. M.D-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I  +  D  + I project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.v.d.H and F.R. acknowledge funding from the Swiss National Science Foundation (Switzerland) through grant no. 310030–188799 and from the European Union Horizon 2020 research and innovation program under grant agreement no. 862695 EJP SOIL-MINOTAUR.Author informationAuthors and AffiliationsPlant-Soil Interactions group, Agroscope, Zurich, SwitzerlandFerran Romero, Ido Rog & Marcel G. A. van der HeijdenDepartment of Plant and Microbial Biology, University of Zurich, Zurich, SwitzerlandFerran Romero, Ido Rog & Marcel G. A. van der HeijdenDepartment of Agroecology, Aarhus University, Slagelse, DenmarkFerran Romero & Mohammad BahramEuropean Commission, Joint Research Centre Ispra (JRC), Ispra, ItalyMaëva Labouyrie, Cristiano Ballabio, Panos Panagos & Arwyn JonesEuropean Dynamics, Brussels, BelgiumAlberto OrgiazziMycology and Microbiology Center, University of Tartu, Tartu, EstoniaLeho TedersooDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, EstoniaMohammad BahramDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenMohammad BahramGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyNico Eisenhauer, Marie Sünnemann & Carlos A. GuerraInstitute of Biology, Leipzig University, Leipzig, GermanyNico Eisenhauer & Marie SünnemannDepartment of Geography, University of Coimbra, Coimbra, PortugalCarlos A. GuerraLaboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, SpainDongxue Tao & Manuel Delgado-BaquerizoSchool of Ecology, Sun Yat-Sen University, Shenzhen, ChinaDongxue TaoState Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, ChinaShuo JiaoConsiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Firenze, ItalyStefano MocaliFreie Universität Berlin, Institute of Biology, Berlin, GermanyMatthias C. Rillig & Anika LehmannAuthorsFerran RomeroView author publicationsSearch author on:PubMed Google ScholarMaëva LabouyrieView author publicationsSearch author on:PubMed Google ScholarAlberto OrgiazziView author publicationsSearch author on:PubMed Google ScholarCristiano BallabioView author publicationsSearch author on:PubMed Google ScholarPanos PanagosView author publicationsSearch author on:PubMed Google ScholarArwyn JonesView author publicationsSearch author on:PubMed Google ScholarLeho TedersooView author publicationsSearch author on:PubMed Google ScholarMohammad BahramView author publicationsSearch author on:PubMed Google ScholarNico EisenhauerView author publicationsSearch author on:PubMed Google ScholarMarie SünnemannView author publicationsSearch author on:PubMed Google ScholarCarlos A. GuerraView author publicationsSearch author on:PubMed Google ScholarDongxue TaoView author publicationsSearch author on:PubMed Google ScholarIdo RogView author publicationsSearch author on:PubMed Google ScholarShuo JiaoView author publicationsSearch author on:PubMed Google ScholarStefano MocaliView author publicationsSearch author on:PubMed Google ScholarMatthias C. RilligView author publicationsSearch author on:PubMed Google ScholarAnika LehmannView author publicationsSearch author on:PubMed Google ScholarManuel Delgado-BaquerizoView author publicationsSearch author on:PubMed Google ScholarMarcel G. A. van der HeijdenView author publicationsSearch author on:PubMed Google ScholarContributionsF.R. contributed to conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft, writing – review & editing, and visualization. M.L. contributed to conceptualization, methodology, formal analysis, investigation, writing – review & editing, and data curation. A.O. contributed to conceptualization, methodology, resources, writing – review & editing, and data curation. C.B. contributed to methodology and resources. P.P. contributed to conceptualization, methodology, resources, writing – review & editing, project administration, and data curation. A.J. contributed to conceptualization, methodology, resources, writing – review & editing, project administration, and data curation. L.T. and M.B. contributed to resources, writing – review & editing, and data curation. N.E., M.S., and C.A.G. contributed to resources and writing – review & editing. D.T. contributed to methodology. I.R. and S.J. contributed to writing – review & editing. S.M. contributed to project administration and funding acquisition. M.C.R. and A.L. contributed to resources and writing – review & editing. M.D.B. contributed to writing – review & editing. M.v.d.H. contributed to conceptualization, methodology, resources, writing – original draft, writing – review & editing, supervision, project administration, and funding acquisition.Corresponding authorsCorrespondence to
    Ferran Romero or Marcel G. A. van der Heijden.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks Xiangang Hu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary InformationSupplementary Dataset 1Supplementary Dataset 2Reporting SummaryTransparent Peer Review fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleRomero, F., Labouyrie, M., Orgiazzi, A. et al. The soil microbiome as an indicator of ecosystem multifunctionality in European soils.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67353-9Download citationReceived: 28 February 2025Accepted: 28 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41467-025-67353-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships

    AbstractThe universality of the allometric model for describing the length–weight relationship in marine species has been questioned, particularly for some invertebrates such as sea urchins, clams, and barnacles. In such cases, nonparametric regression models may offer improved flexibility and capture specific patterns-such as inflection points in growth curves-not identified by standard parametric models. These features can support the identification of biologically meaningful thresholds relevant to fisheries, including size-dependent yield. Nonparametric quantile regression further enhances inference by characterizing variability across the entire distribution of body condition. Here, we assess the comparative performance of parametric and nonparametric regression models for the Atlantic surfclam, Spisula solidissima, using data collected from three regions along the U.S. Atlantic coast (Virginia, Delaware/Maryland, and New Jersey). First, we compare two mean regression approaches —a classic allometric model and a kernel-based nonparametric alternative— using a bootstrap-based procedure. Second, we apply quantile regression to both parametric and nonparametric frameworks to investigate size-dependent variation in growth patterns. Model selection for mean regressions was based on a hypothesis test contrasting the allometric model versus a general nonparametric alternative, while the quantile regressions were evaluated using a goodness-of-fit test derived from the cumulative sum of the gradient vector. Our results indicate that the allometric model provides a better fit in the mean regression context, while the nonparametric model proves more effective for quantile regression, particularly in detecting condition-dependent deviations and regional variability. Other long-lived marine bivalves, such as Arctica islandica and Mercenaria mercenaria, which show environmentally driven variation in growth and condition, may similarly benefit from modeling approaches that distinguish central from marginal populations.

    Data availability

    The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. The code used to estimate the models and perform the goodness-of-fit testing procedure is publicly available on GitHub at: https://github.com/sestelo/surfclam_length_weight_code.
    ReferencesRopes, J. W. Biological and fisheries data on the Atlantic surf clam, Spisula solidissima (Dillwyn) (NMFS/NEFSC Northeast Fisheries Science Center Technical Report Series No. 24. 88 pp. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts, 1980).NEFSC. 37th northeast regional stock assessment workshop (37th saw): Stock assessment review committee (sarc) consensus summary of assessments. C. Atlantic Surfclam. Northeast Fisheries Science Center Reference Document 03e16, pp. 284e433. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts. (2003).Merrill, A. & Ropes, J. The general distribution of the surf clam and ocean quahog. In Proceedings of the National Shellfisheries Association, vol. 59, 0–5 (1969).Weinberg, J. Density-dependent growth in the atlantic surfclam, Spisula solidissima, off the coast of the delmarva peninsula, usa. Mar. Biol. 130, 621–630 (1998).
    Google Scholar 
    Weinberg, J. R. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. J. du Conseil 62, 1444–1453 (2005).
    Google Scholar 
    NEFSC. 61th Northeast Regional Stock ssessment Workshop (61st SAW). Assessment Report. In Proceedings of the 61st Northeast Regional Stock Assessment Workshop, Northeast Fisheries Science Center, 464 p. (2017).NEFSC. Management track assessments completed in Spring 2020. Northeast Fisheries Science Center Reference Document 86p. (2022).Munroe, D., Powell, E., Mann, R., Klinck, J. & Hofmann, E. Underestimation of primary productivity on continental shelves: evidence from maximum size of extant surfclam (Spisula solidissima) populations. Fish. Oceanogr. 22, 220–233 (2013).
    Google Scholar 
    Munroe, D. et al. Fishing and bottom water temperature as drivers of change in maximum shell length in atlantic surfclams (Spisula solidissima). Estuar. Coast. Shelf Sci. 170, 112–122 (2016).
    Google Scholar 
    Narváez, D. A. et al. Long-term dynamics in atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Syst. 141, 136–148 (2015).
    Google Scholar 
    Díaz, M. G. et al. Spatial and temporal variability of atlantic surfclam (Spisula solidissima, dillwyn 1817) population demographics along the middle Atlantic Bight. J. Shellfish Res. 43, 37–49 (2024).
    Google Scholar 
    Kim, Y. & Powell, E. N. Surfclam histopathology survey along the delmarva mortality line. J. Shellfish Res. 23, 429–442 (2004).
    Google Scholar 
    Marzec, R. J., Kim, Y. & Powell, E. N. Geographical trends in weight and condition index of surfclams (Spisula Solidissima) in the mid-atlantic bight. J. Shellfish Res. https://doi.org/10.2983/035.029.0104 (2010).
    Google Scholar 
    Hofmann, E. E. et al. An overview of factors affecting distribution of the atlantic surfclam (Spisula solidissima), a continental shelf biomass dominant, during a period of climate change. J. Shellfish Res. 37, 821–831 (2018).
    Google Scholar 
    Stromp, S. L., Powell, E. N. & Mann, R. Evaluation of the degree of co-occurrence of atlantic surfclams (Spisula solidissima) and ocean quahogs (Arctica islandica) in the expanding Northwestern Atlantic boreal/temperate ecotone: implications for their fisheries. J. Shellfish Res. 42, 61–75 (2023).
    Google Scholar 
    Munroe, D. M. et al. The atlantic surfclam fishery and offshore wind energy development: 1. model development and verification. ICES J. Mar. Sci. 79, 1787–1800 (2022).Spencer, M. M. et al. What is the future of the atlantic surfclam (Spisula solidissima) fishery under climate-induced warming on the mid-Atlantic Bight continental shelf: A multidecadal assessment. Fish. Oceanogr. e12708 (2024).Cargnelli, L., Griesbach, S., Packer, D. & Weissberger, E. Essential fish habitat source document: Atlantic surfclam, Spisula solidissima, life history and habitat characteristics. NOAA Tech Memo NMFS NE 142, 13 (1999).
    Google Scholar 
    Parsons, P. Evolutionary rates: stress and species boundaries. Annu. Rev. Ecol. Syst. 22, 1–18 (1991).
    Google Scholar 
    Žliobaitė, I. & Fortelius, M. All sizes fit the red queen. Paleobiology 46, 478–494 (2020).
    Google Scholar 
    Cone, R. S. The need to reconsider the use of condition indices in fishery science. Trans. Am. Fish. Soc. 118, 510–514 (1989).
    Google Scholar 
    Jones, R., Petrell, R. & Pauly, D. Using modified length-weight relationships to assess the condition of fish. Aquac. Eng. 20, 261–276 (1999).
    Google Scholar 
    Powell, E. N. et al. Growth and longevity in surfclams east of nantucket: range expansion in response to the post-2000 warming of the North Atlantic. Cont. Shelf Res. 195, 104059 (2020).
    Google Scholar 
    Prior, D. J., Schneiderman, A. M. & Greene, S. I. Size-dependent variation in the evasive behaviour of the bivalve mollusc Spisula solidissima. J. Exp. Biol. 78, 59–75 (1979).
    Google Scholar 
    MacKenzie, C. L., Radosh, D. J. & Reid, R. N. Densities, growth, and mortalities of juveniles of the surf clam (Spisula solidissima)(Dillwyn) in the new york bight. J. Shellfish Res. 5, 81–84 (1985).
    Google Scholar 
    Walker, R. L. & Heffernan, P. B. Intertidal growth and survival of northern quahogs mercenaria mercenaria (Linnaeus 1758) and Atlantic surf clams Spisula solidissima (Dillwyn 1817) in georgia. J. World Aquac. Soc. 21, 307–313 (1990).
    Google Scholar 
    Dietl, G. P. & Alexander, R. R. Predator-prey interactions between the naticids Euspira heros and Neverita duplicata and the Atlantic surfclam Spisula solidissima from Long Island to delaware. J. Shellfish Res. 16, 413–422 (1997).
    Google Scholar 
    Hofmann, E. E. et al. A population dynamics model of the hard clam, Mercenaria mercenaria: development of the age-and length-frequency structure of the population. J. Shellfish Res. 25, 417–444 (2006).
    Google Scholar 
    Le Goff, C. et al. A coupled biophysical model for the distribution of the great scallop pecten maximus in the English Channel. J. Mar. Syst. 167, 55–67 (2017).
    Google Scholar 
    Lavaud, R., Rannou, E., Flye-Sainte-Marie, J. & Jean, F. Reconstructing physiological history from growth, a method to invert deb models. J. Sea Res. 143, 183–192 (2019).
    Google Scholar 
    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).
    Google Scholar 
    Harris, L. A., Duarte, C. M. & Nixon, S. W. Allometric laws and prediction in estuarine and coastal ecology. Estuaries Coasts 29, 340–344 (2006).
    Google Scholar 
    Powell, E. N., Mann, R., Ashton-Alcox, K. A., Kim, Y. & Bushek, D. The allometry of oysters: spatial and temporal variation in the length–biomass relationships for Crassostrea virginica. J. Mar. Biol. Assoc. U. K. 96, 1127–1144. https://doi.org/10.1017/S0025315415000703 (2016).
    Google Scholar 
    Bidegain, G., Sestelo, M., Roca-Pardiñas, J. & Juanes, J. A. Estimating a new suitable catch size for two clam species: Implications for shellfishery management. Ocean Coast. Manag. 71, 52–63 (2013).
    Google Scholar 
    Sestelo, M. & Roca-Pardinas, J. A new approach to estimation of the length–weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the atlantic coast of Galicia (Northwest Spain): Some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).
    Google Scholar 
    Bidegain, G. et al. Assessing the suitability of the minimum capture size and protection regimes in the gooseneck barnacle shellfishery. Ocean Coast. Manag. 104, 150–158 (2015).
    Google Scholar 
    Martínez-Silva, I., Sestelo, M., Bidegain, G., Lorenzo-Arribas, A. & Roca-Pardiñas, J. Nonparametric regression applied to sea urchin gorwth Sea urchins. In Edgar Raymond Banks (Ed.) Nonparametric regression applied to sea urchin growth (ISBN: 878-1-63321-550-4, Hauppauge, New York, 2014).Koenker, R. & Hallock, K. F. Quantile regression. Journal of economic perspectives 15, 143–156 (2001).
    Google Scholar 
    NEFSC. 44th northeast regional stock assessment workshop (44th saw) assessment report. Northeast Fisheries Science Center Reference Documents 1–666 (2007).Jacobson, L. D. & Hennen, D. R. Improving the NEFSC clam survey for Atlantic surfclams and ocean quahogs. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 19–06, 1–89 (2019).
    Google Scholar 
    DeGrasse, S. et al. Onboard screening dockside testing as a new means of managing paralytic shellfish poisoning risks in federally closed waters. Deep Sea Research Part II: Topical Studies in Oceanography 103, 288–300 (2014).
    Google Scholar 
    Powell, E. N. et al. Temperature, maximum size, and the Atlantic surfclam Spisula solidissima: The sensitivity of demographics to climate warming, the perfidy of food, and a vignette on size-limited management in bivalve fisheries. Canadian Journal of Fisheries and Aquatic Sciences in press (2025).Weinberg, J. R., Dahlgren, T. G. & Halanych, K. M. Influence of rising sea temperature on commercial bivalve species of the U.S. atlantic coast. In American Fisheries Society Symposium 32, 131–140 (2002).Weinberg, J. R., Powell, E. N., Pickett, C., Nordahl, V. A. J. & Jacobson, L. D. Results from the 2004 cooperative survey of atlantic surfclams. Ref. Doc. 05-01, Northeast Fisheries Science Center (2005).Huxley, J. S. Constant differential growth-ratios and their significance. Nature 114, 895–896 (1924).
    Google Scholar 
    Wand, M. P. & Jones, M. C. Kernel Smoothing (Chapman & Hall, London, 1995).
    Google Scholar 
    Fan, J. & Gijbels, I. Local polynomial modelling and its applications. No. 66 in Monographs on statistics and applied probability series (Chapman & Hall, 1996).Hayes, D. B., Brodziak, J. K. & O’Gorman, J. B. Efficiency and bias of estimators and sampling designs for determining length-weight relationships of fish. Can. J. Fish. Aquat. Sci. 52, 84–92 (1995).
    Google Scholar 
    Sestelo, M. & Roca-Pardiñas, J. A new approach to estimation of length-weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the Atlantic coast of Galicia (Northwest Spain): some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).Sestelo, M., Villanueva, N. M. & Roca-Pardiñas, J. npregfast: Nonparametric Estimation of Regression Models with Factor-by-Curve Interactions. R package version 1.5.0 (2017).Sestelo, M., Villanueva, N., Meira-Machado, L. & Roca-Pardiñas, J. npregfast: An r package for nonparametric estimation and inference in life sciences. Journal of Statistical Software 82, 1–27, https://doi.org/10.18637/jss.v082.i12 (2017).Koenker, R. & Gilbert Bassett, J. Regression quantiles. Econometrica 46, 33–50 (1978).
    Google Scholar 
    Koenker, R. quantreg: Quantile Regression (2017). R package version 5.33.Martínez-Silva, I., Roca-Pardiñas, J. & Ordóñez, C. Forecasting so2 pollution incidents by means of quantile curves based on additive models. Environmetrics 27, 147–157, https://doi.org/10.1002/env.2384 (2016). Env.2384.He, X. & Zhu, L.-X. A lack-of-fit test for quantile regression. J. Am. Stat. Assoc. 98, 1013–1022. https://doi.org/10.1198/016214503000000963 (2003).
    Google Scholar 
    Powell, E. & Stanton, R. Jr. Estimating biomass and energy flow of molluscs in paleo-communities. Palaeontology (Lond.) 28, 1–34 (1985).
    Google Scholar 
    Wisner, B., Wang, Z., Sheehan, A., Guo, X. & Munroe, D. Genetics, age demographics, and shell size of Atlantic surfclams from the southern edge of their range. Estuaries Coasts 47, 485–493 (2024).
    Google Scholar 
    Rowell, T. W. & Chaisson, D. R. A review of the biology and fisheries for ocean quahog (Arctica islandica) in eastern Canada. J. Shellfish Res. 9, 445–454 (1990).
    Google Scholar 
    Kraeuter, J. N. & Castagna, M. Biology of the hard clam. Elsevier (2005). Chapters on condition index and geographic variability in growth.LaFrance, M., Archambault, P. & Roff, J. C. Spatial and temporal variability in length-weight relationships of benthic macroinvertebrates in the Gulf of St. Lawrence,Canada. Marine Ecology Progress Series 254, 199–211, https://doi.org/10.3354/meps254199 (2003).Robertis, A. D. & Williams, K. Weight-length relationships in fisheries studies: The standard allometric model should be applied with caution. Trans. Am. Fish. Soc. https://doi.org/10.1577/t07-124.1 (2008).
    Google Scholar 
    Rabaoui, L., Tlig Zouari, S., Katsanevakis, S. & Ben Hassine, O. K. Comparison of absolute and relative growth patterns among five Pinna nobilis populations along the tunisian coastline: an information theory approach. Mar. Biol. 152, 537–548 (2007).
    Google Scholar 
    Ropes, J. W. Reproductive cycle of the surf clam, Spisula solidissima, in offshore new jersey. Biol. Bull. 135, 349–365 (1968).
    Google Scholar 
    Tarnowski, M. Temporal distribution of surf clam larvae off southern New Jersey. J. Shellfish Res 2, 108 (1982).
    Google Scholar 
    Ropes, J. Shell length at sexual maturity of surf clams, Spisula solidissima, from an inshore habitat. In Proc. Nat. Shellfish. Assoc 69, 85–91 (1979).
    Google Scholar 
    Jones, D. S. Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science 211, 165–167 (1981).
    Google Scholar 
    Kanti, A., Heffernan, P. & Walker, R. Gametogenic cycle of the southern surfclam, Spisula solidissima similis (Say, 1822), from St. Catherines Sound, Georgia. J. Shellfish Res. 12, 255–261 (1993).Begg, G. A. & Marteinsdottir, G. Environmental and stock effects on spawning origins and recruitment of cod Gadus morhua in Icelandic waters. Mar. Ecol. Prog. Ser. 179, 263–275. https://doi.org/10.3354/meps179263 (1999).
    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25. https://doi.org/10.3354/meps254011 (2003).
    Google Scholar 
    Cade, B. & Noon, B. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420. https://doi.org/10.1890/1540-9295 (2003).
    Google Scholar 
    Cade, B. S., Edmunds, D. R. & Ouren, D. S. Quantile regression estimates of animal population trends. J. Wildl. Manag. 86, e22228. https://doi.org/10.1002/jwmg.22228 (2022).
    Google Scholar 
    Cade, B. S., Terrell, J. W. & Porath, M. T. Estimating fish body condition with quantile regression. N. Am. J. Fish. Manag. 28, 349–359 (2008).
    Google Scholar 
    Planque, B. & Buffaz, L. Quantile regression models for fish recruitment-environment relationships: four case studies. Mar. Ecol. Prog. Ser. 357, 213–223 (2008).
    Google Scholar 
    Ranney, S. H. Quantile regression estimates of body weight at length in Walleye. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10070 (2018).
    Google Scholar 
    Lucey, S. M. & Nye, J. A. Shifting species assemblages in the northeast us continental shelf large marine ecosystem. Mar. Ecol. Prog. Ser. 415, 23–33 (2010).
    Google Scholar 
    Young, T. et al. Adaptation strategies of coastal fishing communities as species shift poleward. ICES J. Mar. Sci. 76, 93–103 (2019).
    Google Scholar 
    Spencer, M., Hennen, D., Klinck, J. M. & Powell, E. The integrity of a stratified random stock survey design in light of projected climate-induced changes in species distribution: the case of the Atlantic surfclam, Spisula solidissima, over the remainder of the 21st century. Submitted (2024).Moya, A. L., Powell, E. N., Hennen, D. & Klinck, J. M. Does size matter: A direct evaluation of the influence of warming temperatures on the applicability of size limits for the Atlantic surfclam, Spisula solidissima, fishery in the U.S. Mid-Atlantic. Submitted (2024).Download referencesAcknowledgementsThe authors thank the NEFSC survey and data analysis teams who provided excellent length and weight data.FundingThis work was supported by the Basque Government (GIC21/82), the Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/93928/2013), FEDER Funds through the Program ‘Programa Operacional Factores de Competitividade – COMPETE’ and Portuguese Funds through FCT (UID/MAT/00013/2013).Author informationAuthors and AffiliationsDepartment of Applied Mathematics, Engineering School of Gipuzkoa, University of the Basque Country (EHU), Plaza Europa 1, 28018, Donostia, SpainGorka BidegainResearch Centre for Experimental Marine Biology & Biotechnology, Plentzia Marine Station, University of the Basque Country (PiE-EHU), Areatza Pasealekua, 48620, Plentzia, SpainGorka Bidegain, Arantza Irirarte & Ibon UriarteCITMAga, Galician Center for Mathematical Research and Technology, 15782, Santiago de Compostela, SpainMarta SesteloDepartment of Statistics and O.R. & SiDOR Group, Universidade de Vigo, 36310, Vigo, SpainMarta SesteloAZTI Marine Research, Basque Research and Technology Alliance (BRITA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, SpainPatricia L. LuqueGulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, 39564, Ocean Springs, Mississippi, USAEric N. PowellDepartment of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (EHU), Sarriena auzoa z/g, 48940, Leioa, SpainArantza IrirarteDepartment of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (EHU), Unibertsitatearen ibilbidea 7, 01006, Gasteiz, SpainIbon UriarteHaskin Shellfish Research Laboratory, Rutgers the State University of New Jersey, 6959 Miller Ave, Port Norris, 08349, New Jersey, USADaphne MunroeAuthorsGorka BidegainView author publicationsSearch author on:PubMed Google ScholarMarta SesteloView author publicationsSearch author on:PubMed Google ScholarPatricia L. LuqueView author publicationsSearch author on:PubMed Google ScholarEric N. PowellView author publicationsSearch author on:PubMed Google ScholarArantza IrirarteView author publicationsSearch author on:PubMed Google ScholarIbon UriarteView author publicationsSearch author on:PubMed Google ScholarDaphne MunroeView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualization, G.B., M.S., P.L.L., E.P., and D.M.; Methodology, G.B., M.S., E.P., D.M.; Formal analysis, G.B., M.S., E.P., and P.L.L.; Investigation, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Writing–Original Draft, G.B., M.S., E.P., and P.L.L.; Writing–Review & Editing, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Supervision, G.BCorresponding authorCorrespondence to
    Gorka Bidegain.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleBidegain, G., Sestelo, M., Luque, P.L. et al. Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31936-9Download citationReceived: 03 July 2025Accepted: 05 December 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41598-025-31936-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsBivalvesGrowth modellingBootstrap methodsNonparametric smoothing More