More stories

  • in

    Genetic, maternal, and environmental influences on sociality in a pedigreed primate population

    Study subjectsSubjects in our study are individually recognized wild capuchins found in and around the Lomas Barbudal Biological Reserve in Guanacaste, Costa Rica. This population has been under observation since 1990 (Perry 2012; Perry et al. 2012), including near continuous observation from January 2002 through March 2020.Data collectionWe use proximity data on subjects collected during group scan sampling between January 2001 and March 2020 (Altmann 1974). Included in scans are the identity of the subject, and the identity of other individuals within approximately 4 meters of them. Scans have been collected on all individuals in study groups since 2002, and on all adults and subadults since 2001. Scans are taken opportunistically, without regard to time of day. At least 10 min separate consecutive scans of the same individual to reduce the non-independence of scans taken close in time.Data in this manuscript were collected by 124 observers, with an average of 7.1 data collectors per month. Observers typically work in teams of two to three and rotate across different groups to reduce potential observer bias. Observers also rotate across observer teams to avoid observer drift in coding, since observer teams could potentially start to code behaviors differently from each other in the absence of overlap in observer composition.Initial pedigree constructionOf the 376 individuals in our behavioral dataset, 280 (74.5%) were first seen within three months of their births, and we could confidently assign maternity to them based on demographic (pregnancies) and behavioral data (primary nursing) even prior to genotyping. Of the remaining individuals, 41 (10.9%) were males of unknown origin that immigrated into our study population, while the rest were natal to our study groups but were first seen as older infants ( >3 months), juveniles, or (sub)adults (14.6%) and required genotyping to assign/confirm maternity. Paternity was assigned based on genetic information when possible (but see Non-genotyped individuals).In total, 287 subjects (76.3%) had two assigned parents, 37 had one assigned parent (9.8%), and 52 (13.8%) had no assigned parent based on demographic, behavioral, and/or genetic parentage information. Most individuals with no assigned parents were immigrant males (78.9%).GenotypingInformation on genetic parentage assignment (at up to 18 microsatellite loci) in our study population is available from previously published work (1996–2005 (Muniz et al. 2006), 2005–2012 (Godoy et al. 2016b)). Partial genotypes (up to 14 loci) have been generated for individuals in this study which more recently entered the study population through birth or immigration (n = 91, 2012–2020) (See SI File 1). Briefly, DNA was extracted primarily from non-invasively collected fecal samples, and occasionally from tissue samples obtained from deceased individuals, then amplified at up to 18 autosomal tetranucleotide microsatellite loci (Muniz and Vigilant 2008) using either a 1-step or 2-step PCR protocol (Arandjelovic et al. 2009). There were no significant deviations from Hardy-Weinberg equilibrium, and no evidence of linkage disequilibrium between loci was found (Muniz 2008).DNA samples were run at a minimum in triplicate, but additional PCRs were performed on low quality samples (e.g., with low quantities of DNA). Genotypes at each of the loci were assigned to be heterozygous when each allele was seen at least twice in independent PCRs, and assigned as homozygous when the allele was seen in at least three independent PCRs in absence of a second allele.Amplicons were analyzed using an ABI PRISM3100 automated sequencer and GeneMapper Software (Applied Biosystems, Foster City, CA, USA). Likelihood-based parentage assignments were performed using CERVUS 2.0 or 3.0 (Marshall et al. 1998; Kalinowski et al. 2007). The average exclusionary power of the 18 microsatellites was 0.9888 for the first parent and 0.9998 for second parent (Muniz et al. 2006).Individuals with unknown parents (e.g., immigrant males, founders) were genotyped twice (i.e., using two independent DNA samples) following the procedures described above to guard against sample mix up. Known mother-offspring pairs were confirmed by ascertaining the absence of Mendelian mismatches across all loci for the pair, though one mismatch was allowed to account for null alleles, mutations, and genotyping errors. We detected one null allele in the population in 19 individuals and traced it back to a male who was either the father or grandfather of those individuals (Muniz et al. 2006; Godoy et al. 2016b).Candidate males for paternity assignment were chosen based on group membership around the time of an infant’s conception (typically 1–10 males). In cases when conceptions occurred prior to the habituation of a study group, we used the identities of all adult males present when the group was first observed. Candidate mothers were similarly chosen for individuals that were first seen as older infants, juveniles, or (sub)adults. For individuals born post-group habituation, CERVUS has always assigned paternity from the pool of potential candidate fathers. Parent-offspring pairs and trios were allowed one mismatch (excluding those at the locus with the known null allele).Pedigree updatingNon-genotyped individualsDuring stable tenures, alpha males in our population sire approximately 73% of infants born in their groups, including 90% of offspring born to unrelated females (Godoy et al. 2016a). There is strong evidence of inbreeding avoidance between alpha males and their female descendants, with relatedness to females as the primary factor constraining alpha male monopolization of paternity within groups (Muniz et al. 2006, 2010; Godoy et al. 2016a, 2016b; Wikberg et al. 2017, 2018). We used this information to update our pedigree, filling missing father information with the identity of the alpha male around the time of a non-genotyped individual’s conception, but only if their mother was not the daughter or granddaughter of the alpha male (i.e., with inbreeding avoidance). This approach allowed us to assign presumed paternity to 21 non-genotyped individuals (5.6% of subjects) who were natal to our study groups.Individuals with missing or incomplete parentageOut of the original four study groups (from which fissions led to eight additional study groups), we lacked parentage information (i.e., neither parent was sampled) for 12 individuals first seen at the time of habituation. We had incomplete parentage on an additional 11 adults (i.e., only one parent was sampled). We used the software program COLONY version 2.0.6.7 to look for evidence of whether these individuals were related to each other at the level of full sibling (Jones and Wang 2010). We also looked for potential full sibling pairs among the non-natal immigrant males in the population, since co-migrant males are typically kin (Perry 2012; Wikberg et al. 2014, 2018). We assigned five full sibling pairs among co-migrant males, and four full sibling pairs among natal founders. For any remaining co-migrant males and natal founder pairs that were not assigned as full siblings, we assumed these to be either paternal (migrants) or maternal (natal) half siblings, as is typical in this study population (Perry 2012). These assignments are likely to have some error. However, based on what we know about kinship in capuchins, it would introduce more error to assume that these pairs are unrelated.We pruned our modified population pedigree using the R package pedantics version 1.01 (Morrissey and Wilson 2010), to include only individuals that were linked to the subjects in our behavioral dataset. The reduction in missing data can improve convergence and mixing of models (Hadfield 2010). The pruned pedigree contained 419 individuals, with 353 maternities, 354 paternities, 209 full sibships, 413 maternal half sibships, and 1496 paternal half sibships. Maximum pedigree depth was six generations (mean = 3.03).Sociality measures (response variables)We generated two related proximity-based measures of sociality—(1) whether an individual was seen in proximity of another monkey (within ~4 meters) during a scan (i.e., they were not alone), and (2) the number of partners an individual has nearby (within ~4 meters) during a scan. The former is measure of the propensity of an individual to be social versus alone, while the latter is more indicative of the gregariousness of an individual. These two phenotypes are not independent, as they are generated from the same data (Fig. 1a).Fig. 1: Distribution of sociality, sampling, group size, and alpha tenure length.The scatterplot in a shows the proportion of scans per individual per month where the subjects were recorded in proximity of others on the x-axis, and the average number of social partners per scan per month for subjects on the y-axis. The sizes of the circles in a are proportional to sample size (range: 5–317 scans per data point). The figure in b shows the number of calendar years of data sampling per subject (range: 1–20), c variation in group size, and d the number of calendar years represented by different alpha tenures in the dataset. Note that d does not represent the full diversity of alpha tenure lengths in the population, only within the dataset: some tenure lengths are left-truncated as data from 1990–2000 are not included in this dataset. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016) and cowplot version 1.1.1 (Wilke 2020). The capuchin image was generated in R using sketcher version 0.1.3 (Tsuda 2020) based on an image taken by Nicholas Schleissmann.Full size imageWe compiled the scans of individuals by month (mean: 31.9, range: 5–317 scans per month) so that we had counts of (1) the total number of scans where an individual was social and (2) the total number of partners an individual had. With these counts we could look at the (1) proportion of time spent social (versus alone) and (2) the average number of partners an individual had, while still preserving information about sampling density (number of scans).To be included in any month, subjects needed to have at least five scan samples in that period. As we are interested in the repeatability of our measures of social behavior, subjects had to have at least six months of data to be included.We excluded dependent infants (less than one year of age) as potential social partners of their mothers. We also excluded these dependent infants as subjects, since an infant is expected to be in close proximity of its mother, particularly during the first half of their first year of life (Godoy 2010; Perry 2012). Including data from infants would likely introduce upward bias to heritability estimates, because mothers and their dependent offspring (whom share high relatedness) would often be in close proximity of each other, and their measures of proximity to others would thus also be highly correlated.On average, subjects spent just over half of their sampled time within approximately four meters of another monkey (mean: 0.539, standard deviation: 0.193) and had approximately one social partner per scan (mean: 1.057, standard deviation: 0.619) (Fig. 1a). Our dataset consisted of 22,138 monthly sociality scores on 376 subjects generated from 641 140 scans (mean: 56.5 months per subject, range: 6–184 months per subject). Almost all subjects (99.7%, i.e., all but one) were represented by data across more than one calendar year (25, 50, 75% quantiles: 4, 7, 10 different years of data collection) (Fig. 1b).Fixed effectsWe included age (as a cubic function) and sex in our models, as well as their interaction to account for differences in how male and female capuchins sexually mature and age. Age in our dataset was right-skewed with higher representation at younger ages (mean: 9.3 years, standard deviation: 6.9) (Fig. 2). To put the ages in developmental context, mean age at first live birth is around 6.3 years for females in this population, though females can begin reproducing in their 5th year (Perry et al. 2012). Males as young as six years old have been known to sire offspring (Godoy et al. 2016b), but males tend to not reach full adult size until their 10th year (Jack et al. 2014).Fig. 2: Sociality as a function of age and sex.Circles represent individual monthly data. The sizes of the circles are proportional to sample size (range: 5–317 shows per data point). Circles in a represent the proportion of time individuals were seen in proximity of others (not alone) per month, while in b represent the average number of partners for individuals per month. Solid lines represent estimated sociality scores based on age and sex, with all other fixed effects set to the mean. The two x-axes represent age as z-scores and in years. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016).Full size imageSeasonal environmental changes, such as in food abundance, or temperature and rain, can lead to changes in how individuals cluster near others, for example, because of how food resources become distributed in the environment. For example, in black-crested gibbons (Nomascus concolor), group averages of dyadic proximity have been documented to decrease from the dry season to wet season, with increased average group proximity during cold months and lowered proximity during warm months (Guan et al. 2013). We account for seasonal variation by modelling monthly changes as a sine wave, through inclusion of the sine and cosine functions of a transformed month variable (See SI File 1 for further details).Central America is a region of ENSO-related precipitation, where the El Niño-Southern Oscillation (ENSO) has an impact on large scale patterns of temperature and precipitation (Ropelewski and Halpert 1987). Bimonthly rainfall anomalies are linked with both the warm El Niño and cool La Niña phases in a neighboring tropical dry forest in Costa Rica, where long-term monitoring of wild white-faced capuchins has shown declines in reproductive output associated with El Niño-like conditions (Campos et al. 2015). To account for the large-scale influence of ENSO on group dynamics, we included a factor variable for three different ENSO phases (Average/Neutral, Cool/La Niña, and Warm/El Niño). We used the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI.v2) obtained from the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration (https://psl.noaa.gov/enso/mei/, retrieved: 2021-11-06) to determine the different phases. MEI.v2 is a composite index of five different variables (sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds, and Outgoing Longwave Radiation) used to create a time series of ENSO conditions from 1979 to present (Zhang et al. 2019). Warm phases correspond to MEI.v2 values of 0.5 or higher, while cool phases correspond to values of −0.5 or lower.Demographic differences between groups and within groups across time can also lead to variation in behavior. For example, group size has been found to correlate with the amount of time that individuals spend grooming in various primate species (Dunbar 1991; Lehmann et al. 2007). Group size is also associated with higher sociality measures such as both the number of strong and weak ties that individuals form in diverse clades of primates (Schülke et al. 2022). We attempt to account for variation that arises from such demographic differences by including group size (mean: 24.7, standard deviation: 7.9) (Fig. 1c) as a fixed effect.In our models, group size and cubic age were centered and scaled to a mean of zero and a standard deviation of one.Random effectsAll models include the identity of the subject (VID, n = 376) as a random factor, as well as subject identity nested within year (VID:Year, n = 3150), the identity of each subject’s mother (VM, n = 142), maternal identity nested within group of residence within year of data collection (VM:GroupAlpha:Year, n = 2085), and a special variable known as the animal term to account for additive genetic variance (VA). These components contribute to long- and/or short-term repeatability of individuals. All models also include year of data collection (VYear, n = 20), month nested within year (VMonth:Year, n = 224), and the identity of each subject’s group of residence both across years (VGroupAlpha, n = 56) and within years (VGroupAlpha:Year, n = 200).VID in the models (since the models also additionally estimate VM and VA) can be thought of as estimating the “permanent environment variance” (i.e., VPE) of an individual, which is the “individual-specific variation in environmental conditions that permanently affect the phenotype (e.g. early-life conditions)” (Dingemanse et al. 2010). VID:Year captures the variance explained by the repeated sampling of the same individuals within a particular year. We use it to estimate the proportion of the phenotypic variance due to similarity in the trait within individuals from data taken closer in time (within the same year). During such a relatively short period, individuals are more likely to be stable in important social traits such as kin availability, dominance rank for adults, and maternal dominance rank for infants and young juveniles.VM estimates the variance explained by maternal effects (m2), specifically similarity between maternal siblings. Maternal identities were not available for all subjects, namely 11 immigrant males of unknown origin who were not assigned by COLONY as having a full sibling. We created unique dummy codes for their maternal identities, so that no two of these individuals shared the same mother. We additionally nested maternal identities (VM:GroupAlpha:Year) to account for similarity between maternal siblings residing in the same group in the same year. Such a nested structure might capture potential upward biases on heritability due to maternal kin biases in spatial association among siblings residing in the same group.We estimate h2 in our models by fitting a random effects term (VA), referred to as the animal term, which in the R package MCMCglmm links to the identities of individuals in our population pedigree (Hadfield 2010; see below for details on the implementation of the models in MCMCglmm). Inclusion of the animal term provides our models with an additive genetic variance component based on the estimated coefficients of relatedness between individuals in our pedigree. In short, if animals that share more alleles are also more like each other in their behavior, then variation in the behavior may well be due to genetic variation in the population (under the assumption that phenotypic similarity is not due to a shared environment, or is adequately controlled for by fixed and random effects in the model).VYear and VMonth:Year were included in order to account for temporal variation in sociality scores not captured by the fixed effects of seasonality or ENSO phase. These could arise from, for example, observer drift in coding (i.e., measurement error) or prevailing environmental conditions (e.g., drought) that could lead to changes to how individuals cluster near others. There were 218 unique observer combinations across the 224 months represented in the dataset, so VMonth:Year should also capture variance due to any differences between observer teams, though we cannot separate out the unique influence of observers.VGroupAlpha represents variance arising from the different alpha tenures within groups in our study population. VGroupAlpha captures both variance due to group of residence effects and the additional influence of alpha tenures within those groups. In capuchins, alpha males are ‘keystone’ individuals, whose influence is disproportionate relative to that of others in the population, and thus play important roles in establishing group dynamics (Jack and Fedigan 2018). Including group of residence, as defined by alpha tenure, is also important because it helps to account for the higher relatedness within groups within alpha tenures which results from high male reproductive skew toward alpha males. At Lomas Barbudal, males can remain in their alpha position for upwards of 18 years. Alpha tenures in this dataset spanned one to 14 years (Fig. 1d), so we additionally nested the identity of alpha males per group within years (VGroupAlpha:Year) so as to separate the within-year and across-year influences of group of residence.Statistical methodsWe ran analyses in R 4.1.2 (R Core Team 2021), using a Bayesian method with the R package MCMCglmm version 2.32 (Hadfield 2010). Data and code used to run all models is provided in the Supplementary Information.For our binary response variable (social versus alone), which was pooled into monthly units, we fit models with a binomial distribution and logit link function (family = “multinomial2”), with the number of scans each individual was documented social (‘successes’) versus the number of times alone (‘failures’).For our other response variable (number of partners), which was also pooled into monthly units, we fit models with a Poisson distribution (family = “poisson”), with the total number (sum) of partners per month. We included the natural log of the number of scans per month as a fixed effect to account for sampling effort. We set a strong prior for the log of sampling effort so that the rate at which events occurred was 1 (i.e., we could look at average number of partners per scan).We used a parameter-expanded prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000) and two inverse Wishart priors (V = 1, nu = 0.002; V = 1, nu = 0.02) for the G structures in our models (i.e., random effects variance components). The prior on the residual variance component was set to one for both the binomial and Poisson models. Estimates for variance components were robust against the choice of prior (SI Fig. 3). We therefore only report findings from models run with parameter-expanded priors in the main text.Pilot runs (thin = 10, burnin = 3000, nitt = 13,000) indicated that autocorrelation values would remain high for some variance components in models run with parameter-expanded priors, even with large thinning intervals. We therefore increased the number of iterations to guarantee effective sample sizes of at least 1000, but ideally closer to 4000. All models were run with a long burn-in period of at least 10,000 iterations.We ran multiple chains (n = 4) of each model and assessed convergence of the chains visually (SI Files 2a-b), as well as through the Gelman-Rubin criterion implemented via the ‘gelman.diag’ function from the coda package in R (version 0.19-4) (Plummer et al. 2006). Scale reduction factors were below 1.02, signifying good convergence. We used Heidelberger and Welch’s convergence diagnostic test for stationarity to check convergence of each chain using the ‘heidel.diag’ function from the coda package. Results are presented from the first chain of each model.Reduced modelsInclusion of fixed effects can potentially have an impact on the estimates of variance components in models because total phenotypic variance (VP) is estimated (and partitioned among the different random effects) after conditioning on the fixed effects. Heritability estimates, for example, can be higher because the variance explained by the fixed effects structure (VFE) is not included in VP, thus making the relative contribution of VA to VP larger compared to the same model without fixed effects (Wilson 2008). Conversely, not adequately controlling for relevant fixed effects that contribute to phenotypic variance among and within individuals may potentially lead to an underestimation of VA and associated heritability (h2).We ran multiple reduced versions of our models to look at the impact of fixed effects on our variance components. We began with an intercept-only version (i.e., no fixed effects), then built-up complexity by adding in versions with the properties of the individuals first (age, sex), then properties of the group (group size), and subsequently environmental properties (seasonality, ENSO phases). Outputs for these reduced models are provided in the Supplementary Information (SI Table 2, SI Table 3).We provide the deviance information criterion (DIC) values for models (automatically generated by the MCMCglmm package). DIC is a generalization for multi-level models of the Akaike Information Criterion (AIC); and as in AIC, lower DIC values indicate better fit.Transformations from unobserved latent scale to observed data scaleOutputs from our MCMCglmm models were on the unobserved latent scale. We used the R package QGglmm (version 0.7.4) to additionally compute parameters of interest on the observed data scale (de Villemereuil et al. 2016; de Villemereuil 2018). We used the functions ‘QCicc’ to compute Intra-Class Correlation (ICC) coefficients and ‘QGparams’ to compute additive genetic variance and thus narrow-sense heritability (h2) on the observed data scale. We implemented the ‘QGparams’ and ‘QGicc’ functions with parameters model = ‘binomN.logit’ and n.obs = 32 (the average number of scans per subject per month in our dataset) for the binomial model and model = ‘Poisson.log’ for the Poisson model. The choice of value for n.obs is somewhat arbitrary, and we show the consequences for changes in values of this parameter (i.e., higher estimates with increasing values of n.obs) in SI Fig. 4.Closed form solutions in QGglmm are not available for integrating over posterior distributions generated from binomial models with logit link functions (de Villemereuil 2016). Consequently, using the ‘QGicc’ function is particularly slow. We therefore estimate ICCs from our binomial models using a random subset of the posterior (n = 1000 iterations).The code used for transforming the MCMCglmm outputs from the latent scale to the original data scale are available online (see DATA AVAILABILITY).Repeatability and the proportion of variance explained by variance componentsTotal phenotypic variance (VP) was the sum of estimates from all variance components and residual variance in a model (VP = VID + VID:Year + VM + VM:GroupAlpha:Year + VA + VGroupAlpha + VGroupAlpha:Year + VMonth:Year + VYear + Vresidual). The proportion of variance explained by each variance component was calculated by including its estimate in the numerator while including total phenotypic variance in the denominator. So, for example the proportion of variance explained by year of data collection was calculated as (left( {frac{{V_{Year}}}{{V_P}}} right)).Long-term repeatability was calculated with the sum of VID, VM, and VA in the numerator. Short-term repeatability was calculated similarly but with inclusion of within-series variances (VID + VM + VA + VID:Year + VM:GroupAlpha:Year) in the numerator to capture additional consistency in among-individual differences resulting from greater environmental similarity within a time series (i.e., year).We report posterior modes and 95% Highest Posterior Density intervals (i.e., 95HPDI in square brackets). Unless mentioned otherwise, we present results on the unobserved latent scale, and without the variance from the fixed effects (VFE) incorporated into VP. For completeness, estimates with VFE included in VP and transformations to the observed data scale are also provided in SI Table 3. More

  • in

    Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. https://doi.org/10.1038/359139a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211. https://doi.org/10.1016/0198-0149(90)90038-w (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323. https://doi.org/10.1357/0022240943077145 (1994).Article 

    Google Scholar 
    Jackson, G. Coagulation Theory and Models of Oceanic Plankton Aggregation (CRC Press, 2005).
    Google Scholar 
    Grossart, H. P., Kiorboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: Growth and interactions. Appl. Environ. Microb. 69, 3500–3509. https://doi.org/10.1128/aem.69.6.3500-3509.2003 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047. https://doi.org/10.1128/AEM.69.6.3036 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast pacific. Deep Sea Res. A 34, 267–285. https://doi.org/10.1016/0198-0149(87)90086-0 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Buesseler, K. O. et al. VERTIGO (vertical transport in the global ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539. https://doi.org/10.1016/j.dsr2.2008.04.024 (2008).ADS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiorboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 266, 194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230. https://doi.org/10.3354/ame010223 (1996).Article 

    Google Scholar 
    Kellogg, C. T. E. et al. Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: Elevated hydrolytic enzyme activity on sinking aggregates. Polar Biol. 34, 2007–2023. https://doi.org/10.1007/s00300-011-1015-0 (2011).Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599. https://doi.org/10.1038/nrmicro2386 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiao, N. & Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 77, 7439–7444. https://doi.org/10.1128/AEM.05640-11 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698. https://doi.org/10.1038/nrmicro3326 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581. https://doi.org/10.1073/pnas.1512307113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851. https://doi.org/10.1038/s41467-020-16620-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65, 514–522 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 115, E6799–E6807. https://doi.org/10.1073/pnas.1802470115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jurgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297. https://doi.org/10.3389/fmicb.2015.01297 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziervogel, K., Steen, A. D. & Arnosti, C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7, 1007–1015. https://doi.org/10.5194/bg-7-1007-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214. https://doi.org/10.1073/pnas.0709765105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Perez, M. et al. Genomes of surface isolates of Alteromonas macleodii: The life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696. https://doi.org/10.1038/srep00696 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471. https://doi.org/10.1128/AEM.02570-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bachmann, J. et al. Environmental drivers of free-living vs particle-attached bacterial community composition in the mauritania upwelling system. Front. Microbiol. 9, 2836. https://doi.org/10.3389/fmicb.2018.02836 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100. https://doi.org/10.1016/s0168-6496(01)00206-9 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514. https://doi.org/10.1111/1462-2920.12466 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 4354. https://doi.org/10.1126/sciadv.aaz4354 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708. https://doi.org/10.1038/s41396-020-00880-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11. https://doi.org/10.3354/meps179001 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. https://doi.org/10.4319/lo.2000.45.7.1467 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 116, 23309–23316. https://doi.org/10.1073/pnas.1908512116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. https://doi.org/10.4319/lo.2001.46.2.0267 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965. https://doi.org/10.1038/ncomms11965 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiorboe, T., Grossart, H. P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006. https://doi.org/10.1128/AEM.68.8.3996-4006.2002 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaqué, D., Duarte, C. M. & Marrasé, C. Influence of algal population dynamics on phytoplankton colonization by bacteria: Evidence from two diatom species. Mar. Ecol. Prog. Ser. 65, 201–203. https://doi.org/10.3354/meps065201 (1990).ADS 
    Article 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Bacterial production and growth efficiencies: Direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. https://doi.org/10.4319/lo.2000.45.2.0436 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Duhamel, S. et al. Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 4, 941–956. https://doi.org/10.5194/bg-4-941-2007 (2007).ADS 
    Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309. https://doi.org/10.1146/annurev-marine-122414-033938 (2016).ADS 
    Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: Bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527. https://doi.org/10.3389/fmars.2020.00527 (2020).Article 

    Google Scholar 
    Thomas, T. et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3, e3252. https://doi.org/10.1371/journal.pone.0003252 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varbanets, L. D. et al. The black sea bacteria-producers of hydrolytic enzymes. Mikrobiol. Z. 73, 9–15 (2011).CAS 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360. https://doi.org/10.1111/j.1462-2920.2012.02787.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gram, L., Grossart, H. P., Schlingloff, A. & Kiorboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116. https://doi.org/10.1128/AEM.68.8.4111 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N. et al. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396. https://doi.org/10.1111/1462-2920.14954 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10, 2582–2592. https://doi.org/10.1038/ismej.2016.66 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H. P. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 127–140. https://doi.org/10.3354/ame015127 (1998).Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318. https://doi.org/10.4319/lo.2001.46.6.1309 (2001).ADS 
    Article 

    Google Scholar 
    Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085. https://doi.org/10.1038/s41467-021-23875-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hygum, B. H., Petersen, J. W. & Søndergaard, M. Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. https://doi.org/10.1093/plankt/19.1.97 (1997).CAS 
    Article 

    Google Scholar 
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812. https://doi.org/10.1038/nrmicro1750 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 2569. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N., Weber, P. K., Alonso-Saez, L., Moran, X. A. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11, 641–650. https://doi.org/10.1038/ismej.2016.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8(1), 15472. https://doi.org/10.1038/ncomms15472 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624. https://doi.org/10.5194/bg-7-2613-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193. https://doi.org/10.4319/lo.2009.54.1.0182 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Schneider, B., Schlitzer, R., Fischer, G. & Nöthig, E.-M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002gb001871 (2003).Article 

    Google Scholar 
    Jannasch, H. W. & Wirsen, C. O. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43, 1116–1124. https://doi.org/10.1128/AEM.43.5.1116-1124.1982 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep Sea Res. II(49), 2109–2123. https://doi.org/10.1016/s0967-0645(02)00030-9 (2002).ADS 
    Article 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085. https://doi.org/10.5194/bg-10-4073-2013 (2013).ADS 
    Article 

    Google Scholar 
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms I Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).CAS 
    Article 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 11 (1999).Article 

    Google Scholar 
    Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Manz, W., Amann, R., Vancanneyt, M., Schleifer, K.-H. & Ludwig, W. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. https://doi.org/10.1099/13500872-142-5-1097 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 (1995).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. https://doi.org/10.1128/AEM.56.6.1919-1925.1990 (1990).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866. https://doi.org/10.1073/pnas.0809329105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polerecky, L. et al. Look@NanoSIMS: A tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023. https://doi.org/10.1111/j.1462-2920.2011.02681.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Musat, N. et al. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. https://doi.org/10.1016/j.syapm.2014.02.002 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: Magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15264 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan

    Blanton, L. S. The rickettsioses: A practical update. Infect. Dis. Clin. North Am. 33, 213–229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parola, P. et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 26, 657–702 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Satjanadumrong, J., Hughes, T., Stenos, J. & Blacksell, S. D. Diagnosis of spotted fever group Rickettsia infections: The Asian perspective. Epidemiol. Infect. 147, e286 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graves, S. & Stenos, J. Rickettsioses in Australia. Ann. N. Y. Acad. Sci. 1166, 151–155 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Niang, M. et al. Prevalence of antibodies to Rickettsia conorii, Ricketsia africae, Rickettsia typhi and Coxiella burnetii in Mauritania. Eur. J. Epidemiol. 14, 817–818 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parola, P. Tick-borne rickettsial diseases: Emerging risks in Europe. Comp. Immunol. Microbiol. Infect. Dis. 27, 297–304 (2004).PubMed 
    Article 

    Google Scholar 
    Nanayakkara, D. M., Rajapakse, R. P. V. J., Wickramasinghe, S. & Kularatne, S. A. M. Serological evidence for exposure of dogs to Rickettsia conorii, Rickettsia typhi, and Orientia tsutsugamushi in Sri Lanka. Vector Borne Zoon. Dis. Larchmt. N 13, 545–549 (2013).Article 

    Google Scholar 
    Brown, L. D. & Macaluso, K. R. Rickettsia felis, an emerging flea-borne rickettsiosis. Curr. Trop. Med. Rep. 3, 27–39 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, P. N. et al. A prospective, open-label, randomized trial of doxycycline versus azithromycin for the treatment of uncomplicated murine typhus. Clin. Infect. Dis. 68, 738–747 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vallee, J. et al. Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane City, Lao PDR. 4 (2010).Akram, S. M., Jamil, R. T. & Gossman, W. G. Rickettsia Akari (2021).Dong, X., El Karkouri, K., Robert, C., Raoult, D. & Fournier, P.-E. Genome sequence of Rickettsia australis, the agent of Queensland tick typhus. J. Bacteriol. 194, 5129 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fournier, P.-E. & Raoult, D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci. 1166, 1–11 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Legendre, K. P. & Macaluso, K. R. Rickettsia felis: A review of transmission mechanisms of an emerging pathogen. Trop. Med. Infect. Dis. 2, E64 (2017).PubMed 
    Article 

    Google Scholar 
    Murray, G. G. R., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia using different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279 (2016).PubMed 
    Article 

    Google Scholar 
    Shpynov, S. N., Fournier, P., Pozdnichenko, N. N., Gumenuk, A. S. & Skiba, A. A. New approaches in the systematics of rickettsiae. New Microbes New Infect. 23, 93–102 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shpynov, S. et al. Detection of a rickettsia closely related to Rickettsia aeschlimannii, ‘Rickettsia heilongjiangensis’, Rickettsia sp. strain RpA4, and Ehrlichia muris in ticks collected in Russia and Kazakhstan. J. Clin. Microbiol. 42, 2221–2223 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aung, A. K., Spelman, D. W., Murray, R. J. & Graves, S. Review article: Rickettsial infections in Southeast Asia: Implications for local populace and febrile returned travelers. Am. J. Trop. Med. Hyg. 91, 451–460 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodkvamtook, W. et al. Scrub typhus outbreak in Chonburi Province, Central Thailand, 2013. Emerg. Infect. Dis. 24, 361–365 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Vongphayloth, K., Hertz, J. C., Brey, P. & Newton, P. N. Tick-transmitted human infections in Asia. Microbiol. Aust. 39, 203–206 (2018).Article 

    Google Scholar 
    Bartoshevic, E. To the issue of rickettsioses. Health Care Kazakhstan 3, 20–24 (1952) (in Russian).
    Google Scholar 
    Kereyev, N. Human natural focal diseases in Kazakhstan. Alma-ata (1961) (in Russian).Arkhangelskiy, D. Experimental study of tick-borne rickettsial pathogen in Almaty region. In Collection of Scientific Papers of the Institute of Microbiology and Virologoy Vol 4. Physiology and ecology of micro-organisms. Almta-ata 176–85 (1961) (in Russian).Kyraubayev, K. et al. Study of Dermacentor marginatus ticks for Rickettsiae in Central Kazakhstan. Proc. ASM (2014).Shpynov, S. et al. Detection and identification of spotted fever group Rickettsiae in dermacentor ticks from Russia and Central Kazakhstan. Eur. J. Clin. Microbiol. Infect. Dis. 20, 903–905 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shpynov, S., Rudakov, N. & Yastrebov, V. Identification of new genotypes of rickettsia tick-borne spotted fever group in the south of the Ural, Siberia, Far East and Kazakhstan. Epidemiol. Infect. Dis. 1, 23–27 (2005).
    Google Scholar 
    Hay, J. et al. Biosurveillance in Central Asia: Successes and challenges of tick-borne disease research in Kazakhstan and Kyrgyzstan. Front. Public Health 4, 4 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yegemberdiyeva, R. & Shapieva, Z. Clinical and epidemiological characteristic of tick-borne rickettsiosis in Kazakhstan. Abstract Book of the International Conference on Zoonoses. Ulaanbaatar 48–51 (2008).Rudakov, N. V., Shpynov, S. N., Samoilenko, I. E. & Tankibaev, M. A. Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan. Ann. N. Y. Acad. Sci. 990, 12–24 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sansyzbayev, Y. et al. Survey for Rickettsiae within fleas of Great Gerbils, Almaty Oblast, Kazakhstan. Vector Borne Zoon. Dis. Larchmt. N 17, 172–178 (2017).Article 

    Google Scholar 
    Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring. Almaty. Epidemiological situation of infectious diseases in the Republic of Kazakhstan from 2016. Annual Report (2016) (in Russian).CDC. https://www.cdc.gov/vhf/omsk/index.html (2022).Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 1–16 (2019).Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomassone, L. et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet. Parasitol. 251, 17–26 (2018).PubMed 
    Article 

    Google Scholar 
    Schex, S., Dobler, G. & Riehm, J. Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoon. Dis. 11, 493–502 (2011).Article 

    Google Scholar 
    Tukhanova, N. et al. Molecular characterisation and phylogeny of Tula virus in Kazakhstan. Viruses 14, 1258 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wölfel, R., Essbauer, S. & Dobler, G. Diagnostics of tick-borne rickettsioses in Germany: A modern concept for a neglected disease. Int. J. Med. Microbiol. 298, 368–374 (2008).Article 
    CAS 

    Google Scholar 
    Fournier, P. E., Roux, V. & Raoult, D. Phylogenetic analysis of spotted fever group Rickettsiae by study of the outer surface protein rOmpA. Int. J. Syst. Bacteriol. 48(Pt 3), 839–849 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jado, I. et al. Molecular method for identification of Rickettsia species in clinical and environmental samples. J. Clin. Microbiol. 44, 4572–4576 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turebekov, N. et al. Occurrence of anti-Rickettsia spp. antibodies in hospitalized patients with undifferentiated febrile illness in the southern region of Kazakhstan. Am. J. Trop. Med. Hyg. 104, 2000–2008 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    SPC SEEM. Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan (2021).Yamamoto, Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin. Vaccine Immunol. 9, 508–514 (2002).CAS 
    Article 

    Google Scholar 
    Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 197 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gajda, E. et al. Spotted fever Rickettsiae in wild-living rodents from south-western Poland. Parasit. Vectors 10, 413 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Essbauer, S., Hofmann, M., Kleinemeier, C., Wölfel, S. & Matthee, S. Rickettsia diversity in southern Africa: A small mammal perspective. Ticks Tick-Borne Dis. 9, 288–301 (2018).PubMed 
    Article 

    Google Scholar 
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    El Karkouri, K., Ghigo, E., Raoult, D. & Fournier, P.-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci. Rep. 12, 3807 (2022).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zemtsova, G. E., Montgomery, M. & Levin, M. L. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals. PLoS One 10, e0116658 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri, C., Schumann, O., Schumann, C. & Gern, L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum?. Ticks Tick-Borne Dis. 5, 245–251 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tadin, A. et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am. J. Trop. Med. Hyg. 94, 466–473 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Karbowiak, G., Biernat, B., Stańczak, J., Szewczyk, T. & Werszko, J. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 3. Rickettsiae. Ann. Parasitol. 62, 89–100 (2016).PubMed 

    Google Scholar 
    Zemtsova, G., Killmaster, L. F., Mumcuoglu, K. Y. & Levin, M. L. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 52, 383–392 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehácek, J., Urvölgyi, J., Kocianová, E. & Jedlicka, L. Susceptibility of some species of rodents to Rickettsiae. Folia Parasitol. (Praha) 39, 265–284 (1992).
    Google Scholar 
    Rehácek, J., Zupancicová, M., Kovácová, E., Urvölgyi, J. & Brezina, R. Study of rickettsioses in Slovakia. III. Experimental infection of Apodemus flavicollis Melch. by Rickettsiae of the spotted fever (SF) group isolated in Slovakia. J. Hyg. Epidemiol. Microbiol. Immunol. 21, 306–313 (1976).PubMed 

    Google Scholar 
    Biernat, B., Stańczak, J., Michalik, J., Sikora, B. & Wierzbicka, A. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland. Ticks Tick-Borne Dis. 7, 135–141 (2016).PubMed 
    Article 

    Google Scholar 
    Stańczak, J. et al. Prevalence of infection with Rickettsia helvetica in feeding ticks and their hosts in western Poland. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 15(Suppl 2), 328–329 (2009).
    Google Scholar 
    Barandika, J. F. et al. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl. Environ. Microbiol. 73, 6166–6171 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spitalská, E., Boldis, V., Kostanová, Z., Kocianová, E. & Stefanidesová, K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 52, 175–179 (2008).PubMed 

    Google Scholar 
    Guo, L.-P. et al. Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China-Kazakhstan border. Parasit. Vectors 8, 461 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The establishment of ecological conservation for herpetofauna species in hotspot areas of South Korea

    Giovanelli, J. G. R., Haddad, C. F. B. & Alexandrino, J. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol. Invas. 10, 585–590. https://doi.org/10.1007/s10530-007-9154-5 (2008).Article 

    Google Scholar 
    Sillero, N. Modelling suitable areas for Hyla meridionalis under current and future hypothetical expansion scenarios. Amphib. Reptil. 31, 37–50. https://doi.org/10.1163/156853810790457948 (2010).Article 

    Google Scholar 
    Foley, D. H. et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J. Vector Ecol. 39, 168–181. https://doi.org/10.1111/j.1948-7134.2014.12084.x,Pubmed:24820570 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J. Arid Environ. 75, 1029–1037. https://doi.org/10.1016/j.jaridenv.2011.06.006 (2011).ADS 
    Article 

    Google Scholar 
    Kim, J., Seo, C., Kwon, H., Ryu, J. & Kim, M. A study on the species distribution modeling using national ecosystem survey data. J. Environ. Impact Assess. 21, 593–607 (2012) (in Korean with English abstract).
    Google Scholar 
    Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS One 11, e0144076. https://doi.org/10.1371/journal.pone.0144076,Pubmed:26735688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, M. S. et al. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. Korean J. Environ. Ecol. 31, 381–396. https://doi.org/10.13047/KJEE.2017.31.4.381 (2017).Article 

    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Padoa-Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 15, 108–116. https://doi.org/10.1111/j.1472-4642.2008.00516.x (2009).Article 

    Google Scholar 
    Sillero, N. Modelling a species in expansion at local scale: Is Hyla meridionalis colonising new areas in Salamanca, Spain. Acta Herpetol. 4, 37–46 (2009).
    Google Scholar 
    Yun, S., Lee, J. W. & Yoo, J. C. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. https://doi.org/10.1016/j.gecco.2020.e00976 (2020).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2012).
    Google Scholar 
    Katayama, N. et al. Indirect positive effects of agricultural modernization on the abundance of Japanese tree frog tadpoles in rice fields through the release from predators. Aquat. Ecol. 47, 225–234. https://doi.org/10.1007/s10452-013-9437-0 (2013).Article 

    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272. https://doi.org/10.1080/21513732.2013.821168 (2013).Article 

    Google Scholar 
    Cortes, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of Neotropical amphibians and reptiles: A review. Univ. Sci. 20, 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna (2015).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485. https://doi.org/10.1038/nature09670,Pubmed:21350480 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695,Pubmed:20466932 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118. https://doi.org/10.1111/j.1472-4642.2009.00619.x (2010).Article 

    Google Scholar 
    Blank, L. & Blaustein, L. Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167. https://doi.org/10.1007/s10750-012-1101-5 (2012).Article 

    Google Scholar 
    de Pous, P., Beukema, W., Weterings, M., Dümmer, I. & Geniez, P. Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: A preliminary assessment. Biodivers. Conserv. 20, 89–118. https://doi.org/10.1007/s10531-010-9948-0 (2011).Article 

    Google Scholar 
    NIBR (National Institute of Biological Resources). National List of Species (Reptiles and amphibians). https://www.kbr.go.kr/stat/ktsnfiledown/downpopup.do (2020).Ministry of the Environment. List of Prohibited Wildlife Such as Capture and Harvesting (Ministry of the Environment, 2015).NIBR (National Institute of Biological Resources). Red Data Book of Republic of Korea. Amphibians and Reptiles (NIBR, Incheon), 110–117 (2019).Kim, J. B. Taxonomic list and distribution of Korean Amphibians. Korean J. Herpetol. 1, 1–13 (2009) (in Korean with English abstract).
    Google Scholar 
    Song, J. Y. & Lee, I. Elevation distribution of Korean Amphibians. Korean J. Herpetol. 1, 15–19 (2009) (in Korean with English abstract).
    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of Amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010) (in Korean with English abstract).
    Google Scholar 
    Do, M. S. et al. Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Glob. Ecol. Conserv. 26, e01448. https://doi.org/10.1016/j.gecco.2020.e01448 (2021).Article 

    Google Scholar 
    Kim, I. H., Son, S. H., Kang, S. W. & Kim, J. B. Distribution and habitat characteristics of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 15–22 (2012) (in Korean with English abstract).
    Google Scholar 
    Do, M. S., Lee, J. W., Jang, H. J., Kim, D. I. & Yoo, J. C. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS1a. Korean J. Environ. Ecol. 30, 173–184. https://doi.org/10.13047/KJEE.2016.30.2.173 (2016) (in Korean with English abstract).Article 

    Google Scholar 
    Do, M. S. et al. The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. Coreana and R. huanrensis) using the species distribution model. Korean J. Herpetol. 9, 1–11 (2018).
    Google Scholar 
    Do, M. S., Choi, S., Jang, H. J. & Suh, J. H. Predicting the Distribution of three Korean pit viper Species (Gloydius brevicaudus, G. ussuriensis and G. intermedius) under Climate Change. Russ. J. Herpetol. (2022)Koo, K. S., Park, D. & Oh, H. S. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J. Asia Pac. Biodivers. 12, 1–6. https://doi.org/10.1016/j.japb.2018.11.001 (2019).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel) 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 

    Google Scholar 
    Shin, Y. et al. How threatened is Scincella huanrenensis? An update on threats and trends. Conservation 1, 58–72. https://doi.org/10.3390/conservation1010005 (2021).Article 

    Google Scholar 
    Lee, S. Y. et al. Distribution prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the climate change. Korean J. Environ. Ecol. 35, 480–489. https://doi.org/10.13047/KJEE.2021.35.5.480 (2021).Article 

    Google Scholar 
    Ra, N. Y. Habitat and Behavioral Characteristics, Captive Breeding and Recovery Strategy of the Endangered Gold-Spotted Pond Frog (Rana Plancyi Chosenica). PhD thesis (Kangwon Natl Univ., 2010).Borzée, A., Kim, J. Y. & Jang, Y. Asymmetric competition over calling sites in two closely related treefrog species. Sci. Rep. 6, 32569. https://doi.org/10.1038/srep32569,Pubmed:27599461 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, W. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. J. Korean Environ. Res. Tech. 18, 71–82 (2015) (in Korean with English abstract).
    Google Scholar 
    Ahn, J. Y., Choi, S., Kim, H., Suh, J. H. & Do, M. S. Ecological niche and interspecific competition of two frog species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the geographic information system. KJEE 54, 363–373 (2021).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J. & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea (NIER, 2011) (in Korean).Lee, J. H. & Park, D. Spatial ecology of translocated and resident Amur ratsnakes (Elaphe schrenckii) in two mountain valleys of South Korea. Asian Herpetol. Res. 2, 223–229 (2012).Article 

    Google Scholar 
    Do, M. S., Nam, K. B. & Yoo, J. C. First observation on courtship behavior of short-tailed viper snake, Gloydius saxatilis (Squamata: Viperidae) in Korea. J. Asia Pac. Biodivers. 10, 583–586. https://doi.org/10.1016/j.japb.2017.08.003 (2017).Article 

    Google Scholar 
    Do, M. S. & Nam, K. B. Distribution patterns and ecological niches of the red-tongued pit viper (Gloydius ussuriensis) and the Central Asian pit viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea. Russ. J. Herpetol. 28, 348–354. https://doi.org/10.30906/1026-2296-2021-28-6-348-354 (2021).Article 

    Google Scholar 
    Do, M. S. Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius). Korean J. Herpetol. 12, 1–8 (2021).
    Google Scholar 
    Min, M. S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90. https://doi.org/10.1038/nature03474,Pubmed:15875021 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, J. Y. Current status and distribution of reptiles in the Republic of Korea. Korean J. Environ. Biol. 25, 124–138 (2007).
    Google Scholar 
    Jang, H. J., Kim, D. I. & Jang, M. H. Distribution of reptiles in South Korea: based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 7, 30–35 (2016) (in Korean with English abstract).
    Google Scholar 
    Seo, C. W., Choi, T. Y., Choi, Y. S. & Kim, D. Y. A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan national park. J. Korean Environ. Res. Reveg Tech. 11, 28–38 (2008) (in Korean with English abstract).
    Google Scholar 
    Kown, H. S. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on MT, PhD thesis (Mt Deokyu and MT: Jiri, 2011, 2011). Gaya Regions (Graduate School, Seoul Natl Univ., 2011).Urbina-Cardona, J. N. & Loyola, R. D. Applying niche-based models to predict endangered-hylid potential distributions: Are Neotropical protected areas effective enough?. Trop. Conserv. Sci. 1, 417–445. https://doi.org/10.1177/194008290800100408 (2008).Article 

    Google Scholar 
    Korea Forest Service. Forest area by administrative district. https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?mn=NKFS_04_05_10&pageIndex=1&pageUnit=10&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchdept=&searchWrd=&ctgryLrcls=CTGRY070&ntcStartDt=&ntcEndDt=&bbsId=BBSMSTR_1016 (2015).Statistics Korea. Population and housing census results in South Korea. https://www.kostat.go.kr/portal/korea/kor_nw/1/2/2/index.board (2020).Hyun, J. Brokering science, blaming culture: The US–South Korea ecological survey in the Demilitarized Zone, 1963–8. Hist. Sci. 59, 315–343. https://doi.org/10.1177/0073275320974209,Pubmed:33287575 (2021).Article 
    PubMed 

    Google Scholar 
    Choung, E. H. A theoretical study on the landscape of the Korean DMZ and its spatial significance. Inter-Asian Cult. Stud. 22, 16–35. https://doi.org/10.1080/14649373.2021.1886465 (2021).Article 

    Google Scholar 
    Ministry of the Environment. Report on Biodiversity in the DMZ (Demilitarized Zone) Area. Seocheon-Gun (Ministry of the Environment, 2016).Statistics Korea. Status of species investigation by national park in South Korea. https://kosis.kr/statHtml/statHtml.do?orgId=355&tblId=TX_35501_A069&conn_path=I3 (2021).Koo, K. S., Kwon, S., Do, M. S. & Kim, S. Distribution characteristics of exotic turtles in Korean wild-Based. Korean J Ecol. Environ. 50, 286–294. https://doi.org/10.11614/KSL.2017.50.3.286 (2017).Article 

    Google Scholar 
    National Institute of Ecology. 30 Years of the Natural Environment Survey 1986–2015 (National Inst. of Ecology, Seocheon, 2017).Korea National Park Research Institute. Report on Natural Resource Study. https://www.knps.or.kr/ (2021).GBIF. Global Biodiversity Information Facility Home. http://www.gbif.org/ (2020).Kim, D. I. Species Distribution Modeling, Microhabitat Use, and Morphological Variation of the Schlegel’s Japanese Gecko (Gekko japonicus). PhD thesis (Graduate School, Kangwon Natl Univ., 2019).Borzée, A. et al. Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299. https://doi.org/10.1371/journal.pone.0234299,Pubmed:32579561 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NGII (National Geographic Information Institute). Digital Topographic Map. https://www.ngii.go.kr (2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8, 29–34 (2016).
    Google Scholar 
    Yi, Y. J., Cheng, X., Yang, Z. F. & Zhang, S. H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Phillips, S., Dudik, M. & Schapire, R. A maximum entropy approach to species distribution modeling. In Proceeding of the 21st International Conference on Machine Learning 655–662 (ACM Pr., 2004).Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 11, 23099. https://doi.org/10.1038/s41598-021-02525-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    VanderWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Modell. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C. & Codding, B. F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15, e0239424. https://doi.org/10.1371/journal.pone.0239424,Pubmed:33002016 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (OUP, 2011).Book 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article 

    Google Scholar 
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195–207. https://doi.org/10.1007/s10584-018-2338-4 (2019).ADS 
    Article 

    Google Scholar 
    del Castillo Domínguez, S. L. et al. Predicting the invasion of the acoustic niche: potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect. Ecol. Conserv. 19, 90–97. https://doi.org/10.1016/j.pecon.2020.12.002 (2021).Article 

    Google Scholar 
    Lee, J. W. et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecol. Evol. 4, 3689–3702. https://doi.org/10.1002/ece3.1209,Pubmed:25478158 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 24, 959–969. https://doi.org/10.1111/acv.12698 (2021).Article 

    Google Scholar 
    Mori, E. et al. How the South was won: Current and potential range expansion of the crested porcupine in Southern Italy. Mamm. Biol. 101, 11–19. https://doi.org/10.1007/s42991-020-00058-2 (2021).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615,Pubmed:3287615 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1,Pubmed:19323182 (2009).Article 
    PubMed 

    Google Scholar 
    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 27, 756–769. https://doi.org/10.1071/WF18072 (2018).Article 

    Google Scholar 
    Zhuang, H. et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodivers. Sci. 26, 931–940. https://doi.org/10.17520/biods.2018059 (2018).Article 

    Google Scholar 
    NGII (National Geographic Information Institute). Geographical Extent of the Conservation Area in South Korea. https://www.ngii.go.kr (2021).Bosso, L. et al. A gap analysis for threatened bat populations on Sardinia hystrix, the Italian. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    Ahmadi, M. et al. Species and space: A combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5 (2020).Article 

    Google Scholar  More

  • in

    Global patterns of vascular plant alpha diversity

    Linder, H. P. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 28, 169–182 (2001).Article 

    Google Scholar 
    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 104, 5925–5930 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brummitt, N., Araújo, A. C. & Harris, T. Areas of plant diversity—What do we know? Plants, People, Planet 3, 33–44 (2020).Article 

    Google Scholar 
    Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).Article 

    Google Scholar 
    Slik, J. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 112, 7472–7477 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).Article 

    Google Scholar 
    Weigand, A. et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 47, 59–71 (2020).Article 

    Google Scholar 
    Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5, e15734 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Bruelheide, H., Jiménez-Alfaro, B., Jandt, U. & Sabatini, F. M. Deriving site-specific species pools from large databases. Ecography 43, 1215–1228 (2020).Article 

    Google Scholar 
    Dengler, J. et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 47, 72–86 (2020).Article 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).Bruelheide, H. et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Ricklefs, R. E. Community diversity—relative roles of local and regional processes. Science 235, 167–171 (1987).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Crawley, M. J. & Harral, J. E. Scale dependence in plant biodiversity. Science 291, 864–868 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiménez-Alfaro, B. et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483–490 (2018).PubMed 
    Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S. & Blasi, C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15, 147–157 (2014).Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 211, 404–410 (2016).Article 

    Google Scholar 
    Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Biurrun, I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 32, e13050 (2021).Article 

    Google Scholar 
    Da, S. S. et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641–652 (2018).Article 

    Google Scholar 
    Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H. & Seppelt, R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 41, 261–273 (2014).Article 

    Google Scholar 
    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed 
    Article 

    Google Scholar 
    Muñoz Mazón, M. et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 32, e13032 (2021).Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    Večeřa, M. et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 (2019).Article 

    Google Scholar 
    Wüest, R. O. et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 47, 1–12 (2019).Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belitz, K. & Stackelberg, P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 139, 105006 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).
    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231 (2021).Article 

    Google Scholar 
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article 

    Google Scholar 
    Chytrý, M. et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87, 217–278 (2015).
    Google Scholar 
    Whitmore, T. C., Peralta, R. & Brown, K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1, 375–378 (1985).Article 

    Google Scholar 
    Chytrý, M. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 23, 605–616 (2012).Article 

    Google Scholar 
    Duivenvoorden, J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).Mendieta‐Leiva, G. et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31, 518–528 (2020).Article 

    Google Scholar 
    Spicer, M. E., Mellor, H. & Carson, W. P. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 101, e02974 (2020).PubMed 
    Article 

    Google Scholar 
    Royo, A. A. & Carson, W. P. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145, 66–75 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dwomoh, F. K. & Wimberly, M. C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 32, 1849–1865 (2017).Article 

    Google Scholar 
    Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, K. et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B 288, 20203045 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist 133, 240–256 (1989).Article 

    Google Scholar 
    Andermann, T., Antonelli, A., Barrett, R. L. & Silvestro, D. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 13, 839407 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 114, 10695–10700 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cayuela, L. et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article 

    Google Scholar 
    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS 
    Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Dengler, J. et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 22, 582–597 (2011).Article 

    Google Scholar 
    Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).Article 

    Google Scholar 
    Chytrý, M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 4, 290 (2012).Article 

    Google Scholar 
    Schmidt, M. et al. The West African Vegetation Database. Biodiv. Ecol. 4, 105–110 (2012).Article 

    Google Scholar 
    Muche, G., Schmiedel, U. & Jürgens, N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 4, 111–123 (2012).Article 

    Google Scholar 
    Revermann, R. et al. Vegetation database of the Okavango Basin. Phytocoenologia 46, 103–104 (2016).Article 

    Google Scholar 
    N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 433, 325–331 (2019).Article 

    Google Scholar 
    Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).Kearsley, E. et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 4, 2269 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Djomo Nana, E. et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47, 758–764 (2015).Article 

    Google Scholar 
    Wana, D. & Beierkuhnlein, C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 27, 289–304 (2011).Article 

    Google Scholar 
    Finckh, M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 4, 297 (2012).Article 

    Google Scholar 
    Strohbach, B. & Kangombe, F. National Phytosociological Database of Namibia. Biodiver. Ecol. 4, 298–298 (2012).Article 

    Google Scholar 
    Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).Černý, T. et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 18, 5–22 (2015).Article 

    Google Scholar 
    Nowak, A. et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia 47, 395–400 (2017).Article 

    Google Scholar 
    Liu, H., Cui, H., Pott, R. & Speier, M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 11, 525–532 (2000).Article 

    Google Scholar 
    Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article 

    Google Scholar 
    Bruelheide, H. et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81, 25–41 (2011).Article 

    Google Scholar 
    Cheng, X.-L. et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 13, e0198517 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hatim, M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 4, 303 (2012).Article 

    Google Scholar 
    Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150275 (2016).Article 

    Google Scholar 
    Dolezal, J., Dvorsky, M. & Kopecky, M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borchardt, P. & Schickhoff, U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 4, 309 (2012).Article 

    Google Scholar 
    Wagner, V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 20, 199–208 (2009).Article 

    Google Scholar 
    von Wehrden, H., Wesche, K. & Miehe, G. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).Article 

    Google Scholar 
    Chepinoga, V. V. Wetland Vegetation Database of Baikal Siberia (WETBS). Biodiver. Ecol. 4, 311 (2012).Article 

    Google Scholar 
    Korolyuk, A. et al. Database of Siberian Vegetation (DSV). Biodiver. Ecol. 4, 312–312 (2012).Article 

    Google Scholar 
    El-Sheikh, M. A. et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 24, 389–398 (2017).PubMed 
    Article 

    Google Scholar 
    Vanselow, K. A. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan). Phytocoenologia 46, 105 (2016).Article 

    Google Scholar 
    De Sanctis, M. & Attorre, F. Socotra Vegetation Database. Biodiver. Ecol. 4, 315 (2012).Article 

    Google Scholar 
    Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci. 17, 386–397 (2014).Wiser, S. K., Bellingham, P. J. & Burrows, L. E. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    Whitfeld, T. J. S. et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46, 538–548 (2014).Article 

    Google Scholar 
    Dengler, J. & Rūsiņa, S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 4, 319–320 (2012).Article 

    Google Scholar 
    Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M. & Loidi, J. Vegetation-plot database of the University of the Basque Country (BIOVEG). Biodiver. Ecol. 4, 328 (2012).Article 

    Google Scholar 
    Vassilev, K., Stevanović, Z. D., Cušterevska, R., Bergmeier, E. & Apostolova, I. Balkan Dry Grasslands Database. Biodiver. Ecol. 4, 330–330 (2012).Article 

    Google Scholar 
    Marcenò, C. & Jiménez‐Alfaro, B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia 47, 95–105 (2017).
    Google Scholar 
    Vassilev, K. et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia 46, 89–95 (2016).Article 

    Google Scholar 
    Landucci, F. et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia 45, 187–194 (2015).Article 

    Google Scholar 
    Peterka, T., Jiroušek, M., Hájek, M. & Jiménez‐Alfaro, B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia 45, 291–297 (2015).Article 

    Google Scholar 
    De Sanctis, M., Fanelli, G., Mullaj, A. & Attorre, F. Vegetation database of Albania. Phytocoenologia 47, 107–108 (2017).Article 

    Google Scholar 
    Willner, W., Berg, C. & Heiselmayer, P. Austrian Vegetation Database. Biodiver. Ecol. 4, 333 (2012).Article 

    Google Scholar 
    Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 4, 141–148 (2012).Article 

    Google Scholar 
    Wohlgemuth, T. Swiss Forest Vegetation Database. Biodiver. Ecol. 4, 340 (2012).Article 

    Google Scholar 
    Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75, 1–15 (2003).
    Google Scholar 
    Jansen, F., Dengler, J. & Berg, C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 4, 149–160 (2012).Article 

    Google Scholar 
    Ewald, J., May, R. & Kleikamp, M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 4, 173–175 (2012).Article 

    Google Scholar 
    Jandt, U. & Bruelheide, H. German vegetation reference database (GVRD). Biodiver. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Garbolino, E., De Ruffray, P., Brisse, H. & Grandjouan, G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 4, 177–184 (2012).Article 

    Google Scholar 
    Dimopoulos, P. & Tsiripidis, I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiver. Ecol. 4, 388 (2012).Article 

    Google Scholar 
    Fotiadis, G., Tsiripidis, I., Bergmeier, E. & Dimopoulos, P. Hellenic Woodland Database. Biodiver. Ecol. 4, 389 (2012).Article 

    Google Scholar 
    Stančić, Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 4, 391 (2012).Article 

    Google Scholar 
    Lájer, K. et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 7, 197–201 (2008).
    Google Scholar 
    Landucci, F. et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146, 756–763 (2012).Article 

    Google Scholar 
    Casella, L., Bianco, P. M., Angelini, P. & Morroni, E. Italian National Vegetation Database (BVN/ISPRA). Biodiver. Ecol. 4, 404 (2012).Article 

    Google Scholar 
    Agrillo, E. et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia 47, 221–229 (2017).Article 

    Google Scholar 
    Rūsiņa, S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 4, 409 (2012).Article 

    Google Scholar 
    Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).Kącki, Z. & Śliwiński, M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 81, 75–79 (2012).Article 

    Google Scholar 
    Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia 47, 389–393 (2017).Article 

    Google Scholar 
    Vassilev, K. et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia 48, 91–100 (2018).Article 

    Google Scholar 
    Aćić, S., Petrović, M., Dajić Stevanović, Z. & Šilc, U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 4, 418 (2012).Article 

    Google Scholar 
    Golub, V. et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 4, 419 (2012).Article 

    Google Scholar 
    Lysenko, T., Kalmykova, O. & Mitroshenkova, A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 4, 420–421 (2012).Article 

    Google Scholar 
    Prokhorov, V., Rogova, T. & Kozhevnikova, M. Vegetation database of Tatarstan. Phytocoenologia 47, 309–313 (2017).Article 

    Google Scholar 
    Šilc, U. Vegetation Database of Slovenia. Biodiver. Ecol. 4, 428 (2012).Article 

    Google Scholar 
    Šibík, J. Slovak Vegetation Database. Biodiver. Ecol. 4, 429 (2012).Article 

    Google Scholar 
    Kuzemko, A. Ukrainian Grasslands Database. Biodiver. Ecol. 4, 430 (2012).Article 

    Google Scholar 
    Cayuela, L. et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 4, 211–224 (2012).Article 

    Google Scholar 
    Wagner, V., Spribille, T., Abrahamczyk, S. & Bergmeier, E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 17, 129–141 (2014).Article 

    Google Scholar 
    Aubin, I., Gachet, S., Messier, C. & Bouchard, A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14, 259–271 (2007).Article 

    Google Scholar 
    Sieg, B., Drees, B. & Daniëls, F. J. A. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 57, 1–93 (2006).
    Google Scholar 
    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    Peet, R. K. et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 4, 243–253 (2012).Article 

    Google Scholar 
    Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia 46, 221–229 (2016).Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45, 195–201 (2015).Article 

    Google Scholar 
    Vibrans, A. C., Sevgnani, L., Lingner, D. V., Gasper, A. L. & Sabbagh, S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira 30, 291–302 (2010).Article 

    Google Scholar 
    Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere 5, 1–12 (2014).Aiba, S.-i & Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140, 139–157 (1999).Article 

    Google Scholar 
    Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 4, 428–444 (2011).Article 

    Google Scholar 
    Ayyappan, N. & Parthasarathy, N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv 8, 1533–1554 (1999).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).Bunyavejchewin, S., Baker, P. J., LaFrankie, J. V. & Ashton, P. S. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 49, 89–106 (2001).
    Google Scholar 
    Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).Article 

    Google Scholar 
    Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland) 9, 741 (2020).Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224 (2013).Article 

    Google Scholar 
    Chu, C. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS 
    PubMed 

    Google Scholar 
    Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).D’Amico, C. & Gautier, L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar). Candollea 55, 319–340 (2000).
    Google Scholar 
    Davidar, P., Mohandass, D. & Vijayan, L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 12, 42–58 (2007).
    Google Scholar 
    Davies, S. J. & Becker, P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 8, 542–569 (1996).
    Google Scholar 
    Duivenvoorden, J. F. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).Galeano, G., Suárez, S. & Balslev, H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 7, 1563–1575 (1998).Article 

    Google Scholar 
    Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).Gastauer, M., Leyh, W. & Meira-Neto, J. A. A. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 3, e5425 (2015).Article 

    Google Scholar 
    Helmi, N., Kartawinata, K. & Samsoedin, I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13, 33–44 (2009).
    Google Scholar 
    Hernández, L., Dezzeo, N., Sanoja, E., Salazar, L. & Castellanos, H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical 60, 11–33 (2012).
    Google Scholar 
    Ho, B. C. et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 71, 41–144 (2019).Article 

    Google Scholar 
    Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).Kartawinata, K., Samsoedin, I., Heriyanto, M. & Afriastini, J. J. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12, 145 (2013).Article 

    Google Scholar 
    Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug-2 (CIFOR, 1994).KuoJung, C., WeiChun, C., KeiMei, C. & ChangFu, H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 25, 29–40 (2010).
    Google Scholar 
    Lan, G., Zhu, H. & Cao, M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17, 432–439 (2012).CAS 
    Article 

    Google Scholar 
    Lee, H. S. et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 14, 379–400 (2002).
    Google Scholar 
    Linares-Palomino, R. et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 201, 87–99 (2009).Article 

    Google Scholar 
    Lubini, A. & Mandango, A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire). Bull. Jard. Bot. Natl Belg. 51, 231 (1981).Article 

    Google Scholar 
    Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index 20 (1998).Mansur, M. & Kartawinata, K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia 16, 77 (2017).Article 

    Google Scholar 
    Mikoláš, M. et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B 288, 20211631 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohandass, D. & Davidar, P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 50, 219–229 (2009).
    Google Scholar 
    Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021).Ngo, K. M., Davies, S., Nik, H., Faizu, N. & Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 9, 397–407 (2016).Article 

    Google Scholar 
    Parthasarathy, N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8, 1365–1381 (1999).Article 

    Google Scholar 
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).Pascal, J. P. & Pelissier, R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12, 191–214 (1996).Article 

    Google Scholar 
    Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).Article 

    Google Scholar 
    Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 71, 237 (1983).Article 

    Google Scholar 
    Ramesh, B. R. et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91, 3118 (2010).Article 

    Google Scholar 
    Razak, S. A. & Haron, N. W. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 47, 2143–2150 (2015).
    Google Scholar 
    Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).Sarah, A. R., Nuradnilaila, H., Haron, N. W. & Azani, M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana 44, 491–496 (2015).Article 

    Google Scholar 
    Schrader, J., Moeljono, S., Tambing, J., Sattler, C. & Kreft, H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 8, e55275 (2020).Article 

    Google Scholar 
    Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J. J. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 3, 59–66 (2010).Article 

    Google Scholar 
    Sukumar, R. et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 62, 608–616 (1992).
    Google Scholar 
    van Andel, T. R. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 167, 293–317 (2003).Article 

    Google Scholar 
    Webb, E. L. & Fa’aumu, S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 144, 257–274 (1999).Article 

    Google Scholar 
    Zimmerman, J. K. et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 82, 911 (1994).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schultz, J. The Ecozones of the World (Springer, 2005).Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).Zhou, S. et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 18, 742–751 (2017).Article 

    Google Scholar 
    Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35, 211–226 (2011).Article 

    Google Scholar 
    Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest cover www.wri.org/forest-restoration-atlas (2011).Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article 

    Google Scholar 
    Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 8, 204–218 (2016).
    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R package https://CRAN.R-project.org/package=rnaturalearth (2017).Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. https://doi.org/10.25829/idiv.3506-p4c0mo (2022).Sabatini, F. M. fmsabatini/GlobalLocal_PlantRichness: NatComms R3 v.3. Zenodo https://doi.org/10.5281/zenodo.6659837 (2022). More

  • in

    Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).Article 

    Google Scholar 
    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part 2 54, 521–537 (2007).Article 

    Google Scholar 
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170075 (2018).Article 

    Google Scholar 
    Aloisi, G. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12, 6215–6284 (2015).Article 

    Google Scholar 
    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).Article 

    Google Scholar 
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).Article 

    Google Scholar 
    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).Article 

    Google Scholar 
    McClelland, H. L. O., Bruggeman, J., Hermoso, M. & Rickaby, R. E. M. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 14511 (2017).Article 

    Google Scholar 
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).Article 

    Google Scholar 
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 6, 34263 (2016).Article 

    Google Scholar 
    Duchamp-Alphonse, S. et al. Enhanced ocean–atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nat. Commun. 9, 2396 (2018).Article 

    Google Scholar 
    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).Article 

    Google Scholar 
    Meier, K. J. S., Berger, C. & Kinkel, H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II). Mar. Micropaleontol. 112, 1–12 (2014).Article 

    Google Scholar 
    Su, X., Liu, C. & Beaufort, L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls. Mar. Micropaleontol. 154, 101798 (2020).Article 

    Google Scholar 
    Berger, C., Meier, K. J. S., Kinkel, H. & Baumann, K.-H. Changes in calcification of coccoliths under stable atmospheric CO2. Biogeosciences 11, 929–944 (2014).Article 

    Google Scholar 
    Zachos, J., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).Article 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 

    Google Scholar 
    Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).Article 

    Google Scholar 
    Holtz, L.-M., Wolf-Gladrow, D. & Thoms, S. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420, 117–127 (2017).Article 

    Google Scholar 
    Hermoso, M., Horner, T. J., Minoletti, F. & Rickaby, R. E. M. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater. Geochim. Cosmochim. Acta 141, 612–627 (2014).Article 

    Google Scholar 
    Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C. & Rickaby, R. E. M. Vanishing coccolith vital effects with alleviated carbon limitation. Biogeosciences 13, 301–312 (2016).Article 

    Google Scholar 
    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010).Article 

    Google Scholar 
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).Article 

    Google Scholar 
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).Article 

    Google Scholar 
    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).Article 

    Google Scholar 
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14, 1493–1509 (2017).Article 

    Google Scholar 
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6, 218–222 (2013).Article 

    Google Scholar 
    Herrmann, S. & Thierstein, H. R. Cenozoic coccolith size changes—evolutionary and/or ecological controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334, 92–106 (2012).Article 

    Google Scholar 
    Young, J. R. & Ziveri, P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 22, 1679–1700 (2000).Article 

    Google Scholar 
    Daniels, C. J., Sheward, R. M. & Poulton, A. J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11, 6915–6925 (2014).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).Article 

    Google Scholar 
    Misra, S. & Froelich, P. N. Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).Article 

    Google Scholar 
    Ravizza, G. E. & Zachos, J. C. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 551–581 (Elsevier, 2003).McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. J. Geol. 109, 155–170 (2001).Article 

    Google Scholar 
    Pegram, W. J., Krishnaswami, S., Ravizza, G. E. & Turekian, K. K. The record of sea water 1870s/1860s variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Leg 208 summary. In Zachos, J. C., Kroon, D. & Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–112: College Station, TX (Ocean Drilling Program) (2004).Brummer, G. J. A. & van Eijden, A. J. M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117 (1992).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).Article 

    Google Scholar 
    Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Sci. Rep. 9, 2486 (2019).Article 

    Google Scholar 
    Zhang, Y. G. et al. Refining the alkenone–pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191 (2019).Article 

    Google Scholar 
    Freeman, K. H. & Pagani, M. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Vol. 177 (eds Baldwin, I. T. et al.) 35–61 (Springer-Verlag, 2005).Pagani, M. The alkenone–CO2 proxy and ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. A 360, 609–632 (2002).Article 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).Article 

    Google Scholar 
    Henehan, M. J. et al. Revisiting the Middle Eocene Climatic Optimum ‘Carbon Cycle Conundrum’ with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003713 (2020).Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 

    Google Scholar 
    Stap, L., Sluijs, A., Thomas, E. & Lourens, L. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography 24, PA1211, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008PA001655 (2009).Sluijs, A. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780 (2009).Article 

    Google Scholar 
    Stap, L. et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010).Article 

    Google Scholar 
    Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017 (2003).Article 

    Google Scholar 
    van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nat. Commun. 9, 2877 (2018).Article 

    Google Scholar 
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).Article 

    Google Scholar 
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822–e1501822 (2016).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Site 1263. In Zachos, J. C., Kroon, D., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–87 College Station, TX (Ocean Drilling Program) (2004).Bice, K. L., Sloan, L. C. & Barron, E. J. in Warm Climates in Earth History (eds Huber, B. T., Macleod, K. G., & Wing, S. L.) 79–129 (Cambridge Univ. Press, 2000).Handoh, I. C., Bigg, G. R. & Jones, E. J. W. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 31–58 (2003).Article 

    Google Scholar 
    Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat. Protoc. 4, 14–24 (2009).Article 

    Google Scholar 
    Zhang, H., Stoll, H., Bolton, C., Jin, X. & Liu, C. A refinement of coccolith separation methods: Measuring the sinking characters of coccoliths. Biogeosciences Discussions (2018): 1–30 https://doi.org/10.5194/bg-2018-82 (2020).Hermoso, M. et al. Towards the use of the coccolith vital effects in palaeoceanography: a field investigation during the middle Miocene in the SW Pacific Ocean. Deep Sea Res. Part 1 160, 103262 (2020).Article 

    Google Scholar 
    Lauretano, V., Hilgen, F. J., Zachos, J. C. & Lourens, L. J. Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13Cbenthic record of ODP site 1263 between ~49 and ~54 Ma. Newsl. Stratigr. 49, 383–400 (2016).Article 

    Google Scholar 
    Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11, 1181–1195 (2015).Article 

    Google Scholar 
    Westerhold, T. et al. Astronomical Calibration of the Ypresian Time Scale: Implications for Seafloor Spreading Rates and the Chaotic Behaviour of the Solar System? Preprint at Clim. Past Discuss. https://doi.org/10.5194/cp-2017-15 (2017).Gatuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry (2021); https://CRAN.R-project.org/package=seacarb More

  • in

    The shrunk genetic diversity of coral populations in North-Central Patagonia calls for management and conservation plans for marine resources

    Försterra, G. et al. Animal forests in the Chilean fiord region: Discoveries and perspectives in shallow and deep waters. In Marine Animal Forests. Orejas Saco del Valle (eds Rossi, S. et al.) 1–35 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_3-1.Chapter 

    Google Scholar 
    Castilla, J. C. et al. (eds) Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Iriarte, J. L. et al. Oceanographic Processes in Chilean Fjords of Patagonia: From small to large-scale studies. Prog. Oceanogr. 129, 1–7. https://doi.org/10.1016/j.pocean.2014.10.004 (2014).ADS 
    Article 

    Google Scholar 
    Iriarte, J. L. Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front. Mar. Sci. 5, 360. https://doi.org/10.3389/fmars.2018.00360 (2018).Article 

    Google Scholar 
    Strub, P. T. et al. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198. https://doi.org/10.1016/j.pocean.2019.01.004 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Häussermann, V. et al. Macrobentos de fondos duros de la Patagonia chilena: Énfasis en la conservación de bosques sublitorales de invertebrados y algas. In Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (eds Castilla, J. C. et al.) (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Kol, P. H. Los Riesgos de la Expansión Salmonera en la Patagonia Chilena. Estado de la Salmonicultura Intensiva en la Región de Magallanes (AIDA, 2018).Iversen, A. et al. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 522, 735089. https://doi.org/10.1016/j.aquaculture.2020.735089 (2020).Article 

    Google Scholar 
    Cárdenas-Retamal, R. et al. Impact assessment of salmon farming on income distribution in remote coastal areas: The Chilean case. Food Policy 101, 102078. https://doi.org/10.1016/j.foodpol.2021.102078 (2021).Article 

    Google Scholar 
    Chavez, C. et al. Main issues and challenges for sustainable development of salmon farming in Chile: A socio-economic perspective. Rev. Aquac. 11, 403–421. https://doi.org/10.1111/raq.12338 (2019).Article 

    Google Scholar 
    Quiñones, R. A. et al. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 11, 375–402. https://doi.org/10.1111/raq.12337 (2019).Article 

    Google Scholar 
    Mardones, J. I. et al. Disentangling the environmental processes responsible for the world’s largest farmed fish-killing harmful algal bloom: Chile, 2016. Sci. Total Environ. 76, 1–19. https://doi.org/10.1016/j.scitotenv.2020.144383 (2021).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds. Sci. Total Environ. 777, 1–7. https://doi.org/10.1016/j.scitotenv.2021.146004 (2021).CAS 
    Article 

    Google Scholar 
    SUBPESCA. Listado de concesiones de acuicultura d salmónidos por agrupación de concesiones en las regiones X, XI y XII (Julio 2021). https://www.subpesca.cl/portal/619/w3-article-103129.html (2021).Gorny, M. et al. Las comunidades marinas bentónicas de la Reserva Nacional Katalalixar (Chile). Oceanografía, 29–44 (2020).Friedlander, A. M. et al. Marine communities of the newly created Kawésqar National Reserve, Chile: From glaciers to the Pacific Ocean. PLoS One 16(4), e0249413. https://doi.org/10.1371/journal.pone.0249413 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mardones, J. I. et al. Toxic dinoflagellate blooms of Alexandrium catenella in Chilean fjords: A resilient winner from climate change. ICES J. Mar. Sci. 74(4), 988–995. https://doi.org/10.1093/icesjms/fsw164 (2016).Article 

    Google Scholar 
    Alvarez-Garreton, C. et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846. https://doi.org/10.5194/hess-22-5817-2018 (2018).ADS 
    Article 

    Google Scholar 
    Novak, B. J. et al. Transforming ocean conservation: Applying the genetic rescue toolkit. Genes 11, 209. https://doi.org/10.3390/genes11020209 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Outeiro, L. et al. Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. Ecosyst. Serv. 16, 341–353. https://doi.org/10.1016/j.ecoser.2015.03.004 (2015).Article 

    Google Scholar 
    Anbleyth-Evans, J. et al. Toward marine democracy in Chile: Examining aquaculture ecological impacts through common property local ecological knowledge. Mar. Policy 113, 103690. https://doi.org/10.1016/j.marpol.2019.103690 (2019).Article 

    Google Scholar 
    Kershaw, F. et al. Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquat. Conserv. Mar Freshw. Ecosyst. https://doi.org/10.1002/aqc.3622 (2021).Article 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173. https://doi.org/10.1016/j.marpol.2018.04.022 (2018).Article 

    Google Scholar 
    Paredes, J. et al. Population genetic structure at the northern edge of the distribution of Alexandrium catenella in the Patagonian fjords and its expansion along the open Pacific Ocean coast. Front. Mar. Sci. 5, 532. https://doi.org/10.3389/fmars.2018.00532 (2019).Article 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173. https://doi.org/10.7717/peerj.4173 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. High genetic diversity and low-population differentiation in the Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA. Mitochondrial DNA Part A 29(8), 1148–1155. https://doi.org/10.1080/24701394.2018.1424841 (2018).CAS 
    Article 

    Google Scholar 
    Pérez-Alvarez, M. et al. Historical dimensions of population structure in a continuously distributed marine species: The case of the endemic Chilean dolphin. Sci. Rep. 6, 35507. https://doi.org/10.1038/srep35507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Alvarez, J. M. et al. Phylogeography and demographic inference of the endangered sei whale, with implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3717 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(1), 1–14. https://doi.org/10.1002/aqc.3421 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Genetic conservation management of marine resources and ecosystems of Patagonian Fjords. Front. Mar. Sci. 8, 612195. https://doi.org/10.3389/fmars.2021.612195 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus and cross-species amplifications in the Scleractinia Order. J. Hered. 106(3), 322–330. https://doi.org/10.1093/jhered/esv010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Miller, K. J. & Gunasekera, R. M. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci. Rep. 7, 1–14. https://doi.org/10.1038/srep46103 (2017).CAS 
    Article 

    Google Scholar 
    Holloley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517. https://doi.org/10.2144/000113156 (2009).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C. et al. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Falush, D. et al. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).Article 
    PubMed 

    Google Scholar 
    Kopelman, N. M. et al. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K. et al. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627. https://doi.org/10.1111/1755-0998 (2016).Article 
    PubMed 

    Google Scholar 
    Piry, S. et al. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article 

    Google Scholar 
    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. et al. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2022). https://ggplot2.tidyverse.org. ISBN 978-3-319-24277-4.Addamo, A. M. et al. Microsatellites of Desmophyllum dianthus—Comau Fjord. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.612195. Zenodo. https://doi.org/10.5281/zenodo.4435966 (2021).Tecklin, D. Sensing the limits of fixed marine property rights in changing coastal ecosystems: Salmon aquaculture concessions, crises, and governance challenges in Southern Chile. J. Int. Wildl. Law Policy 19(4), 284–300. https://doi.org/10.1080/13880292.2016.1248647 (2016).Article 

    Google Scholar 
    Buschmann, A. H. et al. Salmon aquaculture and coastal ecosystem health in Chile: Analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast. Manag. 52, 243–249. https://doi.org/10.1016/j.ocecoaman.2009.03.002 (2009).Article 

    Google Scholar 
    Pantoja, S. et al. Oceanography of the Chilean Patagonia. Cont. Shelf Res. 31, 149–153. https://doi.org/10.1016/j.csr.2010.10.013 (2011).ADS 
    Article 

    Google Scholar 
    Molina, V. & Fernández, C. Bacterioplankton response to nitrogen and dissolved organic matter produced from salmon mucus. Microbiol. Open 9(12), e1132. https://doi.org/10.1002/mbo3.1132 (2020).CAS 
    Article 

    Google Scholar 
    Försterra, G. & Häussermann, V. First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool. Verh. 345, 117–128 (2003).
    Google Scholar 
    Brown, S. M. et al. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS One 8(4), e59732. https://doi.org/10.1371/journal.pone.0059732 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460. https://doi.org/10.1111/mec.13782 (2016).Article 
    PubMed 

    Google Scholar 
    Thiel, M. et al. The Humboldt Current system of Northern and Central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 
    Giesecke, R. et al. General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America. Front. Mar. Sci. Coast. Ocean Process. 8, 621822. https://doi.org/10.3389/fmars.2021.621822 (2021).Article 

    Google Scholar 
    Chaigneau, A. Surface circulation and fronts of the South Pacific Ocean, east of 120°. Geophys. Res. Lett. 32, L08605. https://doi.org/10.1029/2004GL022070 (2005).ADS 
    Article 

    Google Scholar 
    Aiken, C. M. A reanalysis of the Chilean ocean circulation: Preliminary results for the region between 20°S to 40°S. Lat. Am. J. Aquat. Res. 45(1), 193–198. https://doi.org/10.3856/vol45-issue1-fulltext-19 (2017).Article 

    Google Scholar 
    González, H. E. et al. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 402, 13–30. https://doi.org/10.3354/meps08360 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    González, H. E. et al. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont. Shelf Res. 31, 225–243. https://doi.org/10.1016/j.csr.2010.08.010 (2011).ADS 
    Article 

    Google Scholar 
    Feehan, K. A. et al. Highly seasonal reproduction in deep-water emergent Desmophyllum dianthus (Scleractinia: Caryophylliidae) from the Northern Patagonian Fjords. Mar. Biol. 166(4), 52. https://doi.org/10.1007/s00227-019-3495-3 (2019).Article 

    Google Scholar 
    Försterra, G. et al. Mass die off of the cold-water coral Desmophyllum dianthus in the Chilean Patagonian Fjord Region. Bull. Mar. Sci. 90(3), 895–899 (2014).Article 

    Google Scholar 
    Mora-Soto, A. et al. A song of wind and ice: Increased frequency of marine cold-spells in southwestern Patagonia and their possible effects on giant kelp forests. J. Geophys. Res. Oceans 127, e2021JC017801. https://doi.org/10.1029/2021JC017801 (2022).ADS 
    Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Verberk, W. Explaining general patterns in species abundance and distributions. Nat. Sci. Educ. 3(10), 38 (2011).
    Google Scholar 
    Devenish, C. et al. Extreme and complex variation in range-wide abundances across a threatened Neotropical bird community. Divers. Distrib. 23, 910–921. https://doi.org/10.1111/ddi.12577 (2017).Article 

    Google Scholar 
    Iriarte, J. L. et al. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. N. Z. J. Mar. Freshw. Res. 51(2), 304–315. https://doi.org/10.1080/00288330.2016.1220955 (2016).CAS 
    Article 

    Google Scholar 
    Silva, N. et al. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y Laguna San Rafael (Crucero Cimar-Fiordo 1). Cienc. Tecnol. Mar. 20, 23–106 (1997).
    Google Scholar 
    Iriarte, J. L. et al. Low spring primary production and microplankton carbon biomass in Sub-Antarctic Patagonian channels and fjords (50–53°S). Arct. Antarct. Alp. Res. 50(1), e1525186. https://doi.org/10.1080/15230430.2018.1525186 (2018).Article 

    Google Scholar 
    Höfer, J. et al. All you can eat: The functional response of the cold-water coral Desmophyllum dianthus feeding on krill and copepods. PeerJ 6, e5872. https://doi.org/10.7717/peerj.5872 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, P. et al. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem. Estuar. Coast. Shelf Sci. 199, 105e116. https://doi.org/10.1016/j.ecss.2017.09.027 (2017).CAS 
    Article 

    Google Scholar 
    Quiroga, E. et al. Seasonal benthic patterns in a glacial Patagonian fjord: The role of suspended sediment and terrestrial organic matter. Mar. Ecol. Prog. Ser. 561, 31–50. https://doi.org/10.3354/meps11903 (2016).ADS 
    Article 

    Google Scholar 
    Escribano, R. et al. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog. Oceanogr. 75, 470–485. https://doi.org/10.1016/j.pocean.2007.08.027 (2007).ADS 
    Article 

    Google Scholar 
    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606. https://doi.org/10.7717/peerj.1606 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Dios, A. et al. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 8, e8236. https://doi.org/10.7717/peerj.8236 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Márquez, V. et al. Asexual reproduction in bad times? The case of Cladocora caespitosa in the eastern Mediterranean Sea. Coral Reefs 40, 663–677. https://doi.org/10.1007/s00338-020-02040-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva, N. & Calvete, C. Características oceanográficas físicas y químicas de canales australes chilenos entre el Golfo de Penas y el Estrecho de Magallanes (Crucero Cimar-Fiordo 2). Cienc. Tecnol. Mar. 20, 23–88 (2002).
    Google Scholar 
    Häussermann, V. et al. Species that fly at a higher game: Patterns of deep–water emergence along the Chilean coast, including a global review of the phenomenon. Front. Mar. Sci. 8, 688316. https://doi.org/10.3389/fmars.2021.688316 (2021).Article 

    Google Scholar 
    Fillinger, L. & Richter, C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: A cold-water coral thriving at low pH. PeerJ 1, e194. https://doi.org/10.7717/peerj.194 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M. et al. Biodiversity and distribution of corals in Chile. Mar. Biodivers. 52, 33. https://doi.org/10.1007/s12526-022-01271-7 (2022).Article 

    Google Scholar 
    Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 8, 584445. https://doi.org/10.3389/fmars.2021.584445 (2021).Article 

    Google Scholar 
    SGS SIGA. 4.15 Pobreza multidimensional y pobreza por ingresos de la Region de los Lagos. Agosto 2018. Subsecreteria de Desarollo Regional y Administrativo, Gobierno de Chile (2018).FAO. The state of world fisheries and aquaculture. http://www.fao.org/3/a-i720e.pdf (2014).Niklitschek, E. J. et al. Southward expansion of the Chilean salmon industry in the Patagonian Fjords: Main environmental challenges. Rev. Aquac. 4, 1–24. https://doi.org/10.1111/raq.1201 (2013).Article 

    Google Scholar 
    Soto, M. V. et al. Natural hazards and exposure of strategic connectivity in extreme territories. Comau Fjord, North Patagonia, Chile. Rev. Geogr. Norte Grande 73, 57–75 (2019).Article 

    Google Scholar 
    Montes, R. M. et al. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65. https://doi.org/10.1016/j.hal.2018.05.004 (2018).Article 
    PubMed 

    Google Scholar 
    Lembeye, G. Harmful algal blooms in the austral Chilean channels and fjords. In Progress in the Oceanographic Knowledge of Chilean Interior Waters, from Puerto Montt to Cape Horn (eds Silva, N. & Palma, S.) 99–103 (Comité Oceanográfico, 2008).
    Google Scholar 
    Häussermann, V. et al. Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5, e3123. https://doi.org/10.7717/peerj.3123 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Google IncGoogle Earth. Retrieved from https://www.google.com/earth/versions/#download-pro (2009). More

  • in

    Observing and modeling long-term persistence of P. noctiluca in coupled complementary marine systems (Southern Tyrrhenian Sea and Messina Strait)

    Lucas, C. H. et al. Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers. Glob. Ecol. Biogeogr. 23, 701–714. https://doi.org/10.1111/Geb.12169 (2014).Article 

    Google Scholar 
    Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. USA 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Graham, W. M. et al. Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 12, 515–523. https://doi.org/10.1890/130298 (2014).Article 

    Google Scholar 
    Lucas, C. H., Gelcich, S. & Uye, S. I. Living with jellyfish: Management and adaptation strategies. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 129–150 (Springer, 2014).Chapter 

    Google Scholar 
    De Donno, A. et al. Impact of stinging jellyfish proliferations along south Italian coasts: Human health hazards, treatment and social costs. Int. J. Environ. Res. Public Health 11, 2488–2503 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosch-Belmar, M. et al. Consequences of stinging plankton blooms on finfish mariculture in the Mediterranean Sea. Front. Mar. Sci. 4, 240. https://doi.org/10.3389/fmars.2017.0024 (2017).Article 

    Google Scholar 
    Mayer, A. G. Medusae of the World: The Hydromedusae 132–498 (Carnegie institution of Washington, 1910).Book 

    Google Scholar 
    Kramp, P. L. Synopsis of the medusae of the world. J. Mar. Biol. Assoc. UK 40, 1–469 (1961).
    Google Scholar 
    Canepa, A. et al. Pelagia noctiluca in the Mediterranean Sea. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 237–266 (Springer, 2014).Chapter 

    Google Scholar 
    Marambio, M. et al. Unfolding jellyfish bloom dynamics along the Mediterranean basin by transnational citizen science initiatives. Diversity 13, 274. https://doi.org/10.3390/d13060274 (2021).Article 

    Google Scholar 
    Mamish, S., Durgham, H. & Ikhtiyar, S. The first Pelagia noctiluca outbreak off the Syrian coast (the eastern Mediterranean Sea), five years after its first appearance. SSRG Int. J. Agric. Environ. Sci. 6, 72–75 (2019).
    Google Scholar 
    Daly Yahia, M. N. et al. Are outbreaks of Pelagia noctiluca (Forsskäl, 1775) more frequent in the Mediterranean Basin?. ICES Coop. Res. Rep. 300, 8–14 (2010).
    Google Scholar 
    Aissi, M., Touzri, C., Gueroun, S. K. M., Kefi-Daly Yahia, O. & Daly Yahia, M. N. Persistent occurrence and life cycle of Pelagia noctiluca in the channel of Bizerte (Northern Tunisia). Ecol. Environ. Conserv. 20, 1453–1460 (2014).
    Google Scholar 
    Kogovsĕk, T., Bogunović, B. & Malej, A. Recurrence of bloom forming scyphomedusae: Wavelet analysis of a 200-year time series. Hydrobiologia 645, 81–96 (2010).Article 
    CAS 

    Google Scholar 
    Pestoric, B. et al. Scyphomedusae and ctenophora of the eastern adriatic: Historical overview and new data. Diversity 13, 186. https://doi.org/10.3390/d13050186 (2021).CAS 
    Article 

    Google Scholar 
    UNEP (United Nations Environmental Programme). Workshop on Jellyfish Blooms in the Mediterranean, Athens (1984).UNEP (United Nations Environmental Programme). Jellyfish blooms in the Mediterranean Sea. Proceedings of II Workshop on Jellyfish in the Mediterranean Sea, Athens (1991).Goy, J., Morand, P. & Etienne, M. Long term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean. Sea Prediction by climatic variables. Deep-Sea Res. A 36, 269–279 (1989).ADS 
    Article 

    Google Scholar 
    Bernard, P., Berline, L. & Gorsky, G. Long term (1981–2008) monitoring of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) on the French Mediterranean Coasts. J. Oceanogr. Res. Data 4, 1–10 (2011).
    Google Scholar 
    Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish population: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).Article 

    Google Scholar 
    Rosa, S., Pansera, M., Granata, A. & Guglielmo, L. Interannual variability, growth, reproduction and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central Mediterranean Sea): Linkages with temperature and diet. J. Mar. Syst. 111–112, 97–107 (2013).Article 

    Google Scholar 
    Aoutien, M., Bekkali, R., Nachit, D., Luan, K. & Mrhraoui, M. Predicting jellyfish strandings in the Moroccan North-West Mediterranean coastline. Eur. Sci. J. 15, 72–84. https://doi.org/10.19044/esj.2019.v15n2p72 (2019).Article 

    Google Scholar 
    Lynam, C. P., Hay, S. J. & Brierley, A. S. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol. Oceanogr. 49, 637–643 (2004).ADS 
    Article 

    Google Scholar 
    Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782 (2011).ADS 
    Article 

    Google Scholar 
    Brodeur, R. D. et al. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog. Oceanogr. 77, 103–111 (2008).ADS 
    Article 

    Google Scholar 
    Molinero, J. C. et al. Climate control on the longterm anomalous changes of zooplankton communities in the Northwestern Mediterranean. Glob. Change Biol. 14, 11–26 (2008).ADS 
    Article 

    Google Scholar 
    Licandro, P. et al. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biol. Let. 6, 688–691 (2010).CAS 
    Article 

    Google Scholar 
    Ferraris, M. et al. Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34, 874–885 (2012).Article 

    Google Scholar 
    Malačič, V., Petelin, B. & Malej, A. Advection of the jellyfish Pelagia noctiluca (Scyphozoa) studied by the Lagrangian tracking of water mass in the climatic circulation of the Adriatic Sea. Geophys. Res. Abstr. 9, 02802 (2007).
    Google Scholar 
    Rubio, P. & Muñoz, J. M. Predicción estival del riesgo de blooms de Pelagia noctiluca (litoral central catalán). In Situaciones de riesgo climático en España (ed. Novau, J. C.) 281–287 (Instituto Pirenaico de Ecología, 1997).
    Google Scholar 
    Berline, L., Zakardjian, B., Molcard, A., Ourmieres, Y. & Guihou, K. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar. Pollut. Bull. 70, 90–99 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olds, A. D. et al. Quantifying the conservation value of seascape connectivity: A global synthesis. Glob. Ecol. Biogeogr. 25, 3–15 (2016).Article 

    Google Scholar 
    Vodopivec, M., Peliz, A. J. & Malej, A. Offshore marine constructions as propagators of moon jellyfish dispersal. Environ. Res. Lett. 12, 084003 (2017).ADS 
    Article 

    Google Scholar 
    Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Fernandez-Arcaya, U. et al. Ecological role of submarine canyons and need for canyon conservation: A review. Front. Mar. Sci. 4, 5. https://doi.org/10.3389/fmars.2017.00005 (2017).Article 

    Google Scholar 
    Würtz, M. Towards a Mediterranean canyon inventory. Workshop (EBSAs), 7 to 11 April 2014, Málaga, Spain, 1–4 (2014).Sacchetti, F. Il ritorno di MeteoMedusa. Focus (Madison) 237, 92–94 (2012).
    Google Scholar 
    Benedetti-Cecchi, L. et al. Deterministic factors overwhelm stochastic environmental fluctuations as drivers of jellyfish outbreaks. PLoS ONE 10, e0141060. https://doi.org/10.1371/journal.pone.0141060 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malej, A. & Malej, M. Population dynamics of the jellyfish Pelagia noctiluca (Forsskäl, 1775). In Proceedings of the 25th EMBS, Marine Eutrophication and Population Dynamics (ed. Colombo, G.A.) 215–219 (Olsen & Olsen, 1992).Rottini-Sandrini, L., Avian, M., Axiak, V. & Malej, A. The breeding period of Pelagia noctiluca (Scyphozoa, Semaeostomeae) in the Adriatic and central Mediterranean Sea. Nova Thalass. 6, 65–75 (1983).
    Google Scholar 
    Milisenda, G. et al. Reproductive and bloom patterns of Pelagia noctiluca in the Strait of Messina, Italy. Estuar. Coast. Shelf Sci. 201, 29–39. https://doi.org/10.1016/j.ecss.2016.01.002 (2018).ADS 
    Article 

    Google Scholar 
    Magazzù, G. et al. Picoplankton: Contribution to phytoplankton production in the Strait of Messina. Mar. Ecol. 8, 21–31 (1987).ADS 
    Article 

    Google Scholar 
    Guglielmo, L., Crescenti, N., Costanzo, G. & Zagami, G. Zooplankton and micronekton communities in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A. & De Domenico, E.) 247–270 (Dipartimento di Biologia Animale ed Ecologia, 1995).Guglielmo, L. et al. The Strait of Messina: A key area for Pelagia noctiluca (Cnidaria, Scyphozoa). In Jellyfish: Ecology, Distribution Patterns and Human Interactions (ed. Mariottini, G. L.) 71–90 (Nova Science Publishers Inc., 2017).
    Google Scholar 
    Astraldi, M. & Gasparini, G. P. The seasonal characteristics of the circulation in the Tyrrhenian Sea. In: Seasonal and Interannual Variability of the Western Mediterranean Sea, Coast. Estuar. Studies, Vol. 46, 115–134 (American Geophysical Union, 1994).Krivosheya, V. G. Water circulation and structure in the Tyrrhenian Sea. Oceanology 23, 166–171 (1983).
    Google Scholar 
    Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 (1999).Article 

    Google Scholar 
    Vetrano, A., Napolitano, E., Iacono, R., Schroeder, K. & Gasparini, G. P. Tyrrhenian Sea circulation and water mass fluxes in spring 2004: Observations and model results. J. Geophys. Res. 115, C06023 (2010).ADS 

    Google Scholar 
    Iacono, R., Napolitano, E., Marullo, S., Artale, V. & Vetrano, A. Seasonal variability of the Tyrrhenian Sea surface geostrophic circulation as assessed by altimeter data. J. Phys. Oceanogr. 43, 1710–1732. https://doi.org/10.1175/JPO-D-12-0112.1 (2013).ADS 
    Article 

    Google Scholar 
    Boero, F. et al. CoCoNet: Towards coast to coast networks of Marine Protected Areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. Inf. Technol. 6(Suppl.), 1–95 (2016).
    Google Scholar 
    Rio, M. H. et al. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 65, 484–508 (2007).Article 

    Google Scholar 
    Cucco, A. et al. Hydrodynamic modelling of coastal seas: The role of tidal dynamics in the Messina Strait, Western Mediterranean Sea. Nat. Hazards Earth Syst. Sci. 16, 1553–1569 (2016).ADS 
    Article 

    Google Scholar 
    Hopkins, T. S., Salusti, E. & Settimi, D. Tidal forcing of the water mass interface in the Straits of Messina. J. Geophys. Res. 89, 2013–2024 (1984).ADS 
    Article 

    Google Scholar 
    Bignami, F. & Salusti, E. Tidal currents and transient phenomena in the Strait of Messina: A review. In: The Physical Oceanography of Sea Straits (ed. Pratt, L. J.) 95–124 (Kluwer Academic, 1990).Azzaro, F., Decembrini, F., Raffa, F. & Crisafi, E. Seasonal variability of phytoplankton fluorescence in relation to the Straits of Messina (Sicily) tidal upwelling. Ocean Sci. Discuss. 4, 415–440 (2007).ADS 

    Google Scholar 
    De Domenico, E., Cortese, G. & Pulicanò, G. Chemical characteristics of the waters in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A., & De Domenico, E.) 155–167 (Dipartimento di Biologia Animale ed Ecologia Marina, 1995).Guglielmo, L. Distribuzione di Chetognati nell’area idrografica dello Stretto di Messina. Pubbl. Staz. Zool. Napoli 40, 34–72 (1976).
    Google Scholar 
    Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Temporal succession of tintinnids in the northern Ionian Sea, Central Mediterranean. J. Plankton Res. 29, 495–508 (2007).Article 

    Google Scholar 
    AA.VV. Final Scientific Report of the Project Cluster 10—SAM “Realizzazione ed attivazione di una rete integrata di piattaforme costiere e mezzo mobile attrezzati per Sistemi Avanzati di Monitoraggio delle acque (SAM)”, funded by the Italian Ministry of University and Scientifical and Technological Research (MURST), Internal Data File, Istituto Sperimentale Talassografico, National Research Council, Messina, Italy (2005).Sitran, R. Caratterizzazione dei popolamenti microzooplanctonici nell’area idrografica dello Stretto di Messina, University of Messina, Ph.D. Thesis XVII cycle (2006) (in Italian).Bergamasco, A. et al. A laboratory for the observation of a highly-energetic coastal marine system: The Straits of Messina. In Volume DTA/06–2011, “Marine Research at CNR” 2185–2202 (Department of Earth and Environment of National Research Council, 2011).Doyle, T. K. et al. Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. J. Plankton Res. 30, 963–968 (2008).Article 

    Google Scholar 
    Guglielmo, L. Spiaggiamenti di eufausiacei lungo la costa messinese dello Stretto dal dicembre 1968 al dicembre 1969. Boll. Pesca Piscic. Idrobiol. 24, 71–77 (1969).
    Google Scholar 
    Guglielmo, L., Costanzo, G. & Berdar, A. Ulteriore contributo alla conoscenza dei crostacei spiaggiati lungo il litorale messinese dello Stretto. Atti Soc. Pelorit. 19, 129–156 (1973).
    Google Scholar 
    Scotto Di Carlo, B., Costanzo, G., Fresi, E., Guglielmo, L. & Ianora, A. Feeding ecology and stranding mechanisms in two lanternfishes, Hygophum benoiti and Myctophum punctatum. Mar. Ecol. Prog. Ser 9, 13–24 (1982).ADS 
    Article 

    Google Scholar 
    Battaglia, P., Ammendolia, G., Cavallaro, M., Consoli, P. & Esposito, V. Influence of lunar phases, winds and seasonality on the stranding of mesopelagic fish in the Strait of Messina (Central Mediterranean Sea). Mar. Ecol. 38, e12459. https://doi.org/10.1111/maec.12459 (2017).Article 

    Google Scholar 
    Umgiesser, G., Canu, D. M., Cucco, A. & Solidoro, C. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 51, 123–145 (2004).Article 

    Google Scholar 
    Ferrarin, C., Bergamasco, A., Umgiesser, G. & Cucco, A. Hydrodynamics and spatial zonation of the Capo Peloro coastal system (Sicily) through 3-D numerical modeling. J. Mar. Syst. 117, 96–107 (2013).Article 

    Google Scholar 
    Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F. & Bellafiore, D. Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J. Geophys. Res. Oceans 119, 2212–2226 (2014).ADS 
    Article 

    Google Scholar 
    Cucco, A., Quattrocchi, G., Satta, A., Antognarelli, F. & De Biasio, F. Predictability of wind-induced sea surface transport in coastal areas. J. Geophys. Res. Oceans 121, 5847–5871. https://doi.org/10.1002/2016JC011643 (2016).ADS 
    Article 

    Google Scholar 
    Cucco, A., Quattrocchi, G. & Zecchetto, S. The role of temporal resolution in modeling the wind induced sea surface transport in coastal seas. J. Mar. Syst. 193, 46–58. https://doi.org/10.1016/j.jmarsys.2019.01.004 (2019).Article 

    Google Scholar 
    Quattrocchi, G. et al. An operational numerical system for oil stranding risk assessment in a high-density vessel traffic area. Front. Mar. Sci. 8, 585396. https://doi.org/10.3389/fmars.2021.585396 (2021).Article 

    Google Scholar 
    Cucco, A. et al. A high-resolution real-time forecasting system for predicting the fate of oil spills in the Strait of Bonifacio (western Mediterranean Sea). Mar. Pollut. Bull. 64, 1186–1200 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cucco, A. & Umgiesser, G. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins. Mar. Pollut. Bull. 98, 210–220 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quattrocchi, G. et al. Optimal design of a Lagrangian observing system for hydrodynamic surveys. J. Oper. Oceanogr. 9(suppl.), s77–s88. https://doi.org/10.1080/1755876X.2015.1114805 (2016).Article 

    Google Scholar 
    Quattrocchi, G. et al. Hydrodynamic controls on connectivity of the high commercial value shrimp Parapenaeus longirostris (Lucas, 1846) in the Mediterranean Sea. Sci. Rep. 9, 16935. https://doi.org/10.1038/s41598-019-53245-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor-Prieto, M. et al. Spatial heterogeneity of Pelagia noctiluca ephyrae linked to water masses in the Western Mediterranean. PLoS ONE 16, e0249756. https://doi.org/10.1371/journal.pone.0249756 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haeckel, E. Das system der medusen. Monographie der Medusen 499–510 (Gustav Fischer Verlag, 1880).
    Google Scholar 
    Avian, M. Temperature influence on in vitro reproduction and development of Pelagia noctiluca (Forsskäl, 1775). Boll. Zool. 53, 385–391 (1986).Article 

    Google Scholar 
    Fossette, S. et al. Current-oriented swimming by jellyfish and its role in bloom maintenance. Curr. Biol. 25, 342–347. https://doi.org/10.1016/j.cub.2014.11.050 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS 
    Article 

    Google Scholar 
    Demirov, E. & Pinardi, N. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability. J. Mar. Syst. 33–34, 23–50 (2002).Article 

    Google Scholar 
    Menna, M. et al. New insights of the Sicily channel and Southern Tyrrhenian sea variability. Water 11, 1355 (2019).Article 

    Google Scholar 
    Avian, M. & Rottini Sandrini, L. Oocyte development in four species of scyphomedusa in the northern Adriatic Sea. Hydrobiologia 216/217, 189–195 (1991).Article 

    Google Scholar 
    Malej, A. Behaviour and trophic ecology of the jellyfish Pelagia noctiluca (Forsskäl, 1775). J. Exp. Mar. Biol. Ecol. 126, 259–270 (1989).Article 

    Google Scholar 
    Lo Bianco, S. Notizie biologiche riguardanti specialmente il periodo di maturità sessuale degli animali del golfo di Napoli. Mitt. Zool. Stn. Neapel 19, 513–761 (1909).
    Google Scholar 
    Purcell, J. E., Malej, A. & Benović, A. Potential links of jellyfish to eutrophication and fisheries. In Coastal and Estuarine Studies, Ecosystem at the Land-Sea Margin Drainage Basin to Coastal Sea (eds Malone, T. C. et al.) 241–263 (American Geophysical Union, 1999).Chapter 

    Google Scholar 
    Spezie, G. C., Sansone, E., Budillon, G. & Gallarato, A. Caratterizzazione idrodinamica del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia. Campagna oceanografica 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM94). In Data Rep., (eds. Faranda, F. M. & Povero, P.) 1–82 (1995).Spezie, G. C. et al. Rilievi idrodinamici nel sistema Eolie e nei bacini limitrofi di Cefalù e Gioia. Campagna oceanografiche 1995. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 1–98 (1996).Carrada, G. C., Ribera D’Alcalà, M. & Saggiomo, V. The pelagic system of the Southern Tyrrhenian Sea. Some comments and working hypotheses. In Proceedings IX Proceedings XII Italian Association of Oceanography and Limnology Congress 151–166 (1992).Povero, P., Misic, C., Acconero, A. & Fabiano M. Distribuzione e caratterizzazione biochimica della sostanza organica particellata nelle acque del Tirreno Sud Orientale. In Acts 12 Congress of the Italian Association of Oceanology and Limnology 227–237 (1998).Brancato, G., Minutoli, R., Granata, A., Sidoti, O. & Guglielmo L. Diversity and vertical migration of euphausiids across the Straits of Messina area. In: Mediterranean Ecosystem: Structures and Processes (eds. Faranda, F. M., Guglielmo, L. & Spezie, G.) 131–141 (Springer, 2001).Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Microzooplankton (tintinnid ciliates) diversity: Coastal community structure and driving mechanisms in the Southern Tyrrhenian Sea (Western Mediterranean). J. Plankton Res. 31, 153–170 (2009).Article 

    Google Scholar 
    Fonda Umani, S., Monti, M., Minutoli, R. & Guglielmo, L. Recent advances in the Mediterranean researches on zooplankton: from spatial–temporal patterns of distribution to processes oriented studies. Adv. Oceanogr. Limnol. 1, 295–356 (2010).Article 

    Google Scholar 
    Giordano, D. et al. Summer larval fish assemblages in the Southern Tyrrhenian Sea (Western Mediterranean Sea). Mar. Ecol. 36, 104–117. https://doi.org/10.1111/maec.12123 (2015).ADS 
    Article 

    Google Scholar 
    Fonda Umani, S., Milani, L. & Martecchini, E. Distribuzione dei popolamenti microzooplanctonici durante la campagna oceanografica Eolie 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 199–222 (1995).Carrada, G. C., Mangoni, O. & Sgrosso, S. Distribuzione spaziale di clorofilla a e di feopigmenti in diverse frazioni dimensionali del fitoplancton. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 197–216 (1996).Guglielmo, L. et al. Distribuzione verticale e migrazione giornaliera dello zooplancton e del micronecton nel Tirreno meridionale (Isole Eolie). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 217–246 (1996).Innamorati, M., Lazzara, L., Massi, L., Biondi, N. & Nuccio, C. Fitoplancton, luce e produzione primaria nella’Arcipelago delle Isole Eolie, in estate. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 161–196 (1996).Zunini Sertorio, T., Licandro, P., Giallain, M. & Bernat, P. Distribuzione verticale della biomassa zooplanctonica su una stazione delle Isole Eolie (Luglio 1995). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 247–254 (1996).Sabates, A. et al. Pathways for Pelagia noctiluca jellyfish intrusions onto the Catalan shelf and their interactions with early life fish stages. J. Mar. Syst. 187, 52–61 (2018).Article 

    Google Scholar 
    Mosetti, F. Currents in the Straits of Messina. In The Straits of Messina ecosystem (eds Guglielmo, L. et al.) 13–29 (University of Messina, Department of Marine Biology and Ecology, 1995).
    Google Scholar 
    Zavodnik, D. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 94, 265–269 (1987).Article 

    Google Scholar 
    El Rahi, J., Weeber, M. P. & El Serafy, G. Modelling the effect of behavior on the distribution of the jellyfish Mauve stinger (Pelagia noctiluca) in the Balearic Sea using an individual-based model. Ecol. Model. 433, 109230 (2020).Article 

    Google Scholar 
    Axiak, V. & Civili, F. S. Jellyfish blooms in the Mediterranean: causes, mechanisms, impact on man and the environment. A programme review. In: UNEP: Jellyfish blooms in the Mediterranean. Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. MAP Tech. Rep. Ser. Vol. 47, 1–10 (UNEP, 1991).Keesing, J. K. et al. Role of winds and tides in timing of beach strandings, occurrence, and significance of swarms of the jellyfish Crambione mastigophora Mass 1903 (Scyphozoa: Rhizostomeae: Catostylidae) in north-western Australia. Hydrobiologia 768, 19–36. https://doi.org/10.1007/s10750-015-2525-5 (2016).CAS 
    Article 

    Google Scholar 
    Aglieri, G. et al. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS ONE 9, e99647. https://doi.org/10.1371/journal.pone.0099647 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alpers, W., Brandt, P. & Rubino, A. Internal waves generated in the Strait of Gibraltar and Messina: Observations from space. In Remote Sensing of the European Seas (eds. Barale, V. & Gade, M.) 319–330 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6772.Droghei, R. et al. The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait. Sci. Rep. 6, 36376. https://doi.org/10.1038/srep36376 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    La Forgia, G. et al. Sediment resuspension and bedform generation induced by internal solitary waves. Geophys. Res. Abs. Vol. 21, EGU2019-9121, EGU General Assembly (2019).Lohmann, H. Die Stromunger in der Strasse von Messina und die verteilung des planktons in derselben. Int. Rev. Ges. Hydrobiol. 2, 505–556 (1909).Article 

    Google Scholar 
    Magazzù, G. & Andreoli, C. Trasferimenti fitoplanctonici attraverso lo Stretto di Messina in relazione alle condizioni idrologiche. Boll. Pesca Piscic. Idrobiol. 26, 125–193 (1971).
    Google Scholar 
    Palanques, A. et al. General patterns of circulation, sediment fluxes and ecology of the Palamòs (La Fonera) submarine canyon, northwestern Mediterranean. Progr. Oceanogr. 66, 89–119 (2005).ADS 
    Article 

    Google Scholar 
    Granata, A. et al. Vertical distribution and diel migration of zooplankton and micronekton in Polcevera submarine canyon of the Ligurian mesopelagic zone (NW Mediterranean Sea). Progr. Oceanogr. 183, 102298. https://doi.org/10.1016/j.pocean (2020).Article 

    Google Scholar 
    Zagami, G. et al. Spring copepod vertical zonation pattern and diel migration in the open Ligurian Sea (north-western Mediterranean). Progr. Oceanogr. 183, 102297. https://doi.org/10.1016/j.pocean (2020).Article 

    Google Scholar 
    Danovaro, R. & Boero, F. Italian seas. In: World Seas: An Environmental Evaluation. Vol. I Europe, The Americas and West Africa. (ed. Sheppard, C.) 283–306 (Elsevier Ltd., 2019). https://doi.org/10.1016/B978-0-12-805068-2.00044-9Lo Iacono, C., Sulli, A. & Agate, M. Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep-Sea Res. 104, 93–105 (2014).
    Google Scholar  More