Meta-analysis reveals weak but pervasive plasticity in insect thermal limits
IPCC. Assessment Report 6 Climate Change 2021: The Physical Science Basis. (2021).Angilletta, M. J. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press (Elsevier, 2009).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
Ma, C. S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).CAS
PubMed
Google Scholar
Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003).
Google Scholar
Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).Štětina, T., Koštál, V. & Korbelová, J. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One 10, 1–22 (2015).
Google Scholar
Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J. Insect Physiol. 51, 1173–1182 (2005).CAS
PubMed
Google Scholar
Laland, K. N. et al. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B Biol. Sci. 282, 20151019 (2015).Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS
CAS
PubMed
Google Scholar
Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61, 433–451 (2016).PubMed
Google Scholar
Sørensen, J. G., Kristensen, T. N. & Overgaard, J. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? Curr. Opin. Insect Sci. 17, 98–104 (2016).PubMed
Google Scholar
Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. 282, 20150401 (2015).Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).PubMed
Google Scholar
Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).
Google Scholar
Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: Evidence for a trade-off. Proc. R. Soc. B Biol. Sci. 288, 20210765 (2021).
Google Scholar
Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
Google Scholar
Kellermann, V. & van Heerwaarden, B. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44, 99–115 (2019).
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).ADS
Google Scholar
Pincebourde, S. & Woods, H. A. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63–70 (2020).PubMed
Google Scholar
van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance? Trends Ecol. Evol. 35, 874–885 (2020).PubMed
Google Scholar
Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).
Google Scholar
Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here? Glob. Chang. Biol. 24, 13–34 (2018).ADS
PubMed
Google Scholar
Kristensen, T. N. et al. Costs and benefits of cold acclimation in field-released Drosophila. Proc. Natl Acad. Sci. 105, 216–221 (2008).ADS
CAS
PubMed
Google Scholar
Bozinovic, F., Calosi, P. & Spicer, J. I. Physiological correlates of geographic range in animals. Annu. Rev. Ecol. Evol. Syst. 42, 155–179 (2011).
Google Scholar
Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).
Google Scholar
Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).
Google Scholar
Sgrò, C. M. et al. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from Eastern Australia. J. Evol. Biol. 23, 2484–2493 (2010).PubMed
Google Scholar
Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10, 251–268 (2008).
Google Scholar
Brown, J., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu. Rev. Entomol. 55, 227 (2010).CAS
PubMed
PubMed Central
Google Scholar
Tarka, M., Guenther, A., Niemelä, P. T., Nakagawa, S. & Noble, D. W. A. Sex differences in life history, behavior, and physiology along a slow-fast continuum: a meta-analysis. Behav. Ecol. Sociobiol. 72, 1–13 (2018).
Google Scholar
Pottier, P., Burke, S., Drobniak, S. M., Lagisz, M. & Nakagawa, S. Sexual (in)equality? A meta-analysis of sex differences in thermal acclimation capacity across ectotherms. Funct. Ecol. 35, 2663–2678 (2021).
Google Scholar
Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol. Rev. 83, 339–355 (2008).PubMed
Google Scholar
Fawcett, T. W. & Frankenhuis, W. E. Adaptive explanations for sensitive windows in development. Front. Zool. 12, 1–14 (2015).
Google Scholar
English, S. & Barreaux, A. M. The evolution of sensitive periods in development: insights from insects. Curr. Opin. Behav. Sci. 36, 71–78 (2020).
Google Scholar
Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS One 7, e32758 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
Bak, C. W. et al. Comparison of static and dynamic assays when quantifying thermal plasticity of drosophilids. Insects 11, 1–11 (2020).
Google Scholar
Rodrigues, Y. K. & Beldade, P. Thermal plasticity in insects’ response to climate change and to multifactorial environments. Front. Ecol. Evol. 8, 271 (2020).
Google Scholar
Terblanche, J. S. & Hoffmann, A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. Insect Sci. 41, 7–16 (2020).PubMed
Google Scholar
Loeschcke, V. & Hoffmann, A. A. The detrimental acclimation hypothesis. Trends Ecol. Evol. 17, 407–408 (2002).
Google Scholar
Cossins, A. R. & Bowler, K. Temperature Biology of Animals. (Chapman and Hall, 1987).Pintor, A. F. V., Schwarzkopf, L. & Krockenberger, A. K. Extensive acclimation in ectotherms conceals interspecific variation in thermal tolerance limits. PLoS One 11, e0150408 (2016).PubMed
PubMed Central
Google Scholar
Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
Google Scholar
Allen, J. L., Chown, S. L., Janion-Scheepers, C. & Clusella-Trullas, S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. Conserv. Physiol. 4, cow053 (2016).Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).
Google Scholar
Terblanche, J. S. et al. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): Implications for distribution modelling. Am. J. Trop. Med. Hyg. 74, 786–794 (2006).PubMed
Google Scholar
Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of meta-analysis in ecology and evolution. Handbook of Meta-analysis in Ecology and Evolution (Princeton University Press, 2013).Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
Google Scholar
Oyen, K. J. & Dillon, M. E. Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. J. Exp. Biol. 221, jeb165589 (2018).Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1–9 (2021).
Google Scholar
Bowler, K. Heat death in poikilotherms: Is there a common cause? J. Therm. Biol. 76, 77–79 (2018).PubMed
Google Scholar
MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).CAS
PubMed
Google Scholar
Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: How constrained are they? Funct. Ecol. 27, 934–949 (2013).
Google Scholar
Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 1–8 (2016).
Google Scholar
Maclean, H. J. et al. Evolution and plasticity of thermal performance: An analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180548 (2019).Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B Biol. Sci. 267, 739–745 (2000).CAS
Google Scholar
Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).ADS
CAS
Google Scholar
Walsh, B. S. et al. Integrated approaches to studying male and female thermal fertility limits. Trends Ecol. Evol. 34, 492–493 (2019).PubMed
Google Scholar
Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).Hadley, N. F. Water relations of terrestrial arthropods. (Academic Press, 1994).Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. PNAS. 112, 12764–12769 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. (2020).Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).
Google Scholar
Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. 94, 1722–1739 (2019).PubMed
Google Scholar More