More stories

  • in

    A Physarum-inspired approach to the Euclidean Steiner tree problem

    Having introduced our novel explore-and-fuse method and the Physarum Steiner Algorithm we shall dedicate this section to discussing how the algorithm’s parameters influence the model, and how the method can be used towards diverse applications.In what follows we shall consider how different parameters such as the different shapes of cells, as well as their number, influence the results obtained by the Physarum Steiner Algorithm. We shall then conclude the section by studying different applications that our methods have.Cell shapeAlthough13 and6 considered diamond shaped CELLs, we shall consider here CELLs with other shapes. The primary benefit of square cells is that their shape allows for more cytoplasm to be placed on the grid. As a result, the foraging phase is very fast so using square cells tends to result in shorter run times than using diamond-shaped cells. In addition, large square cells are able to more completely cover the standard square grid than diamond-shaped cells. On the other hand, diamond-shaped cells result in less cytoplasm and more time spent in the foraging stage. This gives the cytoplasm time to move towards a centralized location which results in better solutions.Example A In order to illustrate the above point, in Fig. 3a.i., we begin with squares that are tightly packed. Since the squares are so tightly packed (1 apart), if any piece of cytoplasm in a square is moved, it will lead to a connection with a neighboring cell. As a result, all the points are found very quickly. In fact, many of the squares are connected and part of the network even if they are not close to any of the points, as shown in Fig. 3 (a.ii.). Shrinking these extra squares takes a long time and can also result in long paths which are far out of the way as seen in Fig. 3a.iii.Example B In contrast to Example A, in Fig. 3b, we consider diamond-shaped cells. The cells start off diamond-shaped and with less overall cytoplasm than the square cells. The cells then spend quite a few iterations in the foraging phase. Although this does take time, it allows the cytoplasm to move towards a centralized location around the active zones as seen in Fig. 3 (b.ii.). When the cell finally proceeds to the shrinking phase, there is less cytoplasm to remove and no out of the way paths, resulting in shorter solutions. The downside to this is the increased time which in some cases can be very long (over 100 million iterations) and in some cases the algorithm may not even complete.The effect of multiple cellsIn what follows we shall examine the effects of the number of cells used. We run 10 trials on 10 grids for a total of 100 trials on each cell size and number of cells. For each trial, we measure the total amount or area of cytoplasm that is initially spawned. This is used to normalize the search area which is the number of squares in the grid (for example a (100 times 100) grid has search area 10,000).Success rate: The algorithm may sometimes be unsuccessful at connecting all the points. For example, the cells may miss a point early on and move far away from that point, making it almost impossible to ever find that point. There may also simply not be enough cytoplasm for two far away cells to fuse into one. For each number of cells (1, 9, 25, 100), we try various sizes/amounts of cytoplasm and compute the proportion of trials (out of 100) that successfully terminate within 10 million iterations.Figure 4(a) Proportion of trials that are successful versus the search area as a percentage of cytoplasm for trials with 1, 9, 25, and 100 cells. (b) Length of solutions versus the search area as a percentage of cytoplasm. (c) Number of iterations versus the search area as a percentage of cytoplasm. Failed trails excluded from graphs.Full size imageIn Fig. 4a, we see that the black line (100 cells) extends much further to the right than the cyan line (one cell). Thus, the more cells there are, the larger of a search area we can explore. This is mainly because with more cells, we can spread out our cytoplasm instead of having it be concentrated in certain areas.Solution length Another important metric to consider is the solution length. We measure how good the solution is by counting the amount of cytoplasm when the algorithm terminates. We ignore any cytoplasm that is part of a disjoint cell that does not contain an active zone, or in other words is separate from the cell that actually forms the tree. In Fig. 4b, we see that as the search area as a percentage of cytoplasm increases, the quality of the solution improves. This is because there is comparatively less cytoplasm to begin with. In addition, we see that as the number of cells increases, it is possible to find a better solution. This correlates with the earlier result shown in Fig. 4a that using more cells allows solutions to be found with less cytoplasm. Trials with 100 cells found the shortest solutions (rightmost data point).Run time The last metric we consider is the run time. We consider the true number of iterations the algorithm runs for. By true iterations, we account for the fact that in a parallel algorithm or set of real-world Physarum organisms, multiple cells will be introducing and moving bubbles at the same time. As a result, the iteration count is scaled by the number of disjoint cells. In Fig. 4c, we see that the more cells there are, the lower the number of iterations. This may be because with more cells, the cytoplasm is more spread out and therefore there are less out of the way points which may take a very long time to find. From the above analysis, we see that using more cells allows us to explore bigger search areas, find shorter solutions, and solve problems faster.ApplicationsThe behavior of Physarum and the models it has inspired have found many different uses among which are drug repositioning, developing bio-computing chips, approximating highways layouts, and designing subway systems2,8,9,10. In order to illustrate the operation of the Physarum Steiner Algorithm and demonstrate its applicability to real world problems, we consider the following:

    sep0em

    Network design We use the algorithm to develop a road network in the United States.

    Obstacle-avoidance We use the algorithm to solve the obstacle-avoiding Euclidean Steiner tree problem.

    VLSI routing We use the algorithm to route connections between pads in chip design.

    Topological surfaces We discuss the algorithm’s adaptability to varying surfaces and boundaries by considering topological surfaces such as the sphere, torus, Klein bottle, and (mathbb{RP}mathbb{}^2).

    Road networks The Physarum Steiner Algorithm can be used to build a road network between the largest one hundred cities in the lower 48 United States (excluding Alaska and Hawaii). We use data32 containing the longitude and latitude of the 100 cities with the highest population to generate a rectangular grid of active zones.We spawn diamond-shaped cells of size 7 with a spacing of 1 as shown in Fig. 3. After many iterations, the final road network is shown in Fig. 5a. The algorithm is particularly suited to the problem of designing transportation systems because it first connects all the points before optimizing the network into a tree. The algorithm can thus be terminated early depending on how much redundant connectivity is desired in the transportation network.For example, in Fig. 5b, we have a network that still contains loops in high-traffic routes between the Bay Area, Los Angeles, and Las Vegas. If we allow the algorithm to continue running, we will get networks with fewer loops and eventually a tree.Figure 5Road network generated by the algorithm. (a) shows the final solution with no loops while (b) displays a solution that has some redundancy resulting from terminating the algorithm early.Full size imageWe believe that this algorithm can be applied to many similar problems such as designing fiber optic or electric cable networks. Moreover, as discussed in the last section, it will be very interesting to compare this study to that of33, where in vitro slime mold is used to investigate the construction of transportation networks over a USA map.Obstacle avoidance Due to the cellular automaton nature of this algorithm, it is straightforward to define boundaries or other obstacles that need to be avoided. This is very useful in cases where certain areas need to be avoided such as a lake or the boundary of a county. And, unlike the current standard obstacle-avoiding Euclidean Steiner algorithm27 which takes multiple hours for graphs with only 150 points, the run time of the Physarum Steiner Algorithm is not affected by the need to avoid obstacles.As an example, consider the boundary given in Fig. 6a. Here, the grey area represents the search area and the 100 white squares outlined in dark grey are the points. There are many possible real world situations similar to this. For example, the grey area could be a county and all the points represent homes that subscribe to a certain Internet service provider (ISP). The big white area in the center could be a lake and the smaller white area could be a dog park. The ISP company could utilize the Physarum Steiner Algorithm to find networks to lay fiber optic cables.Figure 6(a) Sample boundary map. Grey area is search area and small white squares are points. (b) Initial deployment of Physarum. (c) Solution at the end of the foraging stage. (d) The final network.Full size imageWe begin by deploying square Physarum cells of size 7 in Fig. 6b. In Fig. 6c, the cells begin to fuse, share intelligence, and find all the points. We choose a solution that still has some loops to increase reliability and ease of future modification to the network. Our final solution is shown in Fig. 6d. This solution is generated in 300,000 iterations and less than 30 seconds.VLSI Routing for VLSI (very large-scale integration) chip design19 is one of the largest real-world manifestations of the Steiner tree problem, especially as modern chips may contain upwards of 10 billion transistors. Solving the VLSI problem would require additional modification to the Physarum Steiner Algorithm since VLSI design is typically presented as a group Steiner tree problem and has very large problem sizes, the Physarum Steiner Algorithm. Due to the usage of a square grid in the Physarum Steiner Algorithm, the algorithm is easily applied to find rectilinear networks such as those required for routing chips. In addition, our empirical results suggest that it should scale well to the large problem sizes common in chip design. Using data from34, we consider a set of pads that need to be connected. In Fig. 7, we represent the pads as active zones and generate a tree between them.Figure 7(a) Graphical representation of 131-point VLSI data set34. (b) Routing solution obtained by the Physarum Steiner Algorithm.Full size imageTopological surfaces Finally, the Physarum Steiner Algorithm is easily applicable to finding Steiner trees on other topological surfaces. Given the nature of the algorithm, we are able to map coordinates on one edge to another. In Fig. 8, we use square identification spaces to find Steiner trees on the torus, sphere, Klein bottle, and (mathbb{RP}mathbb{}^2). These solutions on identification spaces can be seen on a torus and a sphere in Fig. 8a,b.Figure 8Steiner trees on topological surfaces we defined by identification space and obtained through our code. (a) Torus. (b) Sphere. (c) Klein Bottle. (d) (mathbb{RP}mathbb{}^2). Images generated using manim35.Full size imageConcluding remarksWe have presented here a novel explore-and-fuse approach to solve problems that cannot be solved by traditional divide-and-conquer.Our approach is inspired by Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence, Physarum can also share information with other Physarum organisms through fusion. These characteristics of Physarum inspire us to spawn many Physarum organisms to independently explore the problem space and collect information in parallel before sharing the information with other organisms through fusion. Eventually, all the organisms fuse into one large Physarum that can then globally optimize using the knowledge collected earlier. Explore-and-fuse can be seen as a less rigid form of divide-and-conquer that can better handle problems that cannot be decomposed into independent subproblems.We demonstrate the explore-and-fuse approach on the Steiner tree problem by creating the Physarum Steiner Algorithm. This algorithm has the ability to incrementally find Steiner trees. The first solution tends to contain many loops that are removed with additional iterations of the algorithm. This incremental improvement is particularly useful for applications such as road and cable networks where some degree of redundancy in the connectivity is desired. In particular, it will be very interesting to compare our work to the the one done in33 where a protoplasmic network created by in vivo Physarum is considered to study and asses show the slime mold imitates the United States Interstate System. We foresee several applications of our algorithm in this direction, leading to similar findings to those appearing in the studies done in33.The algorithm operates on a rectilinear grid and is particularly applicable to rectilinear Steiner tree problems such as those that often arise in VLSI design. In addition, the algorithm performs well on the obstacle-avoidance Euclidean Steiner tree problem.In comparison to the existing Physarum-inspired Steiner tree algorithms described in Section “The Steiner tree problem”, the Physarum Steiner Algorithm uses a completely different mechanism. While the existing algorithms use a system of equations modeling the thickening of tubes as protoplasm flows through them, the Physarum Steiner Algorithm is based on modeling Physarum spatially moving around a grid and finding a tree between squares of the grid. In addition, it should be noted that the approach taking in existing algorithms would not work on the Euclidean Steiner tree problem as in the Euclidean Steiner tree problem, there are an infinite number of possible points that could be part of the Steiner tree (essentially any point in the plane). It would not be possible to write a system of equations representing the infinite possible points and edges. In the future, we believe further work could be done to improve the Physarum Steiner Algorithm. Since the Physarum Steiner Algorithm is an approximate algorithm, future improvements could be made so its approximations are closer to the actual optimal solution. In addition, it would be interesting to see this approach applied to other problems Physarum has been able to solve such as the traveling salesmen problem. More

  • in

    Consistent predator-prey biomass scaling in complex food webs

    Here we provide a unified analysis of predator-prey biomass scaling in complex food webs. Doing so reveals a consistent sub-linear scaling pattern across levels of organization – from populations within webs to whole ecosystems – for freshwater, marine and terrestrial systems. This regularity in sub-linear predator-prey scaling among complex food webs from diverse ecosystem types has important implications for understanding energy flows in natural systems across large spatial gradients.Within food webs, predator-prey biomass scaling was characterised by a near three-quarter power scaling relationship ((bar{k}) = 0.71 across ecosystem types), revealing an approximately three-fold increase in predator biomass for every five-fold increase in prey biomass. When summing all predator and prey biomasses within a food web (Fig. 4), predator-prey scaling across webs followed a similar sub-linear scaling regime, with k ranging from 0.65 to 0.67 between ecosystem types. That is, biomass pyramids became systematically more bottom-heavy as pyramid size increased along a biomass gradient (Fig. 1a). These ecosystem-level patterns are quantitatively consistent with previous analysis of predator-prey biomass scaling among distinct trophic groups, which also found sub-linear scaling with k values between 0.66 to about 0.768,17,18. The approach we introduce here permits expanding these analyses to more complex omnivorous feeding relations both among populations within webs and across webs in diverse ecosystems. The similarity in the scaling exponents (and overlap in confidence intervals) of within- and across-web scaling suggest the existence of a general sub-linear scaling pattern, possibly signifying that fundamental constraints apply across levels of biological organization.These results beg the question: where do these sub-linear scaling patterns originate? We are not aware of any ecological theory that is sufficiently general to encompass the diversity of community types in which sub-linear biomass scaling is observed (Appendix S2). Size spectrum theory, which aims to explain the observation that, for whole ecosystems, biomass is approximately evenly distributed across logarithmic body size classes19,20 would appear to be particularity relevant. However, static size spectrum models typically assume that the predator-prey body mass ratio (PPmR) and trophic transfer efficiency (ratio of predator to prey production), whilst inherently variable21,22, do not vary systematically with prey biomass19,23. These measures indicate from which size class energy is obtained relative to predator body mass, and how efficiently that energy is utilized by any given predator to maintain its biomass. While these variables are thought to drive size spectra scaling3, they do not appear to be consistent with predator-prey biomass scaling observed in natural communities. Assuming both an even distribution of biomass across size classes, and a constant PPmR or transfer efficiency across a prey biomass gradient suggests an unchanging trophic biomass pyramid (all else being equal; Appendix S2), Therefore it is not clear how current size-spectrum models might account for sub-linear predator-prey biomass scaling.Predator-prey theory, on the other hand, which models the dynamics of feeding interactions, has traditionally focused on two distinct trophic levels, rather than on networks of highly omnivorous food webs24. Equilibrium predictions from a range of simple predator-prey models are also not consistent with sub-linear predator-prey scaling without additional and likely questionable assumptions (Appendix S2). Although predator-prey theory can be made to accord with our observed patterns, it requires tuning the scaling of prey growth or other terms of the model. Furthermore, questions remain about how best to simulate a biomass gradient as well as how models should be generalized to multi-trophic food webs (Appendix S2).Despite the lack of any general mechanism, it is reasonable to assume that predator biomass, at steady state, is maintained in proportion to prey production8,10. This would suggest that as prey biomass increases, their total production should scale near ~¾ to match the predator biomass they support. Density-dependent processes, such as competition for resources and other negative interactions among prey species, could thus cause per capita growth to decline sub-exponentially. We observed that changes in prey biomass were primarily driven by changes in prey density, rather than average prey body size, consistent with density dependent effects driving the sub-linear nature of predator-prey biomass relations, rather than allometric body mass effects. Clearly, however, ecological theory has further work yet to knit together the various patterns and processes to explain the consistency and generality of predator-prey scaling patterns.Addressing predator-prey biomass scaling from a food web perspective allowed us to assess which node properties were associated with greater predator-prey biomass ratios. Our results go beyond prior theoretical studies6,7 to provide empirical evidence that populations of highly omnivorous predators, as well as predator populations that feed down the food web on smaller, more productive, prey (i.e. a high predator-to-prey body mass ratio), tend to attain higher biomass stocks than predicted by their prey biomass alone. Interestingly, the role of these variables in driving predator biomass deviations appear to vary between ecosystem types: predator biomass increases more strongly with PPmR in rock pool webs, whereas predator omnivory only proved to correlate with predator biomass residuals in soil webs (Fig. 3). Further research would be instructive to understand if these are general patterns across different types of terrestrial and aquatic ecosystems. For instance, whilst rock pool webs display very similar network topology and PPmR scaling as open marine webs25,26, we might expect different scaling patterns in pelagic marine webs where trophic interactions take place in three dimensions21, where ontogenetic diet shifts are common27, and where food chains are long13. Adapting our food-web approach to quantify biomass scaling among size classes would likely be informative for tackling these additional complexities. Whilst predator biomass was associated with PPmR and omnivory (in soil webs), the consistent sub-linear predator-prey scaling regime within ecosystem types and across levels of organization, suggests that density dependent population growth might be the overriding driver of predator-prey biomass scaling.The regularity in predator-prey scaling we observed could provide insight into baselines for the biomass structure of natural communities, which could be informative for assessing the effects of environmental impacts within ecological communities and ecological status. For instance within webs, deviations away from these baselines in the form of smaller power-law exponents (shallower slopes) could reflect local perturbations (e.g. acidification, warming, over-exploitation) which have a disproportionate impact among larger organisms at higher trophic levels28. Predator-prey biomass scaling could therefore offer a complementary approach to body size distributions and size spectra for evaluating ecosystem health29. A similar approach could be applied for scaling relations within species, where the same species occur in multiple webs. Doing so could reveal how the biomass of a given predator species responds to variation in prey availability. For instance, among the stream food webs studied here, two common fish species displayed the characteristic near ¾-power scaling pattern, whilst the biomass of salmonids, and particularly brown trout (Salmo trutta), was invariant with prey biomass across webs (Fig. S4). These results are consistent with previous work in these sites which has highlighted the importance of terrestrial prey for subsidizing the biomass production of these apex predators30,31. Deviations from the expected general scaling pattern could therefore be valuable for identifying the importance of environmental factors that permit some species an ‘escape’ from the predator-prey power law (see also32), and offers promising avenues for future research.Our study, which takes a first step towards investigating predator-prey biomass scaling in complex food webs, has some notable limitations. First, information on the weighting of feeding links was not available for the food webs studied here, and a more comprehensive investigation should require specific interactions strengths and vulnerabilities of each species, data that is, as yet, unavailable. Although our results are robust to alternative assumptions in how these factors are treated (Table S5), any systematic variation in feeding interactions could play an important role. Second, information on the biomass of all basal resources was also not generally available, so our analysis focused on higher trophic predators feeding on (animal) prey. While our approach may equally apply more generally to consumers and resources (e.g. aquatic snails feeding on biofilm), further work is required to test the generality of the empirical patterns we observed using more detailed datasets where this information, and data on interaction strengths, is widely available.Overall, our study reveals a consistent sub-linear predator-prey scaling regime in complex food webs and makes a strong case for the existence of a systematic form of density-dependent population growth that governs the biomass structure of freshwater, marine and terrestrial ecosystems. The highly conserved predator-prey scaling we observed within and across food webs implies a relatively simple scaling-up of predator and prey population biomasses across levels of biological organization. These general patterns in energy flow between predator and prey could facilitate improvements in modelling trophic structure and community dynamics, as well as the corresponding ecosystem functions4,5. Our findings suggest sub-linear predator-prey biomass scaling holds within complex omnivorous food webs, urging ecologists to understand the origin of this large scale, cross-system pattern. More

  • in

    Effects of maternal age and offspring sex on milk yield, composition and calf growth of red deer (Cervus elaphus)

    Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man 136–179 (Aldine, 1972).Evans, R. M. The relationship between parental input and investment. Anim. Behav. 39, 797–798 (1990).Article 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Willson, M. F. & Pianka, E. R. Sexual selection, sex ratio and mating system. Am. Nat. 97, 405–407 (1963).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Major, M., Albon, S. D. & Guinness, F. E. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).Article 

    Google Scholar 
    Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B-Biol. Sci. 266, 1655–1661 (1999).CAS 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Reproductive success in male and female red deer. in Reproductive success 325–343 (University of Chicago Press, 1988).Pérez-Barbería, F. J. & Yearsley, J. M. Sexual selection for fighting skills as a driver of sexual segregation in polygynous ungulates: an evolutionary model. Anim. Behav. 80, 745–755 (2010).Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15, e0233809 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nussey, D. H. et al. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).PubMed 
    Article 

    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behavior & Ecology (Stackpole Books, 1998).
    Google Scholar 
    Ricklefs, R. E. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. in Bioenergetics of wild herbivores 215–238 (CRC-Press, 1985).Linn, J. G. Factors Affecting the Composition of Milk from Dairy Cows. in Designing Foods: Animal Product Options in the Marketplace (National Academies Press (US), 1988).Hinde, K., Power, M. L. & Oftedal, O. T. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 138, 148–157 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomendio, M., Clutton-Brock, T. H., Albon, S. D., Guinness, F. E. & Simpson, M. J. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343, 261–263 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berube, C. H., Festa-Bianchet, M. & Jorgenson, J. T. Reproductive costs of sons and daughters in Rocky Mountain bighorn sheep. Behav. Ecol. 7, 60–68 (1996).Article 

    Google Scholar 
    Landete-Castillejos, T., García, A., López-Serrano, F. R. & Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57, 267–274 (2005).Article 

    Google Scholar 
    Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 21, 512–519 (2009).PubMed 
    Article 

    Google Scholar 
    Powe, C. E., Knott, C. D. & Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 22, 50–54 (2010).PubMed 
    Article 

    Google Scholar 
    Fujita, M. et al. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 149, 52–59 (2012).PubMed 
    Article 

    Google Scholar 
    Robert, K. A. & Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7, e51099 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. Bioenerg. Wild Herbiv. https://doi.org/10.1201/9781351070218-10 (2018).Article 

    Google Scholar 
    Rogers, G. & Stewart, J. The effects of some nutritional and non-nutritional factors on milk protein concentration and yield [dairy cattle]. Aust. J. Dairy Technol. 26–32 (1982).Lubritz, D. L., Forrest, K. & Robison, O. W. Age of cow and age of dam effects on milk production of hereford cows. J. Anim. Sci. 67, 2544–2549 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khan, M. S. & Shook, G. E. Effects of age on milk yield: Time trends and method of adjustment. J. Dairy Sci. 79, 1057–1064 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenness, R. Biochemical and nutritional aspects of milk and colostrum. in Lactation / edited by Bruce L. Larson ; written by Ralph R. Anderson … [et al.] 164–197 (Iowa State University, 1985).Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 65, 1993–1998 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroeker, E. M., Ng-Kwai-Hang, K. F., Hayes, J. F. & Moxley, J. E. Effect of β-lactoglobulin variant and environmental factors on variation in the detailed composition of bovine milk serum proteins. J. Dairy Sci. 68, 1637–1641 (1985).CAS 
    Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Water sprinkling as a tool for heat abatement in farmed Iberian red deer: Effects on calf growth and behaviour. PLoS ONE 16, e0249540 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Abecia, J. A. & Palacios, C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital. J. Anim. Sci. 17, 736–739 (2018).Article 

    Google Scholar 
    Hinde, K., Carpenter, A. J., Clay, J. S. & Bradford, B. J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 9, e86169 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thakkar, S. K. et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 25, 770–779 (2013).PubMed 
    Article 

    Google Scholar 
    Quinn, E. A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 152, 209–216 (2013).PubMed 

    Google Scholar 
    Ono, K. A. & Boness, D. J. Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation?. Behav. Ecol. Sociobiol. 38, 31–41 (1996).Article 

    Google Scholar 
    Skibiel, A. L., Downing, L. M., Orr, T. J. & Hood, W. R. The evolution of the nutrient composition of mammalian milks. J. Anim. Ecol. 82, 1254–1264 (2013).PubMed 
    Article 

    Google Scholar 
    Mitoulas, L. R. et al. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 88, 29–37 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, T. C. & McGuire, M. A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 89, 1302–1310 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, N. T., Baker, D. L., Bear, G. D. & Bowden, D. C. Ungulate grazing in sagebrush grassland: Effects of resource competition on secondary production. Ecol. Appl. 6, 218–227 (1996).Article 

    Google Scholar 
    Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H. D. Age-related patterns of reproductive success among female mountain gorillas. Am. J. Phys. Anthropol. 131, 511–521 (2006).PubMed 
    Article 

    Google Scholar 
    Sunderland, N., Heffernan, S., Thomson, S. & Hennessy, A. Maternal parity affects neonatal survival rate in a colony of captive bred baboons (Papio hamadryas). J. Med. Primatol. 37, 223–228 (2008).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources. Theriogenology 71, 400–407 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bercovitch, F. B., Widdig, A. & Nürnberg, P. Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behav. Ecol. Sociobiol. 48, 1–11 (2000).Article 

    Google Scholar 
    López-Quintanilla, M. Comportamiento Social y Maternofilial del Ciervo en Cautividad (Universidad de Castilla-La Mancha, 2022).
    Google Scholar 
    Adam, C. L., Kyle, C. E. & Young, P. Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Anim. Sci. 55, 265–270 (1992).Article 

    Google Scholar 
    Landete-Castillejos, T., Garcia, A. & Gallego, L. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): Effects of birth date and hind milk production and composition. J. Anim. Sci. 79, 1085–1092 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Great expectations – dominance, breeding success and offspring sex-ratios in red deer. Anim. Behav. 34, 460–471 (1986).Article 

    Google Scholar 
    Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).ADS 
    Article 

    Google Scholar 
    Youngner, V. B. & McKell, C. M. The Biology and Utilization of Grasses (Academic Press, 1972).
    Google Scholar 
    Pinares-Patiño, C. S. Methane emission from forage-fed sheep, a study of variation between animals. PhD thesis. Massey University, Wellington, New Zealand. (Massey University, 2000).van Tassell, C. P., Wiggans, G. R. & Norman, H. D. Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J. Dairy Sci. 82, 2231–2237 (1999).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrin, D. R. 709. The calorific value of milk of different species. J. Dairy Res. 25, 215–220 (1958).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing, v. 3.4.1. (R Foundation for Statistical Computing, 2017).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. Retrieved on 229 July 2017 from http://CRAN.R-project.org/package=nlme. (2017).Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Mediterranean moth diversity is sensitive to increasing temperatures and drought under climate change

    IPCC (ed.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1 (2018).Article 

    Google Scholar 
    Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot?. J. Clim. 33, 5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1 (2020).ADS 
    Article 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638. https://doi.org/10.1038/s41559-020-01303-0 (2020).Article 
    PubMed 

    Google Scholar 
    Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790. https://doi.org/10.1038/s41598-020-70069-z (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tramblay, Y. et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348 (2020).Article 

    Google Scholar 
    Nistor, M.-M. & Mîndrescu, M. Climate change effect on groundwater resources in Emilia-Romagna region: an improved assessment through NISTOR-CEGW method. Quatern. Int. 504, 214–228. https://doi.org/10.1016/j.quaint.2017.11.018 (2019).Article 

    Google Scholar 
    Paoletti, E. Impact of ozone on Mediterranean forests: a review. Environ. Pollut. (Barking Essex: 1987) 144, 463–474. https://doi.org/10.1016/j.envpol.2005.12.051 (2006).CAS 
    Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002549117 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102. https://doi.org/10.1038/s41586-022-04644-x (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946. https://doi.org/10.1038/s41467-021-26181-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. 15, 168–180. https://doi.org/10.1111/icad.12555 (2021).Article 

    Google Scholar 
    Hoshika, Y. et al. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. Physiol. Plant. 174, e13639. https://doi.org/10.1111/ppl.13639 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haberstroh, S. et al. Terpenoid emissions of two Mediterranean woody species in response to drought stress. Front. Plant Sci. 9, 1071. https://doi.org/10.3389/fpls.2018.01071 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toscano, S., Ferrante, A. & Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae 5, 6. https://doi.org/10.3390/horticulturae5010006 (2019).Article 

    Google Scholar 
    Gely, C., Laurance, S. G. W. & Stork, N. E. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. Camb. Philos. Soc. 95, 434–448. https://doi.org/10.1111/brv.12571 (2020).Article 
    PubMed 

    Google Scholar 
    Teixeira, N. C., Valim, J. O. S., Oliveira, M. G. A. & Campos, W. G. Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects. J. Agro. Crop Sci. 206, 187–201. https://doi.org/10.1111/jac.12386 (2020).CAS 
    Article 

    Google Scholar 
    Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680. https://doi.org/10.1038/s41598-019-42171-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: Trade-offs between dormancy, fecundity and body size. PLoS ONE 9, e111955. https://doi.org/10.1371/journal.pone.0111955 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yela, J. L. & Herrera, C. M. Seasonality and life cycles of woody plant-feeding noctuid moths (Lepidoptera: Noctuidae) in Mediterranean habitats. Ecol. Entomol. 18, 259–269. https://doi.org/10.1111/j.1365-2311.1993.tb01099.x (1993).Article 

    Google Scholar 
    Uhl, B., Wölfling, M. & Fiedler, K. Local, forest stand and landscape-scale correlates of plant communities in isolated coastal forest reserves. Plant Biosyst. 155, 457–469. https://doi.org/10.1080/11263504.2020.1762776 (2021).Article 

    Google Scholar 
    Andreatta, G. Proposal for the establishment of a “silvio-museum” in the Ravenna historical pinewoods. Forest@-J. Silvicult. For. Ecol. 7, 237–246 (2011).
    Google Scholar 
    Wölfling, M., Uhl, B. & Fiedler, K. Multi-decadal surveys in a Mediterranean forest reserve: Do succession and isolation drive moth species richness?. Nat. Conserv. 35, 25–40. https://doi.org/10.3897/natureconservation.35.32934 (2019).Article 

    Google Scholar 
    Uhl, B., Wölfling, M. & Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: the role of local and landscape factors. Biodivers Conserv 29, 2399–2418. https://doi.org/10.1007/s10531-020-01981-z (2020).Article 

    Google Scholar 
    Uhl, B., Wölfling, M., Fiala, B. & Fiedler, K. Micro-moth communities mirror environmental stress gradients within a Mediterranean nature reserve. Basic Appl. Ecol. 17, 273–281. https://doi.org/10.1016/j.baae.2015.10.002 (2016).Article 

    Google Scholar 
    Axmacher, J. C. & Fiedler, K. Manual versus automatic moth sampling at equal light sources: a comparison of catches from Mt. Kilimanjaro. J. Lepidopterists’ Soc. 58, 196–202 (2004).
    Google Scholar 
    Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764. https://doi.org/10.1603/0046-225X-35.3.757 (2006).Article 

    Google Scholar 
    van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281. https://doi.org/10.1016/j.biocon.2011.06.004 (2011).Article 

    Google Scholar 
    Niermann, J. & Brehm, G. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in grassland habitat. Eur. J. Entomol. 119, 36–42 ; https://doi.org/10.14411/eje.2022.004 (2022).Potocky, P. et al. Life-history traits of Central European moths: gradients of variation and their association with rarity and threats. Insect Conserv. Divers. 11, 493–505. https://doi.org/10.1111/icad.12291 (2018).Article 

    Google Scholar 
    R Core Team. R package version 2.5–7 https://www.r-project.org/ (2021).McLeod, A. I. Kendall: Kendall rank correlation and Mann-Kendall trend test https://CRAN.R-project.org/package=Kendall (2011).Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evol. 2, 278–282. https://doi.org/10.1111/j.2041-210X.2010.00061.x (2011).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://cran.r-project.org/web/packages/vegan/index.html (2020).De Luca, P., Messori, G., Faranda, D., Ward, P. J. & Coumou, D. Compound warm–dry and cold–wet events over the Mediterranean. Earth System Dynamics 11(3), 793–805 (2020).ADS 
    Article 

    Google Scholar 
    Manning, C. et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett. 14(9), 094006 (2019).ADS 
    Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32. https://doi.org/10.1042/ETLS20190134 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).Article 
    PubMed 

    Google Scholar 
    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285. https://doi.org/10.1111/j.1365-2656.2012.02029.x (2013).Article 
    PubMed 

    Google Scholar 
    Conrad, K. F., Woiwod, I. P. & Perry, J. N. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106, 329–337. https://doi.org/10.1016/S0006-3207(01)00258-0 (2002).Article 

    Google Scholar 
    Mathbout, S., Lopez-Bustins, J. A., Royé, D., Martin-Vide, J. & Benhamrouche, A. Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 40, 1435–1455. https://doi.org/10.1002/joc.6278 (2020).Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184. https://doi.org/10.1111/1365-2664.12959 (2018).Article 

    Google Scholar 
    Thomsen, P. F. et al. Resource specialists lead local insect community turnover associated with temperature – analysis of an 18-year full-seasonal record of moths and beetles. J. Anim. Ecol. 85, 251–261. https://doi.org/10.1111/1365-2656.12452 (2016).Article 
    PubMed 

    Google Scholar 
    Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).Article 
    PubMed 

    Google Scholar 
    Du Plessis, H., Schlemmer, M.-L. & van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects https://doi.org/10.3390/insects11040228 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jallow, M. F. A. & Matsumura, M. Influence of temperature on the rate of development of Helicoverpa armigera (Huebner) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 36, 427–430. https://doi.org/10.1303/aez.2001.427 (2001).Article 

    Google Scholar 
    Mironidis, G. K. & Savopoulou-Soultani, M. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ. Entomol. 37, 16–28. https://doi.org/10.1093/ee/37.1.16 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sokame, B. M. et al. Influence of temperature on the interaction for resource utilization between Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and a community of Lepidopteran maize stemborers larvae. Insects https://doi.org/10.3390/insects11020073 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, F., Orizaola, G. & Nilsson-Örtman, V. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Sci. Rep. 10, 8822. https://doi.org/10.1038/s41598-020-65608-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105. https://doi.org/10.1007/BF00379790 (1984).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244. https://doi.org/10.2307/3545270 (1991).Article 

    Google Scholar 
    Sarfraz, R. M., Dosdall, L. M. & Keddie, A. B. Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur. J. Entomol. 106, 583–594. https://doi.org/10.14411/eje.2009.073 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    The impact of summer drought on peat soil microbiome structure and function-A multi-proxy-comparison

    Different proxies for changes in structure and/or function of microbiomes have been developed, allowing assessing microbiome dynamics at multiple levels. However, the lack and differences in understanding the microbiome dynamics are due to the differences in the choice of proxies in different studies and the limitations of proxies themselves. Here, using both amplicon and metatranscriptomic sequencings, we compared four different proxies (16/18S rRNA genes, 16/18S rRNA transcripts, mRNA taxonomy and mRNA function) to reveal the impact of a severe summer drought in 2018 on prokaryotic and eukaryotic microbiome structures and functions in two rewetted fen peatlands in northern Germany. We found that both prokaryotic and eukaryotic microbiome compositions were significantly different between dry and wet months. Interestingly, mRNA proxies showed stronger and more significant impacts of drought for prokaryotes, while 18S rRNA transcript and mRNA taxonomy showed stronger drought impacts for eukaryotes. Accordingly, by comparing the accuracy of microbiome changes in predicting dry and wet months under different proxies, we found that mRNA proxies performed better for prokaryotes, while 18S rRNA transcript and mRNA taxonomy performed better for eukaryotes. In both cases, rRNA gene proxies showed much lower to the lowest accuracy, suggesting the drawback of DNA based approaches. To our knowledge, this is the first study comparing all these proxies to reveal the dynamics of both prokaryotic and eukaryotic microbiomes in soils. This study shows that microbiomes are sensitive to (extreme) weather changes in rewetted fens, and the associated microbial changes might contribute to ecological consequences. More

  • in

    Citizen science in environmental and ecological sciences

    Fraisl, D. et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 15, 1735–1751 (2020). This is the first article to quantitatively assess the potential of citizen science for SDG indicator monitoring.
    Google Scholar 
    Haklay, M. et al. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8, 202108 (2021). This article comprehensively explores the diverse perceptions of citizen science.ADS 

    Google Scholar 
    Kullenberg, C. & Kasperowski, D. What is citizen science? — A scientometric meta-analysis. PLoS ONE 11, e0147152 (2016). This article analyses the main topical focal points of citizen science.
    Google Scholar 
    Lemmens, R., Antoniou, V., Hummer, P. & Potsiou, C. in The Science of Citizen Science (eds. Vohland, K. et al.) 461–474 (Springer International Publishing, 2021).Wynn, J. Citizen Science In The Digital Age: Rhetoric, Science, And Public Engagement (Univ. Alabama Press, 2017).Roser, M. & Ortiz-Ospina, E. Literacy. Our World in Data https://ourworldindata.org/literacy (2016).Pateman, R., Dyke, A. & West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6, 9 (2021).
    Google Scholar 
    Haklay, M. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 13–33 (Springer International Publishing, 2021).Odenwald, S. A citation study of citizen science projects in space science and astronomy. Citiz. Sci. Theory Pract. 3, 5 (2018).
    Google Scholar 
    Bedessem, B., Julliard, R. & Montuschi, E. Measuring epistemic success of a biodiversity citizen science program: a citation study. PLoS ONE 16, e0258350 (2021).
    Google Scholar 
    Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).
    Google Scholar 
    Kasperowski, D. & Hillman, T. The epistemic culture in an online citizen science project: programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 48, 564–588 (2018).
    Google Scholar 
    Lambers, K., Verschoof-van der Vaart, W. & Bourgeois, Q. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote. Sens. 11, 794 (2019).ADS 

    Google Scholar 
    Froeling, F. et al. Narrative review of citizen science in environmental epidemiology: setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 152, 106470 (2021).
    Google Scholar 
    Hilton, N. H. Stimmen: a citizen science approach to minority language sociolinguistics. Linguist. Vanguard. 7, 20190017 (2021).
    Google Scholar 
    Maisonneuve, N., Stevens, M., Niessen, M. E. & Steels, L. in Information Technologies in Environmental Engineering (eds Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A. & Gómez, J. M.) 215–228 (Springer, 2009).Arias, R., Capelli, L. & Diaz Jimenez, C. A new methodology based on citizen science to improve environmental odour management. Chem. Eng. Trans. 68, 7–12 (2018).
    Google Scholar 
    Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S. & Shanley, L. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hecker, S. et al.) 219–240 (UCL Press, 2018).Den Broeder, L., Devilee, J., Van Oers, H., Schuit, A. J. & Wagemakers, A. Citizen Science for public health. Health Promot. Int. 33, 505–514 (2018).
    Google Scholar 
    Bio Innovation Service. Citizen Science For Environmental Policy: Development Of An EU Wide Inventory And Analysis Of Selected Practices (Publications Office, 2018).Mielke, J., Vermaßen, H. & Ellenbeck, S. Ideals, practices, and future prospects of stakeholder involvement in sustainability science. Proc. Natl Acad. Sci. USA 114, E10648–E10657 (2017).
    Google Scholar 
    Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59, 169–223 (2018). This article describes the opportunities of citizen science for biodiversity research.
    Google Scholar 
    Isaac, N. J. B., Strien, A. J., August, T. A., Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014). This article describes bias-correction approaches for ecological trend estimates.
    Google Scholar 
    Tengö, M., Austin, B. J., Danielsen, F. & Fernández-Llamazares, Á. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71, 503–518 (2021).
    Google Scholar 
    Krick, E. Citizen experts in participatory governance: democratic and epistemic assets of service user involvement, local knowledge and citizen science. Curr. Sociol. https://doi.org/10.1177/00113921211059225 (2021).Article 

    Google Scholar 
    Danielsen, F. et al. in Citizen Science (eds Hecker, S. et al.) 110–123 (UCL Press, 2018).Luzar, J. B. et al. Large-scale environmental monitoring by Indigenous peoples. BioScience 61, 771–781 (2011).
    Google Scholar 
    UNESCO. UNESCO recommendation on open science. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en (2021).Wehn, U. et al. Impact assessment of citizen science: state of the art and guiding principles for a consolidated approach. Sustain. Sci. 16, 1683–1699 (2021). This article presents guidelines for a common approach in assessing citizen science impacts.
    Google Scholar 
    Aristeidou, M. & Herodotou, C. Online citizen science: a systematic review of effects on learning and scientific literacy. Citiz. Sci. Theory Pract. 5, 11 (2020).
    Google Scholar 
    Peter, M., Diekötter, T. & Kremer, K. Participant outcomes of biodiversity citizen science projects: a systematic literature review. Sustainability 11, 2780 (2019).
    Google Scholar 
    Turrini, T., Dörler, D., Richter, A., Heigl, F. & Bonn, A. The threefold potential of environmental citizen science — generating knowledge, creating learning opportunities and enabling civic participation. Biol. Conserv. 225, 176–186 (2018).
    Google Scholar 
    ECSA. Ten principles of citizen science. ECSA https://zenodo.org/record/5127534 (2015).Haklay, M. et al. ECSA’s characteristics of citizen science. ECSA https://zenodo.org/record/3758668 (2020).Danielsen, F. Community-based Monitoring In The Arctic (Univ. Alaska Press, 2020).Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). This article discusses issues around justice, equity, diversity and inclusion related to citizen science.ADS 

    Google Scholar 
    Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2, 1 (2017). This article highlights how choice of concepts and terms affects knowledge creation.
    Google Scholar 
    Bonney, R. et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009). This article presents an early model for building and operating citizen science projects.
    Google Scholar 
    Haklay, M. in Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice (eds Sui, D., Elwood, S. & Goodchild, M.) 105–122 (Springer, 2013).Wiggins, A. & Crowston, K. From conservation to crowdsourcing: a typology of citizen science. In 44th Hawaii Int. Conf. on System Sciences 1–10 (IEEE, 2011).Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17, art29 (2012). This article describes multiple forms of public participation in science.
    Google Scholar 
    Tweddle, J. C., Robinson, L. D., Pocock, M. J. O. & Roy, H. E. Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. UK Environmental Observation Framework https://www.ceh.ac.uk/sites/default/files/citizenscienceguide.pdf (2012).Wiggins, A. et al. Data management guide for public participation in scientific research. DataONE https://old.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf (2013). This document describes essential steps of the data management life cycle.Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. in Key Topics in Conservation Biology Vol. 2 (eds Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Pocock, M. J. O., Chapman, D. S., Sheppard, L. J. & Roy, H. E. Choosing and using citizen science: a guide to when and how to use citizen science to monitor biodiversity and the environment. SEPA https://www.ceh.ac.uk/sites/default/files/sepa_choosingandusingcitizenscience_interactive_4web_final_amended-blue1.pdf (2014).Participatory Monitoring and Management Partnership (PMMP). Manaus Letter: recommendations for the participatory monitoring of biodiversity. Participatory Monitoring and Management Partnership (PMMP) https://doi.org/10.25607/OBP-965 (2015).Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook Of Citizen Science In Ecology And Conservation (Univ. California Press, 2020).US GSA. Citizen science toolkit: basic steps for your project planning. citizenscience.gov https://www.citizenscience.gov/toolkit/howto/ (2022).García, F. S. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 419–437 (Springer International Publishing, 2021).Van Brussel, S. & Huyse, H. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. J. Environ. Plan. Manag. 62, 534–551 (2019).
    Google Scholar 
    de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760 (2021).
    Google Scholar 
    Hyder, K., Townhill, B., Anderson, L. G., Delany, J. & Pinnegar, J. K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 59, 112–120 (2015).
    Google Scholar 
    Wehn, U. et al. Capturing and communicating impact of citizen science for policy: a storytelling approach. J. Environ. Manag. 295, 113082 (2021).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).
    Google Scholar 
    Laso Bayas, J. C. et al. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land 9, 446 (2020).
    Google Scholar 
    Cooper, C. B. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int. J. Biometeorol. 58, 1415–1419 (2014).ADS 

    Google Scholar 
    Pettibone, L. et al. Citizen Science For All. A Guide For Citizen Science Practitioners (Deutsches Zentrum für Integrative Biodiversitätsforschung, Helmholtz-Zentrum für Umweltforschung, Berlin-Brandenburgisches Institut für Biodiversitätsforschung, Museum für Naturkunde, Leibniz-Institut, 2016).Pernat, N. et al. How media presence triggers participation in citizen science — the case of the mosquito monitoring project ‘Mückenatlas’. PLoS ONE 17, e0262850 (2022).
    Google Scholar 
    Crowston, K. & Prestopnik, N. R. Motivation and data quality in a citizen science game: a design science evaluation. In 46th Hawaii Int. Conf. on System Sciences 450–459 (IEEE, 2013).Funder, M., Danielsen, F., Ngaga, Y., Nielsen, M. R. & Poulsen, M. K. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania’s community-managed forests. Conserv. Soc. 11, 218–232 (2013).
    Google Scholar 
    Deterding, S. Gamification: designing for motivation. Interactions 19, 14–17 (2012).
    Google Scholar 
    West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature? Citiz. Sci. Theory Pract. 1, 15 (2016). This article discusses participant motivations for engagement and volunteering.
    Google Scholar 
    Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding motivations for citizen science. Final report on behalf of UKEOF. SEI https://www.sei.org/publications/understanding-motivations-for-citizen-science/ (2016).Baruch, A., May, A. & Yu, D. The motivations, enablers and barriers for voluntary participation in an online crowdsourcing platform. Comput. Hum. Behav. 64, 923–931 (2016).
    Google Scholar 
    Larson, L. R. et al. The diverse motivations of citizen scientists: does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 242, 108428 (2020).
    Google Scholar 
    Danielsen, F. et al. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71, 484–502 (2021). This article summarizes the potential and intricacies of community-led citizen science.
    Google Scholar 
    Salmon, R. A., Rammell, S., Emeny, M. T. & Hartley, S. Citizens, scientists, and enablers: a tripartite model for citizen science projects. Diversity 13, 309 (2021).
    Google Scholar 
    Bowser, A., Shilton, K., Preece, J. & Warrick, E. Accounting for privacy in citizen science: ethical research in a context of openness. In Proc. 2017 ACM Conf. on Computer Supported Cooperative Work and Social Computing 2124–2136 (ACM, 2017).Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. Trends Ecol. Evol. 35, 187–190 (2020).
    Google Scholar 
    Pandya, R. E. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10, 314–317 (2012).
    Google Scholar 
    Sorensen, A. E. et al. Reflecting on efforts to design an inclusive citizen science project in West Baltimore. Citiz. Sci. Theory Pract. 4, 13 (2019).
    Google Scholar 
    Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public. Underst. Sci. 25, 2–16 (2016).
    Google Scholar 
    Hermoso, M. I., Martin, V. Y., Gelcich, S., Stotz, W. & Thiel, M. Exploring diversity and engagement of divers in citizen science: insights for marine management and conservation. Mar. Policy 124, 104316 (2021).
    Google Scholar 
    Barahona-Segovia, R. M. et al. Combining citizen science with spatial analysis at local and biogeographical scales for the conservation of a large-size endemic invertebrate in temperate forests. For. Ecol. Manag. 497, 119519 (2021).
    Google Scholar 
    Bowser, A., Wiggins, A., Shanley, L., Preece, J. & Henderson, S. Sharing data while protecting privacy in citizen science. Interactions 21, 70–73 (2014).
    Google Scholar 
    Wiggins, A., Newman, G., Stevenson, R. D. & Crowston, K. Mechanisms for data quality and validation in citizen science. In IEEE Seventh Int. Conf. on e-Science Workshops 14–19 (IEEE, 2011).Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016). This article discusses common assumptions and evidence about citizen science data quality.
    Google Scholar 
    Downs, R. R., Ramapriyan, H. K., Peng, G. & Wei, Y. Perspectives on citizen science data quality. Front. Clim. 3, 615032 (2021). This article describes perspectives on quality assessment and control issues.
    Google Scholar 
    Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019). This article identifies the full potential of citizen science for SDG monitoring and implementation.
    Google Scholar 
    Phillips, T., Ferguson, M., Minarchek, M., Porticella, N. & Bonney, R. Evaluating learning outcomes from citizen science. The Cornell Lab of Ornithology https://www.birds.cornell.edu/citizenscience/wp-content/uploads/2018/10/USERS-GUIDE_linked.pdf (2014).Tredick, C. A. et al. A rubric to evaluate citizen-science programs for long-term ecological monitoring. BioScience 67, 834–844 (2017).
    Google Scholar 
    Kieslinger, B. et al. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hekler, S., Haklay, M., Bowser, A., Vogel, J. & Bonn, A.) 81–95 (UCL Press, 2018).Schaefer, T., Kieslinger, B., Brandt, M. & van den Bogaert, V. in The Science of Citizen Science (eds Vohland, K. et al.) 495–514 (Springer International Publishing, 2021).Prysby, M. & Oberhauser, K. S. in The Monarch Butterfly: Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 9–20 (Cornell Univ. Press, 2004).Danielsen, F. et al. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64, 236–251 (2014). The article presents the largest quantitative study to date of the accuracy of citizen science across the three tropical continents.
    Google Scholar 
    Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).
    Google Scholar 
    Serret, H., Deguines, N., Jang, Y., Lois, G. & Julliard, R. Data quality and participant engagement in citizen science: comparing two approaches for monitoring pollinators in France and South Korea. Citiz. Sci. Theory Pract. 4, 22 (2019).
    Google Scholar 
    Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. J. Soc. Conserv. Biol 25, 1148–1154 (2011).
    Google Scholar 
    Deguines, N., de Flores, M., Loïs, G., Julliard, R. & Fontaine, C. Fostering close encounters of the entomological kind. Front. Ecol. Environ. 16, 202–203 (2018).
    Google Scholar 
    van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. J. Soc. Conserv. Biol. 30, 550–561 (2016).
    Google Scholar 
    Watson, D. & Floridi, L. Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195, 741–764 (2018).MathSciNet 

    Google Scholar 
    Silvertown, J. et al. Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146 (2015).
    Google Scholar 
    Edgar, G. & Stuart-Smith, R. Ecological effects of marine protected areas on rocky reef communities — a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).ADS 

    Google Scholar 
    Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).
    Google Scholar 
    Johnson, N., Druckenmiller, M. L., Danielsen, F. & Pulsifer, P. L. The use of digital platforms for community-based monitoring. BioScience 71, 452–466 (2021).
    Google Scholar 
    Hochmair, H. H., Scheffrahn, R. H., Basille, M. & Boone, M. Evaluating the data quality of iNaturalist termite records. PLoS ONE 15, e0226534 (2020).
    Google Scholar 
    Torres, A.-C., Bedessem, B., Deguines, N. & Fontaine, C. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. J. Responsible Innov. https://doi.org/10.1080/23299460.2021.2019970 (2022).Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012).
    Google Scholar 
    Robinson, O. J., Ruiz-Gutierrez, V. & Fink, D. Correcting for bias in distribution modelling for rare species using citizen science data. Divers. Distrib. 24, 460–472 (2018).
    Google Scholar 
    Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).
    Google Scholar 
    Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves? PLoS ONE 10, e0139600 (2015).
    Google Scholar 
    Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97 (2018).
    Google Scholar 
    Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016).MathSciNet 
    MATH 

    Google Scholar 
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    Google Scholar 
    Kelling, S., Yu, J., Gerbracht, J. & Wong, W.-K. Emergent filters: automated data verification in a large-scale citizen science project. In IEEE Seventh Int. Conf. on e-Science Workshops 20–27 (IEEE, 2011).Kelling, S. et al. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).
    Google Scholar 
    Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).ADS 

    Google Scholar 
    Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).ADS 

    Google Scholar 
    Brashares, J. S. & Sam, M. K. How much is enough? Estimating the minimum sampling required for effective monitoring of African reserves. Biodivers. Conserv. 14, 2709–2722 (2005).
    Google Scholar 
    Andrianandrasana, H. T., Randriamahefasoa, J., Durbin, J., Lewis, R. E. & Ratsimbazafy, J. H. Participatory ecological monitoring of the Alaotra Wetlands in Madagascar. Biodivers. Conserv. 14, 2757–2774 (2005).
    Google Scholar 
    Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58–66 (2012).ADS 

    Google Scholar 
    Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. Short-term climate-induced change in French plant communities. Biol. Lett. 15, 20190280 (2019).
    Google Scholar 
    Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281–295 (2017).
    Google Scholar 
    Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).
    Google Scholar 
    Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).
    Google Scholar 
    Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).
    Google Scholar 
    Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).
    Google Scholar 
    Desaegher, J., Nadot, S., Fontaine, C. & Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban. Ecosyst. 21, 585–598 (2018).
    Google Scholar 
    Osenga, E. C., Vano, J. A. & Arnott, J. C. A community-supported weather and soil moisture monitoring database of the Roaring Fork catchment of the Colorado River Headwaters. Hydrol. Process. 35, e14081 (2021).
    Google Scholar 
    Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).
    Google Scholar 
    Paap, T., Wingfield, M. J., Burgess, T. I., Hulbert, J. M. & Santini, A. Harmonising the fields of invasion science and forest pathology. NeoBiota 62, 301–332 (2020).
    Google Scholar 
    Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012). This article gives a history account of the development of citizen science.
    Google Scholar 
    Clark, G. F. et al. A visualization tool for citizen-science marine debris big data. Water Int. 46, 211–223 (2021).
    Google Scholar 
    Gray, A., Robertson, C. & Feick, R. CWDAT — an open-source tool for the visualization and analysis of community-generated water quality data. ISPRS Int. J. Geo-Inf. 10, 207 (2021).
    Google Scholar 
    Hoyer, T., Moritz, J. & Moser, J. Visualization and perception of data gaps in the context of citizen science projects. KN J. Cartogr. Geogr. Inf. 71, 155–172 (2021).
    Google Scholar 
    Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. in The Science of Citizen Science (eds Vohland, K. et al.) 439–459 (Springer International Publishing, 2021).Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Google Scholar 
    Kobori, H. et al. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).
    Google Scholar 
    Clavero, M. & Revilla, E. Mine centuries-old citizen science. Nature 510, 35–35 (2014).ADS 

    Google Scholar 
    Kalle, R., Pieroni, A., Svanberg, I. & Sõukand, R. Early citizen science action in ethnobotany: the case of the folk medicine collection of Dr. Mihkel Ostrov in the territory of present-day Estonia, 1891–1893. Plants 11, 274 (2022).
    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017). This article highlights the magnitude of citizen science contributions to global biodiversity datasets.
    Google Scholar 
    Groom, Q., Weatherdon, L. & Geijzendorffer, I. R. Is citizen science an open science in the case of biodiversity observations? J. Appl. Ecol. 54, 612–617 (2017).
    Google Scholar 
    Cooper, C. B., Shirk, J. & Zuckerberg, B. The invisible prevalence of citizen science in global research: migratory birds and climate change. PLoS ONE 9, e106508 (2014).ADS 

    Google Scholar 
    Morales, C. L. et al. Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. J. Insect Conserv. 26, 257–269 (2022).
    Google Scholar 
    Campbell, H. & Engelbrecht, I. The Baboon Spider Atlas — using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in southern Africa. Insect Conserv. Divers. 11, 143–151 (2018).
    Google Scholar 
    Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2021).
    Google Scholar 
    Croft, S., Chauvenet, A. L. M. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    Google Scholar 
    Hsing, P. et al. Economical crowdsourcing for camera trap image classification. Remote Sens. Ecol. Conserv. 4, 361–374 (2018).
    Google Scholar 
    Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21 (2019).
    Google Scholar 
    Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: the integration of citizen science and artificial intelligence. Animals 10, 132 (2020).
    Google Scholar 
    Hsing, P.-Y. et al. Citizen scientists: school students conducting, contributing to and communicating ecological research — experiences of a school–university partnership. Sch. Sci. Rev. 101, 67–74 (2020).
    Google Scholar 
    Degnan, L. MammalWeb citizen science wildlife monitoring. Vimeo https://vimeo.com/237565215 (2017).Hsing, P.-Y. et al. Large-scale mammal monitoring: the potential of a citizen science camera-trapping project in the UK. Ecol. Solut. Evid. (in the press).Chapman, H. Spotting wildlife helps teens cope with life in lockdown. The Northern Echo https://www.thenorthernecho.co.uk/news/18459359.spotting-wildlife-helps-teens-cope-life-lockdown/ (2020).McKie, R. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trap-citizen-scientist (2019).Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).ADS 

    Google Scholar 
    Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).ADS 

    Google Scholar 
    Aparicio Camín, N., Comaposada, A., Paul, E., Maceda-Veiga, A. & Piera, J. Analysis of species richness in Barcelona beaches using a citizen science based approach (Sociedad Ibérica de Ecología, 2019).Chao, A., Colwell, R. K., Chiu, C. & Townsend, D. Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods Ecol. Evol. 8, 1221–1232 (2017).
    Google Scholar 
    Mominó, J. M., Piera, J. & Jurado, E. in Analyzing the Role of Citizen Science in Modern Research (eds Ceccaroni, L. & Piera, J.) 231–245 (IGI Global, 2017).Salvador, X. et al. Guia Participativa Marina del Barcelonès (Marcombo, 2021).Carayannis, E. G., Barth, T. D. & Campbell, D. F. The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrep. 1, 2 (2012).
    Google Scholar 
    Goodchild, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007).
    Google Scholar 
    Capineri, C. et al. European Handbook of Crowdsourced Geographic Information (Ubiquity Press, 2016).Skarlatidou, A. & Haklay, M. Geographic Citizen Science Design: No One Left Behind (UCL Press, 2021).Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).
    Google Scholar 
    Jeddi, Z. et al. Citizen seismology in the Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00139 (2020).Eurostat. LUCAS — Land use and land cover survey. eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (2021).Laso Bayas, J. et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote. Sens. 8, 905 (2016).ADS 

    Google Scholar 
    EU. Regulation (EU) 2016/679 Of The European Parliament And Of The Council, Article 5(c). EU https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).Danielsen, F. et al. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18, 41 (2013).
    Google Scholar 
    Boissière, M., Herold, M., Atmadja, S. & Sheil, D. The feasibility of local participation in measuring, reporting and verification (PMRV) for REDD. PLoS ONE 12, e0176897 (2017).
    Google Scholar 
    Walker, D. W., Smigaj, M. & Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 8, e1488 (2021).
    Google Scholar 
    Danielsen, F. et al. Community monitoring of natural resource systems and the environment. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-012220-022325 (2022).Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00349 (2019).Shinbrot, X. A. et al. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5, 19 (2020).
    Google Scholar 
    Little, K. E., Hayashi, M. & Liang, S. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54, 317–324 (2016).
    Google Scholar 
    Wolff, E. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10, 100171 (2021).
    Google Scholar 
    Hauser, D. D. W. et al. Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett. 16, 095003 (2021).ADS 

    Google Scholar 
    Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).ADS 

    Google Scholar 
    Robles, M. C. et al. Clouds around the world: how a simple citizen science data challenge became a worldwide success. Bull. Am. Meteorol. Soc. 101, E1201–E1213 (2020).
    Google Scholar 
    Beeden, R. J. et al. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186, 8527–8540 (2014).
    Google Scholar 
    Miller-Rushing, A. J., Gallinat, A. S. & Primack, R. B. Creative citizen science illuminates complex ecological responses to climate change. Proc. Natl Acad. Sci. USA 116, 720–722 (2019).
    Google Scholar 
    Kress, W. J. et al. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68, 348–358 (2018).
    Google Scholar 
    Kirchhoff, C. et al. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348 (2021).ADS 

    Google Scholar 
    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
    Google Scholar 
    Soil Survey Staff, Natural Resources Conservation Service & USDA. Web soil survey. USDA https://websoilsurvey.nrcs.usda.gov/ (2019).Cooper, C. B., Hochachka, W. M. & Dhondt, A. A. in Citizen Science (eds Dickinson, J. L. & Bonney, R.) 99–113 (Cornell Univ. Press, 2012).Bastin, L., Schade, S. & Schill, C. in Mapping and the Citizen Sensor (eds Foody, G. et al.) 249–272 (Ubiquity Press, 2017).Resnik, D. B., Elliott, K. C. & Miller, A. K. A framework for addressing ethical issues in citizen science. Environ. Sci. Policy 54, 475–481 (2015). This article outlines basic considerations for ethical research practices in citizen science.
    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Lond. B 268, 2473–2478 (2001).
    Google Scholar 
    Lotfian, M., Ingensand, J. & Brovelli, M. A. The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13, 8087 (2021).
    Google Scholar 
    Kissling, W. D. et al. Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity 16, 99–107 (2015).
    Google Scholar 
    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
    Google Scholar 
    Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).
    Google Scholar 
    UKEOF Citizen Science Working. Data management planning for citizen science. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1406 (2020). This document provides advice about the development of data management plans.Hansen, J. S. et al. Research data management challenges in citizen science projects and recommendations for library support services. A scoping review and case study. Data Sci. J. 20, 25 (2021).
    Google Scholar 
    Croucher, M., Graham, L., James, T., Krystalli, A. & Michonneau, F. A guide to reproducible code. British Ecological Society https://www.britishecologicalsociety.org/publications/guides-to/ (2019).Parker, A., Dosemagen, S., Molloy, J., Bowser, A. & Novak, A. Open hardware: an opportunity to build better science. Wilson Center https://www.wilsoncenter.org/publication/open-hardware-opportunity-build-better-science (2021).Palmer, M. S., Dewey, J. & Huebner, S. Snapshot Safari educational materials. Libraries Digital Conservancy https://hdl.handle.net/11299/217102 (2020).Campbell, J., Bowser, A., Fraisl, D. & Meloche, M. in Data for Good Exchange (IIASA, 2019).Fraisl, D. et al. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 128, 81–93 (2022).
    Google Scholar 
    Humm, C. & Schrögel, P. Science for all? Practical recommendations on reaching underserved audiences. Front. Commun. https://doi.org/10.3389/fcomm.2020.00042 (2020).Article 

    Google Scholar 
    Clary, E. G. & Snyder, M. The motivations to volunteer: theoretical and practical considerations. Curr. Dir. Psychol. Sci. 8, 156–159 (1999).
    Google Scholar 
    Hobbs, S. J. & White, P. C. L. Motivations and barriers in relation to community participation in biodiversity recording. J. Nat. Conserv. 20, 364–373 (2012).
    Google Scholar 
    Lukyanenko, R., Wiggins, A. & Rosser, H. K. Citizen science: an information quality research frontier. Inf. Syst. Front. 22, 961–983 (2020).
    Google Scholar 
    Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796 (2016).
    Google Scholar 
    Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodivers. Conserv. 29, 1767–1781 (2020).
    Google Scholar 
    Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in Citizen Science data reporting: implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 

    Google Scholar 
    Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway. Ecol. Evol. 11, 15191–15204 (2021).
    Google Scholar 
    Haklay, M. E. in European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 35–44 (Ubiquity Press, 2016).Haklay, M. in Citizen Science (eds Haklay, M. et al.) 52–62 (UCL Press, 2018).Schade, S., Herding, W., Fellermann, A. & Kotsev, A. Joint statement on new opportunities for air quality sensing — lower-cost sensors for public authorities and citizen science initiatives. Res. Ideas Outcomes 5, e34059 (2019).
    Google Scholar 
    Moustard, F. et al. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol https://doi.org/10.3389/fevo.2021.638870 (2021).Article 

    Google Scholar 
    Pettibone, L. et al. Transdisciplinary sustainability research and citizen science: options for mutual learning. GAIA — Ecol. Perspect. Sci. Soc. 27, 222–225 (2018).
    Google Scholar 
    Low, R., Schwerin, T. & Codsi, R. Citizen Science As A Tool For Transdisciplinary Research And Stakeholder Engagement (ESSOAr, 2020).Ottinger, G. in The Routledge Handbook of the Political Economy of Science (eds Tyfield, D., Lave, R., Randalls, S. & Thorpe, C.) 351–364 (Routledge, 2017).Rey-Mazón, P., Keysar, H., Dosemagen, S., D’Ignazio, C. & Blair, D. Public lab: community-based approaches to urban and environmental health and justice. Sci. Eng. Ethics 24, 971–997 (2018).
    Google Scholar 
    Brown, A., Franken, P., Bonner, S., Dolezal, N. & Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36, S82–S101 (2016).
    Google Scholar 
    Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274–281 (2019).
    Google Scholar 
    Gollan, J., de Bruyn, L. L., Reid, N. & Wilkie, L. Can volunteers collect data that are comparable to professional scientists? A study of variables used in monitoring the outcomes of ecosystem rehabilitation. Environ. Manag. 50, 969–978 (2012).ADS 

    Google Scholar 
    van Noordwijk, T. C. G. E. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 373–395 (Springer International Publishing, 2021).Auerbach, J. et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 116, 15336–15337 (2019).
    Google Scholar 
    Gold, M., Wehn, U., Bilbao, A. & Hager, G. EU Citizen observatories landscape report II: addressing the challenges of awareness, acceptability, and sustainability. EU https://zenodo.org/record/4472670 (2020).WeObserve Consortium. Roadmap for the uptake of the citizen observatories’ knowledge base. WeObserve Consortium https://zenodo.org/record/4646774 (2021).UNECE. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention). UNECE https://unece.org/fileadmin/DAM/env/pp/documents/cep43e.pdf (1998).UNECE. Draft updated recommendations on the more effective use of electronic information tools. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf (2021).UNECE. Draft updated recommendations on the more effective use of electronic information tools, Addendum. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_Add.1_E.pdf (2021).UNEP. Measuring progress: environment and the SDGs. UNEP http://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs (2021).SDSN TReNDS. Strengthening measurement of marine litter in Ghana. How citizen science is helping to measure progress on SDG 14.1.1b. SDSN TReNDS https://storymaps.arcgis.com/stories/2622af0a0c7d4c709c3d09f4cc249f7d (2021).Goudeseune, L. et al. Citizen science toolkit for biodiversity scientists. biodiversa https://zenodo.org/record/3979343 (2020).Veeckman, C., Talboom, S., Gijsel, L., Devoghel, H. & Duerinckx, A. Communication in citizen science. A practical guide to communication and engagement in citizen science. SCivil https://www.scivil.be/sites/default/files/paragraph/files/2020-01/Scivil%20Communication%20Guide.pdf (2019).Durham, E., Baker, S., Smith, M., Moore, E. & Morgan, V. BiodivERsA: stakeholder engagement handbook. biodiversa https://www.biodiversa.org/702 (2014).WeObserve Consortium. WeObserve Cookbook. WeObserve Consortium https://zenodo.org/record/5493543 (2021).Danielsen, F. et al. Testing focus groups as a tool for connecting Indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).
    Google Scholar 
    Elliott, K. C., McCright, A. M., Allen, S. & Dietz, T. Values in environmental research: citizens’ views of scientists who acknowledge values. PLoS ONE 12, e0186049 (2017).
    Google Scholar 
    Yamamoto, Y. T. Values, objectivity and credibility of scientists in a contentious natural resource debate. Public. Underst. Sci. 21, 101–125 (2012).
    Google Scholar 
    Danielsen, F. et al. in Handbook of Citizen Science in Ecology and Conservation (eds Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F.) 25–29 (Univ. California Press, 2020).Eicken, H. et al. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71, 467–483 (2021). This article highlights the benefits of linking community- and science/policy-led approaches.
    Google Scholar 
    Slough, T. et al. Adoption of community monitoring improves common pool resource management across contexts. Proc. Natl Acad. Sci. USA 118, e2015367118 (2021).
    Google Scholar 
    Wilderman, C. C., Barron, A. & Imgrund, L. Top down or bottom up? ALLARM’s experience with two operational models for community science. In 4th Natl Monitoring Conf. (National Water Quality Monitoring Council, 2004).Johnson, N. et al. Community-based monitoring and Indigenous knowledge in a changing Arctic: a review for the sustaining Arctic Observing Networks. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1314 (2016).Lau, J. D., Gurney, G. G. & Cinner, J. Environmental justice in coastal systems: perspectives from communities confronting change. Glob. Environ. Change 66, 102208 (2021).
    Google Scholar 
    Lyver, P. O. B. et al. An Indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26, 3183–3212 (2017).
    Google Scholar 
    Cuyler, C. et al. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2, e159 (2020).
    Google Scholar 
    Fox, J. A. Social accountability: what does the evidence really say? World Dev. 72, 346–361 (2015).
    Google Scholar 
    Wheeler, H. C. et al. The need for transformative changes in the use of Indigenous knowledge along with science for environmental decision-making in the Arctic. People Nat. 2, 544–556 (2020).
    Google Scholar 
    Storey, R. G., Wright-Stow, A., Kin, E., Davies-Colley, R. J. & Stott, R. Volunteer stream monitoring: do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 21, art32 (2016).
    Google Scholar 
    Brofeldt, S. et al. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology — experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3, 4 (2018).
    Google Scholar 
    Menton, M. & Le Billon, P. Environmental Defenders: Deadly Struggles For Life And Territory (Routledge, 2021).Eastman, L. B., Hidalgo-Ruz, V., Macaya-Caquilpán, V., Núñez, P. & Thiel, M. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J. Integr. Coast. Zone Manag. 14, 569–579 (2014).
    Google Scholar 
    Hidalgo-Ruz, V. & Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18 (2013).
    Google Scholar 
    Kruse, K., Kiessling, T., Knickmeier, K., Thiel, M. & Parchmann, I. in Engaging Learners with Chemistry (eds Ilka P., Shirley S. & Jan A.) 225–240 (Royal Society of Chemistry, 2020).Wichman, C. S. et al. Promoting pro-environmental behavior through citizen science? A case study with Chilean schoolchildren on marine plastic pollution. Mar. Policy 141, 105035 (2022).
    Google Scholar 
    Bravo, M. et al. Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 1718–1726 (2009).
    Google Scholar 
    Hidalgo-Ruz, V. et al. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 516–524 (2018).
    Google Scholar 
    Honorato-Zimmer, D. et al. Mountain streams flushing litter to the sea — Andean rivers as conduits for plastic pollution. Environ. Pollut. 291, 118166 (2021).
    Google Scholar 
    Amenábar Cristi, M. et al. The rise and demise of plastic shopping bags in Chile — broad and informal coalition supporting ban as a first step to reduce single-use plastics. Ocean. Coast. Manag. 187, 105079 (2020).
    Google Scholar 
    Kiessling, T. et al. Plastic Pirates sample litter at rivers in Germany — riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 245, 545–557 (2019).
    Google Scholar 
    Kiessling, T. et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total. Environ. 789, 147849 (2021).ADS 

    Google Scholar  More

  • in

    Fungal succession on the decomposition of three plant species from a Brazilian mangrove

    Raghukumar, S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. https://doi.org/10.1007/978-3-319-54304-8 (2017).Article 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 
    Article 

    Google Scholar 
    Sebastianes, F. L. D. S. et al. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59, 153–166 (2013).CAS 
    Article 

    Google Scholar 
    Holguin, G. et al. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 363, 260–274 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schaeffer-Novelli, Y., Cintrón-Molero, G. & Adaime, R. R. Variability of Mangrove ecosystems along the Brazilian coast variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13, 204–218 (1990).Article 

    Google Scholar 
    Baskaran, R., Mohan, P., Sivakumar, K., Ragavan, P. & Sachithanandam, V. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3, 124–127 (2012).
    Google Scholar 
    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994).CAS 
    Article 

    Google Scholar 
    Taketani, R. G., Moitinho, M. A., Mauchline, T. H. & Melo, I. S. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 6, e5710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schmit, J. P. & Mueller, G. M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16, 99–111 (2007).Article 

    Google Scholar 
    Hawksworth, D. L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50, 9–18 (2004).
    Google Scholar 
    Valderrama, B. et al. Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico. Revista Mexicana de Biodiversidad 87, 18–28 (2016).Article 

    Google Scholar 
    Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M. & Gleason, F. H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia 659, 93–109 (2011).Article 

    Google Scholar 
    Pascoal, C. & Cassio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266–5273 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moitinho, M. A., Bononi, L., Souza, D. T., Melo, I. S. & Taketani, R. G. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. https://doi.org/10.1007/s00248-018-1190-4 (2018).Article 
    PubMed 

    Google Scholar 
    Tan, T. K., Leong, W. F. & Jones, E. B. G. Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can. J. Bot. 67, 2686–2691 (1989).Article 

    Google Scholar 
    Ananda, K. & Sridhar, K. R. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 80, 1431–1437 (2004).
    Google Scholar 
    Maria, G. L., Sridhar, K. R. & Bärlocher, F. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49, 450–455 (2006).CAS 
    Article 

    Google Scholar 
    Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycprrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mcmurdie, P. J. & Holmes, S. phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. 8, (2013).Oksanen, P. Vegan 1.17-0. (2010).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Hamilton, N. E. & Ferry, M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat. Softw. Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Hanski, I. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici 65–73 (1982).Gumiere, T. et al. A probabilistic model to identify the core microbial community. bioRxiv. https://doi.org/10.1101/491183 (2018).Article 

    Google Scholar 
    Salazar, G. EcolUtils: Utilities for community ecology analysis. (2019).Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Promputtha, I. et al. Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30, 23–36 (2008).
    Google Scholar 
    Kodsueb, R., McKenzie, E. H. C., Lumyong, S. & Hyde, K. D. Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30, 55–72 (2008).
    Google Scholar 
    Voriskova, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Osono, T. Phyllosphere fungi on leaf litter of Fagus crenata: Occurrence, colonization, and succession. Can. J. Bot. 80, 460–469 (2002).Article 

    Google Scholar 
    Osono, T. et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Diversity 36, 101–119 (2009).
    Google Scholar 
    Costa, I. P. M. W., Maia, L. C. & Cavalcanti, M. A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43, 1165–1173 (2012).Article 

    Google Scholar 
    Sobrado, M. A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. 422–427 (2004). https://doi.org/10.1007/s00468-004-0320-4.Dias, A. C. F. et al. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests. Braz. J. Microbiol. 43, (2012).Moitinho, M. A. et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Braz. J. Microbiol. 50, 1041–1050 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barroso-Matos, T., Bernini, E. & Rezende, C. E. Descomposición de hojas de mangle en el estuario del Río Paraíba do Sul Rio de Janeiro, Brasil. Lat. Am. J. Aquat. Res. 40, 398–407 (2012).Article 

    Google Scholar 
    Sessegolo, G. C. & Lana, P. C. Lagunculana racemosa Leaves in a Mangrove of Paranaguä Bay (Southeastern Brazil). Bot. Mar. 34, 285–289 (1991).Article 

    Google Scholar 
    Miura, T. et al. Diversity of fungi on decomposing leaf litter in a sugarcane plantation and their response to tillage practice and bagasse mulching: implications for management effects on litter decomposition. Microb. Ecol. 70, 646–658 (2015).PubMed 
    Article 

    Google Scholar 
    Behnke-Borowczyk, J. & Wołowska, D. The identification of fungal species in dead wood of oak. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 17, 17–23 (2018).Article 

    Google Scholar 
    Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320 (2015).Article 

    Google Scholar 
    Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 22, 955–974 (2007).Article 

    Google Scholar 
    Zhang, W. et al. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161, 85–95 (2018).CAS 
    Article 

    Google Scholar 
    Jones, E. B. G. & Choeyklin, R. Ecology of marine and freshwater basidiomycetes. in Ecology of Saprotrophic Basidiomycetes 301–324 (2007).Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 170, 183–195 (2014).CAS 
    Article 

    Google Scholar 
    Koivusaari, P. et al. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front. Microbiol. 10, (2019).Raudabaugh, D. B. et al. Coniella lustricola, a new species from submerged detritus. Mycol. Prog. 17, 191–203 (2018).Article 

    Google Scholar 
    Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, (2013). More

  • in

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).ADS 
    Article 

    Google Scholar 
    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, D. A. et al. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences 14, 4663–4690 (2017).ADS 
    Article 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reed, S. C. et al. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. N. Phytologist 208, 324–329 (2015).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Kattge, J. et al. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).ADS 
    Article 

    Google Scholar 
    Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynthesis Res. 119, 15–29 (2014).CAS 
    Article 

    Google Scholar 
    Field, C. B. & Mooney, H. A. in On the economy of plant form and function. (ed T. J. Givnish) 25-55. (Cambridge University Press, 1986).Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Raven, J. A. Rubisco: still the most abundant protein of Earth? N. Phytologist 198, 1–3 (2013).CAS 
    Article 

    Google Scholar 
    Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Thornton, P. E. et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Reich, P. B. et al. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Achat, D. L. et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).CAS 
    Article 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177, 271–284 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ. 38, 1142–1156 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).Brooks, A. et al. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Res. 15, 133–141 (1988).CAS 
    Article 

    Google Scholar 
    Chen, J. L. et al. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).ADS 
    PubMed 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytologist 215, 1425–1437 (2017).CAS 
    Article 

    Google Scholar 
    Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytologist 215, 992–1008 (2017).CAS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9, 17 (2005).Augusto, L. et al. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).ADS 
    Article 

    Google Scholar 
    Lambers, H. et al. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 347, 7–27 (2011).Article 
    CAS 

    Google Scholar 
    Yan, L. et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. N. Phytologist 223, 1621–1633 (2019).CAS 
    Article 

    Google Scholar 
    Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duursma, R. A. Plantecophys – An R package for analysing and modelling leaf gas exchange data. Plos One 10, e0143346 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE. Geoscientific Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. N. Phytologist 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637–645 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Neter, J. et al. Applied Linear Statistical Models, 4th ed., (McGraw-Hill, 1996).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evolution 4, 202–209 (2020).Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 490, 123–456 (2018).
    Google Scholar 
    Thornton, P. E. et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat. Clim. Chang. 7, 496-+ (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Wieder, W. R. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evolution 4, 3218–3235 (2014).Article 

    Google Scholar 
    Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. N. Phytologist 196, 1098–1108 (2012).CAS 
    Article 

    Google Scholar 
    Jiang, M. K. et al. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytologist 222, 1223–1229 (2019).Article 

    Google Scholar 
    Leuning, R. Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J. Exp. Bot. 48, 345–347 (1997).CAS 
    Article 

    Google Scholar 
    Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model Earth Syst. 14, e2021MS002946 (2022).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45, 8231–8240 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Wang, Y. P. et al. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. J. et al. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43, 7205–7214 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    Bloomfield, K. J. et al. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia). Biogeosciences 11, 7331–7347 (2014).ADS 
    Article 

    Google Scholar 
    Cernusak, L. A. et al. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. N. Phytologist 214, 1002–1018 (2017).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Glob. Change Biol. 21, 4662–4672 (2015).ADS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol. Diversity 7, 189–203 (2014).Article 

    Google Scholar 
    Kenzo, T. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    van de Weg, M. J. et al. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168, 23–34 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kenzo, T. et al. Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. Jpn. Agriculture Res. Q. 46, 167–180 (2012).Article 

    Google Scholar 
    Domingues, T. F. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Verryckt, L. T. et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst. Sci. Data 14, 5–18 (2022).ADS 
    Article 

    Google Scholar 
    Santiago, L. S. & Mulkey, S. S. A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41, 343–347 (2003).CAS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 27, 1687–1699 (2007).PubMed 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Townsend, A. R. et al. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Leaf structure (specific leaf area) modulates photosynthesis- nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).Article 

    Google Scholar 
    Rogers, A. et al. Improving representation of photosynthesis in Earth System Models. N. Phytologist 204, 12–14 (2014).Article 

    Google Scholar 
    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. N. Phytologist 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    Warton, D. I. et al. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Tian, H. Q. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS 
    Article 

    Google Scholar  More