Linder, H. P. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 28, 169–182 (2001).Article
Google Scholar
Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article
Google Scholar
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 104, 5925–5930 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Brummitt, N., Araújo, A. C. & Harris, T. Areas of plant diversity—What do we know? Plants, People, Planet 3, 33–44 (2020).Article
Google Scholar
Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).Article
Google Scholar
Slik, J. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 112, 7472–7477 (2015).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).Article
Google Scholar
Weigand, A. et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 47, 59–71 (2020).Article
Google Scholar
Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed
Article
Google Scholar
Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5, e15734 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article
Google Scholar
Bruelheide, H., Jiménez-Alfaro, B., Jandt, U. & Sabatini, F. M. Deriving site-specific species pools from large databases. Ecography 43, 1215–1228 (2020).Article
Google Scholar
Dengler, J. et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 47, 72–86 (2020).Article
Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).Bruelheide, H. et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article
Google Scholar
Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article
Google Scholar
Ricklefs, R. E. Community diversity—relative roles of local and regional processes. Science 235, 167–171 (1987).ADS
CAS
PubMed
Article
Google Scholar
Crawley, M. J. & Harral, J. E. Scale dependence in plant biodiversity. Science 291, 864–868 (2001).ADS
CAS
PubMed
Article
Google Scholar
Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).PubMed
PubMed Central
Article
Google Scholar
Jiménez-Alfaro, B. et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483–490 (2018).PubMed
Article
Google Scholar
Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S. & Blasi, C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15, 147–157 (2014).Article
Google Scholar
Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed
Article
Google Scholar
Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 211, 404–410 (2016).Article
Google Scholar
Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).Article
Google Scholar
Biurrun, I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 32, e13050 (2021).Article
Google Scholar
Da, S. S. et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641–652 (2018).Article
Google Scholar
Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H. & Seppelt, R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 41, 261–273 (2014).Article
Google Scholar
Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed
Article
Google Scholar
Muñoz Mazón, M. et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 32, e13032 (2021).Article
Google Scholar
Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article
Google Scholar
Večeřa, M. et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 (2019).Article
Google Scholar
Wüest, R. O. et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 47, 1–12 (2019).Article
Google Scholar
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article
Google Scholar
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Belitz, K. & Stackelberg, P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 139, 105006 (2021).Article
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS
CAS
PubMed
Article
Google Scholar
Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).
Google Scholar
Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231 (2021).Article
Google Scholar
Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article
Google Scholar
Chytrý, M. et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87, 217–278 (2015).
Google Scholar
Whitmore, T. C., Peralta, R. & Brown, K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1, 375–378 (1985).Article
Google Scholar
Chytrý, M. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 23, 605–616 (2012).Article
Google Scholar
Duivenvoorden, J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 3, 685–715 (1994).Article
Google Scholar
Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).Mendieta‐Leiva, G. et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31, 518–528 (2020).Article
Google Scholar
Spicer, M. E., Mellor, H. & Carson, W. P. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 101, e02974 (2020).PubMed
Article
Google Scholar
Royo, A. A. & Carson, W. P. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145, 66–75 (2005).ADS
PubMed
Article
Google Scholar
Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).PubMed
PubMed Central
Article
Google Scholar
Dwomoh, F. K. & Wimberly, M. C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 32, 1849–1865 (2017).Article
Google Scholar
Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002).ADS
CAS
PubMed
Article
Google Scholar
Cao, K. et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B 288, 20203045 (2021).PubMed
PubMed Central
Article
Google Scholar
Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).PubMed
PubMed Central
Article
Google Scholar
Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).PubMed
PubMed Central
Article
Google Scholar
Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist 133, 240–256 (1989).Article
Google Scholar
Andermann, T., Antonelli, A., Barrett, R. L. & Silvestro, D. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 13, 839407 (2022).PubMed
PubMed Central
Article
Google Scholar
Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 114, 10695–10700 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
Cayuela, L. et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article
Google Scholar
Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS
Article
Google Scholar
Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS
Article
Google Scholar
Dengler, J. et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 22, 582–597 (2011).Article
Google Scholar
Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).Article
Google Scholar
Chytrý, M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 4, 290 (2012).Article
Google Scholar
Schmidt, M. et al. The West African Vegetation Database. Biodiv. Ecol. 4, 105–110 (2012).Article
Google Scholar
Muche, G., Schmiedel, U. & Jürgens, N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 4, 111–123 (2012).Article
Google Scholar
Revermann, R. et al. Vegetation database of the Okavango Basin. Phytocoenologia 46, 103–104 (2016).Article
Google Scholar
N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 433, 325–331 (2019).Article
Google Scholar
Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).Kearsley, E. et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 4, 2269 (2013).ADS
PubMed
Article
CAS
Google Scholar
Djomo Nana, E. et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47, 758–764 (2015).Article
Google Scholar
Wana, D. & Beierkuhnlein, C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 27, 289–304 (2011).Article
Google Scholar
Finckh, M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 4, 297 (2012).Article
Google Scholar
Strohbach, B. & Kangombe, F. National Phytosociological Database of Namibia. Biodiver. Ecol. 4, 298–298 (2012).Article
Google Scholar
Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).Černý, T. et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 18, 5–22 (2015).Article
Google Scholar
Nowak, A. et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia 47, 395–400 (2017).Article
Google Scholar
Liu, H., Cui, H., Pott, R. & Speier, M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 11, 525–532 (2000).Article
Google Scholar
Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article
Google Scholar
Bruelheide, H. et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81, 25–41 (2011).Article
Google Scholar
Cheng, X.-L. et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 13, e0198517 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
Hatim, M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 4, 303 (2012).Article
Google Scholar
Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150275 (2016).Article
Google Scholar
Dolezal, J., Dvorsky, M. & Kopecky, M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Borchardt, P. & Schickhoff, U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 4, 309 (2012).Article
Google Scholar
Wagner, V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 20, 199–208 (2009).Article
Google Scholar
von Wehrden, H., Wesche, K. & Miehe, G. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).Article
Google Scholar
Chepinoga, V. V. Wetland Vegetation Database of Baikal Siberia (WETBS). Biodiver. Ecol. 4, 311 (2012).Article
Google Scholar
Korolyuk, A. et al. Database of Siberian Vegetation (DSV). Biodiver. Ecol. 4, 312–312 (2012).Article
Google Scholar
El-Sheikh, M. A. et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 24, 389–398 (2017).PubMed
Article
Google Scholar
Vanselow, K. A. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan). Phytocoenologia 46, 105 (2016).Article
Google Scholar
De Sanctis, M. & Attorre, F. Socotra Vegetation Database. Biodiver. Ecol. 4, 315 (2012).Article
Google Scholar
Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci. 17, 386–397 (2014).Wiser, S. K., Bellingham, P. J. & Burrows, L. E. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
Google Scholar
Whitfeld, T. J. S. et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46, 538–548 (2014).Article
Google Scholar
Dengler, J. & Rūsiņa, S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 4, 319–320 (2012).Article
Google Scholar
Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M. & Loidi, J. Vegetation-plot database of the University of the Basque Country (BIOVEG). Biodiver. Ecol. 4, 328 (2012).Article
Google Scholar
Vassilev, K., Stevanović, Z. D., Cušterevska, R., Bergmeier, E. & Apostolova, I. Balkan Dry Grasslands Database. Biodiver. Ecol. 4, 330–330 (2012).Article
Google Scholar
Marcenò, C. & Jiménez‐Alfaro, B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia 47, 95–105 (2017).
Google Scholar
Vassilev, K. et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia 46, 89–95 (2016).Article
Google Scholar
Landucci, F. et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia 45, 187–194 (2015).Article
Google Scholar
Peterka, T., Jiroušek, M., Hájek, M. & Jiménez‐Alfaro, B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia 45, 291–297 (2015).Article
Google Scholar
De Sanctis, M., Fanelli, G., Mullaj, A. & Attorre, F. Vegetation database of Albania. Phytocoenologia 47, 107–108 (2017).Article
Google Scholar
Willner, W., Berg, C. & Heiselmayer, P. Austrian Vegetation Database. Biodiver. Ecol. 4, 333 (2012).Article
Google Scholar
Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 4, 141–148 (2012).Article
Google Scholar
Wohlgemuth, T. Swiss Forest Vegetation Database. Biodiver. Ecol. 4, 340 (2012).Article
Google Scholar
Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75, 1–15 (2003).
Google Scholar
Jansen, F., Dengler, J. & Berg, C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 4, 149–160 (2012).Article
Google Scholar
Ewald, J., May, R. & Kleikamp, M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 4, 173–175 (2012).Article
Google Scholar
Jandt, U. & Bruelheide, H. German vegetation reference database (GVRD). Biodiver. Ecol. 4, 355–355 (2012).Article
Google Scholar
Garbolino, E., De Ruffray, P., Brisse, H. & Grandjouan, G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 4, 177–184 (2012).Article
Google Scholar
Dimopoulos, P. & Tsiripidis, I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiver. Ecol. 4, 388 (2012).Article
Google Scholar
Fotiadis, G., Tsiripidis, I., Bergmeier, E. & Dimopoulos, P. Hellenic Woodland Database. Biodiver. Ecol. 4, 389 (2012).Article
Google Scholar
Stančić, Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 4, 391 (2012).Article
Google Scholar
Lájer, K. et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 7, 197–201 (2008).
Google Scholar
Landucci, F. et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146, 756–763 (2012).Article
Google Scholar
Casella, L., Bianco, P. M., Angelini, P. & Morroni, E. Italian National Vegetation Database (BVN/ISPRA). Biodiver. Ecol. 4, 404 (2012).Article
Google Scholar
Agrillo, E. et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia 47, 221–229 (2017).Article
Google Scholar
Rūsiņa, S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 4, 409 (2012).Article
Google Scholar
Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).Kącki, Z. & Śliwiński, M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 81, 75–79 (2012).Article
Google Scholar
Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia 47, 389–393 (2017).Article
Google Scholar
Vassilev, K. et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia 48, 91–100 (2018).Article
Google Scholar
Aćić, S., Petrović, M., Dajić Stevanović, Z. & Šilc, U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 4, 418 (2012).Article
Google Scholar
Golub, V. et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 4, 419 (2012).Article
Google Scholar
Lysenko, T., Kalmykova, O. & Mitroshenkova, A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 4, 420–421 (2012).Article
Google Scholar
Prokhorov, V., Rogova, T. & Kozhevnikova, M. Vegetation database of Tatarstan. Phytocoenologia 47, 309–313 (2017).Article
Google Scholar
Šilc, U. Vegetation Database of Slovenia. Biodiver. Ecol. 4, 428 (2012).Article
Google Scholar
Šibík, J. Slovak Vegetation Database. Biodiver. Ecol. 4, 429 (2012).Article
Google Scholar
Kuzemko, A. Ukrainian Grasslands Database. Biodiver. Ecol. 4, 430 (2012).Article
Google Scholar
Cayuela, L. et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 4, 211–224 (2012).Article
Google Scholar
Wagner, V., Spribille, T., Abrahamczyk, S. & Bergmeier, E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 17, 129–141 (2014).Article
Google Scholar
Aubin, I., Gachet, S., Messier, C. & Bouchard, A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14, 259–271 (2007).Article
Google Scholar
Sieg, B., Drees, B. & Daniëls, F. J. A. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 57, 1–93 (2006).
Google Scholar
Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 4, 233–241 (2012).Article
Google Scholar
Peet, R. K. et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 4, 243–253 (2012).Article
Google Scholar
Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia 46, 221–229 (2016).Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45, 195–201 (2015).Article
Google Scholar
Vibrans, A. C., Sevgnani, L., Lingner, D. V., Gasper, A. L. & Sabbagh, S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira 30, 291–302 (2010).Article
Google Scholar
Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article
Google Scholar
Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere 5, 1–12 (2014).Aiba, S.-i & Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140, 139–157 (1999).Article
Google Scholar
Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 4, 428–444 (2011).Article
Google Scholar
Ayyappan, N. & Parthasarathy, N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv 8, 1533–1554 (1999).Article
Google Scholar
Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).Bunyavejchewin, S., Baker, P. J., LaFrankie, J. V. & Ashton, P. S. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 49, 89–106 (2001).
Google Scholar
Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).Article
Google Scholar
Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland) 9, 741 (2020).Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224 (2013).Article
Google Scholar
Chu, C. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS
PubMed
Google Scholar
Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).D’Amico, C. & Gautier, L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar). Candollea 55, 319–340 (2000).
Google Scholar
Davidar, P., Mohandass, D. & Vijayan, L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 12, 42–58 (2007).
Google Scholar
Davies, S. J. & Becker, P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 8, 542–569 (1996).
Google Scholar
Duivenvoorden, J. F. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 3, 685–715 (1994).Article
Google Scholar
Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).Galeano, G., Suárez, S. & Balslev, H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 7, 1563–1575 (1998).Article
Google Scholar
Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).Gastauer, M., Leyh, W. & Meira-Neto, J. A. A. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 3, e5425 (2015).Article
Google Scholar
Helmi, N., Kartawinata, K. & Samsoedin, I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13, 33–44 (2009).
Google Scholar
Hernández, L., Dezzeo, N., Sanoja, E., Salazar, L. & Castellanos, H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical 60, 11–33 (2012).
Google Scholar
Ho, B. C. et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 71, 41–144 (2019).Article
Google Scholar
Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).Kartawinata, K., Samsoedin, I., Heriyanto, M. & Afriastini, J. J. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12, 145 (2013).Article
Google Scholar
Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug-2 (CIFOR, 1994).KuoJung, C., WeiChun, C., KeiMei, C. & ChangFu, H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 25, 29–40 (2010).
Google Scholar
Lan, G., Zhu, H. & Cao, M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17, 432–439 (2012).CAS
Article
Google Scholar
Lee, H. S. et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 14, 379–400 (2002).
Google Scholar
Linares-Palomino, R. et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 201, 87–99 (2009).Article
Google Scholar
Lubini, A. & Mandango, A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire). Bull. Jard. Bot. Natl Belg. 51, 231 (1981).Article
Google Scholar
Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index 20 (1998).Mansur, M. & Kartawinata, K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia 16, 77 (2017).Article
Google Scholar
Mikoláš, M. et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B 288, 20211631 (2021).PubMed
PubMed Central
Article
Google Scholar
Mohandass, D. & Davidar, P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 50, 219–229 (2009).
Google Scholar
Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021).Ngo, K. M., Davies, S., Nik, H., Faizu, N. & Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 9, 397–407 (2016).Article
Google Scholar
Parthasarathy, N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8, 1365–1381 (1999).Article
Google Scholar
Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).Pascal, J. P. & Pelissier, R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12, 191–214 (1996).Article
Google Scholar
Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).Article
Google Scholar
Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 71, 237 (1983).Article
Google Scholar
Ramesh, B. R. et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91, 3118 (2010).Article
Google Scholar
Razak, S. A. & Haron, N. W. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 47, 2143–2150 (2015).
Google Scholar
Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).Sarah, A. R., Nuradnilaila, H., Haron, N. W. & Azani, M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana 44, 491–496 (2015).Article
Google Scholar
Schrader, J., Moeljono, S., Tambing, J., Sattler, C. & Kreft, H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 8, e55275 (2020).Article
Google Scholar
Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J. J. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 3, 59–66 (2010).Article
Google Scholar
Sukumar, R. et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 62, 608–616 (1992).
Google Scholar
van Andel, T. R. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 167, 293–317 (2003).Article
Google Scholar
Webb, E. L. & Fa’aumu, S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 144, 257–274 (1999).Article
Google Scholar
Zimmerman, J. K. et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 82, 911 (1994).Article
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Article
Google Scholar
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed
PubMed Central
Article
Google Scholar
Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS
CAS
PubMed
Article
Google Scholar
Schultz, J. The Ecozones of the World (Springer, 2005).Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article
Google Scholar
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS
PubMed
Article
Google Scholar
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).Zhou, S. et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 18, 742–751 (2017).Article
Google Scholar
Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35, 211–226 (2011).Article
Google Scholar
Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest cover www.wri.org/forest-restoration-atlas (2011).Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article
Google Scholar
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article
Google Scholar
Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 8, 204–218 (2016).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R package https://CRAN.R-project.org/package=rnaturalearth (2017).Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. https://doi.org/10.25829/idiv.3506-p4c0mo (2022).Sabatini, F. M. fmsabatini/GlobalLocal_PlantRichness: NatComms R3 v.3. Zenodo https://doi.org/10.5281/zenodo.6659837 (2022). More