More stories

  • in

    Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds

    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Caro, T. & Koneru, M. Towards an ecology of protective coloration. Biol. Rev. 96, 611–641 (2021).PubMed 
    Article 

    Google Scholar 
    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. Ser. B 340, 215–225 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).Article 

    Google Scholar 
    Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lind, O., Mitkus, M., Olsson, P. & Kelber, A. Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. Lond. Ser. B 281, 20132209 (2014).
    Google Scholar 
    Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, 2414 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, M. & Cuthill, I. C. Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57, 501–507 (2007).Article 

    Google Scholar 
    Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. Ser. B 270, 61–67 (2003).Article 

    Google Scholar 
    Eaton, M. D. & Lanyon, S. M. The ubiquity of avian ultraviolet plumage reflectance. Proc. R. Soc. Lond. Ser. B 270, 1721–1726 (2003).Article 

    Google Scholar 
    Gomez, D. & Théry, M. Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community. Ecol. Lett. 7, 279–284 (2004).Article 

    Google Scholar 
    Mullen, P. & Pohland, G. Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 59–68 (2008).Article 

    Google Scholar 
    Burns, K. J. & Shultz, A. J. Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. Auk 129, 211–221 (2012).Article 

    Google Scholar 
    Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K. & Hastad, O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc. R. Soc. Lond. Ser. B 279, 1269–1276 (2012).
    Google Scholar 
    Bleiweiss, R. Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolut. Biol. 41, 404–424 (2014).Article 

    Google Scholar 
    Lind, O. & Delhey, K. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. J. Evol. Biol. 28, 715–722 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. T. D. & Cuthill, I. C. Ultraviolet vision in birds: what is its function? Vis. Res 34, 1471–1478 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. J. Avian Biol. 51, e02222 (2020).Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C. & Ligon, R. A. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Commun. 10, 1602 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).Article 

    Google Scholar 
    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 15, 555–560 (2018).Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).Article 

    Google Scholar 
    Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).Article 

    Google Scholar 
    Aljabar, P., Heckemann, R. A., Hammers, A., Hajnal, J. V. & Rueckert, D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14, 723–737 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).ADS 
    Article 

    Google Scholar 
    Kumar, Y. H. S., Manohar, N. & Chethan, H. K. Animal classification system: a block based approach. Procedia Computer Sci. 45, 336–343 (2015).Article 

    Google Scholar 
    Unger, J., Merhof, D. & Renner, S. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 16, 248 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohler, R. A segmentation system based on thresholding. Computer Graph. Image Process. 15, 319–338 (1981).Article 

    Google Scholar 
    Adams, R. & Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 18, 641–647 (1994).Article 

    Google Scholar 
    Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boykov, Y. Y. & Jolly, M. P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. in Proceedings Eighth IEEE International Conference on Computer Vision (2001).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 1802, 02611 (2018).
    Google Scholar 
    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 1606, 00915 (2017).
    Google Scholar 
    Chen, L. C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 1706, 05587 (2017).
    Google Scholar 
    Everingham, M. et al. The PASCAL Visual Object Classes challenge—a retrospective. Int. J. Computer Vis. 111, 98–136 (2015).Article 

    Google Scholar 
    Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Advances In Neural Information Processing Systems (2012).He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Szegedy, C. et al. Going deeper with convolutions. arXiv 1409, 4842 (2014).ADS 

    Google Scholar 
    Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. arXiv 1603, 06937 (2016).
    Google Scholar 
    Wei, S. E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose machines. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2015).Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).PubMed 
    Article 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    Article 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a Neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Philos. Soc. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    Passarotto, A., Rodríguez‐Caballero, E., Cruz-Miralles, Á., Avilés Jesús, M. & Sheard, C. Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galván, I., Rodríguez-Martínez, S., Carrascal, L. M. & Portugal, S. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. 22, 726–736 (2019).PubMed 
    Article 

    Google Scholar 
    Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl Acad. Sci. USA 102, 6391–6394 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lind, O., Henze, M. J., Kelber, A. & Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. Ser. B 372, 20160338 (2017).Article 
    CAS 

    Google Scholar 
    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. arXiv 01105, 2017 (1612).
    Google Scholar 
    Zoph, B. et al. Rethinking pre-training and self-training. arXiv 2006, 06882 (2020).
    Google Scholar 
    Chang, Y. L. & Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 3, 868–872 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10, 1454–1466 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. Learning visual features from large weakly supervised data. arXiv 1511, 02251 (2015).
    Google Scholar 
    Hestness, J. et al. Deep learning scaling is predictable, empirically. arXiv 1712, 00409 (2017).
    Google Scholar 
    Hudson, L. N. et al. Inselect: automating the digitization of natural history collections. PLoS ONE 10, e0143402 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. Semantic segmentation of herbarium specimens using deep learning techniques. in Computational Science and Technology (2020).Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding. arXiv 01685, 2016 (1604).
    Google Scholar 
    Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009).Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose estimation: new benchmark and state of the art analysis. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014).Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2000).
    Google Scholar 
    Ruder, S. An overview of gradient descent optimization algorithms. arXiv 1609, 04747 (2016).
    Google Scholar 
    Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimisation. arXiv 1412, 6980 (2014).ADS 

    Google Scholar 
    Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. arXiv 1608, 03983 (2016).
    Google Scholar 
    Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 1603, 04467 (2016).
    Google Scholar 
    He, Y. et al. Code for: Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. https://doi.org/10.5281/zenodo.6916988 (2022).Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207, 0580 (2012).
    Google Scholar 
    van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, J. S. Digital image smoothing and the signam filter. Computer Vis., Graph., Image Process. 24, 255–269 (1983).Article 

    Google Scholar 
    Haralick, R. M., Sternberg, S. R. & Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979).Article 

    Google Scholar 
    Sezgin, M. & Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004).ADS 
    Article 

    Google Scholar 
    Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Computer Vis. 1, 321–331 (1988).MATH 
    Article 

    Google Scholar 
    Coffin, D. DCRAW V. 9.27. https://www.cybercom.net/~dcoffin/dcraw/ (2016).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Y. PhenoLearn v.1.0.1. https://doi.org/10.5281/zenodo.6950322 (2022).Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evolution 10, 1097–1107 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol. Biol. 11, 313 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. Ser. B 281, 20140298 (2014).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Distribution of SOCD along different offshore distances in China's fresh-water lake-Chaohu under different habitats

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8 (2013).Article 

    Google Scholar 
    Koehler, A. K., Sottocornola, M. & Kiely, G. How strong is the current carbon sequestration of an Atlantic blanket bog?. Glob. Change Biol. 17, 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x (2015).ADS 
    Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1–12. https://doi.org/10.1029/2002GB001917 (2003).CAS 
    Article 

    Google Scholar 
    Dong, H. Y., Qian, L. W., Yan, J. F. & Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 192, 585. https://doi.org/10.1007/s10661-020-08547-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zaher, H., Sabir, M., Benjelloun, H. & Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manage. 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friborg, T. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30, 2129. https://doi.org/10.1029/2003GL017797 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Dayathilake, D., Lokupitiya, E. & Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands. https://doi.org/10.1007/s13157-021-01424-7 (2021).Article 

    Google Scholar 
    Li, X. W. et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 10, 54–60. https://doi.org/10.1016/j.ecoser.2014.09.004 (2014).Article 

    Google Scholar 
    Liu, K. et al. Diversity of vascular plant and classification system of vegetation in wetlands of Anhui Province. Acta Ecol. Sin. 34, 5434–5444. https://doi.org/10.5846/stxb201301160109 (2014).Article 

    Google Scholar 
    Liu, H., Zheng, L., Wu, J. & Liao, Y. H. Past and future ecosystem service trade-offs in Poyang Lake Basin under different land use policy scenarios. Arab. J. Geosci. 13, 46. https://doi.org/10.1007/s12517-019-5004-x (2020).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023 (2016).Article 

    Google Scholar 
    Yang, X., Liu, S., Jia, C., Liu, Y. & Yu, C. C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540 (2021).Article 

    Google Scholar 
    Ghosh, S. & Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 13, 191–203. https://doi.org/10.1016/j.rsase.2018.10.014 (2019).Article 

    Google Scholar 
    Means, M. M., Ahn, C., Korol, A. R. & Williams, L. D. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland. J. Environ. Manag. 165, 133–139. https://doi.org/10.1016/j.jenvman.2015.09.016 (2016).Article 

    Google Scholar 
    Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W. & Needelman, B. A. Carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 45, 743–750. https://doi.org/10.2134/jeq2015.04.0186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abegaz, A., Winowiecki, L. A., Vågen, T., Langan, S. & Smith, J. U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 34, 190–208. https://doi.org/10.1016/j.agee.2015.11.019 (2016).CAS 
    Article 

    Google Scholar 
    Xie, E., Zhang, Y., Huang, B., Zhao, Y. & Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 205, 104763. https://doi.org/10.1016/j.still.2020.104763 (2021).Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sun, K. K., Chen, X., Dong, X. H. & Yang, X. D. Spatiotemporal patterns of carbon sequestration in a large shallow lake, Lake Chaohu: Evidence from multiple-core records. Limnologica 81, 125748. https://doi.org/10.1016/j.limno.2020.125748 (2020).CAS 
    Article 

    Google Scholar 
    Chen, X., Yang, X. D., Dong, X. H. & Liu, E. F. Environmental changes in Lake Chaohu (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica. 43, 10–17. https://doi.org/10.1016/j.limno.2012.03.002 (2013).CAS 
    Article 

    Google Scholar 
    Yu, J. H. et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J. Lake Sci. 33, 1467–1477. https://doi.org/10.18307/2021.0514 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, M. & Kong, F. X. The process, spatial and temporal distrbition and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 27, 791–798. https://doi.org/10.18307/2015.0505 (2015).Article 

    Google Scholar 
    Teng, Z., Cao, X. Q., Sun, M. Y., Li, P. X. & Xu, X. N. Effect of different ecological restoration patterns on soil labile organic carbon and carbon pool management index of lakeside wetland of Lake Chaohu. Ecol. Environ. Sci. 28, 752–760. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2019).Article 

    Google Scholar 
    Wang, J. J. et al. Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest. For. Syst. 28, e018. https://doi.org/10.5424/fs/2019283-15404 (2019).Article 

    Google Scholar 
    Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599. https://doi.org/10.1111/J.1365-2486.2008.01591.X (2008).ADS 
    Article 

    Google Scholar 
    Li, J. et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica 40, 8928–8935. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2020).Article 

    Google Scholar 
    Ma, W. W. et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl. Ecol. 29, 3900–3906. https://doi.org/10.13287/j.1001-9332.201812.003 (2018).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, L. et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress. Chin. J. Appl. Ecol. 24, 2040–2048. https://doi.org/10.1038/ngeo1123 (2013).CAS 
    Article 

    Google Scholar 
    Liao, X. J. et al. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetl. Sci. 11, 192–197. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    Kong, F. L., Min, X. I., Yue, L. I., Li-Hua, X. U. & Feng, X. M. Distribution and storage of DOC in a typical annular wetland of Sanjiang Plain. Bull. Soil Water Conserv. 33, 176–179. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    He, L. P., Meng, G. T., Li, G. X., Li, P. R. & Chai, Y. Soil organic carbon and its distribution characteristics in the soil profile under different vegetation recovery modes in toutang small watershed of Jinsha river. Resour. Environ. Yangtze Basin 25, 476–485. https://doi.org/10.13248/j.cnki.wetlandsci.2013.02.003 (2016).Article 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323. https://doi.org/10.1016/j.ecoleng.2008.09.005 (2008).Article 

    Google Scholar 
    Dong, J. et al. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 806, 150629. https://doi.org/10.1016/j.scitotenv.2021.150629 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, S., Adhikari, K., Wang, Q., Jin, X. & Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi.org/10.1016/j.ecolind.2017.08.046 (2018).CAS 
    Article 

    Google Scholar 
    Zhao, Q. et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 20, 537–547. https://doi.org/10.1016/j.ecohyd.2019.10.008 (2020).Article 

    Google Scholar 
    Weishampel, P., Kolka, R. & King, J. Y. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. For. Ecol. Manag. 257, 747–754. https://doi.org/10.1016/j.foreco.2008.10.008 (2009).Article 

    Google Scholar 
    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X. & Zhao, Y. C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    Wu, Y. et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sinica. 40, 5761–5770. https://doi.org/10.5846/stxb201908161713 (2020).Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Multi-queen breeding is associated with the origin of inquiline social parasitism in ants

    Hölldobler, B. & Wilson, E. O. The number of queens: An important trait in ant evolution. Naturwissenschaften 64, 8–15 (1977).Article 
    ADS 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. Major Transitions in Evolution (Oxford University Press, 1995).
    Google Scholar 
    Keller, L. Queen Number and Sociality in Insects (Oxford Science Publications, 1994).
    Google Scholar 
    Keller, L. Levels of Selection in Evolution (Princeton University Press, 1999).
    Google Scholar 
    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3191–3207 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).Article 

    Google Scholar 
    Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134, 111–121 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Belknap Press of Harvard University Press, 1971).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Giraud, T., Blatrix, R., Poteaux, C., Solignac, M. & Jaisson, P. High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behav. Ecol. Sociobiol. 49, 128–134 (2001).Article 

    Google Scholar 
    Schmid-Hempel, P. & Crozier, R. H. Ployandry versus polygyny versus parasites. Philos. Trans. R. Soc. B Biol. Sci. 354, 507–515 (1999).Article 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W. W. Norton & Company, 2009).
    Google Scholar 
    Trunzer, B., Heinze, J. & Hölldobler, B. Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Soc. 45, 267–276 (1998).Article 

    Google Scholar 
    Rüppell, O. & Heinze, J. Alternative reproductive tactics in females: The case of size polymorphism in winged ant queens. Insectes Soc. 46, 6–17 (1999).Article 

    Google Scholar 
    Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. U.S.A. 105, 5150–5153 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Pedersen, J. S. & Boomsma, J. J. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12, 903–917 (1999).Article 

    Google Scholar 
    Rüppell, O., Strätz, M., Baier, B. & Heinze, J. Mitochondrial markers in the ant Leptothorax rugutulus reveal the population genetic consequences of philopatry at different hierarchial levels. Mol. Ecol. 12, 795–801 (2003).PubMed 
    Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav. Ecol. Sociobiol. 50, 189–197 (2001).Article 

    Google Scholar 
    Pamilo, P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70, 472–480 (1993).Article 

    Google Scholar 
    Qian, Z. Q. et al. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20, 3681–3691 (2011).CAS 
    PubMed 

    Google Scholar 
    Keller, L. & Reeve, H. K. Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–102 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10, 137–147 (1982).Article 

    Google Scholar 
    Rissing, S. W., Pollock, G. B., Higgins, M. R., Hagen, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).Article 
    ADS 

    Google Scholar 
    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Intracolonial patterns of reproduction in the queen-size dimorphic ant Leptothorax rugatulus. Behav. Ecol. 13, 239–247 (2002).Article 

    Google Scholar 
    Buschinger, A. Sympatric speciation and radiative evolution of socially parasitic ants—Heretic hypotheses and their factual background. Z. für Zool. Syst. und Evol. 28, 241–260 (1990).Article 

    Google Scholar 
    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43, 157–178 (1991).Article 

    Google Scholar 
    Rabeling, C. Social parasitism. In Encyclopedia of Social Insects (ed. Starr, C.) 838–858. https://doi.org/10.1007/978-3-319-90306-4_175-1 (Springer, 2020).Chapter 

    Google Scholar 
    Huang, M. H. & Dornhaus, A. A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecol. Entomol. 33, 589–596 (2008).Article 

    Google Scholar 
    Ward, P. S. A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants. Syst. Entomol. 21, 253–263 (1996).Article 

    Google Scholar 
    Jansen, G., Savolainen, R. & Vepsäläinen, K. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304 (2010).PubMed 
    Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol. Ecol. 24, 2463–2476 (2015).PubMed 
    Article 

    Google Scholar 
    Nettel-Hernanz, A., Lachaud, J. P., Fresneau, D., López-Muñoz, R. A. & Poteaux, C. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org. Divers. Evol. 15, 543–553 (2015).Article 

    Google Scholar 
    Rabeling, C., Schultz, T. R., Pierce, N. E. & Bacci, M. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry. Curr. Biol. 24, 2047–2052 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Natl. Acad. Sci. U.S.A. 100, 7169–7174 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumner, S., Hughes, W. O. H. & Boomsma, J. J. Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite. Behav. Ecol. Sociobiol. 54, 256–263 (2003).Article 

    Google Scholar 
    Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).Article 

    Google Scholar 
    Fischer, G. et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr. Biol. 30, 3639-3646.e4 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, J. D. & Rissing, S. W. Molecular evidence for the origin of workerless social parasites in the ant genus Pogonomyrmex. Evolution 56, 2017–2028 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoemaker, D. D. W., Ahrens, M. E. & Ross, K. G. Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mtDNA sequences. Mol. Phylogenet. Evol. 38, 200–215 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier, D. et al. Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS ONE 11, e0156440 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43, 67–72 (1998).Article 

    Google Scholar 
    Starks, P. T., Watson, R. E., Dipaola, M. J. & Dipaola, C. P. The effect of queen number on nestmate discrimination in the facultatively polygynous ant Pseudomyrmex pallidus (Hymenoptera: Formicidae). Ethology 104, 573–584 (1998).Article 

    Google Scholar 
    Hora, R. R. et al. Facultative polygyny in Ectatomma tuberculatum (Formicidae, Ectatomminae). Insectes Soc. 52, 194–200 (2005).Article 

    Google Scholar 
    Dahan, R. A., Grove, N. K., Bollazzi, M., Gerstner, B. P. & Rabeling, C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 76, 7 (2022).Article 

    Google Scholar 
    Buschinger, A. Evolution of social parasitism in ants. Trends Ecol. Evol. 1, 155–160 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. & Reeve, H. K. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704 (1994).PubMed 
    Article 

    Google Scholar 
    Frumhoff, P. C. & Ward, P. S. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139, 559–590 (1992).Article 

    Google Scholar 
    Rissing, S. W. & Pollock, G. B. Pleometrosis and polygyny in ants. In Interindividual Behavioral Variability in Social Insects (ed. Jeanne, R. L.) 179–222 (Westview Press, 1988).
    Google Scholar 
    Keller, L. & Passera, L. Physiologie des sexués femelles de fourmis (Hymenoptera: Formicidae) en relation avec le mode the fondation. Actes des Colloq. Insectes Sociaux 5, 63–68 (1989).
    Google Scholar 
    Foitzik, S. & Heinze, J. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9, 367–375 (1998).Article 

    Google Scholar 
    Schär, S. & Nash, D. R. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies. J. Evol. Biol. 27, 2396–2407 (2014).PubMed 
    Article 

    Google Scholar 
    Gallardo, A. Notes systématique et éthologiques sur les fourmis attines de la République Argentine. An. del Mus Nac. Hist. Nat. Buenos Aires 28, 317–344 (1916).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Ridley, M. The Explanation of Organic Diversity: The Comparative Methods and Adaptations for Mating (Oxford Science Publications, 1983).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2021).Wolf, J. I. & Seppä, P. Queen size dimorphism in social insects. Insectes Soc. 63, 25–38 (2015).Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insectes Soc. 63, 79–86 (2016).Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & Rabeling, C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 921, 23–48 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabeling, C. et al. Acromyrmex fowleri: A new inquiline social parasite species of leaf-cutting ants from South America, with a discussion of social parasite biogeography in the Neotropical region. Insectes Soc. 66, 435–451 (2019).Article 

    Google Scholar 
    Grüter, C., Jongepier, E. & Foitzik, S. Insect societies fight back: The evolution of defensive traits against social parasites. Philos. Trans. R. Soc. B Biol. Sci. 373, 1. https://doi.org/10.1098/rstb.2017.0200 (2018).Article 

    Google Scholar 
    Davies, N. B., Bourke, A. F. G., De, L. & Brooke, M. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herbers, J. M. & Foitzik, S. The ecology of slavemaking ants and their hosts in north temperate forests. Ecology 83, 148–163 (2002).Article 

    Google Scholar 
    Foitzik, S. & Herbers, J. M. Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55, 316–323 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 31, 316–334 (1984).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Complex determination of queen body size in the queen size dimorphic ant Leptothorax rugatulus (Formicidae: Hymenoptera). Heredity 87, 33–40 (2001).PubMed 
    Article 

    Google Scholar 
    Nonacs, P. & Tobin, J. E. Selfish larvae: Development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46, 1605–1620 (1992).PubMed 
    Article 

    Google Scholar 
    Wolf, J. I. & Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav. Ecol. Sociobiol. 70, 1267–1276 (2016).Article 

    Google Scholar 
    Elmes, G. W. Miniature queens of the ant Myrmica rubra L. (Hymenoptera, Formicidae). Entomologist 106, 133–136 (1973).
    Google Scholar 
    Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J. & Fresneau, D. A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa 52, 47–52 (2008).
    Google Scholar 
    Seifert, B. Taxonomic description of Myrmica microrubra n. sp.—A social parasitic ant so far known as the microgyne of Myrmica rubra (L.). Abhandlungen Berichte des Nat. Görlitz 67, 9–12 (1993).
    Google Scholar 
    Rabeling, C. & Bacci, M. A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst. Entomol. 35, 379–392 (2010).Article 

    Google Scholar 
    Trible, W. & Kronauer, D. J. C. Caste development and evolution in ants: It’s all about size. J. Exp. Biol. 220, 53–62 (2017).PubMed 
    Article 

    Google Scholar 
    Aron, S., Passera, L. & Keller, L. Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene. Insectes Soc. 51, 395–399 (2004).Article 

    Google Scholar 
    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (a review). Proc. Natl. Acad. Sci. 83, 1388–1392 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Schultz, T. R., Bekkevold, D. & Boomsma, J. J. Acromyrmex insinuator new species: An incipient social parasite of fungus-growing ants. Insectes Soc. 45, 457–471 (1998).Article 

    Google Scholar 
    Hakala, S. M., Seppä, P. & Helanterä, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms. Myrmecol. News 29, 35–55 (2019).
    Google Scholar 
    Leppänen, J., Vepsäläinen, K. & Savolainen, R. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecol. Evol. 1, 46–62 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & LaPolla, J. S. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). Zookeys 552, 49–65 (2016).Article 

    Google Scholar 
    Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M. & Agnarsson, I. Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R. Soc. Open Sci. https://doi.org/10.1098/rsos.150159 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).Article 

    Google Scholar 
    Heinze, J., Buschinger, A., Poettinger, T. & Suefuji, M. Multiple convergent origins of workerlessness and inbreeding in the socially parasitic ant genus Myrmoxenus. PLoS ONE 10, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    Suefuji, M. & Heinze, J. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei. Integr. Zool. 10, 182–185 (2015).PubMed 
    Article 

    Google Scholar 
    Talbot, M. The natural history of the workerless ant parasite, Formica talbotae. Psyche 83, 282–288 (1976).Article 

    Google Scholar 
    Wilson, E. O. The first workerless parasite in the ant genus Formica (Hymenoptera: Formicidae). Psyche 83, 277–281 (1976).Article 

    Google Scholar 
    Borowiec, M. L., Cover, S. P. & Rabeling, C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc. Natl. Acad. Sci. 118, e2026029118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    How to help a prairie: bring on the hungry bison

    RESEARCH HIGHLIGHT
    29 August 2022

    North America’s largest land mammal can double the diversity of native grasses through its grazing.

    Home on the range: the American bison’s taste for prairie grasses helps to boost diversity of native flora (pictured, stiff goldenrod, Solidago rigida). Credit: Jill Haukos/Kansas State University

    .readcube-buybox { display: none !important;}
    Grazing animals can shape the grasslands they dine on by preferentially eating certain species, allowing other species to find a foothold. To quantify this effect, Zak Ratajczak at Kansas State University in Manhattan and his colleagues analysed 29 years’ worth of data from plots in an unploughed native tallgrass prairie in eastern Kansas1. Since 1992, the plots have been managed in one of three ways: year-round grazing by bison (Bison bison); seasonal grazing by cattle; or no grazing at all.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-02332-4

    References

    Subjects

    Latest on:

    Subjects More

  • in

    Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).PubMed 
    Article 

    Google Scholar 
    Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).PubMed Central 
    Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed 
    Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).Article 

    Google Scholar 
    Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).
    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar 
    Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 

    Google Scholar 
    Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).Article 
    CAS 

    Google Scholar 
    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).PubMed 
    Article 

    Google Scholar 
    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).Article 

    Google Scholar 
    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).CAS 
    Article 

    Google Scholar 
    Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).Article 

    Google Scholar 
    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).PubMed 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).
    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).Article 

    Google Scholar 
    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).PubMed 
    Article 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).Article 
    CAS 

    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).Article 

    Google Scholar 
    Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).Article 

    Google Scholar 
    Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).Article 

    Google Scholar 
    Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).PubMed 
    Article 

    Google Scholar  More

  • in

    Swallows shrink as climate warms

    Gardner, J. L., Heinsohn, R. & Joseph, L. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Shipley, J. R., Twining, C. W., Taff, C. C., Vitousek, M. N. & Winkler, D. W. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01457-8 (2022).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Gardner, J. L. et al. Proc. R. Soc. B 286, 20192258 (2019).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Millien, V. et al. Ecol. Lett. 9, 853–869 (2006).Article 

    Google Scholar  More

  • in

    Age as a primary driver of the gut microbial composition and function in wild harbor seals

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 1–10 (2019).Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol. 8, 1–9 (2017).Article 

    Google Scholar 
    Smith, S. C., Chalker, A., Dewar, M. L. & Arnould, J. P. Y. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Janiak, M. C. et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome 9, (2021).Toro-Valdivieso, C., Toro, F., Stubbs, S., Castro-Nallar, E. & Blacklaws, B. Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii). MicrobiologyOpen 10, 1–19 (2021).Article 
    CAS 

    Google Scholar 
    Medeiros, A. W. et al. Characterization of the faecal bacterial community of wild young South American (Arctocephalus australis) and Subantarctic fur seals (Arctocephalus tropicalis). FEMS Microbiol. Ecol. 92, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Numberger, D., Herlemann, D. P. R., Jürgens, K., Dehnhardt, G. & Schulz-Vogt, H. Comparative analysis of the fecal bacterial community of five harbor seals (Phoca vitulina). MicrobiologyOpen 5, 782–792 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacheco-Sandoval, A. et al. The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PlosOne 14, (2019).Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: A comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Glad, T. et al. Ecological characterisation of the colonic microbiota in Arctic and sub-Arctic seals. Microbiol. Ecol. 60, 320–330 (2010).Article 
    CAS 

    Google Scholar 
    Delport, T. C., Power, M. L., Harcourt, R. G., Webster, K. N. & Tetu, S. G. Colony location and captivity influence the gut microbial community composition of the Australian sea lion (Neophoca cinerea). Appl. Environ. Microbiol. 82, 3440–3349 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stoffel, M. A. et al. Early sexual dimorphism in the developing gut microbiome of northern elephant seals. Mol. Ecol. 29, 2109–2122 (2020).PubMed 
    Article 

    Google Scholar 
    Tian, J., Du, J., Han, J., Song, X. & Lu, Z. Age-related differences in gut microbial community composition of captive spotted seals (Phoca largha). Mar. Mamm. Sci. 36, 1231–1240 (2020).Article 

    Google Scholar 
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bigg, M. A. Harbour seal: Phoca vitulina and P. largha. In Handbook of Marine Mammals Vol. 2 (eds Ridgeway, S. H. & Harrison, R. J.) 1–27 (Academic Press, 1981).
    Google Scholar 
    Parracho, H., McCartney, A. L. & Gibson, G. R. Probiotics and prebiotics in infant nutrition. Proc. Nutr. Society 66, 405–411 (2007).Article 

    Google Scholar 
    Marques, T. M. et al. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr. Opin. Biotechnol. 21, 149–156 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).Article 
    CAS 

    Google Scholar 
    Mitsuoka, T. Intestinal flora and aging. Nutr. Rev. 50, 438–446 (1992).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bowen, W., Oftedal, O. & Boness, D. Mass and energy transfer during lactation in a small phocid, the harbor seal (Phoca vitulina). Physiol. Zool. 65, 844–866 (1992).Article 

    Google Scholar 
    Bowen, W. D., Boness, D. J. & Iverson, S. J. Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Can. J. Zool. 77, 978–988 (1999).Article 

    Google Scholar 
    Jørgensen, C., Lydersen, C., Brix, O. & Kovacs, K. M. Diving development in nursing harbour seal pups. J. Exp. Biol. 204, 3993–4004 (2001).PubMed 
    Article 

    Google Scholar 
    Muelbert, M. M. C. & Bowen, W. D. Duration of lactation and postweaning changes in mass and body composition of harbour seal, Phoca vitulina, pups. Can. J. Zool. 71, 1405–1414 (1993).Article 

    Google Scholar 
    Kim, M., Cho, H. & Lee, W. Y. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. J. Microbiol. 58, 1018–1026 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kershaw, J. L. & Hall, A. J. Seasonal variation in harbour seal (Phoca vitulina) blubber cortisol—A novel indicator of physiological state?. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Madison, A. & Kiecolt-Glaser, J. K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 28, 105–110 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, P. M., Miller, D., Cooper, R. & Hammond, P. S. Changes in the distribution and activity of female harbour seals during the breeding season: implications for their lactation strategy and mating patterns. J. Anim. Ecol. 63, 24 (1994).Article 

    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013, 1–22 (2013).
    Google Scholar 
    Fernández-Martin, E. M., Heckel, G., Schramm, Y. & García-Aguilar, M. C. The timing of pupping and molting of the Pacific harbor seal, Phoca vitulina richardii, at Punta Banda Estuary, Baja California, Mexico. Cienc. Mar. 42, 195–208 (2016).Article 

    Google Scholar 
    Oates, S. C. Survival, movements, and diet of juvenile harbor seals along central California. [Master’s thesis, San Jose State University]. (2005). https://doi.org/10.31979/etd.ra96-xhge.Germain, L. R., Mccarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560 (2012).Article 
    CAS 

    Google Scholar 
    Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, (2019).Davis, T. A., Nguyen, H. V., Costa, D. P. & Reeds, P. J. Amino acid composition of pinniped milk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 110, 633–639 (1995).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sauvé, C. C., van de Walle, J., Hammill, M. O., Arnould, J. P. Y. & Beauplet, G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS ONE 9, (2014).Fernández Martín, E. M. Fenología de los nacimientos, estado de salud de las crías, y estructura genética poblacional de Phoca vitulina richardii en México [Doctoral thesis, Universidad Autónoma de Baja California, Mexico]. (2018).Gresse, R. et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 25, 851–873 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ni, Y. et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J. 15, 3207–3220 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 1–23 (2021).Article 
    CAS 

    Google Scholar 
    Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Disease 26, (2015).Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article 

    Google Scholar 
    van Parijs, S. M., Thompson, P. M., Tollit, D. J. & Mackay, A. Distribution and activity of male harbour seals during the mating season. Anim. Behav. 54, 35–43 (1997).Article 

    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 
    Article 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulva, J. Temporal variations in birth period and characteristics of newborn harbour seals. Rapports et procPs-verbaux, Reunions du Conseil International pour I’Exploration de la Mer 169, 405–408 (1975).
    Google Scholar 
    Bhute, S. S., Ghaskadbi, S. S. & Shouche, Y. S. Rare biosphere in human gut: A less explored component of human gut microbiota and its association with human health. In Mining of Microbial Wealth and MetaGenomics (eds Kalia, V. C. et al.) 133–142 (Springer Nature Singapore Ptd Ltd, 2017). https://doi.org/10.1007/978-981-10-5708-3.Chapter 

    Google Scholar 
    Brown, R. F. & Mate, B. R. Abundance, movements, and feeding habits of harbor seals, Phoca vitulina, at Netarts and Tillamook Bays, Oregon. Fishery Bull. 81, 291–301 (1983).
    Google Scholar 
    Higgins, R. Bacteria and fungi of marine mammals: A review. Can. Veterinary J. 41, 105–116 (2000).CAS 

    Google Scholar 
    Gilbert, M. J. et al. Campylobacter blaseri sp. nov., isolated from common seals (Phoca vitulina). Int. J. Syst. Evolut. Microbiol. 68, 1787–1794 (2018).Article 
    CAS 

    Google Scholar 
    Agnese, E. D. et al. Comparative microbial community analysis of fur seals and salmon aquaculture in Tasmania. Authorea. https://doi.org/10.22541/au.160253843.32636436/v1 (2020).Article 

    Google Scholar 
    Rivas, A. J., Lemos, M. L. & Osorio, C. R. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol. 4, 1–6 (2013).Article 

    Google Scholar 
    Fouz, B., Toranzo, A. E., Milan, M. & Amaro, C. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J. Appl. Microbiol. 88, 531–535 (2000).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hundenborn, J., Thurig, S., Kommerell, M., Haag, H. & Nolte, O. Severe Wound Infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Rep. Med. 2013, (2013).Lubinsky-Jinich, D., Schramm, Y. & Heckel, G. The Pacific Harbor Seal’s (Phoca vitulina richardii) breeding colonies in Mexico: Abundance and distribution. Aquat. Mamm. 43, 73–81 (2017).Article 

    Google Scholar 
    Arias-Del Razo, A. et al. Distribution of four pinnipeds (Zalophus californianus, Arctocephalus philippii townsendi, Phoca vitulina richardii, and Mirounga angustirostris) on Islands off the west coast of the Baja California Peninsula, Mexico. Aquat. Mamm. 43, 40–51 (2017).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108, 4516–4522 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robertson, K. M., Lauf, M. L. & Morin, P. A. Genetic sexing of pinnipeds: A real-time, single step qPCR technique. Conserv. Genet. Resour. 10, 213–218 (2018).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019). Accessed 3 June 2021.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, (2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4. https://cran.r-project.org/package=vegan (2019). Accessed 3 June 2021.Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. https://doi.org/10.1101/299537 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Salinas, H. & Ramirez-Delgado, D. ecolTest: Community Ecology Tests. (2021).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes-A 2019 update. Nucleic Acids Res. 48, D455–D463 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Using of geographic information systems (GIS) to determine the suitable site for collecting agricultural residues

    MaterialsStudy areaThe Sinbilawin town is located southeast of Dakahleia Governorate, Egypt. It is bounded to the east by the Timai El-Amded city, west by the Aga city, north by the Mansoura city and to the south by the Diarb Negm city. The Sinbilawin lies between 31° 27′ 38.07″ E longitude and 30° 53′ 1.55″ N latitude (Google Earth) (Fig. 1). The total area of Sinbilawin town is about 304.5 km2 with total cultivated area of Sinbilawin is about 64,362.28 Faddens5. The Sinbilawin town is characterized a flat land.Figure 1Map of the Sinbilawin city, 2015 (study area).Full size imageRice strawThe total area of rice crop in Egypt is 1,215,830 faddan and the production of rice is 4,817,964 tons. The average of productivity is 3.963 tons5. The total area of rice crop in Sinbilawin center is 34,078.12167 faddan and the production of rice straw is 148,376.1417 tons. The rice area map is shown in Fig. 2.Figure 2Rice area map.Full size imageDataGIS is a powerful tool which used for computerized mapping and spatial analysis. GIS is used in many applications such as geology, protection, natural resource management, risk management, urban planning, transportation, and various aspects of modeling in the environment. Also, it is using for decision making22. In this study GIS is used to select the best site to be suggested to collect the rice straw as shown in flowchart of Fig. 3.Figure 3Flowchart of rice straw collecting from Sinbilawin center.Full size imageSoftware programs

    a.

    Google Earth program
    Google Earth combines the power of Google Search with satellite imagery, maps, Terrain and 3D buildings to put the world’s geographic information at your fingertips. It displays satellite images of varying resolution of the Earth’s surface, allowing users to see things like cities and houses looking perpendicularly down or at an oblique angle, with perspective23.

    b.

    Image Processing and Analysis Software (ENVI) program
    It has been used to separate layers from the satellite image as layer of road, layer of urban, layer of canal and layer of sites to the rice crop planting. ENVI 5.6.2 Classic is the ideal software for the visualization, analysis and presentation of all types of digital imagery. ENVI Classic’s complete image-processing package includes advanced, yet easy-to-use, spectral tools, geometric correction, terrain analysis, radar analysis, raster and vector GIS capabilities, extensive support for images from a wide variety of sources, and much more24.

    c.

    GIS program
    ArcGIS Desktop 10.1 will be using in the present study. It is the newest version of a popular GIS software which produced by ESRI. ArcGIS Desktop is comprised of a set of integrated applications. All figure numbers were created using GIS software.

    Design a model for assembling rice strawArcGIS10.1 was selected in this study to design a model for selecting the suitable sites to collect rice straw amounts in Sinbilawin center. To achieve the former goal must be gotten the satellite images (landsat 8) for the province of Dakahleia and the Sinbilawin center. These images were called operation land imager (OLI). Thus, layers will be obtained from the satellite images such as water channels, drainages, urban areas, main and sub- roads, rice crop areas and sites. ENVI program has been used to separate layers and place it in a file which named (Shp. file) for easy insertion in ArcGIS10.1 program. In this present study, design a model will be done on the main layers which will be obtained from the satellite image as follows:

    Location and the administrative limits of Dakahleia Governorate and Sinbilawin center.

    The rice crop area and sites in Dakahleia governorate as the main layer.

    Layer of rice area and their sites in Sinbilawin center. Sinbilawin center was selected in the study because it is cultivated largest rice area in Dakahleia and Dakahleia biggest governorate cultivates rice.

    Layer of roads network in Sinbilawin center. The network of roads was included the main roads and submain to aggregation rice straw. Given the problems associated with transport cost, disposal, and issues that arise from inadequate agriculture crop residues management, the collect units become essential to be nearest of the network of road to facilitate the process of transportation and minimize cost.

    Layer of the urban locations in Sinbilawin center. Crop residues collection sites have an enormous impact on urban in general due to contamination and fires. This study proposes the collecting rice straw sites not be near of the urban, because it causes many health problems for the population.

    Layer of the canal locations in Sinbilawin center. Collecting rice straw sites must be nearest from the source of water as canal for safety, protect it from fire and important for any recycle operation.

    Layer of the drain locations in Sinbilawin center. Also, drain is important as the source of water but less than canal.

    Arc GIS 10.1 to select the suitable sites for assembling rice strawThree Scenarios were suggesting for completing the design of the modeling to select best sites for collecting rice straw. From the three scenarios wall be reached to the best collecting sites for rice straw in Sinbilawin center as follows:

    The first scenario: Modeling for Sinbilawin center
    In this case, modeling was running on the Sinbilawin center as the whole unit.

    The second scenario: Modeling for the village in Sinbilawin center.
    The Sinbilawin center consists of 97 villages and some other area surrounding. In this case, modeling was running on each village and each accessory in Sinbilawin center.

    The third scenario: Modeling for the best site in each village in Sinbilawin center.
    In this case, the modeling was running on each best site which located in each village (on the 97 sites in Sinbilawin center).

    MethodsTo achieve the former objective in this study wall be done as follows:

    Location and the administrative limits of Dakahleia Governorate and Sinbilawin center were uploaded as map by Google earth program.

    The rice crop area and sites in Dakahleia governorate. The data of area and sites to rice crop in Dakahleia governorate were collected from the Ministry of Agricultural—Central Administration of Economy and Statistics as numerical data for each center in Dakahleia governorate. Map for Dakahleia governorate was obtained via satellite image from the Remote Sensing Authority.

    Rice production (ton) = Cultivated area(fed)*Average production (4.354 ton/fed)5.

    Total rice straw (ton) = Rice production (ton) / 2.5.

    Satellite image layersAreas and sites of satellite layers for rice in Sinbilawin centerArea and sites of rice crop in Sinbilawin center as the database were obtained and collected Extraction layer from the Ministry of Agricultural. Central Administration of Economy and Statistics as numerical data for each village. Sinbilawin map as layer of molding was obtained via satellite image from the Remote Sensing Authority. It was used with ArcGIS 10.1 software to inference the sites and area of rice crop in the Sinbilawin center villages.Layer for the road network in Sinbilawin centerThe network of roads is very important factor and effective for collecting rice straw. The network roads map as the layer was extracted from satellite image via the Remote Sensing Authority. It was used with ArcGIS 10.1 software to inference the main and sub roads in the Sinbilawin center.Layer for the urban locations in Sinbilawin centerCrop residues collection sites have an enormous impact on urban general due to contamination, environmental pollution and fires, which are causing many health problems for the population. The urban map as the layer was extracted from satellite image via the Remote Sensing Authority. It was used with ArcGIS 10.1 software to appear all the urban sites in the Sinbilawin center.Layer for the water source in Sinbilawin centerRice straw collection sites must be nearest from the source of water as canal for safety and protect it from fire also water is very important for any recycle operation. The canal map as the layer was extracted from satellite image via the Remote Sensing Authority. It was used with ArcGIS 10.1 software to appear all source of water as canal in the Sinbilawin center.Layer for the drain locations in Sinbilawin centerThe drain is important as the source of water but less than canal. The drain map as the layer was extracted from satellite image via the Remote Sensing Authority. It was used with ArcGIS 10.1 software to appear all drain in the Sinbilawin center.ArcGIS 10.1 to select the suitable sites for collecting rice strawModeling was designed as shown in Fig. 4 to apply with the three scenarios.Figure 4Short form for modeling to select suitable sites to assembly rice straw.Full size imageFrom the three scenarios shall be reached to the best collecting sites for recycling rice straw in Sinbilawin center as follows:

    The first scenario was running modeling for Sinbilawin center.

    The second scenario was running modeling for the village in it.

    The third scenario was running modeling for the best site in each village in it.

    Different steps were running with modeling to select the best sites to assembly rice straw in Sinbilawin center: 1- Euclidean distance. 2- Reclassify (or changes). 3-Weighted overlay. Assuming common measurement scale and weights for each layer according to its importance as follows:—Roads 50%, Channels 40%, Urban 10% so that the total is 100%0.4- Select Layer by Location (Data Management). In this step, order of selecting layer sites was given through Arc tool box at ArcGIS10.1 for selecting sites through the Arc toolbox at ArcGIS10.1 software as follow: 1- Intersection with roads. 2- Intersection with canals water.Total cost of collecting rice strawTransportation for collecting crop residues is important factors because it affects the success or failure of crop residues utilization. GIS was used to determine suitable sites for collecting rice straw and converting it through given parameters as:

    Total length of road (km).

    Total weight of rice straw (ton).

    Speed of tractor in sub roads (30 km/h)

    Total time of transfer (h).

    All experimental protocols were approved by Benha University Research Committee and all methods used in this study was carried out according to the guidelines regulations of Benha University. This work is approved by the ethic committee at Benha University. More