Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa
Hawkes, C. V., Bull, J. J. & Lau, J. A. Symbiosis and stress: how plant microbiomes affect host evolution. Philos. T. R. Soc. B. 375, 20190590 (2020).CAS
Article
Google Scholar
Leopold, D. R. & Busby, P. E. Host Genotype and Colonist Arrival Order Jointly Govern Plant Microbiome Composition and Function. Curr. Biol. 30, 3260–3266 (2020).CAS
PubMed
Article
Google Scholar
Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).CAS
PubMed
Article
Google Scholar
Garcia, J. & Kao-Kniffin, J. Microbial Group Dynamics in Plant Rhizospheres and Their Implications on Nutrient Cycling. Front. Plant Sci. 9, 1516 (2018).Article
Google Scholar
Marschner P. Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling in Nutrient Cycling in Terrestrial Ecosystems (eds. Marschner, P. & Rengel, Z.) 159–183 (Springer, 2007).Vannier, N., Agler, M. & Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15, e1007740 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 6584 (2019).
Google Scholar
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed
Article
Google Scholar
Dessaux, Y., Grandclemént, C. & Faure, D. Engineering the Rhizosphere. Trends Plant Sci. 21, 266–278 (2016).CAS
PubMed
Article
Google Scholar
Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
Panke-Buisse, K., Poole, A., Goodrich, J., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).CAS
PubMed
Article
Google Scholar
van den Bergh, B. et al. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol. Mol. Biol. Rev. 82, e00008–e00018 (2018).PubMed
PubMed Central
Google Scholar
Garcia, J. & Kao-Kniffin, J. Can dynamic network modelling be used to identify adaptive microbiomes? Funct. Ecol. 34, 2065–2074 (2020).Article
Google Scholar
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS
PubMed
Article
Google Scholar
Wilson, D. & Wilson, E. Evolution “for the good of the group”. Am. Sci. 96, 380–389 (2008).Article
Google Scholar
de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).PubMed
Article
CAS
Google Scholar
Sachs, J., Mueller, U., Wilcox, T. & Bull, J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed
Article
Google Scholar
Harrington, K. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Rauch, J., Kondev, J. & Sanchez, A. Cooperators trade off ecological resilience and evolutionary stability in public goods games. J. R. Soc. Interface 14, 20160967 (2017).PubMed
PubMed Central
Article
Google Scholar
Sexton, D. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146 (2019).PubMed
PubMed Central
Article
Google Scholar
Turner, T. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere. microbiome plants ISME J. 7, 2248–2258 (2013).CAS
PubMed
Google Scholar
Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).CAS
Article
Google Scholar
George, E., Marschner, H. & Jakobsen, I. Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil. Crit. Rev. Biotechnol. 15, 257–270 (1995).Article
Google Scholar
Hodge, A. & Fitter Alastair, H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game. Plant Cell Environ. 36, 1911–1915 (2013).PubMed
Google Scholar
Delaux, P. M. et al. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 10, e1004487 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Anas, M. et al. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 53, 47 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Madhaiyan, M. et al. Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int. J. Syst. Evol. Microbiol. 65, 578–586 (2015).CAS
PubMed
Article
Google Scholar
Song, H. et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci. Rep. 9, 866 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).PubMed
PubMed Central
Article
Google Scholar
Kuntal, B. K., Chandrakar, P., Sadhu, S. & Mandhi, S. S. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 13, 442–454 (2019).PubMed
Article
Google Scholar
Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 25, 217–228 (2017).CAS
PubMed
Article
Google Scholar
Hu, Q. et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. NPJ Biofilms Microbiomes 6, 8 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Faust, K. et al. Cross-biome comparison of microbial association networks. Front. Microbiol. 6, 1200 (2015).PubMed
PubMed Central
Article
Google Scholar
Rengel, Z. & Marschner, P. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. N. Phytol. 168, 305–312 (2005).CAS
Article
Google Scholar
Marschner, P. The Role of Rhizosphere Microorganisms in Relation to P Uptake by Plants in The Ecophysiology of Plant-Phosphorus Interactions (eds. White, P. & Hammond, J.) 165–167 (Springer, 2008).Repert, D., Underwood, J., Smith, R. & Song, B. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station. J. Geophys. Res. Biogeosci. 119, 2328–2344 (2014).CAS
Article
Google Scholar
Rolletschek, H. et al. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol. 137, 1236–1249 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
Sanders, A. et al. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 59, 540–552 (2009).CAS
PubMed
Article
Google Scholar
Carter, A. M. & Tegeder, M. Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr. Biol. 26, 2044–2051 (2016).CAS
PubMed
Article
Google Scholar
Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. N. Phytol. 226, 583–594 (2020).CAS
Article
Google Scholar
Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).Article
Google Scholar
Henneron, L. et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. N. Phytol. 228, 1269–1282 (2020).CAS
Article
Google Scholar
Hobbie, E. A. & Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 196, 367–382 (2012).CAS
Article
Google Scholar
Zhou, S. et al. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique. Sci. Total Environ. 430, 93–100 (2012).CAS
PubMed
Article
Google Scholar
Fuertes-Mendizábal, T. et al. 15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. Front. Plant Sci. 9, 853 (2018).PubMed
PubMed Central
Article
Google Scholar
Yoneyama, T., Omata, T., Nakata, S. & Yazaki, J. Fractionation of Nitrogen Isotopes during the Uptake and Assimilation of Ammonia by Plants. Plant Cell Physiol. 32, 1211–1217 (1991).CAS
Google Scholar
Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356 (2013).PubMed
PubMed Central
Article
Google Scholar
Granada, C., Passaglia, L., de Souza, E. & Sperotto, R. Is Phosphate Solubilization the Forgotten Child of Plant Growth-Promoting Rhizobacteria? Front. Microbiol. 9, 2054 (2018).PubMed
PubMed Central
Article
Google Scholar
Compant, S., Duffy, B., Nowak, J., Clément, C. & Barka, E. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 71, 4951 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
Berges, J.A., & Mulholland, M.R. Enzymes and nitrogen cycling in Nitrogen in the marine environment (eds. Capone, D., Bronk, D., Mulholland, M., & Carpenter, E.) 1385–1444 (Elsevier 2008).DeAngelis, K. M., Lindow, S. E. & Firestone, M. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microb. Ecol. 66, 197–207 (2008).CAS
Article
Google Scholar
Evans, S., Martiny, J. & Allison, S. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 11, 176–185 (2017).PubMed
Article
Google Scholar
Ron, R., Fragman-Sapir, O. & Kadmon, R. (2018). Dispersal increases ecological selection by increasing effective community size. Proc. Natl Acad. Sci. USA. 115, 11280–11285 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Busby, P. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. & Schäfer, P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Front. Plant Sci. 9, 1205 (2018).PubMed
PubMed Central
Article
Google Scholar
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. National Center for Biotechnology Information Repository. https://www.ncbi.nlm.nih.gov/sra/PRJNA833111 (2022).Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).CAS
PubMed
Article
Google Scholar
Pollet, T. et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteria. FEMS Microbiol. Ecol. 94, fiy083 (2018).
Google Scholar
Durno, W. E. et al. Expanding the boundaries of local similarity analysis. BMC Genomics 14, S3 (2013).PubMed
PubMed Central
Article
Google Scholar
Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. https://doi.org/10.5281/zenodo.6800595 (2022). More
