More stories

  • in

    Swallows shrink as climate warms

    Gardner, J. L., Heinsohn, R. & Joseph, L. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Shipley, J. R., Twining, C. W., Taff, C. C., Vitousek, M. N. & Winkler, D. W. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01457-8 (2022).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Gardner, J. L. et al. Proc. R. Soc. B 286, 20192258 (2019).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Millien, V. et al. Ecol. Lett. 9, 853–869 (2006).Article 

    Google Scholar  More

  • in

    Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw

    Study sites, experimental design, and field samplingThe Tibetan alpine permafrost region, the largest area of permafrost in the middle and low latitudes of the Northern Hemisphere64, stores substantial soil C (15.3–46.2 Pg C within 3 m depth)65,66,67. With continuous climate warming, permafrost thaw has triggered the formation of widespread thermokarst landscapes across this permafrost area13,68. To explore the impacts of thermokarst formation and development on soil C dynamics, we collected topsoil samples (0–15 cm) from a thaw sequence in 2014 and from five additional sites spread across the region in 2020. The thermokarst landscape was characterized as thermo-erosion gullies (Supplementary Table 2). The elevation of these six sites is between 3515 and 4707 m. The mean annual temperature across this area ranges from −3.1 to 2.6 °C, and the average annual precipitation varies from 353 to 436 mm. The vegetation type across these sites is swamp meadow, with the dominant species being Kobresia tibetica, Kobresia royleana and Carex atrofuscoides. Although the dominant species did not change after permafrost collapse, the forb coverage increased along the thaw sequence and across the five additional thermokarst-impacted sites. The main soil type is Cryosols on the basis of the World Reference Base for Soil Resources69, with soil pH ranging from 5.6 to 7.3 (Supplementary Fig. 1e). The active layer thickness varies between 0.7 and 1.1 m across the six study sites and the underlying soil parent material is either siliciclastic sedimentary or unconsolidated sediments (Supplementary Table 2).To evaluate the dynamics of soil C fractions after permafrost collapse, we collected soil samples across the Tibetan alpine permafrost region based on the following two steps (Supplementary Fig. 5). In the first step, we established six collapsed plots (~15 × 10 m) along a thaw sequence (located in Shaliuhe close to Qinghai Lake, Qinghai Province, China), which had been collapsed for 1, 3, 7, 10, 13, and 16 years before the sampling year of 201413. The collapse time of each plot was estimated by dividing the distance between the collapsed plot and the gully head by the retreat rate (~8.0 m year−1; the rate of the head-wall retreat was determined by Google Earth satellite images and in situ monitoring)13. Then, we set up six paired control (non-collapsed) plots adjacent to these collapsed plots. To limit experimental costs, we selected three paired control and collapsed plots (collapsed for 1, 10, and 16 years, representing the early, middle, and late stages of collapse) to examine the responses of POC, MAOC and OC-Fe to permafrost collapse (Supplementary Fig. 5). Within each collapsed plot, we collected topsoil (0–15 cm) samples from all vegetated patches (Supplementary Fig. 6), and then evenly selected 10 vegetated patches for this study considering the heavy workload and high cost. In each selected vegetated patch, 5–8 soil cores were sampled and completely mixed as one replicate. Within each control plot, topsoil samples were randomly collected from five quadrats at the center and four corners of the plot. In each quadrat, 15–20 soil cores were sampled and mixed as one replicate. Thereby, ten replicates were acquired in each collapsed plot (n = 10), and five replicates were obtained in each control plot (n = 5). In total, we acquired 45 soil samples, including 30 samples from the three collapsed plots and 15 samples from the non-collapsed control for subsequent analysis.In the second step, to further verify the universality of collapse effects on SOC fractions, we collected topsoil (0–15 cm) samples from an additional five similar sites located near the towns of Ebo, Mole, Huashixia, and Huanghe across a 550 km permafrost transect in August 2020 (Fig. 1). Specifically, paired collapsed and control plots (15 × 10 m) were established at the end of a gully and in adjacent non-collapsed areas in each site (Supplementary Fig. 5). In the collapsed plot, we set five 5 × 3 m quadrats at the center and four corners of the plot, and then collected topsoil samples within all the vegetated patches in these quadrats. In each quadrat, all the collected soil cores (15–20 cores) were completely mixed as one replicate, and finally, five replicates were acquired in each collapsed plot (n = 5). Similarly, five replicates were obtained from the five quadrats in each control plot (n = 5). In total, we collected 50 topsoil samples across these five thermokarst-impacted sites. After transportation to the laboratory, all the soil samples were handpicked to remove surface vegetation, roots and gravels, and sieved (2 mm) for subsequent analysis.It should be noted that the space for time approach was only used for the permafrost thaw sequence, not for the other five sites over the regional scale. Across these five sites, we focused on the impact of permafrost collapse on POC, MAOC as well as OC-Fe by comparing soil C fractions inside and outside the gully in each site rather than among the study sites. Given the low coefficient of variation of parameters (i.e., edaphic variables and soil minerals) in the control plot of each site (Supplementary Table 3), the pristine soils in each site could also be regarded as homogeneous70, and the differences in parameters inside and outside the gully could be attributed to the effects of permafrost collapse. Along the permafrost thaw sequence, to verify whether the plots with different collapse times (1, 10, and 16 years) were comparable, we analyzed a series of parameters (i.e., vegetation biomass, edaphic variables, and soil minerals) for the three control plots which were located outside the gully but adjacent to three collapsed plots within the gully (Supplementary Fig. 5). By comparing aboveground biomass, belowground biomass, SOC, soil moisture, pH, bulk density, soil texture, and soil minerals (see below for details of the analytical method), we observed that the above parameters were not significantly different among the three control plots along the thaw sequence (all P  > 0.05; Supplementary Fig. 7). These comparisons demonstrated that the study area was homogeneous before permafrost thaw and thus it was reasonable to adopt the space for time approach along the permafrost thaw sequence.It should also be noted that the collected topsoil samples used in this study were less affected by physical mixing and translocation due to thaw phenomena at the thermokarst-impacted sites. Specifically, to examine changes in soil properties upon permafrost thaw, we chose to collect topsoil within the vegetated patches rather than from the exposed soil areas in the collapsed plots (Supplementary Fig. 6). These vegetated patches (40–60 cm thickness) are formed during the landscape fragmentation after permafrost collapse13. Although permafrost collapse inevitably led to soil translocation, these vegetated patches maintained their original shapes, especially for the topsoil because it is protected by mattic epipedon in this swamp meadow ecosystem on the Tibetan Plateau (which has an intensive root network protecting soils against interference)71,72. Moreover, we collected 0–15 cm of topsoil within the vegetated patches, in which soil cores were at least 10 cm away from the edge of the patch. Due to these two points, topsoil should not be mixed with the subsoil in our case. To test this deduction, we compared the non-collapsed (control) plot with the collapsed plot occurring for 1 year (the early stage of the permafrost thaw sequence), and observed no significant differences in soil properties such as bulk density, SOC, pH, soil texture and soil minerals (all P  > 0.05; Supplementary Fig. 8). These comparisons illustrated that permafrost collapse did not cause soil physical mixing for the topsoil samples involved in this study, and soil layers were comparable between the collapsed and control plots.SOC fractionationWe separated POC and MAOC from bulk soils using a fractionation method based on a combination of density and particle size18 using the following three steps. First, 10 g of soil was put into a 100 mL centrifuge tube, and added with 50 mL of 1.6 g cm−3 NaI. After being completely mixed, the mixture was sonicated and then centrifuged at 1800 × g. The floating particulate organic matter, together with the supernatant, was poured into a GF/C filter membrane for filtration, completely washed with deionized water, and then dried at 60 °C to constant weight. Then, the C content of the particulate organic matter was determined as POC. Second, deionized water were added to the remaining soils in the tube to wash out any residual NaI. The washed soils were then separated with a 53-μm sieve. The residues on the sieve ( >53 μm) were dried and determined as heavy POC. Third, the organic matter that passed through the sieve ( More

  • in

    Multi-queen breeding is associated with the origin of inquiline social parasitism in ants

    Hölldobler, B. & Wilson, E. O. The number of queens: An important trait in ant evolution. Naturwissenschaften 64, 8–15 (1977).Article 
    ADS 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. Major Transitions in Evolution (Oxford University Press, 1995).
    Google Scholar 
    Keller, L. Queen Number and Sociality in Insects (Oxford Science Publications, 1994).
    Google Scholar 
    Keller, L. Levels of Selection in Evolution (Princeton University Press, 1999).
    Google Scholar 
    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3191–3207 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).Article 

    Google Scholar 
    Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134, 111–121 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Belknap Press of Harvard University Press, 1971).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Giraud, T., Blatrix, R., Poteaux, C., Solignac, M. & Jaisson, P. High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behav. Ecol. Sociobiol. 49, 128–134 (2001).Article 

    Google Scholar 
    Schmid-Hempel, P. & Crozier, R. H. Ployandry versus polygyny versus parasites. Philos. Trans. R. Soc. B Biol. Sci. 354, 507–515 (1999).Article 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W. W. Norton & Company, 2009).
    Google Scholar 
    Trunzer, B., Heinze, J. & Hölldobler, B. Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Soc. 45, 267–276 (1998).Article 

    Google Scholar 
    Rüppell, O. & Heinze, J. Alternative reproductive tactics in females: The case of size polymorphism in winged ant queens. Insectes Soc. 46, 6–17 (1999).Article 

    Google Scholar 
    Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. U.S.A. 105, 5150–5153 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Pedersen, J. S. & Boomsma, J. J. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12, 903–917 (1999).Article 

    Google Scholar 
    Rüppell, O., Strätz, M., Baier, B. & Heinze, J. Mitochondrial markers in the ant Leptothorax rugutulus reveal the population genetic consequences of philopatry at different hierarchial levels. Mol. Ecol. 12, 795–801 (2003).PubMed 
    Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav. Ecol. Sociobiol. 50, 189–197 (2001).Article 

    Google Scholar 
    Pamilo, P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70, 472–480 (1993).Article 

    Google Scholar 
    Qian, Z. Q. et al. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20, 3681–3691 (2011).CAS 
    PubMed 

    Google Scholar 
    Keller, L. & Reeve, H. K. Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–102 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10, 137–147 (1982).Article 

    Google Scholar 
    Rissing, S. W., Pollock, G. B., Higgins, M. R., Hagen, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).Article 
    ADS 

    Google Scholar 
    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Intracolonial patterns of reproduction in the queen-size dimorphic ant Leptothorax rugatulus. Behav. Ecol. 13, 239–247 (2002).Article 

    Google Scholar 
    Buschinger, A. Sympatric speciation and radiative evolution of socially parasitic ants—Heretic hypotheses and their factual background. Z. für Zool. Syst. und Evol. 28, 241–260 (1990).Article 

    Google Scholar 
    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43, 157–178 (1991).Article 

    Google Scholar 
    Rabeling, C. Social parasitism. In Encyclopedia of Social Insects (ed. Starr, C.) 838–858. https://doi.org/10.1007/978-3-319-90306-4_175-1 (Springer, 2020).Chapter 

    Google Scholar 
    Huang, M. H. & Dornhaus, A. A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecol. Entomol. 33, 589–596 (2008).Article 

    Google Scholar 
    Ward, P. S. A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants. Syst. Entomol. 21, 253–263 (1996).Article 

    Google Scholar 
    Jansen, G., Savolainen, R. & Vepsäläinen, K. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304 (2010).PubMed 
    Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol. Ecol. 24, 2463–2476 (2015).PubMed 
    Article 

    Google Scholar 
    Nettel-Hernanz, A., Lachaud, J. P., Fresneau, D., López-Muñoz, R. A. & Poteaux, C. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org. Divers. Evol. 15, 543–553 (2015).Article 

    Google Scholar 
    Rabeling, C., Schultz, T. R., Pierce, N. E. & Bacci, M. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry. Curr. Biol. 24, 2047–2052 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Natl. Acad. Sci. U.S.A. 100, 7169–7174 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumner, S., Hughes, W. O. H. & Boomsma, J. J. Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite. Behav. Ecol. Sociobiol. 54, 256–263 (2003).Article 

    Google Scholar 
    Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).Article 

    Google Scholar 
    Fischer, G. et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr. Biol. 30, 3639-3646.e4 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, J. D. & Rissing, S. W. Molecular evidence for the origin of workerless social parasites in the ant genus Pogonomyrmex. Evolution 56, 2017–2028 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoemaker, D. D. W., Ahrens, M. E. & Ross, K. G. Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mtDNA sequences. Mol. Phylogenet. Evol. 38, 200–215 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier, D. et al. Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS ONE 11, e0156440 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43, 67–72 (1998).Article 

    Google Scholar 
    Starks, P. T., Watson, R. E., Dipaola, M. J. & Dipaola, C. P. The effect of queen number on nestmate discrimination in the facultatively polygynous ant Pseudomyrmex pallidus (Hymenoptera: Formicidae). Ethology 104, 573–584 (1998).Article 

    Google Scholar 
    Hora, R. R. et al. Facultative polygyny in Ectatomma tuberculatum (Formicidae, Ectatomminae). Insectes Soc. 52, 194–200 (2005).Article 

    Google Scholar 
    Dahan, R. A., Grove, N. K., Bollazzi, M., Gerstner, B. P. & Rabeling, C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 76, 7 (2022).Article 

    Google Scholar 
    Buschinger, A. Evolution of social parasitism in ants. Trends Ecol. Evol. 1, 155–160 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. & Reeve, H. K. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704 (1994).PubMed 
    Article 

    Google Scholar 
    Frumhoff, P. C. & Ward, P. S. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139, 559–590 (1992).Article 

    Google Scholar 
    Rissing, S. W. & Pollock, G. B. Pleometrosis and polygyny in ants. In Interindividual Behavioral Variability in Social Insects (ed. Jeanne, R. L.) 179–222 (Westview Press, 1988).
    Google Scholar 
    Keller, L. & Passera, L. Physiologie des sexués femelles de fourmis (Hymenoptera: Formicidae) en relation avec le mode the fondation. Actes des Colloq. Insectes Sociaux 5, 63–68 (1989).
    Google Scholar 
    Foitzik, S. & Heinze, J. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9, 367–375 (1998).Article 

    Google Scholar 
    Schär, S. & Nash, D. R. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies. J. Evol. Biol. 27, 2396–2407 (2014).PubMed 
    Article 

    Google Scholar 
    Gallardo, A. Notes systématique et éthologiques sur les fourmis attines de la République Argentine. An. del Mus Nac. Hist. Nat. Buenos Aires 28, 317–344 (1916).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Ridley, M. The Explanation of Organic Diversity: The Comparative Methods and Adaptations for Mating (Oxford Science Publications, 1983).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2021).Wolf, J. I. & Seppä, P. Queen size dimorphism in social insects. Insectes Soc. 63, 25–38 (2015).Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insectes Soc. 63, 79–86 (2016).Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & Rabeling, C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 921, 23–48 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabeling, C. et al. Acromyrmex fowleri: A new inquiline social parasite species of leaf-cutting ants from South America, with a discussion of social parasite biogeography in the Neotropical region. Insectes Soc. 66, 435–451 (2019).Article 

    Google Scholar 
    Grüter, C., Jongepier, E. & Foitzik, S. Insect societies fight back: The evolution of defensive traits against social parasites. Philos. Trans. R. Soc. B Biol. Sci. 373, 1. https://doi.org/10.1098/rstb.2017.0200 (2018).Article 

    Google Scholar 
    Davies, N. B., Bourke, A. F. G., De, L. & Brooke, M. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herbers, J. M. & Foitzik, S. The ecology of slavemaking ants and their hosts in north temperate forests. Ecology 83, 148–163 (2002).Article 

    Google Scholar 
    Foitzik, S. & Herbers, J. M. Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55, 316–323 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 31, 316–334 (1984).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Complex determination of queen body size in the queen size dimorphic ant Leptothorax rugatulus (Formicidae: Hymenoptera). Heredity 87, 33–40 (2001).PubMed 
    Article 

    Google Scholar 
    Nonacs, P. & Tobin, J. E. Selfish larvae: Development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46, 1605–1620 (1992).PubMed 
    Article 

    Google Scholar 
    Wolf, J. I. & Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav. Ecol. Sociobiol. 70, 1267–1276 (2016).Article 

    Google Scholar 
    Elmes, G. W. Miniature queens of the ant Myrmica rubra L. (Hymenoptera, Formicidae). Entomologist 106, 133–136 (1973).
    Google Scholar 
    Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J. & Fresneau, D. A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa 52, 47–52 (2008).
    Google Scholar 
    Seifert, B. Taxonomic description of Myrmica microrubra n. sp.—A social parasitic ant so far known as the microgyne of Myrmica rubra (L.). Abhandlungen Berichte des Nat. Görlitz 67, 9–12 (1993).
    Google Scholar 
    Rabeling, C. & Bacci, M. A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst. Entomol. 35, 379–392 (2010).Article 

    Google Scholar 
    Trible, W. & Kronauer, D. J. C. Caste development and evolution in ants: It’s all about size. J. Exp. Biol. 220, 53–62 (2017).PubMed 
    Article 

    Google Scholar 
    Aron, S., Passera, L. & Keller, L. Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene. Insectes Soc. 51, 395–399 (2004).Article 

    Google Scholar 
    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (a review). Proc. Natl. Acad. Sci. 83, 1388–1392 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Schultz, T. R., Bekkevold, D. & Boomsma, J. J. Acromyrmex insinuator new species: An incipient social parasite of fungus-growing ants. Insectes Soc. 45, 457–471 (1998).Article 

    Google Scholar 
    Hakala, S. M., Seppä, P. & Helanterä, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms. Myrmecol. News 29, 35–55 (2019).
    Google Scholar 
    Leppänen, J., Vepsäläinen, K. & Savolainen, R. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecol. Evol. 1, 46–62 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & LaPolla, J. S. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). Zookeys 552, 49–65 (2016).Article 

    Google Scholar 
    Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M. & Agnarsson, I. Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R. Soc. Open Sci. https://doi.org/10.1098/rsos.150159 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).Article 

    Google Scholar 
    Heinze, J., Buschinger, A., Poettinger, T. & Suefuji, M. Multiple convergent origins of workerlessness and inbreeding in the socially parasitic ant genus Myrmoxenus. PLoS ONE 10, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    Suefuji, M. & Heinze, J. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei. Integr. Zool. 10, 182–185 (2015).PubMed 
    Article 

    Google Scholar 
    Talbot, M. The natural history of the workerless ant parasite, Formica talbotae. Psyche 83, 282–288 (1976).Article 

    Google Scholar 
    Wilson, E. O. The first workerless parasite in the ant genus Formica (Hymenoptera: Formicidae). Psyche 83, 277–281 (1976).Article 

    Google Scholar 
    Borowiec, M. L., Cover, S. P. & Rabeling, C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc. Natl. Acad. Sci. 118, e2026029118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The geometry of evolved community matrix spectra

    Modelling complex evolved food websOur interest here is to develop a conceptual comparison between the eigenvalue spectrum of a complex, evolved food web and a random matrix analog. We therefore focus on the widely-used generalised Lotka–Volterra equations for consumer-resource interactions. For simplicity, we further restrict to a single basic nutrient source, and require that species feeding on the basic nutrient source are never omnivorous31, e.g., plants do not consume other plants. The original Lotka–Volterra equations32,33 describe spatially and temporally homogeneous, consumer-resource relations. The generalised Lotka–Volterra equations34,35,36 can be used to describe the dynamics of larger, more complex food webs, and encode the dynamics of primary producers as$$begin{aligned} frac{dot{S_i}}{S_i} = k_i left( 1 – sum _{j=1}^{n_1} S_j right) – alpha _i – sum _{k=n_1+1}^{n} eta _{ki} S_k, end{aligned}$$
    (1)
    where (S_i), (iin {1,dots ,n_1}), denote the population densities of primary producers in units of biomass, normalised to the system carrying capacity and (n_1) denotes the total number of primary producers, (k_i >0) denote the growth rates of the corresponding primary producer (S_i), that is, the maximal reproduction rate at unlimited nutrient availability. We use (k_i=k) for all primary producers. The negative sum on the species (S_j) encodes logistic growth by accounting for nutrient depletion by all primary producers. For all other species, (S_k), (kin {n_1+1,dots ,n}) with n the total number of species in the food web, the equations read$$begin{aligned} frac{dot{S_k}}{S_k} = sum _{m=1}^{n} beta _{km}eta _{km} S_m – alpha _k – sum _{p=n_1+1}^{n} eta _{pk} S_p. end{aligned}$$
    (2)
    Here, (S_k) is again measured in units of normalised biomass. In Eqs. (1) and (2), (alpha _j >0) is the decay rate of a species (S_j), representing death not caused by consumption through other species. (eta _{ki}ge 0) is the link-specific interaction strength between consumer (S_k) and resource (S_i). On the RHS of either equation, note the final term representing the diminishing effects experienced by each resource species, which is caused by consumption. This term is mirrored by the first term in Eq. (2), which describes the strengthening effect on the consumer side. The coefficients (beta _{ki}le 1) encode link-specific consumption efficiency—that is, potentially incomplete use of energy removed from a resource species by its consumer. (beta _{ki}=1) would describe perfect consumption efficiency whereas in real food webs this value is estimated to lie considerably lower37. In our simulations we use (beta _{ki}=beta) for all interactions present.Equations (1) and (2) describe a simplified food web structure where consumption is modelled by the simple Holling type-I response38, where consumer resource fluxes scale proportional to the product of consumer and resource biomass density and there are no saturation effects. Moreover, Eqs. (1) and (2) assume that the food web is rigid in that species are incapable of adapting their consumption behaviour to changes within the food web, such as a decreasing population of resources or competition from an invasive species39. Yet, these equations allow for a coherent description of the energy fluxes between species and constitute an established framework for complex consumer-resource relations to evolve.To evolve food webs we simulate Eqs. (1) and (2) numerically. New species are added successively to an existing food web. We assume that invasion attempts occur on a slow timescale, such that equilibrium can be reached before the subsequent invasion attempt, though occasionally, the food web does not converge to its equilibrium state. After each invasion attempt the steady state species vector (mathbf {S^*}) is computed. In case of feasibility the eigenvalues of the community matrix are evaluated in order to determine the linear stability of the steady states. If feasibility is not obtained, that is, if (mathbf {S^*}) contain negative populations, Eqs. (1) and (2) are integrated numerically until extinctions occur and feasibility of the remaining species is reached (Details: “Materials and methods”). Examples of several invasion attempts are shown in Fig. 2.Figure 1Evolution of three food webs using different assembly rules. All main panels show decay rates of all species present plotted against invasion attempts, that is, evolutionary steps. The decay rates are plotted as (Delta alpha equiv alpha – alpha _{min}), where (alpha _{min}) denotes the lower limit on decay rates (compare: Table 1). The thin red line highlights the currently lowest producer decay rate. Grey symbols denote producers, yellow and magenta symbols denote consumers of one or two resources, respectively. Cyan symbols denote omnivores. (a) Food webs where only one resource per consumer is allowed, yielding a treelike food web without loops. (b) Consumers can have either one or two resources at the same trophic level. (c) Consumers are allowed one or two resources at any trophic level (lge 1). Note that both axes use logarithmic scaling. Insets: Normalised histograms of species richness, using all data. Note the logarithmic vertical axis scaling.Full size imageFigure 2Time series of a food web during several invasions. The panels (a–f) respectively correspond to invasion attempts 40312–40314, and 40316–40318 in Fig. 1c. Upper row: In each panel, orange circles and red “x”-symbols denote the invasive and extinct species, respectively. The vertical coordinate denotes trophic level, and node areas represent initial biomass densities. The green hexagon represents the basic nutrient source. (a) A species successfully invades the food web, but causes the extinction of two resident species, among these one of its own resources. (b) the invader is successful without causing any extinctions. (c) The invader is a primary producer and causes extinction of the invader from (b). (d) The invader replaces a resident species of same niche as the invader. (e) The invader is unsuccessful in invading the food web as it shares a niche with one of the resident species. (f) The invader is a primary producer and causes the extinction of three resident species, among these the primary producer with lowest decay rate, corresponding to largest intrinsic fitness, which is highlighted by the black arrow. Lower row: Time series corresponding to each of the food webs above, where time is measured in units of the inverse primary producer growth rate, (k^{-1}). Blue and orange lines represent resident and invasive species, respectively, as the new steady state is approached. The black line in the last panel represents the producer with lowest decay rate. Note the double-log axis scaling.Full size imageLoops profoundly impact food web evolutionTo make sure our results do not depend on the details of the invasion process we allow for several qualitatively distinct evolutionary processes: (i) treelike food webs, where each consumer has a single resource; (ii) non-omnivorous food webs with loops; (iii) omnivorous food webs. Loops are known to be relevant for sustained limit cycles and chaotic attractors, thus widening the range of dynamical properties. Indeed, we find treelike food webs to stand out in that fitness, measured by species decay rates, indefinitely increases in the evolutionary process (Fig. 1a, dotted red line), a finding consistent with the recent literature30. This indefinite fitness improvement hinges on the absence of network loops: a given primary producer can only be replaced by an invading primary producer of greater intrinsic fitness, that is, lower decay rate.Allowing for network loops, evolved food web do not show indefinite fitness improvement (Fig. 1b,c) and mean species richness somewhat decreases (Fig. 1, insets). All histograms show a systematic difference in odd and even species richness, with food webs of odd species richness being the most frequent. This tendency is most pronounced for treelike food webs. We interpret this as a manifestation of the requirement of non-overlapping pairing28. Treelike food webs are feasible and stable if every species in the food web can be coincidentally paired with a connected species or nutrient that is not part of another pairing. In food webs of even species richness the nutrient is never included in such a pairing. Food webs consisting of several smaller trees that are connected through the nutrient source are therefore only feasible if every tree satisfies this requirement individually. On the contrary, the nutrient is always included in a pairing in food webs of odd species richness, and therefore odd food webs are more likely to be feasible. To a lesser extent this tendency is also found in the histograms representing food webs with network loops. We interpret this as resulting from the fact that 40-60% of the food webs from simulations allowing network loops are in fact treelike.Why do loops counteract indefinite fitness improvement? This can be seen as a manifestation of relative, rather than absolute, fitness, where a species can consume two resources and thereby can help eliminate even primary producers of high intrinsic fitness (Fig. 1b,c). An example of this is illustrated in Fig. 2f), where the intrinsically fittest producer is a node in a food web loop, and is driven to extinction during the invasion of a producer with lower intrinsic fitness.The evolution of intrinsic fitness in Fig. 1 implies that allowing for interaction loops makes resident species more vulnerable to extinction during invasions, because parameters that characterise high intrinsic fitness before an invasion might characterise low intrinsic fitness during the invasion. This is supported by the cumulative distribution of resident times (Fig. S1a), where residence times in food webs with network loops fall off faster than the residence times in treelike food webs. In Fig. S1b we observe that in accordance with this, the distribution of extinction event size falls off faster for treelike food webs (Fig. S1b), where the extinction event size is measured relative to the total number of species (species richness) in the food web. Fig. S1b therefore implies that interaction loops make food webs less robust to invasions, as invasive species tend to create larger extinction events here than in treelike food webs. Finally, we find invasive species to have higher success rates when invading food webs with interaction loops, and the success rate is found to increase with (beta). In simulations with (beta =0.75) we observe 11.5%, 27.2% and 29.8% for treelike, non-omnivorous, and omnivorous food webs with loops, respectively. The implications of this are twofold. On one hand, it is easier to assemble feasible food webs when multiple resources and omnivory are allowed. On the other hand, these food webs are more susceptible to invasions and their resident species are more vulnerable. If a food web contains two-resource species, removal of one of the two resources of a species (S_i) by an invader can already lead to a cascading extinction of S, as exemplified by Fig. S2.Robustly bi-modal eigenvalue spectraWe now turn to the eigenvalue spectra of the evolved complex food webs, which we present as two-dimensional histograms in the complex plane (Fig. 3). Each simulation conducts (10^5) invasion attempts, yet the number of unique feasible food webs is considerably lower, that is, approximately equal to the aforementioned rates of successful invasions. Furthermore, the number of unique feasibly food webs drastically decreases with species richness. While the data shown represent relatively small networks, we find that key spectral features are very systematic as function of species richness. A generic feature is that spectra typically have many eigenvalues with small negative real parts. Further, the real parts scatter more and more closely at small negative values, as species richness increases beyond two. All spectra contain a considerable fraction of purely real eigenvalues, typically making up 15–30% of a spectrum.Figure 3Complex eigenvalue spectra of evolved food webs. Each panel represents the two-dimensional histogram in the complex plane. Species richness and invasion mechanism are as labelled in panels, that is, rows of panels represent treelike, non-omnivorous, and omnivorous food webs. Note that the colour scale is logarithmic, with green marking the areas with largest likelihood of eigenvalues (Details: “Materials and methods”). Eigenvalue spectra of omnivorous food webs of other species richnesses can be seen in Fig. S3.Full size imageThe origin of purely real eigenvaluesThe first column in Fig. 3 represents food webs with species richness two. These simple food webs only have one feasible configuration, namely that of one primary producer and one consumer. Any differences between spectra in the left column are therefore purely statistical. These food webs can be considered as isolated interactions between a consumer and its resource, hence the analytical eigenvalues of this food web can provide some insight on the dynamics underlying the eigenvalue spectra. From the analytical eigenvalues we obtain that an eigenvalue is purely real if the inequality$$begin{aligned} beta eta le frac{1}{2}left( gamma + sqrt{gamma ^2 + kgamma }right) , ,,,,,,,,text {with},, gamma equiv frac{alpha _2}{1-alpha _1/k}, end{aligned}$$
    (3)
    is fulfilled (Details: Sec. S3). Here, (alpha _1) and (alpha _2) are the decay rates of the resource and the consumer, respectively, and (beta eta) is short for (beta _{21}eta _{21}), the “consumption rate” of the consumer. (gamma) can be interpreted as the inverse intrinsic fitness of the food web.From feasibility, we have the additional requirement of (gamma < beta eta), hence, the consumer’s “consumption rate” is bounded also from below. As k decreases, the lower and upper boundaries on (beta eta) approach one-another until they are equal for (k=0). A food web with low producer growth rate is therefore likely to have complex eigenvalues. In the opposite limit, when (krightarrow infty), or equivalently (alpha _1 rightarrow 0), we see that (gamma) reduces to (alpha _2). In the first limit Eq. (3) reduces to (beta eta le infty) which will always be satisfied and all eigenvalues are therefore purely real in this limit. This corresponds to a food web where the consumer has infinite access to resources and there is no stress or constraints on the web that could cause oscillations. In the limit where (alpha _1 rightarrow 0), the eigenvalues pick up an imaginary component when (beta eta) is large compared to (alpha _2) and k. This occurs when the consumer population has a large intrinsic growth rate, thus heavily exploiting its resource.Overall, purely real eigenvalues characterise food webs where consumption of the resource is moderate compared to the intrinsic fitness of the resource. This corresponds to an over-damped limit where the consumer does not consume enough to cause any significant displacement of the resource population, hence a perturbation of the consumer population will not spread to its resource. For higher species richness the Jacobian quickly becomes too complicated to be solved analytically. Even so, we expect the dynamics between a consumer and its resources to be conceptually analogous, namely that “sustainable over-consumption” yields oscillating densities and complex eigenvalues.The set of smallest and largest real-valued eigenvalues is obtained when (beta eta) is only slightly larger than (gamma), hence barely satisfying the criterion of feasibility. The eigenvalues then reduce to (lambda _{pm } = -frac{k-alpha _1}{2} pm frac{k-alpha _1}{2}). (lambda _+) is always zero, that is, food webs of species richness two are always stable, and with our choice of parameters (lambda _- ge -0.95). We observe approximately the same range of real values in all numerical spectra of any species richness, thereby implying that the choice of parameters might be more important for the spectrum width than the structure of the food web.The overall shape is qualitatively similar for all food web structures (see: Fig. 3). Importantly, omnivorous spectra are the only ones to contain also eigenvalues with positive real part, that is, unstable eigenvalues. These food webs do therefore not converge to their equilibrium state after an invasion, but are displaying periodic or chaotic dynamics (Details: “Materials and methods”). The unstable eigenvalues are all barely larger than zero, hence hardly visible in Fig. 3. Interestingly, non-omnivorous food webs with network loops exhibit the same species richness and approximate connectivity as the omnivorous food webs, yet they do not yield unstable eigenvalues. The differences between treelike food webs and food webs with network loops discussed earlier must therefore be unrelated to the stability of the food webs, thus emphasising the difference between stability to perturbation of a given food web and its robustness to invasions. For omnivorous food webs the fraction of unstable eigenvalues increases with species richness and decreases with (beta). Intuitively, it seems reasonable that there is a relation between instability and low consumption efficiency. A species with a low consumption efficiency has to compensate by consuming more biomass, thereby putting more stress on its resources. Only for (beta =1) are there no unstable omnivorous eigenvalues.Figure 4Complex eigenvalue spectra of random matrices. Heat maps of eigenvalue spectra of random matrices, corresponding to the respective species richnesses shown in Fig. 3. Off-diagonal entries are drawn from a normal distribution with probability (p(N) = frac{N^2+21N-28}{9N(N-1)}) (Details: Sec. S5), and are otherwise set to zero. Diagonal elements are set to (-1).Full size imageWe now compare the evolved spectra (Fig. 3) to their random counterparts (Fig. 4). The diagonal entries represent self regulation of each species and are set to (d = -1). Off-diagonal entries are drawn from ({mathcal {N}}(0, 1)) with probability p(N), and are otherwise 0.$$begin{aligned} p(N) = frac{N^2+21N-28}{9N(N-1)}, ~~text {for } N >1, end{aligned}$$
    (4)
    where N is “species richness”, that is, the number of rows (or columns) of the matrix. This corresponds to the implemented connectivity in the simulation allowing network loops and omnivory, that is, the connectivity of omnivorous food webs given no extinctions occur (Details: Sec. S5). As predicted by spectral theory of random matrices, the spectra are centred around d on the real axis and approach a circular geometry as the size of the matrix increases. Already for (N=2) does the spectrum contain unstable eigenvalues. The fraction of unstable eigenvalues increases with N as the circle radius increases. Also for random spectra do we observe a large fraction of purely real eigenvalues. We attribute this to the small size of the matrices, being much smaller than the infinity limit for which the law was derived40.Figure 5Distribution of eigenvalues along the real axis. Normalised frequency distributions of eigenvalues along the real axis for all food web structures and random matrices for species richness (2-9). Eigenvalues representing food webs are taken from simulations using a range of values of (beta) (Table 1), since varying (beta) does not have significant effects on the real-part distributions (Details: Sec. S6). All distributions are scaled to start in (-1). Note the logarithmic vertical axis scaling.Full size imageFinally, we study the real-part frequency distributions of eigenvalues of all four types (treelike, non-omnivorous, omnivorous and random). The frequency distributions for species richness 2–9 can be seen in Fig. 5, where each distribution consists of data from various values of (beta) (see Table 1). In order to facilitate comparison of the functional form of the frequency distributions, rather than the range, the frequency distributions are scaled to be bounded by (-1) on the real axis, that is, we divide each data point by ((|min {x}|)^{-1}) where x is the data points of the distribution. Frequency distributions representing the evolved food webs follow approximately the same curve for a given species richness, and are distinctively different from the random matrices. As also seen in Fig. 3 omnivorous distributions are the only to extended to positive values for species richness greater than two.Once again, we observe quantitative differences between food webs with odd and even species richness: For odd species richness the distribution is bi-modal with a global maximum near (x=0) and a secondary maximum near the lower limit, that is (x=-1). For even species richness, the distribution is initially less strongly peaked. Yet, as species richness increases, a sharp peak emerges around (x = 0). The distribution thus becomes more similar to that of the food webs with an odd number of species.The intermediate part of the spectrum is increasingly depleted of eigenvalues at higher species richness. Comparing Fig. 5 with Fig. 3 we see that the left part of all distributions consists of purely real eigenvalues, whereas it is mostly complex eigenvalues that make up the global maximum near (x=0). This implies that perturbations can be divided into two main groups: perturbations from which the food web quickly returns to the respective steady state, and perturbations that induce oscillations from which the food web takes very long to recover. The peak consisting of purely real eigenvalues near (x=-1) does not change notably with species richness, indicating that, independent of species richness, food webs are robust to certain perturbations. In accordance with this we observe that food webs of all species richness usually return quickly to their steady states after an unsuccessful invasive species goes extinct. The main peak (near (x=0)) becomes both higher and narrower with increasing species richness, that is, the food webs become quasi-stable. In larger food webs there are more species that can be disturbed by a perturbation, which might prolong the effect of the perturbation, that is, push eigenvalues towards zero on the real axis. Overall, we thus find that the histogram of complex food webs becomes strongly bi-modal as food webs consisting of many species are approached in an evolutionary process, whereas random matrix spectra are consistently uni-modal. In Sec. S8–S9 we consider the robustness of the results in Fig. 5 by varying the parameter distributions and implementing Holling type-II response, respectively. More

  • in

    Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds

    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Caro, T. & Koneru, M. Towards an ecology of protective coloration. Biol. Rev. 96, 611–641 (2021).PubMed 
    Article 

    Google Scholar 
    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. Ser. B 340, 215–225 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).Article 

    Google Scholar 
    Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lind, O., Mitkus, M., Olsson, P. & Kelber, A. Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. Lond. Ser. B 281, 20132209 (2014).
    Google Scholar 
    Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, 2414 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, M. & Cuthill, I. C. Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57, 501–507 (2007).Article 

    Google Scholar 
    Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. Ser. B 270, 61–67 (2003).Article 

    Google Scholar 
    Eaton, M. D. & Lanyon, S. M. The ubiquity of avian ultraviolet plumage reflectance. Proc. R. Soc. Lond. Ser. B 270, 1721–1726 (2003).Article 

    Google Scholar 
    Gomez, D. & Théry, M. Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community. Ecol. Lett. 7, 279–284 (2004).Article 

    Google Scholar 
    Mullen, P. & Pohland, G. Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 59–68 (2008).Article 

    Google Scholar 
    Burns, K. J. & Shultz, A. J. Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. Auk 129, 211–221 (2012).Article 

    Google Scholar 
    Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K. & Hastad, O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc. R. Soc. Lond. Ser. B 279, 1269–1276 (2012).
    Google Scholar 
    Bleiweiss, R. Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolut. Biol. 41, 404–424 (2014).Article 

    Google Scholar 
    Lind, O. & Delhey, K. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. J. Evol. Biol. 28, 715–722 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. T. D. & Cuthill, I. C. Ultraviolet vision in birds: what is its function? Vis. Res 34, 1471–1478 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. J. Avian Biol. 51, e02222 (2020).Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C. & Ligon, R. A. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Commun. 10, 1602 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).Article 

    Google Scholar 
    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 15, 555–560 (2018).Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).Article 

    Google Scholar 
    Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).Article 

    Google Scholar 
    Aljabar, P., Heckemann, R. A., Hammers, A., Hajnal, J. V. & Rueckert, D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14, 723–737 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).ADS 
    Article 

    Google Scholar 
    Kumar, Y. H. S., Manohar, N. & Chethan, H. K. Animal classification system: a block based approach. Procedia Computer Sci. 45, 336–343 (2015).Article 

    Google Scholar 
    Unger, J., Merhof, D. & Renner, S. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 16, 248 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohler, R. A segmentation system based on thresholding. Computer Graph. Image Process. 15, 319–338 (1981).Article 

    Google Scholar 
    Adams, R. & Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 18, 641–647 (1994).Article 

    Google Scholar 
    Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boykov, Y. Y. & Jolly, M. P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. in Proceedings Eighth IEEE International Conference on Computer Vision (2001).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 1802, 02611 (2018).
    Google Scholar 
    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 1606, 00915 (2017).
    Google Scholar 
    Chen, L. C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 1706, 05587 (2017).
    Google Scholar 
    Everingham, M. et al. The PASCAL Visual Object Classes challenge—a retrospective. Int. J. Computer Vis. 111, 98–136 (2015).Article 

    Google Scholar 
    Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Advances In Neural Information Processing Systems (2012).He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Szegedy, C. et al. Going deeper with convolutions. arXiv 1409, 4842 (2014).ADS 

    Google Scholar 
    Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. arXiv 1603, 06937 (2016).
    Google Scholar 
    Wei, S. E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose machines. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2015).Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).PubMed 
    Article 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    Article 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a Neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Philos. Soc. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    Passarotto, A., Rodríguez‐Caballero, E., Cruz-Miralles, Á., Avilés Jesús, M. & Sheard, C. Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galván, I., Rodríguez-Martínez, S., Carrascal, L. M. & Portugal, S. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. 22, 726–736 (2019).PubMed 
    Article 

    Google Scholar 
    Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl Acad. Sci. USA 102, 6391–6394 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lind, O., Henze, M. J., Kelber, A. & Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. Ser. B 372, 20160338 (2017).Article 
    CAS 

    Google Scholar 
    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. arXiv 01105, 2017 (1612).
    Google Scholar 
    Zoph, B. et al. Rethinking pre-training and self-training. arXiv 2006, 06882 (2020).
    Google Scholar 
    Chang, Y. L. & Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 3, 868–872 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10, 1454–1466 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. Learning visual features from large weakly supervised data. arXiv 1511, 02251 (2015).
    Google Scholar 
    Hestness, J. et al. Deep learning scaling is predictable, empirically. arXiv 1712, 00409 (2017).
    Google Scholar 
    Hudson, L. N. et al. Inselect: automating the digitization of natural history collections. PLoS ONE 10, e0143402 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. Semantic segmentation of herbarium specimens using deep learning techniques. in Computational Science and Technology (2020).Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding. arXiv 01685, 2016 (1604).
    Google Scholar 
    Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009).Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose estimation: new benchmark and state of the art analysis. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014).Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2000).
    Google Scholar 
    Ruder, S. An overview of gradient descent optimization algorithms. arXiv 1609, 04747 (2016).
    Google Scholar 
    Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimisation. arXiv 1412, 6980 (2014).ADS 

    Google Scholar 
    Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. arXiv 1608, 03983 (2016).
    Google Scholar 
    Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 1603, 04467 (2016).
    Google Scholar 
    He, Y. et al. Code for: Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. https://doi.org/10.5281/zenodo.6916988 (2022).Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207, 0580 (2012).
    Google Scholar 
    van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, J. S. Digital image smoothing and the signam filter. Computer Vis., Graph., Image Process. 24, 255–269 (1983).Article 

    Google Scholar 
    Haralick, R. M., Sternberg, S. R. & Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979).Article 

    Google Scholar 
    Sezgin, M. & Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004).ADS 
    Article 

    Google Scholar 
    Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Computer Vis. 1, 321–331 (1988).MATH 
    Article 

    Google Scholar 
    Coffin, D. DCRAW V. 9.27. https://www.cybercom.net/~dcoffin/dcraw/ (2016).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Y. PhenoLearn v.1.0.1. https://doi.org/10.5281/zenodo.6950322 (2022).Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evolution 10, 1097–1107 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol. Biol. 11, 313 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. Ser. B 281, 20140298 (2014).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Distribution of SOCD along different offshore distances in China's fresh-water lake-Chaohu under different habitats

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8 (2013).Article 

    Google Scholar 
    Koehler, A. K., Sottocornola, M. & Kiely, G. How strong is the current carbon sequestration of an Atlantic blanket bog?. Glob. Change Biol. 17, 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x (2015).ADS 
    Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1–12. https://doi.org/10.1029/2002GB001917 (2003).CAS 
    Article 

    Google Scholar 
    Dong, H. Y., Qian, L. W., Yan, J. F. & Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 192, 585. https://doi.org/10.1007/s10661-020-08547-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zaher, H., Sabir, M., Benjelloun, H. & Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manage. 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friborg, T. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30, 2129. https://doi.org/10.1029/2003GL017797 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Dayathilake, D., Lokupitiya, E. & Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands. https://doi.org/10.1007/s13157-021-01424-7 (2021).Article 

    Google Scholar 
    Li, X. W. et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 10, 54–60. https://doi.org/10.1016/j.ecoser.2014.09.004 (2014).Article 

    Google Scholar 
    Liu, K. et al. Diversity of vascular plant and classification system of vegetation in wetlands of Anhui Province. Acta Ecol. Sin. 34, 5434–5444. https://doi.org/10.5846/stxb201301160109 (2014).Article 

    Google Scholar 
    Liu, H., Zheng, L., Wu, J. & Liao, Y. H. Past and future ecosystem service trade-offs in Poyang Lake Basin under different land use policy scenarios. Arab. J. Geosci. 13, 46. https://doi.org/10.1007/s12517-019-5004-x (2020).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023 (2016).Article 

    Google Scholar 
    Yang, X., Liu, S., Jia, C., Liu, Y. & Yu, C. C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540 (2021).Article 

    Google Scholar 
    Ghosh, S. & Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 13, 191–203. https://doi.org/10.1016/j.rsase.2018.10.014 (2019).Article 

    Google Scholar 
    Means, M. M., Ahn, C., Korol, A. R. & Williams, L. D. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland. J. Environ. Manag. 165, 133–139. https://doi.org/10.1016/j.jenvman.2015.09.016 (2016).Article 

    Google Scholar 
    Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W. & Needelman, B. A. Carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 45, 743–750. https://doi.org/10.2134/jeq2015.04.0186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abegaz, A., Winowiecki, L. A., Vågen, T., Langan, S. & Smith, J. U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 34, 190–208. https://doi.org/10.1016/j.agee.2015.11.019 (2016).CAS 
    Article 

    Google Scholar 
    Xie, E., Zhang, Y., Huang, B., Zhao, Y. & Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 205, 104763. https://doi.org/10.1016/j.still.2020.104763 (2021).Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sun, K. K., Chen, X., Dong, X. H. & Yang, X. D. Spatiotemporal patterns of carbon sequestration in a large shallow lake, Lake Chaohu: Evidence from multiple-core records. Limnologica 81, 125748. https://doi.org/10.1016/j.limno.2020.125748 (2020).CAS 
    Article 

    Google Scholar 
    Chen, X., Yang, X. D., Dong, X. H. & Liu, E. F. Environmental changes in Lake Chaohu (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica. 43, 10–17. https://doi.org/10.1016/j.limno.2012.03.002 (2013).CAS 
    Article 

    Google Scholar 
    Yu, J. H. et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J. Lake Sci. 33, 1467–1477. https://doi.org/10.18307/2021.0514 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, M. & Kong, F. X. The process, spatial and temporal distrbition and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 27, 791–798. https://doi.org/10.18307/2015.0505 (2015).Article 

    Google Scholar 
    Teng, Z., Cao, X. Q., Sun, M. Y., Li, P. X. & Xu, X. N. Effect of different ecological restoration patterns on soil labile organic carbon and carbon pool management index of lakeside wetland of Lake Chaohu. Ecol. Environ. Sci. 28, 752–760. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2019).Article 

    Google Scholar 
    Wang, J. J. et al. Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest. For. Syst. 28, e018. https://doi.org/10.5424/fs/2019283-15404 (2019).Article 

    Google Scholar 
    Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599. https://doi.org/10.1111/J.1365-2486.2008.01591.X (2008).ADS 
    Article 

    Google Scholar 
    Li, J. et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica 40, 8928–8935. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2020).Article 

    Google Scholar 
    Ma, W. W. et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl. Ecol. 29, 3900–3906. https://doi.org/10.13287/j.1001-9332.201812.003 (2018).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, L. et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress. Chin. J. Appl. Ecol. 24, 2040–2048. https://doi.org/10.1038/ngeo1123 (2013).CAS 
    Article 

    Google Scholar 
    Liao, X. J. et al. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetl. Sci. 11, 192–197. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    Kong, F. L., Min, X. I., Yue, L. I., Li-Hua, X. U. & Feng, X. M. Distribution and storage of DOC in a typical annular wetland of Sanjiang Plain. Bull. Soil Water Conserv. 33, 176–179. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    He, L. P., Meng, G. T., Li, G. X., Li, P. R. & Chai, Y. Soil organic carbon and its distribution characteristics in the soil profile under different vegetation recovery modes in toutang small watershed of Jinsha river. Resour. Environ. Yangtze Basin 25, 476–485. https://doi.org/10.13248/j.cnki.wetlandsci.2013.02.003 (2016).Article 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323. https://doi.org/10.1016/j.ecoleng.2008.09.005 (2008).Article 

    Google Scholar 
    Dong, J. et al. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 806, 150629. https://doi.org/10.1016/j.scitotenv.2021.150629 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, S., Adhikari, K., Wang, Q., Jin, X. & Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi.org/10.1016/j.ecolind.2017.08.046 (2018).CAS 
    Article 

    Google Scholar 
    Zhao, Q. et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 20, 537–547. https://doi.org/10.1016/j.ecohyd.2019.10.008 (2020).Article 

    Google Scholar 
    Weishampel, P., Kolka, R. & King, J. Y. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. For. Ecol. Manag. 257, 747–754. https://doi.org/10.1016/j.foreco.2008.10.008 (2009).Article 

    Google Scholar 
    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X. & Zhao, Y. C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    Wu, Y. et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sinica. 40, 5761–5770. https://doi.org/10.5846/stxb201908161713 (2020).Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).PubMed 
    Article 

    Google Scholar 
    Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).PubMed Central 
    Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed 
    Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).Article 

    Google Scholar 
    Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).
    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar 
    Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 

    Google Scholar 
    Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).Article 
    CAS 

    Google Scholar 
    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).PubMed 
    Article 

    Google Scholar 
    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).Article 

    Google Scholar 
    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).CAS 
    Article 

    Google Scholar 
    Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).Article 

    Google Scholar 
    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).PubMed 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).
    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).Article 

    Google Scholar 
    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).PubMed 
    Article 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).Article 
    CAS 

    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).Article 

    Google Scholar 
    Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).Article 

    Google Scholar 
    Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).Article 

    Google Scholar 
    Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).PubMed 
    Article 

    Google Scholar  More

  • in

    How to help a prairie: bring on the hungry bison

    RESEARCH HIGHLIGHT
    29 August 2022

    North America’s largest land mammal can double the diversity of native grasses through its grazing.

    Home on the range: the American bison’s taste for prairie grasses helps to boost diversity of native flora (pictured, stiff goldenrod, Solidago rigida). Credit: Jill Haukos/Kansas State University

    .readcube-buybox { display: none !important;}
    Grazing animals can shape the grasslands they dine on by preferentially eating certain species, allowing other species to find a foothold. To quantify this effect, Zak Ratajczak at Kansas State University in Manhattan and his colleagues analysed 29 years’ worth of data from plots in an unploughed native tallgrass prairie in eastern Kansas1. Since 1992, the plots have been managed in one of three ways: year-round grazing by bison (Bison bison); seasonal grazing by cattle; or no grazing at all.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-02332-4

    References

    Subjects

    Latest on:

    Subjects More