More stories

  • in

    The Holocene temperature conundrum answered by mollusk records from East Asia

    Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).ADS 
    Article 

    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).ADS 
    Article 

    Google Scholar 
    Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).ADS 
    Article 

    Google Scholar 
    Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).ADS 
    Article 

    Google Scholar 
    Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).Article 

    Google Scholar 
    Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).Article 

    Google Scholar 
    Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).ADS 
    Article 

    Google Scholar 
    Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).PubMed 
    Article 

    Google Scholar 
    Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).CAS 

    Google Scholar 
    Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).CAS 

    Google Scholar 
    Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).CAS 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).Article 

    Google Scholar 
    Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).Article 

    Google Scholar 
    Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).Article 

    Google Scholar 
    Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).
    Google Scholar 
    Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).ADS 
    Article 

    Google Scholar 
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).ADS 
    Article 

    Google Scholar 
    Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).CAS 

    Google Scholar 
    Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).Article 

    Google Scholar 
    Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).ADS 
    Article 

    Google Scholar 
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).Article 

    Google Scholar 
    Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).ADS 
    Article 

    Google Scholar 
    Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).ADS 

    Google Scholar 
    Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).ADS 
    Article 

    Google Scholar 
    de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).ADS 

    Google Scholar 
    Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).Article 

    Google Scholar 
    James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).Article 

    Google Scholar 
    Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).Article 

    Google Scholar 
    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).ADS 
    MATH 
    Article 

    Google Scholar 
    Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).ADS 
    Article 

    Google Scholar 
    Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).ADS 
    Article 

    Google Scholar 
    Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).ADS 
    Article 

    Google Scholar 
    Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).Article 

    Google Scholar 
    Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).
    Google Scholar 
    Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).Article 

    Google Scholar 
    Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).
    Google Scholar 
    Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).Article 

    Google Scholar 
    Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).ADS 
    Article 

    Google Scholar 
    Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).Article 

    Google Scholar 
    Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).Article 

    Google Scholar 
    Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).Article 

    Google Scholar  More

  • in

    Multiproxy study of 7500-year-old wooden sickles from the Lakeshore Village of La Marmotta, Italy

    Snir, A. et al. The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS ONE 10(7), e0131422. https://doi.org/10.1371/journal.pone.0131422 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groman-Yaroslavski, I., Weiss, E. & Nadel, D. Composite sickles and cereal harvesting methods at 23,000-years-old Ohalo II Israel. PLoS ONE 11(11), e0167151. https://doi.org/10.1371/journal.pone.0167151 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, P. C. A 14000 year-old hunter-gatherer’s toolkit. Antiquity 81(314), 865–876. https://doi.org/10.1017/S0003598X0009596X (2007).Article 

    Google Scholar 
    Le Dosseur, G. Bone Objects in the Southern Levant from the Thirteenth to the Fourth Millennia. Bulletin du Centre de recherche français à Jérusalem 12, 111–125 (2003).
    Google Scholar 
    Garrard, A., & Yazbeck, C. The Natufian of Moghr el-Ahwal in the Qadisha valley, northern Lebanon. in Natufian Foragers in the Levant. International Monographs in Prehistory (eds. Bar-Yosef, O. & Valla, F. R.). 17–47. (Michigan, Ann Arbor, 2013).Belfer-Cohen, A. The Natufian in the Levant. Annu. Rev. Anthropol. 20, 167–186. https://doi.org/10.1146/annurev.an.20.100191.001123 (1991).Article 

    Google Scholar 
    Stordeur, D. Le Natoufien et son évolution à travers les artefacts en os in Natufian Foragers in the Levant. International Monographs in Prehistory (eds. Bar-Yosef, O. & Valla, F. R.). 457–482. (Michigan, Ann Arbor, 2013).Rosen, S. A. Lithics after the Stone Age: a handbook of stone tools from the Levant. (Rowman Altamira, 1997).Anderson, P. C. Prehistory of agriculture: new experimental and ethnographic approaches. (Cotsen Institute of Archaeology Press, 1999).Ibáñez, J. J., González Urquijo, J. E., & Rodríguez, A. The evolution of technology during the PPN in the Middle euphrates. A view from use wear analysis of lithic tools. in Systèmes techniques et communautés du Néolithique Préceramique au Proche Orient. Technical Systems and Near Eastern PPN Communities (eds. Astruc, L., Binder, D. & Briois, F.) 153–165 (Editions APDCA, 2007).Maeda, O., Lucas, L., Silva, F., Tanno, K. I. & Fuller, D. Q. Narrowing the harvest: Increasing sickle investment and the rise of domesticated cereal agriculture in the Fertile Crescent. Quatern. Sci. Rev. 145, 226–237. https://doi.org/10.1016/j.quascirev.2016.05.032 (2016).ADS 
    Article 

    Google Scholar 
    Pichon, F. Exploitation of the cereals during the Pre-pottery Neolithic of Dja’de-el-Mughara: Preliminary results of the functional study of the glossy blades. Quatern. Int. 427, 138–151. https://doi.org/10.1016/j.quaint.2016.01.064 (2017).Article 

    Google Scholar 
    Borrell, F., & Molist, M. Projectile Points, Sickle Blades and Glossed Points. Tools and Hafting Systems at Tell Halula (Syria) during the 8th millennium cal. BC Paléorient, 33(2), 59–77 (2007). https://doi.org/10.2307/41496812.Douka, K., Efstratiou, N., Hald, M., Henriksen, P. & Karetsou, A. Dating Knossos and the arrival of the earliest Neolithic in the southern Aegean. Antiquity 91(356), 304–321. https://doi.org/10.15184/aqy.2017.29 (2017).Article 

    Google Scholar 
    Perlès, C. From the Near East to Greece: Let’s reverse the focus. Cultural elements that didn’t transfer. in How did farming reach Europe? (ed. Lichter, C.) 275–290 (Istanbul, Ege Yayınları, 2005).Gijn A.L. van & Wentink K. The role of flint in mediating identities: The microscopic evidence. in Mobilty, meaning & transformations of things, shifting contexts of material culture through time and space. (eds. Hahn, H.P. & Weiss, H.) 120–132 (Oxford, Oxbow Books, 2013).Guilaine, J. The neolithic transition: From the Eastern to the Western Mediterranean. in Times of Neolithic Transition along the Western Mediterranenn. (eds. O., García-Puchol & D. C., Salazar-García) 15–31 (New York, Springer, 2017). https://doi.org/10.1007/978-3-319-52939-4_2.Forenbaher, S. & Miracle, P. T. The spread of farming in the Eastern Adriatic. Antiquity 79(305), 514–528 (2005).Article 

    Google Scholar 
    Gabriele, M. et al. Long-distance mobility in the North-Western Mediterranean during the Neolithic transition using high resolution pottery sourcing. J. Archaeol. Sci. Rep. 28, 102050. https://doi.org/10.1016/j.jasrep.2019.102050 (2019).Article 

    Google Scholar 
    Manen, C., Perrin, T., Guilaine, J., Bouby, L., Bréhard, S., Briois, F., Durand, F., Marinval, P. & Vigne, J. D. The Neolithic transition in the western Mediterranean: A complex and non-linear diffusion process—the radiocarbon record revisited. Radiocarbon 61(2), 531–571 (2019). https://doi.org/10.1017/RDC.2018.98Ibáñez, J. J., Clemente Conte, I., Gassin, B., Gibaja, J. F., Gonzáles Urquijo, J. E., Márquez, B., Philibert, S., Rodríguez Rodríguez, A. Harvesting technology during the Neolithic in south-west Europe. in Prehistoric technology 40 years later: functional studies and the Russian legacy (eds. Longo L. & Skakun, N.) 183–95 (Oxford, Archaeopress, 2008).Gibaja, J. F., Ibáñez, J. J., González Urquijo, J. E. Neolithic Sickles in the Iberian Peninsula. in Exploring and Explaining Diversity in Agricultural Technology, EARTH 2 (eds. van Gijn, A., Whittaker, P. & Anderson, P.) 112–118 (Oxford, Oxbow Books, 2014).Mazzucco, N., Capuzzo, G., Petrinelli-Pannocchia, C., Ibáñez, J. J., Gibaja, J. F. Harvesting tools and the spread of the Neolithic into the Central-Western Mediterranean area. Quat. Int. 470(Part B), 511–528 (2018). https://doi.org/10.1016/j.quaint.2017.04.018.Mazzucco, N., Guilbeau, D., Kačar, S., Podrug, E., Forenbaher, S., Radić, D., Moore, A. T. M. The time is ripe for a change. The evolution of harvesting technologies in Central Dalmatia during the Neolithic period (6th millennium cal BC). J. Anthropol. Archaeol. 51, 88–103 (2018). https://doi.org/10.1016/j.jaa.2018.06.003Mazzucco, N. et al. Migration, adaptation, innovation: The spread of Neolithic harvesting technologies in the Mediterranean. PLoS ONE 15(4), e0232455. https://doi.org/10.1371/journal.pone.0232455 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A. “La Marmotta” (Anguillara Sabazia, RM): Scavi 1989—un abitato perilacustre di età Neolitica. Bull. Paletnol. Ital. 84, 181–315 (1993).
    Google Scholar 
    Fugazzola Delpino, M. A., Pessina, A. Le village néolithique submergé de La Marmotta (lac de Bracciano, Rome). in Le Néolithique du Nord-Ouest méditerranéen (ed. Vaquer, J.) 35–38 (Société préhistorique française, Paris, 1999)Fugazzola Delpino, M. A. La Marmotta. in Le ceramiche impresse nel Neolitico antico. Italia e Mediterraneo (eds. Fugazzola, M.A., Pessina, A. & Tiné, V) 373–395 (Istituto Poligrafico e Zecca dello Stato, Roma, 2002).Grantham, G. L. faucille et la faux. Études rurales 151–152, 103–131 (1999).Article 

    Google Scholar 
    Sigaut, F. Identification des techniques de récolte des graines alimentaires. J. Agric. Trad. Bot. Appl. 25(3), 145–161 (1978).
    Google Scholar 
    Anderson, P. C., Sigaut, F. Introduction: reasons for variability in harvesting techniques and tools. in Exploring and Explaining Diversity in Agricultural Technology, EARTH 2 (eds. van Gijn, A., Whittaker, P. & Anderson, P.) 85–93 (Oxford, Oxbow Books, 2014).Halstead, P. Two oxen ahead: Pre-mechanized farming in the Mediterranean (John Wiley & Sons, 2014).Book 

    Google Scholar 
    Fugazzola Delpino, M. A. & Mineo, M. La piroga neolitica di Bracciano (La Marmotta 1). Bull. Paletnol. Ital. 86, 197–266 (1995).
    Google Scholar 
    Fugazzola Delpino, M. A., Tinazzi, O. Dati di cronologia da un villaggio del Neolitico Antico. Le indagini dendrocronologiche condotte sui legni de La Marmotta (lago di Bracciano-Roma). in Miscellanea in ricordo di Francesco Nicosia, 1–10 (Studia Erudita, Fabrizio Serra Editore, 2010).Salavert, A. et al. Direct dating reveals the early history of opium poppy in western Europe. Sci. Rep. 10, 20263. https://doi.org/10.1038/s41598-020-76924-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghiselli, L. et al. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L. Ital. J. Agron. 11(4), 237–245 (2016).Article 

    Google Scholar 
    Pichon, F. Une moisson expérimentale de céréales, Séranon (août 2016), ArchéOrient – Le Blog, 14 octobre2016, (2016). https://archeorient.hypotheses.org/6667.Banks, W. E. & Kay, M. High-resolution casts for lithic use-wear analysis. Lithic Technol. 28(1), 27–34. https://doi.org/10.1080/01977261.2003.11721000 (2003).Article 

    Google Scholar 
    Ibáñez, J. J., Anderson, P. C., Gonzalez-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81. https://doi.org/10.1016/j.jas.2016.07.011 (2016).Article 

    Google Scholar 
    Caruso Fermé, L. Modalidades de adquisición y uso del material leñoso entre grupos cazadores-recolectores patagónicos (Argentina). Métodos y técnicas de estudios del material leñoso arqueológico. PhD Dissertation (Universidad Autónoma de Barcelona, Barcelona, 2012).Caruso Fermé, L., Clemente, I., Civalero, M.T. A use-wear analysis of wood technology of patagonian hunter-gatherers. The case of Cerro Casa de Piedra 7, Argentina. J. Archaeol. Sci. 15, 315–321 (2015). https://doi.org/10.1016/j.jas.2015.03.015.Caruso Fermé, L., Aschero, C. Manufacturing and use of the wooden artifacts. A use-wear analysis of wood technology in hunter-gatherer groups (Cerro Casa de Piedra 7 site, Argentina). J. Archaeol. Sci. 31, 102291 (2020). https://doi.org/10.1016/j.quaint.2020.10.067.Schweingruber, F. H. Anatomy of European wood: An atlas for the identification of European trees, shrubs and dwarf shrubs (Paul Haupt, 1990).
    Google Scholar 
    Rageot, M. et al. Birch bark tar production: Experimental and biomolecular approaches to the study of a common and widely used prehistoric adhesive. J. Archaeol. Method Theory 26, 276–312. https://doi.org/10.1007/s10816-018-9372-4 (2019).Article 

    Google Scholar 
    Rageot, M. et al. New insights into Early Celtic consumption practices: Organic residue analyses of local and imported pottery from Vix-Mont Lassois. PLoS ONE 14(6), e0218001. https://doi.org/10.1371/journal.pone.0218001 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arobba, D., Caramiello, R., Martino, G. P. Analisi paleobotaniche di resine dal relitto navale romano del Golfo Dianese. Rivista di Studi Liguri, LXIII-LXIV: 339–355 (1999).Marshall, D. M. Archaeological pollen: extraction from ancient resins. The American Association of Stratigraphic Palynologists. Prog. and Abstr., 38th Ann. Mtg., 34 (2005).Berglund, B. E., Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. in Handbook of Holocene Palaeoecology and Palaeohydrology. (eds. Berglund, B. E.) 455–484 (Chichester, Wiley, 1986).Traverse, A. Paleopalynology. Second Edition, 813 p. (Dordrecht, Springer, 2007).Punt W. (ed.) The Northwest European pollen flora (NEPF), vol. 2 (1980), vol. 3 (1981), vol. 4 (1984) vol. 5 (1988), vol. 6 (1991), vol. 7 (1996), vol. 8 (2003) (Elsevier, Wim Punt, Amsterdam, 1980–2003)Fægri, K. & Iversen, J. Textbook of pollen analysis (John Wiley and Sons, 1989).
    Google Scholar 
    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis 2nd edn. (Blackwell, 1991).
    Google Scholar 
    Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Pfeil, 2004).
    Google Scholar 
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord. (Marseille, Laboratoire de Botanique Historique et Palynologie, 1992).Katz, O. et al. Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: An application at Tell es-Safi/Gath Israel. J. Archaeol. Sci. 37(7), 1557–1563. https://doi.org/10.1016/j.jas.2010.01.016 (2010).Article 

    Google Scholar 
    Brown, D. A. Prospects and limits of a phytolith key for grasses in the central United States. J. Archaeol. Sci. 11, 345–368. https://doi.org/10.1016/0305-4403(84)90016-5 (1984).Article 

    Google Scholar 
    Rosen, A. M. Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. in Phytolith Systematics: Emerging Issues, Advances in Archaeological and Museum Science (eds. Rapp, G. Jr. & Mulholland, S. C.) 129–148 (New York, Plenum Press, 1992)Mulholland, S. C., Rapp Jr. G. A morphological classification of grass silica-bodies. in Phytolith Systematics: Emerging Issues, Advances in Archaeological and Museum Science (eds. Rapp, G. Jr. & Mulholland, S. C.) 65–89 (New York, Plenum Press, 1992)Piperno, D. R. Phytoliths: A comprehensive Guide for Archaeologists and Paleoecologists (Altamira Press, 2006).
    Google Scholar 
    Albert, R. M., & Weiner, S. Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. in Phytoliths: applications in earth sciences and human history, (eds. Meunier, J.D. & Colin, F.) 251–266 (Tokyo, Balkema Publisher, 2001)Albert, R. M. et al. Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): Mode of formation and archaeological significance. J. Archaeol. Sci. 35(1), 57–75. https://doi.org/10.1016/j.jas.2007.02.015 (2008).Article 

    Google Scholar 
    Albert, R. M., Ruíz, J. A. & Sans, A. PhytCore ODB: A new tool to improve efficiency in the management and exchange of information on phytoliths. J. Archaeol. Sci. 68, 98–105 (2016).Article 

    Google Scholar 
    Portillo, M., Kadowaki, S., Nishiaki, Y. & Albert, R. M. Early Neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): A comparison to ethnoarchaeological study of phytoliths and dung spherulites. J. Archaeol. Sci. 42, 107–118 (2014).Article 

    Google Scholar 
    Tsartsidou, G. et al. The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J. Archaeol. Sci. 34, 1262–1275. https://doi.org/10.1016/j.jas.2006.10.017 (2007).Article 

    Google Scholar 
    Neumann, K., Strömberg , A. E. C., Ball, T., Albert, R. M., Vrydaghs, L. Scott-Cummings, L. (International Committee for Phytolith Taxonomy ICPT). International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany, 124(2): 189–199 (2019).Anderson, P. C. Insight into plant harvesting and other activities at Hatoula, as revealed by microscopic functional analysis of selected chipped stone tools. Le site de Hatoula en Judée occidental. (eds. Lechevallier, M. & Ronen, A.) 277–293 (Paris, Association Paléorient, 1994)Fugazzola Delpino, M.A. La vita quotidiana del Neolitico. Il sito della Marmotta sul Lago di Bracciano. in Settemila anni fa il primo pane. Ambienti e culture delle società neolitiche (eds. Pessina, A. & Muscio G.) 185–192 (Udine, Museo Friulano di Storia Naturale, 1998–1999)Mineo, M. Monossili d’Europa: costruite anche per le rotte marine? in Ubi minor: le isole minori del Mediterraneo centrale: dal Neolitico ai primi contatti coloniali (eds. Guidi, A., Cazzella, A. & Nomi, F.). Scienze dell’Antichità 22, 453–475 (2016)Helwig, K., Monahan, V. & Poulin, J. The identification of hafting adhesive on a slotted antler point from a southwest Yukon ice patch. Am. Antiq. 73, 279–288. https://doi.org/10.1017/S000273160004227X (2008).Article 

    Google Scholar 
    Steigenberger, G. & Herm, C. Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 401, 1771–1784. https://doi.org/10.1007/s00216-011-5169-y (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    van den Berg, K. J., Boon, J. J., Pastorova, I. & Spetter, L. F. M. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings. J. Mass Spectrom. 35, 512–533. https://doi.org/10.1002/(SICI)1096-9888(200004)35:4%3c512::AID-JMS963%3e3.0.CO;2-3 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Behre K. E. Anthropogenic Indicators in Pollen Diagrams, A.A. (Rotterdam, Balkema, 1986).Mercuri, A. M. et al. Anthropogenic Pollen Indicators (API) from archaeological sites as local evidence of human-induced environments in the Italian peninsula. Ann. Bot. 3, 143–153 (2013).
    Google Scholar 
    Andersen, S.-T., Identification of wild grass and cereal pollen. in Danmarks Geologiske Undersøgelse (ed. Aaby, B.) 69–92 (Geological Survey of Denmark, 1978).Bottema, S. Cereal-type pollen in the Near East as indicators of wild or domestic crops. in Préhistoire de l’agriculture: nouvelles approches expérimentales et ethnographiques (ed. Anderson P. C.) 95–106 (Paris, CRA, 1992). https://doi.org/10.1007/BF00217499.Lagerås, P. Long-term history of land-use and vegetation at Femtingagölen—a small lake in the Småland Uplands, southern Sweden. Veg. Hist. Archaeobot. 5, 215–228 (1996).Article 

    Google Scholar 
    Joly, C., Barillé, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233. https://doi.org/10.1016/j.revpalbo.2007.04.003 (2007).Article 

    Google Scholar 
    Punt, W. Umbelliferae. Rev. Palaeobot. Palynol. 42, 155–364 (1984).Article 

    Google Scholar 
    Ellis, M. B. & Ellis, J. P. Microfungi of Land Plants. An Identification Handbook (London, Croom Helm, 1985) (Figure 1270).Ellis, M. B. & Ellis, J. P. Microfungi of Land Plants. An Identification Handbook (London, Croom Helm, 1985) (Figures 174; 176).Rottoli, M., Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. in The Origins and Spread of Domestic Plants in Southwest Asia and Europe. (eds. Colledge, S. & Conolly, J.) 141–154 (Routledge, New York, 2016)Gurova, M. Prehistoric sickles in the collection of the National Museum of Archaeology in Sofia. in Southeast Europe and Anatolia in Prehistory: Essays in Honor of Vassil Nikolov on his 65th Anniversary (eds. Bacvarov, K. & Gleser, E.) 159–165 (Bonn, Verlag Dr. Rudolf Habelt GmbH, 2016)Sidéra, I. Nouveaux éléments d’origine proche-orientale dans le Néolithique ancien balkanique. in Analyse de l’industrie osseuse. in Préhistoire d’Anatolie. Genèse de deux mondes (ed. Otte, M.), 215–239 (Liège, ERAUL, 1997)Mellaart, J. Excavations at Hacılar: Fourth preliminary report, 1960. Anat. Stud. Anat. Stud. 11, 39–75 (1961).Article 

    Google Scholar 
    Nag, P. K., Goswami, A., Ashtekar, S. P. & Pradhan, C. K. Ergonomics in sickle operation. Appl. Ergon. 19(3), 233–239 (1988).CAS 
    Article 

    Google Scholar 
    Astruc, L., Tkaya, M. B. & Torchy, L. D. l’efficacité des faucilles néolithiques au Proche-Orient: approche expérimentale. Bulletin de la Société préhistorique française 109(4), 671–687 (2012).Article 

    Google Scholar 
    Sigaut, F. Les techniques de récolte des grains : identification, localisation, problèmes d’interprétation. in Rites et rythmes agraires (ed. Cauvin, M.-C.) 31–43 (Lyon, Maison de l’Orient et de la Méditerranée Jean Pouilloux, 1991)Magri, D. Late Quaternary vegetation history at Lagaccione near Lago di Bolsena (central Italy). Rev. Palaeobot. Palynol. 106(3–4), 171–208 (1999).Article 

    Google Scholar 
    Gale, R., & Cutler, D. F. Plants in archaeology: identification manual of vegetative plant materials used in Europe and the Southern Mediterranean to c. 1500 (Westbury and Royal Botanic Gardens, Kew, 2000).Chabal, L. & Feugère, M. L. Le mobilier organique des puits antiques et autres contextes humides de Lattara. Lattara 18, 137–188 (2005).
    Google Scholar 
    Chabal, L. (ed.) Quatre puits de l’agglomération routière gallo-romaine d’Ambrussum (Villetelle, Hérault). Supplément. Revue Archéologique de Narbonnaise, 42: 65–71 (2013).Caruso Fermé, L. & Piqué Huerta, R. Landscape and forest exploitation at the ancient Neolithic site of La Draga (Banyoles, Spain). The Holocene, 24(3): 266 (2014).Boschian, G. Il Riparo “Ermanno de Pompeis” presso l’Eremo di San Bartolomeo di Legio. Scavi 1990–1999. in Atti della XXXVI Riunione Scientifica IIPP, Preistoria e Protostoria dell’Abruzzo, Chieti-Celano, 27–30 settembre 2001, 105–116 (IIPP; Firenze, 2003).Radi, G. & Danese, E. L’abitato di Colle Santo Stefano di Ortucchio (L’Aquila). in Atti della XXXVI Riunione Scientifica IIPP, Preistoria e Protostoria dell’Abruzzo, Chieti-Celano, 27–30 settembre 2001, 145–161 (IIPP; Firenze, 2003).De Francesco, A. M., Bocci, M., Crisci, G. M., & Francaviglia, V. Obsidian provenance at several Italian and Corsican archaeological sites using the non-destructive X-ray fluorescence method. in Obsidian and ancient manufactured glass (eds. Liritzis, I., & Stevenson, C. M.) 115–129 (Albuquerque, UNM Press, 2012).Degano, I. et al. Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves. PLoS ONE 14, e0213473 (2019).CAS 
    Article 

    Google Scholar 
    Nardella, F. et al. Chemical investigations of bitumen from Neolithic archaeological excavations in Italy by GC/MS combined with principal component analysis. Anal. Methods 11, 1449–1459. https://doi.org/10.1039/c8ay02429d (2019).CAS 
    Article 

    Google Scholar 
    Rageot, M. et al. Management systems of adhesive materials throughout the Neolithic in the North-West Mediterranean. J. Archaeol. Sci. 126, 105309 (2021).Article 

    Google Scholar 
    Binder, D., Bourgeois, G., Benoist, F. & Vitry, C. Identification de brai de bouleau (betula) dans le néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d’Archéométrie 14, 37–42 (1990).Article 

    Google Scholar 
    Vuorela, I. Relative pollen rain around cultivated fields. Acta Bot. Fenn. 102, 1–27 (1973).
    Google Scholar 
    Robinson, M. & Hubbard, R. N. L. B. The transport of pollen in the bracts of hulled cereals. J. Archaeol. Sci. 4(2), 197–199. https://doi.org/10.1016/0305-4403(77)90067-X (1977).Article 

    Google Scholar 
    Hall, V.A., The role of harvesting techniques in the dispersal of pollen grains of Cerealia. Pollen et Spores, XXX, 2, pp. 265–270.Portillo, M., Llergo, Y., Ferrer, A. & Albert, R. M. Tracing microfossil residues of cereal processing in the archaeobotanical record: an experimental approach. Veg. Hist. Archaeobot. 26(1), 59–74. https://doi.org/10.1007/s00334-016-0571-1 (2017).Article 

    Google Scholar 
    Negri, G. Nuovo erbario figurato (Hoepli ed., Milano, 1981).Paris R. R. & Moyse H. Matière Médicale. Vol 2°, (Masson, Paris. 1976).Bulgarelli, G. & Flamigni, S. Le piante tossiche e velenose (Hoepli ed., Milano, 2010).Les, D. H. Aquatic Dicotyledons of North America: Ecology, Life History, and Systematics (CRC Press, 2017).Book 

    Google Scholar 
    Curti, L. Herbarium, un’inedita collezione di piante del XVIII secolo conservata presso l’orto Botanico dell’Università di Padova (Offset Invicta S.p.A., Padova, 1992).Rottoli, M. Zafferanone selvatico (Carthamus lanatus) e cardo della Madonna (Silybum marianum), piante raccolte o coltivate nel Neolitico antico a “La Marmotta”? Bollettino di Paletnologia Italiana, 91–92, 47–61 (2000–2001).Rottoli, M. “La Marmotta”, Anguillara Sabazia (RM), scavi 1989. Analisi paletnobotaniche: prime risultanze. Bullettino di Paletnologia Italiana 84, 305–315 (1993).Van Geel, B. Non-pollen palynomorphs. in Tracking Environmental Change Using Lake Sediments: Terrestrial, vol. 3. (ed. Smol, J. P., Birks, H. J. B., Last W. M.) 99–119 (Algal and Siliceous Indicators, New York, 2001)Hawksworth, David L., van Geel, Bas, Wiltshire, Patricia E. J. The enigma of the Diporotheca palynomorph. Rev. Palaeobot. Palynol. 235, 94–98 (2016). https://doi.org/10.1016/j.revpalbo.2016.09.010.Krug, J. C., Benny, G. L., Keller, H. W. Coprophilous fungi. In Biodiversity of Fungi. Inventory and Monitoring Methods (ed. Foster M., Bill, G.) 467–499 (Elsevier Science, Amsterdam, 2004). More

  • in

    Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. https://doi.org/10.1038/359139a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211. https://doi.org/10.1016/0198-0149(90)90038-w (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323. https://doi.org/10.1357/0022240943077145 (1994).Article 

    Google Scholar 
    Jackson, G. Coagulation Theory and Models of Oceanic Plankton Aggregation (CRC Press, 2005).
    Google Scholar 
    Grossart, H. P., Kiorboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: Growth and interactions. Appl. Environ. Microb. 69, 3500–3509. https://doi.org/10.1128/aem.69.6.3500-3509.2003 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047. https://doi.org/10.1128/AEM.69.6.3036 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast pacific. Deep Sea Res. A 34, 267–285. https://doi.org/10.1016/0198-0149(87)90086-0 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Buesseler, K. O. et al. VERTIGO (vertical transport in the global ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539. https://doi.org/10.1016/j.dsr2.2008.04.024 (2008).ADS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiorboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 266, 194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230. https://doi.org/10.3354/ame010223 (1996).Article 

    Google Scholar 
    Kellogg, C. T. E. et al. Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: Elevated hydrolytic enzyme activity on sinking aggregates. Polar Biol. 34, 2007–2023. https://doi.org/10.1007/s00300-011-1015-0 (2011).Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599. https://doi.org/10.1038/nrmicro2386 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiao, N. & Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 77, 7439–7444. https://doi.org/10.1128/AEM.05640-11 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698. https://doi.org/10.1038/nrmicro3326 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581. https://doi.org/10.1073/pnas.1512307113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851. https://doi.org/10.1038/s41467-020-16620-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65, 514–522 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 115, E6799–E6807. https://doi.org/10.1073/pnas.1802470115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jurgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297. https://doi.org/10.3389/fmicb.2015.01297 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziervogel, K., Steen, A. D. & Arnosti, C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7, 1007–1015. https://doi.org/10.5194/bg-7-1007-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214. https://doi.org/10.1073/pnas.0709765105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Perez, M. et al. Genomes of surface isolates of Alteromonas macleodii: The life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696. https://doi.org/10.1038/srep00696 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471. https://doi.org/10.1128/AEM.02570-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bachmann, J. et al. Environmental drivers of free-living vs particle-attached bacterial community composition in the mauritania upwelling system. Front. Microbiol. 9, 2836. https://doi.org/10.3389/fmicb.2018.02836 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100. https://doi.org/10.1016/s0168-6496(01)00206-9 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514. https://doi.org/10.1111/1462-2920.12466 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 4354. https://doi.org/10.1126/sciadv.aaz4354 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708. https://doi.org/10.1038/s41396-020-00880-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11. https://doi.org/10.3354/meps179001 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. https://doi.org/10.4319/lo.2000.45.7.1467 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 116, 23309–23316. https://doi.org/10.1073/pnas.1908512116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. https://doi.org/10.4319/lo.2001.46.2.0267 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965. https://doi.org/10.1038/ncomms11965 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiorboe, T., Grossart, H. P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006. https://doi.org/10.1128/AEM.68.8.3996-4006.2002 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaqué, D., Duarte, C. M. & Marrasé, C. Influence of algal population dynamics on phytoplankton colonization by bacteria: Evidence from two diatom species. Mar. Ecol. Prog. Ser. 65, 201–203. https://doi.org/10.3354/meps065201 (1990).ADS 
    Article 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Bacterial production and growth efficiencies: Direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. https://doi.org/10.4319/lo.2000.45.2.0436 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Duhamel, S. et al. Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 4, 941–956. https://doi.org/10.5194/bg-4-941-2007 (2007).ADS 
    Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309. https://doi.org/10.1146/annurev-marine-122414-033938 (2016).ADS 
    Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: Bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527. https://doi.org/10.3389/fmars.2020.00527 (2020).Article 

    Google Scholar 
    Thomas, T. et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3, e3252. https://doi.org/10.1371/journal.pone.0003252 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varbanets, L. D. et al. The black sea bacteria-producers of hydrolytic enzymes. Mikrobiol. Z. 73, 9–15 (2011).CAS 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360. https://doi.org/10.1111/j.1462-2920.2012.02787.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gram, L., Grossart, H. P., Schlingloff, A. & Kiorboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116. https://doi.org/10.1128/AEM.68.8.4111 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N. et al. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396. https://doi.org/10.1111/1462-2920.14954 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10, 2582–2592. https://doi.org/10.1038/ismej.2016.66 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H. P. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 127–140. https://doi.org/10.3354/ame015127 (1998).Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318. https://doi.org/10.4319/lo.2001.46.6.1309 (2001).ADS 
    Article 

    Google Scholar 
    Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085. https://doi.org/10.1038/s41467-021-23875-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hygum, B. H., Petersen, J. W. & Søndergaard, M. Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. https://doi.org/10.1093/plankt/19.1.97 (1997).CAS 
    Article 

    Google Scholar 
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812. https://doi.org/10.1038/nrmicro1750 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 2569. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N., Weber, P. K., Alonso-Saez, L., Moran, X. A. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11, 641–650. https://doi.org/10.1038/ismej.2016.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8(1), 15472. https://doi.org/10.1038/ncomms15472 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624. https://doi.org/10.5194/bg-7-2613-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193. https://doi.org/10.4319/lo.2009.54.1.0182 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Schneider, B., Schlitzer, R., Fischer, G. & Nöthig, E.-M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002gb001871 (2003).Article 

    Google Scholar 
    Jannasch, H. W. & Wirsen, C. O. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43, 1116–1124. https://doi.org/10.1128/AEM.43.5.1116-1124.1982 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep Sea Res. II(49), 2109–2123. https://doi.org/10.1016/s0967-0645(02)00030-9 (2002).ADS 
    Article 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085. https://doi.org/10.5194/bg-10-4073-2013 (2013).ADS 
    Article 

    Google Scholar 
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms I Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).CAS 
    Article 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 11 (1999).Article 

    Google Scholar 
    Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Manz, W., Amann, R., Vancanneyt, M., Schleifer, K.-H. & Ludwig, W. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. https://doi.org/10.1099/13500872-142-5-1097 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 (1995).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. https://doi.org/10.1128/AEM.56.6.1919-1925.1990 (1990).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866. https://doi.org/10.1073/pnas.0809329105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polerecky, L. et al. Look@NanoSIMS: A tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023. https://doi.org/10.1111/j.1462-2920.2011.02681.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Musat, N. et al. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. https://doi.org/10.1016/j.syapm.2014.02.002 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: Magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15264 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    Revisiting implementation of multiple natural enemies in pest management

    Model equationsOur host-parasite mathematical model involves the following host population components: ‘susceptible’ hosts denoted by (S), and hosts infected by k distinct types of parasites ((k=1,2,…,n)), the corresponding population numbers of infected hosts are denoted by (I_{i_1,i_2,…,i_k}), where each index (i_j) can take a value from 1, …, n (to avoid repeated counting of the same infection configuration, we require throughout the paper that (i_1 More

  • in

    Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages

    Wang C, Wang S. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol. 2017;62:73–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA Entomopathogenic fungi: new insights into host-pathogen interactions. Advances in Genetics. 2016. Elsevier Ltd.Lu HL, St. Leger RJ. Insect immunity to entomopathogenic fungi. Adv Genet. 2016;94:251–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan S, Tao X, Huang S, Chen S, Xu A. Comparative immune systems in animals. Annu Rev Anim Biosci. 2014;2:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.PubMed 
    Article 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;28:341–55.Article 

    Google Scholar 
    Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen. Science 2005;310:1781.CAS 
    PubMed 
    Article 

    Google Scholar 
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.PubMed 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun. 2017;8:15172.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 2018;9:2478.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol. 2010;6:261–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth M, Goettler W, Koehler S, Strohm E. Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol. 2010;24:463–77.Article 

    Google Scholar 
    Wang X, Yang X, Zhou F, Tian ZQ, Cheng J, Michaud JP, et al. Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection. Biol Control. 2022;169:104895.CAS 
    Article 

    Google Scholar 
    Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, et al. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 2015;9:1793–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Stuart AE. Weeding and grooming of pathogens in agriculture by ants. Proc R Soc B Biol Sci. 2001;268:1033–9.CAS 
    Article 

    Google Scholar 
    Currie CR, Scottt JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999;398:701–4.CAS 
    Article 

    Google Scholar 
    Currie CR, Bot ANM, Boomsma JJ. Experimental evidence of a tripartite mutualism: Bacteria protect ant fungus gardens from specialized parasites. Oikos 2003;101:91–102.Article 

    Google Scholar 
    Um S, Fraimout A, Sapountzis P, Oh D-CC, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3:3250.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grubbs KJ, Surup F, Biedermann PHW, McDonald BR, Klassen JL, Carlson CM, et al. Cycloheximide-producing streptomyces associated with xyleborinus saxesenii and xyleborus affinis fungus-farming ambrosia beetles. Front Microbiol. 2020;11:1–12.Article 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Arnam EB, Currie CR, Clardy J. Defense contracts: Molecular protection in insect-microbe symbioses. Chem Soc Rev. 2018;47:1638–51.PubMed 
    Article 

    Google Scholar 
    Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem. 2016;12:314–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lackner G, Peters EE, Helfrich EJN, Piel J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci USA. 2017;114:E347–E356.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA. 2011;108:1955–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Strupat K, Svatoš A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016;10:527–31.PubMed 
    Article 

    Google Scholar 
    Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat Microbiol. 2020;5:498–510.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Roode JC, Lefèvre T. Behavioral immunity in insects. Insects 2012;3:789–820.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: Symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. mBio. 2019;10:e02376-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, et al. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol. 2008;22:864–71.Article 

    Google Scholar 
    Bunker ME, Elliott G, Martin MO, Arnold AE, Weiss SL. Vertically transmitted microbiome protects eggs from fungal infection and egg failure. Anim Microbiome. 2021;3:43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nyholm SV. In the beginning: Egg-microbe interactions and consequences for animal hosts: Egg microbiomes in animals. Philos Trans R Soc B Biol Sci. 2020;375:20190593.CAS 
    Article 

    Google Scholar 
    Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick M, Casadevall A, Microbiology M, et al. Melanization is an important antifungal defense mechanism in Galleria mellonella hosts. bioRxiv 2022.04.02.486843.Yokoi K, Hayakawa Y, Kato D, Minakuchi C, Tanaka T, Ochiai M, et al. Prophenoloxidase genes and antimicrobial host defense of the model beetle, Tribolium castaneum. J Invertebr Pathol. 2015;132:190–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang CY, et al. Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis. Front Immunol. 2017;8:1–14.
    Google Scholar 
    Zhang J, Lu A, Kong L, Zhang Q, Ling E. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem. 2014;289:35891–906.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soluk DA. Postmolt susceptibility of ephemerella larvae to predatory stoneflies: constraints on defensive armour. Oikos 1990;58:336.Article 

    Google Scholar 
    Kanyile SN, Engl T, Kaltenpoth M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J Exp Biol. 2022;225:1–9.Article 

    Google Scholar 
    Flórez LV, Kaltenpoth M. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ Microbiol. 2017;19:3674–88.PubMed 
    Article 
    CAS 

    Google Scholar 
    Uberti A, Smaniotto MA, Giacobbo CL, Lovatto M, Lugaresi A, Girardi GC. Novo inseto praga na cultura do pessegueiro: biologia de Lagria villosa Fabricius, 1783 (Coleoptera: Tenebrionidae) alimentados com pêssego. Sci Electron Arch. 2017;10:72–76.
    Google Scholar 
    Stammer HJ. Die Symbiose der Lagriiden (Coleoptera). Z für Morphol und Ökologie der Tiere. 1929;15:1–34.Article 

    Google Scholar 
    Boucias DG, Pendland JC Principles of Insect Pathology. 1998. Springer Science + Business Media, LLC, New York.Garcia MA, Pierozzi IJ. Aspectos da biologia e ecologia de Lagria villosa Fabricius, 1781 (Coleoptera, Lagriidae). Rev Bras Biol. 1982;42:415–20.
    Google Scholar 
    Vega FE, Posada F, Catherine Aime M, Pava-Ripoll M, Infante F, Rehner SA. Entomopathogenic fungal endophytes. Biol Control. 2008;46:72–82.Article 

    Google Scholar 
    Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J. 2007;99:1377–81.Article 

    Google Scholar 
    Hallouti A, Ait Hamza M, Zahidi A, Ait Hammou R, Bouharroud R, Ait Ben Aoumar A, et al. Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae)) in Moroccan Argan forests and nearby area: impact of soil factors on their distribution. BMC Ecol. 2020;20:1–13.Article 
    CAS 

    Google Scholar 
    Iwanicki NS, Pereira AA, Botelho ABRZ, Rezende JM, Moral RDA, Zucchi MI, et al. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp in insects, soil and sugarcane roots. Sci Rep. 2019;9:1–12.CAS 
    Article 

    Google Scholar 
    Roberts DW, St. Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Adv Appl Microbiol. 2004;54:1–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of bacterial symbionts with and without genome erosion between a beetle host and the plant environment. Front Microbiol. 2021;12:715601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol. 2000;44:49–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013;4:357–74.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grizanova EV, Coates CJ, Dubovskiy IM, Butt TM. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virulence 2019;10:999–1012.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eaton WD, Love DC, Botelho C, Meyers TR, Imamura K, Koeneman T. Preliminary results on the seasonality and life cycle of the parasitic dinoflagellate causing bitter crab disease in Alaskan Tanner crabs (Chionoecetes bairdi). J Invertebr Pathol. 1991;57:426–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field RH, Chapman CJ, Taylor AC, Neil DM, Vickerman K. Infection of the Norway lobster Nephrops norvegicus by a Hematodinium-like species of dinoflagellate on the west coast of Scotland. Dis Aquat Organ. 1992;13:1–15.Article 

    Google Scholar 
    Threlkeld ST, Chiavelli DA, Willey RL. The organization of zooplankton epibiont communities. Trends Ecol Evol. 1993;8:317–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duneau D, Ebert D. The role of moulting in parasite defence. Proc R Soc B Biol Sci. 2012;279:3049–54.Article 

    Google Scholar 
    Vandenberg JD, Ramos M, Altre JA. Dose-Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environ Entomol. 1998;27:1017–21.Article 

    Google Scholar 
    Vey A, Fargues J. Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineta larvae during ecdysis. J Invertebr Pathol. 1977;30:207–15.Article 

    Google Scholar 
    Reynolds SE, Samuels RI. Physiology and biochemistry of insect moulting fluid. Adv Insect Phys. 1996;26:157–232.CAS 
    Article 

    Google Scholar 
    Lopanik NB. Chemical defensive symbioses in the marine environment. Funct Ecol. 2014;28:328–40.Article 

    Google Scholar 
    Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA. 2009;106:17805–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 2006;311:81–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li H, Sosa-Calvo J, Horn HA, Pupo MT, Clardy J, Rabeling C, et al. Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants. Proc Natl Acad Sci USA. 2018;115:10720–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW, et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci. 2014;111:6359–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engl T, Kroiss J, Kai M, Nechitaylo TY, Svatoš A, Kaltenpoth M. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc Natl Acad Sci USA. 2018;115:E2020–E2029.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 1989;246:116–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gil-Turnes MS, Fenical W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull. 1992;182:105–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann KH Insect Molecular Biology and Ecology. 2015. CRC Press.Eisner T, Morgan RC, Attygalle AB, Smedley SR, Herath KB, Meinwald J. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J Exp Biol. 1997;200:2493–2500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio. 2020;11:e02430-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, et al. Insect‐associated bacteria assemble the antifungal butenolide gladiofungin by non‐canonical polyketide chain termination. Angew Chem. 2020;132:23322–6.Article 

    Google Scholar 
    Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem Biol. 2018;13:2414–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.Article 
    CAS 

    Google Scholar 
    Weiss B, Kaltenpoth M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front Microbiol. 2016;7:1–10.Article 

    Google Scholar 
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paschke C, Leisner A, Hester A, Maass K, Guenther S, Bouschen W, et al. Mirion – A software package for automatic processing of mass spectrometric images. J Am Soc Mass Spectrom. 2013;24:1296–306.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Hotspot in ferruginous rock may have serious implications in Brazilian conservation policy

    Pseudocryptic diversityThe richness was the measure of the subterranean diversity, we surveyed all data about previous records for Brazilian Collembola cave species, ecological status, lithology, and distribution from the literature, and included 11 newly found pseudocryptic species from subterranean habitats in iron and limestone rock. The pseudocryptic species were verified by comparison of chaetotaxy and “micro-morphology” through optic and scanning microscopy of disjunct populations of a widespread morphotype. The imagery was compared under hypotheses of chaetotaxic and morphologic homology, previously defined by different authors. Those populations with consistent discrete chaetotaxic and morphologic patterns were assumed to be independent species, therefore they were taxonomically diagnosed, named, and ordered in a dichotomic identification key with all Brazilian species of the genus.MicroscopySpecimens were preserved in ethanol 70% and mounted on slides following Jordana et al.31, after clearing using Nesbitt’s solution for study under phase contrast microscope, line drawings were made with help of a drawing tube. For scanning electronic microscope (SEM) study, specimens were dehydrated by ethanol, dried in a critical point dryer, and covered in gold.HomologyThe terminology used in the diagnoses for the hypotheses of homology followed: labial chaetotaxy after Gisin32 with additions of Zhang and Pan33, Fjellberg34 for labial palp papillae and maxillary palp; postlabial chaetotaxy after Chen and Christiansen35, with adaptations of Cipola et al.36 for J series; clypeal chaetotaxy after Yoshii and Suhardjono37; labral chaetotaxy after Cipola et al.38; unguiculus lamellae after Hüther39; Anterior dens chaetotaxy after Oliveira et al.40; Mari-Mutt41 for dorsal head chaetotaxy, with additions of Soto-Adames42; Szeptycki43 and Zhang and Deharveng44 for S-chaetotaxy; and Szeptycki45 for dorsal chaetotaxy, with additions and modifications provided by Soto-Adames42 and Zhang et al.46. Symbols used to depict the chaetotaxy are presented in Fig. 4A–C. Codes will be used in italics along the text to replace the morphological description of each chaeta and sensillum type. Additional information about morphology and chaetotaxy of discussed species was obtained from the literature.Abbreviations used in the diagnosesAnt–antennal segment(s); b.c.–basal chaeta(e), t.a.–terminal appendage of the maxillary palp; l.p.–lateral process of labial papilla E, lpc–labial proximal chaeta(e); Th–thoracic segment; Abd–abdominal segment(s); Omt–trochanteral organ; a.e.–antero-external lamella, a.i.–antero-internal lamella, a.t.–unguis apical tooth, b.a.–basal anterior tooth of unguis, b.p.–basal posterior tooth of unguis, m.t.–unguis median tooth, p.i.–postero-internal lamella, p.e.–postero-external lamella; mac–macrochaeta(e), mes–mesochaeta(e), mic–microchaeta(e), ms–specialized microchaeta(e), psp–pseudopore(s), sens–specialized ordinary chaeta(e) (sensillum), MSS–Mesovoid Shallow Substratum.Ecological statusTo avoid subjectivity and ambiguity to determine the ecological status of the species, we assumed to be a troglobite all the species with some degree of troglomorphism exclusively distributed in the subterranean environment, either caves, MSS, or both. Species distributed in the surface and subterranean habitats were assumed to be troglophiles.Identification Key for the known and new species of the genus Trogolaphysa recorded in Brazil
    Taxonomic diagnoses and morphological platesType materials are deposited in the Coleção de Referência de Fauna de Solo, Universidade Estadual da Paraíba (CRFS-UEPB) and Museu Nacional Rio de Janeiro, Universidade Federal do Rio de Janeiro (MNRJ-UFRJ).

    Additional records in Supplementary Material S1, taxonomic references in S2.

    Family Paronellidae Börner, 1906

    Subfamily Paronellinae Börner, 1906

    Tribe Paronellini sensu Zhang et al., 2019

    Genus Trogolaphysa Mills, 1938

    (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11)

    Figure 3Trogolaphysa sp.: habitus lateral view. (A, B) specimen fixed in ethanol. (C, D) SEM photographs.Full size imageFigure 4Trogolaphysa sp. SEM: general body chaetae. (A) Antennal chaetae, sensilla and scales: 1—macrochaeta with short ciliation, 2—macrochaeta with long ciliation, 3—microchaeta with long ciliation, 4—microchaeta with short ciliation, 5—finger-shaped sens, 6—wrinkly sens, 7—coffee bean shaped sens, 8—rod sens, 9—spine-like sens, 10—Ant IV subapical-organ, 11—lanceolate scale, 12—rounded scales. (B) Head chaetae and scales: 1—strait macrochaeta with long ciliation, 2—blunt macrochaeta, 3—smooth chaeta, 4—blunt chaeta, 5—strait microchaeta with long ciliation, 6—labial r microchaeta, 7—cephalic anterior scale, 8—cephalic posterior scale. (C) Body and appendages chaetae, sens and scales: 1—bothriotrichum, 2—blunt macrochaeta, 3—blunt mesochaeta, 4—dens external ciliate chaeta, 5—smooth microchaeta, 6—blunt microchaeta, 7—fan-shape chaeta, 8—dental spine, 9—‘al’ sens, 10—‘ms’ sens, 11—lanceolate scale, 12—intersegmental scale.Full size imageFigure 5Trogolaphysa sp. SEM: antenna: (A) Ant IV dorsal view. (B) Ant IV apex dorsal view, arrow indicates finger-shaped and wrinkly sens. (C) Ant IV apex ventral view, left arrow indicates Ant IV subapical-organ, right arrow point one sensillum type A8. (D) Ant II dorsal view, dashed line indicates rod sens. (E) Detail of the sensilla of the Ant III apical organ (red). (F) Ant I dorsal view spine like sens (arrows indicate the sensilla in red). (G) Detail of the Ant I basal, arrow indicates psp and antenobasal organ (yellow and red respectively).Full size imageFigure 6Trogolaphysa sp. SEM: head and mouthpart chaetotaxy. (A) clypeus, (B) dorsal head, (C) eyes (red) circled by dashed line, arrow indicates antenobasal organ and psp, (D) ventral head, (E) maxillary palp and sublobal plate (right side), (F) detail of maxillary palp.Full size imageFigure 7Trogolaphysa sp. SEM: thorax and abdomen dorsal chaetotaxy: (A) Th II, (B) Th III, (C) Abd I-II, (D) Abd III.Full size imageFigure 8Trogolaphysa sp. SEM: (A) Abd IV dorsal chaetotaxy, (B) Abd V dorsal chaetotaxy, (C) anal pore and male genital papilla.Full size imageFigure 9Trogolaphysa. sp. SEM: empodial complex III (A) external lamella of unguis with external teeth (pseudonychia, yellow), (B) unguis and unguiculus lateral view, unguis internal lamella with basal, medial and apical teeth (blue, red and yellow respectively), unguiculus with internal and external teeth, tenent hair capitate (white arrow), (C) lateral view, unguiculus lamellae, tenent hair acuminate (white arrow).Full size imageFigure 10Trogolaphysa sp. SEM: appendages (A) Metatrochanteral organ with pseudopores (alveoli marked in yellow, white arrows indicate pseudopores), (B) ventral tube posterior chaetae, (C) ventral tube anterior chaetae, (D) Tenaculum.Full size imageFigure 11Trogolaphysa sp. SEM: furca. (A) manubrial plate pseudopores (yellow), (B) antero-proximal chaetae of dens, (C) dens anterior view, (D) mucro.Full size imageDiagnosisHabitus typical of this genus (Fig. 3A–D), hyaline scales presents on Ant. I–II, head, body, and ventral face of furcula (Figs. 3C–D, 4A–C, 5D, F, 7, 8, 11C), Ant IV smooth or annulated and never subdivided in two (Fig. 5A); eyes 0–8 (ex. Fig. 6C); prelabral and labral formula 4/5,5,4 (prelabral smooth or ciliate, pma smooth chaetae) (Fig. 6A); antennobasal-organ present (Fig. 6C); labial chaetae L1–2 not reduced (Fig. 6E); sublobal plate of maxillary palp with 2 chaetae (Fig. 6E); Th II normally with a5 mac and p3 complex with variable number of mac, and Th III with p3 mac present or abset (Fig. 7A, B), abdominal segments II–IV with 2, 3, 3 bothriotricha (Figs. 7C, D, 8A); unguis with three external lamellae and unguiculus with p.e. lamella serrate or smooth (Fig. 9A–C); trochanteral organ with 2–4 psp (Fig. 10A) collophore anterior side with 2–3 distal mac (Fig. 10C); tenaculum with four teeth on each branch and one anterior chaeta (Fig. 10D); manubrium without spines, manubrial plate with 2–3 psp (Fig. 11A); anterior proximal dens with b.a., b.m. and i5 chaetae (Fig. 11B); dens with 1–2 rows of spines; mucro square or rectangular but relatively short, with 3–5 teeth (Fig. 11D).Trogolaphysa bellinii sp. nov. Oliveira, Lima & ZeppeliniFigures 12, 13 and 14, Tables 1 and 2Figure 12Trogolaphysa bellinii sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 13Trogolaphysa bellinii sp. nov.: Dorsal chaetotaxy: (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 14Trogolaphysa bellinii sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageTable 2 Trogolaphysa species of the Neotropical Region, comparative morphology.Full size tableType material. Holotype female in slide (15,482/CRFS-UEPB): Brazil, Minas Gerais State, Barão de Cocais municipality, cave MDIR-0028, next to “Mina de Brucutu”, 19°52′48.7″S, 43°26′13.6″W, 19–23.viii.2019, Carste team coll. Paratypes in slides (15,468, 15,483/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (15,519, 15,576/CRFS-UEPB donated to MNJR): 2 females, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.53–1.75 mm (n = 5), holotype 1.70 mm.Head. Ratio antennae: trunk = 1: 1.29–1.95 (n = 5), holotype = 1: 1.95; Ant III shorter than Ant II; Ant segments ratio as I: II, III, IV = 1: 1.80–2.24, 0.85–2.08, 0.85–2.08, holotype = 1: 1.80, 0.85, 1.34. Antennal chaetotaxy: Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about eight rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two mic smooth chaetae externally, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with four sub-apical finger-shaped sens, one wrinkly sens and two subapical rod sens, ventrally with one apical psp, about six wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0, rarely 2 + 2. Head dorsal chaetotaxy (Fig. 12A) with 12 An (An1a–3), six A (A0–5), five M (M1–5), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pa5 and Pm3 as mes, An1a–3a with 10 mac plus two mes, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 12B). Ventral chaetotaxy with 35–38 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of four to seven mes chaetae distally (Fig. 12B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 12B). Maxillary palp with t.a. smooth and 1.23× larger than b.c.Thorax dorsal chaetotaxy (Fig. 13A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.04–1.36: 1 (n = 5), holotype = 1.05: 1.Abdomen dorsal chaetotaxy (Fig. 13B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and four fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with two mic (A1, A6), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3, F3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by five and two (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.70–4.37 (n = 5), holotype = 1: 4.37.Legs. Trochanteral organ diamond shape with about 20 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 14A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with lamellae smooth and lanceolate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 14B); ratio unguis: unguiculus = 1.56–1.79: 1 (n = 5), holotype = 1.56: 1. Tibiotarsal smooth chaetae about 0.9 × smaller than unguiculus; tenent hair capitate and about 0.55 × smaller than unguis outer lamella.Collophore (Fig. 14C). Anterior side with 12 ciliate, apically acuminate chaetae, five proximal, four subdistal (as mes) and three distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 14D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 24 external and 25 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.29 (holotype).Etymology. Species named after Dr. Bruno C. Bellini in recognition of his work on Brazilian Collembola.Remarks. Trogolaphysa bellinii sp. nov. resembles T. bessoni, T. epitychia sp. nov., and T. mariecurieae sp. nov. by 0 + 0 eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II with 3 + 3 mac, and Th III without mac, but can be distinguished by presenting Abd IV with 4 + 4 central mac (A3, A5, B4–5); T. epitychia sp. nov. with 3 + 3 central mac on Abd IV, T. mariecurieae sp. nov. with 2 + 2 central mac on Abd IV.Trogolaphysa lacerta sp. nov. Lima, Oliveira & ZeppeliniFigures 15, 16 and 17, Tables 1 and 2Figure 15Trogolaphysa lacerta sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 16Trogolaphysa lacerta sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 17Trogolaphysa lacerta sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (10,311/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Rio Acima municipality, cave GAND-115, next to “Lapa do Calango”, 20°04′08.4″S, 43°40′09.9″W, 10.ii–20.iii.2014, Carste team coll. Paratypes in slides (10,312, 10,309/CRFS-UEPB): 2 males, same data as holotype. Paratypes in slides (10,313, 10,314/CRFS-UEPB donated to MNJR): 2 females, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.31–2.43 mm (n = 5), holotype 1.86 mm.Head. Ratio antennae: trunk = 1: 1.33–1.46 (n = 2), holotype = 1: 1.46; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.78–2.05: 1.5–1.64: 2.64–2.83, holotype = 1: 1.80: 1.64: 2.64. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about five rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens on, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with three sub-apical finger-shaped sens, one wrinkly sens and two apical rod sens, ventrally with one apical psp, one longitudinal external row with two subapical wrinkly sens and two medial finger-shaped sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0, rarely 3 + 3. Head dorsal chaetotaxy (Fig. 15A) with 15 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–2, Pa4–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3, Pa5 and Pp7 as mes, An1a–3a with 11 mac plus four meso, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 15B). Ventral chaetotaxy with 36–38 ciliate chaetae and 1 reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of three to five mes chaetae distally (Fig. 15B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 15B). Maxillary palp with t.a. smooth and 1.28× larger than t.a.Thorax dorsal chaetotaxy (Fig. 16A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with six mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.09–1.46: 1 (n = 5), holotype = 1.09: 1.Abdomen dorsal chaetotaxy (Fig. 16B, C). Abd I m series with six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), four mic (p6e, p7i–7p), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with seven, two and four fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), five mic (T1, T3, T5–7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and one fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’(Fig. 8A); Abd. IV posteriorly with five to six psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.70–4.37 (n = 5), holotype = 1: 4.37.Legs. Trochanteral organ diamond shape with about 24 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 17A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 17B); ratio unguis: unguiculus = 1: 1.50–1.79 (n = 5), holotype = 1: 1.75. Tibiotarsal smooth chaetae about 0.7× smaller than unguiculus; tenent hair slightly acuminate and about 0.44× smaller than unguis outer lamella.Collophore (Fig. 17C). Anterior side with 10 ciliate, apically acuminate chaetae, five proximal (thinner); three subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 17D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 50 external and 37 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.31 (n = 5).Etymology. Lacerta from Latin means lizard, in allusion to the name of the cave where this species was found, Lapa do Calango (cave of the Calango), which is a small lizard common in this region.Remarks. Trogolaphysa lacerta sp. nov. The new species resembles T. caripensis, T. ernesti, T. piracurucaensis, T. formosensis and T. dandarae sp. nov. by the number of mac in Th II p3 complex (6 + 6), but is easily distinguished by the head m2 and s5 mic (T. caripensis, T. ernesti, T. formosensis, T. piracurucaensis as mac) and Th III without mac (T. dandarae sp. nov. 3 + 3).Trogolaphysa chapelensis sp. nov. Lima, Oliveira & ZeppeliniFigures 18, 19 and 20, Tables 1 and 2Figure 18Trogolaphysa chapelensis sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 19Trogolaphysa chapelensis sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 20Trogolaphysa chapelensis sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (4550/CRFS-UEPB): Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta-2d7, next to “Morro do Chapéu” 20°07′42.1″S, 43°54′26.2″W, 02–10.viii.2011, Andrade et al. coll. Paratypes in slides (4551–4553/CRFS-UEPB): 3 females, Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta-7d7, Qd7, 9d7 respectively, 20°07′42.1″S, 43°54′26.7″W, 29.iii–01.vi.2011, Andrade et al. coll. Paratype in slide (4603/CRFS-UEPB donated to MNJR): 1 female, Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta Qd7, 20°09′46.1″S, 43°49′36.2″W, 925 m, 29.iii–01.vi.2011, Andrade et al. Coll. Additional records see S1.Description. Total length (head + trunk) 1.21–2.22 mm (n = 5), holotype 2.22 mm.Head. Ratio antennae: trunk = 1: 1.31–1.16 (n = 3), holotype = 1: 1.16; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.66–1.85, 1.65–1.78, 2.95–3.76, holotype = 1: 1.66, 1.65, 2.95. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about six rod sens on longitudinal row, ventrally with one subapical-organ and about three subapical wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about three sub-apical finger-shaped sens and about three apical rod sens, ventrally with one apical psp, one longitudinal external row with four wrinkly sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 18A) with 15 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a with 13 mac plus two mes, A0 and A2 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 18B). Ventral chaetotaxy with 29 ciliate chaetae; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 18B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 18B). Maxillary palp with t.a. smooth and 1.17× larger than b.c.Thorax dorsal chaetotaxy (Fig. 19A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with four mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m4–6p), four mes (m6–6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.10–1.31: 1 (n = 4), holotype = 1.10: 1.Abdomen dorsal chaetotaxy (Fig. 19B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and four fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with nine psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.46–5.80 (n = 5), holotype = 1: 5.80.Legs. Trochanteral organ diamond shape with about 23 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 20A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with lamellae smooth and lanceolate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 20B); ratio unguis: unguiculus = 1: 1.63–1.84 (n = 5), holotype = 1: 1.79. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair capitate and about 0.52× smaller unguis outer lamella.Collophore (Fig. 20C). Anterior side with 13 ciliate, apically acuminate chaetae, seven proximal (thinner); four subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 20D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 70 external and 30 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.33 (n = 5).Etymology. Species named after Type locality Morro do Chapeu.Remarks. Trogolaphysa chapelensis sp. nov. resembles T. jacobyi, T. caripensis, T. bessoni, and T. belizeana by te absence of eyes (0 + 0 eyes) but is easily distinguished by presenting 4 + 4 mac in Th II p3 complex (2–3 + 2–3 T. jacobyi; 6 + 6 T. caripensis; 2 + 2 T. bessoni; 2–4 + 2–4 T. belizeana), and 9 + 9 psp posterior Abd IV (4 + 4T. belizeana).Trogolaphysa crystallensis sp. nov. Oliveira, Lima & ZeppeliniFigures 21, 22 and 23, Tables 1 and 2Figure 21Trogolaphysa crystallensis sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 22Trogolaphysa crystallensis sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III; (C) Abd IV–V.Full size imageFigure 23Trogolaphysa crystallensis sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (16,252/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, cave LOC-0090, next to “Cachoeira Crystal”, 20°20′20.8″S, 43°23′44.3″W, 11–14.xi.2019, Carste team coll. Paratype in slide (16,251/CRFS-UEPB): female, same data as holotype. Paratype in slide (16,254/CRFS-UEPB donated to MNJR): female, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.40–1.68 mm (n = 3), holotype 1.68 mm.Head. Ratio antennae: trunk = 1: 1.24–2.30 (n = 2), holotype = 1: 1.24; Ant III shorter than Ant II length; Ant segments ratio as I: II, III, IV = 1: 1.72–1.78, 1.58–1.64, 3.11–3.14, holotype = 1: 1.78, 1.64, 3.14. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about three rod sens on longitudinal row, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two rod sens, and one finger-shaped sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with three sub-apical finger-shaped sens and one wrinkly sens, ventrally with one apical psp (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 21A) with 12–13 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pa5, Pm3 and Pp7 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 21B). Ventral chaetotaxy with 33–35 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of four to six mes chaetae distally (Fig. 21B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 21B). Maxillary palp with t.a. smooth and 1.43 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 22A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with two mic (a1–2), two mes (a6–7), theree mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.05–1.27: 1 (n = 3), holotype = 1.05: 1.Abdomen dorsal chaetotaxy (Fig. 22B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively, a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–7), five mic (D1–1p, D3–3p, De3), one mes (D2), two mes (E4p–4p2), three mac (E1–3), four mes (Ee9–12), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by three and two (T3) fan-shaped chaetae respectively; ps and as present, and at least 14 supernumerary sens with uncertain homology ‘s’(Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–P6ae), three mes (p6e–pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 4.06–4.51 (n = 3), holotype = 1: 4.51.Legs. Trochanteral organ diamond shape with about 18 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 23A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with three teeth, basal pair subequal, b.p. little larger, but not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 23B); ratio unguis: unguiculus = 1.48–1.79: 1 (n = 3), holotype = 1.48: 1. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.5× smaller than unguis outer lamella.Collophore (Fig. 23C). Anterior side with 10 ciliate, apically acuminate chaetae, six proximal, two subdistal (as mes) and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 23D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 60 external and 28 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.31 (holotype).Etymology. Species named after Type locality Cachoeira Crystal (Portuguese for Crystal falls).Remarks. Trogolaphysa crystallensis sp. nov. resembles T. barroca sp. nov., T. gisbertae sp. nov., T. sotoadamesi sp. nov., T. triocelata and T. zampauloi sp. nov. by the absence of eyes (0 + 0 eyes) (T. triocelata 3 + 3 and T. zampauloi sp. nov. eventually 4 + 4), Th II with 5 + 5 mac, and Th III without mac. Can be distinguished from T. barroca sp. nov., T. gisbertae sp. nov., and T. sotoadamesi sp. nov. by the Abd IV with 4 + 4 central mac (A3, A5, B4–5); T. barroca sp. nov., T. gisbertae sp. nov., and T. triocelata, with 3 + 3 and T. sotoadamesi sp. nov. 2 + 2 central mac on Abd IV. Finally, the new species differentiates from T. zampauloi sp. nov. by unpaired lamella of unguis with one tooth, Omt with about 18 spine-like chaetae, dens external row with about 58 spines on T. crystallensis sp. nov. and unpaired lamella of unguis with two teeth, Omt with about 26 spine-like chaetae, dens external row with about 30 spines on T. zampauloi sp. nov.Trogolaphysa sotoadamesi sp. nov. Ferreira, Oliveira & ZeppeliniFigures 24, 25 and 26, Tables 1 and 2Figure 24Trogolaphysa sotoadamesi sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore, Gray cut circle pseudopore at the under surface.Full size imageFigure 25Trogolaphysa sotoadamesi sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 26Trogolaphysa sotoadamesi sp. nov.: (A) Trochanteral organ, ((B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (13,162/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, cave ALEA 0003, next to “Mina de Alegria”, 20°09′6.81″S, 43°29′13.6″W, 07.ii.2018, Bioespeloeo team coll. Paratypes in slides (13,146, 13,153/CRFS-UEPB): 2 females, same data as holotype, except 12.vi.2017. Paratype in slide (13,173, 13,186/CRFS-UEPB donated to MNJR): 2 females, same data as holotype, except 09.vi.2017. Additional records see S1.Description. Total length (head + trunk) of specimens1.50–1.81 mm (n = 5), holotype 1.50 mm.Head. Ratio antennae: trunk = 1: 1.26–1.45 (n = 3), holotype = 1: 1.38; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.78–2.76, 1.52–2.22, 2.61–3.90, holotype = 1: 2.04, 1.68, 3.16. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about three rod sens, ventrally with one subapical-organ and with several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, several wrinkly sens, apical organ with two coffee bean-like sens, one rod sens and one finger-shaped sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with two sub-apical rod sens and two finger-shaped sens, ventrally with one apical psp and several finger-shaped sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with about seven basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 3A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 24A) with 16 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 as mes (rarely mic), Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 24B). Ventral chaetotaxy with 37 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 24B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–p3) and subequal in length (Fig. 24B). Maxillary palp with t.a. smooth and 1.28× larger than b.c.Thorax dorsal chaetotaxy (Fig. 25A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3, a6), one mes (a7), four mic (m4, m6–7, m6p), two mes (m6e, m7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.17–1.52: 1 (n = 5), holotype = 1.03: 1.Abdomen dorsal chaetotaxy (Fig. 25B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and three fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with five mic (A1, A3, A5–6, Ae1), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), two mic (T1, T6), two mes (T5, T7), three mic (D1–2), two mes (D3p, De3), two mes (E4p–p2), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and three (T3) fan-shaped chaetae respectively; ps and as present, and at least five supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–p6ae), one mic (P6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 5.03–4.42 (n = 5), holotype = 1: 4.42.Legs. Trochanteral organ triangular shape with about 19–21 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 26A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair unequal, b.p. larger than b.a.; m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 26B); ratio unguis: unguiculus = 1: 1.46–1.91 (n = 5), holotype = 1: 1.91. Tibiotarsal smooth chaetae about 0.8 × smaller unguiculus; tenent hair acuminate and about 0.4 × smaller than unguis outer lamella.Collophore (Fig. 26C). Anterior side with seven ciliate, apically acuminate chaetae, three proximal, two subdistal and two distal mac; lateral flap with nine chaetae, four ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (two inner mac) and three psp (Fig. 26D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 35 external and 26 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.39 (n = 5).Etymology. Species named after Dr. Felipe N. Soto-Adames for his contribution on Collembola taxonomy and systematics.Remarks. Trogolaphysa sotoadamesi sp. nov. resembles T. barroca sp. nov., T. crystallensis sp. nov., T. gisbertae sp. nov., T. zampauloi sp. nov. by 0 + 0 eyes (T. zampauloi sp. nov. rarely with 4 + 4 eyes), Th II p3 complex with five mac, Th III without mac, manubrial plate with five ciliate chaetae and mucro with four teeth. The new species T. sotoadamesi sp. nov. with 2 + 2 central mac on Abd IV differentiates from T. barroca sp. nov., T. gisbertae sp. nov. with 3 + 3, and T. crystallensis sp. nov., T. zampauloi sp. nov. with 4 + 4 central mac.Trogolaphysa mariecurieae sp. nov. Ferreira, Oliveira & ZeppeliniFigures 27, 28 and 29, Tables 1 and 2Figure 27Trogolaphysa mariecurieae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore, Gray cut circle pseudopore at the under surface.Full size imageFigure 28Trogolaphysa mariecurieae sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 29Trogolaphysa mariecurieae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (9109/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Mato Dentro municipality, MSS 10/11, next to “Pico do Soldado” 19°00′23.86″S, 43°23′41.266″W, 11–10.ix.2015, Carste team coll. Paratypes in slides (5888, 5857/CRFS-UEPB): 2 females, same data as holotype, except,19–23.v.2014, Soares et al. coll.Paratype in slide (9222, 10,760/CRFS-UEPB donated to MNJR): 2 females, same data as holotype, except 19°00′18.72″S, 43°23′30.031″W, 14.x.2015 and 18–20.iv.2016. Additional records see S1.Description. Total length (head + trunk) of specimens 1.07–1.49 mm (n = 5), holotype 1.49 mm.Head. Ratio antennae: trunk = 1: 1.69–1.91 (n = 2), holotype = 1: 1.69; Ant III shorter than Ant II length; Ant segments ratio, I: II, III, IV = 1: 2.00–2.75, 1.69–2.55, 4.02–5.29, holotype = 1: 2.75, 1.69, 4.02. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally with one longitudinal row with about four rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, apical organ with two rod sens (Fig. 4A); Ant II dorsally and ventrally with several short less ciliate mic and mac, dorsally with five apical rod sens, ventrally with one apical psp, about five wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short less ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with seven basal spine-like sens, about five smooth mic, and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 27A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 27B). Ventral chaetotaxy with 34 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 27B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 27B). Maxillary palp with t.a. smooth and 1.13× larger than b.c.Thorax dorsal chaetotaxy (Fig. 28A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4–m6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 0.85–1.02: 1 (n = 4), holotype = 0.89: 1. Abdomen dorsal chaetotaxy (Fig. 28B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), two mic (p6e, p7i), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and two fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), one mac (A4), two mic (B1–2), one mes (B6), one mac (B5), four mic (C1–4), three mic (T1, T5, T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and three (T3) fan-shaped chaetae respectively; ps and as present, and at least five supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), five mac (m2–3, m5–5e), five mic (p3a–p6ae), two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 4.27–5.91 (n = 5), holotype = 1: 5.02.Legs. Trochanteral organ diamond shape with about 15 spine-like chaetae, plus 2–3 psp one external, one on distal vertex and another (present or absent) on top of posterior spines row of Omt (Fig. 29A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal, b.p. larger than b.a., inner lamella with unpaired small m.t. between b.a. and b.p. and a.t. absent. Unguiculus with all lamellae smooth and truncate (a.i., a.e., p.i., p.e.) (Fig. 29B); ratio unguis: unguiculus = 1.50–1.95: 1 (n = 5), holotype = 1.95: 1. Tibiotarsal smooth chaetae about 0.9× smaller than unguiculus; tenent hair slightly capitate and about 0.6× smaller than unguis outer lamella.Collophore (Fig. 29C). Anterior side with eight ciliate, apically acuminate chaetae, six proximal and two distal mac; lateral flap with 13 chaetae, five ciliate in the proximal row and eight smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 29D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 40 external and 22 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.23 (holotype).Etymology. Species named after Dr. Marie Skłodowska-Curie for her enormous contribution to science.Remarks. Trogolaphysa mariecurieae sp. nov. resembles T. bellinii sp. nov. T. jacobyia and T. epitychia sp. nov. by the absence of eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II p3 complex with three mac and with one unpaired tooth on inner lamella of unguis. The new species T. mariecurieae sp. nov. (Abd IV with 2 + 2 mac) differs from T. jacobyia, T. epitychia sp. nov. both with Abd IV 3 + 3, and T. bellinii sp. nov. with 4 + 4 central mac. T. mariecurieae sp. nov. and T. bellinii sp. nov. with capitate tenent hair, in contrast with T. jacobyia and T. epitychia sp. nov. with acuminated tenant hair.Trogolaphysa barroca sp. nov. Brito & ZeppeliniFigures 30, 31 and 32, Tables 1 and 2Figure 30Trogolaphysa barroca sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 31Trogolaphysa barroca sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 32Trogolaphysa barroca sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (13,167/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, ALFA-0003 cave, 20°09′06.8″S, 43°29′13.6″W, 07–27.ii.2018, Bioespeleo team coll. Paratype in slide (13,150/CRFS-UEPB): 1 female, same data as holotype, except 12.vi.2017. Paratype in slide (13,158/CRFS-UEPB donated to MNJR): 1 female, same data as holotype. Paratype in slide (13,197/CRFS-UEPB): 1 female, Brazil, Minas Gerais State, Mariana municipality, ALEA-0004 cave, 20°09′00.0″S, 43°29′11.8″W, 07.ii.2018, Bioespeleo team coll. Paratype in slide (13,203/CRFS-UEPB): 1 female, Brazil, Minas Gerais State, Mariana municipality, ALEA-0002 cave, 20°08′56.5″S, 43°29′09.8″W, 27.ii.2018, Bioespeleo team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.70–2.13 mm (n = 5), holotype 1.81 mm.Head. Ratio antennae: trunk = 1: 1.27–1.60 (n = 3), holotype = 1: 1.27; Ant III shorter than Ant II; Ant segments ratio as, I: II, III, IV = 1: 1.90–2.41, 1.64–2.02, 2.69–3.64, holotype = 1: 1.90, 1.67, 2.69. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally with about four rod sens on longitudinal row, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about nine wrinkly sens on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short less ciliate mic and mac, dorsally with two sub-apical finger-shaped sens and two subapical rod sens, ventrally with one apical psp, and several wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short less ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with about five basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 30A) with 14–15 An (An1a–3), six A (A0–5), five M (M1–5), six S (S1–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 as mic, A3 as mes, An1a–3, A0, A2 and Pa5 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 30B). Ventral chaetotaxy with 33 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five to six mes chaetae distally (Fig. 30B). Prelabral chaetae weakly ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and subequal the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3), and subequal in length (Fig. 30B). Maxillary palp with t.a. smooth and 1.14 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 31A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m4, m6p), four mes (m6–6e, m7–7e), and four mic (p1–3, p6), respectively. Ratio Th II: III = 1.11–1.35: 1 (n = 5), holotype = 1.29: 1.Abdomen dorsal chaetotaxy (Fig. 31B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and three fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae, respectively; as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least seven supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four to six psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 3.38–5.55 (n = 5), holotype = 1: 5.27.Legs. Trochanteral organ diamond shape with about 16–21 spine-like chaetae, plus 2–3 psp one external, and two (one of them present or absent) on top of posterior spines row of Omt (Fig. 32A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal; b.p. little larger than b.a., m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 32B); ratio unguis: unguiculus = 1.53–1.67: 1 (n = 5), holotype = 1.61: 1. Tibiotarsal smooth chaetae about 0.61 × smaller than unguiculus; tenent hair acuminate and about 0.4 × smaller than unguis outer lamella.Collophore (Fig. 32C). Anterior side with eight ciliate, apically acuminate chaetae, four proximal (thinner), one subdistal and three distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (three inner mac) and three psp (Fig. 32D). Dens posterior face with two or more longitudinal rows of spines-like chaetae about 22 external and 37–39 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.33 (holotype).Etymology. Refers to the Baroque art (which is “barroco” noun, in Portuguese) of Mariana, Minas Gerais, type locality.Remarks. Trogolaphysa barroca sp. nov. resembles T. formosensis by head Pm3 mic (mac in T. piracurucaensis, T. gisbertae sp. nov. and T. dandarae sp. nov.; mes in T. ernesti, T. sotoadamesi sp. nov. and T. mariecurieae sp. nov.); 3 + 3 head dorsal mac like T. ernesti, although in the new species it is as A0, A2 and Pa5, and in T. ernesti is A0, A2–3; unguis m.t. and a.t. teeth absent like T. sotoadamesi sp. nov. and T. dandarae sp. nov. (present in T. bellini sp. nov., T. lacerta sp. nov. and T. chapelensis sp. nov.).Trogolaphysa epitychia sp. nov. Oliveira, Lima & ZeppeliniFigures 33, 34 and 35, Tables 1 and 2Figure 33Trogolaphysa epitychia sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 34Trogolaphysa epitychia sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 35Trogolaphysa epitychia sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (10,578/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Mato Dentro municipality, cave CSS-0118, next to “São Sebastião do Bom Sucesso”, 18°56′14.1″S, 43°24′43.8″W, 21.xi–15.xii.2016, Carste team coll. Paratypes in slides (10,580, 10,585/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (10,653, 10,692/CRFS-UEPB donated to MNJR): 1 female and 1 male, same data as holotype, except 22.xi–15.xii.2016 and 31.v–12.vi.2016, respectively. Additional records see S1.Description. Total length (head + trunk) 1.13–1.35 mm (n = 5), holotype 1.13 mm.Head. Ratio antennae: trunk = 1: 1.29–1.95 (n = 5), holotype = 1: 1.95; Ant III shorter than Ant II; Ant segments ratio as I: II, III, IV = 1: 1.69–2.20, 1.14–1.86, 2.37–3.52, holotype = 1: 1.71, 1.14, 2.37. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with one longitudinal row with about six rod sens, ventrally with one subapical-organ and one longitudinal row with about four wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two coffee bean-like sens, one rod sens and one smooth mic (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about six sub-apical finger-shaped sens and one wrinkly sens, ventrally with one apical psp, about three wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic, several finger-shaped sens, and two wrinkly sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 33A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 33B). Ventral chaetotaxy with 31–32 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five to six mes chaetae distally (Fig. 33B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 33B). Maxillary palp with t.a. smooth and 1.26× larger than b.c.Thorax dorsal chaetotaxy (Fig. 34A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–a7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.05–1.21: 1 (n = 5), holotype = 1.18: 1.Abdomen dorsal chaetotaxy (Fig. 34B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with two mic (a7i–7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with five, two and one fan-shaped chaetae, respectively; as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), two mic (B1, B4), one mes (B6), one mac (B5), four mic (C1–4), four mic (T1, T3, T5–6), one mac (T7), six mic (D1–3p, De3), two mic (E4p–4p2), three mac (E1–3), one mic (Ee11), three mes (Ee9–10, Ee12), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by five and two fan-shaped chaetae, respectively; ps and as present, and at least seven supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with three mic (a1, a3, a6), one mac (a5), two mic (m3, me5), three mac (m2, m5–5a), two mic (p3a–4a), one mes (p5a) two mac (p6ai–6ae), four mes (p5–pp6), three mac (p1, p3–4) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 4.69–5.55 (n = 5), holotype = 1: 4.88.Legs. Trochanteral organ in V–shape with about 15 spine-like chaetae, plus 4 psp one external, one on distal vertex and another two on top of posterior spines row of Omt (Fig. 35A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. little larger, not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with all lamellae smooth and slightly truncate (a.i., a.e., p.i., p.e.) (Fig. 35B); ratio unguis: unguiculus = 1.17–1.98: 1 (n = 5), holotype = 1.17: 1. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.53× smaller than unguis outer lamella.Collophore (Fig. 35C). Anterior side with nine ciliate, apically acuminate chaetae, five proximal, two subdistal and two distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (two inner mac) and three psp (Fig. 35D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 60 external and 34 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.30 (holotype).Etymology. Epitychia from Greek means success, in allusion to the collection site where the species was found São Sebastião do Bom Sucesso.Remarks. Trogolaphysa epitychia sp. nov. resembles T. bellinii sp. nov., T. bessoni, and T. mariecurieae sp. nov. by the absence of eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II with 3 + 3 mac, and Th III without mac. Differentiates from T. bellinii sp. nov. and T. mariecurieae sp. nov. by Abd IV with 3 + 3 (A3, A5, B5), 4 + 4, and 2 + 2 mac on Abd IV respectively; on T. bellinii sp. nov. and can be distinguished from T. bessoni by the absence of unpaired tooth on inner lamella of unguis, external row of dens with 25 spines, inner row of dens with 20 spines (T. epitychia sp. nov. with one unpaired tooth m.t. on inner lamella of unguis, external row of dens with about 60 spines and inner row of dens with about 34 spines).Trogolaphysa zampauloi sp. nov. Lima, Oliveira & ZeppeliniFigures 36, 37 and 38, Tables 1 and 2Figure 36Trogolaphysa zampauloi sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 37Trogolaphysa zampauloi sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 38Trogolaphysa zampauloi sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (11,851/CRFS-UEPB): Brazil, São Paulo State, Ribeira municipality, cave MTD-13, nexto to “Serra Pontalhão”, 24°38′47.4″S, 48°57′52.6″W, 08–20.iii.2016, Carste team coll. Paratypes in slides (11,875–11,878/CRFS-UEPB): 2 males and 2 females, Brazil, São Paulo State, Ribeira municipality, cave MTD-02, 24°37′27.3″S, 48°57′35.8″W, 08–20.iii.2016. Paratype in slide (11,876/CRFS-UEPB donated to MNJR). Additional records see S1.Description. Total length (head + trunk) of specimens 1.35–1.91 mm (n = 5), holotype 1.35 mm.Head. Ratio antennae: trunk = 1: 1.35–1.55 (n = 2), holotype = 1: 1.55; Ant III smaller than Ant II length; Ant segments ratio as I: II, III, IV = 1: 1.71–2.38, 1.60–1.88, 2.85–3.61, holotype = 1: 2.38, 1.88, 3.61. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about three rod sens on longitudinal row, ventrally with one subapical-organ, and about three wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about three sub-apical finger-shaped sens and two apical rod sens, ventrally with one apical psp, one longitudinal external row with two subapical finger-shaped sens and two medial wrinkly sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about four smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0 to 4 + 4. Head dorsal chaetotaxy (Fig. 36A) with 14 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pe4, Pe6, Pm3 and Pa5 as mes, An1a–3a as mac, A0 and A2 as mac, A3–5 as mes; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 36B). Ventral chaetotaxy with about 37 ciliate chaetae, plus one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of eight mes chaetae distally (Fig. 36B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 36B). Maxillary palp with t.a. smooth and 1.17 × smaller than b.a.Thorax dorsal chaetotaxy (Fig. 37A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–a7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6), respectively. Ratio Th II: III = 1.02–1.48: 1 (n = 5), holotype = 1.21: 1Abdomen dorsal chaetotaxy (Fig. 37B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el as mic and as present; a5 and m2 bothriotricha surrounded by three and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), one mes (Ee11), two mac (Ee9–10), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), two mes (Fe3, Fe5), one mac (Fe4) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and four (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.29–4.28 (n = 5), holotype = 1: 4.10.Legs. Trochanteral organ diamond shape with about 27 spine-like chaetae, plus 3–4 psp one external, one on distal vertex and another two (one of them present or absent) on top of posterior spines row of Omt (Fig. 38A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 38B); ratio unguis: unguiculus = 1.63–1.84 (n = 5), holotype = 1: 1.79. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.39× smaller than unguis outer edge.Collophore (Fig. 38C). Anterior side with five ciliate, apically acuminate chaetae, two proximal (thinner); one subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 38D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 30 external and 23 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.29 (n = 5).Etymology. Species named after the field biologist MSc. Robson de Almeida Zampaulo for his contribution to Brazilian biospeleology.Remarks. Trogolaphysa zampauloi sp. nov. resembles T. caripensis; T. ernesti; T. piracurucaensis by Th III without mac, and 4 + 4 central mac (A3, A5, B4–5) in Abd IV, but is easily distinguished from these species by the presence of Th II with 4 + 4 mac in p3 complex (6 + 6T. caripensis, T. ernesti, T. piracurucaensis). For more comparisons see remarks in T. crystallensis sp. nov.Trogolaphysa gisbertae sp. nov. Brito & ZeppeliniFigures 39, 40 and 41, Tables 1 and 2Figure 39Trogolaphysa gisbertae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 40Trogolaphysa gisbertae sp. nov.: Dorsal chaetotaxy: (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 41Trogolaphysa gisbertae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (6668/CRFS-UEPB): Brazil, Pará State, Parauapebas municipality, cave N1N8-N8-017, next to “Serra Norte”, 06°10′05.9″S, 50°09′25.6″W, 02–29.iv.2015, Carste team coll. Paratype in slide (6669/CRFS-UEPB donated to MNJR): 1 female, same data as holotype, except 04.ix–06.x.2014. Paratype in slide (6973/CRFS-UEPB): 1 female, same data as holotype, except 04.ix–06.x.2014. Paratypes in slides (6657, 7138/CRFS-UEPB): 2 females, Brazil, Pará State, Parauapebas municipality, N1N8-N8-020 cave, 06°10′07.8″S, 50°09′25.4″W, 17.vii–04.viii.2014, Carste team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.10–1.23 mm (n = 5), holotype 1.15 mm.Head. Ratio antennae: trunk = 1: 1.44–1.55 (n = 3); Ant segments ratio as I: II, III, IV = 1: 1.67–2.43, 1.58–2.63, 2.91–5.46, holotype = 1: 2.03, – , 3.90. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about five rod sens in row, ventrally with one subapical-organ and several wrinkly sens row (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about four wrinkly sens on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with four finger-shapedd sens in row and two subapical rod sens, ventrally with one apical psp, and about five wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several fniger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 39A) with 11 An (An1a–3), six A (A0–5), four M (M1–4), five S (S1–5), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; An1a–3a, A0, A2–3, Pa5 and Pm3 as mac; interocular p absent. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 39B). Ventral chaetotaxy with 20 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of three to four mes chaetae distally (Fig. 39B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 39B). Maxillary palp with t.a. smooth and 1.32 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 40A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms presents. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), and four mic (p1–3, p6), respectively. Ratio Th II: III = 1.00–2.60: 1 (n = 5), holotype = 1.28: 1.Abdomen dorsal chaetotaxy (Fig. 40B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae, respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), four mic (T1, T5–7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with one to three psp. Abd V a, m, p series with three mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 3.29–4.90 (n = 5), holotype = 1: 3.29.Legs. Trochanteral organ diamond shape with about 25 spine-like chaetae, plus two psp one external, and one on distal vertex of Omt (Fig. 41A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with three teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with lamellae smooth and slightly truncate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 41B); ratio unguis: unguiculus = 1.59–2.05: 1 (n = 5), holotype = 1.62: 1. Tibiotarsal smooth chaetae about 0.9× smaller than unguiculus; tenent hair acuminate and about 0.53× smaller than unguis outer lamella.Collophore (Fig. 41C). Anterior side with five ciliate, apically acuminate chaetae, one proximal (thinner); two subdistal and two distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (three inner mac) and three psp (Fig. 41D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 18 external and 24 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.26 (holotype).Etymology. Honor to Gisberta Salce Júnior, Brazilian woman, murdered in 2006 (Porto, Portugal) in a transphobia crime.Remarks. Trogolaphysa gisbertae sp. nov. differs from T. ernesti and T. formosensis (with 0 + 0 head dorsal mac), T. piracurucaensis, and T. barroca sp. nov. (1+1 head dorsal mac); and resembles T. dandarae sp. nov. (with 5+5 head dorsal mac), but it is easily distinguishable by Th II p3 complex and Th III mac (5 + 5 and 0 + 0, 6 + 6 and 3 + 3, respectively); and unguis with m.t. present (absent in T. sotoadamesi sp. nov., T. barroca sp. nov.).Trogolaphysa dandarae sp. nov. Brito & ZeppeliniFigures 42, 43 and 44, Tables 1 and 2Figure 42Trogolaphysa dandarae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 43Trogolaphysa dandarae sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 44Trogolaphysa dandarae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy, (E) Mucro.Full size imageType material. Holotype female in slide (12,775/CRFS-UEPB): Brazil, Pará State, Parauapebas municipality, cave N4WS-0018/48, next to “Serra Norte”, 06°04′34.5″S, 50°11′37.7″W, 21–30.vii.2018, Brandt Meio Ambiente team coll. Paratype in slide (12,776/CRFS-UEPB donated to MNJR): 1 female, same data as holotype. Paratypes in slides (12,777, 12,778/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (12,772, 12,773/CRFS-UEPB): 2 females, Brazil, Pará State, Parauapebas municipality, N4WS-0016 cave, 06°04′35.5″S, 50°11′37.1″W, 21–30.vii.2018, Brandt Meio Ambiente team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.43–1.75 mm (n = 5), holotype 1.58 mm.Head. Ratio antennae: trunk = 1: 0.83–0.98 (n = 4), holotype = 1: 0.83; Ant III larger than Ant II; Ant segments ratio as I: II: III: IV = 1: 1.36–1.77: 1.65–2.03: 2.84–3.27, holotype = 1: 1.72: 1.99: 3.21. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about two rod sens sub-apical on longitudinal row, ventrally with one subapical-organ and about three wrinkly sens on longitudinal row (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens and three smooth mic on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about four sub-apical finger-shaped sens and two subapical rod sens, ventrally with one apical psp, and several wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 42A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), six S (S1–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; A1 as mes, An1a–3, A0, A2, S5, Pa5 and Pm3 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 42B). Ventral chaetotaxy with 28 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five chaetae distally (Fig. 42B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and subequal the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 42B). Maxillary palp with t.a. smooth and 1.58 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 43A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with six mac, respectively, al and ms presents. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m6–6p), three mes (m6e, m7–7e), and one mic (p6), respectively. Ratio Th II: III = 0.82–1.13: 1 (n = 6), holotype = 1.13: 1.Abdomen dorsal chaetotaxy (Fig. 43B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and four fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6) and three mic (p6e–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and two fan-shaped chaetae, respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with three mic (a1, a3), one mes (a6), one mac (a5), two mic (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 2.98–4.82 (n = 6), holotype = 1: 3.81.Legs. Trochanteral organ diamond shape with about 19 spine-like chaetae, plus 2–3 psp one external, one on distal vertex and another (present or absent) on top of posterior spines row of Omt (Fig. 44A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal, m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 44B); ratio unguis: unguiculus = 1.49–1.80: 1 (n = 6), holotype = 1.80: 1. Tibiotarsal smooth chaetae about 1.25× smaller than unguiculus; tenent hair slightly capitate and about 0.54× smaller than unguis outer lamella.Collophore (Fig. 44C). Anterior side with 11 ciliate, apically acuminate chaetae, six proximal (thinner); two subdistal and three distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 44D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 31–39 external and 18–21 internal, external spines larger and thinner than internal ones. Mucro with three teeth (Fig. 44E), ratio width: length = 0,28 (holotype).Etymology. Honor to Dandara Kettley, Brazilian man, transvestite, murdered in 2017 (Ceará, Brazil) in a homophobia crime.Remarks. Trogolaphysa dandarae sp. nov. resembles T. ernesti, T. formosensis and T. piracurucaensis by chaetae head S5 mac (all other Brazilian cave species with S5 mic); head Pm3 mac as in T. gisbertae sp. nov., but they are different in terms of head ventral proximal collar mac, unguiculus, tenent hair and collophore anterior distal chaetae (5 + 5, smooth pe, capitate, 3 + 3 and 4 + 4, serrate pe, acuminate, 2 + 2, respectively); Th II P3 complex with 6 + 6 and Th III with 3 + 3 mac (6 + 6 and 0 + 0 in T. lacerta sp. nov., T. piracurucaensis, T. ernesti and T. caripensis); T. dandarae sp. nov., T. belizeana and T. jacobyi are the only cave species with 3 + 3 teeth in the mucro. See the comparison among them in remarks of the late species. More

  • in

    Global patterns of vascular plant alpha diversity

    Linder, H. P. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 28, 169–182 (2001).Article 

    Google Scholar 
    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 104, 5925–5930 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brummitt, N., Araújo, A. C. & Harris, T. Areas of plant diversity—What do we know? Plants, People, Planet 3, 33–44 (2020).Article 

    Google Scholar 
    Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).Article 

    Google Scholar 
    Slik, J. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 112, 7472–7477 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).Article 

    Google Scholar 
    Weigand, A. et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 47, 59–71 (2020).Article 

    Google Scholar 
    Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5, e15734 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Bruelheide, H., Jiménez-Alfaro, B., Jandt, U. & Sabatini, F. M. Deriving site-specific species pools from large databases. Ecography 43, 1215–1228 (2020).Article 

    Google Scholar 
    Dengler, J. et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 47, 72–86 (2020).Article 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).Bruelheide, H. et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Ricklefs, R. E. Community diversity—relative roles of local and regional processes. Science 235, 167–171 (1987).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Crawley, M. J. & Harral, J. E. Scale dependence in plant biodiversity. Science 291, 864–868 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiménez-Alfaro, B. et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483–490 (2018).PubMed 
    Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S. & Blasi, C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15, 147–157 (2014).Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 211, 404–410 (2016).Article 

    Google Scholar 
    Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Biurrun, I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 32, e13050 (2021).Article 

    Google Scholar 
    Da, S. S. et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641–652 (2018).Article 

    Google Scholar 
    Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H. & Seppelt, R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 41, 261–273 (2014).Article 

    Google Scholar 
    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed 
    Article 

    Google Scholar 
    Muñoz Mazón, M. et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 32, e13032 (2021).Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    Večeřa, M. et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 (2019).Article 

    Google Scholar 
    Wüest, R. O. et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 47, 1–12 (2019).Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belitz, K. & Stackelberg, P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 139, 105006 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).
    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231 (2021).Article 

    Google Scholar 
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article 

    Google Scholar 
    Chytrý, M. et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87, 217–278 (2015).
    Google Scholar 
    Whitmore, T. C., Peralta, R. & Brown, K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1, 375–378 (1985).Article 

    Google Scholar 
    Chytrý, M. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 23, 605–616 (2012).Article 

    Google Scholar 
    Duivenvoorden, J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).Mendieta‐Leiva, G. et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31, 518–528 (2020).Article 

    Google Scholar 
    Spicer, M. E., Mellor, H. & Carson, W. P. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 101, e02974 (2020).PubMed 
    Article 

    Google Scholar 
    Royo, A. A. & Carson, W. P. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145, 66–75 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dwomoh, F. K. & Wimberly, M. C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 32, 1849–1865 (2017).Article 

    Google Scholar 
    Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, K. et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B 288, 20203045 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist 133, 240–256 (1989).Article 

    Google Scholar 
    Andermann, T., Antonelli, A., Barrett, R. L. & Silvestro, D. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 13, 839407 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 114, 10695–10700 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cayuela, L. et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article 

    Google Scholar 
    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS 
    Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Dengler, J. et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 22, 582–597 (2011).Article 

    Google Scholar 
    Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).Article 

    Google Scholar 
    Chytrý, M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 4, 290 (2012).Article 

    Google Scholar 
    Schmidt, M. et al. The West African Vegetation Database. Biodiv. Ecol. 4, 105–110 (2012).Article 

    Google Scholar 
    Muche, G., Schmiedel, U. & Jürgens, N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 4, 111–123 (2012).Article 

    Google Scholar 
    Revermann, R. et al. Vegetation database of the Okavango Basin. Phytocoenologia 46, 103–104 (2016).Article 

    Google Scholar 
    N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 433, 325–331 (2019).Article 

    Google Scholar 
    Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).Kearsley, E. et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 4, 2269 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Djomo Nana, E. et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47, 758–764 (2015).Article 

    Google Scholar 
    Wana, D. & Beierkuhnlein, C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 27, 289–304 (2011).Article 

    Google Scholar 
    Finckh, M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 4, 297 (2012).Article 

    Google Scholar 
    Strohbach, B. & Kangombe, F. National Phytosociological Database of Namibia. Biodiver. Ecol. 4, 298–298 (2012).Article 

    Google Scholar 
    Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).Černý, T. et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 18, 5–22 (2015).Article 

    Google Scholar 
    Nowak, A. et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia 47, 395–400 (2017).Article 

    Google Scholar 
    Liu, H., Cui, H., Pott, R. & Speier, M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 11, 525–532 (2000).Article 

    Google Scholar 
    Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article 

    Google Scholar 
    Bruelheide, H. et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81, 25–41 (2011).Article 

    Google Scholar 
    Cheng, X.-L. et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 13, e0198517 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hatim, M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 4, 303 (2012).Article 

    Google Scholar 
    Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150275 (2016).Article 

    Google Scholar 
    Dolezal, J., Dvorsky, M. & Kopecky, M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borchardt, P. & Schickhoff, U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 4, 309 (2012).Article 

    Google Scholar 
    Wagner, V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 20, 199–208 (2009).Article 

    Google Scholar 
    von Wehrden, H., Wesche, K. & Miehe, G. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).Article 

    Google Scholar 
    Chepinoga, V. V. Wetland Vegetation Database of Baikal Siberia (WETBS). Biodiver. Ecol. 4, 311 (2012).Article 

    Google Scholar 
    Korolyuk, A. et al. Database of Siberian Vegetation (DSV). Biodiver. Ecol. 4, 312–312 (2012).Article 

    Google Scholar 
    El-Sheikh, M. A. et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 24, 389–398 (2017).PubMed 
    Article 

    Google Scholar 
    Vanselow, K. A. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan). Phytocoenologia 46, 105 (2016).Article 

    Google Scholar 
    De Sanctis, M. & Attorre, F. Socotra Vegetation Database. Biodiver. Ecol. 4, 315 (2012).Article 

    Google Scholar 
    Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci. 17, 386–397 (2014).Wiser, S. K., Bellingham, P. J. & Burrows, L. E. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    Whitfeld, T. J. S. et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46, 538–548 (2014).Article 

    Google Scholar 
    Dengler, J. & Rūsiņa, S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 4, 319–320 (2012).Article 

    Google Scholar 
    Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M. & Loidi, J. Vegetation-plot database of the University of the Basque Country (BIOVEG). Biodiver. Ecol. 4, 328 (2012).Article 

    Google Scholar 
    Vassilev, K., Stevanović, Z. D., Cušterevska, R., Bergmeier, E. & Apostolova, I. Balkan Dry Grasslands Database. Biodiver. Ecol. 4, 330–330 (2012).Article 

    Google Scholar 
    Marcenò, C. & Jiménez‐Alfaro, B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia 47, 95–105 (2017).
    Google Scholar 
    Vassilev, K. et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia 46, 89–95 (2016).Article 

    Google Scholar 
    Landucci, F. et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia 45, 187–194 (2015).Article 

    Google Scholar 
    Peterka, T., Jiroušek, M., Hájek, M. & Jiménez‐Alfaro, B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia 45, 291–297 (2015).Article 

    Google Scholar 
    De Sanctis, M., Fanelli, G., Mullaj, A. & Attorre, F. Vegetation database of Albania. Phytocoenologia 47, 107–108 (2017).Article 

    Google Scholar 
    Willner, W., Berg, C. & Heiselmayer, P. Austrian Vegetation Database. Biodiver. Ecol. 4, 333 (2012).Article 

    Google Scholar 
    Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 4, 141–148 (2012).Article 

    Google Scholar 
    Wohlgemuth, T. Swiss Forest Vegetation Database. Biodiver. Ecol. 4, 340 (2012).Article 

    Google Scholar 
    Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75, 1–15 (2003).
    Google Scholar 
    Jansen, F., Dengler, J. & Berg, C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 4, 149–160 (2012).Article 

    Google Scholar 
    Ewald, J., May, R. & Kleikamp, M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 4, 173–175 (2012).Article 

    Google Scholar 
    Jandt, U. & Bruelheide, H. German vegetation reference database (GVRD). Biodiver. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Garbolino, E., De Ruffray, P., Brisse, H. & Grandjouan, G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 4, 177–184 (2012).Article 

    Google Scholar 
    Dimopoulos, P. & Tsiripidis, I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiver. Ecol. 4, 388 (2012).Article 

    Google Scholar 
    Fotiadis, G., Tsiripidis, I., Bergmeier, E. & Dimopoulos, P. Hellenic Woodland Database. Biodiver. Ecol. 4, 389 (2012).Article 

    Google Scholar 
    Stančić, Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 4, 391 (2012).Article 

    Google Scholar 
    Lájer, K. et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 7, 197–201 (2008).
    Google Scholar 
    Landucci, F. et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146, 756–763 (2012).Article 

    Google Scholar 
    Casella, L., Bianco, P. M., Angelini, P. & Morroni, E. Italian National Vegetation Database (BVN/ISPRA). Biodiver. Ecol. 4, 404 (2012).Article 

    Google Scholar 
    Agrillo, E. et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia 47, 221–229 (2017).Article 

    Google Scholar 
    Rūsiņa, S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 4, 409 (2012).Article 

    Google Scholar 
    Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).Kącki, Z. & Śliwiński, M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 81, 75–79 (2012).Article 

    Google Scholar 
    Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia 47, 389–393 (2017).Article 

    Google Scholar 
    Vassilev, K. et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia 48, 91–100 (2018).Article 

    Google Scholar 
    Aćić, S., Petrović, M., Dajić Stevanović, Z. & Šilc, U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 4, 418 (2012).Article 

    Google Scholar 
    Golub, V. et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 4, 419 (2012).Article 

    Google Scholar 
    Lysenko, T., Kalmykova, O. & Mitroshenkova, A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 4, 420–421 (2012).Article 

    Google Scholar 
    Prokhorov, V., Rogova, T. & Kozhevnikova, M. Vegetation database of Tatarstan. Phytocoenologia 47, 309–313 (2017).Article 

    Google Scholar 
    Šilc, U. Vegetation Database of Slovenia. Biodiver. Ecol. 4, 428 (2012).Article 

    Google Scholar 
    Šibík, J. Slovak Vegetation Database. Biodiver. Ecol. 4, 429 (2012).Article 

    Google Scholar 
    Kuzemko, A. Ukrainian Grasslands Database. Biodiver. Ecol. 4, 430 (2012).Article 

    Google Scholar 
    Cayuela, L. et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 4, 211–224 (2012).Article 

    Google Scholar 
    Wagner, V., Spribille, T., Abrahamczyk, S. & Bergmeier, E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 17, 129–141 (2014).Article 

    Google Scholar 
    Aubin, I., Gachet, S., Messier, C. & Bouchard, A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14, 259–271 (2007).Article 

    Google Scholar 
    Sieg, B., Drees, B. & Daniëls, F. J. A. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 57, 1–93 (2006).
    Google Scholar 
    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    Peet, R. K. et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 4, 243–253 (2012).Article 

    Google Scholar 
    Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia 46, 221–229 (2016).Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45, 195–201 (2015).Article 

    Google Scholar 
    Vibrans, A. C., Sevgnani, L., Lingner, D. V., Gasper, A. L. & Sabbagh, S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira 30, 291–302 (2010).Article 

    Google Scholar 
    Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere 5, 1–12 (2014).Aiba, S.-i & Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140, 139–157 (1999).Article 

    Google Scholar 
    Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 4, 428–444 (2011).Article 

    Google Scholar 
    Ayyappan, N. & Parthasarathy, N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv 8, 1533–1554 (1999).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).Bunyavejchewin, S., Baker, P. J., LaFrankie, J. V. & Ashton, P. S. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 49, 89–106 (2001).
    Google Scholar 
    Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).Article 

    Google Scholar 
    Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland) 9, 741 (2020).Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224 (2013).Article 

    Google Scholar 
    Chu, C. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS 
    PubMed 

    Google Scholar 
    Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).D’Amico, C. & Gautier, L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar). Candollea 55, 319–340 (2000).
    Google Scholar 
    Davidar, P., Mohandass, D. & Vijayan, L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 12, 42–58 (2007).
    Google Scholar 
    Davies, S. J. & Becker, P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 8, 542–569 (1996).
    Google Scholar 
    Duivenvoorden, J. F. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).Galeano, G., Suárez, S. & Balslev, H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 7, 1563–1575 (1998).Article 

    Google Scholar 
    Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).Gastauer, M., Leyh, W. & Meira-Neto, J. A. A. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 3, e5425 (2015).Article 

    Google Scholar 
    Helmi, N., Kartawinata, K. & Samsoedin, I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13, 33–44 (2009).
    Google Scholar 
    Hernández, L., Dezzeo, N., Sanoja, E., Salazar, L. & Castellanos, H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical 60, 11–33 (2012).
    Google Scholar 
    Ho, B. C. et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 71, 41–144 (2019).Article 

    Google Scholar 
    Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).Kartawinata, K., Samsoedin, I., Heriyanto, M. & Afriastini, J. J. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12, 145 (2013).Article 

    Google Scholar 
    Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug-2 (CIFOR, 1994).KuoJung, C., WeiChun, C., KeiMei, C. & ChangFu, H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 25, 29–40 (2010).
    Google Scholar 
    Lan, G., Zhu, H. & Cao, M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17, 432–439 (2012).CAS 
    Article 

    Google Scholar 
    Lee, H. S. et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 14, 379–400 (2002).
    Google Scholar 
    Linares-Palomino, R. et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 201, 87–99 (2009).Article 

    Google Scholar 
    Lubini, A. & Mandango, A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire). Bull. Jard. Bot. Natl Belg. 51, 231 (1981).Article 

    Google Scholar 
    Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index 20 (1998).Mansur, M. & Kartawinata, K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia 16, 77 (2017).Article 

    Google Scholar 
    Mikoláš, M. et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B 288, 20211631 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohandass, D. & Davidar, P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 50, 219–229 (2009).
    Google Scholar 
    Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021).Ngo, K. M., Davies, S., Nik, H., Faizu, N. & Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 9, 397–407 (2016).Article 

    Google Scholar 
    Parthasarathy, N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8, 1365–1381 (1999).Article 

    Google Scholar 
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).Pascal, J. P. & Pelissier, R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12, 191–214 (1996).Article 

    Google Scholar 
    Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).Article 

    Google Scholar 
    Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 71, 237 (1983).Article 

    Google Scholar 
    Ramesh, B. R. et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91, 3118 (2010).Article 

    Google Scholar 
    Razak, S. A. & Haron, N. W. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 47, 2143–2150 (2015).
    Google Scholar 
    Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).Sarah, A. R., Nuradnilaila, H., Haron, N. W. & Azani, M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana 44, 491–496 (2015).Article 

    Google Scholar 
    Schrader, J., Moeljono, S., Tambing, J., Sattler, C. & Kreft, H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 8, e55275 (2020).Article 

    Google Scholar 
    Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J. J. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 3, 59–66 (2010).Article 

    Google Scholar 
    Sukumar, R. et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 62, 608–616 (1992).
    Google Scholar 
    van Andel, T. R. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 167, 293–317 (2003).Article 

    Google Scholar 
    Webb, E. L. & Fa’aumu, S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 144, 257–274 (1999).Article 

    Google Scholar 
    Zimmerman, J. K. et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 82, 911 (1994).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schultz, J. The Ecozones of the World (Springer, 2005).Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).Zhou, S. et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 18, 742–751 (2017).Article 

    Google Scholar 
    Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35, 211–226 (2011).Article 

    Google Scholar 
    Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest cover www.wri.org/forest-restoration-atlas (2011).Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article 

    Google Scholar 
    Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 8, 204–218 (2016).
    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R package https://CRAN.R-project.org/package=rnaturalearth (2017).Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. https://doi.org/10.25829/idiv.3506-p4c0mo (2022).Sabatini, F. M. fmsabatini/GlobalLocal_PlantRichness: NatComms R3 v.3. Zenodo https://doi.org/10.5281/zenodo.6659837 (2022). More

  • in

    Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).Article 

    Google Scholar 
    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part 2 54, 521–537 (2007).Article 

    Google Scholar 
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170075 (2018).Article 

    Google Scholar 
    Aloisi, G. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12, 6215–6284 (2015).Article 

    Google Scholar 
    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).Article 

    Google Scholar 
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).Article 

    Google Scholar 
    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).Article 

    Google Scholar 
    McClelland, H. L. O., Bruggeman, J., Hermoso, M. & Rickaby, R. E. M. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 14511 (2017).Article 

    Google Scholar 
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).Article 

    Google Scholar 
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 6, 34263 (2016).Article 

    Google Scholar 
    Duchamp-Alphonse, S. et al. Enhanced ocean–atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nat. Commun. 9, 2396 (2018).Article 

    Google Scholar 
    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).Article 

    Google Scholar 
    Meier, K. J. S., Berger, C. & Kinkel, H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II). Mar. Micropaleontol. 112, 1–12 (2014).Article 

    Google Scholar 
    Su, X., Liu, C. & Beaufort, L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls. Mar. Micropaleontol. 154, 101798 (2020).Article 

    Google Scholar 
    Berger, C., Meier, K. J. S., Kinkel, H. & Baumann, K.-H. Changes in calcification of coccoliths under stable atmospheric CO2. Biogeosciences 11, 929–944 (2014).Article 

    Google Scholar 
    Zachos, J., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).Article 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 

    Google Scholar 
    Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).Article 

    Google Scholar 
    Holtz, L.-M., Wolf-Gladrow, D. & Thoms, S. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420, 117–127 (2017).Article 

    Google Scholar 
    Hermoso, M., Horner, T. J., Minoletti, F. & Rickaby, R. E. M. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater. Geochim. Cosmochim. Acta 141, 612–627 (2014).Article 

    Google Scholar 
    Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C. & Rickaby, R. E. M. Vanishing coccolith vital effects with alleviated carbon limitation. Biogeosciences 13, 301–312 (2016).Article 

    Google Scholar 
    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010).Article 

    Google Scholar 
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).Article 

    Google Scholar 
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).Article 

    Google Scholar 
    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).Article 

    Google Scholar 
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14, 1493–1509 (2017).Article 

    Google Scholar 
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6, 218–222 (2013).Article 

    Google Scholar 
    Herrmann, S. & Thierstein, H. R. Cenozoic coccolith size changes—evolutionary and/or ecological controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334, 92–106 (2012).Article 

    Google Scholar 
    Young, J. R. & Ziveri, P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 22, 1679–1700 (2000).Article 

    Google Scholar 
    Daniels, C. J., Sheward, R. M. & Poulton, A. J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11, 6915–6925 (2014).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).Article 

    Google Scholar 
    Misra, S. & Froelich, P. N. Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).Article 

    Google Scholar 
    Ravizza, G. E. & Zachos, J. C. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 551–581 (Elsevier, 2003).McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. J. Geol. 109, 155–170 (2001).Article 

    Google Scholar 
    Pegram, W. J., Krishnaswami, S., Ravizza, G. E. & Turekian, K. K. The record of sea water 1870s/1860s variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Leg 208 summary. In Zachos, J. C., Kroon, D. & Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–112: College Station, TX (Ocean Drilling Program) (2004).Brummer, G. J. A. & van Eijden, A. J. M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117 (1992).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).Article 

    Google Scholar 
    Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Sci. Rep. 9, 2486 (2019).Article 

    Google Scholar 
    Zhang, Y. G. et al. Refining the alkenone–pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191 (2019).Article 

    Google Scholar 
    Freeman, K. H. & Pagani, M. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Vol. 177 (eds Baldwin, I. T. et al.) 35–61 (Springer-Verlag, 2005).Pagani, M. The alkenone–CO2 proxy and ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. A 360, 609–632 (2002).Article 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).Article 

    Google Scholar 
    Henehan, M. J. et al. Revisiting the Middle Eocene Climatic Optimum ‘Carbon Cycle Conundrum’ with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003713 (2020).Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 

    Google Scholar 
    Stap, L., Sluijs, A., Thomas, E. & Lourens, L. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography 24, PA1211, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008PA001655 (2009).Sluijs, A. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780 (2009).Article 

    Google Scholar 
    Stap, L. et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010).Article 

    Google Scholar 
    Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017 (2003).Article 

    Google Scholar 
    van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nat. Commun. 9, 2877 (2018).Article 

    Google Scholar 
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).Article 

    Google Scholar 
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822–e1501822 (2016).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Site 1263. In Zachos, J. C., Kroon, D., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–87 College Station, TX (Ocean Drilling Program) (2004).Bice, K. L., Sloan, L. C. & Barron, E. J. in Warm Climates in Earth History (eds Huber, B. T., Macleod, K. G., & Wing, S. L.) 79–129 (Cambridge Univ. Press, 2000).Handoh, I. C., Bigg, G. R. & Jones, E. J. W. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 31–58 (2003).Article 

    Google Scholar 
    Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat. Protoc. 4, 14–24 (2009).Article 

    Google Scholar 
    Zhang, H., Stoll, H., Bolton, C., Jin, X. & Liu, C. A refinement of coccolith separation methods: Measuring the sinking characters of coccoliths. Biogeosciences Discussions (2018): 1–30 https://doi.org/10.5194/bg-2018-82 (2020).Hermoso, M. et al. Towards the use of the coccolith vital effects in palaeoceanography: a field investigation during the middle Miocene in the SW Pacific Ocean. Deep Sea Res. Part 1 160, 103262 (2020).Article 

    Google Scholar 
    Lauretano, V., Hilgen, F. J., Zachos, J. C. & Lourens, L. J. Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13Cbenthic record of ODP site 1263 between ~49 and ~54 Ma. Newsl. Stratigr. 49, 383–400 (2016).Article 

    Google Scholar 
    Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11, 1181–1195 (2015).Article 

    Google Scholar 
    Westerhold, T. et al. Astronomical Calibration of the Ypresian Time Scale: Implications for Seafloor Spreading Rates and the Chaotic Behaviour of the Solar System? Preprint at Clim. Past Discuss. https://doi.org/10.5194/cp-2017-15 (2017).Gatuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry (2021); https://CRAN.R-project.org/package=seacarb More