Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS
PubMed
Article
Google Scholar
Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Progr. Ser. 393, 1–12 (2009).ADS
Article
Google Scholar
Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).
Google Scholar
Jenkins, S. R. & Hawkins, S. J. Barnacle larval supply to sheltered rocky shores: a limiting factor?. Hydrobiologia 503, 143–151 (2003).Article
Google Scholar
Pineda, J., Hare, J. A. & Sponaugle, S. Consequences for population connectivity. Oceanography 20, 22–39 (2007).Article
Google Scholar
Shanks, A. L. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In Ecology of Marine Invertebrate Larvae (ed. McEdward, L. R.) 324–367 (CRC, Boca Raton, 1995).
Google Scholar
Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed
Article
Google Scholar
Bradford, R. W., Griffin, D. & Bruce, B. D. Estimating the duration of the pelagic phyllosoma phase of the southern rock lobster, Jasus edwardsii (Hutton). Mar. Freshw. Res. 66, 213–219 (2015).Article
Google Scholar
Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).Article
Google Scholar
Garrison, L. P. Vertical migration behavior and larval transport in brachyuran crabs. Mar. Ecol. Progr. Ser. 176, 103–113 (1999).ADS
Article
Google Scholar
Morgan, S. G. & Fisher, J. L. Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Mar. Ecol. Progr. Ser. 404, 109–126 (2010).ADS
Article
Google Scholar
Cowen, R. K. & Castro, L. R. Relation of coral reef fish larval distributions to island scale circulation around Barbados, west indies. Bull. Mar. Sci. 54, 228–224 (1994).
Google Scholar
Rudorff, C. A. G., Lorenzzetti, J. A., Gherardia, D. F. M. & Lins-Oliveira, J. E. Modeling spiny lobster larval dispersion in the Tropical Atlantic. Fish. Res. 96, 206–215 (2009).Article
Google Scholar
Allee, W. C. Studies in marine ecology. IV. The effect of temperature in limiting the geographic range of invertebrates of the Woods Hole littoral. Ecology 4, 341–354 (1923).Article
Google Scholar
Burton, R. S. Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52, 734–745 (1998).PubMed
Article
Google Scholar
Lancellotti, D. A. & Vasquez, J. A. Biogeographical patterns of benthic macroinvertebrates in the southeastern Pacific littoral. J. Biogeogr. 26, 1001–1006 (1999).Article
Google Scholar
Hormazabal, S., Shaffer, G. & Leth, O. Coastal transition zone off Chile. J. Geophys. Res. 109, C01021 (2004).ADS
Google Scholar
Mcdonald, A. M. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41, 281–382 (1998).ADS
Article
Google Scholar
Montecino, V. & Lange, C. B. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progr. Oceanogr. 83, 65–79 (2009).ADS
Article
Google Scholar
Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific Coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).PubMed
Article
Google Scholar
Wares, J. P., Gaines, S. D. & Cunningham, C. W. A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution 55, 295–306 (2001).CAS
PubMed
Article
Google Scholar
Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).Article
Google Scholar
Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and recruitment. In Marine Hard Bottom Communities, Ecological Studies Vol. 206 (ed. Wahl, M.) 177–190 (Springer, Berlin, 2009).Chapter
Google Scholar
Marino, I. A. M. et al. Genetic heterogeneity in populations of the Mediterranean shore crab, Carcinus aestuarii (Decapoda, Portunidae), from the Venice Lagoon. Estuar. Coast. Shelf. Sci. 87, 135–144 (2010).ADS
CAS
Article
Google Scholar
Sernapesca. Estadística de pesca de Chile. http://www.sernapesca.cl/informes/estadisticas (2022).Nation JD (1975) The Genus Cancer: Crustacea: Brachyura): Systematics, biogeography and fossil record. Nat. Hist. Mus. Los Angeles County Sci, Bull. 23 (1975).Pardo, L. M., Fuentes, J. P., Olguin, A. & Orensanz, J. M. L. Reproductive maturity in the edible Chilean crab Cancer edwardsii: methodological and management considerations. J. Mar. Biol. Assoc. U. K. 89, 1627–1634 (2009).Article
Google Scholar
Rojas-Hernández, N., Veliz, D. & Pardo, L. M. Use of novel microsatellite markers for population and paternity analysis in the commercially important crab Metacarcinus edwardsii. Mar. Biol. Res. 10, 839–844 (2014).Article
Google Scholar
Pardo, L. M., Riveros, M. P., Fuentes, J. P., Rojas-Hernández, N. & Veliz, D. An effective sperm competition avoidance strategy in crabs drives genetic monogamy despite evidence of polyandry. Behav. Ecol. Sociobiol. 70, 73–81 (2016).Article
Google Scholar
Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex- and size biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).Article
Google Scholar
Pardo, L. M., Mora-Vásquez, P. & Garcés-Vargas, J. Asentamiento diario de megalopas de jaibas del género Cancer en un estuario micromareal. Lat. Am. J. Aquat. Res. 40, 142–152 (2012).Article
Google Scholar
Pardo, L. M., Rubilar, P. R. & Fuentes, J. P. North Patagonian estuaries appear to function as nursery habitats for marble crab (Metacarcinus edwardsii). Reg. Stud. Mar. Sci. 36, 101315 (2020).
Google Scholar
Quintana, R. Larval development of the Edible crab, Cancer edwardsi Bell, 1835 under laboratory conditions (Decapoda, Brachyura). Rep. USA Mar. Biol. Inst. 5, 1–19 (1983).
Google Scholar
Rojas-Hernández, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from southern Pacific. PLoS ONE 11, e0166029 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
Strub, P. T., James, C., Montecino, V., Rutllant, J. A. & Blanco, J. L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Progr. Oceanogr. 172, 159–198 (2019).ADS
Article
Google Scholar
Beerli, P., Mashayekhi, S., Sadeghi, M., Khodaei, M. & Shaw, K. Population genetic inference with MIGRATE. Curr. Protoc. Bioinform. 68, e87 (2019).Article
Google Scholar
Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).PubMed
Article
Google Scholar
Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Weiss, M. et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus. J. Mar Biol. Assoc. UK 89, 753–759 (2009).CAS
Article
Google Scholar
Pampoulie, C. et al. A pilot genetic study reveals the absence of spatial genetic structure in Norway lobster (Nephrops norvegicus) on fishing grounds in Icelandic waters. ICES J. Mar. Sci. 68, 20–25 (2011).Article
Google Scholar
Costlow, J. D. J. & Bookhout, C. G. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116, 373–396 (1959).Article
Google Scholar
Ungfors, A., McKeown, N. J., Shaw, P. W. & Andre, C. Lack of spatial genetic variation in the edible crab (Cancer pagurus) in the Kattegat – Skagerrak area. ICES J. Mar. Sci. 66, 462–469 (2009).Article
Google Scholar
Lacerda, A. L. F. et al. High connectivity among blue crab (Callinectes sapidus) populations in the Western South Atlantic. PLoS ONE 11, e0153124 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
Taylor, M. S. & Hellberg, M. E. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol. Ecol. 15, 695–707 (2006).CAS
PubMed
Article
Google Scholar
Arranz, V., Fewster, R. M. & Lavery, S. D. Geographic concordance of genetic barriers in New Zealand coastal marine species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3607–3625 (2021).Article
Google Scholar
Ayre, D. J., Minchinton, T. E. & Perrin, C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18, 1887–1903 (2009).CAS
PubMed
Article
Google Scholar
Barber, P. H., Erdmann, M. V. & Palumbi, S. R. Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60, 1825–1839 (2006).PubMed
Article
Google Scholar
Macaya, E. C. & Zuccarello, G. C. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar. Ecol. Progr. Ser. 420, 103–112 (2010).ADS
Article
Google Scholar
Ruiz, M., Tarifeño, E., Llanos-Rivera, A., Padget, C. & Campos, B. Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck 1819). Rev. Biol. Mar. Oceanogr. 431, 51–61 (2008).
Google Scholar
Toro, J. E., Castro, G. C., Ojeda, J. A. & Vergara, A. M. Allozymic variation and differentiation in the Chilean blue mussel, Mytilus chilensis, along its natural distribution. Genet. Mol. Biol. 29, 174–179 (2006).CAS
Article
Google Scholar
Araneda, C., Larraín, M. A., Hecht, B. & Narum, S. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. 6, 3632–3644 (2016).PubMed
PubMed Central
Article
Google Scholar
Disalvo, L. H. Observations on the larval and post-metamorphic life of Concholepas concholepas (Bruguière, 1789) in laboratory culture. Veliger 30, 358–368 (1988).
Google Scholar
Cardenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).ADS
Article
Google Scholar
Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar. Ecol. Progr. Ser. 410, 111–123 (2010).ADS
Article
Google Scholar
Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Temporal genetic homogeneity among shore crab (Carcinus maenas) larval events supplied to an estuarine system on the Portuguese northwest coast. Heredity 106, 832–840 (2011).CAS
PubMed
Article
Google Scholar
Vadopalas, B., Pietsch, T. & Friedman, C. The proper name for the geoduck: resurrection of Panopea generosa Gould, 1850, from the synonymy of Panopea abrupta (Conrad, 1849) (Bivalvia: Myoida: Hiatellidae). Malacologia 52, 169–173 (2010).Article
Google Scholar
Cassista, M. C. & Hart, M. W. Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar. Biol. 152, 569–579 (2007).Article
Google Scholar
Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).CAS
Article
Google Scholar
Schmidt, P. S., Phifer-Rixey, M., Taylor, G. M. & Christner, J. Genetic heterogeneity among intertidal habitats in the flat periwinkle, Littorina obtusata. Mol. Ecol. 16, 2393–2404 (2007).CAS
PubMed
Article
Google Scholar
Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).ADS
CAS
Article
Google Scholar
Reid, K. et al. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117, 307–315 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Hu, Z.-M., Zhang, J., Lopez-Bautista, J. & Duan, D.-L. Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar. Biol. 160, 1407–1414 (2013).Article
Google Scholar
Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed
Article
Google Scholar
Becker, R. A. & Wilks, A. R. R version by Ray Brownrigg. mapdata: Extra Map Databases. R package version 2.3.0. (2018b).Becker, R.A. & Wilks, A. R. R version by Ray Brownrigg. Enhancements by TP Minka and A Deckmyn.maps: Draw Geographical Maps. R package version 3.3.0. https://CRAN.R-project.org/package=maps (2018a).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022).
Google Scholar
Grube, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).Article
Google Scholar
Foll, M. & Gaggiotti, O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed
PubMed Central
Article
Google Scholar
Flanagan, S. P. & Jones, A. G. Constraints on the Fst-heterozygosity outlier approach. J. Hered 108, 561–573 (2017).PubMed
Article
Google Scholar
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodohl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4, 782–788 (2013).Article
Google Scholar
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Logiciel sous Windows pour la Genetique des Populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000 (Université de Montpellier II, Montpellier, France, 2000).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
Pritchard, J. K., Wen, X. & Falush, D. Documentation for Structure Software: Version 2.3. University of Oxford http://pritch.bsd.uchicago.edu/structure.html (2010).Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U.S.A. 98, 4563–4568 (2001).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).CAS
PubMed
Article
Google Scholar More