More stories

  • in

    Relationships between transmission of malaria in Africa and climate factors

    DataWe used temperature data, rainfall data, and data on the incidence of malaria collected from 1901 to 2015 for 43 African countries to construct networks to determine the relationships between transmission of malaria and climate change elements, especially temperature and rainfall. Data resolution is given by the latitude and longitude of the capital city for every country in Africa. Temperature and rainfall data are provided in terms of monthly averages in the country wise. The nodes in the network represent the country, and the edges in the network represent the relationship between countries. We collected malaria data from Harvard Dataverse35 and the world malaria report from the WHO31. Data for temperature and rainfall were obtained from the Climate Change Knowledge Portal of the World Bank Group36.Network generation and analysisThe networks were constructed by using the threshold method where the network depends on the mean, standard deviation, and the real number ((n)) used to control the features of the network. Therefore, data for temperature, rainfall, and the incidence of malaria were divided into six groups mostly comprising ranges of 20 years (1900–1920, 1921–1940, 1941–1960, 1961–1980, 1981–2000) as well as the period from 2001 to 2015. The missing data in Malaria incidence data are filled by the average amount of malaria incidence collected per year.In Table S1, a malaria report from the World Health Organization shows that the rate of death is directly proportional to the incidence of malaria35. The death toll in Africa from malaria is about 98% of world deaths from malaria. Such deaths in African regions decrease thanks to efforts the WHO, governments, and the private sector have been conducting to prevent them. Weather and climate are among the factors that drive increases in malaria infections in different areas.We consider networks based on the threshold method (see the “Methods and Materials” section below). First, we fill the missing malaria incidence data, and we calculate normalized Pearson correlation coefficients of three-time series between two countries. Then, we obtain a correlation matrix for the countries. We estimate the average value of the correlation coefficients from the time intervals 1901–1920, 1921–1940, 1941–1960, 1961–1980, 1981–2000, and 2001–2015 for three time series: temperature, rainfall, and incidence of malaria. We summarize the averages and standard deviations of the correlation coefficients, as shown in Table S2. The mean values from the correlation in temperature are high, compared to those for rainfall and the incidence of malaria. The standard deviations in temperature and rainfall are large, but the standard deviation for the incidence of malaria is small.We chose an ad hoc threshold value of the correlation coefficients to generate sparse networks. The characteristic values for (n) of the threshold are given in Table S3. We consider three types of thresholds in order to observe changes in the networks according to the threshold.Let us define the normalized variance of each time series. We considered time series (T_{i} left( t right)), (M_{i} left( t right)), and (R_{i} left( t right)) in country (i) for temperature, the incidence of malaria, and rainfall, respectively. We define normalized variance as$$r_{ij} = frac{{x_{i} left( t right)x_{j} left( t right) – x_{i} left( t right)x_{j} left( t right)}}{{sigma_{i} sigma_{j} }}$$
    (1)
    where (x_{i} left( t right)) = (T_{i} left( t right)), (M_{i} left( t right)), (R_{i} left( t right)). We obtained a Pearson correlation matrix for each time series as follows:$$R_{S} = left[ {begin{array}{*{20}c} {r_{11} } & cdots & {r_{1N} } \ vdots & {r_{ij} } & vdots \ {r_{N1} } & cdots & {r_{NN} } \ end{array} } right]$$
    (2)
    where (S = T, M, R).We calculated the average value, (overline{r }), and the standard deviation, (sigma), for the correlation coefficients of the matrix. We applied the threshold method to generate a sparse network from the correlation matrix. Two countries are connected in the correlation network if and only if the value of the correlation coefficient is greater than, or equal to, the threshold value:$$r_{{ij}} = left{ {begin{array}{*{20}c} 1 & {{text{if}};r_{{ij}} ge bar{r}{text{ + n}}sigma } \ 0 & {{text{otherwise}}} \ end{array} } right.$$
    (3)
    where (r_{ij}) is the correlation coefficient between two countries, and (n) is an element of real numbers ((n in {mathbb{R}})). The value of (n) determines whether the network is sparsely or densely connected.We use Python programming language, packages, numpy for mathematical functions and random number generator, pandas for data analysis and manipulations, networkx for creation, manipulation, and studying the structure of the complex network, matplotlib for visualization and plotting graph and base map for map projection and visualization of geographic information. More

  • in

    Dietary preferences and feeding strategies of Colombian highland woolly monkeys

    Garber, P. A. Foraging strategies among living primates. Annu. Rev. Anthropol. 16, 339–364 (1987).Article 

    Google Scholar 
    Stephens, D. W. & Krebs, J. K. Foraging Theory (Princeton University Press, 1987).Book 

    Google Scholar 
    Felton, A. M. et al. Nutritional ecology of Ateles chamek in lowland Bolivia: How macronutrient balancing influences food choices. Int. J. Primatol. 30, 675–696 (2009).Article 

    Google Scholar 
    Marshall, A. J. & Wrangham, R. W. Evolutionary consequences of fallback foods. Int. J. Primatol. 28, 1219–1235 (2007).Article 

    Google Scholar 
    Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M. & Gilbert, C. C. Nutritional contributions of insects to primate diets: Implications for primate evolution. J. Hum. Evol. 71, 59–69 (2014).PubMed 
    Article 

    Google Scholar 
    Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).Article 

    Google Scholar 
    Clare, E. L., Symondson, W. O. C. & Fenton, M. B. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol. 23, 3633–3647 (2014).PubMed 
    Article 

    Google Scholar 
    Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica 32, 533–544 (2000).Article 

    Google Scholar 
    Chapman, C. Patterns of foraging and range use by three species of neotropical primates. Primates 29, 177–194 (1988).Article 

    Google Scholar 
    Felton, A. M., Felton, A., Lindenmayer, D. B. & Foley, W. J. Nutritional goals of wild primates. Funct. Ecol. 23, 70–78 (2009).Article 

    Google Scholar 
    Kay, R. On the use of anatomical features to infer foraging behavior in extinct primates. In Adaptations for Foraging in Nonhuman Primates (eds Rodman, P. & Cant, J.) 21–53 (Columbia University Press, 1984).Chapter 

    Google Scholar 
    Bravo, S. P. Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina: Insect-infested seed ingestion and dispersal. Biotropica 40, 471–476 (2008).Article 

    Google Scholar 
    Deluycker, A. M. Insect prey foraging strategies in Callicebus oenanthe in Northern Peru: Insect foraging in Callicebus oenanthe. Am. J. Primatol. 74, 450–461 (2012).PubMed 
    Article 

    Google Scholar 
    Link, A. Insect-eating by spider monkeys. Neotropical Primates 11, 104–107 (2003).ADS 

    Google Scholar 
    MacKinnon, K. C. Food choice by juvenile capuchin monkeys (Cebus capucinus) in a tropical dry forest. In New Perspectives in the Study of Mesoamerican Primates (eds Estrada, A. et al.) 349–365 (Kluwer Academic Publishers, 2006). https://doi.org/10.1007/0-387-25872-8_17.Chapter 

    Google Scholar 
    Fonseca, M. L., Cruz, D. M., Acosta Rojas, D. C., Páez Crespo, J. & Stevenson, P. R. Influence of arthropod and fruit abundance on the dietary composition of highland Colombian woolly monkeys (Lagothrix lagotricha lugens). Folia Primatol. (Basel) 90, 240–257 (2019).Article 

    Google Scholar 
    Vargas, S. A. et al. Population density and ecological traits of highland woolly monkeys at Cueva de los Guacharos National Park, Colombia. In High Altitude Primates (eds Grow, N. B. et al.) 85–102 (Springer, 2014). https://doi.org/10.1007/978-1-4614-8175-1_5.Chapter 

    Google Scholar 
    Bryer, M. A. H., Chapman, C. A., Raubenheimer, D., Lambert, J. E. & Rothman, J. M. Macronutrient and energy contributions of insects to the diet of a frugivorous monkey (Cercopithecus ascanius). Int. J. Primatol. 36, 839–854 (2015).Article 

    Google Scholar 
    Gómez-Posada, C., Rey-Goyeneche, J. & Tenorio, E. A. Ranging responses to fruit and arthropod availability by a tufted capuchin group (Sapajus apella) in the Colombian Amazon. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 195–215 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_12.Chapter 

    Google Scholar 
    Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus): Mallott et al. Am. J. Phys. Anthropol. 162, 241–254 (2017).PubMed 
    Article 

    Google Scholar 
    Defler, T. R. & Defler, S. B. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. Int. J. Primatol. 17, 161–190 (1996).Article 

    Google Scholar 
    Di Fiore, A. Diet and feeding ecology of woolly monkeys in a western Amazonian rain forest. Int. J. Primatol. 25, 767–801 (2004).Article 

    Google Scholar 
    Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia. Am. J. Primatol. 32, 123–140 (1994).PubMed 
    Article 

    Google Scholar 
    Izawa, K. Foods and feeding behavior of monkeys in the upper Amazon basin. Primates 16, 295–316 (1975).Article 

    Google Scholar 
    Peres, C. A. Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha cana) in central Amazonia: Comparisons with other atelines. Int. J. Primatol. 15, 333–372 (1994).Article 

    Google Scholar 
    Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates 47, 239–247 (2006).PubMed 
    Article 

    Google Scholar 
    Milton, K. & Nessimian, J. L. Evidence for insectivory in two primate species (Callicebus torquatus lugens and Lagothrix lagothricha lagothricha) from northwestern Amazonia. Am. J. Primatol. 6, 367–371 (1984).PubMed 
    Article 

    Google Scholar 
    Soini, P. A synecological study of a primate community in the Pacaya-Samiria National Reservee, Peru. Primate Conserv. 7, 63–71 (1986).
    Google Scholar 
    Pickett, S. B., Bergey, C. M. & Di Fiore, A. A metagenomic study of primate insect diet diversity: A metagenomic study of primate diet. Am. J. Primatol. 74, 622–631 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Estupiñan, L. & Muñoz, D. Estudio ecológico comparativo de la artropofauna presente en los receptáculos axilares de dos bromeliáceas epífitas en diferentes bosques andinos. In Estudios ecológicos del páramos y del bosque altoandino Cordillera Oriental de Colombia (eds Mora, L. & Sturm, H.) 679–696 (Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 1995).
    Google Scholar 
    Solé, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001).Article 

    Google Scholar 
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 15, 3790–3798 (2002).
    Google Scholar 
    Gunst, N., Boinski, S. & Fragaszy, D. M. Development of skilled detection and extraction of embedded prey by wild brown capuchin monkeys (Cebus apella apella). J. Comp. Psychol. 124, 194–204 (2010).PubMed 
    Article 

    Google Scholar 
    Panger, M. A. et al. Cross-site differences in foraging behavior of white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 119, 52–66 (2002).PubMed 
    Article 

    Google Scholar 
    Agostini, I. & Visalberghi, E. Social influences on the acquisition of sex-typical foraging patterns by juveniles in a group of wild tufted capuchin monkeys (Cebus nigritus). Am. J. Primatol. 65, 335–351 (2005).PubMed 
    Article 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).Article 

    Google Scholar 
    Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).PubMed 
    Article 

    Google Scholar 
    Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS One 14, e0225805 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siegenthaler, A., Wangensteen, O. S., Benvenuto, C., Campos, J. & Mariani, S. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol. Ecol. 28, 232–249 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Esnaola, A., Arrizabalaga-Escudero, A., González-Esteban, J., Elosegi, A. & Aihartza, J. Determining diet from faeces: Selection of metabarcoding primers for the insectivore Pyrenean desman (Galemys pyrenaicus). PLoS One 13, e0208986 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallott, E. K. & Amato, K. R. The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). Am. J. Primatol. 80, e22896 (2018).PubMed 
    Article 

    Google Scholar 
    Wray, A. K. et al. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol. Ecol. 30, 855–873 (2021).PubMed 
    Article 

    Google Scholar 
    Quiroga-González, C. et al. Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process. Sci. Rep. 11, 6522 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Prada, C. M. & Stevenson, P. R. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guacharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).Article 

    Google Scholar 
    García-Toro, C., Link, A., Páez Crespo, J. & Stevenson, P. R. Home range and daily traveled distances of highland Colombian woolly monkeys (Lagothrix lagothricha lugens): Comparing spatial data from GPS collars and direct follows. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 173–193 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_3.Chapter 

    Google Scholar 
    Baulu, J. & Redmond, D. E. Some sampling considerations in the quantitation of monkey behavior under field and captive conditions. Primates 19, 391–399 (1978).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: An innovative combination trap for biologically diverse sampling. PLoS One 6, e21079 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohmart, C. P., Stewart, L. G. & Thomas, J. R. Phytophagous insect communities in the canopies of three Eucalyptus forest types in south-eastern Australia. Austral Ecol. 8, 395–403 (1983).Article 

    Google Scholar 
    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
    Google Scholar 
    Schowalter, T. D., Webb, J. W. & Crossley, D. A. Communtiy structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems. Ecology 62, 1010–1019 (1981).Article 

    Google Scholar 
    Stevenson, P. R. Phenological patterns of woody vegetation at Tinigua Park, Colombia: Methodological comparisons with emphasis on fruit production. Caldasia 26, 125–150 (2004).
    Google Scholar 
    Vargas, I. & Stevenson, P. R. Patrones fenológicos en la Estación Biológica Mosiro Itajura-Caparú: Producción de frutos estimada a partir de transectos fenológicos y trampas de frutos. In Estación Biológica Mosiro Itajura-Caparú: Biodiversidad en el territorio Yagojé-Apaporis (eds Alarcón-Nieto, G. & Palacios, E.) 99–104 (Conservación Internacional Colombia, 2009).
    Google Scholar 
    Bautista, S. Patrones de productividad de frutos y dispersión de semillas en diferentes bosques de Colombia, y su relación con la biomasa de primates (2019).King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Invited Review: Molecular analysis of predation: A review of best practice for DNA-based approaches: Optimizing molecular analysis of predation. Mol. Ecol. 17, 947–963 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces: DNA barcoding. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jusino, M. A. et al. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol. Ecol. Resour. 19, 176–190 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS One 14, e0220081 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).Book 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratnasingham & Hebert. bold: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Phillips, C. A. & McGrew, W. C. Identifying species in chimpanzee (Pan troglodytes) feces: A methodological lost cause?. Int. J. Primatol. 34, 792–807 (2013).Article 

    Google Scholar 
    Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Over 2.5 million COI sequences in GenBank and growing. PLoS One 13, e0200177 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).PubMed 
    Article 

    Google Scholar 
    Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).CAS 
    Article 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    R Studio Team. R Studio: Integrated Development of R (Rstudio, PBC, 2020).Hijmans, R. & van Etten, J. raster: Geographic analysis and modeling with raster data (2012).Wickham, H. ggplot2: Elegant graphics for data analysis (2016).Di Fiore, A. & Rodman, P. S. Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a neotropical Terra Firma Forest. Int. J. Primatol. 22, 449–480 (2001).Article 

    Google Scholar 
    Dew, J. L. Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. Int. J. Primatol. 26, 1107–1135 (2005).Article 

    Google Scholar 
    Deblauwe, I. & Janssens, G. P. J. New insights in insect prey choice by chimpanzees and gorillas in Southeast Cameroon: The role of nutritional value. Am. J. Phys. Anthropol. 135, 42–55 (2008).PubMed 
    Article 

    Google Scholar 
    de Carvalho Jr, O., Ferrari, S. F. & Strier, K. B. Diet of a muriqui group (Brachyteles arachnoides) in continuous primary forest. Primates 45, 201–204 (2004).Article 

    Google Scholar 
    Talebi, M., Bastos, A. & Lee, P. C. Diet of southern muriquis in continuous Brazilian Atlantic forest. Int. J. Primatol. 26, 1175–1187 (2005).Article 

    Google Scholar 
    Kowalzik, B. K., Pavelka, M. S. M., Kutz, S. J. & Behie, A. Parasites, primates, and ant-plants: Clues to the life cycle of Controrchis spp. in black howler monkeys (Alouatta pigra) in Southern Belize. J. Wildl. Dis. 46, 1330–1334 (2010).PubMed 
    Article 

    Google Scholar 
    Tebbich, S., Taborsky, M., Fessl, B., Dvorak, M. & Winkler, H. Feeding behavior of four arboreal Darwin’s finches: Adaptations to spatial and seasonal variability. Condor 106, 95–105 (2004).Article 

    Google Scholar 
    Páez Crespo, J. Comportamiento y caracterización genética de churucos de montaña (Lagothrix lagothricha lugens): Inferencias en la filopatría de machos (Universidad de los Andes, 2016).
    Google Scholar 
    Blüthgen, N., Verhaagh, M., Goitía, W. & Blüthgen, N. Ant nests in tank bromeliads—An example of non-specific interaction. Insectes Soc. 47, 313–316 (2000).Article 

    Google Scholar 
    Huxley, C. Symbiosos between ants and epiphytes. Biol. Rev. 55, 321–340 (1980).Article 

    Google Scholar 
    Brehm, G., Pitkin, L. M., Hilt, N. & Fiedler, K. Montane Andean rain forests are a global diversity hotspot of geometrid moths: Hotspot of geometrid moths. J. Biogeogr. 32, 1621–1627 (2005).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Campuzano, E. F., Ibarra-Núñez, G., Machkour-M’Rabet, S., Morón-Ríos, A. & Jiménez, M. L. Diversity and seasonal variation of ground and understory spiders from a tropical mountain cloud forest. Insect Sci. 27, 826–844 (2020).PubMed 
    Article 

    Google Scholar 
    Miller, J. S. & Thiaucourt, P. Diversity of prominent moths (Lepidoptera: Noctuoidea: Notodontidae) in the cloud forests of northeastern Ecuador, with descriptions of 27 new species. Ann. Entomol. Soc. Am. 104, 1033–1077 (2011).Article 

    Google Scholar 
    Lambert, J. E. Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7, 8–20 (1998).Article 

    Google Scholar 
    Janiak, M. C. No evidence of copy number variation in acidic mammalian chitinase genes (CHIA) in new world and old world monkeys. Int. J. Primatol. 39, 269–284 (2018).Article 

    Google Scholar 
    Remis, M. J. & Dierenfeld, E. S. Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. Int. J. Primatol. 25, 825–845 (2004).Article 

    Google Scholar 
    Wolda, H. Seasonality of tropical insects. J. Anim. Ecol. 49, 277 (1980).Article 

    Google Scholar 
    Yanoviak, S. P., Walker, H. & Nadkarni, N. M. Arthropod assemblages in vegetative vs. humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia 48, 51–58 (2004).Article 

    Google Scholar 
    Augspurger, C. K. Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens. Ecology 65, 1705–1712 (1984).Article 

    Google Scholar 
    Richards, L. A. & Windsor, D. M. Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. J. Trop. Ecol. 23, 169–176 (2007).Article 

    Google Scholar 
    Tercel, M. P. T. G., Symondson, W. O. C. & Cuff, J. P. The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Mol. Ecol. 30, 2199–2206 (2021).PubMed 
    Article 

    Google Scholar  More

  • in

    Raptors avoid the confusion effect by targeting fixed points in dense aerial prey aggregations

    Study systemWe conducted our research at the Jornada Caves, New Mexico, USA from 8 to 29 June 2018. This remote cave site on private land in the Chihuahuan Desert occupies an elevated volcanic plateau at approximately 1500 m altitude, with the remains of collapsed lava tubes forming a deep canyon with cave and arch features. The site was chosen because of the presence of a population of Swainson’s Hawks (Buteo swainsoni) that predates the population of Mexican Free-tailed Bats (Tadarida brasiliensis) that emerge from the caves en masse daily throughout the summer39. The bats migrate to the site during their breeding season from May to September40, and use the caves as a day roost before flying to their feeding grounds at dusk. The population consists of a maternal colony of approximately 700,000 to 900,000 bats which inhabit two connected caves named North and South. The largest and most reliable emergence was from the South cave, occurring every evening without exception. Emergence from the North cave was less reliable, with no bats emerging at all on some nights during the first week of observations. The numbers of bats were topped up in the second week by new arrivals, and emergence from the North cave was reliable thereafter. Emergence began at a variable time between approximately 18:30 and 20:00 MDT and lasted from 10 to 25 min depending on the number of bats emerging. Sunset was between 20:16 and 20:21 MDT, so the bats usually emerged in broad daylight. During the third week of observations, a substantial second emergence usually occurred at each cave, beginning around 0.5 h after the end of the first emergence, when fewer hawks were present. No ethical issues were identified by the Animal Welfare and Ethical Review Board of the University of Oxford’s Department of Zoology. We attended only as observers, and never entered the caves, so the risk of causing disturbance as the bats emerged was low41.Video observationsWe recorded video of the hawks attacking the bats every evening from 8 to 29 June 2018, except for one evening that had to be missed due to bad weather. We used three pairs of high-definition video cameras (Lumix DMC-FZ1000/2500, Panasonic Corporation, Osaka, Japan) to enable reconstruction of the three-dimensional flight trajectories of the hawks and bats, setting the camera lens to its widest zoom setting. We recorded 25 Hz video at 3840 × 2160 pixels for the first three days and 50 Hz video at 1920 × 1080 pixels for the remainder of the study (Movie S1). This higher frame rate proved necessary to facilitate tracking of the bats’ erratic movements but was traded off against lower spatial resolution. Each camera pair was set in widely spaced stereo configuration to enable three-dimensional reconstruction of the attacks, with a baseline distance of 16 to 27 m. The cameras were mounted on tripods which were adjusted to the same height using an optical level kit (GOL20D/BT160/GR500, Robert Bosch GmbH, Gerlingen, Germany). We used the same optical level kit to measure the baseline distance between the cameras.We set up two camera pairs facing approximately north and south across the South cave for the duration of the study. As the swarm’s overall flight direction was variable and influenced by the wind, we positioned the north- and south-facing camera pairs to allow them to be panned from northeast to northwest and from southeast to southwest, respectively. This enabled us to cover most flight directions, except due east (where the bats rarely flew) and due west (which was subject to glare). We set up a third camera pair to view the emergence that occurred from the North cave from the second week onward. When leaving the North cave, the bats usually flew along the lava tube and beneath a rock arch before climbing out of the canyon. We therefore positioned the cameras close to where the swarm began climbing out above the canyon rim, aiming to capture attacks as the hawks swooped low over the canyon.The hawks consistently appeared within a few minutes of the start of emergence, which enabled us to observe the general direction in which the bat swarm was emerging, and to reorient the cameras to view the swarm before the attacks began. As soon as the bats began emerging, the cameras were turned on and left to record. To begin with, all fieldworkers retreated into make-shift hides, but these were gradually phased out for reasons of practicality. The birds quickly became habituated to our presence, venturing close to the cave even when fieldworkers were present. Each attack began with the hawk approaching the swarm in level flight or stooping in from above. This was followed by fast flight through the stream of bats, with one or more attempts made to grab a bat using a pitch-up, pitch-down, or rolling grab manoeuvre with the legs and talons extended (Movie S1). If the first attack was unsuccessful, then the hawks would usually perform further short-range swoops through the stream until they made a catch. Once a bat was caught, the hawk would drift away from the swarm, to consume its prey on the wing.VideogrammetryWe synchronized the videos using the DLTdv5 video tracking toolbox42 in MATLAB R2020a (MathWorks Inc., Natick, MA). To do so, we matched the complex motions involved in the hawks’ attack manoeuvres visually between videos, and applied the relevant frame offset to synchronize them to the nearest frame. To verify the accuracy of this method, we compared the position of the hawk’s wings between the two videos for the three pairs of frames used for synchronization, and again for the three pairs of frames recorded 50 frames later (Fig. S3). This comparison shows that the frame synchronization remains stable as expected over this 1 s time interval, for the randomly selected flight displayed in Fig. S3. Nevertheless, because the cameras’ shutters were not electronically synchronized, this post hoc procedure can only guarantee synchronization of the frames to within ±0.01 s at the 50 Hz frame rate (see Fig. S3). To assess the sensitivity of our trajectory reconstructions to this remaining synchronization error, we compared the flight trajectories that we had already reconstructed with those that would have been reconstructed had the videos been shifted ±1 frame (Fig. S4). This comparison shows that the displacement of the trajectories resulting from a synchronization error of ±1 frame is small in comparison to their path length, and that their shape remains approximately the same, even for the two stooping flight trajectories plotted in Fig. S4.We used the DLTdv5 toolbox to identify the pixel coordinates of the hawk in both videos within a pair, manually tracking the visual centre of the subject’s body from the point at which it appeared in both cameras up to the point of interception. We used the same method to track the bat that the hawk caught or attempted to catch during the terminal attack sequences that we recorded at close range. The bats were too distant to be tracked individually in recordings of the hawks’ long-range approaches, but the point of actual or attempted capture was nevertheless obvious from the hawks’ flight behaviour. We aimed to reconstruct all attack trajectories that were captured by both cameras within a pair. We were able to reconstruct n = 62 terminal attack trajectories, drawn from n = 50 separate attack flights (i.e. n = 12 of these comprised follow-on attack passes, up to a maximum of four consecutive passes made in cases where the first attack pass was unsuccessful; see Supporting Data and Code for details). We were also able to reconstruct n = 26 long-range approaches. Hence, as the population of hawks peaked at approximately 20 birds, there will have been repeated sampling within individuals in both cases.We calibrated the cameras by matching 15 points across both frames, including background features and points on the hawk, which we selected with the objective of covering as much of the capture volume as possible. The image coordinates of these calibration points were exported from the DLTdv5 toolbox into custom-written software in MATLAB, which solved the camera collinearity equations43 using a nonlinear least squares bundle adjustment implemented using the MATLAB Optimization Toolbox R2020a (see Supporting Data and Code). The bundle adjustment routine identifies jointly optimal estimates of the camera calibration parameters and unknown spatial coordinates of the calibration points, by minimizing the sum of the squared reprojection error of the associated image points. The reprojection error of an image point matched across camera views is defined as the difference between its measured image coordinates and those expected under the camera calibration model given its estimated spatial coordinates. This nonlinear approach enabled us to self-calibrate the cameras using identified features of the environment, whilst also incorporating prior knowledge of the intrinsic and extrinsic camera parameters. This in turn avoided the need to move a known calibration object through the very large imaging volume.We set the calibrated baseline distance between the cameras equal to the measurement that we made of this in the field using the optical level. We fixed the focal length of each camera at 1468.9 pixels for the 1920 × 1080 recordings and at 3918.5 pixels for the 3840 × 2160 recordings. These values were estimated using the Camera Calibrator toolbox in MATLAB, from a set of 20 calibration images of a checkerboard pattern held in front of the camera. Lens distortions were found to be minimal, and we therefore assumed a central perspective projection43 in which we assumed no lens distortion and no principal point offset with respect to the camera sensor. The resulting stereo camera calibration was used to solve for the spatial coordinates of the tracked hawk and bat in MATLAB. This is a least squares solution, in the sense that it minimizes the sum of the squared reprojection error for each image point matched across stereo video frames. We therefore report the root mean square (RMS) reprojection error as a check on the accuracy of the calibrations and reconstructions.For the terminal attack trajectories filmed at close range, the mean RMS reprojection error of the 16 calibrations was 0.73 ± 0.35 pixels, whilst for the reconstructed flight trajectories it was 1.22 ± 1.18 pixels for the hawks and 1.87 ± 2.39 pixels for the bats over all n = 62 flights (mean ± SD). For the long-range approaches filmed at a distance, the RMS reprojection error of the 18 calibrations was 0.53 ± 0.61 pixels, whilst for the reconstructed flight trajectories it was 1.08 ± 1.07 pixels for the hawks over all n = 28 flights (mean ± SD). The sub-pixel reprojection error that we achieved in the calibrations is appropriate to the method. The higher reprojection error of the reconstructions is also to be expected, because whereas the bundle adjustment optimizes the camera calibration parameters jointly with the estimated spatial coordinates of the calibration points, the calibration is held fixed in the reconstructions. In addition, any spatiotemporal error in the matching of points across camera frames will manifest itself as reprojection error in the reconstructions.The foregoing calibration reconstructs the spatial coordinates of the matched image points in a Cartesian coordinate system aligned with the sensor axes of one of the cameras. To aid visualization and interpretation of the flight trajectories, we therefore transformed the spatial coordinates of the hawks and bats into an Earth axis system in which the z axis was vertical. To do so, we filmed and reconstructed the ballistic trajectory of a small rock thrown high into the air through the volume of stereo overlap. We identified the image coordinates of the peak of its parabolic path, together with the image coordinates of two flanking points located ±20 or 25 frames to either side. We took the line dropped from the peak of the parabola perpendicular to the line connecting the two flanking points to define the direction of gravitational acceleration. We then used this to identify the rotation needed to transform the spatial coordinates of the hawks and bats into Earth axes with the z axis as vertical. Finally, we made use of the fact that the two cameras in each pair were fixed at the same height to verify the transformation to Earth axes. For the 16 calibrations used to reconstruct the terminal attack trajectories, the inclination of the baseline between the cameras in Earth axes had a median absolute value of just 1.2˚ (1st, 3rd quartiles: 0.8˚, 2.2˚), providing independent validation of the calibration method that we used.Trajectory analysisAll trajectory analysis was done using custom-written software in MATLAB R2020a (see Supporting Data and Code). We used piecewise cubic Hermite interpolation of the reconstructed trajectories to estimate the spatial coordinates of the hawk or bat for any occasional frames in which this was obscured. We then smoothed the trajectories using quintic spline fitting. For the long-range approaches, we used a spline tolerance designed to remove an RMS spatial position error of 0.5 m, corresponding approximately to the wing length of a hawk. For the terminal attack trajectories, we used a tolerance designed to remove an RMS position error of 0.12 m, corresponding approximately to the wing length of a bat. These values were chosen as representative estimates of the accuracy with which it was possible to match points across frames at long and close range, respectively. Finally, we differentiated and evaluated the splines analytically to estimate the velocity and acceleration of the bird and bat at an up-sampled frequency of 2 kHz. This ensured a suitably small integration step size for the subsequent numerical simulations. On average, the hawks flew faster than the bats (Fig. S5A), so were tracked over longer distances (Fig. S5B), but with considerable overlap in their respective distributions.We simulated the hawk’s attack trajectory in the Earth axes using a guidance law of the form:$${{{{{bf{a}}}}}}(t){{{{{boldsymbol{=}}}}}}N{{{{{boldsymbol{omega }}}}}}(t-tau )times {{{{{bf{v}}}}}}(t){{{{{boldsymbol{-}}}}}}K{{{{{boldsymbol{delta }}}}}}(t-tau )times {{{{{bf{v}}}}}}(t)$$
    (1)
    where a is the hawk’s commanded centripetal acceleration, v is its velocity, ω is the angular velocity of the line-of-sight r from the hawk to its target, and δ is the deviation angle between r and v, written in vector form with δ mutually perpendicular to r and v. Here, t is time, τ is a fixed time delay, and N and K are guidance constants. With K = 0, Eq. 1 describes proportional navigation (PN), whereas with N = 0, Eq. 1 describes pure proportional pursuit (PP). In the case that K ≠ 0 and N ≠ 0, Eq. 1 describes mixed PN + PP guidance. Dividing through by the hawk’s speed (v=left|{{{{{bf{v}}}}}}right|) converts the commanded centripetal acceleration to the commanded angular velocity. It can therefore be seen that Eq. 1 generalizes, in vector form, the PN + PP guidance law that is written as (dot{gamma }(t)=Ndot{lambda }(t-tau )-Kdelta (t-tau )) in the main text, where the magnitudes of the scalar turn rate, scalar line-of-sight rate, and scalar deviation angle are given respectively as (left|dot{gamma }right vert=left|{{{{{bf{a}}}}}}right|/left|{{{{{bf{v}}}}}}right|), (left|dot{lambda }right vert=left|{{{{{boldsymbol{omega }}}}}}right|), and (left|deltaright vert=left|{{{{{boldsymbol{delta }}}}}}right|).Our simulations make use of the kinematic equations:$${{{{{bf{r}}}}}}={hat{{{{{{bf{x}}}}}}}}_{{{{{{rm{T}}}}}}}-{{{{{bf{x}}}}}}$$
    (2)
    $${{{{{boldsymbol{omega }}}}}}=frac{{{{{{bf{r}}}}}},times left({hat{{{{{{bf{v}}}}}}}}_{{{{{{rm{T}}}}}}}-{{{{{bf{v}}}}}}right)}{{left|{{{{{bf{r}}}}}}right|}^{{{{{{bf{2}}}}}}}}$$
    (3)
    $${{{{{boldsymbol{delta }}}}}}=left({{{cos }}}^{-1}frac{{{{{{bf{r}}}}}},cdot, {{{{{bf{v}}}}}}}{left|{{{{{bf{r}}}}}}right|,left|{{{{{bf{v}}}}}}right|}right)left(frac{{{{{{bf{r}}}}}},times {{{{{bf{v}}}}}}}{left|{{{{{bf{r}}}}}},times {{{{{bf{v}}}}}}right|}right)$$
    (4)
    where x is the simulated position of the hawk, and where ({hat{{{{{{bf{x}}}}}}}}_{{{{{{rm{T}}}}}}}) and ({hat{{{{{{bf{v}}}}}}}}_{{{{{{rm{T}}}}}}}) are the measured position and velocity of the target with respect to the Earth axes. Our simulations are implemented in discrete time by coupling the guidance law (Eq. 1) with the kinematic equations (Eqs. 2–4) using the difference equations:$${{{{{{bf{x}}}}}}}_{n+1}={{{{{{bf{x}}}}}}}_{n}+Delta t,{{{{{{bf{v}}}}}}}_{n}.$$
    (5)
    $${{{{{{bf{v}}}}}}}_{n+1}={hat{v}}_{n+1},frac{{{{{{{bf{v}}}}}}}_{n}+Delta t,{{{{{{bf{a}}}}}}}_{n}}{left|{{{{{{bf{v}}}}}}}_{n}+Delta t,{{{{{{bf{a}}}}}}}_{n}right|}$$
    (6)
    where the subscript notation indicates the values of the variables at successive time steps, such that ({t}_{n+1}={t}_{n}+Delta t), and where (hat{v}) is the hawk’s measured groundspeed. The simulations were initiated given the hawk’s measured initial position ({{{{{{bf{x}}}}}}}_{0}={hat{{{{{{bf{x}}}}}}}}_{0}) and velocity ({{{{{{bf{v}}}}}}}_{0}={hat{{{{{{bf{v}}}}}}}}_{0}), and were used to predict the trajectory that it would follow under the guidance law (Eq. 1) parameterized by the guidance constants N and K, and time delay τ. Note that Eq. 6 matches the hawk’s simulated groundspeed (v=left|{{{{{bf{v}}}}}}right|) to its measured groundspeed (hat{v}) at all times, such that the guidance law is only used to command turning. We verified that the step size of our simulations ((Delta t=5times {10}^{-4}) s) was small enough to guarantee the numerical accuracy of the fitted guidance parameters and prediction error to the level of precision at which they are reported in the Results.We defined the prediction error η of each simulation as the mean absolute distance between the measured and simulated flight trajectories:$$eta=frac{1}{k}mathop{sum }limits_{n=1}^{k}left|{{{{{{bf{x}}}}}}}_{n}-{hat{{{{{{bf{x}}}}}}}}_{n}right|$$
    (7)
    where (hat{{{{{{bf{x}}}}}}}) is the hawk’s simulated position, and k is the number of time steps in the simulation. We fitted the guidance constants K and/or N under the various combinations of guidance law (i.e. PN, PP or PN + PP) and target definition (i.e. measured bat position, final bat position, final hawk position) for delays of 0 ≤ τ ≤ 0.1 s at 0.02 s spacing corresponding to the inter-frame interval. In each case, we used a Nelder–Mead simplex algorithm in MATLAB to find the value of K and/or N that minimised the prediction error η for each flight at the given time delay τ. To ensure that we fitted the same section of flight for all time delays 0 ≤ τ ≤ 0.1 s, we began each simulation from 0.1 s after the first point on the trajectory, and ended the simulation at the time of intercept or near-miss. However, as we found the best-fitting delay to be τ = 0, we subsequently re-fitted the simulations with no delay to begin from the first point on the trajectory and report these simulations in the Results. For the terminal attack trajectories, we took the first point on the trajectory to be the earliest point from which it was possible to track the bat that the hawk caught or attempted to catch, and took the time of intercept or near-miss to be the time at which the measured distance between the hawk and bat was minimal. For the long-range approaches, we tested a range of alternative start points from 1.0 s up to a maximum of 20.0 s before the observed grab manoeuvre, in 0.2 s intervals, to accommodate the fact that the hawk could sometimes be tracked for longer than it appeared to be engaged in directed attack behaviour.Statistical analysisAll statistics were computed using MATLAB R2020a. As the hawks could not be individually identified, we were unable to control for repeated measures from the same individual, and therefore treated each attack trajectory as an independent sample. Because the distributions of the model parameters and errors are skewed (Fig. 2), we report their median, denoted using tilde notation, together with a bias-corrected and accelerated bootstrap 95% confidence interval (CI) computed using 100,000 resamples44. For robustness, we use two-tailed sign tests to compare their distributions between different guidance models and target definitions. We state sample proportions together with a 95% confidence interval (CI) computed using the Clopper–Pearson method. We used a two-tailed Fisher’s exact test to compare the odds of success in attacks on lone bats versus attacks on the swarm. Following our previous observational study18, bats classified as lone bats were judged to be flying >5 body lengths from their nearest neighbours and/or appeared to be flying in a different direction to the coordinated members of the swarm (Table S3).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Honey DNA metabarcoding revealed foraging resource partitioning between Korean native and introduced honey bees (Hymenoptera: Apidae)

    Ballantyne, G., Baldock, K. C. R., Rendell, L. & Willmer, P. G. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7, 8389 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effect of decreases of animal pollinators on human nutrition and global health: A modeling analysis. Lancet 386, 1964–1972 (2015).PubMed 
    Article 

    Google Scholar 
    Jung, C. & Cho, S. Relationship between honey bee population and honey production in Korea: A historical trend analysis. J. Apic. 30(1), 7–12 (2015).
    Google Scholar 
    Abrol, D. P. Asiatic Honey Bee Apis cerana: Biodiversity Conservation and Agricultural Production (Springer, 2013).Book 

    Google Scholar 
    Chandel, Y. S., Kumar, A. & Srivastva, S. Comparative performance of Apis mellifera L. vis a vis Apis cerana Fab. on toria (Brassica campestris var Toria) in mid-hill zone of Himachal Pradesh, India. Indian J. Agric. Res. 34, 264–267 (2000).
    Google Scholar 
    Feng, M., Ramadan, H., Han, B., Yu, F. & Li, J. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana). BMC Genomics 15, 563–576 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, Y. S., Fang, Y., Xu, S. & Ge, L. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 49, 54–60 (1987).Article 

    Google Scholar 
    McClenaghan, et al. Behavioral responses of honey bees, Apis cerana and Apis mellifera, to Vespa mandarinia marking and alarm pheromones. J. Apic. Res. 58(1), 141–148 (2018).Article 

    Google Scholar 
    Lin, Z. et al. Go east for better honey bee health: Apis cerana is faster at hygienic behavior than A. mellifera. PLoS ONE 11(9), e0162647 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Verma, L. R. & Dutta, P. C. Foraging behaviour of Apis cerana indicia and Apis mellifera in pollinating apple flowers. J. Apic. Res. 25, 197–201 (1986).Article 

    Google Scholar 
    Wang, Z. & Tan, K. Comparative analysis of olfactory learning of Apis cerana and Apis mellifera. Apidologie 45(1), 45–52 (2014).ADS 
    Article 

    Google Scholar 
    Beekman, M. & Ratnieks, F. L. W. Long-range foraging by the honey-bee Apis mellifera L.. Funct. Ecol. 14, 490–496 (2000).Article 

    Google Scholar 
    Dyer, F. C. & Seeley, T. D. Dance dialects and foraging range in three Asian honey bee species. Behav. Ecol. Sociobiol. 28, 227–233 (1991).Article 

    Google Scholar 
    Koetz, A. H. Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4(4), 558–592 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joshi, N. C. & Joshi, P. C. Foraging behavior of Apis spp. On apple flowers in a subtropical environment. N. Y. Sci. J. 3(3), 71–76 (2010).
    Google Scholar 
    Atwal, A. S. & Sharma, O. P. The dominance of Apis mellifera over Apis indica. Am. Bee J. 111, 343 (1971).
    Google Scholar 
    Kato, M., Shibata, A., Yasui, T. & Nagamasu, H. Impact of introduced honey bees, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands. Res. Popul. Ecol. 41, 217–228 (1999).Article 

    Google Scholar 
    Thorp, D. W., Wenner, A. M. & Barthell, J. F. Pollen and nectar resource overlap among bees on Santa Cruz Island. MBC Appl. Environ. Sci. 2020, 261–267 (2000).
    Google Scholar 
    Yang, G. Harm of introducing the western honey bee Apis mellifera L. to the Chinese honey bee Apis cerana F. and its ecological impact. Acta Entomol. Sin. 48, 401–406 (2005) ((in Chinese)).
    Google Scholar 
    Dubois, T., Pasquaretta, C., Barron, A. B., Gautrais, J. & Lihoreau, M. A model of resource partitioning between foraging bees based on learning. PLoS Comput. Biol. 17(7), e1009260 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louveaux, J., Maurizio, A. & Vorwohl, G. Methods of melissopalynology. Bee World 59, 139–153 (1978).Article 

    Google Scholar 
    Hawkins, J., de Vere, N., Griffith, A. & Ford, C. R. Using DNA metabarcoding to Identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10(8), e0134735 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Smart, M. D. et al. A Comparison of honey bee-collected pollen from working agricultural lands using light microscopy and its metabarcoding. Environ. Entomol. 46(1), 38–49 (2016).
    Google Scholar 
    Keller, A. et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 17, 558–566 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, R. T. et al. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Appl. Plant Sci. 3, 1500043 (2015).Article 

    Google Scholar 
    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kress, W. J. & Erickson, D. L. DNA barcodes: Genes, genomics, and bioinformatics. PNAS 105, 2761–2762 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a plant DNA barcode. PLoS ONE 6, e19254 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, S. et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5, e8613 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    CBOL Plant Working Group. A DNA barcode for land plants. PNAS 106, 12794–12797 (2009).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Pornon, A. et al. Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci. Rep. 6, 27282 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, K. L. et al. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 28(2), 431–455 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Baksay, S. et al. Experimental quantificarion of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ghosh, S. & Jung, C. Nutritional value of bee-collected pollens of hardy kiwi, Actinidia arguta (Actinidiaceae) and oak, Quercus sp. (Fagaceae). J. Asia Pac. Entomol. 20(1), 245–251 (2017).Article 

    Google Scholar 
    Brunet, J., Thairu, M. W., Henss, J. M., Link, R. I. & Kluevert, J. A. The effects of flower, floral display, and reward sizes on bumblebee foraging behaviour when pollen is the reward and plants are dichogamous. Int. J. Plant Sci. 176(9), 811–819 (2015).Article 

    Google Scholar 
    de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7(1), 42838 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barth, O. M. In O polen no mel brasileiro. Rio de Janeiro, Luxor 151 (1989).Lo, T., Gloag, R. S., Anderson, D. L. & Oldroyd, B. P. A molecular phylogeny of the genus Apis suggests that the giant honey bee of southern India, A. indica Fabricius, are valid species. Syst. Entomol. 35, 226–223 (2010).Article 

    Google Scholar 
    Pirk, C. W. W., Sole, C. L. & Crewe, R. M. Pheromones. In Honey Bees of Asia (eds Hepburn, H. R. & Radloff, S. E.) 207–214 (Springer, Berlin, 2011).Chapter 

    Google Scholar 
    Theisen-Jones, H. & Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 93, 90–97 (2016).Article 

    Google Scholar 
    Sakagami, S. F. Some interspecific relations between Japanese and European honey bees. J. Anim. Ecol. 28, 51–68 (1959).Article 

    Google Scholar 
    Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470 (2004).Article 

    Google Scholar 
    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. PNAS 110(32), 13044–13048 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iwasaki, J. M. et al. Floral usage partitioning and competition between social (Apis mellifera, Bombus terrestris) and solitary bees in New Zealand: Niche partitioning via floral preferences?. Austral Ecol. 43(8), 937–948 (2018).Article 

    Google Scholar 
    Rodrigues, C. S., Ferasso, D. C., Mossi, A. J. & Coelho, G. C. Pollen resources partitioning of stingless bees (Hymenoptera: Apidae) from the southern Atlantic forest Acta Scientiarum. Biol. Sci. 42, e48714 (2020).
    Google Scholar 
    Lucas, A. et al. Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. Sci. Rep. 8(1), 5133 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lucek, K. et al. Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites. Apidologie 50, 317–329 (2019).Article 

    Google Scholar 
    Tatsuno, M. & Osawa, N. Flower visitation patterns of the coexisting honey bees Apis cerana japonica and Apis mellifera (Hymentoptera: Apidae). Entomol. Sci. https://doi.org/10.1111/ens.12206 (2016).Article 

    Google Scholar 
    Kuang, B. Y. & Kuang, H. O. Biology of the Honey bee (Yunnan Science and Technology Press, 2002) ([In Chines]).
    Google Scholar 
    Ghorab, A. et al. Sensorial, melissopalynological and physico-chemical characteristics of honey from Babors Kabylia’s region (Algeria). Foods 10, 225 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sasaki, M. In Bee’s eye view of flowering plants: Nectar- and pollen-source plants and related honey bee products. Kaiyusha, Tokyo, Japan (2010).Simpson, M. G. Diversity and classification of flowering plant: Eudicots. Plant Syst. 2010, 275–448 (2010).Article 

    Google Scholar 
    Wilms, W. & Wiechers, B. Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 28, 339–355 (1997).Article 

    Google Scholar 
    Klein, S. et al. Honey bees increase their foraging performance and frequency of pollen trips through experience. Sci. Rep. 9, 6778 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multikingdom honey bee derived environmental DNA signature. PLoS ONE 13(10), e0205575 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Prosser, S. W. J. & Hebert, P. D. N. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 214, 183–191 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dhaliwai, H. S. & Sharma, P. L. Foraging range of the Indian honey bee. J. Apic. Res. 13, 137–141 (1974).Article 

    Google Scholar 
    ESRI. ArcGis Pro (Version 10.6); ESRI Inc.: Redlands, CA, USA (2020).Palmieri, L., Bozza, E. & Giongo, L. Soft fruit traceability in food matrices using real-time PCR. Nutrients 1, 316–328 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kress, W. J. et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. PNAS 106, 18621–18626 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kress, J. W. & Erickson, L. D. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2(6), 1–10 (2007).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle (2011).Boyer, F. et al. OBITools: A Unix-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.gbif.org/tool/81287/r-a-language-andenvironment-for-statistical-computing (2022).Bosch, J., Retana, J. & Cerdá, X. Flowering phenology, floral traits and pollinator composition in a herbaceous Mediterranean plant community. Oecologia 109, 583–591 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    Endress, P. K. Flower structure and trends of evolution in eudicots and their major subclades. Ann. Missouri Bot. Gard. 97(4), 541–583 (2010).Article 

    Google Scholar 
    Gómez, J. M., Torices, R., Lorite, J., Klingenberg, C. P. & Perfectti, F. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan. Ann. Bot. 117, 899–904 (2016).Article 

    Google Scholar 
    Watts, S., Dormann, C. F., González, M. M. & Ollerton, J. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. 118, 415–429 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, C. B. Coloured Flora of Korea. Hyangmunsa, Seoul, Republic of Korea (2003). More

  • in

    Tropical tree species differ in damage and mortality from lightning

    Dale, V. H. et al. Climate change and forest disturbances. BioScience 51, 723 (2001).Article 

    Google Scholar 
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).Article 

    Google Scholar 
    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).CAS 
    Article 

    Google Scholar 
    Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article 

    Google Scholar 
    Gora, E. M., Burchfield, J. C., Muller‐Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning‐caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article 

    Google Scholar 
    Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article 

    Google Scholar 
    Maxwell, H. Observations on trees, as conductors of lightning. Mem. Am. Acad. Arts Sci. 2, 143 (1793).
    Google Scholar 
    Covert, R. N. Why an oak is often struck by lightning: a method of protecting trees against lightning. Mon. Weather Rev. 52, 492–493 (1924).Article 

    Google Scholar 
    Taylor, A. R. Lightning damage to forest trees in Montana. Weatherwise 17, 61–65 (1964).Article 

    Google Scholar 
    Furtado, C. X. Lightning injuries to trees. J. Malays. Branch R. Asiat. Soc. 13, 157–162 (1935).
    Google Scholar 
    Magnusson, W. E., Lima, A. P. & De Lima, O. Group lightning mortality of trees in a neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article 

    Google Scholar 
    Yanoviak, S. P., Gora, E. M., Burchfield, J. M., Bitzer, P. M. & Detto, M. Quantification and identification of lightning damage in tropical forests. Ecol. Evol. 7, 5111–5122 (2017).Article 

    Google Scholar 
    Makela, J., Karvinen, E., Porjo, N., Makela, A. & Tuomi, T. Attachment of natural lightning flashes to trees: preliminary statistical characteristics. J. Light. Res. 1, 9–21 (2009).Article 

    Google Scholar 
    Yanoviak, S. P. in Treetops at Risk (eds Lowman, M. et al.) 147–153 (Springer, 2013).Gora, E. M., Bitzer, P. M., Burchfield, J. C., Schnitzer, S. A. & Yanoviak, S. P. Effects of lightning on trees: a predictive model based on in situ electrical resistivity. Ecol. Evol. 7, 8523–8534 (2017).Article 

    Google Scholar 
    Orville, R. E. Photograph of a close lightning flash. Science 162, 666–667 (1968).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Yanoviak, S. P. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can. J. For. Res. 45, 236–245 (2015).Article 

    Google Scholar 
    Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170–180 (2017).CAS 
    Article 

    Google Scholar 
    Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19–35 (2013).CAS 
    Article 

    Google Scholar 
    Kozlowski, T. T. & Pallardy, S. G. Physiology of Woody Plants (Academic Press, 1997).Bruijning, M. et al. Surviving in a cosexual world: a cost–benefit analysis of dioecy in tropical trees. Am. Nat. 189, 297–314 (2017).Article 

    Google Scholar 
    Visser, M. D. et al. Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit analysis of delayed reproduction and seed predation. J. Ecol. 99, 1033–1044 (2011).Article 

    Google Scholar 
    Charles, A. E. Coconut lightning strike. Papua New Guin. Agric. J. 12, 192–195 (1960).
    Google Scholar 
    Sharples, A. Lightning storms and their significance in relation to diseases of Cocos nucifera and Hevea brasilensis. Ann. Appl. Biol. 20, 1–22 (1933).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459–12464 (2018).CAS 
    Article 

    Google Scholar 
    Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181, 890–900 (2009).Article 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutiérrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation, and plant mortality in a tropical forest. Ecology 102, e03541 (2021).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Brooks, M. E. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 (2019).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Condit, R. et al. Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad https://doi.org/10.15146/5xcp-0d46 (2019).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).Article 

    Google Scholar 
    Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 70 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. Data from: A mechanistic and empirically-supported lightning risk model for forest trees. Dryad https://doi.org/10.5061/dryad.c59zw3r48 (2020). More

  • in

    Greater bee diversity is needed to maintain crop pollination over time

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).Article 

    Google Scholar 
    Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).Article 

    Google Scholar 
    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).Article 
    CAS 

    Google Scholar 
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).PubMed 
    Article 

    Google Scholar 
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).PubMed 
    Article 

    Google Scholar 
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).Article 

    Google Scholar 
    Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).Article 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).Article 

    Google Scholar 
    Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).Article 

    Google Scholar 
    McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).PubMed 
    Article 

    Google Scholar 
    Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).Article 

    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).PubMed 
    Article 

    Google Scholar 
    Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).Article 

    Google Scholar 
    Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).Article 

    Google Scholar 
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).PubMed 
    Article 

    Google Scholar 
    Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).Article 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).Article 

    Google Scholar 
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).PubMed 
    Article 

    Google Scholar 
    Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).PubMed 
    Article 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).
    Google Scholar 
    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).PubMed 
    Article 

    Google Scholar 
    Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).Article 

    Google Scholar 
    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).PubMed 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).Article 

    Google Scholar 
    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).PubMed 
    Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).PubMed 
    Article 

    Google Scholar 
    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).PubMed 
    Article 

    Google Scholar 
    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Spatial point patterns generation on remote sensing data using convolutional neural networks with further statistical analysis

    Appel, M., Lahn, F., Buytaert, W. & Pebesma, E. Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL. ISPRS J. Photogramm. Remote Sens. 138, 47–56 (2018).ADS 
    Article 

    Google Scholar 
    Audebert, N., Saux, B. L. & Lefvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018).ADS 
    Article 

    Google Scholar 
    Ball J. E., Anderson D. T., & Chan C. S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. https://doi.org/10.1117/1.JRS.11.042609 (2017).Proceedings of the Royal Society B: Biological Sciences. Vol. 282. 20141657 (2015).Velázquez, E., Paine, C. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).Article 

    Google Scholar 
    Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecol. Process. 10, 1–23 (2021).Article 

    Google Scholar 
    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).Article 

    Google Scholar 
    Pielou, E.C. Mathematical Ecology; Number 574.50151 P613 1977. (Wiley, 1977).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Brown, C., Law, R., Illian, J. B. & Burslem, D. F. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).Article 

    Google Scholar 
    Detto, M. & Muller-Landau, H. C. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am. Nat. 181, E68–E82 (2013).Article 

    Google Scholar 
    May, F., Huth, A., & Wiegand, T. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings. Biological sciences 282(1802), 20141657. https://doi.org/10.1098/rspb.2014.1657 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerr, J. T. & Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003).Article 

    Google Scholar 
    Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P. & Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32, 203–221 (2008).Article 

    Google Scholar 
    He, J., Zhang, L., Wang, Q. & Li, Z. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci. Remote Sens. Lett. 6(4), 767–771 (2009).ADS 
    Article 

    Google Scholar 
    Lechner, A.M., Foody, G.M., & Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2.5, 405–412 (2020).Arévalo, P., Olofsson, P. & Woodcock, C. E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. 238, 111051 (2020).ADS 
    Article 

    Google Scholar 
    Gillespie, T.W. et al. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32.2, 203–221 (2008).Lausch, A., Erasmi, S., King, D. J., Magdon, P. & Heurich, M. Understanding forest health with remote sensing-part II—A review of approaches and data models. Remote Sens. 9(2), 129 (2017).ADS 
    Article 

    Google Scholar 
    Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., et al. Monitoring vegetation systems in the Great Plains with ERTS. in NASA Special Publication. Vol. 351. 309 (1974).Chen, J. M. & Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15, 421–429 (1992).Article 

    Google Scholar 
    Zha, Y., Gao, J. & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003).Article 

    Google Scholar 
    Zhao, S. et al. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. Int. J. Appl. Earth Obs. Geoinf. 12, 351–358 (2010).ADS 

    Google Scholar 
    Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).ADS 
    Article 

    Google Scholar 
    Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).ADS 
    Article 

    Google Scholar 
    Xu, H., Wang, Y., Guan, H., Shi, T. & Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sensing 11, 2345 (2019).ADS 
    Article 

    Google Scholar 
    List of Top 10 Sources of Free Remote Sensing Data (2017).USGS Earth Explorer: Download Free Landsat Imagery (2021).Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65, 2–16 (2010).ADS 
    Article 

    Google Scholar 
    Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411 (2014).Article 

    Google Scholar 
    Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 103, 1560–1584 (2015).Article 

    Google Scholar 
    Alajlan, N., Bazi, Y., Melgani, F. & Yager, R. R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 217, 39–55 (2012).Article 

    Google Scholar 
    Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 9, 243 (2017).ADS 
    Article 

    Google Scholar 
    Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18, 18 (2018).ADS 
    Article 

    Google Scholar 
    Jiang, S., Zhao, H., Wu, W., & Tan, Q. A novel framework for remote sensing image scene classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42 (2018).Baddeley, A. Spatial Point Process Modelling and Its Applications. Vol. 20. (Publicacions de la Universitat Jaume I, 2004).Vasudevan, K., Eckel, S., Fleischer, F., Schmidt, V. & Cook, F. Statistical analysis of spatial point patterns on deep seismic reflection data: A preliminary test. Geophys. J. Int. 171, 823–840 (2007).ADS 
    Article 

    Google Scholar 
    Cheng, Y. & Luo, J. Statistical analysis of metastable pitting events on carbon steel. Br. Corros. J. 35, 125–130 (2000).CAS 
    Article 

    Google Scholar 
    Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A. & Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39, 1042–1055 (2016).Article 

    Google Scholar 
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).Article 

    Google Scholar 
    Stoyan, D., & Penttinen, A. Recent applications of point process methods in forestry statistics. Stat. Sci. 2000, 61–78 (2000).Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns. Vol. 70. (Wiley, 2008).Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evol. 34, 734–745 (2019).Article 

    Google Scholar 
    Liu, S., Luo, H., Tu, Y., He, Z., & Li, J. Wide contextual residual network with active learning for remote sensing image classification. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 7145–7148 (IEEE, 2018).Lee, H. & Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Cheng, G., Xie, X., Han, J., Guo, L. & Xia, G. S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3735–3756 (2020).ADS 
    Article 

    Google Scholar 
    Lewy, D., & Mandziuk, J. An overview of mixing augmentation methods and augmentation strategies. arXiv preprint arXiv:2107.09887 (2021).Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018).Naveed, H. Survey: Image mixing and deleting for data augmentation. arXiv preprint arXiv:2106.07085 (2021).Freeman, I., Roese-Koerner, L. & Kummert, A. Effnet: An efficient structure for convolutional neural networks. 25th IEEE international conference on image processing (ICIP). IEEE 2018, 6–10 (2018).
    Google Scholar 
    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

    Google Scholar 
    Raeisi, M., Bonneu, F. & Gabriel, E. A spatio-temporal multi-scale model for Geyer saturation point process: Application to forest fire occurrences. Spatial Stat. 41, 100492 (2021).MathSciNet 
    Article 

    Google Scholar 
    Baddeley, A. Analysing spatial point patterns in R. in Workshop Notes Version. Vol. 3 (2008). More

  • in

    Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources

    The Insect Pollinators Initiative & Vanbergen, A. J. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459. https://doi.org/10.1038/ncomms12459 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. TREE 25, 345–353 (2010).PubMed 

    Google Scholar 
    Becher, M. A., Osborne, J. L., Thorbek, P., Kennedy, P. J. & Grimm, V. REVIEW: Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 50, 868–880 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becher, M. A. et al. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J. Appl. Ecol. 51, 470–482 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conti, I. et al. Sugar and protein content in different monofloral pollens – Building a database. Bull. Insectol. 69, 318–320 (2016).
    Google Scholar 
    Rodney, S. & Kramer, V. J. Probabilistic assessment of nectar requirements for nectar-foraging honey bees. Apidologie 51, 180–200 (2020).Article 

    Google Scholar 
    Cartar, R. V. Colony energy-reuirements affect response to predation risk in foraging bumble bees. Ethology 87, 90–96 (1991).Article 

    Google Scholar 
    Cook, S. M., Awmack, C. S., Murray, D. A. & Williams, I. H. Are honey bees’ foraging preferences affected by pollen amino acid composition?. Ecol. Entomol. 28, 622–627 (2003).Article 

    Google Scholar 
    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88. https://doi.org/10.1038/nature16532 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do Pollen quality and diversity matter?. PLoS ONE https://doi.org/10.1371/journal.pone.0072016 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150299. https://doi.org/10.1098/rspb.2015.0299 (2015).CAS 
    Article 

    Google Scholar 
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honeybees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    PPDB. The pesticide properties DataBase (PPDB) (Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2013).Belden, J. B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.4595 (2022).Article 
    PubMed 

    Google Scholar 
    Battisti, L. et al. Is glyphosate toxic to bees? A meta-analytical review. Sci. Tot. Environ. 767, 145397. https://doi.org/10.1016/j.scitotenv.2021.145397 (2021).CAS 
    Article 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).Article 

    Google Scholar 
    Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    Storkey, J. & Westbury, D. B. Managing arable weeds for biodiversity. Pest Manag. Sci. 63, 517–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutchinson, L. A. et al. Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ. 315, 107447. https://doi.org/10.1016/j.agee.2021.107447 (2021).Article 

    Google Scholar 
    Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).Article 

    Google Scholar 
    Alburaki, M., Gregorc, A., Adamczyk, J. & Stewart, S. D. Insights on pollen diversity of honey bee (Apis mellifera L.) colonies Located in various agricultural landscapes. Southwest. Nat. 63, 49–58 (2018).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cole, L. J., Brocklehurst, S., Robertson, D., Harrison, W. & McCracken, D. I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 246, 157–167 (2017).Article 

    Google Scholar 
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. Lond. B Biol. Sci. 270, 569–575 (2003).Article 

    Google Scholar 
    Woodcock, B. A. et al. Enhancing floral resources for pollinators in productive agricultural grasslands. Biol. Conserv. 171, 44–51 (2014).Article 

    Google Scholar 
    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. App. 25, 881–890 (2015).Article 

    Google Scholar 
    Ausseil, A. G. E., Dymond, J. R. & Newstrom, L. Mapping floral resources for honey bees in New Zealand at the catchment scale. Ecol. Appl. 28, 1182–1196. https://doi.org/10.1002/eap.1717 (2018).Article 
    PubMed 

    Google Scholar 
    Kamo, T. et al. A DNA barcoding method for identifying and quantifying the composition of pollen species collected by European honeybees, Apis mellifera (Hymenoptera: Apidae). Appl. Entomol. Zool. 53, 353–361 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurnberger, F., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28, 3602–3611 (2019).PubMed 
    Article 

    Google Scholar 
    Richardson, R. T. et al. Applications of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. https://doi.org/10.3732/apps.1400066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, A. E. et al. Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX 8, 101303. https://doi.org/10.1016/j.mex.2021.101303 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, L. et al. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 4, 37. https://doi.org/10.1038/s42003-020-01562-4 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barroso-Arevalo, S., Vicente-Rubiano, M., Ruiz, J. A., Bentabol, A. & Sanchez-Vizcaino, J. M. Does pollen diversity influence honey bee colony health?. Sp. J. Agric. Res. https://doi.org/10.5424/sjar/2019173-13991 (2019).Article 

    Google Scholar 
    Bansch, S., Tscharntke, T., Ratnieks, F. L. W., Hartel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106792 (2020).Article 

    Google Scholar 
    Danner, N., Molitor, A. M., Schiele, S., Hartel, S. & Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 26, 1920–1929 (2016).PubMed 
    Article 

    Google Scholar 
    EFSA. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2014).
    Google Scholar 
    Hatjina, F. et al. Citizen scientist initiative for measuring varroa damage thresholds: Common efforts for data collection—CSI varroa. Bee World 98, 132–135 (2021).Article 

    Google Scholar 
    Gratzer, K. & Brodschneider, R. How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. Environ. Sci. Pollut. Res. 28, 37995–38006 (2021).Article 

    Google Scholar 
    Brodschneider, R. et al. CSI pollen: Diversity of honey bee collected pollen studied by citizen scientists. Insects 12, 987. https://doi.org/10.3390/insects12110987 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodschneider, R. et al. A citizen science supported study on seasonal diversity and monoflorality of pollen collected by honey bees in Austria. Sci. Rep. https://doi.org/10.1038/s41598-019-53016-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    Nagaharu, U. Genome analysis in brassica with special reference to the experimental formation of B. Napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389–452 (1935).
    Google Scholar 
    Herbertsson, L., Lindstrom, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).Article 

    Google Scholar 
    Magrach, A., Gonzalez-Varo, J. P., Boiffier, M., Vila, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).PubMed 
    Article 

    Google Scholar 
    Adams-Groom, B., Martin, P. & Banon, A. Pollen characterization of English honey from Worcestershire, West Midlands (UK). Bee World https://doi.org/10.1080/0005772X.2019.1698105 (2019).Article 

    Google Scholar 
    Smart, M. D. et al. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ. Entomol. 46, 38–49 (2017).CAS 
    PubMed 

    Google Scholar 
    Danner, N., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE https://doi.org/10.1371/journal.pone.0183716 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroux, M. et al. Correlating the pollens gathered by Apis mellifera with the landscape features in Western France. Appl. Ecol. Environ. Res. 12, 423–439 (2014).Article 

    Google Scholar 
    Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE https://doi.org/10.1371/journal.pone.0162818 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donkersley, P. et al. Nutritional composition of honey bee food stores vary with floral composition. Oecologia 185, 749–761 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, R. F. et al. Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landsc. Ecol. 35, 513–527 (2020).Article 

    Google Scholar 
    LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. https://doi.org/10.1098/rsos.190279 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egan, P. A. et al. Plant toxin levels in nectar vary spatially across native and introduced populations. J. Ecol. 104, 1106–1115 (2016).CAS 
    Article 

    Google Scholar 
    Flombaum, P., Sala, O. E. & Rastetter, E. B. Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect: A modeling approach. Oecologia 174, 559–566 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE https://doi.org/10.1371/journal.pone.0225743 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature https://doi.org/10.1038/s41586-021-03787-7 (2021).Article 
    PubMed 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jarvis, S. G. et al. CEH land cover plus: Pesticides 2012-2017 (England, Scotland and Wales). NERC Environmental Information Data Centre. https://doi.org/10.5285/99a2d3a8-1c7d-421e-ac9f-87a2c37bda62 (2020).Simon-Delso, N. et al. Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE https://doi.org/10.1371/journal.pone.0103073 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. G., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    FERA. PUS STAT: Pesticide usage surveys. https://secure.fera.defra.gov.uk/pusstats/myindex.cfm (2015).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UKCEH. Land cover plus: Crops © NERC (CEH) 2019. (Remote Sensing Applications Consultants Ltd., 2019).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Kovach, J., Petzoldt, C., Degni, J. & Tette, J. A method to measure the environmental impact of pesticides, Vol. 139 1–8 (New York Food and Life Sciences Bulletin, 1992).Juraske, R., Antón, A. & Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 70, 1748–1755 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553. https://doi.org/10.1007/s13592-014-0273-6 (2014).CAS 
    Article 

    Google Scholar 
    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE https://doi.org/10.1371/journal.pone.0072587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridley, L. et al. Pesticide usage survey report 295. Arable crops in the United Kingdom 2020 (Food & Environment Research Agency, 2020).Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    R Core Development Team. R: Version 3.6.3. A language and environment for statistical computing. R Foundation for Statistical Computing, Bristol, UK. http://cran.r-project.org (2021).Pinheiro, J. C., Bates, D. & DebRoy, S. The R core team nlme: Linear and nonlinear mixed effects models. R Package nlme Version 3, 1–83 (2007).
    Google Scholar  More