More stories

  • in

    Identification of a deep-branching lineage of algae using environmental plastid genomes

    AbstractMarine algae underpin entire ocean ecosystems. Yet algae in culture poorly represent their large environmental diversity, and we have a limited understanding of their convoluted evolution by endosymbiosis. Here, we perform a phylogeny-guided plastid genome-resolved metagenomic survey of Tara Oceans expeditions. We present a curated resource of 660 new non-redundant plastid genomes of environmental marine algae, vastly expanding plastid genome diversity within major algal groups, including many without closely related reference genomes. Notably, we recover four plastid genomes, including one near-complete, forming a deep-branching plastid lineage of nano-size algae that we informally name leptophytes. This group is globally distributed and generally rare, although it can reach relatively high abundance in the Arctic. A near-complete mitochondrial genome showing strong co-occurrence with leptophyte plastids is also recovered and assigned to this group. Leptophytes encompass the enigmatic plastid group DPL2, one of the very few known plastid groups not clearly belonging to major algal groups and previously known only from 16S rDNA sequences. Comparative organellar genomics and phylogenomics indicate that leptophytes are sister to haptophytes, and raise the intriguing possibility that cryptophytes acquired their plastids from haptophytes. Collectively, our study demonstrates that metagenomics can reveal hidden organellar diversity, and improve models of plastid evolution.

    Data availability

    The 937 metagenomes from Tara Oceans used in the study are publicly available at the EBI under project PRJEB402. Data our study generated has been deposited in an online repository: https://doi.org/10.17044/scilifelab.2821217381. This link provides access to the individual FASTA files from each plastid and mitochondrial genome used in our study (including the 660 non-redundant ptMAGs and 34 mtMAGs), the co-assembly of the top six samples where Lepto-01 was most abundant, individual gene alignments, concatenated and trimmed alignments, and maximum-likelihood and Bayesian tree files for the phylogenomic dataset. Source Data for Fig. 4, Supplementary Figs. 10-12, and Supplementary Fig. 22 can be found on the linked GitHub repository, while source data for Supplementary Figs. 2-6 is provided as Supplementary Data 1.
    Code availability

    All scripts used for genome annotation and phylogenetic analyses are available on GitHub: https://github.com/burki-lab/ptMAGs with the identifier: 10.5281/zenodo.1763560482.
    ReferencesAndersen, R. A. Diversity of eukaryotic algae. Biodivers. Conserv. 1, 267–292 (1992).
    Google Scholar 
    Archibald, J. M. The puzzle of plastid evolution. Curr. Biol. 19, R81–R88 (2009).
    Google Scholar 
    Irisarri, I., Strassert, J. F. H. & Burki, F. Phylogenomic insights into the origin of primary plastids. Syst. Biol. 71, 105–120 (2022).
    Google Scholar 
    Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).
    Google Scholar 
    Penot, M., Dacks, J. B., Read, B. & Dorrell, R. G. Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae. Appl. Phycol. 3, 340–359 (2022).
    Google Scholar 
    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 113, E1516–E1525 (2016).
    Google Scholar 
    Dorrell, R. G. et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6, e23717 (2017).
    Google Scholar 
    Stiller, J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Commun. 5, 5764 (2014).
    Google Scholar 
    Ševčíková, T. et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5, 10134 (2015).
    Google Scholar 
    Keeling, P. J. et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol 12, e1001889 (2014).
    Google Scholar 
    Moreira, D. & López-García, P. The rise and fall of Picobiliphytes: how assumed autotrophs turned out to be heterotrophs. BioEssays 36, 468–474 (2014).
    Google Scholar 
    Kawachi, M. et al. Rappemonads are haptophyte phytoplankton. Curr. Biol. 31, 2395–2403 (2021).
    Google Scholar 
    Choi, C. J. et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr. Biol. 27, R15–R16 (2017).
    Google Scholar 
    Schön, M. E. et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat. Commun. 12, 6651 (2021).
    Google Scholar 
    Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).
    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).
    Google Scholar 
    Ruscheweyh, H.-J. et al. Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 10, 212 (2022).
    Google Scholar 
    Dmitrijeva, M. et al. The mOTUs online database provides web-accessible genomic context to taxonomic profiling of microbial communities. Nucleic Acids Res. 53, D797–D805 (2025).
    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).
    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for’omics data. PeerJ 3, e1319 (2015).
    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
    Google Scholar 
    Kim, J. I. et al. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol. Evol. 9, 1859–1872 (2017).
    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    Google Scholar 
    Muñoz-Gómez, S. A. & Slamovits, C. H. Plastid Genomes in the Myzozoa. in Advances in Botanical Research (eds Chaw, S.-M. & Jansen, R. K.) vol. 85 55–94 (Academic Press, 2018).Matsuo, E. et al. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front. Plant Sci. 13, 918543 (2022).
    Google Scholar 
    Kamikawa, R. et al. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol. Evol. 7, 1133–1140 (2015).
    Google Scholar 
    de Vries, J. & Archibald, J. M. Plastid genomes. Curr. Biol. 28, R336–R337 (2018).
    Google Scholar 
    Ha, J.-S. et al. Plastid genome evolution of two colony-forming benthic Ochrosphaera neapolitana Strains (Coccolithales, Haptophyta). Int. J. Mol. Sci. 24, 10485 (2023).
    Google Scholar 
    Baños, H., Susko, E. & Roger, A. J. Is Over-parameterization a problem for profile mixture models? Syst. Biol. 73, 53–75 (2024).
    Google Scholar 
    Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. 72, 767–780 (2023).
    Google Scholar 
    Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 640, 974–981 (2025).
    Google Scholar 
    Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).
    Google Scholar 
    Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2020).
    Google Scholar 
    Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).
    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
    Google Scholar 
    Pierella Karlusich, J. J. et al. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol. Ecol. Resour. 23, 16–40 (2023).
    Google Scholar 
    Hirakawa, Y. & Ishida, K.-I. Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biol. Evol. 6, 974–980 (2014).
    Google Scholar 
    Shrestha, B. et al. Global metagenomics reveals plastid diversity and unexplored algal lineages. bioRxiv 2025.03644651 https://doi.org/10.1101/2025.03.28.644651 (2025).Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).
    Google Scholar 
    McFadden, G. I. The cryptomonad nucleomorph. Protoplasma 254, 1903–1907 (2017).
    Google Scholar 
    Tanifuji, G. et al. Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set. Genome Biol. Evol. 3, 44–54 (2011).
    Google Scholar 
    Rice, D. W. & Palmer, J. D. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4, 31 (2006).
    Google Scholar 
    Khan, H. et al. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24, 1832–1842 (2007).
    Google Scholar 
    Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).
    Google Scholar 
    Ponce-Toledo, R. I., Moreira, D., López-García, P. & Deschamps, P. Molecular phylogeny of the SELMA translocation machinery recounts the evolution of complex photosynthetic eukaryotes. Mol. Biol. Evol. msaf167 https://doi.org/10.1093/molbev/msaf167 (2025).Pietluch, F., Mackiewicz, P., Ludwig, K. & Gagat, P. A new model and dating for the evolution of complex plastids of red alga origin. Genome Biol. Evol. 16, evae192 (2024).
    Google Scholar 
    Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).
    Google Scholar 
    Gaïa, M. et al. Closest relatives of poxviruses are spread in the gut of humans and animals worldwide: the egoviruses. 2024.03.23.586382 Preprint at https://doi.org/10.1101/2024.03.23.586382 (2025).Martinez-Gutierrez, C. A. & Aylward, F. O. Phylogenetic signal, congruence, and uncertainty across bacteria and archaea. Mol. Biol. Evol. 38, 5514–5527 (2021).
    Google Scholar 
    Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023).
    Google Scholar 
    Puerta, M. V. S., Bachvaroff, T. R. & Delwiche, C. F. The complete plastid genome sequence of the haptophyte emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12, 151–156 (2005).
    Google Scholar 
    Butenko, A., Lukeš, J., Speijer, D. & Wideman, J. G. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol. 22, 15 (2024).
    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    Google Scholar 
    Lang, B. F. et al. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front. Plant Sci. 14, 1222186 (2023).
    Google Scholar 
    Greiner, S., Lehwark, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–W64 (2019).
    Google Scholar 
    Janouškovec, J., Horák, A., Oborník, M., Lukeš, J. & Keeling, P. J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 107, 10949–10954 (2010).
    Google Scholar 
    Ponce-Toledo, R. I. et al. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Curr. Biol. 27, 386–391 (2017).
    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    Google Scholar 
    Kozlov, A., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    Google Scholar 
    Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 34, 3929–3930 (2018).
    Google Scholar 
    Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).
    Google Scholar 
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    Google Scholar 
    Liu, C. et al. The influence of the number of tree searches on maximum likelihood inference in phylogenomics. Syst. Biol. 73, 807–822 (2024).
    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
    Google Scholar 
    Yu, G. Using GGTREE to visualize data on tree-like structures. Curr Protoc Bioinform 69, e96 (2020).
    Google Scholar 
    Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238 (2019).
    Google Scholar 
    Boyer, T. P. et al. World ocean database 2013. National Oceanographic Data Center (U.S.), Ocean Climate Laboratory https://doi.org/10.7289/V5NZ85MT (2013).Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).
    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
    Google Scholar 
    Mahé, F., Henry, N., de Vargas, C., Tara Oceans Consortium, C. & Tara Oceans Expedition, P. rDNA 18S V9 metabarcoding tables (Swarm) for Tara Oceans Expedition (2009-2013), including Tara Polar Circle Expedition (2013). Zenodo (2022).Zavadska, D., Henry, N., Auladell, A., Berney, C. & Richter, D. J. Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes. PLOS ONE 19, e0303697 (2024).
    Google Scholar 
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).Aphalo, P. ggpmisc: Miscellaneous Extensions to ‘ggplot2’. (Springer, 2025).Shulgina, Y. & Eddy, S. R. Codetta: predicting the genetic code from nucleotide sequence. Bioinformatics 39, btac802 (2022).
    Google Scholar 
    Jamy, M. Data for ‘Identification of a deep-branching lineage of algae using environmental plastid genomes’. figshare https://doi.org/10.17044/scilifelab.28212173 (2025).Jamy, M. Code for ‘Identification of a deep-branching lineage of algae using environmental plastid genomes’. Zenodo https://doi.org/10.5281/zenodo.17635604 (2025).Keeling, P. J. & Eglit, Y. Openly available illustrations as tools to describe eukaryotic microbial diversity. PLoS Biol. 21, e3002395 (2023).
    Google Scholar 
    Download referencesAcknowledgementsWe thank Shinichi Sunagawa for having facilitated the recovery of relevant data from the mOTU metagenomic database maintained by his research group at the Department of Biology at ETH Zürich. We thank A. Roger, H. Baños, and C. McCarthey for discussions, and for kindly providing custom scripts for running the phylogenetic models MEOW and GF-MIX. We thank J.E. Dharamshi for discussions about phylogenetic analyses. Our survey was made possible by the sampling and sequencing efforts of the Tara Oceans Project. Tara Oceans (which includes the Tara Oceans and Tara Oceans Polar Circle expeditions) would not exist without the leadership of the Tara Oceans Foundation and the continuous support of 23 institutes (https://oceans.taraexpeditions.org/). This article is contribution number 164 of Tara Oceans. Phylogenetic analyses were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS 2024/5-197), partially funded by the Swedish Research Council through grant agreement no. 2022-06725. M.J. was supported by the Swedish Research Council (International Postdoc grant 2022-00351). FB’s research is supported by grants from the European Research Council (ERC consolidator grant 101044505), the Swedish Research Council VR (2021-04055), and Science for Life Laboratory. TD’s research is supported by a grant from the l’Agence Nationale de la Recherche (ANR-23-CE02-0022). We also thank the commitment of the CNRS and Genoscope/CEA. Some of the computations were performed using the platine, titane and curie HPC machine provided through GENCI grants (t2011076389, t2012076389, t2013036389, t2014036389, t2015036389 and t2016036389).FundingOpen access funding provided by Uppsala University.Author informationAuthor notesEric Pelletier & Tom O. DelmontPresent address: Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOsee, Paris, FranceAuthors and AffiliationsDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, SwedenMahwash JamyDepartment of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, SwedenThomas Huber & Fabien BurkiGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, FranceThibault Antoine, Eric Pelletier & Tom O. DelmontResearch Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOsee, Paris, FranceThibault AntoineDepartment of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, SwitzerlandHans-Joachim RuscheweyhGlobal Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandLucas PaoliAuthorsMahwash JamyView author publicationsSearch author on:PubMed Google ScholarThomas HuberView author publicationsSearch author on:PubMed Google ScholarThibault AntoineView author publicationsSearch author on:PubMed Google ScholarHans-Joachim RuscheweyhView author publicationsSearch author on:PubMed Google ScholarLucas PaoliView author publicationsSearch author on:PubMed Google ScholarEric PelletierView author publicationsSearch author on:PubMed Google ScholarTom O. DelmontView author publicationsSearch author on:PubMed Google ScholarFabien BurkiView author publicationsSearch author on:PubMed Google ScholarContributionsF.B. and T.O.D. conceived the project. T.O.D. characterised the ptMAGs. M.J., F.B. and T.H., performed phylogenetic analyses. T.A., E.P. and T.O.D. created the plastid genomic database and performed surveys for nucleomorphs. H.J.R. and L.P. retrieved relevant data from mOTUs. M.J. and T.H. annotated the ptMAGs, and E.P. performed mapping analyses. F.B., M.J., and T.O.D. wrote the manuscript with input from all the authors.Corresponding authorsCorrespondence to
    Tom O. Delmont or Fabien Burki.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks John Archibald and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescriptions of Additional Supplementary FilesSupplementary Dataset 1Supplementary Dataset 2Supplementary Dataset 3Supplementary Dataset 4Supplementary Dataset 5Supplementary Dataset 6Reporting SummaryTransparent Peer Review fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleJamy, M., Huber, T., Antoine, T. et al. Identification of a deep-branching lineage of algae using environmental plastid genomes.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67401-4Download citationReceived: 06 February 2025Accepted: 28 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41467-025-67401-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    The soil microbiome as an indicator of ecosystem multifunctionality in European soils

    AbstractThe role of soil microorganisms in supporting multiple ecosystem functions (multifunctionality) remains poorly understood across diverse environmental conditions. Here, we investigate 484 soils from 27 European countries spanning a range of climatic and edaphic contexts. We assess the contribution of climate, soil properties, and soil microbiome traits (i.e., the relative abundance of co-occurring taxa) to explain six key functional proxies related to soil structure, biochemical activity, and productivity. We find the highest multifunctionality values in grasslands, woodlands, loamy and acidic soils, and temperate humid regions, and the lowest in croplands, alkaline soils, and drier regions. Soil properties explain 12–31% of variation in multifunctionality, with microbial biomass and nitrogen content emerging as the strongest predictors. The soil microbiome accounts for 2–14% of unique variance in multifunctionality but explains more than 25% of variation in enzymatic activities and primary productivity in clay-rich soils and soils originating from temperate dry regions. Specific taxa, particularly within Actinobacteria, Acidobacteria, and the fungal genus Mortierella consistently emerge as strong predictors of ecosystem multifunctionality. Our findings highlight that ecosystem multifunctionality is jointly shaped by soil properties and microbial communities. We argue that specific taxa hold potential as context-dependent indicators for multifunctionality monitoring across environmental gradients.

    Data availability

    The data that supports the findings of this study are freely available in figshare with the identifier https://doi.org/10.6084/m9.figshare.28645625. Raw DNA sequences can be accessed through the European Soil Data Centre (ESDAC) portal: https://esdac.jrc.ec.europa.eu/content/soil-biodiversity-dna-bacteria-and-fungi. The raw data (DNA sequences) generated in this study have been deposited in the Sequence Read Archive (SRA) database under BioProject ID PRJNA952168. Detailed information on the taxonomic composition of bacterial and fungal modules is available as Supplementary Dataset 1. Detailed information on Structural Equation Models (SEMs) results is availabel as Supplementary Dataset 2.
    Code availability

    Code used to perform all analyses described in this study is freely available at https://github.com/fromerob/Multifunctionality.git.
    ReferencesAnthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl. Acad. Sci. 120, e2304663120 (2023).
    Google Scholar 
    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—a global review. Geoderma 262, 101–111 (2016).
    Google Scholar 
    Calzolari, C. et al. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 261, 190–203 (2016).
    Google Scholar 
    Greiner, L., Keller, A., Grêt-Regamey, A. & Papritz, A. Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69, 224–237 (2017).
    Google Scholar 
    Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol 21, 6–20 (2023).
    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021).
    Google Scholar 
    Creamer, R. E., Barel, J. M., Bongiorno, G. & Zwetsloot, M. J. The life of soils: Integrating the who and how of multifunctionality. Soil Biol. Biochem 166, 108561 (2022).
    Google Scholar 
    Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).
    Google Scholar 
    Romero, F., Jiao, S. & van der Heijden, M. G. A. Impact of microbial diversity and pesticide application on plant growth, litter decomposition and carbon substrate use. Soil Biol. Biochem. 208, 109866 (2025).
    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
    Google Scholar 
    Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).
    Google Scholar 
    Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636, 690–696 (2024).
    Google Scholar 
    George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).
    Google Scholar 
    Riggi, L. G. A. et al. Establishing assessment criteria for soil bioindicators: insights from case studies in Europe. Ecol. Indic. 178, 114063 (2025).
    Google Scholar 
    Tang, B. et al. Mycorrhization enhances plant growth and stabilizes biomass allocation under drought. Glob. Change Biol. 30, e17438 (2024).
    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial richness and composition independently drive soil multifunctionality. Funct. Ecol. 31, 2330–2343 (2017).
    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).
    Google Scholar 
    van Zanten, H. H. E. et al. Circularity in Europe strengthens the sustainability of the global food system. Nat. Food 4, 320–330 (2023).
    Google Scholar 
    Labouyrie, M. et al. Interaction effects of pH and land cover on soil microbial diversity are climate-dependent. Environ. Microbiol. 26, e16572 (2024).Siles, J. A. et al. Land use interacts with climate to influence microbial diversity-to-biomass ratios across Europe via soil organic carbon and nitrogen. Mol. Ecol. n/a, e17806 (2025).
    Google Scholar 
    Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).
    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).
    Google Scholar 
    Ishimoto, C. K. et al. Microbial co-occurrence network and its key microorganisms in soil with permanent application of composted tannery sludge. Sci. Total Environ. 789, 147945 (2021).
    Google Scholar 
    Toju, H., Tanabe, A. S. & Sato, H. Network hubs in root-associated fungal metacommunities. Microbiome 6, 116 (2018).
    Google Scholar 
    Xu, Z. et al. Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality. Sci. Total Environ. 878, 162972 (2023).
    Google Scholar 
    M, H. S. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol 83, e02826–16 (2016).
    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils. Vol. 13 (Prentice Hall Upper Saddle River, 2008).L, L. C., Micah, H., Rob, K. & Noah, F. Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    Google Scholar 
    Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil Sci. 72, 1624–1639 (2021).
    Google Scholar 
    Wittwer, R. A. et al. Organic and conservation agriculture promote ecosystem multifunctionality. Sci. Adv. 7, eabg6995 (2021).
    Google Scholar 
    Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil Sci. 72, 1640–1654 (2021).
    Google Scholar 
    Scurlock, J. M. O., Johnson, K. & Olson, R. J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 8, 736–753 (2002).
    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
    Google Scholar 
    Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).
    Google Scholar 
    Bahram, M. et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13, 1430 (2022).
    Google Scholar 
    Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).
    Google Scholar 
    Peng, Z. et al. Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nat. Commun. 15, 3624 (2024).
    Google Scholar 
    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
    Google Scholar 
    Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).
    Google Scholar 
    Henderson, K. A., Bauch, C. T. & Anand, M. Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proc. Natl. Acad. Sci. 113, 14552–14559 (2016).
    Google Scholar 
    Orgiazzi, A. et al. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).
    Google Scholar 
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).
    Google Scholar 
    Yeung, V., Miller, D. D. & Rutzke, M. A. Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. Food Anal. 129, 150 (2017).
    Google Scholar 
    Moeys, J. The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data. CRAN. R-Project 1–104 (2018).Fernández-Ugalde, O. et al. LUCAS 2018 Soil Module—Presentation of Dataset and Results. https://doi.org/10.2760/215013 (Publications Office of the European Union, 2022).Panagos, P. et al. Soil bulk density assessment in Europe. Agric. Ecosyst. Environ. 364, 108907 (2024).
    Google Scholar 
    Morita, H. & Akao, S. The effect of soil sample size, for practical DNA extraction, on soil microbial diversity in different taxonomic ranks. PLoS ONE 16, e0260121 (2021).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
    Google Scholar 
    Tedersoo, L. & Anslan, S. Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. Environ. Microbiol Rep. 11, 659–668 (2019).
    Google Scholar 
    Özkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome 10, 1–14 (2022).
    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    Google Scholar 
    Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).
    Google Scholar 
    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    Google Scholar 
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 1–13 (2008).
    Google Scholar 
    Smith, L. C. et al. Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).
    Google Scholar 
    Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).
    Google Scholar 
    Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).
    Google Scholar 
    Seybold, C. A. & Herrick, J. E. Aggregate stability kit for soil quality assessments. Catena 44, 37–45 (2001).
    Google Scholar 
    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 1, (2016).Rosseel, Y. et al. Package ‘lavaan’. Retrieved June 17, 2017 (2017).
    Google Scholar 
    Download referencesAcknowledgementsF.R. acknowledges funding from the Novo Nordisk Foundation through a Postdoctoral fellowship (grant reference number NNF24OC0094454). The LUCAS Survey is coordinated by Unit E4 of the Statistical Office of the European Union (EUROSTAT). The LUCAS Soil sample collection is supported by the Directorate-General Environment (DG-ENV), Directorate-General Agriculture and Rural Development (DG-AGRI) and Directorate-General Climate Action (DG-CLIMA) of the European Commission. M.D-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I  +  D  + I project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.v.d.H and F.R. acknowledge funding from the Swiss National Science Foundation (Switzerland) through grant no. 310030–188799 and from the European Union Horizon 2020 research and innovation program under grant agreement no. 862695 EJP SOIL-MINOTAUR.Author informationAuthors and AffiliationsPlant-Soil Interactions group, Agroscope, Zurich, SwitzerlandFerran Romero, Ido Rog & Marcel G. A. van der HeijdenDepartment of Plant and Microbial Biology, University of Zurich, Zurich, SwitzerlandFerran Romero, Ido Rog & Marcel G. A. van der HeijdenDepartment of Agroecology, Aarhus University, Slagelse, DenmarkFerran Romero & Mohammad BahramEuropean Commission, Joint Research Centre Ispra (JRC), Ispra, ItalyMaëva Labouyrie, Cristiano Ballabio, Panos Panagos & Arwyn JonesEuropean Dynamics, Brussels, BelgiumAlberto OrgiazziMycology and Microbiology Center, University of Tartu, Tartu, EstoniaLeho TedersooDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, EstoniaMohammad BahramDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenMohammad BahramGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyNico Eisenhauer, Marie Sünnemann & Carlos A. GuerraInstitute of Biology, Leipzig University, Leipzig, GermanyNico Eisenhauer & Marie SünnemannDepartment of Geography, University of Coimbra, Coimbra, PortugalCarlos A. GuerraLaboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, SpainDongxue Tao & Manuel Delgado-BaquerizoSchool of Ecology, Sun Yat-Sen University, Shenzhen, ChinaDongxue TaoState Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, ChinaShuo JiaoConsiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Firenze, ItalyStefano MocaliFreie Universität Berlin, Institute of Biology, Berlin, GermanyMatthias C. Rillig & Anika LehmannAuthorsFerran RomeroView author publicationsSearch author on:PubMed Google ScholarMaëva LabouyrieView author publicationsSearch author on:PubMed Google ScholarAlberto OrgiazziView author publicationsSearch author on:PubMed Google ScholarCristiano BallabioView author publicationsSearch author on:PubMed Google ScholarPanos PanagosView author publicationsSearch author on:PubMed Google ScholarArwyn JonesView author publicationsSearch author on:PubMed Google ScholarLeho TedersooView author publicationsSearch author on:PubMed Google ScholarMohammad BahramView author publicationsSearch author on:PubMed Google ScholarNico EisenhauerView author publicationsSearch author on:PubMed Google ScholarMarie SünnemannView author publicationsSearch author on:PubMed Google ScholarCarlos A. GuerraView author publicationsSearch author on:PubMed Google ScholarDongxue TaoView author publicationsSearch author on:PubMed Google ScholarIdo RogView author publicationsSearch author on:PubMed Google ScholarShuo JiaoView author publicationsSearch author on:PubMed Google ScholarStefano MocaliView author publicationsSearch author on:PubMed Google ScholarMatthias C. RilligView author publicationsSearch author on:PubMed Google ScholarAnika LehmannView author publicationsSearch author on:PubMed Google ScholarManuel Delgado-BaquerizoView author publicationsSearch author on:PubMed Google ScholarMarcel G. A. van der HeijdenView author publicationsSearch author on:PubMed Google ScholarContributionsF.R. contributed to conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft, writing – review & editing, and visualization. M.L. contributed to conceptualization, methodology, formal analysis, investigation, writing – review & editing, and data curation. A.O. contributed to conceptualization, methodology, resources, writing – review & editing, and data curation. C.B. contributed to methodology and resources. P.P. contributed to conceptualization, methodology, resources, writing – review & editing, project administration, and data curation. A.J. contributed to conceptualization, methodology, resources, writing – review & editing, project administration, and data curation. L.T. and M.B. contributed to resources, writing – review & editing, and data curation. N.E., M.S., and C.A.G. contributed to resources and writing – review & editing. D.T. contributed to methodology. I.R. and S.J. contributed to writing – review & editing. S.M. contributed to project administration and funding acquisition. M.C.R. and A.L. contributed to resources and writing – review & editing. M.D.B. contributed to writing – review & editing. M.v.d.H. contributed to conceptualization, methodology, resources, writing – original draft, writing – review & editing, supervision, project administration, and funding acquisition.Corresponding authorsCorrespondence to
    Ferran Romero or Marcel G. A. van der Heijden.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks Xiangang Hu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary InformationSupplementary Dataset 1Supplementary Dataset 2Reporting SummaryTransparent Peer Review fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleRomero, F., Labouyrie, M., Orgiazzi, A. et al. The soil microbiome as an indicator of ecosystem multifunctionality in European soils.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67353-9Download citationReceived: 28 February 2025Accepted: 28 November 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41467-025-67353-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships

    AbstractThe universality of the allometric model for describing the length–weight relationship in marine species has been questioned, particularly for some invertebrates such as sea urchins, clams, and barnacles. In such cases, nonparametric regression models may offer improved flexibility and capture specific patterns-such as inflection points in growth curves-not identified by standard parametric models. These features can support the identification of biologically meaningful thresholds relevant to fisheries, including size-dependent yield. Nonparametric quantile regression further enhances inference by characterizing variability across the entire distribution of body condition. Here, we assess the comparative performance of parametric and nonparametric regression models for the Atlantic surfclam, Spisula solidissima, using data collected from three regions along the U.S. Atlantic coast (Virginia, Delaware/Maryland, and New Jersey). First, we compare two mean regression approaches —a classic allometric model and a kernel-based nonparametric alternative— using a bootstrap-based procedure. Second, we apply quantile regression to both parametric and nonparametric frameworks to investigate size-dependent variation in growth patterns. Model selection for mean regressions was based on a hypothesis test contrasting the allometric model versus a general nonparametric alternative, while the quantile regressions were evaluated using a goodness-of-fit test derived from the cumulative sum of the gradient vector. Our results indicate that the allometric model provides a better fit in the mean regression context, while the nonparametric model proves more effective for quantile regression, particularly in detecting condition-dependent deviations and regional variability. Other long-lived marine bivalves, such as Arctica islandica and Mercenaria mercenaria, which show environmentally driven variation in growth and condition, may similarly benefit from modeling approaches that distinguish central from marginal populations.

    Data availability

    The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. The code used to estimate the models and perform the goodness-of-fit testing procedure is publicly available on GitHub at: https://github.com/sestelo/surfclam_length_weight_code.
    ReferencesRopes, J. W. Biological and fisheries data on the Atlantic surf clam, Spisula solidissima (Dillwyn) (NMFS/NEFSC Northeast Fisheries Science Center Technical Report Series No. 24. 88 pp. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts, 1980).NEFSC. 37th northeast regional stock assessment workshop (37th saw): Stock assessment review committee (sarc) consensus summary of assessments. C. Atlantic Surfclam. Northeast Fisheries Science Center Reference Document 03e16, pp. 284e433. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts. (2003).Merrill, A. & Ropes, J. The general distribution of the surf clam and ocean quahog. In Proceedings of the National Shellfisheries Association, vol. 59, 0–5 (1969).Weinberg, J. Density-dependent growth in the atlantic surfclam, Spisula solidissima, off the coast of the delmarva peninsula, usa. Mar. Biol. 130, 621–630 (1998).
    Google Scholar 
    Weinberg, J. R. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. J. du Conseil 62, 1444–1453 (2005).
    Google Scholar 
    NEFSC. 61th Northeast Regional Stock ssessment Workshop (61st SAW). Assessment Report. In Proceedings of the 61st Northeast Regional Stock Assessment Workshop, Northeast Fisheries Science Center, 464 p. (2017).NEFSC. Management track assessments completed in Spring 2020. Northeast Fisheries Science Center Reference Document 86p. (2022).Munroe, D., Powell, E., Mann, R., Klinck, J. & Hofmann, E. Underestimation of primary productivity on continental shelves: evidence from maximum size of extant surfclam (Spisula solidissima) populations. Fish. Oceanogr. 22, 220–233 (2013).
    Google Scholar 
    Munroe, D. et al. Fishing and bottom water temperature as drivers of change in maximum shell length in atlantic surfclams (Spisula solidissima). Estuar. Coast. Shelf Sci. 170, 112–122 (2016).
    Google Scholar 
    Narváez, D. A. et al. Long-term dynamics in atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Syst. 141, 136–148 (2015).
    Google Scholar 
    Díaz, M. G. et al. Spatial and temporal variability of atlantic surfclam (Spisula solidissima, dillwyn 1817) population demographics along the middle Atlantic Bight. J. Shellfish Res. 43, 37–49 (2024).
    Google Scholar 
    Kim, Y. & Powell, E. N. Surfclam histopathology survey along the delmarva mortality line. J. Shellfish Res. 23, 429–442 (2004).
    Google Scholar 
    Marzec, R. J., Kim, Y. & Powell, E. N. Geographical trends in weight and condition index of surfclams (Spisula Solidissima) in the mid-atlantic bight. J. Shellfish Res. https://doi.org/10.2983/035.029.0104 (2010).
    Google Scholar 
    Hofmann, E. E. et al. An overview of factors affecting distribution of the atlantic surfclam (Spisula solidissima), a continental shelf biomass dominant, during a period of climate change. J. Shellfish Res. 37, 821–831 (2018).
    Google Scholar 
    Stromp, S. L., Powell, E. N. & Mann, R. Evaluation of the degree of co-occurrence of atlantic surfclams (Spisula solidissima) and ocean quahogs (Arctica islandica) in the expanding Northwestern Atlantic boreal/temperate ecotone: implications for their fisheries. J. Shellfish Res. 42, 61–75 (2023).
    Google Scholar 
    Munroe, D. M. et al. The atlantic surfclam fishery and offshore wind energy development: 1. model development and verification. ICES J. Mar. Sci. 79, 1787–1800 (2022).Spencer, M. M. et al. What is the future of the atlantic surfclam (Spisula solidissima) fishery under climate-induced warming on the mid-Atlantic Bight continental shelf: A multidecadal assessment. Fish. Oceanogr. e12708 (2024).Cargnelli, L., Griesbach, S., Packer, D. & Weissberger, E. Essential fish habitat source document: Atlantic surfclam, Spisula solidissima, life history and habitat characteristics. NOAA Tech Memo NMFS NE 142, 13 (1999).
    Google Scholar 
    Parsons, P. Evolutionary rates: stress and species boundaries. Annu. Rev. Ecol. Syst. 22, 1–18 (1991).
    Google Scholar 
    Žliobaitė, I. & Fortelius, M. All sizes fit the red queen. Paleobiology 46, 478–494 (2020).
    Google Scholar 
    Cone, R. S. The need to reconsider the use of condition indices in fishery science. Trans. Am. Fish. Soc. 118, 510–514 (1989).
    Google Scholar 
    Jones, R., Petrell, R. & Pauly, D. Using modified length-weight relationships to assess the condition of fish. Aquac. Eng. 20, 261–276 (1999).
    Google Scholar 
    Powell, E. N. et al. Growth and longevity in surfclams east of nantucket: range expansion in response to the post-2000 warming of the North Atlantic. Cont. Shelf Res. 195, 104059 (2020).
    Google Scholar 
    Prior, D. J., Schneiderman, A. M. & Greene, S. I. Size-dependent variation in the evasive behaviour of the bivalve mollusc Spisula solidissima. J. Exp. Biol. 78, 59–75 (1979).
    Google Scholar 
    MacKenzie, C. L., Radosh, D. J. & Reid, R. N. Densities, growth, and mortalities of juveniles of the surf clam (Spisula solidissima)(Dillwyn) in the new york bight. J. Shellfish Res. 5, 81–84 (1985).
    Google Scholar 
    Walker, R. L. & Heffernan, P. B. Intertidal growth and survival of northern quahogs mercenaria mercenaria (Linnaeus 1758) and Atlantic surf clams Spisula solidissima (Dillwyn 1817) in georgia. J. World Aquac. Soc. 21, 307–313 (1990).
    Google Scholar 
    Dietl, G. P. & Alexander, R. R. Predator-prey interactions between the naticids Euspira heros and Neverita duplicata and the Atlantic surfclam Spisula solidissima from Long Island to delaware. J. Shellfish Res. 16, 413–422 (1997).
    Google Scholar 
    Hofmann, E. E. et al. A population dynamics model of the hard clam, Mercenaria mercenaria: development of the age-and length-frequency structure of the population. J. Shellfish Res. 25, 417–444 (2006).
    Google Scholar 
    Le Goff, C. et al. A coupled biophysical model for the distribution of the great scallop pecten maximus in the English Channel. J. Mar. Syst. 167, 55–67 (2017).
    Google Scholar 
    Lavaud, R., Rannou, E., Flye-Sainte-Marie, J. & Jean, F. Reconstructing physiological history from growth, a method to invert deb models. J. Sea Res. 143, 183–192 (2019).
    Google Scholar 
    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).
    Google Scholar 
    Harris, L. A., Duarte, C. M. & Nixon, S. W. Allometric laws and prediction in estuarine and coastal ecology. Estuaries Coasts 29, 340–344 (2006).
    Google Scholar 
    Powell, E. N., Mann, R., Ashton-Alcox, K. A., Kim, Y. & Bushek, D. The allometry of oysters: spatial and temporal variation in the length–biomass relationships for Crassostrea virginica. J. Mar. Biol. Assoc. U. K. 96, 1127–1144. https://doi.org/10.1017/S0025315415000703 (2016).
    Google Scholar 
    Bidegain, G., Sestelo, M., Roca-Pardiñas, J. & Juanes, J. A. Estimating a new suitable catch size for two clam species: Implications for shellfishery management. Ocean Coast. Manag. 71, 52–63 (2013).
    Google Scholar 
    Sestelo, M. & Roca-Pardinas, J. A new approach to estimation of the length–weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the atlantic coast of Galicia (Northwest Spain): Some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).
    Google Scholar 
    Bidegain, G. et al. Assessing the suitability of the minimum capture size and protection regimes in the gooseneck barnacle shellfishery. Ocean Coast. Manag. 104, 150–158 (2015).
    Google Scholar 
    Martínez-Silva, I., Sestelo, M., Bidegain, G., Lorenzo-Arribas, A. & Roca-Pardiñas, J. Nonparametric regression applied to sea urchin gorwth Sea urchins. In Edgar Raymond Banks (Ed.) Nonparametric regression applied to sea urchin growth (ISBN: 878-1-63321-550-4, Hauppauge, New York, 2014).Koenker, R. & Hallock, K. F. Quantile regression. Journal of economic perspectives 15, 143–156 (2001).
    Google Scholar 
    NEFSC. 44th northeast regional stock assessment workshop (44th saw) assessment report. Northeast Fisheries Science Center Reference Documents 1–666 (2007).Jacobson, L. D. & Hennen, D. R. Improving the NEFSC clam survey for Atlantic surfclams and ocean quahogs. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 19–06, 1–89 (2019).
    Google Scholar 
    DeGrasse, S. et al. Onboard screening dockside testing as a new means of managing paralytic shellfish poisoning risks in federally closed waters. Deep Sea Research Part II: Topical Studies in Oceanography 103, 288–300 (2014).
    Google Scholar 
    Powell, E. N. et al. Temperature, maximum size, and the Atlantic surfclam Spisula solidissima: The sensitivity of demographics to climate warming, the perfidy of food, and a vignette on size-limited management in bivalve fisheries. Canadian Journal of Fisheries and Aquatic Sciences in press (2025).Weinberg, J. R., Dahlgren, T. G. & Halanych, K. M. Influence of rising sea temperature on commercial bivalve species of the U.S. atlantic coast. In American Fisheries Society Symposium 32, 131–140 (2002).Weinberg, J. R., Powell, E. N., Pickett, C., Nordahl, V. A. J. & Jacobson, L. D. Results from the 2004 cooperative survey of atlantic surfclams. Ref. Doc. 05-01, Northeast Fisheries Science Center (2005).Huxley, J. S. Constant differential growth-ratios and their significance. Nature 114, 895–896 (1924).
    Google Scholar 
    Wand, M. P. & Jones, M. C. Kernel Smoothing (Chapman & Hall, London, 1995).
    Google Scholar 
    Fan, J. & Gijbels, I. Local polynomial modelling and its applications. No. 66 in Monographs on statistics and applied probability series (Chapman & Hall, 1996).Hayes, D. B., Brodziak, J. K. & O’Gorman, J. B. Efficiency and bias of estimators and sampling designs for determining length-weight relationships of fish. Can. J. Fish. Aquat. Sci. 52, 84–92 (1995).
    Google Scholar 
    Sestelo, M. & Roca-Pardiñas, J. A new approach to estimation of length-weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the Atlantic coast of Galicia (Northwest Spain): some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).Sestelo, M., Villanueva, N. M. & Roca-Pardiñas, J. npregfast: Nonparametric Estimation of Regression Models with Factor-by-Curve Interactions. R package version 1.5.0 (2017).Sestelo, M., Villanueva, N., Meira-Machado, L. & Roca-Pardiñas, J. npregfast: An r package for nonparametric estimation and inference in life sciences. Journal of Statistical Software 82, 1–27, https://doi.org/10.18637/jss.v082.i12 (2017).Koenker, R. & Gilbert Bassett, J. Regression quantiles. Econometrica 46, 33–50 (1978).
    Google Scholar 
    Koenker, R. quantreg: Quantile Regression (2017). R package version 5.33.Martínez-Silva, I., Roca-Pardiñas, J. & Ordóñez, C. Forecasting so2 pollution incidents by means of quantile curves based on additive models. Environmetrics 27, 147–157, https://doi.org/10.1002/env.2384 (2016). Env.2384.He, X. & Zhu, L.-X. A lack-of-fit test for quantile regression. J. Am. Stat. Assoc. 98, 1013–1022. https://doi.org/10.1198/016214503000000963 (2003).
    Google Scholar 
    Powell, E. & Stanton, R. Jr. Estimating biomass and energy flow of molluscs in paleo-communities. Palaeontology (Lond.) 28, 1–34 (1985).
    Google Scholar 
    Wisner, B., Wang, Z., Sheehan, A., Guo, X. & Munroe, D. Genetics, age demographics, and shell size of Atlantic surfclams from the southern edge of their range. Estuaries Coasts 47, 485–493 (2024).
    Google Scholar 
    Rowell, T. W. & Chaisson, D. R. A review of the biology and fisheries for ocean quahog (Arctica islandica) in eastern Canada. J. Shellfish Res. 9, 445–454 (1990).
    Google Scholar 
    Kraeuter, J. N. & Castagna, M. Biology of the hard clam. Elsevier (2005). Chapters on condition index and geographic variability in growth.LaFrance, M., Archambault, P. & Roff, J. C. Spatial and temporal variability in length-weight relationships of benthic macroinvertebrates in the Gulf of St. Lawrence,Canada. Marine Ecology Progress Series 254, 199–211, https://doi.org/10.3354/meps254199 (2003).Robertis, A. D. & Williams, K. Weight-length relationships in fisheries studies: The standard allometric model should be applied with caution. Trans. Am. Fish. Soc. https://doi.org/10.1577/t07-124.1 (2008).
    Google Scholar 
    Rabaoui, L., Tlig Zouari, S., Katsanevakis, S. & Ben Hassine, O. K. Comparison of absolute and relative growth patterns among five Pinna nobilis populations along the tunisian coastline: an information theory approach. Mar. Biol. 152, 537–548 (2007).
    Google Scholar 
    Ropes, J. W. Reproductive cycle of the surf clam, Spisula solidissima, in offshore new jersey. Biol. Bull. 135, 349–365 (1968).
    Google Scholar 
    Tarnowski, M. Temporal distribution of surf clam larvae off southern New Jersey. J. Shellfish Res 2, 108 (1982).
    Google Scholar 
    Ropes, J. Shell length at sexual maturity of surf clams, Spisula solidissima, from an inshore habitat. In Proc. Nat. Shellfish. Assoc 69, 85–91 (1979).
    Google Scholar 
    Jones, D. S. Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science 211, 165–167 (1981).
    Google Scholar 
    Kanti, A., Heffernan, P. & Walker, R. Gametogenic cycle of the southern surfclam, Spisula solidissima similis (Say, 1822), from St. Catherines Sound, Georgia. J. Shellfish Res. 12, 255–261 (1993).Begg, G. A. & Marteinsdottir, G. Environmental and stock effects on spawning origins and recruitment of cod Gadus morhua in Icelandic waters. Mar. Ecol. Prog. Ser. 179, 263–275. https://doi.org/10.3354/meps179263 (1999).
    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25. https://doi.org/10.3354/meps254011 (2003).
    Google Scholar 
    Cade, B. & Noon, B. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420. https://doi.org/10.1890/1540-9295 (2003).
    Google Scholar 
    Cade, B. S., Edmunds, D. R. & Ouren, D. S. Quantile regression estimates of animal population trends. J. Wildl. Manag. 86, e22228. https://doi.org/10.1002/jwmg.22228 (2022).
    Google Scholar 
    Cade, B. S., Terrell, J. W. & Porath, M. T. Estimating fish body condition with quantile regression. N. Am. J. Fish. Manag. 28, 349–359 (2008).
    Google Scholar 
    Planque, B. & Buffaz, L. Quantile regression models for fish recruitment-environment relationships: four case studies. Mar. Ecol. Prog. Ser. 357, 213–223 (2008).
    Google Scholar 
    Ranney, S. H. Quantile regression estimates of body weight at length in Walleye. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10070 (2018).
    Google Scholar 
    Lucey, S. M. & Nye, J. A. Shifting species assemblages in the northeast us continental shelf large marine ecosystem. Mar. Ecol. Prog. Ser. 415, 23–33 (2010).
    Google Scholar 
    Young, T. et al. Adaptation strategies of coastal fishing communities as species shift poleward. ICES J. Mar. Sci. 76, 93–103 (2019).
    Google Scholar 
    Spencer, M., Hennen, D., Klinck, J. M. & Powell, E. The integrity of a stratified random stock survey design in light of projected climate-induced changes in species distribution: the case of the Atlantic surfclam, Spisula solidissima, over the remainder of the 21st century. Submitted (2024).Moya, A. L., Powell, E. N., Hennen, D. & Klinck, J. M. Does size matter: A direct evaluation of the influence of warming temperatures on the applicability of size limits for the Atlantic surfclam, Spisula solidissima, fishery in the U.S. Mid-Atlantic. Submitted (2024).Download referencesAcknowledgementsThe authors thank the NEFSC survey and data analysis teams who provided excellent length and weight data.FundingThis work was supported by the Basque Government (GIC21/82), the Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/93928/2013), FEDER Funds through the Program ‘Programa Operacional Factores de Competitividade – COMPETE’ and Portuguese Funds through FCT (UID/MAT/00013/2013).Author informationAuthors and AffiliationsDepartment of Applied Mathematics, Engineering School of Gipuzkoa, University of the Basque Country (EHU), Plaza Europa 1, 28018, Donostia, SpainGorka BidegainResearch Centre for Experimental Marine Biology & Biotechnology, Plentzia Marine Station, University of the Basque Country (PiE-EHU), Areatza Pasealekua, 48620, Plentzia, SpainGorka Bidegain, Arantza Irirarte & Ibon UriarteCITMAga, Galician Center for Mathematical Research and Technology, 15782, Santiago de Compostela, SpainMarta SesteloDepartment of Statistics and O.R. & SiDOR Group, Universidade de Vigo, 36310, Vigo, SpainMarta SesteloAZTI Marine Research, Basque Research and Technology Alliance (BRITA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, SpainPatricia L. LuqueGulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, 39564, Ocean Springs, Mississippi, USAEric N. PowellDepartment of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (EHU), Sarriena auzoa z/g, 48940, Leioa, SpainArantza IrirarteDepartment of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (EHU), Unibertsitatearen ibilbidea 7, 01006, Gasteiz, SpainIbon UriarteHaskin Shellfish Research Laboratory, Rutgers the State University of New Jersey, 6959 Miller Ave, Port Norris, 08349, New Jersey, USADaphne MunroeAuthorsGorka BidegainView author publicationsSearch author on:PubMed Google ScholarMarta SesteloView author publicationsSearch author on:PubMed Google ScholarPatricia L. LuqueView author publicationsSearch author on:PubMed Google ScholarEric N. PowellView author publicationsSearch author on:PubMed Google ScholarArantza IrirarteView author publicationsSearch author on:PubMed Google ScholarIbon UriarteView author publicationsSearch author on:PubMed Google ScholarDaphne MunroeView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualization, G.B., M.S., P.L.L., E.P., and D.M.; Methodology, G.B., M.S., E.P., D.M.; Formal analysis, G.B., M.S., E.P., and P.L.L.; Investigation, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Writing–Original Draft, G.B., M.S., E.P., and P.L.L.; Writing–Review & Editing, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Supervision, G.BCorresponding authorCorrespondence to
    Gorka Bidegain.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleBidegain, G., Sestelo, M., Luque, P.L. et al. Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-31936-9Download citationReceived: 03 July 2025Accepted: 05 December 2025Published: 14 December 2025DOI: https://doi.org/10.1038/s41598-025-31936-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsBivalvesGrowth modellingBootstrap methodsNonparametric smoothing More

  • in

    Pomerania Fish: A dataset for fishes across Pomerania freshwater waterbodies in-situ environments

    AbstractHigh-quality datasets are crucial for computer vision in endangered fish monitoring. Species similarities and dynamic environments pose challenges. The Pomeranian region, a key salmonid refuge with ongoing restoration efforts, necessitates robust monitoring to assess restoration success. To facilitate environmentally sustainable research, we introduce a dataset, Pomerania Fish (PomerFish), comprising two sub-datasets: PomerFishObj and PomerFishSeg, each with corresponding annotations. This dataset, compiled by salmonid experts, focuses on endangered Central European salmon populations. It was collected from 2015 to 2024 in the Pomerania Region, Central Europe, using a GoPro Hero 5 camera. The dataset comprises: (1) PomerFishObj, containing 14,989 high-resolution images with manually annotated bounding boxes and 3,273 negative samples (fish absence); and (2) PomerFishSeg, containing 1,115 images, including 1,038 with polygon-based segmentation masks and 77 negative samples. Characterized by high-resolution imagery, large data volume, and comprehensive habitat records beyond species, it enables training for detailed underwater observations and precise species growth estimations. This dataset supports targeted conservation and habitat management, providing crucial resources for research, species detection, and conservation practices.

    Data availability

    The code, model, and associated notebooks for data processing and baseline computation are available in our Zenodo repository: https://zenodo.org/records/17432128.42. The software toolkit, developed using Python 3.10 and the PyTorch 2.3 deep learning framework, offers the following functionalities, including data preprocessing, model training, model evaluation, deployment and inference, and visualization.
    ReferencesTye, S. P., Fey, S. B., Gibert, J. P. & Siepielski, A. M. Predator mass mortality events restructure food webs through trophic decoupling. Nature 626, 335–340 (2024).
    Google Scholar 
    O’Brien, A., Townsend, K., Hale, R., Sharley, D. & Pettigrove, V. How is ecosystem health defined and measured? A critical review of freshwater and estuarine studies. Ecological Indicators 69, 722–729 (2016).
    Google Scholar 
    Thomas, P. O. et al. Electrofishing as a potential threat to freshwater cetaceans. Endang Species Res 39, 207–220 (2019).
    Google Scholar 
    Curry, R. A., Hughes, R. M., McMaster, M. E. & Zafft, D. J. Coldwater fish in rivers. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, Maryland 139–158 (2009).Raby, G. D., Colotelo, A. H., Blouin-Demers, G. & Cooke, S. J. Freshwater Commercial Bycatch: An Understated Conservation Problem. BioScience 61, 271–280 (2011).
    Google Scholar 
    Bielli, A. et al. An illuminating idea to reduce bycatch in the Peruvian small-scale gillnet fishery. Biological Conservation 241, 108277 (2020).
    Google Scholar 
    Hinlo, R., Lintermans, M., Gleeson, D., Broadhurst, B. & Furlan, E. Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biological Invasions 20, 3079–3093 (2018).
    Google Scholar 
    Jothinarayanan, N., Pham, C. H., Karlsen, F. & Roseng, L. E. eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler. Methods and Protocols 7 (2024).Ilarri, M., Souza, A. T., Dias, E. & Antunes, C. Influence of climate change and extreme weather events on an estuarine fish community. Science of The Total Environment 827, 154190 (2022).
    Google Scholar 
    Le Hen, G. et al. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. Science of The Total Environment 867, 161486 (2023).
    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    Google Scholar 
    Prakash, S. Impact of Climate change on Aquatic Ecosystem and its Biodiversity: An overview. International Journal of Biological Innovations 3 (2021).Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci 365, 2093–2106 (2010).
    Google Scholar 
    Xu, L. et al. Asymmetric impacts of climate change on thermal habitat suitability for inland lake fishes. Nature Communications 15, 10273 (2024).
    Google Scholar 
    Czerniawski, R. & Bilski, P. Funkcjonowanie i Ochrona Wód Płynących 2023 (2023).Piskuła, P. & Astel, A. M. Microplastics Occurrence in Two Mountainous Rivers in the Lowland Area—A Case Study of the Central Pomeranian Region, Poland. Microplastics 1, 167–185 (2022).
    Google Scholar 
    Roy, A. M., Bhaduri, J., Kumar, T. & Raj, K. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection. Ecological Informatics 75, 101919 (2023).
    Google Scholar 
    Tanwari, K., Terefenko, P., Śledziowski, J. & Giza, A. Manually Annotated Drone Imagery Dataset for Automatic Coastline Delineation. Scientific Data 12, 383 (2025).
    Google Scholar 
    Ditria, E. M., Sievers, M., Lopez-Marcano, S., Jinks, E. L. & Connolly, R. M. Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats. Environ Monit Assess 192, 698 (2020).
    Google Scholar 
    Schneider, S. & Zhuang, A. Counting Fish and Dolphins in Sonar Images Using Deep Learning, https://doi.org/10.48550/arXiv.2007.12808 (2020).Saleh, A., Sheaves, M., Jerry, D. & Rahimi Azghadi, M. Applications of deep learning in fish habitat monitoring: A tutorial and survey. Expert Systems with Applications 238, 121841 (2024).
    Google Scholar 
    R. Mandal, R. M. Connolly, T. A. Schlacher, & B. Stantic. Assessing fish abundance from underwater video using deep neural networks. in 2018 International Joint Conference on Neural Networks (IJCNN) 1–6, https://doi.org/10.1109/IJCNN.2018.8489482 (2018).Kandimalla, V. et al. Automated Detection, Classification and Counting of Fish in Fish Passages With Deep Learning. Frontiers in Marine Science 8 (2022).Zhu, X., Vondrick, C., Fowlkes, C. C. & Ramanan, D. Do We Need More Training Data? International Journal of Computer Vision 119, 76–92 (2016).
    Google Scholar 
    Lévêque, C., Oberdorff, T., Paugy, D., Stiassny, M. L. J. & Tedesco, P. A. Global diversity of fish (Pisces) in freshwater. in Freshwater Animal Diversity Assessment (eds Balian, E. V., Lévêque, C., Segers, H. & Martens, K.) 545–567, https://doi.org/10.1007/978-1-4020-8259-7_53 (Springer Netherlands, Dordrecht, 2008).Prodhan, S., Diip, N., Akter, S., Farhaan, S. & Mansoor, N. Advancing Fish Species Identification in Bangladesh: Deep Learning Approaches for Accurate Freshwater Fish Recognition. in 113–122, https://doi.org/10.1007/978-981-99-8349-0_10 (2024).Shah, S. Z. H. et al. Fish-Pak: Fish species dataset from Pakistan for visual features based classification. Data in Brief 27, 104565 (2019).
    Google Scholar 
    Ataullha, M., Jisun, S. P., Jahan, I. & Rahman, M. BanFish: A Dataset for Classifying Common Bangladeshi Fish Species. 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) 335–340 (2024).Hitt, N. P., Kessler, K. G. & Letcher, B. Annotated fish imagery data for individual and species recognition with deep learning: U.S. Geological Survey data release, https://doi.org/10.5066/P9NMVL2Q (2021).Majumder, A., Rajbongshi, A., Rahman, M. & Biswas, A. A. Local Freshwater Fish Recognition Using Different CNN Architectures with Transfer Learning. International Journal on Advanced Science Engineering and Information Technology 11, 1078–1083 (2021).
    Google Scholar 
    Deka, J., Laskar, S. & Baklial, B. Automated Freshwater Fish Species Classification using Deep CNN. Journal of The Institution of Engineers (India): Series B 104, 603–621 (2023).
    Google Scholar 
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods in Ecology and Evolution 10, 1632–1644 (2019).
    Google Scholar 
    Feng, J. & Li, J. An Adaptive Embedding Network with Spatial Constraints for the Use of Few-Shot Learning in Endangered-Animal Detection. ISPRS International Journal of Geo-Information 11 (2022).VideoLan. VLC media player. https://www.videolan.org/vlc/index.html (2006).Sekachev, B. et al. opencv/cvat: v1.1.0. Zenodo https://doi.org/10.5281/zenodo.4009388 (2020).Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019).Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779–788, https://doi.org/10.1109/CVPR.2016.91 (2016).Khanam, R. & Hussain, M. What is YOLOv5: A deep look into the internal features of the popular object detector. ArXiv abs/2407.20892 (2024).Shelhamer, E., Long, J. & Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2017).
    Google Scholar 
    Heryadi, Y. et al. The Effect of Resnet Model as Feature Extractor Network to Performance of DeepLabV3 Model for Semantic Satellite Image Segmentation. in 2020 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS) 74–77, https://doi.org/10.1109/AGERS51788.2020.9452768 (2020).Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation, https://doi.org/10.48550/arXiv.1706.05587 (2017).Shi, X. et al. PomerFish: A dataset for fishes across Pomerania freshwater waterbodies in-situ environments. Zenodo https://doi.org/10.5281/zenodo.17432128 (2025).Download referencesAcknowledgementsThis research was co-financed by the Minister of Science under the “Regional Excellence Initiative” Program for 2024–2027 (RID/SP/0045/2024/01). We extend our sincere gratitude to Zhe Shi of the School of Electronic Information, Xi’an Polytechnic University, for her invaluable assistance in dataset development.Author informationAuthors and AffiliationsDepartment of Hydrobiology, Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, PolandXiaohao Shi, Robert Czerniawski & Tomasz KrepskiDoctoral School, University of Szczecin, Mickiewicza 18, 70-383, Szczecin, PolandXiaohao Shi & Kamran TanwariInstitute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383, Szczecin, PolandKamran TanwariFundacja Rewilding Pomerania, Wałecka 59/1, 78-440, Czaplinek, PolandArtur FurdynaAuthorsXiaohao ShiView author publicationsSearch author on:PubMed Google ScholarRobert CzerniawskiView author publicationsSearch author on:PubMed Google ScholarKamran TanwariView author publicationsSearch author on:PubMed Google ScholarArtur FurdynaView author publicationsSearch author on:PubMed Google ScholarTomasz KrepskiView author publicationsSearch author on:PubMed Google ScholarContributionsX.S. conceived the research and wrote the original draft. A.F. collected the original data. X.S., T.K. and R.C. reviewed the original data. X.S. developed the dataset. K.T. provides technical support for the dataset and assists with the visualization. R.C. and T.K. supervised the dataset. R.C. provided financial support for this work. All authors reviewed the manuscript.Corresponding authorCorrespondence to
    Xiaohao Shi.Ethics declarations

    Competing interest
    The authors declare no competing interests.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleShi, X., Czerniawski, R., Tanwari, K. et al. Pomerania Fish: A dataset for fishes across Pomerania freshwater waterbodies in-situ environments.
    Sci Data (2025). https://doi.org/10.1038/s41597-025-06393-8Download citationReceived: 24 March 2025Accepted: 28 November 2025Published: 13 December 2025DOI: https://doi.org/10.1038/s41597-025-06393-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Foraging strategies and geographic factors jointly shape gut microbiota of spiders in the Sichuan and Guizhou regions of China

    AbstractSpiders, a keystone predatory group for terrestrial ecosystem balance, have underexplored gut microbiotas. We collected 1090 spiders from 34 families in southwestern China, performing 16S rRNA sequencing to investigate their gut microbiota. Wandering and ambushing spiders exhibited higher α-diversity, while web-building spiders showed the lowest α-diversity with the highest endosymbiont infection rates. Gut microbiota diversity was significantly higher in Guizhou-region spiders than in Sichuan-region spiders. All spiders showed high amount of endosymbiont ASVs, which varied with foraging strategies and regions. Additionally, closer geographic distances between spiders were associated with more similar gut microbiota diversity levels. Environmental factor analysis preliminary revealed a positive correlation between precipitation and gut microbiota diversity, though its generalizability is limited by geographic sampling. Random processes were the primary drivers of spiders’ gut microbial community assembly. Our findings highlight that spider gut microbiota assembly is predominantly driven by stochastic processes but regulated by foraging strategies and geographic factors, providing a framework for understanding predator-microbe interactions in spiders.

    Data availability

    The raw sequencing reads from this study have been submitted to the China National GeneBank Database (CNP0007324; CNGBdb, https://db.cngb.org/) and Genome Sequence Archive database (PRJCA051897: CRA034046; GSA, https://ngdc.cncb.ac.cn/gsa/).
    Code availability

    The analysis code has been submitted to GitHub (https://github.com/WJiao95/16S-spider) and Zenodo85 (DOI: 10.5281/zenodo.17640349).
    ReferencesGao, Y., Wu, P. F., Cui, S. Y., Ali, A. & Zheng, G. Divergence in gut bacterial community between females and males in the wolf spider Pardosa astrigera. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8823 (2022).Zhang, L. H., Zhang, G. M., Yun, Y. L. & Peng, Y. Bacterial community of a spider, Marpiss magister (Salticidae). 3 Biotech 7, https://doi.org/10.1007/s13205-017-0994-0 (2017).Zhang, L. H., Yun, Y. L., Hu, G. W. & Peng, Y. Insights into the bacterial symbiont diversity in spiders. Ecol. Evol. 8, 4899–4906 (2018).
    Google Scholar 
    Kennedy, S. R., Tsau, S., Gillespie, R. & Krehenwinkel, H. Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider Badumna longinqua. Mol. Ecol. 29, 1001–1015 (2020).
    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).
    Google Scholar 
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).
    Google Scholar 
    Weng, M. & Walker, W. A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 4, 203–214 (2013).
    Google Scholar 
    Brown, E. M., Clardy, J. & Xavier, R. J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe 31, 173–186 (2023).
    Google Scholar 
    Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).
    Google Scholar 
    Sun, J. A. et al. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. npj Biofilms Microbiomes 11, https://doi.org/10.1038/s41522-025-00678-x (2025).Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222 (2012).
    Google Scholar 
    Yao, R. et al. Fly-over phylogeny across invertebrate to vertebrate: the giant panda and insects share a highly similar gut microbiota. Comput Struct. Biotechnol. 19, 4676–4683 (2021).
    Google Scholar 
    Chen, L. J., Li, Z. Z., Liu, W. & Lyu, B. Impact of high temperature and drought stress on the microbial community in wolf spiders. Ecotoxicol. Environ. Safe 283, https://doi.org/10.1016/j.ecoenv.2024.116801 (2024).Rezác, M., Rezácová, V. & Heneberg, P. Differences in the abundance and diversity of endosymbiotic bacteria drive host resistance of a dominant spider of central European orchards, to selected insecticides. J. Environ. Manag. 373, https://doi.org/10.1016/j.jenvman.2024.123486 (2025).Perez-Lamarque, B., Krehenwinkel, H., Gillespie, R. G. & Morlon, H. Limited evidence for microbial transmission in the phylosymbiosis between Hawaiian spiders and their microbiota. mSystems 7, e0110421 (2022).
    Google Scholar 
    Meehan, C. J., Olson, E. J., Reudink, M. W., Kyser, T. K. & Curry, R. L. Herbivory in a spider through exploitation of an ant-plant mutualism. Curr. Biol. 19, R892–R893 (2009).
    Google Scholar 
    Szymkowiak, P. & Grabowski, P. Morphological differentiation of ventral tarsal setae and surface sculpturing of theraphosids (araneae: theraphosidae) with different types of lifestyles. Ann. Entomol. Soc. Am. 115, 314–323 (2022).
    Google Scholar 
    Ramírez, D. S. et al. Deciphering the diet of a wandering spider (Phoneutria boliviensis; Araneae: Ctenidae) by DNA metabarcoding of gut contents. Ecol. Evol. 11, 5950–5965 (2021).
    Google Scholar 
    Uetz, G. W. Foraging strategies of spiders. Trends Ecol. Evol. 7, 155–159 (1992).
    Google Scholar 
    Schmitz, A. Respiration in spiders (Araneae). J. Comp. Physiol. B 186, 403–415 (2016).
    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, https://doi.org/10.1038/ncomms14319 (2017).Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526 (2018).
    Google Scholar 
    Rocafort, M. et al. HIV-associated gut microbial alterations are dependent on host and geographic context. Nat. Commun. 15, https://doi.org/10.1038/s41467-023-44566-4 (2024).Weng, H. D. et al. Humid heat environment causes anxiety-like disorder via impairing gut microbiota and bile acid metabolism in mice. Nat. Commun. 15, https://doi.org/10.1038/s41467-024-49972-w (2024).Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A. & Engelstädter, J. High incidence of the maternally inherited bacterium in spiders. Mol. Ecol. 17, 1427–1437 (2008).
    Google Scholar 
    White, J. A. et al. Endosymbiotic bacteria are prevalent and diverse in agricultural spiders. Micro. Ecol. 79, 472–481 (2020).
    Google Scholar 
    Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).
    Google Scholar 
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
    Google Scholar 
    Rosenwald, L. C., Sitvarin, M. I. & White, J. A. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc. Biol. Sci. 287, https://doi.org/10.1098/rspb.2020.1107 (2020).Wang, X. Y. et al. Age-, sex- and proximal-distal-resolved multi-omics identifies regulators of intestinal aging in non-human primates. Nat. Aging 4, https://doi.org/10.1038/s43587-024-00572-9 (2024).Zhang, X. Y. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87 (2021).
    Google Scholar 
    Kroon, S. et al. Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition. Nat. Commun. 16, https://doi.org/10.1038/s41467-025-57979-0 (2025).Minich, J. J. et al. Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-34557-2 (2022).Schmiedová, L., Tomásek, O., Pinkasová, H., Albrecht, T. & Kreisinger, J. Variation in diet composition and its relation to gut microbiota in a passerine bird. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-07672-9 (2022).Welch, K., Haynes, K. & Harwood, J. Prey-specific foraging tactics in a web-building spider. Agric. Forest Entomol. 15, https://doi.org/10.1111/afe.12023 (2013).Pyke, G. H. Optimal foraging theory – a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).
    Google Scholar 
    Nyffeler, M. Prey selection of spiders in the field. J. Arachnol. 27, 317–324 (1999).
    Google Scholar 
    Ludy, C. Prey selection of orb-web spiders (Araneidae) on field margins. Agr. Ecosyst. Environ. 119, 368–372 (2007).
    Google Scholar 
    Mishra, A., Kumar, B. & Rastogi, N. Predation potential of hunting and web-building spiders on rice pests of Indian subcontinent. Int. J. Trop. Insect Sc. 41, 1027–1036 (2021).
    Google Scholar 
    Wright, S. & Goodacre, S. L. Evidence for antimicrobial activity associated with common house spider silk. Bmc Res. Notes 5, 326 (2012).
    Google Scholar 
    Tahir, H. M., Qamar, S., Sattar, A., Shaheen, N. & Samiullah, K. Evidence for the antimicrobial potential of silk of cyclosa confraga (Thorell, 1892) (Araneae: Araneidae). Acta Zool. Bulg. 69, 593–595 (2017).
    Google Scholar 
    Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).
    Google Scholar 
    Ramalho, M. O., Bueno, O. C. & Moreau, C. S. Microbial composition of spiny ants (Hymenoptera:Formicidae:Polyrhachis) across their geographic range. BMC Evol. Biol. 17, https://doi.org/10.1186/s12862-017-0945-8 (2017).Armstrong, E. E. et al. A holobiont view of island biogeography: Unravelling patterns driving the nascent diversification of a Hawaiian spider and its microbial associates. Mol. Ecol. 31, 1299–1316 (2022).
    Google Scholar 
    Tyagi, K., Tyagi, I. & Kumar, V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: the largest effort so far. Plos ONE 16, e0251790 (2021).
    Google Scholar 
    Qiu, Y. P. et al. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. Mlife 2, 389–400 (2023).
    Google Scholar 
    Jactel, H. et al. Positive biodiversity-productivity relationships in forests: climate matters. Biol. Lett. 14, https://doi.org/10.1098/rsbl.2017.0747 (2018).Niu, B. & Fu, G. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau – A review. Sci. Total Environ. 912, https://doi.org/10.1016/j.scitotenv.2023.168878 (2024).Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots.in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Frank E. Zachos & Jan Christian Habel) 3–22 (Springer Berlin Heidelberg, 2011).Wang, C. Y. et al. Extreme drought shapes the gut microbiota composition and function of common cranes wintering in Poyang Lake. Front. Microbiol. 15, https://doi.org/10.3389/fmicb.2024.1489906 (2024).Williams, C. E. et al. Sustained drought, but not short-term warming, alters the gut microbiomes of wild anolis lizards. Appl. Environ. Microbiol. 88, e0053022 (2022).
    Google Scholar 
    Du, X. Y. et al. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. ISME J. 18, https://doi.org/10.1093/ismejo/wrad041 (2024).Shah, V. & Subramaniam, S. Bradyrhizobium japonicum USDA110: a representative model organism for studying the impact of pollutants on soil microbiota. Sci. Total Environ. 624, 963–967 (2018).
    Google Scholar 
    Riahi, H. S., Heidarieh, P. & Fatahi-Bafghi, M. Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology. J. Appl. Microbiol. 132, 890–906 (2022).
    Google Scholar 
    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).
    Google Scholar 
    Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).
    Google Scholar 
    Vanthournout, B. & Hendrickx, F. Endosymbiont dominated bacterial communities in a dwarf spider. Plos ONE 10, https://doi.org/10.1371/journal.pone.0117297 (2015).Jing, X. F. et al. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 23, 1433–1444 (2014).
    Google Scholar 
    Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).
    Google Scholar 
    Weiss, B. L. et al. Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl. Environ. Microbiol. 72, 7013–7021 (2006).
    Google Scholar 
    Wang, S., Hua, X. G. & Cui, L. Characterization of microbiota diversity of engorged ticks collected from dogs in China. J. Vet. Sci. 22, https://doi.org/10.4142/jvs.2021.22.e37 (2021).Baumann, P. et al. Genetics, physiology, and evolutionary relationships of the Genus Buchnera – intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55–94 (1995).
    Google Scholar 
    Li, C. F., He, M., Yun, Y. L. & Peng, Y. Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J. Invertebr. Pathol. 169, https://doi.org/10.1016/j.jip.2019.107307 (2020).Zhou, J. Z. & Ning, D. L. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. R. 81, https://doi.org/10.1128/MMBR.00002-17 (2017).Huang, G. P. et al. Global landscape of gut microbiome diversity and antibiotic resistomes across vertebrates. Sci. Total Environ. 838, https://doi.org/10.1016/j.scitotenv.2022.156178 (2022).Pan, B. Z. et al. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol. Ecol. 32, 1183–1196 (2023).
    Google Scholar 
    Sheffer, M. M. et al. Tissue- and population-level microbiome analysis of the wasp spider argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms 8, https://doi.org/10.3390/microorganisms8010008 (2020).Millar, E. N., Surette, M. G. & Kidd, K. A. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. Sci. Total Environ. 809, https://doi.org/10.1016/j.scitotenv.2021.151156 (2022).Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 
    Liu, C., Cui, Y. M., Li, X. Z. & Yao, M. J. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, https://doi.org/10.1093/femsec/fiaa255 (2021).Wickham, H. ggplot2: elegant graphics for data analysis. Springer, https://doi.org/10.1007/978-3-319-24277-4. (2016).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 00, https://rpkgs.datanovia.com/ggpubr/ (2023).Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. Jvenn: an interactive Venn diagram viewer. BMC Bioinform. 15, https://doi.org/10.1186/1471-2105-15-293 (2014).Hijmans, R. J. Geosphere: spherical trigonometry. R Package Version 1, 5–20 (2024).
    Google Scholar 
    Taiyun Wei, V. S. R package ‘corrplot’: visualization of a correlation matrix. R Package Version 0.95, (2024).Ning, D. L. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-18560-z (2020).Gao, Y., Zhang, G., Jiang, S. & Liu, Y. X. Wekemo Bioincloud: a user-friendly platform for meta-omics data analyses. Imeta 3, e175 (2024).
    Google Scholar 
    WJiao95/16S-spider: Spider16S-v1.0 v. v1.0 (Zenodo, 2025).Download referencesAcknowledgementsWe especially thank Professor Hao Yu at the College of Life Sciences, Guizhou Normal University for the sample collection in Guizhou. We also express our gratitude to the members of our research group for their hard work in the field of sample collection in Sichuan. They are Mian Wei, Qiuqiu Zhang, Qian Chen, Xuewei Geng, Yiting He, Xuelian Weng, Hanlin Wang, and Yuanhao Du.Author informationAuthor notesThese authors contributed equally: Jiao Wang, Shuqiao Wang.Authors and AffiliationsKey Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, ChinaJiao Wang, Shuqiao Wang, Qian Chen, Chuang Zhou, Zhenxin Fan & Yucheng linSichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, ChinaJiao Wang, Shuqiao Wang, Qian Chen, Zhenxin Fan & Yucheng linCollege of Life Sciences, Sichuan Normal University, Chengdu, ChinaChuang ZhouAuthorsJiao WangView author publicationsSearch author on:PubMed Google ScholarShuqiao WangView author publicationsSearch author on:PubMed Google ScholarQian ChenView author publicationsSearch author on:PubMed Google ScholarChuang ZhouView author publicationsSearch author on:PubMed Google ScholarZhenxin FanView author publicationsSearch author on:PubMed Google ScholarYucheng linView author publicationsSearch author on:PubMed Google ScholarContributionsJiao Wang and Shuqiao Wang performed the bioinformatics analyses; Jiao Wang wrote the manuscript; Shuqiao Wang, Chuang Zhou, and Qian Chen collected the samples; Zhenxin Fan and Yuchen Lin revised the manuscript, designed, and supervised the study.Corresponding authorsCorrespondence to
    Zhenxin Fan or Yucheng lin.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Communications Biology thanks Marc Domènech, Evgeniia Propistsova, Hirokazu Toju, Jordan Cuff and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Hannes Schuler and Tobias Goris.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1–11Reporting SummaryRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleWang, J., Wang, S., Chen, Q. et al. Foraging strategies and geographic factors jointly shape gut microbiota of spiders in the Sichuan and Guizhou regions of China.
    Commun Biol (2025). https://doi.org/10.1038/s42003-025-09358-0Download citationReceived: 27 May 2025Accepted: 02 December 2025Published: 13 December 2025DOI: https://doi.org/10.1038/s42003-025-09358-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Characterization of spatial and temporal variations of CO2 concentration on tropical Island and analysis of influencing factors

    AbstractIn this study, the spatial and temporal variations and distribution characteristics of the carbon dioxide (CO2) concentration on Hainan Island are analyzed using GOSAT L3 data from 2011 to 2024, and the effects of various factors impacting the CO2 concentration on Hainan Island are discussed. The results indicate that from 2011 to 2024, the CO2 concentration on Hainan Island showed an increasing trend, with a fast growth rate in the early period and a slow growth rate in recent years with the implementation of the dual-carbon strategy. The spatial distribution is affected by anthropogenic activities, topography, vegetation and solar radiation, and the overall CO2 concentration pattern is high in the north and low in the south. Human activities are the most important source of carbon on Hainan Island, vegetation is the most important carbon sink, and elements such as surface temperature, precipitation, and total solar radiation play roles in suppressing CO2. The CO2 concentration on Hainan Island is expected to continue to increase at a slow rate and may display a decreasing trend in the future.

    ReferencesThe state of. Greenhouse gases in the atmosphere based on global observations through 2010. WMO Greenh. Gas Bull. 7(21) (2011).Zhang, S. et al. Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region. Energy Policy https://doi.org/10.1016/j.enpol.2021.112661 (2021).
    Google Scholar 
    Gregg, J. S., Andres, R. J., Marland, G. & China Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35 (8), 135–157 (2008).
    Google Scholar 
    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years froin air in Antarctic ice and firn. J. Geophys. Research: Atmos. 101(D2), 4115 (1996).
    Google Scholar 
    Li, C., Li, H. & Qin, X. Spatial heterogeneity of carbon emissions and its influencing factors in china: evidence from 286 prefecture-level cities. Int. J. Environ. Res. Public Health. 19 (3), 1226 (2022).
    Google Scholar 
    Zhang, M. N. et al. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar. Sci. Total Environ. 810, 152235 (2022).
    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541 (7638), 516–520 (2017).
    Google Scholar 
    Yamagishi, H. et al. Role of nitrification and denitrification on the nitrous oxide cycle in the Eastern tropical North Pacific and Gulf of California. J. Geophys. Research:Biogeosciences. https://doi.org/10.1029/2006JG000227 (2007).
    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560 (7720), 628–631 (2018).
    Google Scholar 
    Yi, L. I. U. et al. Advances in technologies and methods for satellite remote sensing of atmospheric CO2. Remote Sens. Technol. Application. 26 (2), 247–254 (2011).
    Google Scholar 
    Wang, Q., Chiu, Y. H. & Chiu, C. R. Driving factors behind carbon dioxide emissions in china: A modified production-theoretical decomposition analysis. Energy Econ. 51, 252–260 (2015).
    Google Scholar 
    Heyntann, J. et al. Consistent satellite X CO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm. Atmos. Meas. Tech. 8 (2), 2961–2980 (2015).
    Google Scholar 
    Takagi, H. et al. On the benefit of GOSAT observationsto the Estimation of regional CO2 fluxes. Sola 7, 161–164 (2011).
    Google Scholar 
    Buchwitz, M. et al. Atmospheric Methaneand carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transportmodels. Atmos. Chem. Phys. 5 (4), 941:962 (2005).
    Google Scholar 
    Yizhen, J. I. A. et al. Spatial and Temporal distribution of XCO2 and XCH4 in China based on satellite remote sensing. J. Atmospheric Environ. Opt. 17 (6), 679692 (2022).
    Google Scholar 
    Yokota, T. et al. Global concentrations of CO2 and CH4 retireved from GOSAT: first preliminary results. Sola 5, 160163 (2009).
    Google Scholar 
    Guo, M. et al. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data. Sensors https://doi.org/10.3390/s121216368 (2012).
    Google Scholar 
    Da-zhang, H. E. & Sheng-ling, Z. H. A. N. G. The Reginal climate division of Hainan Island. ACTA Geogr. SINACA. 40 (2), 169–178 (1985).
    Google Scholar 
    Bo-Sun, W. A. N. G. et al. Diversity of tropical forest landscape-type in Hainan Island, China. Acta Ecol. Sin. 27 (5), 1690–1695 (2007).
    Google Scholar 
    Long, J. Y. et al. Spatial autocorrelation analysis of Chinese provincial carbon dioxide emissions. Ecol. Econ. https://doi.org/10.1109/CSO.2009.147 (2011).
    Google Scholar 
    WEI, P. et al. Spatial and Temporal characteristics of vegetation resilience to drought in China. Sci. China Earth Sci. 68(07), 2310–2327 (2025).
    Google Scholar 
    Zhang, C., Li, S. & Wan, J. H. The warmest year 2015 in the instrumental record and its comparison with year 1998. Atmospheric Ocean. Sci. Lett. 9 (6), 487–494 (2016).
    Google Scholar 
    Niinistö & Kellomäki Silvola. Seasonality in a boreal forest ecosystem affects the use of soil temperature and moisture as predictors of soil CO2 efflux. Biogeosciences Discuss. 8 (8), 2811–2849 (2011).
    Google Scholar 
    Huimin, Y. et al. Multiple cropping intensity in China derived from Agro-meteorological observations and MODIS data. Chin. Geogra. Sci. 24 (02), 205–219 (2014).
    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. : Biogeosc 113 113, G00B07 (2008).
    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
    Google Scholar 
    Li, G. et al. Analysis and prediction of global vegetation dynamics:past variations and future perspectives. J. Forestry Res. 34 (02), 317–332 (2023).
    Google Scholar 
    Tadesse, K. B. & Dinka, M. O. .Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa. J. Water Land. Dev. https://doi.org/10.1515/jwld-2017-0088 (2017).
    Google Scholar 
    Aboelnour, M. A. et al. Leveraging ERA5-Land reanalysis precipitation data for urban flood vulnerability and water security assessments: A global perspective. Earth Syst. Environ. 9 (3), 2335–2353 (2025).
    Google Scholar 
    GoovaertsP Kriging interpolation. Geographic Inform. Sci. Technol. Body Knowl. https://doi.org/10.22224/gistbok/2019.4.4 (2019).
    Google Scholar 
    YU Yan-sheng, C. H. E. N. & Xing-wei Analysis of future trend characteristics of hydrological time series based on R/S and Mann-Kendall methods. J. Water Resour. Water Enigineering. 19 (3), 4144 (2008).
    Google Scholar 
    Download referencesFundingThis study is supported by the National Key Research and Development Program (2023YFC3008001);Natural science foundation of China(Grant No.42465006, Grant No.U21A6001).Hainan Provincial Natural Science Foundation of China(424QN364).Data availability statement.The Data used and during the current study are publicly available in repositories:1. GOSAT data is available at https://data2.gosat.nies.go.jp/index_en.html.2. EVI、PAR 、LST and GPP data are available at https://modis.gsfc.nasa.gov/.3. Meteorological data are available at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means.4. Population, GDP, and energy data are available at https://en.hainan.gov.cn/hainan/tjnj/list3.shtml.Author informationAuthors and AffiliationsHainan Institute of Meteorological Science, Haikou, 570203, ChinaQi Luo, Jing Han & Shaojun LiuSansha Marine Meteorology Field Experiment Station of CMA, Sansha, 573199, ChinaQi LuoSouth China Sea Marine Meteorology Hainan Observation and Research Station, Sansha, 573199, ChinaJing Han & Shaojun LiuAuthorsQi LuoView author publicationsSearch author on:PubMed Google ScholarJing HanView author publicationsSearch author on:PubMed Google ScholarShaojun LiuView author publicationsSearch author on:PubMed Google ScholarContributionsLuo wrote the main manuscript text and prepared the figures. Han dowload the satellite and reanlysis data. Liu provided technical guidance and revised the article.All authors reviewed the manuscript.Corresponding authorCorrespondence to
    Qi Luo.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleLuo, Q., Han, J. & Liu, S. Characterization of spatial and temporal variations of CO2 concentration on tropical Island and analysis of influencing factors.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-32647-xDownload citationReceived: 15 May 2025Accepted: 11 December 2025Published: 13 December 2025DOI: https://doi.org/10.1038/s41598-025-32647-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsTropical islandCO2 concentrationInfluencing factorsVariation trend More

  • in

    Wolbachia enhances ovarian development in the rice planthopper Laodelphax striatellus through elevated energy production

    AbstractThe endosymbiont Wolbachia can both benefit host nutrition and manipulate host reproduction to its own advantage. However, the mechanisms of its nutritional benefits remain unclear. We show that Wolbachia enhances ovarian development in the small brown planthopper Laodelphax striatellus by boosting energy production. Wolbachia-infected females have increased fecundity, accelerated ovarian development, and prolonged oviposition. Enhanced activity of mitochondrial complex I is linked to increased ATP production and the expression of energy metabolism-related genes. We further identify that Wolbachia-synthesized riboflavin is crucial for ATP production and ovarian development. A riboflavin transporter, slc52a3a, positively correlates with Wolbachia density and is required for normal ovarian maturation. Our findings demonstrate that Wolbachia-produced riboflavin drives energy production and accelerates ovarian maturation, thus improving host fecundity. This research reveals insights into symbiont-host metabolic interactions and underscores the role of nutrient delivery in symbiosis.

    Data availability

    The RNA-seq data generated in this study have been deposited in the NCBI GenBank database under accession code PRJNA1195149, PRJNA1195150, and PRJNA1195152. Source data are provided with this paper.
    ReferencesPodsiadło, E., Michalik, K., Michalik, A. & Szklarzewicz, T. Yeast-like microorganisms in the scale insect Kermes quercus (Insecta, Hemiptera, Coccomorpha: Kermesidae). Newly acquired symbionts?. Arthropod Struct. Dev. 47, 56–63 (2018).
    Google Scholar 
    Mathé-Hubert, H., Kaech, H., Ganesanandamoorthy, P. & Vorburger, C. Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution 73, 1466–1481 (2019).
    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).
    Google Scholar 
    Pina, T. et al. Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. Exp. Appl. Acarol. 81, 335–355 (2020).
    Google Scholar 
    Porter, J. & Sullivan, W. The cellular lives of Wolbachia. Nat. Rev. Microbiol. 21, 750–766 (2023).
    Google Scholar 
    Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).
    Google Scholar 
    Newton, I. L. G. & Rice, D. W. The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J. Bacteriol. 202, e00589–19 (2020).
    Google Scholar 
    Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 90, 89–111 (2015).
    Google Scholar 
    Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5, e1000368 (2009).
    Google Scholar 
    Unckless, R. L. & Jaenike, J. Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanisms. Evolution 66, 678–689 (2012).
    Google Scholar 
    Dedeine, F. et al. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. USA. 98, 6247–6252 (2001).
    Google Scholar 
    Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl. Acad. Sci. USA. 104, 213–215 (2007).
    Google Scholar 
    Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA. 107, 769–774 (2010).
    Google Scholar 
    Ju, J.-F. et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 14, 676–687 (2020).
    Google Scholar 
    Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6, e01732–01715 (2015).
    Google Scholar 
    Depeint, F., Bruce, W. R., Shangari, N., Mehta, R. & O’Brien, P. J. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 163, 94–112 (2006).
    Google Scholar 
    Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 44, 3–15 (2019).
    Google Scholar 
    Noda, H., Koizumi, Y., Zhang, Q. & Deng, K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem. Mol. Biol. 31, 727–737 (2001).
    Google Scholar 
    Huang, H.-J., Cui, J.-R., Chen, J., Bing, X.-L. & Hong, X.-Y. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. Insect Biochem. Mol. Biol. 113, 103211 (2019).
    Google Scholar 
    Bing, X.-L., Zhao, D.-S., Peng, C.-W., Huang, H.-J. & Hong, X.-Y. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci 27, 947–963 (2020).
    Google Scholar 
    Duan, X.-Z. et al. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome 8, 104 (2020).
    Google Scholar 
    Hu, Q.-L. et al. Chromosome-level assembly, dosage compensation and sex-biased gene expression in the small brown planthopper, Laodelphax striatellus. Genome Biol. Evol. 14, evac160 (2022).
    Google Scholar 
    Jin, C. et al. Riboflavin transporters RFVT/SLC52A mediate translocation of riboflavin, rather than FMN or FAD, across plasma membrane. Biol. Pharm. Bull. 40, 1990–1995 (2017).
    Google Scholar 
    Gnainsky, Y. et al. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 34, 108583 (2021).
    Google Scholar 
    Li, T.-P. et al. Stable establishment of Cardinium spp. in the brown planthopper Nilaparvata lugens despite decreased host fitness. Appl. Environ. Microbiol. 86, e02509–19 (2020).
    Google Scholar 
    Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2018).
    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
    Google Scholar 
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2024).Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
    Google Scholar 
    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012).
    Google Scholar 
    Golbach, J. L., Chalova, V. I., Woodward, C. L. & Ricke, S. C. Adaptation of Lactobacillus rhamnosus riboflavin assay to microtiter plates. J. Food Compos. Anal. 20, 568–574 (2007).
    Google Scholar 
    Pan, X., Lu, K., Qi, S., Zhou, Q. & Zhou, Q. The content of amino acids in artificial diet influences the development and reproduction of brown planthopper, Nilaparvata lugens (STÅL). Arch. Insect Biochem. Physiol. 86, 75–84 (2014).
    Google Scholar 
    Li, T.-P. et al. Two newly introduced Wolbachia endosymbionts induce cell host differences in competitiveness and metabolic responses. Appl. Environ. Microbiol. 87, e0147921 (2021).
    Google Scholar 
    Jiang, W. & Zhu, T. F. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat. Protoc. 11, 960–975 (2016).
    Google Scholar 
    Mendiburu, F. D. & Simon, R. Agricolae – ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ Prepr. 3, e1404v1401 (2015).Download referencesAcknowledgementsWe thank Prof. Fei-Rong Ren from Henan University, Dr. Xiang Sun and Tianyu Wang from Shenyang Agricultural University for their technical and material support in riboflavin detection experiments. We also thank Hao Zhang from Nanjing Agricultural University for his help in preparing RNA-seq samples. This work was supported by the Key Research and Development Project of Hainan Province (ZDYF2024XDNY249 to X.Y.H.), the National Natural Science Foundation of China (32572809 to X.L.B. and 32020103011 to X.Y.H.), and the Young Elite Scientists Sponsorship Program by Jiangsu Association for Science and Technology (TJ-2023-038 to X.L.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author informationAuthors and AffiliationsState Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, ChinaYue-Di Niu, Qi-Hang Fan, Zi-Han Wang, Meng-Ke Wang, Dian-Shu Zhao, Meng-Ru Wang, Bing-Xuan Wu, Xiao-Yue Hong & Xiao-Li BingAuthorsYue-Di NiuView author publicationsSearch author on:PubMed Google ScholarQi-Hang FanView author publicationsSearch author on:PubMed Google ScholarZi-Han WangView author publicationsSearch author on:PubMed Google ScholarMeng-Ke WangView author publicationsSearch author on:PubMed Google ScholarDian-Shu ZhaoView author publicationsSearch author on:PubMed Google ScholarMeng-Ru WangView author publicationsSearch author on:PubMed Google ScholarBing-Xuan WuView author publicationsSearch author on:PubMed Google ScholarXiao-Yue HongView author publicationsSearch author on:PubMed Google ScholarXiao-Li BingView author publicationsSearch author on:PubMed Google ScholarContributionsThe authors contributed to the present study as follows: Y.D.N., X.L.B., and X.Y.H. designed the research; Y.D.N., Q.H.F., Z.H.W., M.K.W., D.S.Z., M.R.W., B.X.W., and X.L.B. performed the research and analyzed the data; Y.D.N., X.L.B., and X.Y.H. wrote and edited the manuscript; all authors read and approved the manuscript.Corresponding authorsCorrespondence to
    Xiao-Yue Hong or Xiao-Li Bing.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescriptions of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Reporting SummaryTransparent Peer Review fileSource dataSource Data fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleNiu, YD., Fan, QH., Wang, ZH. et al. Wolbachia enhances ovarian development in the rice planthopper Laodelphax striatellus through elevated energy production.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67660-1Download citationReceived: 02 March 2025Accepted: 05 December 2025Published: 13 December 2025DOI: https://doi.org/10.1038/s41467-025-67660-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Seasonal dynamics and species diversity of Anopheles mosquitoes in malaria endemic districts of Southern Odisha India

    AbstractMosquitoes of the Anopheles, Aedes, and Culex genera are responsible for transmitting major vector-borne diseases. Malaria remains a significant public health concern in Odisha, primarily due to the state’s conducive environment for Anopheles mosquito breeding. This study, conducted between March 2021 and February 2023 across 11 traditionally hyper-endemic districts in southern Odisha, aimed to assess seasonal variations in Anopheles diversity, composition, and abundance. A total of 10,807 Anopheles mosquito’s species were collected manually indoors (house dwellings and cattle sheds) and outdoors (burrows, vegetation, tree holes, and culverts). Morphological identification revealed 18 Anopheles species. An. subpictus was the predominant species during the summer of 2021, with (328; 42.99%), and during the rainy season, with (1151; 46.60%), although its prevalence declined in subsequent years. An. culicifacies, a primary malaria vector, exhibited a consistent presence with (780; 31.58%) in the rainy season of 2021 and (798; 38.35%) in the rainy season of 2022. An. varuna remained scarce during summer and rainy seasons but peaked sharply in winter, with the highest prevalence in winter 2021–2022 (730; 35.56%) and winter 2022–2023 (485; 25.18%). Diversity indices (Shannon’s, Simpson’s, Pielou’s) and Correspondence Analysis identified Ganjam as the district with the highest species diversity (1.26–2.2). Seasonal variation had a statistically significant impact on species diversity (p < 0.001), surpassing the influence of district level factors. These findings show that seasonality strongly influences Anopheles populations and highlight the need for localized, evidence-based vector control. Monitoring of mosquito diversity is vital for shaping malaria interventions suited to Odisha’s transmission ecology.

    Data availability

    All data generated or analysed during this study are included in this published article.
    AbbreviationsDDT:
    Dichloro-diphenyl-trichloroethane
    IVM:
    Integrated vector management
    H’:
    Shannon’s diversity index
    D:
    Simpson’s index
    J’:
    Pielou index
    CA:
    Correspondence analysis
    OWMS:
    Odisha weather monitoring systems
    LLINs:
    Long-lasting insecticidal nets
    ReferencesSharma, G., Chittora, S. & Ojha, R. Study on mosquito (Diptera: Culicidae) diversity in Jodhpur district of the Rajasthan state. Int. J. Mosq. Res. 8, 16–19 (2021).
    Google Scholar 
    (PDF) The Culicidae (Diptera): A Review Of Taxonomy, Classification And Phylogeny *. ResearchGate (2025). https://doi.org/10.5281/zenodo.180118Vander Does, A., Labib, A. & Yosipovitch, G. Update on mosquito bite reaction: itch and hypersensitivity, pathophysiology, prevention, and treatment. Front. Immunol. 13, 1024559 (2022).
    Google Scholar 
    Hawkes, F. M. & Hopkins, R. J. in Mosquitopia Place Pests Healthy World (eds. Hall, M. & Tamïr, D.)Routledge, at (2022).http://www.ncbi.nlm.nih.gov/books/NBK585164/Carvajal-Lago, L., Ruiz-López, M. J. & Figuerola, J. Martínez-de La Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).
    Google Scholar 
    Ellwanger, J. H., Cardoso, J. C. & Chies, J. A. B. Variability in human attractiveness to mosquitoes. Curr. Res. Parasitol. Vector-Borne Dis. 1, 100058 (2021).
    Google Scholar 
    Sum of World Malaria Report. (2021). at https://www.who.int/india/health-topics/malaria/summary-of-world-malaria-report-2021Malaria :: National Center for Vector Borne Diseases Control (NCVBDC). at https://ncvbdc.mohfw.gov.in/index1.php?lang=1&level=1&sublinkid=5784&lid=3689Lindsay, S. W. & Birley, M. H. Climate change and malaria transmission. Ann. Trop. Med. Parasitol. 90, 573–588 (1996).
    Google Scholar 
    Karmakar, M. & Pradhan, M. M. Climate change and public health: a study of vector-borne diseases in Odisha, India. Nat. Hazards J. Int. Soc. Prev. Mitig Nat. Hazards. 102, 659–671 (2020).
    Google Scholar 
    Mosquito Borne Diseases in Wetland zones. at https://iictenvis.nic.in/Database/Mosquito_1453.aspx(PDF) Species diversity and community composition of mosquitoes in a filariasis endemic area in Banyuasin District, South Sumatra, Indonesia. ResearchGate (2025). https://doi.org/10.13057/biodiv/d200222Nh, O. Climate change and vector-borne diseases of public health significance. FEMS Microbiol. Lett. 364, fnx186 (2017).
    Google Scholar 
    Cator, L. J., Lynch, P. A., Thomas, M. B. & Read, A. F. Alterations in mosquito behaviour by malaria parasites: potential impact on force of infection. Malar. J. 13, 164 (2014).
    Google Scholar 
    Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically. at https://www.mdpi.com/2076-0817/9/4/310Steiger, D. B. M., Ritchie, S. A. & Laurance, S. G. W. Land use influences mosquito communities and disease risk on remote tropical islands: A case study using a novel sampling technique. Am. J. Trop. Med. Hyg. 94, 314–321 (2016).
    Google Scholar 
    Machault, V. et al. Highly focused anopheline breeding sites and malaria transmission in Dakar. Malar. J. 8, 138 (2009).
    Google Scholar 
    Malaria Parasite, Mosquito, and Human Host | NIAID: National Institute of Allergy and Infectious Diseases. at https://www.niaid.nih.gov/diseases-conditions/malaria-parasite(PDF) Prevalence of Malaria and Associated Risk Factors Among Febrile Children Under Five Years: A Cross-Sectional Study in Arba Minch Zuria District, South Ethiopia. ResearchGate https://doi.org/10.2147/IDR.S223873Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).
    Google Scholar 
    Numerical Modeling of the Dynamics of Malaria Transmission in a Highly Endemic Region of India | Scientific Reports. at(2019) https://www.nature.com/articles/s41598-019-47212-6Sahu, S. S. et al. Response of malaria vectors to conventional insecticides in the Southern districts of Odisha State, India. Indian J. Med. Res. 139, 294–300 (2014).
    Google Scholar 
    Batson, J. et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 10, e68353 (2021).
    Google Scholar 
    Namias, A., Jobe, N. B., Paaijmans, K. P. & Huijben, S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 10, e65655 (2021).
    Google Scholar 
    Ranson, H. et al. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar. J. 8, 299 (2009).
    Google Scholar 
    Handbook for integrated vector management. at https://www.who.int/publications/i/item/9789241502801Hemingway, J. et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 14, e1002380 (2016).
    Google Scholar 
    Rakotonirina, A., Maquart, P. O., Flamand, C., Sokha, C. & Boyer, S. Mosquito diversity (Diptera: Culicidae) and medical importance in four Cambodian forests. Parasit. Vectors. 16, 110 (2023).
    Google Scholar 
    Odisha, I. N. Climate Zone, Monthly Weather Averages and Historical Data. at https://weatherandclimate.com/india/odishaNikookar, S. H., Maleki, A., Fazeli-Dinan, M., Shabani Kordshouli, R. & Enayati, A. Entomological surveillance of the invasive Aedes species at Higher-Priority entry points in Northern iran: exploratory report on a field study. JMIR Public. Health Surveill. 8, e38647 (2022).
    Google Scholar 
    Kumar, A., Sonia, T., Dash, S., Krishnamoorthy, N. & Sahu, S. S. Impact of long-lasting insecticidal Nets on host seeking behaviour of Anopheles fluviatilis and Anopheles culicifacies in hyper endemic falciparum area of Odisha state. Int. J. Mosq. Res. 5, 28–33 (2018).
    Google Scholar 
    Sahu, S. S. et al. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in relation to malaria transmission in East-Central India. J. Med. Entomol. 54, 821–830 (2017).
    Google Scholar 
    Christophers, S. R. The fauna of British India, including Ceylon and Burma. Diptera.Vol. IV. Family Culicidae. Tribe Anophelini (Taylor and Francis, 1933).
    Google Scholar 
    Shannon, C. E. AMathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
    Google Scholar 
    Magurran, A. E. In in Ecol. Divers. Its Meas (ed. Magurran, A. E.) 7–45 (Springer, 1988). https://doi.org/10.1007/978-94-015-7358-0_2.
    Google Scholar 
    Khoobdel, M., Keshavarzi, D., Mossa-Kazemi, S. H. & Sobati, H. Species diversity of mosquitoes of the genus culex (Diptera, Culicidae) in the coastal areas of the Persian Gulf. AIMS Public. Health. 6, 99–106 (2019).
    Google Scholar 
    Pielou, E. C. Shannon’s formula as a measure of specific diversity: its use and misuse. Am. Nat. 100, 463–465 (1966).
    Google Scholar 
    Odisha, W. Monitoring System (OWMS). at https://rainfall.nic.in/rainfallnew/PublicDistWiseMonthlyReport.aspxPradhan, N., Mahapatra, R. K. & Hazra, R. K. A snapshot of few biological and bionomical characteristics ofanopheles culicifacies and Anopheles annularis in three malariogenically stratified districts of Odisha, India. J. Egypt. Soc. Parasitol. 50, 689–697 (2020).
    Google Scholar 
    Potential future malaria transmission in Odisha due to climate change | Scientific Reports. at https://www.nature.com/articles/s41598-022-13166-5Sahu, S. S., Gunasekaran, K., Vanamail, P. & Jambulingam, P. Persistent foci of falciparum malaria among tribes over two decades in Koraput district of Odisha State, India. Malar. J. 12, 72 (2013).
    Google Scholar 
    Drugs, I. of M. (US) C. on the E. of A., Arrow, K. J., Panosian, C. & Gelband, H. in Sav. Lives Buy. Time Econ. Malar. Drugs Age Resist. (National Academies Press (US), at (2004). https://www.ncbi.nlm.nih.gov/books/NBK215619/Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann. N Y Acad. Sci. 1249, 204–210 (2012).
    Google Scholar 
    Beck-Johnson, L. M. et al. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PloS One. 8, e79276 (2013).
    Google Scholar 
    Agyekum, T. P. et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: implications for malaria control in a future warmer climate. Int. J. Environ. Res. Public. Health. 18, 7255 (2021).
    Google Scholar 
    Baril, C. et al. The influence of weather on the population dynamics of common mosquito vector species in the Canadian prairies. Parasit. Vectors. 16, 153 (2023).
    Google Scholar 
    Singh, U. S. et al. Characterisation of Anopheles species composition and genetic diversity in Meghalaya, Northeast India, using molecular identification tools. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 112, 105450 (2023).
    Google Scholar 
    Ak, S. & Sb, P. Study of Diversity and Abundance of Anopheline Mosquitoes in Meghalaya, India. at https://austinpublishinggroup.com/infectious-diseases/fulltext/ajid-v2-id1016.phpDas, N. G., Gopalakrishnan, R., Talukdar, P. K. & Baruah, I. Diversity and seasonal densities of vector anophelines in relation to forest fringe malaria in district Sonitpur, Assam (India). J. Parasit. Dis. Off Organ. Indian Soc. Parasitol. 35, 123–128 (2011).
    Google Scholar 
    Operational manual for integrated vector management in India. at (2016). https://nvbdcp.gov.in/WriteReadData/l892s/IVM10_March_2016.pdfRao, M. R. K., Padhy, R. N. & Das, M. K. Surveillance on malaria and dengue vectors fauna across in angul district of Odisha, india: an approach to determine their diversity and Abundance, correlation with the ecosystem. J. Entomol. Zool. Stud. 3, 459–469 (2015).
    Google Scholar 
    Anopheles subpictus carry human malaria parasites in an urban area of Western India and may facilitate perennial malaria transmission | Malaria Journal | Full Text. at https://malariajournal.biomedcentral.com/articles/https://doi.org/10.1186/s12936-016-1177-xThomas, S. et al. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar. J. 16, 111 (2017).
    Google Scholar 
    Kumari, S., Das, S. & Mahapatra, N. Anopheles subpictus B and its role in transmission of malaria in Odisha, India. Trop. Biomed. 30, 710–717 (2013).
    Google Scholar 
    Kulkarni, S. Detection of sporozoites in Anopheles subpictus in baster district, Madhya Pradesh. Indian J. Malariol. 20, 159–160 (1983).
    Google Scholar 
    Das, M. et al. Anopheles culicifacies sibling species in Odisha, Eastern india: first appearance of Anopheles culicifacies E and its vectorial role in malaria transmission. Trop. Med. Int. Health TM IH. 18, 810–821 (2013).
    Google Scholar 
    Panda, B. B., Mohanty, I., Rath, A., Pradhan, N. & Hazra, R. K. Perennial malaria transmission and its association with rainfall at Kalahandi district of Odisha, Eastern india: A retrospective analysis. Trop. Biomed. 36, 610–619 (2019).
    Google Scholar 
    Tripathy, A. et al. Distribution of sibling species of Anopheles culicifacies s.l. And Anopheles fluviatilis s.l. And their vectorial capacity in eight different malaria endemic districts of Orissa, India. Mem. Inst. Oswaldo Cruz. 105, 981–987 (2010).
    Google Scholar 
    Das, B. et al. Vectorial capacity and genetic diversity of Anopheles annularis (Diptera: Culicidae) mosquitoes in Odisha, India from 2009 to 2011. Acta Trop. 137, 130–139 (2014).
    Google Scholar 
    Gunasekaran, K., Sahu, S. S. & Jambulingam, P. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae) in a malaria endemic area of Odisha State, India. Indian J. Med. Res. 140, 653–659 (2014).
    Google Scholar 
    Sahu, S. S. et al. Multiple insecticide resistance in Anopheles culicifacies s.l. (Diptera: Culicidae) in east-central India. Pathog Glob Health. 113, 352–358 (2019).
    Google Scholar 
    Rath, A. et al. A shift in resting habitat and feeding behavior of Anopheles fluviatilis sibling species in the Keonjhar district of Odisha, India. Trans. R Soc. Trop. Med. Hyg. 109, 730–737 (2015).
    Google Scholar 
    Möhlmann, T. W. R. et al. Community analysis of the abundance and diversity of mosquito species (Diptera: Culicidae) in three European countries at different latitudes. Parasit. Vectors. 10, 510 (2017).
    Google Scholar 
    Poonja, M. Study of seasonal and Spatial variation of mosquito species in Kalyan, Maharashtra. Int. J. Entomol. Res. 9, 90–95 (2024).
    Google Scholar 
    Barrientos-Roldán, M. J., Abella-Medrano, C. A., Ibáñez-Bernal, S. & Sandoval-Ruiz, C. A. Landscape anthropization affects mosquito diversity in a deciduous forest in southeastern Mexico. J. Med. Entomol. 59, 248–256 (2022).
    Google Scholar 
    Kaboré, D. P. A. et al. Mosquito (Diptera: Culicidae) populations in contrasting areas of the Western regions of Burkina faso: species diversity, abundance and their implications for pathogen transmission. Parasit. Vectors. 16, 438 (2023).
    Google Scholar 
    Download referencesAcknowledgementsWe extend sincere appreciation to Malaria Elimination Research Alliance (MERA) India for providing the essential funding that made this project possible. We are also deeply grateful to the technical staff for their invaluable assistance throughout the study. Furthermore, we acknowledge the support and cooperation of the inhabitants of all sampling sites and the dedicated volunteers whose significant contributions during fieldwork were indispensable. This research would not have been possible without their collective efforts.Author informationAuthor notesThese authors contributed equally: Muhammed Mustafa Baig and Divya Teja Koppula.Authors and AffiliationsICMR-Vector Control Research Centre Field Unit, Near Hati lane, Koraput, Odisha, 764 020, IndiaMuhammed Mustafa Baig, Dilip Kumar Panigrahi, Dolly Choudhary, Premalatha Acharya & Manoj PatnaikICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, IndiaDivya Teja Koppula, B. Vijayakumar, K. Gunasekaran, Ashwani Kumar, Manju Rahi & A. N. ShriramAuthorsMuhammed Mustafa BaigView author publicationsSearch author on:PubMed Google ScholarDivya Teja KoppulaView author publicationsSearch author on:PubMed Google ScholarDilip Kumar PanigrahiView author publicationsSearch author on:PubMed Google ScholarB. VijayakumarView author publicationsSearch author on:PubMed Google ScholarDolly ChoudharyView author publicationsSearch author on:PubMed Google ScholarPremalatha AcharyaView author publicationsSearch author on:PubMed Google ScholarManoj PatnaikView author publicationsSearch author on:PubMed Google ScholarK. GunasekaranView author publicationsSearch author on:PubMed Google ScholarAshwani KumarView author publicationsSearch author on:PubMed Google ScholarManju RahiView author publicationsSearch author on:PubMed Google ScholarA. N. ShriramView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualization and design: ANS, and AK.Writing – original draft preparation: DTK, MMB and ANS; Conducting the field study and supervision: DKP, DC, PA, MP and MMBWriting – review and editing with inputs from all other authors: ANS, AK, DTK and MR; Acquisition of data, analysis and interpretation: VK, DTK and ANSRevising it critically for intellectual content and the final approval of the version to be published: AK, ANS and MR. All authors provided critical feedback. All authors have read and agreed to the final version of the manuscript and to be accountable for all aspects of the work.Corresponding authorCorrespondence to
    A. N. Shriram.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleBaig, M.M., Koppula, D.T., Panigrahi, D.K. et al. Seasonal dynamics and species diversity of Anopheles mosquitoes in malaria endemic districts of Southern Odisha India.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-28997-1Download citationReceived: 09 June 2025Accepted: 13 November 2025Published: 13 December 2025DOI: https://doi.org/10.1038/s41598-025-28997-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsMalariaOdishaShannon’sSimpson’sAnd pielou’s
    Anopheles diversity More