More stories

  • in

    A climate risk index for marine life

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).Article 

    Google Scholar 
    O’Hara, C. C., Frazier, M. & Halpern, B. S. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372, 84–87 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).CAS 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).CAS 
    Article 

    Google Scholar 
    Lotze, H. K., Bryndum-Buchholz, A. & Boyce, D. G. in The Impacts of Climate Change: Comprehensive Study of the Physical, Societal and Political Issues (ed. Letcher, T.) 205–231 (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-822373-4.00017-3Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, 2235 (2019).Article 

    Google Scholar 
    Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).Article 

    Google Scholar 
    Barange, M. et al. (eds) Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, 1–654 (2016).CAS 
    Article 

    Google Scholar 
    Boyce, D. G., Fuller, S., Karbowski, C., Schleit, K. & Worm, B. Leading or lagging: how well are climate change considerations being incorporated into Canadian fisheries management? Can. J. Fish. Aquat. Sci. 78, 1120–1129 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).Article 

    Google Scholar 
    de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).Article 

    Google Scholar 
    Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. 1–12 (2020).Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).CAS 
    Article 

    Google Scholar 
    Kesner-Reyes, K. et al. AquaMaps: algorithm and data sources for aquatic organisms. In FishBase v.04/2012 (eds. Froese, R. & Pauly, D.) www.fishbase.org (2016).Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J. et al.) (Cambridge Univ. Press, 2001).The IUCN Red List of Threatened Species v.2021-1 (IUCN, 2021); https://www.iucnredlist.orgTittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Rogers, A. et al. Critical Habitats and Biodiversity: Inventory, Thresholds and Governance. Sci. Rep. 10, 548 (World Resources Institute, 2020).Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).CAS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    Article 

    Google Scholar 
    Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate‐induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 
    CAS 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Res. 41, 83–116 (2016).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    Moilanen, A., Kujala, H. & Mikkonen, N. A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods Ecol. Evol. 11, 794–803 (2020).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).CAS 
    Article 

    Google Scholar 
    Williams, P. H., Gaston, K. J. & Humphries, C. J. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B 264, 141–148 (1997).Article 

    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).Article 

    Google Scholar 
    Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).Article 

    Google Scholar 
    Payne, N. L. et al. Fish heating tolerance scales similarly across individual physiology and populations. Commun. Biol. 4, 264 (2021).Article 

    Google Scholar 
    First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Bryndum‐Buchholz, A., Tittensor, D. P. & Lotze, H. K. The status of climate change adaptation in fisheries management: policy, legislation and implementation. Fish Fish. https://doi.org/10.1111/faf.12586 (2021).Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).Article 
    CAS 

    Google Scholar 
    Boyce, D. G. et al. Operationalizing climate risk for fisheries in a global warming hotspot. Preprint at: https://doi.org/10.1101/2022.07.19.500650 (2022).Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    Article 

    Google Scholar 
    Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).Article 

    Google Scholar 
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).CAS 
    Article 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature https://doi.org/10.1038/s41586-019-1132-4 (2019).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).Article 

    Google Scholar 
    Rosset, V. & Oertli, B. Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol. Conserv. 144, 2311–2319 (2011).Article 

    Google Scholar 
    Peters, R. L. The greenhouse effect and nature reserves. Biosciences 35, 707–717 (1985).Article 

    Google Scholar 
    Garcia, R. A. et al. Matching species traits to projected threats and opportunities from climate change. J. Biogeogr. 41, 724–735 (2014).Article 

    Google Scholar 
    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2012).Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    Article 

    Google Scholar 
    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).CAS 
    Article 

    Google Scholar 
    Worm, B. & Duffy, J. E. Biodiversity, productivity, and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Ottersen, G., Hjermann, D. O. & Stenseth, N. C. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15, 230–243 (2006).Article 

    Google Scholar 
    Le Bris, A. et al. Climate vulnerability and resilience in the most valuable North American fishery. Proc. Natl Acad. Sci. USA 115, 1831–1836 (2018).Article 
    CAS 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).CAS 
    Article 

    Google Scholar 
    Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).CAS 
    Article 

    Google Scholar 
    MacKenzie, B. R. et al. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491 (2014).Article 

    Google Scholar 
    Shackell, N. L., Ricard, D. & Stortini, C. Thermal habitat index of many Northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060. PLoS ONE 9 (2014).Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control across marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).Article 

    Google Scholar 
    Boyce, D. G., Frank, K. T. & Leggett, W. C. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18, 504–515 (2015).Article 

    Google Scholar 
    Frank, K. T., Petrie, B., Shackell, N. L. & Choi, J. S. Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol. Lett. 9, 1096–1105 (2006).Article 

    Google Scholar 
    Frank, K. T., Petrie, B. & Shackell, N. L. The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol. Evol. 22, 236–242 (2007).Article 

    Google Scholar 
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1056 (2009).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. L. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    Article 

    Google Scholar 
    Burek, K. A., Gulland, F. M. D. & O’Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).Article 

    Google Scholar 
    Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).Article 

    Google Scholar 
    Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18, S157–S165 (2008).Article 

    Google Scholar 
    Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).Article 

    Google Scholar 
    Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 6 (2013).Article 

    Google Scholar 
    Rogan, J. E. & Lacher, T. E. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-409548-9.10913-3Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).CAS 
    Article 

    Google Scholar 
    Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).Article 

    Google Scholar 
    Davidson, A. D. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl Acad. Sci. USA 109, 3395–3400 (2012).CAS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. 70, 1069–1074 (2013).Article 

    Google Scholar 
    Fenchel, T. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14, 317–326 (1974).Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).Article 

    Google Scholar 
    Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS ONE 7, e34418 (2012).CAS 
    Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).CAS 
    Article 

    Google Scholar 
    Donner, S. D. & Carilli, J. Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance. Sci. Rep. 9, 3484 (2019).Article 
    CAS 

    Google Scholar 
    Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol. Evol. 5, 4315–4326 (2015).Article 

    Google Scholar 
    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Modell. 221, 467–478 (2010).Article 

    Google Scholar 
    Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R. & Cheung, W. W. L. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecol. Modell. 225, 133–145 (2012).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase v.02/2022 www.fishbase.org (2022).Palomares, M. L. D. & Pauly, D. SeaLifeBase v.11/2014 www.sealifebase.org (2022).van Buuren, S. Flexible Imputation of Missing Data (Chapman & Hall/CRC, 2012).Dahlke, F. T., Wohlrab, S., Butzin, M. & Portner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar 
    Stortini, C. H., Shackell, N. L., Tyedmers, P. & Beazley, K. Assessing marine species vulnerability to projected warming on the Scotian Shelf, Canada. ICES J. Mar. Sci. 72, 1713–1743 (2015).Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).Article 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 
    Article 

    Google Scholar 
    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, art41 (2012).Article 

    Google Scholar 
    Rao, T. R. A curve for all reasons. Resonance 5, 85–90 (2000).Article 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, 10 (2013).Article 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Ensemble projections of global ocean animal biomass with climate change. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900194116 (2019).Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).Article 

    Google Scholar 
    Oppenheimer, M., Little, C. M. & Cooke, R. M. Expert judgement and uncertainty quantification for climate change. Nat. Clim. Change 6, 445–451 (2016).Article 

    Google Scholar 
    Budescu, D. V., Por, H. H. & Broomell, S. B. Effective communication of uncertainty in the IPCC reports. Climatic Change 113, 181–200 (2012).Article 

    Google Scholar 
    Swart, R., Bernstein, L., Ha-Duong, M. & Petersen, A. Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change 92, 1–29 (2009).Article 

    Google Scholar 
    NAFO Annual Fisheries Statistics Database (NAFO, 2021).Horton, T. et al. World Register of Marine Species (WoRMS) https://www.marinespecies.org (2020).Total Wealth per Capita, 1995 to 2014 (World Bank, 2022); https://ourworldindata.org/grapher/total-wealth-per-capitaDepth of the Food Deficit in Kilocalories per Person per Day, 1992 to 2016 (World Bank, 2022); https://ourworldindata.org/grapher/depth-of-the-food-deficitBoyce, D. G. et al. A climate risk index for marine life. Dryad https://doi.org/10.5061/dryad.7wm37pvwr (2022).R Core Team R: A Language and Environment for Statistical Computing Version 4.0.4 (R Foundation for Statistical Computing, 2021). More

  • in

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia

    Discovery and historiography of USNM PAL V 11367With basic image enhancement tools (e.g., Adobe Photoshop), we were able to better resolve the original but faded specimen label in the collections associated with USNM PAL V 11367 (Fig. 1 and Related file 1). Specifically, we were able to make the now-faded handwritten notes legible (Fig. 1A,B), revealing critical information about the specimen. The widespread availability of image enhancement for faded fieldnotes and labels provides a new source of information for uncovering legacy issues in museum collections (e.g.21,22,23), especially in cases where locality data or collecting information cannot be well resolved.Accession files with this specimen (Related file 1) show that it was gifted from Arthur M. Ames to the United States National Museum (now the National Museum of Natural History, Smithsonian Institution) on 15 October 1925, and approved by George P. Merrill, head curator of geology from 1917 to 1929. Prior to its accession to the museum, an anonymous individual identified the tooth as belonging to Desmostylus hesperus. Forty years later, on 17 November 1965, Charles A. Repenning reidentified this specimen as Paleoparadoxia sp. (Fig. 1A,B), an assertion that was incorporated into its catalog information. According to the label, USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, yet no precise information of its geological provenance was recorded. On the backside of the label, there are notes (Fig. 1B) referring to the US Geologic Survey Corona South 7.5′ quadrangle map for Riverside and Orange counties, California24. However, no geographic location, exact horizon, nor lithology was stated, and the specimen’s collector, A. M. Ames, lived in Santa Barbara, California but died on 25 August 193921,22,23.In nearly a century after its discovery, the only mention of USNM PAL V 11367 was by Panofsky25, who listed it in a catalog of desmostylian tooth specimens used as a comparative basis for a mandible restoration of the “Stanford specimen” N. repenningi. Panofsky25 identified USNM PAL V 11367 as a left m2 with six main cusps, with no additional cusps (Table 1 in25), while also stating that this specimen has “an open lake in the center of each of the seven cusps” (25: p. 103). The inconsistency of this description differs from our own, which we attribute to differences in morphological criteria or a typographic error.Geological horizon and age of USNM PAL V 11367In this paper, we refer to the “Topanga” Formation following recent studies20,26,27 of this geologic unit. This formation was originally based on a sequence of marine sandstones exposed in an anticline just west of Old Topanga Canyon in the central Santa Monica Mountains of Los Angeles County, California28. After its initial description, the name of the formation was applied to a much thicker and heterogeneous sequence of sedimentary and volcanic rocks29. Campbell et al.30 compiled the history and chronology of changes in usage of “Topanga” in the Miocene stratigraphic nomenclature in Southern California, showing that the criteria of continuous deposition and shared provenance were not demonstrated in every instance. Campbell et al.30 argued that strata assigned to the Topanga Formation in the Los Angeles Basin and eastern Ventura Basin areas are different from other units that have also been referred to the Topanga Formation in Orange County or in the Santa Monica Mountains of Los Angeles and Ventura counties. To distinguish these units, here we follow recent studies20,26,27 and use the name of “Topanga” Formation for the early to middle Miocene rocks bearing fossil marine mammals20,26,31,32,33 in Southern California.According to the collections records (Fig. 1), USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, USA. This city is in the western part of Riverside County, comprising an approximate area of 100 km234. Previously, Panofsky25 suggested that USNM PAL V 11367 would have derived from the Temblor Formation (14.8 to 15.8 Ma35), likely as a guess based on the prevalence of desmostylian teeth recovered from this unit in central California, yet today there are no Temblor Formation outcrops mapped near Corona24,36; the closest Temblor outcrops are located in Fresno and Kern counties37, approximately 200 km away.The geologic maps of Riverside County24,36,38 indicate that the city limits of Corona encompass a wide variety of sedimentary rocks from the Jurassic to the Holocene in age, but only a few marine deposits, such as the Jurassic Bedford Canyon Formation and the middle Miocene “Topanga” Formation are exposed24,39. Specifically, the marine sandstones of the “Topanga” Formation occur within the fault zone at the southeast and northwest of Corona.Outside of Riverside County, the “Topanga” Formation has yielded a diverse assemblage of fossil marine vertebrates in Southern California20,26,31, including desmostylians referred to Desmostylus hesperus and Paleoparadoxia sp. in Orange County (Supplementary 1). USNM PAL V 11367 represents the second reported fossil marine mammal from Riverside County. Previously, an isolated record of “Cetacea indet.” was mentioned from the Zanclean stage Imperial Formation40 and Supplementary Data 2), which is exposed far east of Corona’s city limits.In assessing the age of the “Topanga” Formation in Southern California, Boessenecker and Churchill26,31 argued that the land mammals (late Hemingfordian North American Land Mammal Age, represented by Aepycamelus, Copemys and Merychippus; 17.5–15.9 Ma35,41), benthic foraminifera, fossil mollusks, and K/Ar dating all placed the age range between 17.5 and 15 Ma for this geological unit41 in Orange County. More recently, Velez-Juarbe20 revised the age of “Topanga” Formation in this county to 16.5–14.5 Ma based on new foraminiferal zones presented in Ogg et al.42.We propose that USNM PAL V 11367 derives from exposures of the “Topanga” Formation in Riverside County. If this mapped unit in Riverside can be correlated with “Topanga” Formation units in Orange County, it would imply a middle Miocene age, likely 16.5–14.5 Ma20, and given the morphological similarities of this isolated tooth with more complete paleoparadoxiid material in Orange County with stronger age constraints, we think a middle Miocene age for USNM PAL V 11367 is warranted. Given the reduced distribution of outcrops of the “Topanga” Formation24,36 in Corona, we identify two potential localities for USNM PAL V 11367 (Fig. 3). These two localities are situated in urbanized areas, less than 21 km apart, in the northwest and the southeast corners of Corona’s city limits (see Fig. 3B). Both are notably less than 40 km apart from the type locality of N. cecilialina in Orange County, but we urge skepticism for a direct correlation as the marine units of Riverside County requires detailed stratigraphic revision to determine their age constraints; they likely belong to a different depositional basin than “Topanga” Formation exposures in westward Southern California counties.Morphological variation and potential diversity of PaleoparadoxiidaeOur comparisons reveal considerable morphological variation in the arrangement and number of dental cusps across Paleoparadoxiidae (Fig. 4). The cusps arrangement for the m2-3 of Archaeoparadoxia and Paleoparadoxia were previously reported by Inuzuka et al.43 (Fig. 4B), but the addition of another specimen (USNM PAL V 11367) reveals larger morphological variability than previously known for the genus Neoparadoxia (Fig. 4C). Specifically, the holotype of N. cecilialina displays slightly different configurations between its right and left m2, driven mainly by the position of the hypoconulid in occlusal view (Fig. 4C). USNM PAL V 11367, the second known Neoparadoxia m2 (or the first m3), is comparable in size and shape with the same teeth in the type specimen of N. cecilialina, especially the right m2. Both the Smithsonian and LACM specimens display a horizontal alignment of the extra cusp, the hypoconulid, and the entoconid; nevertheless, USNM PAL V 11367 shows a tighter configuration, lacking a wide internal spacing between cusps characteristic of the type specimen of N. cecilialina (Fig. 4C). Given the known ontogenetic changes that affect the dental nomenclature in desmostylians32,44, the addition of more comparative material should help discriminate between competing statements of homology45. The identification of USNM PAL V 11367 from the “Topanga” Formation of Corona represents a second diagnostic record of Neoparadoxia from three separate Middle Miocene units in Southern California, reaffirming its presence as a Middle Miocene taxon: USNM PAL V 11367 from the “Topanga” Formation of Riverside County; Neoparapdoxia (LACM 6920) from the Altamira Shale46; Neoparadoxia from the Topanga Formation of Orange County46,47; and the holotype of N. cecilialina from the lower part of Monterey Formation in the Capistrano syncline, Orange County46. It is possible that other records of Palaeoparadoxiidae from Orange County (e.g.47) and elsewhere in California may represent Neoparadoxia. For example, Awalt et al.32 noted that a palaeoparadoxiid from Orange County identified by Panofsky as Paleoparadoxia sp. (LACM 131889)25 is better referred to Paleoparadoxidae sp., pending a more detailed evaluation of this material, which differs in clear ways from N. ceciliana. One of the benefits of continued descriptive work on desmostylian material from well-constrained stratigraphic contexts in Southern California will be the biostratigraphic opportunities for cross-basin comparisons, especially for exposures of the “Topanga” Formation.Parham et al.46 emphasized that Neoparadoxia occurs widely in middle Miocene units across California: besides the aforementioned ones, Parham et al.46 noted records of this genus from the Sharktooth Hill Bonebed (LACM 120023), the Altamira Shale (LACM 6920), and the Ladera Sandstone15 (UCMP 81302). To date, Neoparadoxia is only known from California, yet it is likely that other paleoparadoxiid material tentatively assigned to other genera may expand the geographic range of this taxon. Interestingly, on the west side of the Pacific (Russia–Japan) and some parts of the east side of the Pacific (Oregon–Washington), Desmostylus spp. and paleoparadoxiids rarely co-occurred from the same formation48,49, yet there are many geological units in South California where desmostylids and paleoparadoxiids co-occurred (e.g., Santa Margarita Formation50,51, Rosarito Beach Formation52, Tortugas Formation51, and Temblor Formation3,4). The abundance of new material from the “Topanga” Formation from Orange and Riverside counties should contribute to the discussion of desmostylian environmental preferences48,53.Lastly, like other marine mammal lineages, desmostylian body sizes reached their maximum body size late in their evolutionary history54. By the middle to late Miocene, desmostylians were the largest herbivorous marine mammals along the North Pacific coastlines54, although they likely competed ecologically with co-occurring sirenians, which later eclipsed desmostylians in body size and survived until historical times in the North Pacific Ocean55. Specifically, in the “Topanga” Formation of Orange County, desmostylians co-occurred with sirenians such as Metaxytherium arctodites56, an ecological association that likely was repeated elsewhere in the mid-Miocene of California (e.g., coeval deposits of the Round Mountain Silt). Given the improving stratigraphic picture of Southern California marine mammal-bearing localities, future work on desmostylian paleoecology could test hypotheses of competition with taxonomic co-occurrence data grounded in strong comparative taphonomic and sedimentological frameworks. More

  • in

    FunAndes – A functional trait database of Andean plants

    Departamento de Biología, Escuela Politécnica Nacional del Ecuador, Ladrón de Guevara E11-253 y Andalucía, Quito, EcuadorSelene BáezBiology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, SpainLuis Cayuela & Guillermo Bañares de DiosDepartamento de Biología, Área de Botánica, Universidad Autónoma de Madrid, Madrid, Calle Darwin 2, ES–28049, Madrid, SpainManuel J. Macía, Celina Ben Saadi, Julia G. de Aledo & Laura Matas-GranadosCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Calle Darwin 2, ES–28049, Madrid, SpainManuel J. MacíaEscuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta a Distancia de Colombia, Sede José Celestino Mutis, Cl. 14 Sur 14-23, Bogotá, ColombiaEsteban Álvarez-DávilaInstituto Experimental de Biología Luis Adam Briancon, Universidad Mayor Real y Pontificia San Francisco Xavier de Chuquisaca, Dalence 235, Sucre, BoliviaAmira Apaza-QuevedoDepartamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Ecuador. San Cayetano Alto s/n. Paris y Marcelino Chamagnat, 1101608, Loja, EcuadorItziar Arnelas & Carlos Iván EspinosaDepartamento de Biología. Grupo de Biología de Páramos y Ecosistemas Andinos, Universidad de Nariño, Calle 18 # 50-02 Ciudadela Universitaria Torobajo, Pasto, ColombiaNatalia Baca-Cortes, Marian Cabrera & María Elena Solarte-CruzDepartment of Environment, CAVElab – Computational and Applied Vegetation Ecology, Ghent University, Coupure links 653, B-9000, Gent, BelgiumMarijn Bauters & Hans VerbeeckInstituto de Ecología Regional, Universidad Nacional de Tucumán, CONICET, Residencia Universitaria Horco Molle, Edificio Las Cúpulas, 4107, Tucumán, ArgentinaCecilia BlundoHerbario UIS, Escuela de Biología, Universidad Industrial de Santander, Carrera. 27, calle 9a, Bucaramanga, ColombiaFelipe CastañoHerbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, Calle 27 s/n, La Paz, BoliviaLeslie Cayola, Alfredo Fuentes, M. Isabel Loza & Carla MaldonadoCenter for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO, 63110, USALeslie Cayola, William Farfán-Rios, Alfredo Fuentes, M. Isabel Loza & J. Sebastián TelloSchool of Geography, University of Leeds, Leeds, LS2 9JT, UKBelén FadriqueLiving Earth Collaborative, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USAWilliam Farfán-RiosDepartment of Biology, University of Florida, 876 Newell Drive, ZIP 32611, Gainesville, Florida, USAClaudia Garnica-DíazInstituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28 A # 15-09, Bogotá, ColombiaMailyn González, Ana Belén Hurtado & Natalia NordenConservación Internacional, Colombia, Carrea 13 # 71-41, Bogotá, ColombiaDiego GonzálezInstitute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, D-06108, Halle, GermanyIsabell Hensen & Denis LippokEscuela de Ingeniería Agronómica, Universidad de Cuenca, Av. 12 de Abril y Av. Loja s/n, Cuenca, EcuadorOswaldo JadánGlobal Tree Conservation Program and the Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532-1293, USAM. Isabel LozaFacultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, San Salvador de Jujuy, CP 4600, Jujuy, ArgentinaLucio MaliziaDepartment of Biology, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USAJonathan A. MyersAMAP (Botanique et Modélisation de l’Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université  de Montpellier, TA-A51/PS, Boulevard de la Lironde, 34398 cedex 5, Montpellier, FranceImma Oliveras MenorEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, UKImma Oliveras Menor & Greta WeithmannPlant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, 37073, Goettingen, GermanyKerstin Pierick & Jürgen HomeierInstituto de Investigaciones para el Desarrollo Forestal (Indefor), Vía los Chorros de Milla, Mérida, VenezuelaHirma Ramírez-AnguloDepartamento de Biología, Universidad Nacional de Colombia, Cra 45 #26-85, Bogotá, ColombiaBeatriz Salgado-NegretSenckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt, GermanyMatthias SchleuningDepartment of Biology, Wake Forest University, Winston-Salem, NC, 27109, USAMiles SilmanWildlife Conservation Society (WCS), 2300 Southern Boulevard Bronx, New York, 10460, USAEmilio VilanovaFaculty of Resource Management, HAWK University of Applied Sciences and Arts, Büsgenweg 1 A, 37077, Goettingen, GermanyJürgen HomeierCentre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, GermanyJürgen HomeierL.C., J.H., M.J.M. and S.B. conceived the idea. S.B., L.C., M.J.M., J.A.M. and J.S.T. obtained funding and coordinated the L.E.C. and iDiv workshops. L.C., S.B., J.H. and K.P. compiled the data sets and performed data quality checks. L.C., S.B., J.H. and K.P. conceived and developed the figures. S.B., J.H. and L.C. wrote the manuscript. The rest of authors (ordered alphabetically) contributed data, revised and agreed on the final version of the manuscript. More

  • in

    Long term effects of crop rotation and fertilization on crop yield stability in southeast China

    Site descriptionThe field experiment was initiated in 2013 at the Yongchun County, Fujian Province, China (25°12′37″ N, 118°10′24″ E), using the two rotations of vegetables and rice (Fig. 1). The site is in the north of the Tropic of Cancer, with a typical subtropical marine monsoon climate, sufficient sunshine, and average annual solar radiation 462.26 kJ/cm2. The climate is mild and humid, with average annual temperature 16–21 °C and average annual rainfall about 1400 mm. Agricultural production allows for the cultivation of three crops annually. The soil of the test field was lateritic red soil.Figure 1Location of the field experiment site.Full size imageExperiment designThe experiment was conducted over 9 years from 2013 to 2021. Soil samples were collected before the experiment began to determine the main physical and chemical properties of the soil in the test plot, which were: organic matter content 19.96 g/kg, total nitrogen 2.25 g/kg, total phosphorus 1.31 g/kg, total potassium 27.86 g/kg, alkaline hydrolyzable nitrogen 107.73 mg/kg, available phosphorus 60.35 mg/kg, available potassium 116 mg/kg and soil pH 5.54. The test site was a rectangular field, 26 m long and 9 m wide, divided into 15 test blocks, each 5 m long and 2.8 m wide. Cement ridges were used to separate the test blocks, and irrigation drainage ditches were set outside the blocks. A protective isolation strip 1 m wide was formed around the test site. The experiment included two crop rotations: (I) rotation P–B–O: P, kidney bean (Phaseolus vulgaris L.), B, mustard (Brassica juncea L.), O, rice (Oryza sativa L.); and II) rotation P–B–V: P, kidney bean (P. vulgaris L.), B, mustard (B. juncea L.), V, cowpea (Vigna unguiculata L.). Four fertilizer treatments were selected: (1) recommended fertilization (RF) used with rotation P–B–O; (2) recommended fertilization (RF) used with P–B–V; (3) conventional fertilization (CF) used with P–B–O; (4) conventional fertilization (CF) used with P–B–V. A randomized complete block experimental design with three replications was used in the field study. The fertilization amounts used for treatments RF and CF are shown in Table 1. Under the CF, the amount of fertilizer applied to crops in each season is determined according to the years of fertilization habits of local farmers. The fertilization amount of crops in each season under the RF was calculated according to the measured basic soil fertility combined with the fertilization model of previous studies. The fertilization amount of crops in each season under the CF in this study is obtained by investigating the local farmers. The data on the fertilization amount of crops in each season under the RF is cited from the research report of Zhang et al.23. Urea (N 46%) was the nitrogen fertilizer, calcium superphosphate (P2O5 12%) was the phosphorus fertilizer, and potassium chloride (K2O 60%) was the potassium fertilizer. All phosphorus fertilizer applied to crops in each season was used as base fertilizer, and nitrogen and potassium fertilizer were applied separately as base fertilizer (40% of the total fertilization) and topdressing (60% of the total fertilization). The topdressing method was that nitrogen and potassium fertilizer for kidney bean and cowpea were applied twice, 30% of the fertilization amount each time; nitrogen and potassium fertilizer for mustard was applied three times, 20% of the fertilization amount each time; nitrogen fertilizer for rice was applied at two different growing stages, 50% of the fertilization amount at the tillering stage and 10% of the fertilization amount at the panicle stage; potassium fertilizer was applied once, using 60% of the fertilization amount. The first crop, kidney bean, was sown in early September and harvested in November. The second crop mustard, was sown in early December and harvested in February of the following year. The third crop, rice or cowpea, was sown in early April and harvested in July.Table 1 Fertilization rate of each treatment in the long term crop rotation experiment (kg/hm2).Full size tableData analysis and methodsYield stability analysis was conducted for the 9 years period using three different approaches. First, the coefficient of variation (CV) was calculated to give a measure of the temporal variability of yield for each treatment:$$CV=frac{upsigma }{Y}*100 {%}$$
    (1)
    where σ is the standard deviation of average crop yield in each year, and Y is the average crop yield in each year. A low value of CV indicates little variation, which implies that interannual difference in crop yield in the experimental plot is small and the yield is relatively stable over the years of the experimental period.A second yield stability indicator is the sustainable yield index (SYI), which is calculated by Singh et al.25:$$SYI=frac{mathrm{Y}-upsigma }{{Y}_{max}}$$
    (2)
    where Y is the average annual crop yield, σ is the standard deviation of the average annual crop yield, and YMax is the maximum annual crop yield. A high value of SYI indicates a greater capacity of the soil to sustain a particular crop yield over time.The third stability measure is Wricke’s ecovalence index (Wi2), which was calculated individually for each crop management system by Wricke26:$${Wi}^{2}={sum }_{j=1}^{q}({x}_{ij}-{{m}_{i}-{m}_{j}+m)}^{2}$$
    (3)
    where xij is the yield for treatment i in year j, mi is the yield for treatment i across all years, mj is the yield for year j across all treatments, and m is the average yield for all treatments across all years. When Wi2 is close to 0, the yield for treatment i is very stable.Analysis of crop yield trendsA simple linear regression analysis of grain yield (slopes and P values) over the years was performed to identify the yield trend (Choudhary et al.27):$$Y=a+bt$$
    (4)
    where Y is the crop yield (t/ha), a is a constant, t is the time in years, and b is the slope, or magnitude of the yield trend (annual rate of change in yield).Analysis of variance (ANOVA) was performed using MATLAB R2019b in order to compare crop yields in the long term experiment. Yield stability and univariate linear regression equations were created and statistically analyzed using the software toolbox. The coefficients of variation for yields, yield sustainability indexes, and graphs presented in this paper were calculated and drawn using MATLAB; differences were considered to be significant when P  More

  • in

    Spatial and temporal stability in the genetic structure of a marine crab despite a biogeographic break

    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Progr. Ser. 393, 1–12 (2009).ADS 
    Article 

    Google Scholar 
    Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).
    Google Scholar 
    Jenkins, S. R. & Hawkins, S. J. Barnacle larval supply to sheltered rocky shores: a limiting factor?. Hydrobiologia 503, 143–151 (2003).Article 

    Google Scholar 
    Pineda, J., Hare, J. A. & Sponaugle, S. Consequences for population connectivity. Oceanography 20, 22–39 (2007).Article 

    Google Scholar 
    Shanks, A. L. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In Ecology of Marine Invertebrate Larvae (ed. McEdward, L. R.) 324–367 (CRC, Boca Raton, 1995).
    Google Scholar 
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 
    Article 

    Google Scholar 
    Bradford, R. W., Griffin, D. & Bruce, B. D. Estimating the duration of the pelagic phyllosoma phase of the southern rock lobster, Jasus edwardsii (Hutton). Mar. Freshw. Res. 66, 213–219 (2015).Article 

    Google Scholar 
    Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).Article 

    Google Scholar 
    Garrison, L. P. Vertical migration behavior and larval transport in brachyuran crabs. Mar. Ecol. Progr. Ser. 176, 103–113 (1999).ADS 
    Article 

    Google Scholar 
    Morgan, S. G. & Fisher, J. L. Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Mar. Ecol. Progr. Ser. 404, 109–126 (2010).ADS 
    Article 

    Google Scholar 
    Cowen, R. K. & Castro, L. R. Relation of coral reef fish larval distributions to island scale circulation around Barbados, west indies. Bull. Mar. Sci. 54, 228–224 (1994).
    Google Scholar 
    Rudorff, C. A. G., Lorenzzetti, J. A., Gherardia, D. F. M. & Lins-Oliveira, J. E. Modeling spiny lobster larval dispersion in the Tropical Atlantic. Fish. Res. 96, 206–215 (2009).Article 

    Google Scholar 
    Allee, W. C. Studies in marine ecology. IV. The effect of temperature in limiting the geographic range of invertebrates of the Woods Hole littoral. Ecology 4, 341–354 (1923).Article 

    Google Scholar 
    Burton, R. S. Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52, 734–745 (1998).PubMed 
    Article 

    Google Scholar 
    Lancellotti, D. A. & Vasquez, J. A. Biogeographical patterns of benthic macroinvertebrates in the southeastern Pacific littoral. J. Biogeogr. 26, 1001–1006 (1999).Article 

    Google Scholar 
    Hormazabal, S., Shaffer, G. & Leth, O. Coastal transition zone off Chile. J. Geophys. Res. 109, C01021 (2004).ADS 

    Google Scholar 
    Mcdonald, A. M. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41, 281–382 (1998).ADS 
    Article 

    Google Scholar 
    Montecino, V. & Lange, C. B. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progr. Oceanogr. 83, 65–79 (2009).ADS 
    Article 

    Google Scholar 
    Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific Coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).PubMed 
    Article 

    Google Scholar 
    Wares, J. P., Gaines, S. D. & Cunningham, C. W. A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution 55, 295–306 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).Article 

    Google Scholar 
    Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and recruitment. In Marine Hard Bottom Communities, Ecological Studies Vol. 206 (ed. Wahl, M.) 177–190 (Springer, Berlin, 2009).Chapter 

    Google Scholar 
    Marino, I. A. M. et al. Genetic heterogeneity in populations of the Mediterranean shore crab, Carcinus aestuarii (Decapoda, Portunidae), from the Venice Lagoon. Estuar. Coast. Shelf. Sci. 87, 135–144 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Sernapesca. Estadística de pesca de Chile. http://www.sernapesca.cl/informes/estadisticas (2022).Nation JD (1975) The Genus Cancer: Crustacea: Brachyura): Systematics, biogeography and fossil record. Nat. Hist. Mus. Los Angeles County Sci, Bull. 23 (1975).Pardo, L. M., Fuentes, J. P., Olguin, A. & Orensanz, J. M. L. Reproductive maturity in the edible Chilean crab Cancer edwardsii: methodological and management considerations. J. Mar. Biol. Assoc. U. K. 89, 1627–1634 (2009).Article 

    Google Scholar 
    Rojas-Hernández, N., Veliz, D. & Pardo, L. M. Use of novel microsatellite markers for population and paternity analysis in the commercially important crab Metacarcinus edwardsii. Mar. Biol. Res. 10, 839–844 (2014).Article 

    Google Scholar 
    Pardo, L. M., Riveros, M. P., Fuentes, J. P., Rojas-Hernández, N. & Veliz, D. An effective sperm competition avoidance strategy in crabs drives genetic monogamy despite evidence of polyandry. Behav. Ecol. Sociobiol. 70, 73–81 (2016).Article 

    Google Scholar 
    Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex- and size biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).Article 

    Google Scholar 
    Pardo, L. M., Mora-Vásquez, P. & Garcés-Vargas, J. Asentamiento diario de megalopas de jaibas del género Cancer en un estuario micromareal. Lat. Am. J. Aquat. Res. 40, 142–152 (2012).Article 

    Google Scholar 
    Pardo, L. M., Rubilar, P. R. & Fuentes, J. P. North Patagonian estuaries appear to function as nursery habitats for marble crab (Metacarcinus edwardsii). Reg. Stud. Mar. Sci. 36, 101315 (2020).
    Google Scholar 
    Quintana, R. Larval development of the Edible crab, Cancer edwardsi Bell, 1835 under laboratory conditions (Decapoda, Brachyura). Rep. USA Mar. Biol. Inst. 5, 1–19 (1983).
    Google Scholar 
    Rojas-Hernández, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from southern Pacific. PLoS ONE 11, e0166029 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Strub, P. T., James, C., Montecino, V., Rutllant, J. A. & Blanco, J. L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Progr. Oceanogr. 172, 159–198 (2019).ADS 
    Article 

    Google Scholar 
    Beerli, P., Mashayekhi, S., Sadeghi, M., Khodaei, M. & Shaw, K. Population genetic inference with MIGRATE. Curr. Protoc. Bioinform. 68, e87 (2019).Article 

    Google Scholar 
    Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).PubMed 
    Article 

    Google Scholar 
    Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Weiss, M. et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus. J. Mar Biol. Assoc. UK 89, 753–759 (2009).CAS 
    Article 

    Google Scholar 
    Pampoulie, C. et al. A pilot genetic study reveals the absence of spatial genetic structure in Norway lobster (Nephrops norvegicus) on fishing grounds in Icelandic waters. ICES J. Mar. Sci. 68, 20–25 (2011).Article 

    Google Scholar 
    Costlow, J. D. J. & Bookhout, C. G. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116, 373–396 (1959).Article 

    Google Scholar 
    Ungfors, A., McKeown, N. J., Shaw, P. W. & Andre, C. Lack of spatial genetic variation in the edible crab (Cancer pagurus) in the Kattegat – Skagerrak area. ICES J. Mar. Sci. 66, 462–469 (2009).Article 

    Google Scholar 
    Lacerda, A. L. F. et al. High connectivity among blue crab (Callinectes sapidus) populations in the Western South Atlantic. PLoS ONE 11, e0153124 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Taylor, M. S. & Hellberg, M. E. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol. Ecol. 15, 695–707 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arranz, V., Fewster, R. M. & Lavery, S. D. Geographic concordance of genetic barriers in New Zealand coastal marine species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3607–3625 (2021).Article 

    Google Scholar 
    Ayre, D. J., Minchinton, T. E. & Perrin, C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18, 1887–1903 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barber, P. H., Erdmann, M. V. & Palumbi, S. R. Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60, 1825–1839 (2006).PubMed 
    Article 

    Google Scholar 
    Macaya, E. C. & Zuccarello, G. C. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar. Ecol. Progr. Ser. 420, 103–112 (2010).ADS 
    Article 

    Google Scholar 
    Ruiz, M., Tarifeño, E., Llanos-Rivera, A., Padget, C. & Campos, B. Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck 1819). Rev. Biol. Mar. Oceanogr. 431, 51–61 (2008).
    Google Scholar 
    Toro, J. E., Castro, G. C., Ojeda, J. A. & Vergara, A. M. Allozymic variation and differentiation in the Chilean blue mussel, Mytilus chilensis, along its natural distribution. Genet. Mol. Biol. 29, 174–179 (2006).CAS 
    Article 

    Google Scholar 
    Araneda, C., Larraín, M. A., Hecht, B. & Narum, S. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. 6, 3632–3644 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Disalvo, L. H. Observations on the larval and post-metamorphic life of Concholepas concholepas (Bruguière, 1789) in laboratory culture. Veliger 30, 358–368 (1988).
    Google Scholar 
    Cardenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).ADS 
    Article 

    Google Scholar 
    Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar. Ecol. Progr. Ser. 410, 111–123 (2010).ADS 
    Article 

    Google Scholar 
    Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Temporal genetic homogeneity among shore crab (Carcinus maenas) larval events supplied to an estuarine system on the Portuguese northwest coast. Heredity 106, 832–840 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vadopalas, B., Pietsch, T. & Friedman, C. The proper name for the geoduck: resurrection of Panopea generosa Gould, 1850, from the synonymy of Panopea abrupta (Conrad, 1849) (Bivalvia: Myoida: Hiatellidae). Malacologia 52, 169–173 (2010).Article 

    Google Scholar 
    Cassista, M. C. & Hart, M. W. Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar. Biol. 152, 569–579 (2007).Article 

    Google Scholar 
    Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).CAS 
    Article 

    Google Scholar 
    Schmidt, P. S., Phifer-Rixey, M., Taylor, G. M. & Christner, J. Genetic heterogeneity among intertidal habitats in the flat periwinkle, Littorina obtusata. Mol. Ecol. 16, 2393–2404 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Reid, K. et al. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117, 307–315 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, Z.-M., Zhang, J., Lopez-Bautista, J. & Duan, D.-L. Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar. Biol. 160, 1407–1414 (2013).Article 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 
    Article 

    Google Scholar 
    Becker, R. A. & Wilks, A. R. R version by Ray Brownrigg. mapdata: Extra Map Databases. R package version 2.3.0. (2018b).Becker, R.A. & Wilks, A. R. R version by Ray Brownrigg. Enhancements by TP Minka and A Deckmyn.maps: Draw Geographical Maps. R package version 3.3.0. https://CRAN.R-project.org/package=maps (2018a).
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022).
    Google Scholar 
    Grube, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).Article 

    Google Scholar 
    Foll, M. & Gaggiotti, O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flanagan, S. P. & Jones, A. G. Constraints on the Fst-heterozygosity outlier approach. J. Hered 108, 561–573 (2017).PubMed 
    Article 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodohl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4, 782–788 (2013).Article 

    Google Scholar 
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Logiciel sous Windows pour la Genetique des Populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000 (Université de Montpellier II, Montpellier, France, 2000).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, J. K., Wen, X. & Falush, D. Documentation for Structure Software: Version 2.3. University of Oxford http://pritch.bsd.uchicago.edu/structure.html (2010).Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U.S.A. 98, 4563–4568 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association

    Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V. & Fontaine, S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108, 528–545 (2020).CAS 
    Article 

    Google Scholar 
    Arft, A. M. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110-+ (2021).PubMed 
    Article 

    Google Scholar 
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS 
    Article 

    Google Scholar 
    Shipley, B. & Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 16, 326–331 (2002).Article 

    Google Scholar 
    Eziz, A. et al. Drought effect on plant biomass allocation: a meta‐analysis. Ecol. Evolution 7, 11002–11010 (2017).Article 

    Google Scholar 
    Yan, Z. et al. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, C. et al. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. N. Phytol. 188, 187–198 (2010).Article 

    Google Scholar 
    Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).ADS 
    Article 

    Google Scholar 
    Keller, J. A. & Shea, K. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 102, e03219 (2020).PubMed 

    Google Scholar 
    Cavagnaro, R. A., Oyarzabal, M., Oesterheld, M. & Grimoldi, A. A. Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl. Sci. 60, 178–184 (2014).Article 

    Google Scholar 
    Rasheed, M. U. et al. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude field experiment. Soil Biol. Biochem. 114, 279–294 (2017).CAS 
    Article 

    Google Scholar 
    Xu, M., Liu, M., Xue, X. & Zhai, D. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. J. Arid Land 8, 773–786 (2016).Article 

    Google Scholar 
    Zhou, X., Talley, M. & Luo, Y. Biomass, litter, and soil respiration along a precipitation gradient in southern great plains, USA. Ecosystems 12, 1369–1380 (2009).CAS 
    Article 

    Google Scholar 
    Hertel, D., Strecker, T., Mueller-Haubold, H. & Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101, 1183–1200 (2013).Article 

    Google Scholar 
    Zhou, L. et al. Responses of biomass allocation to multi-factor global change: a global synthesis. Agriculture, Ecosyst. Environ. 304, 107115 (2020).CAS 
    Article 

    Google Scholar 
    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. N. Phytol. 193, 30–50 (2012).CAS 
    Article 

    Google Scholar 
    Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R. & Kaiser, C. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol. 10, 168 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).ADS 
    Article 

    Google Scholar 
    Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).PubMed 
    Article 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).PubMed 
    Article 

    Google Scholar 
    Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Vegetation Sci. 13, 378–387 (2010).
    Google Scholar 
    Johnson, N. C., Rowland, D. L., Corkidi, L. & Allen, E. B. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89, 2868–2878 (2008).PubMed 
    Article 

    Google Scholar 
    Xia, J., Yuan, W., Wang, Y. P. & Zhang, Q. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep. 7, 3341 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Litton, C. M. & Giardina, C. P. Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct. Ecol. 22, 941–954 (2008).Article 

    Google Scholar 
    Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    Hovenden, M. J. et al. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 14, 1633–1641 (2008).ADS 
    Article 

    Google Scholar 
    Olszyk, D. M. et al. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Can. J. For. Res. 33, 269–278 (2003).CAS 
    Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119-+ (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinto, R. S. & Reynolds, M. P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 128, 575–585 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, P., Huang, K. & Hu, S. Distinct fine‐root responses to precipitation changes in herbaceous and woody plants: a meta‐analysis. N. Phytol. 225, 1491–1499 (2020).Article 

    Google Scholar 
    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. N. Phytol. 193, 830–841 (2012).Article 

    Google Scholar 
    Bai, W. et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob. Change Biol. 16, 1306–1316 (2010).ADS 
    Article 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698–702 (2008).CAS 
    Article 

    Google Scholar 
    Phillips, L. A., Ward, V. & Jones, M. D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 8, 699–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez-Meler, M. A., Silva, L. B. C., Dias-De-Oliveira, E., Flower, C. E. & Martinez, C. A. Experimental air warming of a stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Front. Plant Sci. 8, 46 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A. & Newcomb, J. M. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347, 339–350 (2011).CAS 
    Article 

    Google Scholar 
    An, J. et al. Physiological and growth responses to experimental warming in first-year seedlings of deciduous tree species. Turkish J. Agriculture Forestry 41, 175–182 (2017).CAS 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, R., Li, Y., Wang, Y., Ma, J. & Cieraad, E. Variation of water use efficiency across seasons and years: Different role of herbaceous plants in desert ecosystem. Sci. Total Environ. 647, 827–835 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Duarte, A. G. & Maherali, H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8518 (2022).Bastos, A. & Fleischer, K. Fungi are key to CO2 response of soil. Nature 591, 532–534 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Peng, L. & Jin, Z. Effects of AMF inoculation on growth and photosynthetic physiological characteristics of Sinocalycanthus chinensis under conditions of simulated warming. Acta Ecologica Sin. 36, 5204–5214 (2016).CAS 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).Article 
    CAS 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159–8159 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    IPCC. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1535 (Cambridge University Press, 2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Task, G. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) (2000).Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical Software for Meta-analysis (Sinauer Associates, Incorporated, 2000).Kembel, S. W. et al. Picante: integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2018).Article 
    CAS 

    Google Scholar 
    Calcagno, V. & De, C. M. Glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).Pinheiro, J. C., Bates, D. J., Debroy, S. D. & Sakar, D. nlme: Linear and nonlinear mixed effects models. R. package version 3, 1–117 (2009).
    Google Scholar 
    Viechtbauer, W. Metafor: meta-analysis package for R. J. Stat. Softw. 2010, 1–10 (2010).
    Google Scholar 
    Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, https://doi.org/10.18637/jss.v048.i02 (2012). More

  • in

    Spatial distribution pattern of dominant tree species in different disturbance plots in the Changbai Mountain

    Wiegand, T., Gunatilleke, S. & Gunatilleke, N. Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest. Am. Nat. 170, E77–E95. https://doi.org/10.1890/06-1350.1 (2007).Article 
    PubMed 

    Google Scholar 
    Zhang, J. et al. Spatial patterns and associations of six congeneric species in an old-growth temperate forest. Acta Oecol. 11, 29–38. https://doi.org/10.1016/j.actao.2009.09.005 (2010).ADS 
    Article 

    Google Scholar 
    Pretzsch, H. et al. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712–712. https://doi.org/10.1051/forest/2010037 (2010).Article 

    Google Scholar 
    Zhu, J., Kang, H., Tan, H., Xu, M. & Wang, J. Natural regeneration characteristics ofPinus sylvestris var.mongolica forests on sandy land in Honghuaerji, China. J. For. Res. 16, 253–259. https://doi.org/10.1007/BF02858184 (2005).Felton, A., Felton, A. M., Wood, J. & Lindenmayer, D. B. Vegetation structure, phenology, and regeneration in the natural and anthropogenic tree-fall gaps of a reduced-impact logged subtropical Bolivian forest. For. Ecol. Manage. 235, 186–193. https://doi.org/10.1016/j.foreco.2006.08.011 (2006).Article 

    Google Scholar 
    Man, R., Kayahara, G. J., Rice, J. A. & MacDonald, G. B. Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. For. Ecol. Manage. 255, 697–706. https://doi.org/10.1016/j.foreco.2007.09.043 (2008).Article 

    Google Scholar 
    Xiang, W., Lei, X. & Zhang, X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. For. Ecol. Manage. 382, 100–109. https://doi.org/10.1016/j.foreco.2016.09.050 (2016).Article 

    Google Scholar 
    Zhang, M., Liu, Y., Guo, W., Kang, X. & Zhao, H. Spatial associations and species collocation of dominant tree spscies in a natural spruce-fir mixed forest of Changbai Mountains in Northeastern China. Appl. Ecol. Env. Res. 17, 6213–6225. https://doi.org/10.15666/aeer/1703_62136225 (2019).Garbarino, M., Weisberg, P. J. & Motta, R. Interacting effects of physical environment and anthropogenic disturbances on the structure of European larch (Larix decidua Mill.) forests. For. Ecol. Manag. 257, 1794–1802. https://doi.org/10.1016/j.foreco.2008.12.031 (2009).Gourlet-Fleury, S. et al. Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. For. Ecol. Manage. 304, 322–332. https://doi.org/10.1016/j.foreco.2013.05.021 (2013).Article 

    Google Scholar 
    Yu, D. & Han, S. Ecosystem service status and changes of degraded natural reserves—A study from the Changbai Mountain Natural Reserve China. Ecosyst. Serv. 20, 56–65. https://doi.org/10.1016/j.ecoser.2016.06.009 (2016).Article 

    Google Scholar 
    Moreau, G. et al. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manage. 473, 118311. https://doi.org/10.1016/j.foreco.2020.118311 (2020).Article 

    Google Scholar 
    Yan, Y., Zhang, C., Wang, Y., Zhao, X. & Gadow, K. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol. Evol. 5, 4287–4299. https://doi.org/10.1002/ece3.1688 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bai, F. et al. Long-term protection effects of national reserve to forest vegetation in 4 decades: Biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve China. Sci. China Ser. C 51, 948–958. https://doi.org/10.1007/s11427-008-0122-9 (2008).Article 

    Google Scholar 
    Liu, Q., Li, X., Ma, Z. & Takeuchi, N. Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. For. Ecol. Manage. 210, 25–37. https://doi.org/10.1016/j.foreco.2005.02.025 (2005).Article 

    Google Scholar 
    Hao, H. et al. Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Glob. Ecol. Conserv. 12, 158–165. https://doi.org/10.1016/j.gecco.2017.11.001 (2017).Article 

    Google Scholar 
    Das Gupta, S. & Pinno, B. D. Spatial patterns and competition in trees in early successional reclaimed and natural boreal forests. Acta Oecol. 92, 138–147. https://doi.org/10.1016/j.actao.2018.05.003 (2018).Hao, Z., Zhang, J., Song, B., Ye, J. & Li, B. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. For. Ecol. Manage. 252, 1–11. https://doi.org/10.1016/j.foreco.2007.06.026 (2007).Article 

    Google Scholar 
    Zhao, H., Kang, X., Guo, Z., Yang, H. & Xu, M. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains China. Mount. Res. Dev. 32, 187–196. https://doi.org/10.1659/MRD-JOURNAL-D-11-00125.1 (2012).Article 

    Google Scholar 
    Li, Y., Hui, G., Wang, H., Zhang, G. & Ye, S. Selection priority for harvested trees according to stand structural indices. iForest 10, 561–566, DOI: https://doi.org/10.3832/ifor2115-010 (2017).Zhang, Y., Drobyshev, I., Gao, L., Zhao, X. & Bergeron, Y. Disturbance and regeneration dynamics of a mixed Korean pine dominated forest on Changbai Mountain North-Eastern China. Dendrochronologia 32, 21–31. https://doi.org/10.1016/j.dendro.2013.06.003 (2014).Article 

    Google Scholar 
    Zhang, M. et al. Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China. Chin. J. Appl. Ecol. 26, 1609–1616. https://doi.org/10.13287/j.1001-9332.20150331.024 (2015).Gong, Z., Kang, X. & Gu, L. Quantitative division of succession and spatial patterns among different stand developmental stages in Changbai Mountains. J. Mt. Sci. 16, 2063–2078. https://doi.org/10.1007/s11629-018-5142-8 (2019).Article 

    Google Scholar 
    Hu, Y., Min, Z., Gao, Y. & Feng, Q. Effects of selective cutting on stand growth and structure for natural mixed spruce (Picea koraiensis )-Fir (Abies nephrolepis) forests. Scientia Silvae Sinicae 47, 15–24. https://doi.org/10.11707/j.1001-7488.20110203 (2011).Article 

    Google Scholar 
    Hubbell, S. P. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).Seidler, T. G. & Plotkin, J. B. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4, e344. https://doi.org/10.1371/journal.pbio.0040344 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—a semi-natural forest in Denmark. For. Ecol. Manage. 406, 391–401. https://doi.org/10.1016/j.foreco.2017.10.020 (2017).Article 

    Google Scholar 
    Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495. https://doi.org/10.1038/35006630 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wiegand, T., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N. & Huth, A. How individual species structure diversity in tropical forests. Proc. Natl. Acad. Sci. 104, 19029–19033. https://doi.org/10.1073/pnas.0705621104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, T., Yan, Q., Wang, J. & Zhu, J. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. For. Ecol. Manage. 429, 267–277. https://doi.org/10.1016/j.foreco.2018.07.025 (2018).Article 

    Google Scholar 
    Zhang, M., Kang, X., Meng, J. & Zhang, L. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains. J. Mt. Sci. 12, 659–670. https://doi.org/10.1007/s11629-013-2795-1 (2015).Article 

    Google Scholar 
    Navarro-Cerrillo, R. M. et al. Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas Morocco. For. Ecol. Manag. 289, 341–353. https://doi.org/10.1016/j.foreco.2012.10.011 (2013).Article 

    Google Scholar 
    Condit, R. Spatial patterns in the distribution of tropical tree species. Science 288, 1414–1418. https://doi.org/10.1126/science.288.5470.1414 (2000).del Río, M. et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 135, 23–49. https://doi.org/10.1007/s10342-015-0927-6 (2016).Article 

    Google Scholar 
    Wiegand, K., Jeltsch, F. & Ward, D. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana ?. J. Veg. Sci. 11, 473–484. https://doi.org/10.2307/3246577 (2000).Article 

    Google Scholar 
    Hui, G. & Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. For. Ecol. Manage. 316, 125–138. https://doi.org/10.1016/j.foreco.2013.07.029 (2014).Article 

    Google Scholar 
    Graz, F. P. The behaviour of the species mingling index M sp in relation to species dominance and dispersion. Eur. J. For. Res. 123, 87–92. https://doi.org/10.1007/s10342-004-0016-8 (2004).Article 

    Google Scholar 
    Zhang, M. Spatial association and optimum adjacent distribution of trees in a mixed coniferous-broadleaf forest in northeastern China. Appl. Ecol. Environ. Res. 15, 1551–1564. https://doi.org/10.15666/aeer/1503_15511564 (2017).Hou, J. H., Mi, X. C., Liu, C. R. & Ma, K. P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 15, 407–414. https://doi.org/10.1111/j.1654-1103.2004.tb02278.x (2004).Article 

    Google Scholar 
    Boyden, S., Binkley, D. & Shepperd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manage. 219, 43–55. https://doi.org/10.1016/j.foreco.2005.08.041 (2005).Article 

    Google Scholar 
    Li, J., Niu, S. & Liu, Y. Forest Ecology. Higher Education Press, (2010).Hui, G. et al. Theory and practice of structure-based forest management. Science Press, (2020).Gong, Z. et al. Interspecific association among arbor species in two succession stages of spruce-fir conifer and broadleaved mixed forest in Changbai Mountains, northeastern China. J. Beijing For. Univ. 33, 28–33 (2011).
    Google Scholar 
    Suzuki, S. N., Kachi, N. & Suzuki, J.-I. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies Forest: Analyses using spatial autocorrelation and the mark correlation function. Ann. Bot. 102, 435–441. https://doi.org/10.1093/aob/mcn113 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shao, G. et al. Integrating stand and landscape decisions for multi-purposes of forest harvesting. For. Ecol. Manage. 207, 233–243. https://doi.org/10.1016/j.foreco.2004.10.029 (2005).Article 

    Google Scholar 
    Dai, L. et al. Changes in forest structure and composition on Changbai Mountain in Northeast China. Ann. For. Sci. 68, 889–897. https://doi.org/10.1007/s13595-011-0095-x (2011).Article 

    Google Scholar 
    Liu, Y. et al. Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China. Scand. J. For. Res. 29, 436–454. https://doi.org/10.1080/02827581.2014.919352 (2014).CAS 
    Article 

    Google Scholar 
    K. von Gadow and & Hui, G. Y. Characterizing Forest spatial structure and diversity. Proc. of an international workshop organized at the University of Lund, Sweden, 20–30 (2001).Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42. https://doi.org/10.18637/jss.v012.i06 (2005).Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470725160 (2007).Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology. Chapman and Hall/CRC. https://doi.org/10.1201/b16195 (2013).Martínez, I., Wiegand, T., González-Taboada, F. & Obeso, J. R. Spatial associations among tree species in a temperate forest community in North-western Spain. For. Ecol. Manage. 260, 456–465. https://doi.org/10.1016/j.foreco.2010.04.039 (2010).Article 

    Google Scholar 
    Wang, X. et al. Species associations in an old-growth temperate forest in north-eastern China. J. Ecol. 98, 674–686. https://doi.org/10.1111/j.1365-2745.2010.01644.x (2010).Article 

    Google Scholar 
    Getzin, S., Wiegand, T. & Hubbell, S. P. Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B. 281, 20140922. https://doi.org/10.1098/rspb.2014.0922 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakashizuka, T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16, 205–210 (2001).CAS 
    Article 

    Google Scholar 
    Mugglestone, M. & Renshaw, E. Spectral tests of randomness for spatial point patterns. Environ. Ecol. Stat. 237–251. https://doi.org/10.1023/A:1011339607376 (2001).Stoyan, D. & Stoyan, H. Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, (1994).Liu, P. et al. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manage. 467, 118167. https://doi.org/10.1016/j.foreco.2020.118167 (2020).Article 

    Google Scholar 
    Wiegand, T., Moloney, A. & Rings, K. circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).Article 

    Google Scholar  More

  • in

    Inter-annual variation patterns in the carbon footprint of farmland ecosystems in Guangdong Province, China

    Analysis of carbon sources in Guangdong farmland ecosystems under the “dual carbon” targetAnalysis of inter-annual variation in carbon emissions from farmland ecosystems in GuangdongGuangdong’s carbon emissions from farmland ecosystems showed an increasing trend year by year during 2001–2017 (Fig. 1a), with carbon emissions gradually reaching a peak of 4.153 million t a−1 in 2016 from 3.554 million t a−1 in 2001, but decreasing year by year from 2017 onwards. Eventually it’s decreasing to 3.533 million t a−1 by 2020. Showing that Guangdong’s farmland ecosystem carbon emissions have remained relatively flat over the past 20 years, with an average annual carbon emission of 3.7624 million t a−1. The carbon emissions per unit arable land area of Guangdong’s farmland ecosystems show an increasing trend year by year (Fig. 1b), from 1.12 t ha−1 in 2001 to 2.03 t ha−1 in 2020, an increase of 81.25% over 20 years, with an average annual carbon emission per unit arable land area of 1.43 t ha−1. While the carbon emissions per unit sown area show the opposite trend to the total carbon emissions, from 2001 to 2016, showing a decreasing trend year by year. The carbon emissions per unit of sown area decreased from 1.50 t ha−1 in 2001 to 1.01 t ha−1 in 2016 and then started to increase year by year from 2017 to 1.26 t ha−1 in 2020, with an overall decrease of 16% and an average annual carbon emission per unit of sown area of 1.19 t ha−1.Figure 1(a) Inter-annual variation of carbon emissions from farmland ecosystems in Guangdong; (b) inter-annual variation in carbon emissions per unit area of farmland ecosystems in Guangdong.Full size imageAnalysis of carbon sources in Guangdong farmland ecosystemsThe carbon emissions from agricultural production power (estimated by the total power of agricultural diesel and agricultural machinery) in Guangdong’s farmland ecosystems show an increasing trend year by year (Fig. 1a), from 411,000 t a−1 in 2001 to 513,000 t a−1 in 2020, an increase of nearly 25% in 20 years. Carbon emissions from tillage and irrigation inputs are relatively flat, from 116,000 t a−1 in 2001 to 109,000 t a−1 in 2020, with an average of 107,000 t a−1 over the last 20 years. Carbon emissions from chemicals in agricultural production (estimated by fertilizer, pesticide, and agricultural film inputs) have the greatest impact on the overall emissions, with carbon emissions from agricultural chemicals reaching 2.9097 million t a−1 in 2020, accounting for 82.36% of total carbon emissions from farmland ecosystems, but a relatively flat trend. Although the share of carbon emissions from agricultural production power is increasing year by year, the contribution of carbon emissions due to inputs of agricultural chemicals is still in an absolute position. The use of agricultural chemicals directly affects the carbon emissions of Guangdong’s farmland ecosystems. Therefore, a more detailed analysis of the carbon emissions of various agricultural chemicals is necessary in order to make carbon reduction proposals.Depending on Fig. 2a, although the proportion of carbon emissions caused by agricultural films has been increasing year by year, chemical fertilizers still occupy an absolute position, with their carbon emissions accounting for 78.45% of agricultural chemicals on average in the past 20 years. Which the average proportions of carbon emissions caused by pesticides and agricultural films are 15.17% and 6.38% respectively. Among the carbon emissions from various fertilizers (Fig. 2b), the annual average share of carbon emissions in the past 20 years is distributed from the largest to the smallest: 81.63% from nitrogen fertilizers, 9.57% from compound fertilizers, 5.60% from phosphate fertilizers and 3.20% from potash fertilizers. From the trend of carbon emissions of various types of fertilizers, we can learn that the carbon emissions of nitrogen fertilizers have been decreasing year by year, from 85.63% in 2001 to 78.10% in 2020, and the emissions have slowly risen from 2.061 million t a−1 in 2001 to a peak of 2.1276 million t a−1 in 2016, then gradually decreased to 1.7797 million t a−1 in 2020. Compound fertilizers, on the other hand, rose from 6.17% in 2001 to 11.40% in 2020, an increase of nearly 85%, and their carbon emissions rose year by year from 148,600 t a−1 to a peak of 305,200 t a−1 in 2016 and then gradually fell to 259,900 t a−1 in 2020, an increase of 74.90%. The share of carbon emissions from potash is relatively stable, rising from 2.89% to 3.29%, reaching a peak of 91,800 t a−1 in 2016 and then gradually decreasing to 75,500 t a−1 in 2020. The share of carbon emissions from phosphate fertilizers is also on a year-on-year rise, from 5.31% to 7.20%, an increase of 37.47%. However, the carbon emissions from phosphate fertilizers do not produce a peak in 2016 but keep increasing in a relatively stable trend, with its carbon emissions rising from 127,800 t a−1 in 2001 to 164,100 t a−1 in 2020, an increase of 28.40%.Figure 2(a) Proportion of carbon emissions from various types of agricultural chemicals in Guangdong farmland ecosystems; (b) proportion of carbon emissions from different fertilizer types in Guangdong farmland ecosystems.Full size imageAnalysis of carbon sequestration in Guangdong farmland ecosystems under the “dual carbon” targetAnalysis of inter-annual variation in the carbon sequestration function of Guangdong farmland ecosystemsIn the inter-annual variation of carbon sequestration function of farmland ecosystems in Guangdong (Fig. 3a), although there are fluctuations in the variation of total carbon sequestration in farmland ecosystems, the overall decrease is not significant. With the total carbon sequestration decreasing from 21.3176 million t a−1 in 2001 to 19.1178 million t a−1 in 2020, a decrease of 10.32% in the last 20 years, and the average annual carbon sequestration is 19.0363 million t a−1, among which the total carbon sequestration in 2008 is the lowest, only 17.2033 million t a−1.Figure 3(a) Carbon sequestration function of farmland ecosystems in Guangdong; (b) inter-annual variation of carbon sequestration function per unit area of farmland ecosystems in Guangdong.Full size imageThe total carbon sequestered in 2008 was the lowest at 17.2033 million t a−1. The inter-annual variation of carbon sequestration by food crops (paddy, wheat, corn, legumes, yams, and other food crops) is similar to that of farmland ecosystems, decreasing from 13.9742 million t a−1 to 10.209 million t a−1, a decrease of 27%. The inter-annual variation of carbon sequestration by cash crops (sugarcane, peanuts, Canola, and tobacco) and vegetables generally shows a stable upward trend, with carbon sequestration increasing by 15.54% and 55.54% respectively over the past 20 years. Meanwhile, the amount of carbon sequestered per unit sown area in Guangdong’s farmland ecosystems was generally flat (Fig. 3b), with an average annual carbon sequestration per unit sown area of 4.31 t ha−1. While the amount of carbon sequestered per unit arable land area showed an increasing trend, especially in 2017, when it started to rise rapidly, from 6.82 t ha−1 per unit arable land area in 2001 to 10.97 t ha−1 per unit arable land area in 2020, an increase of 60.85%. The average annual carbon sequestration per arable area is 7.25 t ha−1, an increase of 56.71% in the 4 years from 2017 to 2020.Analysis of the role of crop carbon sequestrations in Guangdong’s farmland ecosystemsAs can be seen from Fig. 4a, food crops play the largest role in carbon sequestration in Guangdong’s farmland ecosystems, with an average share of 56.95% of the total carbon sequestration in the past 20 years. Its share tends to decline over time, but the amount of carbon sequestered by food crops in Guangdong still reaches 10.209 million t a−1 in 2020. The carbon sequestration role of cash crops is next, rising from 29.43% in 2001 to 37.92% in 2020, with an average share of 36.17%, an increase of 28.85%, and average annual carbon sequestration of 6.8863 million t a−1. The inter-year variation of vegetables carbon sequestration also shows an increasing trend, rising from 5.02 to 8.73%, with an increase of 73.90%, and average annual carbon sequestration of 1.13112 million t a−1.Figure 4(a) Proportion of carbon sequestered by various crops in Guangdong farmland ecosystems. (b) Proportion of carbon sequestered by various food crops in Guangdong farmland ecosystems; (c) proportion of carbon sequestered by various cash crops in Guangdong farmland ecosystems.Full size imageWhen the carbon sequestration capacity of food (Fig. 4b) and cash crops (Fig. 4c) in Guangdong’s farmland ecosystems is broken down, it is easy to see that paddy is in an absolute position in terms of carbon sequestration among food crops, with an average share of 83.81% over the past 20 years and average annual carbon sequestration of 8.8946 million t a−1. Especially since 2017, the carbon sequestration share of paddy has risen to over 87% and will remain until 2020. Also, sugarcane’s share of carbon sequestration in cash crops is absolute, with average annual share of 86.73% and an average annual carbon sequestration of 5.9712 million t a−1. while, peanut’s share of carbon sequestration in cash crops is also not small, with average annual share of 12.47% and an average annual carbon sequestration of 0.8606 million t a−1.An analysis of the inter-annual variation in carbon sequestration of various crops (Fig. 5) shows that paddy and sugar cane play the largest role in carbon sequestration in Guangdong’s farmland ecosystems. Their combined annual average carbon sequestration amounting to 14.8658 million t a−1, accounting for 78.09% of the total annual average carbon sequestration in Guangdong’s farmland ecosystems. Vegetables, peanuts, and yams also play a significant role in carbon sequestration, with the combined annual average carbon sequestration of the three species being 2.9936 million t a−1, accounting for 15.73% of the total annual average carbon sequestration.Figure 5Comparison of carbon sequestration by various crops in Guangdong farmland ecosystems.Full size imageAnalysis of the carbon footprint of Guangdong’s farmland ecosystems under the “dual carbon” targetThe carbon footprint of Guangdong’s farmland ecosystem ((CEF)) is 531,100 ha a−1 per year, showing a general decrease (Fig. 6), with a 59.65% decrease from 513,900 ha a−1 in 2001 to 321,900 ha a−1 in 2020. The carbon footprint of Guangdong’s farmland ecosystems in the past 20 years (the peak value is 611,500 in 2008 ha a−1) is smaller than the ecological carrying capacity (i.e. the arable land area, the lowest value is 1.7421 million ha a−1 in 2020), and is in a state of carbon ecological surplus. Guangdong’s farmland carbon surplus ((CS)) shows a decreasing trend year by year (Fig. 6), from 2.1611 million ha a−1 in 2001 to 1.4202 million ha a−1 in 2020, a decrease of 45.61%. Although the carbon footprint and the inter-annual variation of the carbon surplus both show a decreasing trend, the productive area required to absorb the carbon emissions from farmland (i.e. the carbon footprint) rises from 16.44 to 18.48% of the arable land area in the same period.Figure 6Inter-annual variation of carbon footprint and ecological surplus of farmland ecosystems in Guangdong.Full size imageAn overview of the interannual variability of carbon emissions, sequestrations and footprints of farmland ecosystems in GuangdongIn the above analysis of the inter-annual variation of carbon emissions, sequestration, and footprint of Guangdong’s farmland ecosystems, it was found that 2017 was a special year. After 2017, which the total carbon emissions from Guangdong’s farmland ecosystems and carbon emissions due to agricultural chemicals (Fig. 1a), carbon emissions per unit of arable land area and sown area (Fig. 1b), carbon sequestration per unit of arable land area (Fig. 3b) and carbon footprint and carbon surplus (Fig. 6) all show a large turnaround. Based on the analysis of the factors after 2017 in Table 3, it can be seen that the number of various fertilizers using is gradually decreasing after 2017, especially the number of nitrogen fertilizers decreased by 149,600 t a−1 in 2018 compared with the amount of the previous year, a decrease of 14.44% in a single year, and the carbon emission decreased by 316,600 t a−1. The arable land area in Guangdong is decreasing after 2017, from 2017 to 2019, it decreased by 697,800 ha, a decrease of 26.84%, but the total carbon sequestration still remains above 19 million t a−1 (Fig. 3a), and while the area of arable land in Guangdong is decreasing, the area sown is climbing. The ratio of sown area to arable land area is used as the number of tillage per unit of arable land area in the paper, and the number of tillage per unit of the arable land area rises from 1.63 ha ha−1 in 2017 to 2.56 ha ha−1 in 2020.Table 3 Inter-annual variation of selected factors in Guangdong agro-ecosystems, 2017–2020.Full size tableBased on the conclusions obtained, the author looked up the agriculture-related policies of Guangdong Province in 2016 and 2017. And found that on 30 December 2016, the Guangdong Provincial People’s Government, in response to the soil prevention and control plan of the Central Government, formulated and issued to the cities and counties under its jurisdiction the Implementation Plan of the Guangdong Provincial Soil Pollution Prevention and Control Action Plan (here in after referred to as the “Plan”). The Plan encourages farmers in all areas to reduce the number of chemical fertilizers and apply pesticides scientifically. The effectiveness of the implementation of the Plan in Guangdong Province is remarkable as seen through the changes in the application of various fertilizers, which in the aspect of reducing fertilizer application alone resulted in a 344,900 t ha−1 reduction in carbon emissions from fertilizer inputs in 2018 compared to 2017. At the same time, the number of farmland tillage has increased, and the area of arable land has been reduced, but the total sown area of crops has remained relatively constant. In 2019, while the area of arable land in Guangdong (actual data on arable land in 2020 is missing, and the forecast alone may cause too much error, so 2019 is used as an example) is 69.78 ha less than that in 2017, the total sown area has increased by 22.43 ha, and the total agricultural output value still increased by RMB 64 billion. Which shows that the utilization rate of arable land and the output value per unit of arable land in Guangdong have both increased. More