More stories

  • in

    Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests

    Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Camenzind, T., Httenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Hou, E., Luo, Y., Kuang, Y., Chen, C. & Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).Article 

    Google Scholar 
    Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).CAS 
    Article 

    Google Scholar 
    Mori, T., Lu, X., Aoyagi, R. & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct. Ecol. 32, 1145–1154 (2018).Article 

    Google Scholar 
    Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).Article 

    Google Scholar 
    Feng, J. et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochem. Cycles. 33, 559–569 (2019).CAS 

    Google Scholar 
    Cui, Y. et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440–1451 (2019).CAS 
    Article 

    Google Scholar 
    Jing, X. et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 141, 107657 (2020).CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 34, 1461–1471 (2020).Article 

    Google Scholar 
    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).CAS 
    Article 

    Google Scholar 
    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 115, 4015–4020 (2018).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).CAS 
    Article 

    Google Scholar 
    Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecol. Biogeogr. 30, 2297–2311 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Schulte-Uebbing, L. & Vries, W. D. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biol. 24, 416–431 (2017).Article 

    Google Scholar 
    Richardson, S. J., Peltzer, D. A., Allen, R. B. & Parfitt, M. G. L. Rapid development of phosphorus limitation in temperate rainforest along the Franz josef soil chronosequence. Oecologia 139, 267–276 (2004).Article 

    Google Scholar 
    Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biol. 23, 3808–3824 (2017).Article 

    Google Scholar 
    Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).Article 

    Google Scholar 
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).CAS 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198, 656–669 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21 (2018).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 147, 107814 (2020).CAS 
    Article 

    Google Scholar 
    Johnson, J. et al. The response of soil solution chemistry in european forests to decreasing acid deposition. Global Change Biol. 24, 3603–3619 (2018).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 
    Article 

    Google Scholar 
    Penuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in china over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419, 115868 (2022).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).CAS 
    Article 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biol. 27, 2633–2644 (2021).CAS 
    Article 

    Google Scholar 
    Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C. & Wookey, P. A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26, 5178–5188 (2020).Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    Rosinger, C., Rousk, J. & Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 128, 115–126 (2019).CAS 
    Article 

    Google Scholar 
    Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 146, 107816 (2020).CAS 
    Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 
    Article 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).CAS 
    Article 

    Google Scholar 
    Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
    Google Scholar 
    Legendre, P. & Legendre, L. Numerical ecology, 2nd English edition. Elsevier Science BV, Amsterdam (1998).Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8/1, 20–25 (2008).
    Google Scholar 
    Toms, J. D. & Lesperance, M. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).Article 

    Google Scholar 
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7 edn (2016).Development Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). More

  • in

    Dogs suppress a pivotal function in the food webs of sandy beaches

    Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Cons. 157, 341–351 (2013).Article 

    Google Scholar 
    Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Cons. 210, 56–59 (2017).Article 

    Google Scholar 
    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132 (2011).Article 

    Google Scholar 
    Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T. & Gommper, M. Dogs as predators and trophic regulators. Free-ranging dogs and wildlife conservation, 55–68 (2014).Gompper, M. E. In Free-ranging dogs and wildlife conservation, Oxford University Press (2014).Somaweera, R., Webb, J. K. & Shine, R. It’sa dog-eat-croc world: Dingo predation on the nests of freshwater crocodiles in tropical Australia. Ecol. Res. 26, 957–967 (2011).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. In Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.) (ed Matthew E Gompper) Ch. 4, 94–113 (Oxford University Press, 2013).Zapata-Ríos, G. & Branch, L. C. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Cons. 193, 9–16 (2016).Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Gingold, G., Yom-Tov, Y., Kronfeld-Schor, N. & Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 12, 155–162 (2009).Article 

    Google Scholar 
    Fernández-Juricic, E. & Tellería, J. L. Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47, 13–21 (2000).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).Article 

    Google Scholar 
    Silva-Rodríguez, E. A. & Sieving, K. E. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Cons. 150, 103–110 (2012).Article 

    Google Scholar 
    Banks, P. B. & Bryant, J. V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Let. 3, 611–613 (2007).Article 

    Google Scholar 
    Langston, R., Liley, D., Murison, G., Woodfield, E. & Clarke, R. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus?. Ibis 149, 27–36 (2007).Article 

    Google Scholar 
    Lenth, B. E., Knight, R. L. & Brennan, M. E. The effects of dogs on wildlife communities. Nat. Areas J. 28, 218–227 (2008).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.), 94–113 (2013).Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413 (2012).PubMed 
    Article 

    Google Scholar 
    Maguire, G. S., Miller, K. K. & Weston, M. A. In Impacts of Invasive Species on Coastal Environments 397–412 (Springer, 2019).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. III. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    Nel, R. et al. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 150, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 1–11 (2019).MathSciNet 

    Google Scholar 
    Lockwood, J. L. & Maslo, B. In Coastal Convervation (eds Brooke Maslo & JL Lockwood) 1–10 (Cambridge University Press, 2014).Morin, D. J., Lesmeister, D. B., Nielsen, C. K. & Schauber, E. M. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 15, e00413 (2018).Article 

    Google Scholar 
    Cortés, E. I., Navedo, J. G. & Silva-Rodríguez, E. A. Widespread presence of domestic dogs on sandy beaches of Southern Chile. Animals 11, 161 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burger, J., Jeitner, C., Clark, K. & Niles, L. J. The effect of human activities on migrant shorebirds: Successful adaptive management. Environ. Conserv. 31, 283–288 (2004).Article 

    Google Scholar 
    Dowling, B. & Weston, M. A. Managing a breeding population of the Hooded Plover Thinornis rubricollis in a high-use recreational environment. Bird Conserv. Int. 9, 255–270 (1999).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Interference competition at the landscape level: The effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47, 1225–1232 (2010).Article 

    Google Scholar 
    Marzluff, J. M., McGowan, K. J., Donnelly, R. & Knight, R. L. In Avian ecology and conservation in an urbanizing world 331–363 (Springer, 2001).Handler, A., Lonsdorf, E. V. & Ardia, D. R. Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Can. J. Zool. 98, 79–87 (2020).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. The J. Wildlife Manag. 67, 324–333 (2003).Article 

    Google Scholar 
    Méndez, A. et al. Adapting to urban ecosystems: unravelling the foraging ecology of an opportunistic predator living in cities. Urban Ecosyst. 23, 1117–1126 (2020).Article 

    Google Scholar 
    Rees, J., Webb, J., Crowther, M. & Letnic, M. Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers. Anim. Conserv. 18, 44–49 (2015).Article 

    Google Scholar 
    Kimber, O. et al. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob. Ecol. Conserv. 23, e01071 (2020).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Donázar, J. A. & Grimm, V. Bird sky networks: How do avian scavengers use social information to find carrion?. Ecology 95, 1799–1808 (2014).PubMed 
    Article 

    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. Royal Soc. B: Biol. Sci. 284, 20162654 (2017).Article 

    Google Scholar 
    Soulsbury, C. D., Iossa, G., Baker, P. J., White, P. C. & Harris, S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J. Mammal. 92, 190–199 (2011).Article 

    Google Scholar 
    Johnson, C. N. & VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 46, 641–646 (2009).Article 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schlacher, T. A., Strydom, S. & Connolly, R. M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica 48, 7–12 (2013).ADS 
    Article 

    Google Scholar 
    Dunbrack, T. R. & Dunbrack, R. L. Why take your dog on a picnic: presence of a potential predator (Canis lupus familiaris) reverses the outcome of food competition between northwestern crows (Corvus caurinus) and glaucous-winged gulls (Larus glaucescens). Northwest. Nat. 91, 94–98 (2010).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Cons. 238, 108234 (2019).Article 

    Google Scholar 
    Bhadra, A. et al. The meat of the matter: A rule of thumb for scavenging dogs?. Ethol. Ecol. Evol. 28, 427–440 (2016).Article 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ogada, D., Torchin, M., Kinnaird, M. & Ezenwa, V. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. & Evol. 2, 229–236 (2018).Article 

    Google Scholar 
    Gómez-Serrano, M. Á. Four-legged foes: Dogs disturb nesting plovers more than people do on tourist beaches. Ibis 163, 338–352 (2021).Article 

    Google Scholar 
    Stantial, M., Cohen, J., Darrah, A., Farrell, S. & Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01806-160108 (2021).Article 

    Google Scholar 
    Mahon, P. S. Targeted control of widespread exotic species for biodiversity conservation: The red fox (Vulpes vulpes) in New South Wales, Australia. Ecol. Manag. Restor. 10, S59–S69 (2009).ADS 
    Article 

    Google Scholar 
    Colwell, M. A. In The Population Ecology and Conservation of Charadrius Plovers 127–147 (CRC Press, 2019).Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Meek, P. et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 23, 2321–2343 (2014).Article 

    Google Scholar 
    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12, e0186679 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. Royal Soc. B: Biol. Sci. 274, 1101–1108 (2007).Article 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).Article 

    Google Scholar 
    Team, R. D. C. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (2013).Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Schlacher, T. A. et al. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 24, 493–509 (2015).Article 

    Google Scholar 
    Lewin, W.-C., Freyhof, J., Huckstorf, V., Mehner, T. & Wolter, C. When no catches matter: Coping with zeros in environmental assessments. Ecol. Ind. 10, 572–583 (2010).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 488 (Springer Science & Business Media, 2002).Bolker, B. & Team, R. (R package version 0.9, 2010).Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 439 (2015).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found. Stat. Comput., Vienna. https://CRAN. R-project. org/package= dplyr (2015).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016). More

  • in

    Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota

    Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A. & Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 113, E3941–E3949 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world: Advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
    Google Scholar 
    King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS 
    PubMed 

    Google Scholar 
    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139 (2019).CAS 
    PubMed 

    Google Scholar 
    Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front. Immunol. 11, 626329 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. C. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, K. A., Bolton, J. S. & King, K. C. A globally ubiquitous symbiont can drive experimental host evolution. Mol. Ecol. 30, 3882–3892 (2021).CAS 
    PubMed 

    Google Scholar 
    Dahan, D., Preston, G. M., Sealey, J. & King, K. C. Impacts of a novel defensive symbiosis on the nematode host microbiome. BMC Microbiol. 20, 1–10 (2020).
    Google Scholar 
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).CAS 
    PubMed 

    Google Scholar 
    Zheng, Y. et al. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: A new attempt for a biocontrol strategy. Front. Plant Sci. 12, 655673 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Tudela, H., Claus, S. P. & Saleh, M. Next generation microbiome research: Identification of keystone species in the metabolic regulation of host-gut microbiota interplay. Front. Cell Dev. Biol. 9, 719072 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccine 8, 1–21 (2020).
    Google Scholar 
    Mateos-Hernández, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 12, 704621 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dirksen, P. et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 14, 38 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, M. et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10, 1998–2009 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, F. et al. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8, 485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).CAS 
    PubMed 

    Google Scholar 
    Röttjers, L. & Faust, K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hou, Y. et al. Hierarchical microbial functions prediction by graph aggregated embedding. Front. Genet. 11, 608512 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz, S., Huang, H., Appel, M. D., Berg, M. & Shapira, M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect. Immun. 81, 514–520 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 7, 852–857 (2019).
    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).CAS 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open-source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media (2009).Lhomme, S. NetSwan: Network Strengths and Weaknesses Analysis. R Pack Version (2015).Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: Network construction and comparison for microbiome data in R. Brief Bioinform. 22, bbaa290 (2021).PubMed 

    Google Scholar 
    Kanehisa, M. Goto, S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, H. & Peddada, S. D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. npj Biofilms Microbiomes 6, 60 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters. R package version 3.2. (2021).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 

    Google Scholar 
    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42 (1943).
    Google Scholar 
    Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: Evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 

    Google Scholar 
    Wu-Chuang, A. et al. Thermostable keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress. Microb. Ecol. https://doi.org/10.1007/s00248-021-01929-y (2021).Article 
    PubMed 

    Google Scholar 
    Ford, S. A. & King, K. C. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. Mol. Biol. Evol. 38, 1330–1338 (2021).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Q. et al. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Sci. Total Environ. 758, 143712 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Morais, U. L. A look at the way we look at complex networks’ robustness and resilience. https://arxiv.org/ftp/arxiv/papers/1909/1909.06448.pdf (2017).Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estrada-Peña, A., Cabezas-Cruz, A. & Obregón, D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens 9, 309 (2020).PubMed Central 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl. Acad. Sci. USA 116, 19368–19373 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. 77, 342–356 (2013).
    Google Scholar 
    Coyte, K. Z., Rao, C., Rakoff-Nahoum, S. & Foster, K. R. Ecological rules for the assembly of microbiome communities. PLoS Biol. 19, e3001116 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Sheridan, K. J. et al. Ergothioneine biosynthesis and functionality in the opportunistic fungal pathogen, Aspergillus fumigatus. Sci. Rep. 6, 1–17 (2016).
    Google Scholar 
    Rothfork, J. M. et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: New role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101, 13867–13872 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. Microbiol. 2, 33 (2012).
    Google Scholar 
    Matchado, M. S. et al. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mammeri, M. et al. Cryptosporidium parvum infection depletes butyrate producer bacteria in goat kid microbiome. Front. Microbiol. 16, 548737 (2020).
    Google Scholar 
    Foo, J. L., Ling, H., Lee, Y. S. & Chang, M. W. Microbiome engineering: Current applications and its future. Biotechnol. J. 12, 1600099 (2017).Inda, M. E., Broset, E., Lu, T. K. & de la Fuente-Nunez, C. Emerging frontiers in microbiome engineering. Trends Immunol. 40, 952–973 (2019). More

  • in

    High impact of bacterial predation on cyanobacteria in soil biocrusts

    Tracing the symptomology of predation through macroscopic plaquesA culture bioassay (Expanded Microcoleus Mortality Assay, or EMMA) (Fig. 1 and see Materials and Methods) based on the capacity of a soil to induce complete mortality in the foundational biocrust cyanobacterium Microcoleus vaginatus helped us trace the pathogen detected in biocrust production facilities to the development of cm-sized plaques, or zones of cyanobacterial clearing, in natural biocrusts. These plaques were revealed to the naked eye (Fig. 2) when the soil was wet (i.e., after a rain event), as impacted areas would fail to green up by the migration of cyanobacteria to the surface21, enabling us to detect and quantify them with relative ease. Soil samples obtained from such plaques (n = 30) from different sites (n = 6; Table S1) in the US Southwest were invariably EMMA + , and the pathogens always filterable with pore sizes 0.45–1 µm but not larger, and always insensitive to the eukaryotic inhibitor cycloheximide, indicating the agent’s prokaryotic nature and small size, while paired samples from asymptomatic areas just outside the plaques were always EMMA- (Table S2). These end-point EMMA solutions never gave rise to cyanobacterial re-growth upon further incubation and maintained its infectivity of fresh cyanobacterial cultures for up to 6 months. A one-time, small-scale sampling across a plaque at intervals of 2 mm using microcoring22 showed that the boundary of the visible plaque demarcated exactly the end of infectivity, samples 0–2 mm outside the plaque proving non-infective. Further, inoculation of healthy, natural biocrusts with EMMA + suspensions resulted in the local development of biocrust plaques, and soil from these plaques was itself EMMA + , in partial fulfillment of Koch’s postulates. Yet, standard microbiological plating failed to yield any isolates that were EMMA + (we tested 30 unique isolates), even though standard plating with similar isolation efforts can successfully cultivate a large portion of heterotrophs from biocrusts23.Fig. 1: EMMA bioassay (Expanded Microcoleus Mortality Assay), used to study biocrust pathogens.a Typical visual progression of a positive EMMA inoculated with soil or culture to be tested, as used to test for pathogenicity to Microcoleus vaginatus PPC 9802 in the field and in enrichments. b Typical degradation of cyanobacterial biomass during an EMMA displayed through electron microscopy: healthy Microcoleus vaginatus PPC 9802 filaments (top) display abundant photosynthetic membranes (white arrows), peptidoglycan cross-walls (yellow arrows) and carboxysomes (green arrow). As infection proceeds (downwards), patent degradation of intracellular structures follows, leaving only cellular ghosts in the form of peptidoglycan wall remnants (yellow arrows), including the characteristically enlarged peptidoglycan “bumper” of terminal cells (red arrow). Intracellular bacilloid bacteria can sometimes be observed (blue arrow). Cyanobacterial cultures lose all viability. Scale bars = 1 µm. n = 250 images from 4 independent experiments. c Assay modification used in flow cytometry/cell sorting, showing enrichments positive for predation in the top two rows and those negative for predation below. d Test and controls in EMMA to ensure prokaryotic nature of the disease agent.Full size imageFig. 2: Symptomology in nature: biocrust plaques.Main: Macroscopic view of a soil surface colonized by cyanobacterial biocrusts and impacted by multiple plaques as taken after a rain in a quadrat used for field surveys. Insert: Close-up of a single plaque, showing well-demarcated boundaries and a typical central area of new cyanobacterial colonization.Full size imageCultivation, identification, and salient genomic traits of the cyanobacterial pathogenTo study these organisms, we turned to enrichment of pathogen/prey co-cultures based on repeated passages through EMMA and differential size filtration combined with dilution-to-extinction approaches, followed by purification with flow cytometry/cell sorting. The process was monitored by 16S rRNA gene amplicon sequencing, and eventually yielded a highly enriched co-culture of the cyanobacterium with a genetically homogenous (one single Amplicon Sequence Variant) population that made up more than 80% of reads (Fig. 3 a, b). We name the organism represented by this ASV Candidatus Cyanoraptor togatus. That it corresponds indeed to the predator is supported by the fact that of the 17 ASV’s detected in the final enrichment, only 10 were consistently detected at all infectious stages in the process and, among these, only our candidate ASV steadily increased in relative abundance through the enrichment process (Fig. 3 a, b). This final enrichment of C. togatus, LGM-1, constitutes the basis for downstream biological and molecular analyses. Its ASV was most similar to little-known members of the family Chitinophagaceae in the phylum Bacteroidetes. LGM-1’s genome was sequenced and assembled into a single 3.3 Mb contig with 1,781 putative and 1,328 hypothetical genes (Table S3), though most proteins had low identity (Fig. 4: Compiled paired ratios of functional parameters and compositional (relative) abundance in biocrusts across plaque boundaries (circles), red bars denoting the medians for each group of ratios, and bar background color denoting the p-values that the median is significantly different from unity (Wilcoxon paired ratio two-sided tests), where gray is non-significant (p  >  0.1), light orange is 0.05   > p   p  More

  • in

    A network simplification approach to ease topological studies about the food-web architecture

    Ecological networks: Linking structure to dynamics in food webs. (Oxford University Press, 2006).Adaptive food webs: Stability and transitions of real and model ecosystems. (Cambridge University Press, 2018).Pimm, S. L. Food Webs (Springer, 1982).Book 

    Google Scholar 
    Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems. (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781316871867.da Mata, A. S. Complex Networks: A Mini-review. Braz. J. Phys. 50, 658–672 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, W. Fundamentals of Network Biology. (World Scientific (Europe), 2018). https://doi.org/10.1142/q0149.Reichman, O. J., Jones, M. B. & Schildhauer, M. P. Challenges and opportunities of open data in ecology. Science 331, 703–705 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. situating ecology as a big-data science: Current advances, challenges, and solutions. Bioscience 68, 563–576 (2018).Article 

    Google Scholar 
    Osawa, T. Perspectives on biodiversity informatics for ecology. Ecol. Res. 34, 446–456 (2019).Article 

    Google Scholar 
    Shin, N. et al. Toward more data publication of long-term ecological observations. Ecol. Res. 35, 700–707 (2020).Article 

    Google Scholar 
    Pringle, R. M. & Hutchinson, M. C. Resolving food-web structure. Annu. Rev. Ecol. Evol. Syst. 51, 55–80 (2020).Article 

    Google Scholar 
    Derocles, S. A. P. et al. Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. in Advances in Ecological Research vol. 58 1–62 (Elsevier, 2018).Vacher, C. et al. Learning ecological networks from next-generation sequencing data. in Advances in Ecological Research vol. 54, 1–39 (Elsevier, 2016).Evans, D. M., Kitson, J. J. N., Lunt, D. H., Straw, N. A. & Pocock, M. J. O. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct. Ecol. 30, 1904–1916 (2016).Article 

    Google Scholar 
    Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. in Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).Sultana, M. & Storch, I. Suitability of open digital species records for assessing biodiversity patterns in cities: A case study using avian records. J. Urban Ecol. 7, juab014 (2021).Article 

    Google Scholar 
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66, 393–400 (2016).Article 

    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).Article 

    Google Scholar 
    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks: Merging networks with different interaction types. Ecol. Lett. 14, 1170–1181 (2011).PubMed 
    Article 

    Google Scholar 
    Martinson, H. M. & Fagan, W. F. Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol. Lett. 17, 1178–1189 (2014).PubMed 
    Article 

    Google Scholar 
    Marczak, L. B., Thompson, R. M. & Richardson, J. S. Meta-analysis: Trophic level, Habitat, and productivity shape the food web effects of resource subsidies. Ecology 88, 140–148 (2007).PubMed 
    Article 

    Google Scholar 
    McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: A meta-analysis. Ecol. Lett. 19, 328–335 (2016).PubMed 
    Article 

    Google Scholar 
    Cirtwill, A. R., Stouffer, D. B. & Romanuk, T. N. Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proc. R. Soc. B Biol. Sci. 282, 20151589 (2015).Article 
    CAS 

    Google Scholar 
    Fortuna, M. A., Ortega, R. & Bascompte, J. The Web of Life. ArXiv14032575 Q-Bio (2014).Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, J. et al. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 644, 781–790 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, Y. et al. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 19, 35–46 (2016).Article 

    Google Scholar 
    Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Marco, M., Watson, J. E. M., Venter, O. & Possingham, H. P. Global biodiversity targets require both sufficiency and efficiency. Conserv. Lett. 9, 395–397 (2016).Article 

    Google Scholar 
    Kim, K.-H. & Pauleit, S. Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy 24, 264–274 (2007).Article 

    Google Scholar 
    Young, J. et al. Towards sustainable land use: Identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodivers. Conserv. 14, 1641–1661 (2005).Article 

    Google Scholar 
    Dardonville, M., Urruty, N., Bockstaller, C. & Therond, O. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 184, 102913 (2020).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 

    Google Scholar 
    Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. & Ellison, A. M. Ecological network metrics: Opportunities for synthesis. Ecosphere 8, e01900 (2017).Article 

    Google Scholar 
    Newman, M. E. J. Networks. (Oxford University Press, 2018).Levine, S. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83, 195–207 (1980).ADS 
    Article 

    Google Scholar 
    Guimarães, P. R. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).Article 

    Google Scholar 
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Jordán, F., Benedek, Z. & Podani, J. Quantifying positional importance in food webs: A comparison of centrality indices. Ecol. Model. 205, 270–275 (2007).Article 

    Google Scholar 
    Jordán, F., Liu, W. & Davis, A. J. Topological keystone species: Measures of positional importance in food webs. Oikos 112, 535–546 (2006).Article 

    Google Scholar 
    Jordán, F., Okey, T. A., Bauer, B. & Libralato, S. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216, 75–80 (2008).Article 

    Google Scholar 
    Jiang, L. Determination of keystone species in CSM food web: A topological analysis of network structure. Netw. Biol. 5, 13 (2015).
    Google Scholar 
    Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson, N. J. & Valero-Pacheco, E. Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz. Mexico Based By-catch Fish. Res. 87, 46–57 (2007).
    Google Scholar 
    Abascal-Monroy, I. M. et al. Functional and structural food web comparison of Terminos Lagoon, Mexico in Three Periods (1980, 1998, and 2011). Estuaries Coasts 39, 1282–1293 (2016).Article 

    Google Scholar 
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Windsor, F. M. et al. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks. J. Appl. Ecol. 58, 2770–2782 (2021).Article 

    Google Scholar 
    Klaise, J. & Johnson, S. The origin of motif families in food webs. Sci. Rep. 7, 16197 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Estrada, E. Characterization of topological keystone species. Ecol. Complex. 4, 48–57 (2007).Article 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. Impacts on stream food webs of native and exotic forest: An intercontinental comparison. Ecology 84, 145–161 (2003).Article 

    Google Scholar 
    Bascompte, J., Melian, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. 102, 5443–5447 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Food-web aggregation, methodological and functional issues. Oikos 122, 1606–1615 (2013).Article 

    Google Scholar 
    Patonai, K. & Jordán, F. Aggregation of incomplete food web data may help to suggest sampling strategies. Ecol. Model. 352, 77–89 (2017).Article 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. Is resolution the solution?: The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshw. Biol. 44, 413–422 (2000).Article 

    Google Scholar 
    Abarca-Arenas, L. G. & Ulanowicz, R. E. The effects of taxonomic aggregation on network analysis. Ecol. Model. 149, 285–296 (2002).Article 

    Google Scholar 
    Jordán, F. & Osváth, G. The sensitivity of food web topology to temporal data aggregation. Ecol. Model. 220, 3141–3146 (2009).Article 

    Google Scholar 
    European Commission. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions: EU Biodiversity Strategy for 2030 Bringing nature back into our lives. Preprint at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (2020).European Parliament. European Parliament resolution of 9 June 2021 on the EU Biodiversity Strategy for 2030: Bringing nature back into our lives (P9_TA(2021)0277). Preprint at https://www.europarl.europa.eu/doceo/document/TA-9-2021-0277_EN.html (2021).Felson, A. J. & Ellison, A. M. Designing (for) Urban Food Webs. Front. Ecol. Evol. 9, 582041 (2021).Article 

    Google Scholar 
    Warren, P. et al. Urban food webs: Predators, prey, and the people who feed them. Bull. Ecol. Soc. Am. 87, 387–393 (2006).Article 

    Google Scholar 
    De Montis, A., Ganciu, A., Cabras, M., Bardi, A. & Mulas, M. Comparative ecological network analysis: An application to Italy. Land Use Policy 81, 714–724 (2019).Article 

    Google Scholar 
    Poisot, T. et al. Mangal—making ecological network analysis simple. Ecography 39, 384–390 (2016).Article 

    Google Scholar 
    Morris, Z. B., Weissburg, M. & Bras, B. Ecological network analysis of urban–industrial ecosystems. J. Ind. Ecol. 25, 193–204 (2021).Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: Taxonomic search and retrieval in R. F1000 Research 2, 191 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkX. in Proceedings of the 7th Python in Science Conference (eds. Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (2008).Scotti, M. & Jordán, F. Relationships between centrality indices and trophic levels in food webs. Community Ecol. 11, 59–67 (2010).Article 

    Google Scholar 
    Gouveia, C., Móréh, Á. & Jordán, F. Combining centrality indices: Maximizing the predictability of keystone species in food webs. Ecol. Indic. 126, 107617 (2021).Article 

    Google Scholar 
    Allesina, S. & Pascual, M. Googling Food Webs: Can an Eigenvector Measure Species’ Importance for Coextinctions?. PLoS Comput. Biol. 5, e1000494 (2009).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Patro, S. G. K. & Sahu, K. K. Normalization: A preprocessing stage. https://doi.org/10.48550/ARXIV.1503.06462(2015).Reback, J. et al. pandas-dev/pandas: Pandas 1.2.3. (Zenodo, 2021). 10.5281/ZENODO.4572994.Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Waskom, M. et al. mwaskom/seaborn: v0.11.1 (December 2020). (Zenodo, 2020). 10.5281/ZENODO.4379347.Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).Article 

    Google Scholar 
    Gao, P. & Kupfer, J. A. Uncovering food web structure using a novel trophic similarity measure. Ecol. Inform. 30, 110–118 (2015).Article 

    Google Scholar 
    Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: Two levels of group detection in food webs. J. R. Soc. Interface 12, 20141176 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rudiger, P. et al. holoviz/holoviews: Version 1.14.2. (Zenodo, 2021). 10.5281/ZENODO.4581995.Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    China economy-wide material flow account database from 1990 to 2020

    China economy-wide material flow identification: system boundary, processes, and materialsThe first step is to define an economy, i.e., the economic (rather than geographical) territory of a country in which the activities and transactions of producer and consumer units are resident. Additionally, the period is a total of thirty-one years, from 1990 to 2020, for the following reasons: (1) statistics before 1990 are of poor quality and are insufficient to allow us to conduct analyses; and (2) so far, statistics have just recently been updated to cover the year of 2020. Furthermore, the analytical framework (hereinafter referred to as China EW-MFA) is developed to explore material utilisation and its environmental consequences within China’s economy.The general structure of China EW-MFA is depicted in Fig. 1, which comprises seven processes. (1) Input of extracted resources: domestic natural resources are extracted from the environment to the economy through human-controlled means. (2) Output of domestic processed materials: after being processed by manufacturers, materials are released from the economy into the environment in the form of by-products and residues, which can be classified by their destinations (i.e., air, land, and water) and pathways (dissipative use and losses). (3) Input and (4) output by cross-border trade: by imports and exports, materials are transported between China’s economy and the economies of the rest of the world. (5) Input and (6) output of balancing items (BI): sometimes, materials identified in the output processes are not considered by inputs, which needs to be balanced. For example, the utilisation of fossil energy materials by combustion causes the emission of carbon dioxide (CO2) into the air, which is identified as system output, but requirements of oxygen (O2) as system input are not counted. (7) Additions to the system: within the economy, materials would have been added to the economy in the form of buildings, infrastructures, durable goods, and household appliances, which are referred to as the net additions to stock (NAS).Fig. 1The general structure of China EW-MFA. To note, white data cells can be obtained directly from official statistics, whereas grey cells are estimated.Full size imageThe last step is to specify the materials concerned in each process. Four types (in blue boxes in Fig. 1) of natural materials are extracted and input into the economy in China, i.e., harvested biomass (33 items), mined metal ores (28 items), quarried non-metallic minerals (155 items), and mined fossil energy materials (6 items in 3 classes). Materials (green boxes) released into the air are greenhouse gases (e.g., CO2, methane (CH4), dinitrogen oxide (N2O)), air pollutants (e.g., particulate matter 10 (PM10), black carbon (BC)), and toxic contaminants of mercury (Hg) in divalent, gaseous elemental, and particulate forms. Those released into the water are inorganic matters (of nitrogen (N), phosphorus (P), Arsenic (As), and four heavy metals of lead (Pb), mercury (Hg), cadmium (Cd), and chromium (Cr)) and organic matters of cyanide, petroleum, and volatile phenol. Materials released into the land are waste disposal in uncontrolled landfills, which are illegal in China. Some materials are dissipated by application, for example, fertilisers, compost, sewage sludge being applied to agricultural land, and pesticides being used to cultivate crops. Some would be unintentionally dissipated from abrasion, corrosion, erosion, and leakages. Materials (in red boxes) are BI, which includes the input of O2 and output of water vapour in the fossil energy material combustion process, the input of O2 and output of water vapour and CO2 in the respiration process of human and cultivated livestock, input and output of water in imported and exported beverages, and the output of water from domestically extracting crops.There are some messages needed to be mentioned: (1) Material of water is not included since its flow volume is more substantial than others, which needs to be independently analysed; (2) Activities of foreign tourists, cross-border transfer of emissions through natural media, etc. are excluded. (3) To be clear, we refer to a data cell as a specific flow process of a specific substance in a specific year, e.g., the number of cereals domestically extracted in 2020.Data acquisition: sources and collectionBased on our China EW-MFA, we first analyse accessibility, reliability, completeness, rules of redistribution, etc., for each data source (yellow boxes in Fig. 1), including China national database, China rural statistical yearbooks, USGS mineral yearbooks, etc. The complete list of data sources and descriptions are presented in Table 1. Then, we store the originally retrieved data source files in a semi- or unstructured format (e.g., CSV, PDF). Next, we manually collect these statistics and reorganise them according to China EW-MFA material types and processes. However, only a tiny part of retrieved statistics can be applied directly, as specified in black colour in Fig. 1.Table 1 Data sources and descriptions.Full size tableData compilation: parameter localisation and data estimationA few inconsistencies in statistics were noticed, which would result in data incompleteness. For example, the domestic extraction of vegetables has been accounted for and published since 1995, before which statistics are unavailable. The domestically harvested timber has been measured in the volume unit of cubic metres, which needs to be converted into the mass unit via density conversion factor. Therefore, acquired statistics have to be estimated, which are specified in grey colour in Fig. 1. The following section elaborates on each data cell’s estimation methods, localised parameters, references, etc. In our uploaded data files, the original statistics, data sources, and compilation methods (using formulas) are all implemented, as explained in the Data Records Section.

    The input of natural resources by domestic extraction

    Vegetables in crops: Statistics of vegetable production (WVegetables)16 during 1990–1994 are unavailable, which is estimated based on the relationship between the production yield (PYield) and areas (AVegetables), as shown in Eq. 1. Here, PYield is assumed to remain constant at 27.04 thousand tonnes per thousand hectares from 1990 to 1995, derived by dividing vegetable production (257,267 thousand tonnes) by areas (9,515 thousand hectares) in 1995.$${W}_{Vegetables}={P}_{Yield}times {A}_{Vegetables}$$
    (1)

    Nuts in crops: One of them is chestnuts. The chestnut production in 2020 is unavailable, which is assumed to be the same as in 2019.

    Crop residues in biomass residues: They are referred to as that harvested production of crops that do not reach the market to be sold but are instead employed as raw materials for commercial purposes such as energy generation and livestock husbandry. This number (Wcrop residues) can be calculated by first determining the number of crop residues available from primary crop production (Wcrop) and the harvest factor (Pharvest factor), and then using the recovery rate (Precovery rate) to determine the number of crop residues used by the economy, as shown in Eq. 2. These parameters have been localized by previous studies17,18, which are adopted in this study, i.e., wheat (1.1 for Pharvest factor and 0.463 for Precovery rate), maize (1.2, 0.463), rice (0.9, 0.463), sugar cane (0.5, 0.9), beetroots (0.7, 0.9), tuber (0.5, 0.463), pulse (1.2, 0.7), cotton (3.4, 0.463), fibre crops (1.8, 0.463), silkworm cocoons (1.8, 0.463), and oil-bearing crops (1.8, 0.463).$${W}_{cropresidues}={W}_{crop}times {P}_{harvestfactor}times {P}_{recoveryrate}$$
    (2)

    Roughage of grazed biomass and fodder crops in biomass residues: In China, the grazed biomass for roughage includes annual forage and perennial forage, whereas fodder crops comprise straw feed, processed straw feed, and all other fodder crops. However, information19 on grazed biomass production is only accessible from 2006 to 2018, whereas fodder crop statistics are only available from 2015 to 2017. Equation 3 and Eq. 4 can be used to estimate unavailable statistics. To note, we assume that China’s domestic roughage supply structure has remained unaltered, which has two meanings. The proportion of total domestic roughage production (WDomestic production) in requirement (WRoughage requirement) has remained constant, while the proportion (PSupply fraction) of grazed biomass and fodder crop in domestic roughage production has been unchanged. The requirement (WRoughage requirement) is determined by the quantity of livestock (QLivestock) and their annual feeding amount (PAnnual intake). PAnnual intake (in tonnes per head per year) has been localised for each type of livestock4, with 4.5 for live cattle and buffaloes, 0.5 for sheep and goats, 3.7 for horses, and 2.2 for mules and asses.$${W}_{Roughagerequirement}={Q}_{Livestock}times {P}_{Annualintake}$$
    (3)
    $${W}_{Domesticproduction}={W}_{Roughagerequirement}times {P}_{Supplyfraction}$$
    (4)

    Timber in wood: As illustrated in Eq. 5, wood production16 is reported in volume units of cubic metres (VTimber), which need to be converted into mass units (WTimber) via density (PDensity). The parameter PDensity is assumed to be 0.58 tonnes per cubic metre, calculated by averaging 0.52 for coniferous types and 0.64 for non-coniferous ones4.$${W}_{Timber}={V}_{Timber}times {P}_{Density}$$
    (5)

    Non-ferrous metals in metal ores: Non-ferrous metal statistics are derived from two sources. China statistics20 are measured in gross ore (WMetal ores in gross ore) but are only available from 1999 to 2017, whereas the USGS statistics21 cover the period of 1990 to 2020 but they are measured in metal or concentrate content (WMetal ores in other units). Therefore, USGS statistics need to be converted with an empirical unit conversion factor (PUnit conversion factor) before being applied to estimate unavailable statistics reported by China, as shown in Eq. 6. Conversion factors are localised for each non-ferrous metal in each year from 2000 to 2017 by using USGS statistics divided by China statistics and then averaged after removing the highest value and the lowest value (i.e., trimmed mean). This factor could capture the general relationship between statistics from two separate sources, which can be used in other long time-series studies on resource management on a particular element in China.$${W}_{Metaloresingrossore}={W}_{Metaloresinotherunits}/{P}_{Unitconversionfactor}$$
    (6)

    Non-metallic minerals: The official China-specific information on non-metallic mineral domestic production is available between 1999 and 201720, the rest of which could be estimated from USGS statistics (1990–2020)21. Also, two differences in reporting standards are observed resulting from the material coverages and reporting units. China statistics contain eighty-eight materials in mineral ores, whereas the USGS only includes twenty in the concentrate unit. Therefore, a conversion factor is developed in this estimation, as shown in Eq. 7. This conversion factor is applied to the total amount of non-metallic mineral production, which is assumed to have been constant from 1990 to 1999 at 11.38% (1999) and 12.56% (2017) from 2017 to 2020.$${W}_{Mineralsingrossore}={W}_{Mineralsinotherunits}/{P}_{Conversionfactor}$$
    (7)

    Coal in fossil energy materials: Coal, mined in China, includes raw coal, peat, stone coal, and oil shale. Except for raw coal, statistics for the rest are only available from 1999 to 201720. The unavailable data (WOther coals) is estimated using Eq. 8 under the assumption that the structure of the coal supply in China barely changes. That is, the proportion (PSupply fraction) of peat, stone coal, and oil shale in raw coal production (WRaw coal) remains constant, so the 1999 proportion is applied to all years before that (earlier years of 1990–1998), while the 2017 proportion is used to the recent years between 2018 and 2020. For example, PSupply fraction for oil shale production was assumed to be 0.014% during 1990–1999, calculated by dividing raw coal production (1,250,000) by oil shale production (179) in 1999. PSupply fraction in the earlier and the recent years are 0.007% and 0.001% for peat, 0.203% and 0.031% for stone coal, and 0.014% and 0.067% for oil shale.

    $${W}_{Othercoals}={W}_{Rawcoal}/{P}_{Supplyfraction}$$
    (8)

    The output of processed materials by release

    Materials released into the air: In China, thirteen materials are released into the air, as shown in Fig. 1. The emission of sulphur dioxide (SO2) is reported in China environmental statistical yearbooks22,23, while the rest is specified in the EDGAR24. However, in EDGAR, statistics for recent years have not yet been updated, which are estimated with the value in the most recent year in our database. For example, nitrous oxide (NOx) records are only available for the years prior to 2016, with 26,365 thousand tonnes in 2015 and 26,837 in 2014. As a result of the observed decreasing trend in NOx emissions, NOx emission data for 2016–2020 is estimated to be 26,000 thousand tonnes. This estimate may be subjective due to constraints, but it would be aligned with European statistics, allowing for international comparisons. Data can be updated after the EDGAR statistics have been updated.

    Materials released into the water: Ten principal materials have been found in China wastewater (both industrial and municipal) that are nitrogen (N), phosphorus (P), organic pollutants of petroleum, volatile phenol and cyanide, heavy metals of mercury (Hg), lead (Pb), cadmium (C·d), and the hexavalent chromium (Cr6+), and arsenic (As). Many statistics22,23 have been of poor quality (e.g., inconsistent material coverages between years). Given that the statistics of pollutants in industrial wastewater cover more periods and contain fewer abnormal observations, the total material emissions can be approximated from those of industrial wastewater. Equations 9 and 10 show the estimation processes. The materials in industrial wastewater (WIndustrial materials) are first identified using material mass concentration (PConcentration) and the weight of industrial wastewater (WIndustrial wastewater), and then the materials in total wastewater (WTotal materials) are identified using the proportion (PContribution) of materials in industrial wastewaters (WIndustrial materials) to the total. The assumption is that PConcentration and PContribution change gradually between years, which enables to use linear interpolation method to estimate unavailable parameters. Consider cyanide: its PConcentration was 23.61 (1‰ ppm) in 2005 and 37.31 in 2002, which was assumed to be 28.18 in 2004 and 32.74 in 2003. PConcentration was assumed to be 100% throughout the years for cyanide because all cyanide emissions in China are driven by industrial wastewater discharges. Later, the total material emissions can be derived by dividing the industrial wastewater mass by PConcentration.$${W}_{Industrialmaterials}={W}_{Industrialwastewater}times {P}_{Concentration}$$
    (9)
    $${W}_{Totalmaterials}={W}_{Industrialmaterials},/,{P}_{Contribution}$$
    (10)

    Materials released to the land: This is zero because uncontrolled landfills are illegal in China.

    Materials dissipated by organic fertiliser use: In China, manure is the primary organic fertiliser, which is excreted by pigs, dairy cows, calves, sheep, horses, asses, mules, camels, chickens, and other animals. As shown in Eq. 11, the manure production (WManure) is estimated through the amounts of raised livestock (QLivestock, heads), the weight of daily manure production (PManure production, kilograms per head per day), the number of days they are raised (PFeeding period, in days per year), and the moisture content of their manure (PDry matter, %) for each type of animal. These parameters are region-specific, which have been localised by Chinese scholars25,26,27 and listed in Table 2.$${W}_{Manure}={Q}_{Livestock}times {P}_{Manureproduction}times {P}_{Feedingperiod}times {P}_{Drymatter}$$
    (11)
    Table 2 Localised parameters for animal manure production.Full size table

    Materials dissipated by mineral fertiliser use: The mineral fertilisers used in China are four types, i.e., nitrogen (N), phosphorus (P), potash (K), and compound. Their usage (WFertiliser usage) is measured in nutrient mass (WNutrient materials), which needs to be converted into the gross mass by dividing their nutrient content (PNutrient content). Equation 12 shows the estimation. This parameter of PNutrient content is localised by the Ministry of Agriculture and Rural Affairs of China28 as 29%, 22%, 35%, and 44% for N- bearing, P- bearing, K-bearing, and compound fertilisers, respectively.$${W}_{Fertiliserusage}={W}_{Nutrientmaterials}/{P}_{Nutrientcontent}$$
    (12)

    Materials dissipated by sewage sludge: Sewage sludge is the residue generated by municipal wastewater treatment. As demonstrated in Eq. 13, its dissipative use (Wss, dissipation) is the untreated amount of production (Wss, production), represented by the parameter of Pss, dissipation rate. Sewage sludge production (Wss, production) statistics are only available for the years 2006–202029, and data for the remaining years can be estimated using Eq. 14 and Eq. 15. In Eq. 14, Pss, production rate represents the relationship between sewage sludge production (Wss, production, 2006–2020) and wastewater treatment (Www, treatment, 2002–2020), and in Eq. 15, Pww, treatment efficiency represents the relationship between the quantity of treated wastewater (Www, treatment, 2002–2020) and the treatment capacity (Www, treatment capacity, 1990–2020). In this estimation, three assumptions are made. The first is to estimate Www, treatment, Pww, treatment efficiency is assumed to be unchanged at 63% during 1990–2001, given it has been increasing from 63% in 2002 to ~80% in recent years. The second is that, in order to estimate Wss, production, Pss, production rate is assumed to be unchanged at 3.5 between 1990 and 2005, suggesting 3.5 tonnes of sewage sludge are generated by processing 10,000 cubic metres of wastewater. This assumption is determined by that Pss, production rate is approximately 3.5 during 2006–2010 while declines sharply and stabilises at around two during 2011–2020. The last is, to estimate the Wss,dissipation, Pss,dissipation rate is assumed to be 5% between 1990 and 2005, given it has been around 5% during 2006–2020.$${W}_{ss,dissipation}={W}_{ss,production}times {P}_{ss,dissipationrate}$$
    (13)
    $${W}_{ss,production}={W}_{ww,treatment}times {P}_{ss,productionrate}$$
    (14)
    $${W}_{ww,treatment}={W}_{ww,treatmentcapacity}times {P}_{ww,treatmentefficiency}$$
    (15)

    Materials dissipated by composting: Composting is a natural process that uses microbes to turn organic materials into other products, which are then used for fertilising and entering the environment. In China, composting has been used to treat two materials: feces and municipal waste, whose quantities (WComposting) were only available from 2003 to 201029. The unavailable data can be estimated using Eq. 16. The dry weight of materials treated by composting (WComposting) is proportionally related to the fresh weight of all treated materials (WTotal), the proportion treated by composting (PComposting rate), and the dry content (PDry matter). Considering that China’s composting capacity has been declining since 2001 due to the implementation of waste incineration power generation technologies30, Pcomposting rate is assumed to be the same as it was in 2003 (9.5%) between 1990 and 2002, and 1.5% in 2010 between 2011 and 2020. The parameter of PDry matter is 50%4.$${W}_{Composting}={W}_{Total}times {P}_{Compostingrate}times {P}_{Drymatter}$$
    (16)

    The input and output by cross-border trade. Statistics of imports and exports have been gathered since 1962 and stored in the UN Comtrade database31. However, the data quality issue of outliers, and missing values, especially in weight, is reportedly identified. In our previous work, we addressed these issues, and an improved database32 is provided. Details about our estimation methods can be found in publications33,34,35. As UN Comtrade lists 5,039 different commodity types (in 6-digit HS0 commodity code), yet only 18 material types are specified in the China EW-MFA, UN Comtrade statistics need to be aligned to the China EW-MFA framework. Therefore, we compared each commodity and each material type between them and established a correspondence table to map UN Comtrade commodity types onto our EW-MFA material types. For example, non-ferrous metal materials of China EW-MFA include commodities, such as copper ores and concentrates (260300 HS0 code), silver powder (710610), manganese, articles thereof, and waste or scrap (811100), etc., whereas biomass residues include cereal straw and husks (121300), lucerne meal and pellets (121410), and other fodder and forage products (121410). This correspondence table between HS0 and EW-MFA classification for imports and exports is provided in Supplementary File 1.

    The input of balancing items

    O2 required for combustion: In BI, requirements for materials can be abstracted as equalling exogenous demands minus intrinsic supplies (Eq. 17). Three parts (two demands and one supply) are considered for O2 requirements by the combustion process: (1) demanding exogenous oxygen to oxidise elements (e.g., carbon, sulphur, nitrogen, etc., except for hydrogen) released into the air, (2) demanding exogenous oxygen to oxidise the hydrogen embedded in fossil energy materials, and (3) providing intrinsic oxygen embedded in fossil energy materials. The first part can be estimated via Eq. 18 by multiplying air emissions (WEmissions) of CO2, N2O, NOx, CO, and SO2 by their oxygen content (POxygen content). For the second (Eq. 19), the oxygen demand is estimated based on the principle of mass balance by converting the hydrogen amount of domestically utilised fossil energy materials (WFossil fuel materials × PHydrogen content) via molar mass conversion factor (PMass conversion factor). PMass conversion factor equals 7.92, derived by the molar mass of one oxygen (16 g/mol) divided by that of two hydrogen atoms (2 × 1.01 g/mol). The last is the intrinsic supplies from fossil fuel materials, which is identified via Eq. 20 by multiplying the domestically utilised amount of fossil fuel materials (WFossil fuel materials) by their oxygen content (POxygen content). The parameters in this estimation are presented in Table 3. As a footnote here, the domestically utilised amount is referred to as the domestic material consumption (DMC), which equals domestic extraction (DE) plus imports (IM) and minus exports (EX).$${W}_{Requirements}={W}_{Demands}-{W}_{Supplies}$$
    (17)
    $${W}_{Demands}={W}_{Emissions}times {P}_{Oxygencontent}$$
    (18)
    $${W}_{Demands}={W}_{Fossilfuelmaterials}times {P}_{Hydrogencontent}times {P}_{Massconversionfactor}$$
    (19)
    $${W}_{Supplies}={W}_{Fossilfuelmaterials}times {P}_{Oxygencontent}$$
    (20)
    Table 3 Parameters related to combustion processes4.Full size table

    O2 required for respiration: O2 is required by the metabolic activities of living organisms, the majority of which are humans and livestock. Bacteria are another sort of organism, which are not included in this estimation because their O2 requirements are too small to be quantified. The respiration-required O2 is related to the total quantity (QOrganisms) and their respiration activity by organism types, as shown in Eq. 21. The respiration activity is represented by the respiration requirement coefficient (PRespiration requirement coefficient), which is the average quantity of O2 that each organism utilises to maintain the metabolic activity, as listed in Table 4.$${W}_{Demands}={Q}_{Organisms}times {P}_{Respirationrequirementcoefficient}$$
    (21)
    Table 4 Parameters related to respiration processes4.Full size table

    Water required for the domestic production of exported beverages: The exported beverages are produced domestically using domestically extracted materials, especially a large amount of water. The weight of water is considered in the output by cross-border trade but is not included in the domestic extraction input. The resulted imbalance can be identified by specifying the water weight in beverages, i.e., multiplying the traded beverage weight (WMaterials) by a parameter of the water content (PWater content), as given in Eq. 22. Fruit and vegetable juices (2009 in HS0 code) and beverages (code 22) are covered in the improved UN Comtrade database32, with PWater content of 85% for the first and 90% for the latter4.

    $${W}_{Water}={W}_{Materials}times {P}_{Watercontent}$$
    (22)

    The output of balancing items.

    Water vapour from combustion: Water vapour emissions by domestically combusting fossil fuel materials are contributed by two paths. The direct evaporation of embedded water is the first path (Eq. 23), which can be derived by multiplying the DMC of fossil fuel materials by their moisture content (PMoisture content). The PMoisture content for each type of fossil fuel material is listed in Table 3. The other is the generation of water vapour during hydrogen oxidation, which can be calculated by converting the oxidised weight of hydrogen to the water weight using the molar mass conversion factor (PMass conversion factor), as given in Eq. 24. PMass conversion factor equals 8.92 by dividing the molar mass of water (18.02 g/mol) by that of two hydrogen atoms (2 × 1.01 g/mol).$${W}_{Water}={W}_{Fossilfuelmaterials}times {P}_{Moisturecontent}$$
    (23)
    $${W}_{Water}={W}_{Fossilfuelmaterials}times {P}_{Hydrogencontent}times {P}_{Massconversionfactor}$$
    (24)

    Water vapour and CO2 from respiration: Respiration activities of organisms will produce water vapour and CO2, whose estimation is similar to that of O2 requirements. As shown in Eq. 25, the respiration-caused gas emissions are related to the number of organisms (QOrganisms) and the respiration activity by organism types. The latter is represented by the parameter of respiration emission coefficient (PRespiration emission coefficient), which is specified in Table 4 for water vapour and CO2 for each type of organism.$${W}_{Emissions}={Q}_{Organisms}times {P}_{Respirationemissioncoefficient}$$
    (25)

    Water from imported beverages: The estimation approach is the same as water by the domestic production of exported beverages, as described in Eq. 16.

    Water in biomass products: Usually, the input of biomass products by domestic extraction16 has been measured in fresh weight, but their corresponding output29 by sewage sludge, composting, etc., are in dry weight, leading to an imbalance in water weight. The water weight in biomass products is calculated by multiplying their domestic extraction amount in fresh weight (WBiomass) by a parameter of moisture content at harvest (PMoisture content), as shown in Eq. 26. The values of PMoisture content by biomass products are presented in Table 5.Table 5 The moisture content at harvest for each biomass product4.Full size table

    $${W}_{Water}={W}_{Biomass}times {P}_{Moisturecontent}$$
    (26)
    Material flow quantificationThe above attempts have quantified material inputs and outputs by flows and presented a detailed profile of material utilisation for each material in China’s economy. In order to depict the economy in a more general way, EW-MFA indicators are assessed by aggregating flows by materials or periods as below.

    Domestic extraction (DE): is referred to as natural materials that are extracted from the domestic environment and are used in the domestic economy, i.e., the total input of natural materials by extraction.

    Domestic processed output (DPO): is referred to as materials that are released to the domestic environment after being processed in the domestic economy, i.e., the total output of processed materials by release.

    Import (IM): is referred to as all goods (in the form of raw materials, semi-finished materials, and final products) that originated from other economies and are further used in the domestic economy. It is calculated as the sum of all imported goods.

    Export (EX): is referred to as all goods that originated from the domestic economy and are transported to other economies to be used. It is calculated as the sum of all exported goods.

    Domestic material input (DMI): is referred to as materials that originated from the domestic environment by extraction and other economies and are available (to be used or to be stored) for the domestic economy. It is calculated as the sum of DE plus IM, as shown in Eq. 27.$$DMI=DE+IM$$
    (27)

    Domestic material consumption (DMC): is referred to as materials that are directly used in the domestic economy after parts of them are exported to other economies. It is calculated as the difference between DMI and EX.

    Physical trade balance (PTB): is referred to as a surplus or deficit of materials for the domestic economy. It is calculated as the difference between IM and EX.

    Net additions to stock (NAS): is referred to as materials that remain in the domestic economy. It is calculated by taking BI items into account, as shown in Eq. 28.

    $$NAS=DMC+B{I}_{in}-DPO-B{I}_{out}$$
    (28) More

  • in

    Genetic structure and trait variation within a maple hybrid zone underscore North China as an overlooked diversity hotspot

    Genetic structure of the parental populationBased on the lnPD and ΔK values obtained using STRUCTURE, we identified two genetic groups within the DHS Acer population (Supplementary Fig. S1). The q value from STRUCTURE analysis represents the proportion of ancestral origin28 (Fig. 2a). Among the 70 individual trees, 72.9% were assigned a q value smaller than 0.1 or larger than 0.9, thereby signifying a typical bimodal distribution (Fig. 2b). Individuals with q value greater than 0.9 and consistent genetic origin from the NEA region were defined as the NEA lineage (hereafter “NEA-DHS”), whereas those with values less than 0.1 and with consistent genetic origin from the SEA region were defined as the SEA lineage (hereafter “SEA-DHS”). Individuals with intermediate q value between 0.1 and 0.9 were defined as hybrid genetic types (hereafter “Hybrid-DHS”). Accordingly, we identified 27 SEA-DHS (38.6%), 24 NEA-DHS (34.3%), and 19 Hybrid-DHS (27.1%) (Fig. 2b).Figure 2Genetic structure of the parental and offspring population. (a) Bar plots illustrating the genetic composition of the adult (leaf) and offspring (fruit) populations in the Daheishan National Nature Reserve (DHS). Each individual is represented by a line partitioned into color segments corresponding to its ancestral proportion. Red color represents the ancestral proportion of Southern East Asia lineage. Green color represents the ancestral proportion of Northern East Asia lineage. Black lines in bar plots of leaf population separate individuals with ancestral proportion (q value) bigger than 0.9 or smaller than 0.1 from hybrids (0.1  0.5) produced by the SEA-DHS were obtained from a single tree, which was identified as SEA-DHS based on the DHS-only dataset, although it was indicated to be Hybrid-DHS based on the whole-range dataset. The Hybrid-DHS maternal trees produced 17.6% pure SEA-DHS seeds, 57.6% pure NEA-DHS seeds, and 24.7% hybrid seeds.Flowering phenologyThe sexual system of Acer has four phenotypes: duodichogamous, protogynous, protandrous, and male31. Hence, there are three functional sex types: (1) “Male I” flowers open earlier than “Female” flowers, with mature stamens, no style, and ovary; (2) “Female” flowers have mature pistils, short filaments, and indehiscence anthers; (3) “Male II” flowers open later than “Female” flowers, with mature stamens, ovaries, and separated stigmas. Duodichogamy is characterized by “Male I,” “Female,” and “Male II” types; protandry by “Male I” and “Female” types; and protogyny by “Female” and “Male II” types31.During the flowering season, we monitored a total of 10,074 flowers produced by 29 trees (Fig. 2d), among which one tree (SEA-DHS) was protandrous, four trees (three Hybrid-DHS and one NEA-DHS) were protogynous, and the remaining 24 trees were duodichogamous. We observed that the blooming phenology of SEA-DHS and NEA-DHS differed significantly to most assessed phenological indices, with a single exception being a marginally significant difference in the peak blooming time of Male I (Table 1). Compared with NEA-DHS, SEA-DHS were characterized by significantly later flowering phenology, with Male I commencement and cessation of blooming being on average two and three days later, respectively. Similarly, the commencement, peak, and cessation of Female occurred later by averages of 4, 4, and 5 days, respectively, whereas those of Male II occurred later by 5, 4, and 5 days, respectively. Furthermore, the duration of blooming was significantly longer in the SEA-DHS group than in the NEA-DHS group by three days. In the case of Hybrid-DHS, the values obtained for all assessed phenological indices were intermediate between those of the two parental types. Among these, the values of the six indices differed significantly from one or the other parental types, with the majority (5/6) differing from those of the SEA-DHS. Thus, phenologically, Hybrid-DHS appeared to be closer to NEA-DHS.Table 1 Flowering phenology of SEA-DHS, Hybrid-DHS, and NEA-DHS.Full size tableHowever, despite the differing phenology of the SEA-DHS and NEA-DHS, we observed instances of overlap in the blooming periods of male or female flowers in one genetic type with those of flowers of the opposite sex in another genetic type. For example, the peak of Female among NEA-DHS (11.67 ± 0.67) was found to coincide with the peak of Male I (11.44 ± 1.06; p = 0.879) in SEA-DHS. Similarly, Female blooming in the SEA-DHS peaked (16.11 ± 1.09) just 1 d after the peak of Male II (15.50 ± 0.43) in the NEA-DHS (p = 0.667), which at this time still retained an abundance of male flowers in bloom. In contrast, we detected no overlapping phenology with respect to the blooming of Male I of NEA-DHS or Male II of SEA-DHS with the Female in another genetic type.Morphological variation of leaves and fruitLeaves Among the eight leaf indices, all except InfectionRatio were significantly different between lineages. Generally, the leaves of NEA-DHS were found to have seven lobes, whereas those of SEA-DHS were typically five lobed (Lobes#), thereby contributing to significantly larger leaves in NEA-DHS than in SEA-DHS (TotalArea). Furthermore, NEA-DHS leaves had shorter and wider central lobes (CentralLength and CentralWidth), as well as an earlier and narrower inflection of the central lobes (InflectionLength and InflectionWidth), compared with those of SEA-DHS (Table 2). Six indices had correlation coefficients of less than 0.7, which were used for principal component analysis (PCA) analysis (Supplementary Table S2). The first two axes of the PCA were found to explain 63.7% of the variation in leaf morphology (Fig. 3a), with InflectionLength, CentralLength, and CentralRatio contributing the most to the first axis (38.2%), whereas TotalArea contributed the most to the second axis (25.5%) (Supplementary Table S3). The leaves of SEA-DHS and NEA-DHS plants were largely clustered in separate groups (Fig. 3a). However, all indices were continuous variables with large overlaps between the lineages (Table 2). For example, NEA-DHS had a significantly larger leaf area (21.06–88.70 cm2) than SEA-DHS (11.34–70.09 cm2). The shape of the central lobe is another major leaf trait that distinguishes between the two species. NEA-DHS had a shorter and wider central lobe (CentralRatio:0.67–2.49), while SEA-DHS had a longer and narrower central lobe (CentralRatio:0.9–3.46).Table 2 Morphological variation in the leaves and fruits of Acer trees in the Daheishan National Nature Reserve.Full size tableFigure 3Morphological variation in the leaves (a) and fruits (b) of southern and northern East Asia lineages of the Acer species complex in the Daheishan National Nature Reserve based on principal component analysis. SEA-DHS: Southern East Asia lineage of the Acer species complex in the DHS; NEA-DHS: Northern East Asia lineage of the Acer species complex in the DHS; Hybrid-DHS: hybrids between SEA-DHS and NEA-DHS lineages.Full size imageWith regard to Hybrid-DHS, the leaves were morphologically intermediate between those of the two parental types (Fig. 3a), as were the values of the assessed morphological trait indices (Table 2).Fruits 11 indices of fruits were significantly different between lineages. NEA-DHS tend to be characterized by smaller fruits (FruitLength and FruitWidth), seeds (SeedLength, SeedWidth and JunctionWidth), and fruit wings (WingLength and WingWidth). Moreover, the seed wings of NEA-DHS fruits are typically oriented at an obtuse angle, whereas those of SEA-DHS fruits tend to be aligned at a right angle (FruitAngle). The length ratio of the wing and seed (Wing:Seed) was larger in NEA-DHS than in SEA-DHS (1.24 vs 1.06, respectively, Table 2). Eight indices had correlation coefficients of less than 0.7, which were retained for PCA analysis (Supplementary Table S4). The first two axes of the PCA explained 58.4% of the variation in fruit morphology (Fig. 3b), with JunctionWidth and SeedLength contributing the most to the first axis (35.1%), whereas SeedRatio and WingRatio contributed the most to the second axis (23.3%) (Supplementary Table S3). The fruits of SEA-DHS and NEA-DHS plants were largely clustered in separate groups, with most fruits of SEA-DHS having negative values in Axis 1, while most fruits of NEA-DHS having positive values (Fig. 3b). Both JunctionWidth and SeedLength in Axis 1 reflect the size of the seed. NEA-DHS had smaller seed (SeedLength: 0.63–1.21 cm, SeedWidth:0.43–0.75 cm), while larger seed in SEA-DHS (SeedLength:0.79–1.49 cm, SeedWidth:0.49–0.93 cm). All indices were continuous variables with large overlaps between the lineages (Table 2).The morphology of Hybrid-DHS fruits was generally intermediate between that of the two parental types (Fig. 3b), as reflected in the values of the different morphological traits. The exceptions in this regard were FruitLength, WingLength, as well as two ratio indices (SeedRatio and WingRatio), with hybrid trees typically producing longer fruit with longer fruit wings (Table 2).Ecological niche divergence between NEA and SEAWe found a positive correlation between q value from Structure analysis and altitude (Pearson’s r = 0.83, p  670 m), whereas SEA-DHS was clustered at the foothill ( More

  • in

    Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)

    Darwin, C. On the Origin of Species. Facsimile of the First Edition (Harvard University Press, 1859).
    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sillero, N., Reis, M., Vieira, C. P., Vieira, J. & Morales-Hojas, R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 27, 1549–1561 (2014).CAS 
    PubMed 

    Google Scholar 
    Ramos, R. et al. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 6, 23447 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, B., Cheng, J., Ge, D., Xia, L. & Yang, Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 19, 113 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 36, 519–539 (2005).
    Google Scholar 
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).PubMed 

    Google Scholar 
    Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?. New Phytol. 196, 681–694 (2012).PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 92, 253–265 (2004).
    Google Scholar 
    Vitt, L. J., Zani, P. A. & Espósito, M. C. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos 87, 286–294 (1999).
    Google Scholar 
    Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Google Scholar 
    Jost, L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7, 42–47 (2004).
    Google Scholar 
    Antonelli, A., Verola, C. F., Parisod, C. & Gustafsson, A. L. S. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol. J. Linn. Soc. 100, 597–607 (2010).
    Google Scholar 
    Johnson, S. D., Linder, H. P. & Steiner, K. E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85, 402–411 (1998).CAS 
    PubMed 

    Google Scholar 
    Kolanowska, M., Grochocka, E. & Konowalik, K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 5, e3328 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Dressler, R. L., Blanco, M. A., Pupulin, F. & Neubig, K. M. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon 60, 907–908 (2011).
    Google Scholar 
    Baranow, P., Dudek, M. & Szlachetko, D. L. Brasolia, a new genus highlighted from Sobralia (Orchidaceae). Plant Syst. Evol. 303, 853–871 (2017).CAS 

    Google Scholar 
    Dressler, R. L. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana 5, 9–15 (2002).
    Google Scholar 
    Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum Vol. 4: Epidendroideae Part 1 (Oxford University Press, 2005).
    Google Scholar 
    Van der Cingel, N. A. An Atlas of Orchid Pollination: America, Africa, Asia and Australia (Balkema, 2001).
    Google Scholar 
    Dodson, C. H. Why are there so many orchid species. Lankesteriana 7, 99–103 (2003).
    Google Scholar 
    Van Der Pijl, L. & Dodson, C. H. Orchid Flowers: Their Pollination and Evolution (University of Miami Press, 1966).
    Google Scholar 
    Neubig, K. M. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids (University of Florida, 2012).
    Google Scholar 
    Neubig, K. M. et al. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae). Lankesteriana 11, 307–317 (2011).
    Google Scholar 
    Ramírez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).
    Google Scholar 
    Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).ADS 

    Google Scholar 
    Sundell, K. E., Saylor, J. E., Lapen, T. J. & Horton, B. K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 9, 4877 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mescua, J. F. et al. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics 36, 2936–2949 (2017).ADS 

    Google Scholar 
    Kolanowska, M., Mystkowska, K., Kras, M., Dudek, M. & Konowalik, K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ 4, e2384 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Arnal, P. et al. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 9, 11657–11671 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. & Ranjbar, H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE 16, e0256918. https://doi.org/10.1371/journal.pone.0256918 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229. https://doi.org/10.1098/rspb.2013.3229 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    George, P. M., Walter, E. W. & Yeuh-Lih, Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 7, 261–277 (1992).
    Google Scholar 
    Hijmans, R. J., Schreuder, M., Cruz, J. & Guarino, L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 46, 291–296 (1999).
    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML ’04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).
    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700 (2014).
    Google Scholar 
    Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. https://doi.org/10.1002/ece3.5555 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, 2000).MATH 

    Google Scholar 
    Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).ADS 

    Google Scholar 
    Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Warren, D. L. et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).
    Google Scholar 
    Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Google Scholar 
    Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the ‘“bird-cage”’ evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240 (2009).PubMed 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 

    Google Scholar 
    Galtier, N., Gouy, M. & Gautier, C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nylander, J. A. A. MrModeltest v2 (Uppsala University, 2004).
    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Givnish, T. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.1553 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More