More stories

  • in

    Assessing the expansion of the Cambrian Agronomic Revolution into fan-delta environments

    Erwin, D. H. & Tweedt, S. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 26, 417–433 (2012).Article 

    Google Scholar 
    Laflamme, M., Darroch, S. A., Tweedt, S. M., Peterson, K. J. & Erwin, D. H. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat?. Gondwana Res. 23, 558–573 (2013).ADS 
    Article 

    Google Scholar 
    Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proc. R. Soc. B-Biol. Sci. 281, 20140038 (2014).Article 

    Google Scholar 
    Mángano, M. G. & Buatois, L. A. The Cambrian revolutions: Trace-fossil record, timing, links and geobiological impact. Earth-Sci. Rev. 173, 96–108 (2017).ADS 
    Article 

    Google Scholar 
    Mángano, M. G. & Buatois, L. A. The rise and early evolution of animals: Where do we stand from a trace-fossil perspective?. Interface Focus 10, 20190103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darroch, S. A. et al. Biotic replacement and mass extinction of the Ediacara biota. Proc. R. Soc. B 282, 20151003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darroch, S. A., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).PubMed 
    Article 

    Google Scholar 
    Schiffbauer, J. D. et al. The latest Ediacaran Wormworld fauna: Setting the ecological stage for the Cambrian explosion. GSA Today 26, 4–11 (2016).Article 

    Google Scholar 
    Zamora, S., Deline, B., Javier Álvaro, J. & Rahman, I. A. The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. Earth-Sci. Rev. 171, 478–491 (2017).ADS 
    Article 

    Google Scholar 
    Hantsoo, K. G., Kaufman, A. J., Cui, H., Plummer, R. E. & Narbonne, G. M. Effects of bioturbation on carbon and sulfur cycling across the Ediacaran-Cambrian transition at the GSSP in Newfoundland, Canada. Can. J. Earth Sci. 55, 1240–1252 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Boyle, R. A., Dahl, T. W., Bjerrum, C. J. & Canfield, D. E. Bioturbation and directionality in Earth’s carbon isotope record across the Neoproterozoic-Cambrian transition. Geobiology 16, 252–278 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    van de Velde, S., Mills, B. J., Meysman, F. J., Lenton, T. M. & Poulton, S. W. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nat. Commun. 9, 2554 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gougeon, R. C., Mangano, M. G., Buatois, L. A., Narbonne, G. M. & Laing, B. A. Early Cambrian origin of the shelf sediment mixed layer. Nat. Commun. 9, 1909 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seilacher, A. & Pflüger, F. In Biostabilization of Sediments (eds. Krumbein W. E., Peterson D. M., & Stal L. J.) 97–105 (Bibliotheks und Informationsystem der Carl von Ossietzky Universität, 1994).Seilacher, A. Biomat-related lifestyles in the Precambrian. Palaios 14, 86–93 (1999).ADS 
    Article 

    Google Scholar 
    Buatois, L. A. et al. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic: The role of bioturbation and bioerosion. Sci. Adv. 6, eabb0618 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hagadorn, J. W. & Bottjer, D. J. Restriction of a late Neoproterozoic biotope; suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14, 73–85 (1999).ADS 
    Article 

    Google Scholar 
    Buatois, L. A. & Mangano, M. G. Early colonization of the deep sea: Ichnologic evidence of deep-marine benthic ecology from the Early Cambrian of northwest Argentina. Palaios 18, 572–581 (2003).ADS 
    Article 

    Google Scholar 
    Clausen, S., Álvaro, J. J. & Zamora, S. Replacement of benthic communities in two Neoproterozoic-Cambrian subtropical-to-temperate rift basins, High Atlas and Anti-Atlas, Morocco. J. Afr. Earth Sci. 98, 72–93 (2014).ADS 
    Article 

    Google Scholar 
    Mángano, M. G. & Buatois, L. A. In The Trace-Fossil Record of Major Evolutionary Events: Volume 1: Precambrian and Paleozoic (eds. Mángano M. G. & Buatois L. A.) 73–126 (Springer Netherlands, 2016).Bayet-Goll, A., Buatois, L. A., Mangano, M. G. & Daraei, M. The interplay of environmental constraints and bioturbation on matground development along the marine depositional profile during the Ordovician Radiation. Geobiology 20, 33–270 (2022).Article 
    CAS 

    Google Scholar 
    Bayet-Goll, A., Daraei, M., Geyer, G., Bahrami, N. & Bagheri, F. Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2–Miaolingian boundary interval in Iran: A case study for the central sector of northern Gondwana. J. Afr. Earth Sci. 176, 104120 (2021).Article 

    Google Scholar 
    Minter, N. J. et al. In The Trace-Fossil Record of Major Evolutionary Events: Volume 1: Precambrian and Paleozoic (eds. Mángano M. G. & Buatois L. A.) 157–204 (Springer Netherlands, 2016).Minter, N. J. et al. Early bursts of diversification defined the faunal colonization of land. Nat. Ecol. Evol. 1, 0175 (2017).Article 

    Google Scholar 
    Nemec, W. & Steel, R. J. In Fan Deltas: sedimentology and tectonic settings (eds. Nemec W. & Steel R. J.) 3–13 (Blackie and Son, 1988).Postma, G. An analysis of the variation in delta architecture. Terra Nova 2, 124–130 (1990).ADS 
    Article 

    Google Scholar 
    Prior, D. B. & Bornhold, B. D. Submarine sedimentation on a developing Holocene fan delta. Sedimentology 36, 1053–1076 (1989).ADS 
    Article 

    Google Scholar 
    Piper, D. J. W., Kontopoulos, N., Anagnostou, C., Chronis, G. & Panagos, A. G. Modern fan deltas in the western Gulf of Corinth, Greece. Geo-Mar. Lett. 10, 5–12 (1990).ADS 
    Article 

    Google Scholar 
    Rasmussen, H. Nearshore and alluvial facies in the Sant Llorenç del Munt depositional system: Recognition and development. Sediment. Geol. 138, 71–98 (2000).ADS 
    Article 

    Google Scholar 
    Steel, R., Rasmussen, H., Eide, S., Neuman, B. & Siggerud, E. Anatomy of high-sediment supply, transgressive tracts in the Vilomara composite sequence, Sant LlorencË del Munt, Ebro Basin, NE Spain. Sediment. Geol. 138, 125–142 (2000).ADS 
    Article 

    Google Scholar 
    Zavala, C. et al. Deltas: A new classification expanding Bates’s concepts. J. Palaeogeogr. 10, 23 (2021).ADS 
    Article 

    Google Scholar 
    Ekdale, A. A. & Lewis, D. W. Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 253–279 (1991).Article 

    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnology: Organism-substrate Interactions in Space and Time (Cambridge University Press, 2011).Book 

    Google Scholar 
    Hovikoski, J., Uchman, A., Alsen, P. & Ineson, J. Ichnological and sedimentological characteristics of submarine fan-delta deposits in a half-graben, Lower Cretaceous Palnatokes Bjerg Formation, NE Greenland. Ichnos 26, 28–57 (2019).Article 

    Google Scholar 
    Sendra, J., Reolid, M. & Reolid, J. Palaeoenvironmental interpretation of the Pliocene fan-delta system of the Vera Basin (SE Spain): Fossil assemblages, ichnology and taphonomy. Palaeoworld 29, 769–788 (2020).Article 

    Google Scholar 
    Kreis, L. K. et al. Lower Paleozoic map series: Saskatchewan. Miscellaneous Report 2004–8 (CD-ROM) (Saskatchewan Industry and Resources, 2004).
    Google Scholar 
    Marsh, A. & Love, M. In Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, Saskatchewan Geological Survey Vol. Open File 2014-1, set of 156 maps (2014).Sawatzky, H. B., Agarwal, R. G. & Wilson, W. Helium prospects of southwest Saskatchewan. 26 (Saskatchewan Department of Mineral Resources, 1960).Fyson, W. K. Deadwood and Winnipeg stratigraphy in southwestern Saskatchewan. Report 64, 37 (Saskatchewan Department of Mineral Resources, 1961).Kent, D. M. Paleotectonic controls on sedimentation in northern Williston Basin area, Saskatchewan. AAPG Bull. 67, 1345–1345 (1983).
    Google Scholar 
    Kent, D. M. & Haidl, F. M. The distribution of Ashern and Winnipegosis strata (Middle Devonian) on the Swift Current Platform, southern Saskatchewan. Summary of Investigations, Miscellaneous Report 93-4, 201–206 (Saskatchewan Geological Survey, Saskatchewan Energy and Mines, 1993).MacEachern, J. A., Zaitlin, B. A. & Pemberton, S. G. A sharp-based sandstone of the Viking Formation, Joffre Field, Alberta, Canada; criteria for recognition of transgressively incised shoreface complexes. J. Sediment. Res. 69, 876–892 (1999).ADS 
    Article 

    Google Scholar 
    Pemberton, S. G., Frey, R. W. & Bromley, R. G. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can. J. Earth Sci. 25, 866–892 (1988).ADS 
    Article 

    Google Scholar 
    Hall, J. & Whitfield, R. P. Paleontology. In US Geol. Expl. 40th Par. Rept. 4, 197–302 (1877).Walcott, C. D. Cambrian and Lower Ozarkian trilobites. Smithson. Misc. Coll. 75, 53–60 (1924).
    Google Scholar 
    Meek, F. B. Preliminary paleontological report, consisting of lists and descriptions of fossils, with remarks on the ages of the rocks in which they were found. In U. S. Geol. Surv. Terr. 6th Ann. Rept., 429–518 (1873).Walcott, C. D. Cambrian geology and paleontology of Cambrian trilobites. Smithson. Misc. Coll. 64, 157–258 (1916).
    Google Scholar 
    Harding, S. C. & Ekdale, A. A. Trace fossils and glauconitic pellets provide insight into Cambrian siliciclastic marine environments. Palaios 33, 256–265 (2018).ADS 
    Article 

    Google Scholar 
    Shillito, A. P. & Davies, N. S. The Tumblagooda Sandstone revisited: Exceptionally abundant trace fossils and geological outcrop provide a window onto Palaeozoic littoral habitats before invertebrate terrestrialization. Geol. Mag. 157, 1939–1970 (2020).ADS 
    Article 

    Google Scholar 
    Shillito, A. P. & Davies, N. S. Archetypally Siluro-Devonian ichnofauna in the Cowie Formation, Scotland: Implications for the myriapod fossil record and Highland Boundary Fault Movement. Proc. Geol. Assoc. 128, 815–828 (2017).Article 

    Google Scholar 
    Buatois, L. A. et al. The invasion of the land in deep time: integrating Paleozoic records of paleobiology, ichnology, sedimentology, and geomorphology. Integr. Comp. Biol. 0, 1–35. https://doi.org/10.1093/icb/icac059 (2022).Davies, N. S. & Gibling, M. R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38, 51–54 (2010).ADS 
    Article 

    Google Scholar 
    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fedo, C. M. & Cooper, J. D. Braided fluvial to marine transition; the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. J. Sediment. Res. 60, 220–234 (1990).
    Google Scholar 
    Eyre, B. Early Cambrian alluvial fan-deltas in the Georgina Basin, Australia. Aust. J. Earth Sci. 41, 27–36 (1994).ADS 
    Article 

    Google Scholar 
    MacNaughton, R. B., Dalrymple, R. & Narbonne, G. M. Early Cambrian braid-delta deposits, MacKenzie Mountains, north-western Canada. Sedimentology 44, 587–609 (1997).ADS 
    Article 

    Google Scholar 
    Muhlbauer, J. G. & Fedo, C. M. Architecture of a river-dominated, wave- and tide-influenced, pre-vegetation braid delta: Cambrian middle member of the Wood Canyon Formation, southern Marble Mountains, California, U.S.A. J. Sediment. Res. 90, 1011–1036 (2020).ADS 
    Article 

    Google Scholar 
    McMahon, W. J., Davies, N. S. & Went, D. J. Negligible microbial matground influence on pre-vegetation river functioning: Evidence from the Ediacaran-Lower Cambrian Series Rouge, France. Precambrian Res. 292, 13–34 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Mikuláš, R. Trace fossils from the Paseky Shale (Early Cambrian, Czech Republic). J. Czech Geol. Soc. 40, 37–44 (1995).
    Google Scholar 
    MacNaughton, R. B. & Narbonne, G. M. Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14, 97–115 (1999).ADS 
    Article 

    Google Scholar 
    Buatois, L. A. et al. Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios 20, 321–347 (2005).ADS 
    Article 

    Google Scholar 
    Hofmann, R., Mángano, M. G., Elicki, O. & Shinaq, R. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. J. Paleontol. 86, 931–955 (2012).Article 

    Google Scholar 
    Mángano, M. G., Buatois, L. A., Hofmann, R., Elicki, O. & Shinaq, R. Exploring the aftermath of the Cambrian explosion: The evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 1–15 (2013).Article 

    Google Scholar 
    Mángano, M. G. et al. Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic. Proc. R. Soc. Lond. B Biol. Sci. 288, 20202263 (2021).
    Google Scholar 
    Siggerud, E. I. H. & Steel, R. J. Architecture and trace-fossil characteristics of a 10000–20000 Year, fluvial-to-marine sequence, SE Ebro Basin, Spain. J. Sediment. Res. 69, 365–383 (1999).ADS 
    Article 

    Google Scholar 
    Lockley, M. G., Rindsberg, A. K. & Zeiler, R. M. The paleoenvironmental significance of the nearshore Curvolithus ichnofacies. Palaios 2, 255–262 (1987).ADS 
    Article 

    Google Scholar 
    Folk, R. L. Petrology of Sedimentary Rocks (Hemphill Publishing Company, 1980).
    Google Scholar 
    Wentworth, C. K. A scale grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).ADS 
    Article 

    Google Scholar 
    Pettijohn, F. J., Potter, P. E. & Siever, R. Sand and Sandstone 2nd edn. (Springer, 1987).Book 

    Google Scholar 
    Ingram, R. L. Terminology for the thickness of stratification and parting units in sedimentary rocks. Geol. Soc. Am. Bull. 65, 937–938 (1954).ADS 
    Article 

    Google Scholar 
    Reineck, H.-E. Sedimentgefüge im Bereich der südliche Nordsee. Abh. Senckb. Naturforsch. Ges. 505, 1–138 (1963).
    Google Scholar  More

  • in

    A divergent bacterium lives in association with bacterivorous protists in the ocean

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Needham, D. M. et al. The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01174-0 (2022). More

  • in

    Initial community composition determines the long-term dynamics of a microbial cross-feeding interaction by modulating niche availability

    The generalist accumulates extracellular nitriteWe first tested whether the generalist accumulates substantial extracellular nitrite under our experimental conditions, and thus creates a niche for the specialist. To accomplish this, we grew the generalist alone in bioreactors with anoxic ACS medium amended with 12 mM nitrate as the growth-limiting substrate and measured the extracellular concentrations of nitrate and nitrite over time. We performed these experiments at pH 6.5 (strong nitrite toxicity) and 7.5 (weak nitrite toxicity).We observed a substantial accumulation of extracellular nitrite regardless of the pH (Fig. 3A, B). When grown at pH 6.5 (strong nitrite toxicity), extracellular nitrite accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.8 mM; measured initial nitrate concentration, 12.0 mM) and was subsequently consumed to below the detection limit (Fig. 3A). When grown at pH 7.5 (weak nitrite toxicity), extracellular nitrite again accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.7 mM; measured initial nitrate concentration, 12.9 mM) and was subsequently consumed to below the detection limit (Fig. 3B). During growth at pH 6.5, substantial nitrite consumption did not begin until a prolonged period of time after nitrate consumption was complete, resulting in a relatively long duration of nitrite availability (Fig. 3A). During growth at pH 7.5, in contrast, substantial nitrite consumption began immediately after nitrate consumption was complete, resulting in a relatively short duration of nitrite availability (Fig. 3B). The longer duration of nitrite availability at pH 6.5 indicates that the duration of the niche created by the generalist for the specialist depends on pH.Fig. 3: Growth and nitrogen oxide dynamics of the generalist in batch culture.We grew the generalist alone in a bioreactor at A pH 7.5 (weak nitrite toxicity) or B pH 6.5 (strong nitrite toxicity) under anoxic conditions with nitrate as the growth-limiting substrate. Blue squares are measured extracellular nitrate concentrations, yellow triangles are measured extracellular nitrite concentrations, and black circles are measured cell densities. We measured extracellular nitrate and nitrite concentrations with IC and cell densities with FC. C Measured durations of nitrite availability for the generalist growing in batch culture. We grew the generalist alone in 96-well microtiter plates under anoxic conditions with nitrate as the growth-limiting substrate. Open symbols are durations of nitrite availability at pH 6.5 and closed symbols are durations of nitrite availability at pH 7.5. Each symbol is an independent biological replicate.Full size imageTo routinely quantify the duration of nitrite availability, we grew the generalist alone with varying amounts of nitrate as the growth-limiting substrate. We then quantified the length of time from when the growth rate with nitrate was maximum to when the growth rate with nitrite was maximum. This cell density-based proxy measure is valid because the growth of the generalist is directly linked to the consumption of nitrate and nitrite (Fig. 3A, B). The cell density of the generalist was initially linearly correlated with nitrate consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.96, p = 1.5 × 10–8, n = 15) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −1.00, p = 2.2 × 10–16, n = 30) (Fig. 3B). After nitrate was depleted, the cell density of the generalist became linearly correlated with nitrite consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 3 × 10–4, n = 7) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 6.8 × 10–10, n = 16) (Fig. 3B). We further validated our cell density-based approach by testing for concordance with our IC-based direct measures of the duration of nitrite availability. We observed a significant positive and linear relationship between the cell density- and IC-based measures (two-sided Pearson correlation test; r = 0.999, p = 0.023, n = 3) (linear regression model; slope = 1.19, intercept = −2.31, r2 = 0.99) (Supplementary Fig. S2), which further validates our cell density-based approach to routinely estimate the duration of nitrite availability.Using our cell density-based approach, we found that the duration of nitrite availability was significantly longer at pH 6.5 (strong nitrite toxicity) than at 7.5 (weak nitrite toxicity) regardless of the initial nitrate concentration (two-sample two-sided t-tests; Holm-adjusted p  0.92, Holm-adjusted p  0.6), and thus followed model predictions (Fig. 4A). However, when the specialist was initially rare (measured initial log rS/Gs of –3.19, –2.65, and –0.88), the relative abundances of the specialist continuously decreased between the third and twelfth transfers (Mann–Kendall trend tests; tau = –0.61 to –0.89, p  0 were dominated by phenotype C (dominant ancestral phenotype with a long time delay between nitrate and nitrite consumption), while generalist isolates from co-cultures with initial rS/Gs  More

  • in

    Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths

    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs https://doi.org/10.1007/s00338-012-0984-y (2013).Drake, J. L. et al. How corals made rocks through the ages. Glob. Change Biol. 26, 31–53 (2020).Zawada, K. J. A., Madin, J. S., Baird, A. H., Bridge, T. C. L. & Dornelas, M. Morphological traits can track coral reef responses to the Anthropocene. Funct. Ecol. 33, 962–975 (2019).Article 

    Google Scholar 
    Wehrberger, F. & Herler, J. Microhabitat characteristics influence shape and size of coral-associated fishes. Mar. Ecol. Prog. Ser. 500, 203–214 (2014).Article 

    Google Scholar 
    Munday, P. & Jones, G. The ecological implications of small body size among coral-reef fishes. Oceanogr. Mar. Biol. 36, 373–411 (1998).
    Google Scholar 
    Pereira, P. H. C. & Munday, P. L. Coral colony size and structure as determinants of habitat use and fitness of coral-dwelling fishes. Mar. Ecol. Prog. Ser. 553, 163–172 (2016).Article 

    Google Scholar 
    Doszpot, N., McWilliam, M., Pratchett, M., Hoey, A. & Figueira, W. Plasticity in three-dimensional geometry of branching corals along a cross-shelf gradient. Diversity 11, 44 (2019).Article 

    Google Scholar 
    Ow, Y. X. & Todd, P. A. Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 29, 797–808 (2010).Article 

    Google Scholar 
    Soto, D., De Palmas, S., Ho, M. J., Denis, V. & Chen, C. A. Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS ONE 13, 1–20 (2018).Article 
    CAS 

    Google Scholar 
    Bruno, J. F. & Edmunds, P. J. Clonal variation for phenotypic plasticity in the coral Madracis Mirabilis. Ecology 78, 2177–2190 (1997).Article 

    Google Scholar 
    Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).Willis, B. L. Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc. Fifth Int. Coral Reef. Symp. 4, 107–112 (1985).
    Google Scholar 
    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    Smith, L. W., Barshis, D. & Birkeland, C. Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs 26, 559–567 (2007).Article 

    Google Scholar 
    Barnes, D. Growth in colonial scleractinians. Bull. Marine Sci. 280–298 (1973).Anthony, K. R. N. & Hoegh-Guldberg, O. Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct. Ecol. 17, 246–259 (2003).Article 

    Google Scholar 
    Kramer, N., Tamir, R., Eyal, G. & Loya, Y. Coral morphology portrays the spatial distribution and population size-structure along a 5–100 m depth gradient. Front. Mar. Sci. 7, 615 (2020).Article 

    Google Scholar 
    Dubé, C. E., Mercière, A., Vermeij, M. J. A. & Planes, S. Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French polynesia. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Chappell, J. Coral morphology, diversity and reef growth. Nature 286, 249–252 (1980).Article 

    Google Scholar 
    Paz-García, D. A. et al. Morphological variation and different branch modularity across contrasting flow conditions in dominant Pocillopora reef-building corals. Oecologia 178, 207–218 (2015).PubMed 
    Article 

    Google Scholar 
    Laverick, J. H., Tamir, R., Eyal, G. & Loya, Y. A generalized light-driven model of community transitions along coral reef depth gradients. Glob. Ecol. Biogeogr. 29, 1554–1564 (2020).Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).Article 

    Google Scholar 
    Sherman, C. E., Locker, S. D., Webster, J. M. & Weinstein, D. K. In Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 849–878 (Springer International Publishing, 2019).Kahng, S. E., Copus, J. M. & Wagner, D. Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr. Opin. Environ. Sustainability 7, 72–81 (2014).Article 

    Google Scholar 
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow to mesophotic coral community transition. Ecosphere 10, e02839 (2019).Article 

    Google Scholar 
    Lichtenthaler, H. K., Ač, A., Marek, M. V., Kalina, J. & Urban, O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 45, 577–588 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633–639 (2002).Article 

    Google Scholar 
    Sæbø, A., Krekling, T. & Appelgren, M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue Organ Cult. 41, 177–185 (1995).Article 

    Google Scholar 
    Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).Article 

    Google Scholar 
    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).CAS 
    Article 

    Google Scholar 
    Kramer, N. et al. Efficient light-harvesting of mesophotic corals is facilitated by coral optical traits. Funct. Ecol. 36, 406–418 (2022).CAS 
    Article 

    Google Scholar 
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).Article 

    Google Scholar 
    Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 1–16 (2020).CAS 
    Article 

    Google Scholar 
    Anthony, K. R. N., Hoogenboom, M. O. & Connolly, S. R. Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct. Ecol. 19, 17–26 (2005).Article 

    Google Scholar 
    Kahng, S. E., Watanabe, T. K., Hu, H.-M., Watanabe, T. & Shen, C.-C. Moderate zooxanthellate coral growth rates in the lower photic zone. Coral Reefs https://doi.org/10.1007/s00338-020-01960-4 (2020).Wangpraseurt, D. et al. The in situ light microenvironment of corals. Limnol. Oceanogr. 59, 917–926 (2014).Article 

    Google Scholar 
    Dustan, P. Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68, 253–264 (1982).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z., Falkowski, P. G., Porter, J. W. & Muscatine, L. Absorption and utilization of radiant energy by light- and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc. R. Soc. B: Biol. Sci. 222, 203–214 (1984).CAS 

    Google Scholar 
    Falkowski, P. G. & Dubinsky, Z. Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289, 172–174 (1981).Article 

    Google Scholar 
    Kahng, S. E. et al. In Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 801–828 (Springer International Publishing, 2019).Hoogenboom, M. O., Connolly, S. R. & Anthony, K. R. N. Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology 89, 1144–1154 (2008).PubMed 
    Article 

    Google Scholar 
    House, J. E. et al. Moving to 3D: relationships between coral planar area, surface area and volume. PeerJ 6, e4280 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zawada, K. J. A., Dornelas, M. & Madin, J. S. Quantifying coral morphology. Coral Reefs 38, 1281–1292 (2019).Article 

    Google Scholar 
    Malik, A. et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomaterialia 1–14 https://doi.org/10.1016/j.actbio.2020.01.010 (2020).Todd, P. A., Ladle, R. J., Lewin-Koh, N. J. I. & Chou, L. M. Genotype x environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Mari. Ecol. Prog. Ser. https://doi.org/10.3354/meps271167 (2004).Crabbe, M. J. C. & Smith, D. J. Modelling variations in corallite morphology of Galaxea fascicularis coral colonies with depth and light on coastal fringing reefs in the Wakatobi Marine National Park (S.E. Sulawesi, Indonesia). Computational Biol. Chem. 30, 155–159 (2006).CAS 
    Article 

    Google Scholar 
    Studivan, M. S., Milstein, G. & Voss, J. D. Montastraea cavernosa corallite structure demonstrates distinct morphotypes across shallow and mesophotic depth zones in the Gulf of Mexico. PLoS ONE 14, e0203732 (2019).Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Light gradients and optical microniches in coral tissues. Front. Microbiol. 3, 1–9 (2012).Article 

    Google Scholar 
    Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).Article 

    Google Scholar 
    Wangpraseurt, D., Jacques, S. L., Petrie, T. & Kühl, M. Monte Carlo modeling of photon propagation reveals highly scattering coral tissue. Front. Plant Sci. 7, 1–10 (2016).Article 

    Google Scholar 
    Muko, S., Kawasaki, K., Sakai, K., Takasu, F. & Shigesada, N. Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull. Mar. Sci. 66, 225–239 (2000).
    Google Scholar 
    Klaus, J. S., Budd, A. F. & Fouke, B. Environmental controls on corallite morphology in the reef coral Montastraea annularis Hot springs microbiology View project Positive Accretion in the Deep: Carbonate budget analysis of Caribbean mesophotic coral reef habitats View project. Bull. Mar. Sci. 80, 233–260 (2007).
    Google Scholar 
    Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O. & Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. R. Soc. B: Biol. Sci. 284, (2017).Wangpraseurt, D. et al. Microscale light management and inherent optical properties of intact corals studied with optical coherence tomography. J. R. Soc. Interface 16, 20180567 (2019).Groves, S. H. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018).Article 

    Google Scholar 
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology https://doi.org/10.1002/ecy.2098 (2018).Kaniewska, P. et al. Importance of macro- versus microstructure in modulating light levels inside coral colonies. J. Phycol. 47, 846–860 (2011).PubMed 
    Article 

    Google Scholar 
    Swain, T. D. et al. Relating coral skeletal structures at different length scales to growth, light availability to symbiodinium, and thermal bleaching. Front. Mar. Sci. 5, (2018).Bongaerts, P. & Smith, T. B. In Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 881–895 (Springer International Publishing, 2019).Bongaerts, P., Riginos, C., Brunner, R., Englebert, N. & Smith, S. R. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, 1–40 (2017).Article 

    Google Scholar 
    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fordyce, A. J., Ainsworth, T. D., Leggat, W. & Katherine, M. Light capture, skeletal morphology, and the biomass of corals’ boring endoliths. mSphere 6, e00060–21 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muscatine, L. The role of symbiotic algae in carbon and energy flux in coral reefs. Ecosyst. World 25, 75–87 (1990).
    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 
    Article 

    Google Scholar 
    Tremblay, P., Gori, A., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci. Rep. 6, 38112 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology https://doi.org/10.1890/09-0313.1 (2010).Pinheiro, H. T., Eyal, G., Shepherd, B. & Rocha, L. A. Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere 10, e02666 (2019).Article 

    Google Scholar 
    Wangpraseurt, D. et al. In vivo microscale measurements of light and photosynthesis during coral bleaching: evidence for the optical feedback loop? Front. Microbiol. 8, 1–12 (2017).Article 

    Google Scholar 
    Veron, C., Stafford-Smith, M., Turak, E. & DeVantier, L. Corals of the World (Australian Institute of Marine Science, 2000).Loya, Y. The Red Sea coral Stylophora pistillata is an r strategist. Nature 259, 478–480 (1976).Article 

    Google Scholar 
    Drake, J. L. et al. Physiological and transcriptomic variability indicative of differences in key functions within a single coral colony. Front. Mar. Sci. 8, 768 (2021).Article 

    Google Scholar 
    Jacques, S., Li, T. & Prahl, S. mcxyz. c, a 3D Monte Carlo simulation of heterogeneous tissues. omlc.org/software/mc/mcxyz (2013).Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (SPIE PRESS, 2015).Wang, L., Jacques, S. L. & Zheng, L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods Prog. Biomed. 47, 131–146 (1995).CAS 
    Article 

    Google Scholar 
    Jacques, S. L., Wangpraseurt, D. & Kühl, M. Optical properties of living corals determined with diffuse reflectance. Spectrosc. Front Mar. Sci. 6, 1–9 (2019).Article 

    Google Scholar 
    Hill, R. et al. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar. Biol. 144, 633–640 (2004).Article 

    Google Scholar 
    Ritchie, R. J. & Larkum, A. W. D. Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50, 481–500 (2012).CAS 
    Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Luo, D., Ganesh, S. & Koolaard, J. predictmeans: calculate predicted means for linear models. Preprint at https://CRAN.R-project.org/package=predictmeans (2021).Clarke, K. R. Non‐parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    Kramer, N., Guan, J., Chen, S., Wangpraseurt, D. & Loya, Y. Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths. Dryad, Dataset https://doi.org/10.5061/dryad.7d7wm37w7 (2022). More

  • in

    Roundup and glyphosate’s impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegans

    Zabalza, A., Orcaray, L., Fernandez-Escalada, M., Zulet-Gonzalez, A. & Royuela, M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem. Physiol. 141, 96–102. https://doi.org/10.1016/j.pestbp.2016.12.005 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amrhein, N., Deus, B., Gehrke, P. & Steinrucken, H. C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landrigan, P. J. & Belpoggi, F. The need for independent research on the health effects of glyphosate-based herbicides. Environ. Health 17, 51. https://doi.org/10.1186/s12940-018-0392-z (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tu, M. & Randall, J. Adjuvants. Tu, M. et al. Weed Control Methods Handbook the Nature Conservancy. 1–24. (TNC, 2003).Brausch, J. M. & Smith, P. N. Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp, Thamnocephalus platyurus. Arch. Environ. Contam. Toxicol. 52, 217–221. https://doi.org/10.1007/s00244-006-0151-y (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brausch, J. M., Beall, B. & Smith, P. N. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull. Environ. Contam. Toxicol. 78, 510–514. https://doi.org/10.1007/s00128-007-9091-0 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tsui, M. T. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Adam, A., Marzuki, A., Abdul Rahman, H. & Abdul Aziz, M. The oral and intratracheal toxicities of ROUNDUP and its components to rats. Vet. Hum. Toxicol. 39, 147–151 (1997).CAS 
    PubMed 

    Google Scholar 
    Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1897/03-71 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mesnage, R., Benbrook, C. & Antoniou, M. N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 128, 137–145. https://doi.org/10.1016/j.fct.2019.03.053 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mesnage, R., Bernay, B. & Seralini, G. E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313, 122–128. https://doi.org/10.1016/j.tox.2012.09.006 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chlopecka, M., Mendel, M., Dziekan, N. & Karlik, W. The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine—In vitro study. Environ. Toxicol. Pharmacol. 49, 156–162. https://doi.org/10.1016/j.etap.2016.12.010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Authority, E. F. S. Request for the evaluation of the toxicological assessment of the co-formulant POE-tallowamine. EFSA J. 13, 4303 (2015).
    Google Scholar 
    Bolognesi, C. et al. Genotoxic activity of glyphosate and its technical formulation Roundup. J. Agric. Food Chem. 45, 1957–1962 (1997).CAS 
    Article 

    Google Scholar 
    Hao, Y. et al. Roundup((R)) confers cytotoxicity through DNA damage and mitochondria-associated apoptosis induction. Environ. Pollut. 252, 917–923. https://doi.org/10.1016/j.envpol.2019.05.128 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Luo, L. et al. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health B 52, 410–417. https://doi.org/10.1080/03601234.2017.1293449 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Young, F., Ho, D., Glynn, D. & Edwards, V. Endocrine disruption and cytotoxicity of glyphosate and roundup in human JAr cells in vitro. Synthesis 14, 17 (2015).
    Google Scholar 
    Weinhold, B. Mystery in a bottle: Will the EPA require public disclosure of inert pesticide ingredients?. Environ. Health Perspect. 118, A168-171. https://doi.org/10.1289/ehp.118-a168 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richmond, M. E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 8, 416–434 (2018).Article 

    Google Scholar 
    Cole, R. D., Anderson, G. L. & Williams, P. L. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol. 194, 248–256. https://doi.org/10.1016/j.taap.2003.09.013 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lai, C. H., Chou, C. Y., Ch’ang, L. Y., Liu, C. S. & Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703–713. https://doi.org/10.1101/gr.10.5.703 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Negga, R. et al. Exposure to glyphosate- and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of gamma-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotox. Res. 21, 281–290. https://doi.org/10.1007/s12640-011-9274-7 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Negga, R. et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology 32, 331–341. https://doi.org/10.1016/j.neuro.2011.02.002 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schuske, K., Beg, A. A. & Jorgensen, E. M. The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414. https://doi.org/10.1016/j.tins.2004.05.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337. https://doi.org/10.1038/364334a0 (1993).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Eastman, C., Horvitz, H. R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).CAS 
    Article 

    Google Scholar 
    Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).CAS 
    Article 

    Google Scholar 
    Risley, M. G., Kelly, S. P., Jia, K., Grill, B. & Dawson-Scully, K. Modulating behavior in C. elegans using electroshock and antiepileptic drugs. PLoS ONE 11, e0163786. https://doi.org/10.1371/journal.pone.0163786 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, R. et al. Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 19, 439–442. https://doi.org/10.1016/j.seizure.2010.06.005 (2010).Article 
    PubMed 

    Google Scholar 
    Risley, M. G., Kelly, S. P. & Dawson-Scully, K. Electroshock induced seizures in adult C. elegans. Bio-Protoc. 7, 163786 (2017).Article 

    Google Scholar 
    Risley, M. G., Kelly, S. P., Minnerly, J., Jia, K. & Dawson-Scully, K. egl-4 modulates electroconvulsive seizure duration in C. elegans. Invert. Neurosci. 18, 8. https://doi.org/10.1007/s10158-018-0211-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McVey, K. A. et al. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol. Teratol. 55, 23–31. https://doi.org/10.1016/j.ntt.2016.03.002 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burchfield, S. L. et al. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 66, 36–42. https://doi.org/10.1016/j.etap.2018.12.019 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weisskopf, M. G., Moisan, F., Tzourio, C., Rathouz, P. J. & Elbaz, A. Pesticide exposure and depression among agricultural workers in France. Am. J. Epidemiol. 178, 1051–1058. https://doi.org/10.1093/aje/kwt089 (2013).Article 
    PubMed 

    Google Scholar 
    Kamel, F. et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am. J. Epidemiol. 165, 364–374. https://doi.org/10.1093/aje/kwk024 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tanner, C. M. Advances in environmental epidemiology. Mov. Disord. 25(Suppl 1), S58-62. https://doi.org/10.1002/mds.22721 (2010).Article 
    PubMed 

    Google Scholar 
    Dick, F. D. Parkinson’s disease and pesticide exposures. Br. Med. Bull. 79–80, 219–231. https://doi.org/10.1093/bmb/ldl018 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L. & Levy, L. S. Pesticides and Parkinson’s disease–Is there a link?. Environ. Health Perspect. 114, 156–164. https://doi.org/10.1289/ehp.8095 (2006).Article 
    PubMed 

    Google Scholar 
    Firestone, J. A. et al. Pesticides and risk of Parkinson disease: A population-based case-control study. Arch. Neurol. 62, 91–95. https://doi.org/10.1001/archneur.62.1.91 (2005).Article 
    PubMed 

    Google Scholar 
    Martinez, M. A. et al. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 161, 212–219. https://doi.org/10.1016/j.envres.2017.10.051 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kalueff, A. V. & Nutt, D. J. Role of GABA in anxiety and depression. Depress. Anxiety 24, 495–517. https://doi.org/10.1002/da.20262 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62, 42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brambilla, P., Perez, J., Barale, F., Schettini, G. & Soares, J. C. GABAergic dysfunction in mood disorders. Mol. Psychiatry 8, 721–737. https://doi.org/10.1038/sj.mp.4001362 (2003) (715).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia, G. et al. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol. Psychiatry 26, 2837–2853. https://doi.org/10.1038/s41380-021-01053-w (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez, A. & Al-Ahmad, A. J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 304, 39–49. https://doi.org/10.1016/j.toxlet.2018.12.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Goetz, T., Arslan, A., Wisden, W. & Wulff, P. GABA(A) receptors: Structure and function in the basal ganglia. Prog. Brain Res. 160, 21–41. https://doi.org/10.1016/S0079-6123(06)60003-4 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, W. Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integr. Med. (Encinitas) 16, 50–57 (2017).
    Google Scholar 
    Gaupp-Berghausen, M., Hofer, M., Rewald, B. & Zaller, J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 5, 12886. https://doi.org/10.1038/srep12886 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanabar, M. et al. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-021-13021-6 (2021).Article 
    PubMed 

    Google Scholar 
    Loscher, W., Fassbender, C. P. & Nolting, B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 8, 79–94. https://doi.org/10.1016/0920-1211(91)90075-q (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    Castel-Branco, M. M., Alves, G. L., Figueiredo, I. V., Falcao, A. C. & Caramona, M. M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol. 31, 101–106. https://doi.org/10.1358/mf.2009.31.2.1338414 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Luszczki, J. J. et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study. Epilepsy Res. 85, 293–299. https://doi.org/10.1016/j.eplepsyres.2009.03.027 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Suthakaran, N. et al. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS ONE 16, e0260072. https://doi.org/10.1371/journal.pone.0260072 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hedberg, D. & Wallin, M. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol. In Vitro 24, 795–802. https://doi.org/10.1016/j.tiv.2009.12.020 (2010).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Relationships between transmission of malaria in Africa and climate factors

    DataWe used temperature data, rainfall data, and data on the incidence of malaria collected from 1901 to 2015 for 43 African countries to construct networks to determine the relationships between transmission of malaria and climate change elements, especially temperature and rainfall. Data resolution is given by the latitude and longitude of the capital city for every country in Africa. Temperature and rainfall data are provided in terms of monthly averages in the country wise. The nodes in the network represent the country, and the edges in the network represent the relationship between countries. We collected malaria data from Harvard Dataverse35 and the world malaria report from the WHO31. Data for temperature and rainfall were obtained from the Climate Change Knowledge Portal of the World Bank Group36.Network generation and analysisThe networks were constructed by using the threshold method where the network depends on the mean, standard deviation, and the real number ((n)) used to control the features of the network. Therefore, data for temperature, rainfall, and the incidence of malaria were divided into six groups mostly comprising ranges of 20 years (1900–1920, 1921–1940, 1941–1960, 1961–1980, 1981–2000) as well as the period from 2001 to 2015. The missing data in Malaria incidence data are filled by the average amount of malaria incidence collected per year.In Table S1, a malaria report from the World Health Organization shows that the rate of death is directly proportional to the incidence of malaria35. The death toll in Africa from malaria is about 98% of world deaths from malaria. Such deaths in African regions decrease thanks to efforts the WHO, governments, and the private sector have been conducting to prevent them. Weather and climate are among the factors that drive increases in malaria infections in different areas.We consider networks based on the threshold method (see the “Methods and Materials” section below). First, we fill the missing malaria incidence data, and we calculate normalized Pearson correlation coefficients of three-time series between two countries. Then, we obtain a correlation matrix for the countries. We estimate the average value of the correlation coefficients from the time intervals 1901–1920, 1921–1940, 1941–1960, 1961–1980, 1981–2000, and 2001–2015 for three time series: temperature, rainfall, and incidence of malaria. We summarize the averages and standard deviations of the correlation coefficients, as shown in Table S2. The mean values from the correlation in temperature are high, compared to those for rainfall and the incidence of malaria. The standard deviations in temperature and rainfall are large, but the standard deviation for the incidence of malaria is small.We chose an ad hoc threshold value of the correlation coefficients to generate sparse networks. The characteristic values for (n) of the threshold are given in Table S3. We consider three types of thresholds in order to observe changes in the networks according to the threshold.Let us define the normalized variance of each time series. We considered time series (T_{i} left( t right)), (M_{i} left( t right)), and (R_{i} left( t right)) in country (i) for temperature, the incidence of malaria, and rainfall, respectively. We define normalized variance as$$r_{ij} = frac{{x_{i} left( t right)x_{j} left( t right) – x_{i} left( t right)x_{j} left( t right)}}{{sigma_{i} sigma_{j} }}$$
    (1)
    where (x_{i} left( t right)) = (T_{i} left( t right)), (M_{i} left( t right)), (R_{i} left( t right)). We obtained a Pearson correlation matrix for each time series as follows:$$R_{S} = left[ {begin{array}{*{20}c} {r_{11} } & cdots & {r_{1N} } \ vdots & {r_{ij} } & vdots \ {r_{N1} } & cdots & {r_{NN} } \ end{array} } right]$$
    (2)
    where (S = T, M, R).We calculated the average value, (overline{r }), and the standard deviation, (sigma), for the correlation coefficients of the matrix. We applied the threshold method to generate a sparse network from the correlation matrix. Two countries are connected in the correlation network if and only if the value of the correlation coefficient is greater than, or equal to, the threshold value:$$r_{{ij}} = left{ {begin{array}{*{20}c} 1 & {{text{if}};r_{{ij}} ge bar{r}{text{ + n}}sigma } \ 0 & {{text{otherwise}}} \ end{array} } right.$$
    (3)
    where (r_{ij}) is the correlation coefficient between two countries, and (n) is an element of real numbers ((n in {mathbb{R}})). The value of (n) determines whether the network is sparsely or densely connected.We use Python programming language, packages, numpy for mathematical functions and random number generator, pandas for data analysis and manipulations, networkx for creation, manipulation, and studying the structure of the complex network, matplotlib for visualization and plotting graph and base map for map projection and visualization of geographic information. More

  • in

    Dietary preferences and feeding strategies of Colombian highland woolly monkeys

    Garber, P. A. Foraging strategies among living primates. Annu. Rev. Anthropol. 16, 339–364 (1987).Article 

    Google Scholar 
    Stephens, D. W. & Krebs, J. K. Foraging Theory (Princeton University Press, 1987).Book 

    Google Scholar 
    Felton, A. M. et al. Nutritional ecology of Ateles chamek in lowland Bolivia: How macronutrient balancing influences food choices. Int. J. Primatol. 30, 675–696 (2009).Article 

    Google Scholar 
    Marshall, A. J. & Wrangham, R. W. Evolutionary consequences of fallback foods. Int. J. Primatol. 28, 1219–1235 (2007).Article 

    Google Scholar 
    Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M. & Gilbert, C. C. Nutritional contributions of insects to primate diets: Implications for primate evolution. J. Hum. Evol. 71, 59–69 (2014).PubMed 
    Article 

    Google Scholar 
    Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).Article 

    Google Scholar 
    Clare, E. L., Symondson, W. O. C. & Fenton, M. B. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol. 23, 3633–3647 (2014).PubMed 
    Article 

    Google Scholar 
    Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica 32, 533–544 (2000).Article 

    Google Scholar 
    Chapman, C. Patterns of foraging and range use by three species of neotropical primates. Primates 29, 177–194 (1988).Article 

    Google Scholar 
    Felton, A. M., Felton, A., Lindenmayer, D. B. & Foley, W. J. Nutritional goals of wild primates. Funct. Ecol. 23, 70–78 (2009).Article 

    Google Scholar 
    Kay, R. On the use of anatomical features to infer foraging behavior in extinct primates. In Adaptations for Foraging in Nonhuman Primates (eds Rodman, P. & Cant, J.) 21–53 (Columbia University Press, 1984).Chapter 

    Google Scholar 
    Bravo, S. P. Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina: Insect-infested seed ingestion and dispersal. Biotropica 40, 471–476 (2008).Article 

    Google Scholar 
    Deluycker, A. M. Insect prey foraging strategies in Callicebus oenanthe in Northern Peru: Insect foraging in Callicebus oenanthe. Am. J. Primatol. 74, 450–461 (2012).PubMed 
    Article 

    Google Scholar 
    Link, A. Insect-eating by spider monkeys. Neotropical Primates 11, 104–107 (2003).ADS 

    Google Scholar 
    MacKinnon, K. C. Food choice by juvenile capuchin monkeys (Cebus capucinus) in a tropical dry forest. In New Perspectives in the Study of Mesoamerican Primates (eds Estrada, A. et al.) 349–365 (Kluwer Academic Publishers, 2006). https://doi.org/10.1007/0-387-25872-8_17.Chapter 

    Google Scholar 
    Fonseca, M. L., Cruz, D. M., Acosta Rojas, D. C., Páez Crespo, J. & Stevenson, P. R. Influence of arthropod and fruit abundance on the dietary composition of highland Colombian woolly monkeys (Lagothrix lagotricha lugens). Folia Primatol. (Basel) 90, 240–257 (2019).Article 

    Google Scholar 
    Vargas, S. A. et al. Population density and ecological traits of highland woolly monkeys at Cueva de los Guacharos National Park, Colombia. In High Altitude Primates (eds Grow, N. B. et al.) 85–102 (Springer, 2014). https://doi.org/10.1007/978-1-4614-8175-1_5.Chapter 

    Google Scholar 
    Bryer, M. A. H., Chapman, C. A., Raubenheimer, D., Lambert, J. E. & Rothman, J. M. Macronutrient and energy contributions of insects to the diet of a frugivorous monkey (Cercopithecus ascanius). Int. J. Primatol. 36, 839–854 (2015).Article 

    Google Scholar 
    Gómez-Posada, C., Rey-Goyeneche, J. & Tenorio, E. A. Ranging responses to fruit and arthropod availability by a tufted capuchin group (Sapajus apella) in the Colombian Amazon. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 195–215 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_12.Chapter 

    Google Scholar 
    Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus): Mallott et al. Am. J. Phys. Anthropol. 162, 241–254 (2017).PubMed 
    Article 

    Google Scholar 
    Defler, T. R. & Defler, S. B. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. Int. J. Primatol. 17, 161–190 (1996).Article 

    Google Scholar 
    Di Fiore, A. Diet and feeding ecology of woolly monkeys in a western Amazonian rain forest. Int. J. Primatol. 25, 767–801 (2004).Article 

    Google Scholar 
    Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia. Am. J. Primatol. 32, 123–140 (1994).PubMed 
    Article 

    Google Scholar 
    Izawa, K. Foods and feeding behavior of monkeys in the upper Amazon basin. Primates 16, 295–316 (1975).Article 

    Google Scholar 
    Peres, C. A. Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha cana) in central Amazonia: Comparisons with other atelines. Int. J. Primatol. 15, 333–372 (1994).Article 

    Google Scholar 
    Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates 47, 239–247 (2006).PubMed 
    Article 

    Google Scholar 
    Milton, K. & Nessimian, J. L. Evidence for insectivory in two primate species (Callicebus torquatus lugens and Lagothrix lagothricha lagothricha) from northwestern Amazonia. Am. J. Primatol. 6, 367–371 (1984).PubMed 
    Article 

    Google Scholar 
    Soini, P. A synecological study of a primate community in the Pacaya-Samiria National Reservee, Peru. Primate Conserv. 7, 63–71 (1986).
    Google Scholar 
    Pickett, S. B., Bergey, C. M. & Di Fiore, A. A metagenomic study of primate insect diet diversity: A metagenomic study of primate diet. Am. J. Primatol. 74, 622–631 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Estupiñan, L. & Muñoz, D. Estudio ecológico comparativo de la artropofauna presente en los receptáculos axilares de dos bromeliáceas epífitas en diferentes bosques andinos. In Estudios ecológicos del páramos y del bosque altoandino Cordillera Oriental de Colombia (eds Mora, L. & Sturm, H.) 679–696 (Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 1995).
    Google Scholar 
    Solé, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001).Article 

    Google Scholar 
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 15, 3790–3798 (2002).
    Google Scholar 
    Gunst, N., Boinski, S. & Fragaszy, D. M. Development of skilled detection and extraction of embedded prey by wild brown capuchin monkeys (Cebus apella apella). J. Comp. Psychol. 124, 194–204 (2010).PubMed 
    Article 

    Google Scholar 
    Panger, M. A. et al. Cross-site differences in foraging behavior of white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 119, 52–66 (2002).PubMed 
    Article 

    Google Scholar 
    Agostini, I. & Visalberghi, E. Social influences on the acquisition of sex-typical foraging patterns by juveniles in a group of wild tufted capuchin monkeys (Cebus nigritus). Am. J. Primatol. 65, 335–351 (2005).PubMed 
    Article 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).Article 

    Google Scholar 
    Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).PubMed 
    Article 

    Google Scholar 
    Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS One 14, e0225805 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siegenthaler, A., Wangensteen, O. S., Benvenuto, C., Campos, J. & Mariani, S. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol. Ecol. 28, 232–249 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Esnaola, A., Arrizabalaga-Escudero, A., González-Esteban, J., Elosegi, A. & Aihartza, J. Determining diet from faeces: Selection of metabarcoding primers for the insectivore Pyrenean desman (Galemys pyrenaicus). PLoS One 13, e0208986 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mallott, E. K. & Amato, K. R. The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). Am. J. Primatol. 80, e22896 (2018).PubMed 
    Article 

    Google Scholar 
    Wray, A. K. et al. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol. Ecol. 30, 855–873 (2021).PubMed 
    Article 

    Google Scholar 
    Quiroga-González, C. et al. Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process. Sci. Rep. 11, 6522 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Prada, C. M. & Stevenson, P. R. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guacharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).Article 

    Google Scholar 
    García-Toro, C., Link, A., Páez Crespo, J. & Stevenson, P. R. Home range and daily traveled distances of highland Colombian woolly monkeys (Lagothrix lagothricha lugens): Comparing spatial data from GPS collars and direct follows. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 173–193 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_3.Chapter 

    Google Scholar 
    Baulu, J. & Redmond, D. E. Some sampling considerations in the quantitation of monkey behavior under field and captive conditions. Primates 19, 391–399 (1978).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: An innovative combination trap for biologically diverse sampling. PLoS One 6, e21079 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohmart, C. P., Stewart, L. G. & Thomas, J. R. Phytophagous insect communities in the canopies of three Eucalyptus forest types in south-eastern Australia. Austral Ecol. 8, 395–403 (1983).Article 

    Google Scholar 
    Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
    Google Scholar 
    Schowalter, T. D., Webb, J. W. & Crossley, D. A. Communtiy structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems. Ecology 62, 1010–1019 (1981).Article 

    Google Scholar 
    Stevenson, P. R. Phenological patterns of woody vegetation at Tinigua Park, Colombia: Methodological comparisons with emphasis on fruit production. Caldasia 26, 125–150 (2004).
    Google Scholar 
    Vargas, I. & Stevenson, P. R. Patrones fenológicos en la Estación Biológica Mosiro Itajura-Caparú: Producción de frutos estimada a partir de transectos fenológicos y trampas de frutos. In Estación Biológica Mosiro Itajura-Caparú: Biodiversidad en el territorio Yagojé-Apaporis (eds Alarcón-Nieto, G. & Palacios, E.) 99–104 (Conservación Internacional Colombia, 2009).
    Google Scholar 
    Bautista, S. Patrones de productividad de frutos y dispersión de semillas en diferentes bosques de Colombia, y su relación con la biomasa de primates (2019).King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Invited Review: Molecular analysis of predation: A review of best practice for DNA-based approaches: Optimizing molecular analysis of predation. Mol. Ecol. 17, 947–963 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces: DNA barcoding. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jusino, M. A. et al. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol. Ecol. Resour. 19, 176–190 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS One 14, e0220081 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).Book 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratnasingham & Hebert. bold: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Phillips, C. A. & McGrew, W. C. Identifying species in chimpanzee (Pan troglodytes) feces: A methodological lost cause?. Int. J. Primatol. 34, 792–807 (2013).Article 

    Google Scholar 
    Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Over 2.5 million COI sequences in GenBank and growing. PLoS One 13, e0200177 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).PubMed 
    Article 

    Google Scholar 
    Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).CAS 
    Article 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    R Studio Team. R Studio: Integrated Development of R (Rstudio, PBC, 2020).Hijmans, R. & van Etten, J. raster: Geographic analysis and modeling with raster data (2012).Wickham, H. ggplot2: Elegant graphics for data analysis (2016).Di Fiore, A. & Rodman, P. S. Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a neotropical Terra Firma Forest. Int. J. Primatol. 22, 449–480 (2001).Article 

    Google Scholar 
    Dew, J. L. Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. Int. J. Primatol. 26, 1107–1135 (2005).Article 

    Google Scholar 
    Deblauwe, I. & Janssens, G. P. J. New insights in insect prey choice by chimpanzees and gorillas in Southeast Cameroon: The role of nutritional value. Am. J. Phys. Anthropol. 135, 42–55 (2008).PubMed 
    Article 

    Google Scholar 
    de Carvalho Jr, O., Ferrari, S. F. & Strier, K. B. Diet of a muriqui group (Brachyteles arachnoides) in continuous primary forest. Primates 45, 201–204 (2004).Article 

    Google Scholar 
    Talebi, M., Bastos, A. & Lee, P. C. Diet of southern muriquis in continuous Brazilian Atlantic forest. Int. J. Primatol. 26, 1175–1187 (2005).Article 

    Google Scholar 
    Kowalzik, B. K., Pavelka, M. S. M., Kutz, S. J. & Behie, A. Parasites, primates, and ant-plants: Clues to the life cycle of Controrchis spp. in black howler monkeys (Alouatta pigra) in Southern Belize. J. Wildl. Dis. 46, 1330–1334 (2010).PubMed 
    Article 

    Google Scholar 
    Tebbich, S., Taborsky, M., Fessl, B., Dvorak, M. & Winkler, H. Feeding behavior of four arboreal Darwin’s finches: Adaptations to spatial and seasonal variability. Condor 106, 95–105 (2004).Article 

    Google Scholar 
    Páez Crespo, J. Comportamiento y caracterización genética de churucos de montaña (Lagothrix lagothricha lugens): Inferencias en la filopatría de machos (Universidad de los Andes, 2016).
    Google Scholar 
    Blüthgen, N., Verhaagh, M., Goitía, W. & Blüthgen, N. Ant nests in tank bromeliads—An example of non-specific interaction. Insectes Soc. 47, 313–316 (2000).Article 

    Google Scholar 
    Huxley, C. Symbiosos between ants and epiphytes. Biol. Rev. 55, 321–340 (1980).Article 

    Google Scholar 
    Brehm, G., Pitkin, L. M., Hilt, N. & Fiedler, K. Montane Andean rain forests are a global diversity hotspot of geometrid moths: Hotspot of geometrid moths. J. Biogeogr. 32, 1621–1627 (2005).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Campuzano, E. F., Ibarra-Núñez, G., Machkour-M’Rabet, S., Morón-Ríos, A. & Jiménez, M. L. Diversity and seasonal variation of ground and understory spiders from a tropical mountain cloud forest. Insect Sci. 27, 826–844 (2020).PubMed 
    Article 

    Google Scholar 
    Miller, J. S. & Thiaucourt, P. Diversity of prominent moths (Lepidoptera: Noctuoidea: Notodontidae) in the cloud forests of northeastern Ecuador, with descriptions of 27 new species. Ann. Entomol. Soc. Am. 104, 1033–1077 (2011).Article 

    Google Scholar 
    Lambert, J. E. Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7, 8–20 (1998).Article 

    Google Scholar 
    Janiak, M. C. No evidence of copy number variation in acidic mammalian chitinase genes (CHIA) in new world and old world monkeys. Int. J. Primatol. 39, 269–284 (2018).Article 

    Google Scholar 
    Remis, M. J. & Dierenfeld, E. S. Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. Int. J. Primatol. 25, 825–845 (2004).Article 

    Google Scholar 
    Wolda, H. Seasonality of tropical insects. J. Anim. Ecol. 49, 277 (1980).Article 

    Google Scholar 
    Yanoviak, S. P., Walker, H. & Nadkarni, N. M. Arthropod assemblages in vegetative vs. humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia 48, 51–58 (2004).Article 

    Google Scholar 
    Augspurger, C. K. Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens. Ecology 65, 1705–1712 (1984).Article 

    Google Scholar 
    Richards, L. A. & Windsor, D. M. Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. J. Trop. Ecol. 23, 169–176 (2007).Article 

    Google Scholar 
    Tercel, M. P. T. G., Symondson, W. O. C. & Cuff, J. P. The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Mol. Ecol. 30, 2199–2206 (2021).PubMed 
    Article 

    Google Scholar  More

  • in

    Animal–substrate interactions preserved in ancient lagoonal chalk

    Bromley, R. G. & Gale, A. S. The lithostratigraphy of the English Chalk Rock. Cretac. Res. 3, 273–306 (1982).Article 

    Google Scholar 
    Scholle, P. A., Arthur, M. A. & Ekdale, A. A. Pelagic environment. In Carbonate Depositional Environments (eds Scholle, P. A. et al.) 619–691 (Am. Ass. Petrol. Geol. Mem. 33, 1983).Chapter 

    Google Scholar 
    Gealy, E. L., Winterer, E. L. & Moberly, R. Methods, conventions, and general observations. Initial Rep. Deep Sea Drill. Proj. 7, 9–26 (1971).
    Google Scholar 
    Kroenke, L. W. et al. Ocean Drilling Program. Proc. ODP, Init. Repts. 130, College Station (1991).Dunham, R. L. Classification of carbonate rocks according to depositional texture. Mem. Am. Assoc. Petrol. Geol. 1, 108–121 (1962).
    Google Scholar 
    Quine, M. & Bosence, D. Stratal geometries, facies and sea-floor erosion in Upper Cretaceous chalk, Normandy, France. Sedimentology 38, 1113–1152 (1991).ADS 
    Article 

    Google Scholar 
    Røgen, B., Gommesen, L. & Fabricius, I. L. Grain size distributions of Chalk from Image analysis of electron micrographs. Comput. Geosci. 27, 1071–1080 (2001).ADS 
    Article 

    Google Scholar 
    Saïag, J. et al. Classifying chalk microtextures: Sedimentary versus diagenetic origin (Cenomanian–Santonian, Paris Basin, France). Sedimentology 66, 2976–3007 (2019).Article 
    CAS 

    Google Scholar 
    Scholle, P. A. Chalk diagenesis and its relation to petroleum exploration: Oil from chalks, a modern miracle?. Bull. Am. Assoc. Petrol. Geol. 61, 982–1009 (1977).CAS 

    Google Scholar 
    Tagliavento, M., John, C. M., Anderskouv, K. & Stemmerik, L. Towards a new understanding of the genesis of chalk: Diagenetic origin of micarbs confirmed by clumped isotope analysis. Sedimentology 68, 513–530 (2021).CAS 
    Article 

    Google Scholar 
    Bramlette, M. N. Significance of coccolithophorids in calcium-carbonate deposition. Bull. Geol. Soc. Am. 69, 121–126 (1958).Article 

    Google Scholar 
    Hattin, D. E. & Darko, D. A. Technique for determining coccolith abundance in shaly chalk of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 202, 1–11 (1971).
    Google Scholar 
    Houghton, S. D. Calcareous nannofossils. In Calcareous algae and Stromatolites (ed. Riding, R.) 217–266 (Springer, 1991).Chapter 

    Google Scholar 
    Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 481–508 (Springer, 2004).
    Google Scholar 
    Roth, P. H. Mesozoic paleoceanography of the North Atlantic and Tethys Oceans. In North Atlantic Paleoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publications, 1986).
    Google Scholar 
    Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M. & Kinkel, H. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: A review. Paläontol. Z. 79, 93–112 (2005).Article 

    Google Scholar 
    Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ando, A., Huber, B. T., MacLeod, K. G. & Watkins, D. K. Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well-preserved foraminifera from Tanzania. Paleoceanography 30, 1556–1572 (2015).ADS 
    Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Comparative ichnology of shelf-sea and deep-sea chalk. J. Paleontol. 58, 322–332 (1984).
    Google Scholar 
    Savrda, C. E. Chalk and related deep-marine carbonates. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.) 777–806 (Elsevier, 2012).Chapter 

    Google Scholar 
    Savrda, C. E., Foster, C. & Fluegeman, R. A unique Lower Paleocene shelf-sea chalk in the eastern U.S. Gulf coastal plain (Clayton Formation, western Alabama): Implications for depositional environment, sea-level dynamics and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109439 (2020).Article 

    Google Scholar 
    Erba, E., Watkins, D. & Mutterlose, J. Campanian dwarf calcareous nannofossils from Wodejebato Guyot. In Proc. Ocean Drill. Program Sci. Results (eds Haggerty, J. A. et al.) 141–155 (Ocean Drilling Program, 1995).
    Google Scholar 
    Hancock, J. M. The petrology of chalk. Proc. Geol. Assoc. 86, 499–535 (1975).Article 

    Google Scholar 
    Stanley, S. M. & Hardie, L. A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3–19 (1998).Article 

    Google Scholar 
    Stanley, S. M., Ries, J. B. & Hardie, L. A. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33, 593–596 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Pemberton, S. G. et al. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geol. Assoc. Can. Short Course Notes 15, 1–343 (2001).
    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnology: Organism–Substrate Interactions in Space and Time (Cambridge Press University, 2011).Book 

    Google Scholar 
    Frey, R. W. & Bromley, R. G. Ichnology of American chalks: The Selma Group (Upper Cretaceous), western Alabama. Can. J. Earth Sci. 22, 801–828 (1985).ADS 
    Article 

    Google Scholar 
    Savrda, C. E. & Bottjer, D. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).Article 

    Google Scholar 
    Kennedy, W. J. Trace fossils in carbonate rocks. In The Study of Trace Fossils (ed. Frey, R. W.) 377–398 (Springer, 1975).Chapter 

    Google Scholar 
    Loucks, R. G., Gates, B. G. & Zahm, C. K. Depositional systems, lithofacies, nanopore to micropore matrix network, and reservoir quality of the Upper Cretaceous (Cenomanian) Buda Limestone in Dimmit County, southwestern Texas. Gulf Coast Assoc. Geol. Soc. 8, 281–300 (2019).
    Google Scholar 
    Valencia, F. L. et al. Depositional environments and controls on the stratigraphic architecture of the Cenomanian Buda Limestone in west Texas, U.S.A. Mar. Petrol. Geol. 133, 105275 (2021).Article 

    Google Scholar 
    Valencia, F. L., Laya, J. C., Buatois, L. A., Mángano, M. G. & Valencia, G. L. Sedimentology and stratigraphy of the Cenomanian Buda Limestone in central Texas, U.S.A.: Implications on regional and global depositional controls. Cretac. Res. 137, 105231 (2022).Article 

    Google Scholar 
    Martin, K. G. Stratigraphy of the Buda Limestone, south-central Texas. In Comanchean (Lower Cretaceous) Stratigraphy and Paleontology of Texas (ed. Hendricks, L.) 287–299 (Permian Basin Section SEPM 67 (8), 1967).
    Google Scholar 
    Mallon, A. J. & Swarbrick, R. E. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Mar. Petrol. Geol. 25, 1097–1108 (2008).CAS 
    Article 

    Google Scholar 
    Brasher, J. E. & Vagle, K. R. Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. Am. Assoc. Petrol. Geol. Bull. 80, 746–769 (1996).CAS 

    Google Scholar 
    Hentz, T. F. & Ruppel, S. C. Regional stratigraphic and rock characteristics of eagle ford shale in its play area: Maverick Basin to East Texas Basin. Am. Ass. Petrol. Geol. Search and Discovery 10325 (2011).Robinson, W. C. Petrography and depositional environments of the Buda Limestone, northern Coahuila, Mexico. MS Thesis. The University of Texas, 156 (1982).Reaser, D. F. & Robinson, W. C. Cretaceous Buda Limestone in west Texas and northern Mexico. In Cretaceous Stratigraphy and Paleoecology, Texas and Mexico (ed. Scott, R. W.) 337–373 (Perkins Memorial volume, GCSSEPM Foundation, Special Publications in Geology 1, 2003).
    Google Scholar 
    Young, K. P. Cretaceous paleogeography: Implications of endemic ammonite faunas. Geol. Circ. (University of Texas at Austin, Bureau of Economic Geology) 72, 1–13 (1972).
    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnodiversity and ichnodisparity: Significance and caveats. Lethaia 46, 281–292 (2013).Article 

    Google Scholar 
    Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth Sci. Rev. 164, 102–181 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Swinbanks, D. D. & Luternauer, J. L. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. J. Paleontol. 61, 315–333 (1987).Article 

    Google Scholar 
    Carmona, N. B., Buatois, L. A. & Mángano, M. G. The trace fossil record of burrowing decapod crustaceans: Evaluating evolutionary radiations and behavioural convergence. In Trace Fossils in Evolutionary Palaeoecology (eds Webby, B. D. et al.) 141–153 (Wiley, 2004).
    Google Scholar 
    Baucon, A. et al. Ethology of the trace fossil Chondrites: Form, function and environment. Earth Sci. Rev. 202, 102989 (2020).CAS 
    Article 

    Google Scholar 
    Pemberton, S. G. & Frey, R. W. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. J. Paleontol. 56, 843–881 (1982).
    Google Scholar 
    Rodríguez-Tovar, F. J. & Pérez-Valera, F. Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: Characterization and environmental implications. Palaios 23, 78–86 (2008).ADS 
    Article 

    Google Scholar 
    Bown, T. M. & Kraus, M. J. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol 43, 95–128 (1983).Article 

    Google Scholar 
    Uchman, A. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15, 3–115 (1995).
    Google Scholar 
    Demírcan, H. & Uchman, A. The miniature trace fossil Bichordites kuzunensis isp. Nov., from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol. Pol. 62, 205–215 (2012).
    Google Scholar 
    Plaziat, J.-C. & Mahmoudi, M. Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios 21, 209–233 (1988).Article 

    Google Scholar 
    Chamberlain, C. K. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. J. Paleontol. 45, 212–246 (1971).
    Google Scholar 
    Farrow, G. E. Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2, 103–151 (1966).Article 

    Google Scholar 
    Mángano, M. G., Buatois, L. A., West, R. R. & Maples, C. G. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the upper carboniferous of eastern Kansas. Palaios 13, 335–351 (1998).ADS 
    Article 

    Google Scholar 
    Pemberton, S. G., Frey, R. W. & Bromley, R. G. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can. J. Earth Sci. 25, 866–892 (1988).ADS 
    Article 

    Google Scholar 
    Nara, M. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia 28, 171–178 (1995).Article 

    Google Scholar 
    Wilson, M. A., Curran, H. A. & White, B. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31, 241–250 (1998).Article 

    Google Scholar 
    Santos, A., Mayoral, E., Marques da Silva, C., Cachão, M. & Kullberg, J. C. Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 35–43 (2010).Article 

    Google Scholar 
    Wilson, J. L. Carbonate Facies in Geological History (Springer, 1975).Book 

    Google Scholar 
    Tucker, M. E. & Wright, V. P. Carbonate Sedimentology (Blackwell Science, 1990).Book 

    Google Scholar 
    MacEachern, J. A. & Gingras, M. K. Recognition of brackish-water trace fossil assemblages in the Cretaceous western interior seaway of Alberta. In Sediment-Organism Interactions: A Multifaceted Ichnology (eds Bromley, R. G. et al.) 149–194 (Society for Sedimentary Geology Special Publication, 2007).
    Google Scholar 
    MacEachern, J. A., Zaitlin, B. A. & Pemberton, S. G. High-resolution sequence stratigraphy of early transgressive deposits, Viking Formation, Joffre Field, Alberta, Canada. Bull. Am. Assoc. Petrol. Geol. 82, 729–756 (1998).
    Google Scholar 
    Buatois, L. A., Netto, R. G. & Mángano, M. G. Ichnology of Permian marginal-marine to shallow-marine coal-bearing successions: Rio Bonito and Palermo formations, Parana Basin, Brazil. In Applied Ichnology (eds MacEachern, J. A. et al.) 167–177 (Society for Sedimentary Geology Short Course Notes, 2007).
    Google Scholar 
    Buatois, L. A. et al. Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios 20, 321–347 (2005).ADS 
    Article 

    Google Scholar 
    Pemberton, S. G. & Wightman, D. M. Ichnological characteristics of brackish water deposits. In Applications of Ichnology to Petroleum Exploration: A Core Work-shop (ed. Pemberton, S. G.) 141–167 (Society of Economic Paleontologists and Mineralogists Core Workshop, 1992).Chapter 

    Google Scholar 
    Anderson, B. G. & Droser, M. L. Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: An example from the Upper Cretaceous US western interior. Sedimentology 45, 379–396 (1998).ADS 
    Article 

    Google Scholar 
    Buatois, L. A., Mángano, M. G. & Pattison, S. A. J. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).Article 

    Google Scholar 
    Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS 
    Article 

    Google Scholar 
    Savrda, C. E. Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous-Tertiary boundary sand in Alabama. Geology 21, 1075–1078 (1993).ADS 
    Article 

    Google Scholar 
    Schlager, W. Accommodation and supply-a dual control on stratigraphic sequences. Sediment. Geol. 86, 111–136 (1993).ADS 
    Article 

    Google Scholar 
    Strasser, A. & Samankassou, E. Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda vs. Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France). Geol. Croat. 56, 1–18 (2003).Article 

    Google Scholar 
    Moyano-Paz, D., Richiano, S., Varela, A. N., Gómez-Dacal, A. R. & Poire, D. G. Ichnological signatures from wave- and fluvial-dominated deltas: The La Anita Fromation, Upper Cretaceous, Austral-Magallanes Basin, Patagonia. Mar. Pet. Geol. 114, 104168 (2020).CAS 
    Article 

    Google Scholar 
    De Gibert, J. M. & Ekdale, A. A. Trace fossil assemblages reflecting stressed environments in the Middle Jurassic Carmel Seaway of Central Utah. J. Paleontol. 73, 711–720 (1999).Article 

    Google Scholar 
    Gingras, M. K., MacEachern, J. A. & Dashtgard, S. E. Process ichnology and the elucidation of physico-chemical stress. Sediment. Geol. 237, 115–134 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, C. R., Levin, L. A., Hoover, D. J., McMurty, G. & Gage, J. D. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Res. II 47, 227–257 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Wignall, P. B., Newton, R. & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 183–188 (2005).Article 

    Google Scholar 
    Kennedy, W. J. Burrows and surface traces from the Lower Chalk of southern England. Bull. Br. Mus. Nat. Hist. Geol. 15, 127–167 (1967).
    Google Scholar 
    Kennedy, W. J. & Garrison, R. E. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22, 311–386 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    Bromley, R. G. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Geol. Soc. Lond. Q. J. 123, 157–182 (1967).Article 

    Google Scholar 
    Bromley, R. G. Trace fossils at omission surfaces. In The Study of Trace Fossils (ed. Frey, R. W.) 399–428 (Springer, 1975).Chapter 

    Google Scholar 
    Hart, M. B., Harries, P. J. & Cárdenas, A. L. The Cretaceous/Paleogene boundary events in the Gulf Coast: Comparisons between Alabama and Texas. Gulf Coast Assoc. Geol. Trans. 63, 235–255 (2013).
    Google Scholar 
    Al Balushi, S. A. K. & Macquaker, J. H. S. Sedimentological evidence for bottom-water oxygenation during deposition of the Natih-B Member intrashelf-basinal sediments: Upper Cretaceous carbonate source rock, Natih Formation, North Sultanate of Oman. GeoArabia 16, 47–84 (2011).Article 

    Google Scholar 
    Lasseur, E. et al. A relative water-depth model for the Normandy Chalk (Cenomanian–Middle Coniacian, Paris Basin, France) based on facies patterns of metre-scale cycles. Sediment. Geol. 213, 1–26 (2009).ADS 
    Article 

    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Rhizocorallium in the upper Austin Chalk, Ellis County, Texas. Texas J. of Sci. 23, 207–214 (1980).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Ichnology and paleoenvironments of the middle and upper Austin Chalk (Upper Cretaceous), northeastern Texas. Trans. Am. Assoc. Pet. Geol. Southwest Sec. 1985, 47–67 (1985).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Trace fossils and paleoenvironments of lower and middle Austin Chalk (Upper Cretaceous), north-central Texas. Trans. Gulf Coast Assoc. Geol. Soc. 40, 161–173 (1990).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Ichnology and Paleosubstrates of Austin Chalk (Cretaceous) Outcrops: Southern Dallas and Ellis Counties, Texas. Am. Assoc. Pet. Geol. Search Discovery Article #91004 (1991).Fürsich, F. T., Kennedy, W. J. & Palmer, T. J. Trace fossils at a regional discontinuity surface: The Austin/Taylor (Upper Cretaceous) contact in central Texas. J. Paleontol. 55, 537–551 (1981).
    Google Scholar 
    Morgan, R. F. A new ichnospecies of Gyrolithes from the Austin Chalk, Upper Cretaceous, Texas, USA. Ichnos 26, 1–7 (2018).Article 

    Google Scholar 
    Cooper, J. R., Godet, A. & Pope, M. C. Tectonic and eustatic impact on depositional features in the upper Cretaceous Austin Chalk Group of south-central Texas, USA. Sediment. Geol. 401, 105632 (2020).Article 

    Google Scholar 
    Loucks, R. G. et al. Geologic characterization of the type cored section for the Upper Cretaceous Austin Chalk Group in southern Texas: A combination fractured and unconventional reservoir. Am. Assoc. Pet. Geol. Bull. 104, 2209–2245 (2020).
    Google Scholar 
    Loucks, R. G., Reed, R. M., Ko, L. T., Zahm, C. K. & Larson, T. E. Micropetrographic characterization of a siliciclastic-rich chalk; Upper Cretaceous Austin Chalk Group along the onshore northern Gulf of Mexico, USA. Sediment. Geol. 412, 105821 (2021).CAS 
    Article 

    Google Scholar 
    Bottjer, D. J. Paleoecology, Ichnology, and Depositional Environments of Upper Cretaceous Chalks (Annona Formation; chalk Member of Saratoga Formation), Southwestern Arkansas. PhD Dissertation, Indiana University, 424 (1978).Bottjer, D. J. Ichnology and depositional environments of Upper Cretaceous chalks, southwestern Arkansas (Annona Formation; chalk member, Saratoga Formation). Am. Assoc. Pet. Geol. Bull. 63, 422 (1979).
    Google Scholar 
    Bottjer, D. J. Trace fossils and paleoenvironments of two Arkansas Upper Cretaceous discontinuity surfaces. J. Paleontol. 59, 282–298 (1985).
    Google Scholar 
    Bottjer, D. J. Campanian-Maastrichtian chalks of southwestern Arkansas: Petrology, paleoenvironments and comparison with other North American and European chalks. Cretac. Res. 7, 161–196 (1986).Article 

    Google Scholar 
    Bayet-Goll, A., Neto de Carvalho, C., Monaco, P. & Sharafi, M. Sequence stratigraphic and sedimentologic significance of biogenic structures from chalky limestones of the Turonian-Campanian Abderaz Formation, Kopet-Dagh, Iran. In Cretaceous Period: Biotic Diversity and Biogeography (eds Khosla, A. & Lucas, S. G.) 19–43 (New Mex. Mus. Nat. His. Sci. Bull. 71, 2016).
    Google Scholar 
    Locklair, R. E. & Savrda, C. E. Ichnology of rhythmically bedded Demopolis Chalk (Upper Cretaceous, Alabama): Implications for paleoenvironment, depositional cycle origins, and tracemaker behavior. Palaios 13, 423–438 (1998).ADS 
    Article 

    Google Scholar 
    Locklair, R. E. & Savrda, C. E. Ichnofossil tiering analysis of a rhythmically bedded chalk-marl sequence in the Upper Cretaceous of Alabama. Lethaia 31, 311–322 (1998).Article 

    Google Scholar 
    Kennedy, W. J. Trace fossils in the chalk environment. In Trace Fossils (eds Crimes, T. P. & Harper, J. C.) 263–282 (Geological Journal Special Issue 3, 1970).
    Google Scholar 
    Mortimore, R. N. & Pomerol, B. Stratigraphy and eustatic implications of trace fossil events in the Upper Cretaceous Chalk of northern Europe. Palaios 6, 216–231 (1991).ADS 
    Article 

    Google Scholar 
    Foster, C. B. III. Geology of the Moscow Landing Section, Tombigbee River, Western Alabama, with Focus on Ichnologic Aspects of the Lower Paleocene Clayton Formation. M.Sc. Dissertation, Auburn University, 88 (2019).Gabdullin, R. R. Rhythmicity of the Upper Cretaceous Deposits of the East European Craton, Northwestern Caucasus and Southwestern Crimea: Structure, Classification, Formation Models (Mosk. Gos. Univ., 2002).
    Google Scholar 
    Baraboshkin, E. Y. & Zibrov, I. A. Characteristics of the Middle Cenomanian Rhythmic Sequence from Mount Selbukhra in Southwest Crimea. Moscow Univ. Geol. Bull. 67, 176–184 (2012).Article 

    Google Scholar 
    Blinkenberg, K. H., Lauridsen, B. W., Knaust, D. & Stemmerik, L. New ichnofabrics of the Cenomanian-Danian Chalk Group. J. Sediment. Res. 90, 701–712 (2020).ADS 
    Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Trace fossils and ichnofabric in the Kjolby Gaard Marl, uppermost Cretaceous, Denmark. Bull. Geol. Soc. Denmark 31, 107–119 (1983).Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Cretaceous chalk ichnofacies in northern Europe. Geobios 8, 201–204 (1984).Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Analysis of composite ichnofabrics; An example in Uppermost Cretaceous chalk of Denmark. Palaios 6, 232–249 (1991).ADS 
    Article 

    Google Scholar 
    Surlyk, F. et al. The cyclic Rørdal Member—A new lithostratigraphic unit of chronostratigraphic and palaeoclimatic importance in the upper Maastrichtian of Denmark. Bull. Geol. Soc. Denmark 58, 89–98 (2010).Article 

    Google Scholar 
    Lauridsen, B. W., Surlyk, F. & Bromley, R. G. Trace fossils of a cyclic chalk marl succession; the upper Maastrichtian Rørdal Member, Denamrk. Cretac. Res. 32, 194–211 (2011).Article 

    Google Scholar 
    Frey, R. W. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleontol. Contrib. 53, 52 (1970).
    Google Scholar 
    Hattin, D. E. Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area western Kansas. Kansas Geol. Surv. Bull. 225, 1–108 (1982).
    Google Scholar 
    Savrda, C. E. Ichnocoenoses in the Niobrara Formation: Implications for benthic oxygenation histories. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 137–151 (SEPM Society for Sedimentary Geology 6, 1998).Chapter 

    Google Scholar 
    Hattin, D. E. Widespread, synchronously deposited, burrow-mottled limestone beds in Greenhorn Limestone (Upper Cretaceous) of Kansas and southeastern Colorado. Am. Assoc. Pet. Geol. Bull. 55, 412–431 (1971).
    Google Scholar 
    Hattin, D. E. Stratigraphy and depositional environment of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 209, 128 (1975).
    Google Scholar 
    Savrda, C. E. Ichnology of the Bridge Creek Limestone: Evidence for temporal and spatial variations in paleo-oxygenation in the Western Interior Seaway. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 127–136 (SEPM Society for Sedimentary Geology 6, 1998).Chapter 

    Google Scholar 
    Rasmussen, S. L. & Surlyk, F. Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. J. Geol. Soc. Lond. 169, 435–447 (2012).Article 

    Google Scholar 
    Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cretac. Res. 46, 232–256 (2013).Article 

    Google Scholar 
    Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J. & Stemmerik, L. Controls on upper Campanian-Maastrichtian chalk deposition in the eastern Danish Basin. Sedimentology 64, 1998–2030 (2017).Article 

    Google Scholar 
    Reolid, J. & Betzler, C. The ichnology of carbonate drifts. Sedimentology 66, 1427–1448 (2019).Article 

    Google Scholar 
    Nygaard, E. Bathichnus and Its Significance in the Trace Fossil Association of Upper Cretaceous Chalk, Mors, Denmark 107–113 (Danm. Geol. Unders. Årbog, 1983).
    Google Scholar 
    Scholle, P. A., Albrechtsen, T. & Tirsgaard, H. Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea. Sedimentology 45, 223–243 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Damholt, T. & Surlyk, F. Laminated–bioturbated cycles in Maastrichtian chalk of the North Sea: Oxygenation fluctuations within the Milankovitch frequency band. Sedimentology 51, 1323–1342 (2004).ADS 
    Article 

    Google Scholar 
    Anderskouv, K. & Surlyk, F. Upper Cretaceous chalk facies and depositional history recorded in the Mona-1 core, Mona Ridge, Danish North Sea. Geol. Surv. Denmark Greenland Bull. 25, 1–60 (2011).Article 

    Google Scholar 
    Maliva, R. G. & Dickson, J. A. D. Microfacies and diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk Field, Norwegian North Sea. Am. Assoc. Pet. Geol. Bull. 76, 1825–1838 (1992).
    Google Scholar 
    Knaust, D., Dorador, J. & Rodríguez-Tovar, F. J. Burrowed matrix powering dual porosity systems—A case study from the Maastrichtian chalk of the Gullfaks Field Norwegian North Sea. Mar. Petrol. Geol. 113, 104158 (2020).Article 

    Google Scholar 
    Phillips, C. & McIlroy, D. Ichnofabrics and biologically mediated changes in clay mineral assemblages from a deep-water, fine-grained, calcareous sedimentary succession: An example from the Upper Cretaceous Wyandot Formation, offshore Nova Scotia. Bull. Can. Petrol. Geol. 58, 203–218 (2010).Article 

    Google Scholar 
    Rodríguez-Tovar, F. J. & Hernández-Molina, F. J. Ichnological analysis of contourites: Past, present and future. Earth-Sci. Rev. 182, 28–41 (2018).ADS 
    Article 

    Google Scholar 
    Miguez-Salas, O. & Rodríguez-Tovar, F. J. Ichnofacies distribution in the Eocene-Early Miocene Petra Tou Romiou outcrop, Cyprus: Sea level dynamics and palaeoenvironmental implications in a contourite environment. Int. J. Earth Sci. 108, 2531–2544 (2019).CAS 
    Article 

    Google Scholar 
    Nelson, C. S. Bioturbation in middle bathyal, Cenozoic nannofossil oozes and chalks, southwest Pacific. In Initial Reports of the Deep Sea Drilling Project 90 (eds Kennett, J. P., von der Borch, C. C. et al.) 1189–1200 (Washington U.S. Government Printing Office, 1986).
    Google Scholar 
    Fütterer, D. K. Bioturbation and trace fossils in deep sea sediments of the Walvis Ridge, southeastern Atlantic, Leg 74. In Initial Reports of the Deep Sea Drilling Project 74 (eds Moore, T. C., Rabinowitz, P. D. et al.) 543–555 (Government Printing Office, 1984).
    Google Scholar 
    Wetzel, A. Ichnofabrics in Eocene to Maestrichtian sediments from Deep Sea Drilling Project Site 605, off the New Jersey coast. In Initial Reports of the Deep Sea Drilling Project 93 (eds. Hinte, J. E., Wise Jr., S. W. et al.) 825–835 (1987).Droser, M. L. & Bottjer, D. J. Trace fossils and ichnofabrics in Leg 119 cores. In Proceedings of the Ocean Drilling Program, Scientific Results 119 (eds. Barron, J., Larsen, B. et al.) 635–641 (1991).Desai, B. G. Ichnofabric analysis of bathyal chalks: The Miocene Inglis Formation of the Andaman and Nicobar Islands, India. J. Palaeogeogr. 10, 1–15 (2021).Article 

    Google Scholar 
    Warme, J. E., Kennedy, W. J. & Scheidermann, N. Biogenic sedimentary structures (trace fossils) in Leg 15 cores. In Initial Reports of the Deep Sea Drilling Project 15 (eds. Edgar, N. T., Saunders, J. B. et al.) 813–831 (1973).Maurrasse, F. Sedimentary structures of Caribbean Leg 15 sediments. In Initial Reports of the Deep-Sea Drilling Project 15 (eds. Edgar, T. et al.) (1974).Erba, E. & Premoli-Silva, I. Orbitally driven cycles in trace-fossil distribution from the Piobbico core (late Albian, central Italy). In Orbital Forcing and Cyclic Sequences, IAS Spec. Publ. 19 (eds De Boer, P. L. & Smith, D. G.) 211–225 (Blackwell Scientific, 1994).
    Google Scholar 
    Chamberlain, C. K. Trace fossils in DSDP cores of the Pacific. J. Paleontol. 49, 1074–1096 (1975).
    Google Scholar 
    Ekdale, A. A. Trace fossils in Deep Sea Drilling Project Leg 58 cores. In Initial Reports of the Deep Sea Drilling Project 58 (eds. de Vries Klein, G., Kobyashi, K. et al.) 601–605 (1980).Ekdale, A. A. Geologic history of the abyssal benthos: Evidence from trace fossils in Deep-Sea Drilling Project cores. PhD Dissertation, Rice University, 154 (1974).Ekdale, A. A. Abyssal trace fossils in worldwide Deep Sea Drilling Project cores. In Trace Fossils 2 (eds. Crimes, T. P. & Harper, J. C.) 163–182 (Geol. J., Spec. Iss. 9, 1977).Ekdale, A. A. & Berger, W. H. Deep-sea ichnofacies: Modern organism traces on and in pelagic carbonates of the western equatorial Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 23, 263–278 (1978).Article 

    Google Scholar 
    Ekdale, A. A., Muller, L. N. & Novak, M. T. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 189–223 (1984).CAS 
    Article 

    Google Scholar 
    Savrda, C. E. Limited ichnologic fidelity and temporal resolution in pelagic sediments: Paleoenvironmental and paleoecologic implications. Palaios 29, 210–217 (2014).ADS 
    Article 

    Google Scholar 
    Bromley, R. G. & Ekdale, A. A. Composite ichnofabrics and tiering of burrows. Geol. Mag. 123, 59–65 (1986).ADS 
    Article 

    Google Scholar 
    Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).Article 

    Google Scholar 
    Valentine, J. W. Overview of marine biodiversity. In Marine Macroecology (eds Witman, J. D. & Roy, K.) 3–28 (University of Chicago Press, 2009).Chapter 

    Google Scholar 
    Schlacher, T. A. et al. Soft-sediment benthic community structure in a coral reef lagoon—The prominence of spatial heterogeneity and “spot endemism”. Mar. Ecol. Prog. Ser. 174, 159–174 (1998).ADS 
    Article 

    Google Scholar 
    Hummel, H. et al. Geographic patterns of biodiversity in European coastal marine benthos. J. Mar. Biol. Assoc. U.K. 97, 507–523 (2017).Article 

    Google Scholar 
    Harborne, A. R., Mumby, P. J., Żychaluk, K., Hedley, J. D. & Blackwell, P. G. Modeling the beta diversity of coral reefs. Ecology 87, 2871–2881 (2006).PubMed 
    Article 

    Google Scholar 
    Christia, C., Giordani, G. & Papastergiadou, E. Environmental variability and macrophyte assemblages in coastal lagoon types of Western Greece (Mediterranean Sea). Water 10, 151 (2018).Article 
    CAS 

    Google Scholar 
    Dorador, J., Rodríguez-Tovar, F. J., IODP Expedition 339 Scientists. Digital image treatment applied to ichnological analysis of marine core sediments. Facies 60, 39–44 (2014).Article 

    Google Scholar 
    Dorador, J. & Rodríguez-Tovar, F. J. High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects. Earth-Sci. Rev. 177, 226–237 (2018).ADS 
    Article 

    Google Scholar 
    Taylor, A. M. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148 (1993).ADS 
    Article 

    Google Scholar 
    Cao, Y. M., Curran, A. H. & Glumac, B. Testing the use of photoshop and imageJ for evaluating ichnofabrics. 2015 GSA Annual Meeting in Baltimore, Maryland, USA, Paper No. 128-11 (The Geol. Soc. of Am., 2015). More