More stories

  • in

    Co-application of proline or calcium and humic acid enhances productivity of salt stressed pomegranate by improving nutritional status and osmoregulation mechanisms

    Holland, D., Hatib, K. & Bar-Ya’akov, I. Pomegranate: Botany, horticulture and breeding. In Horticultural Reviews Vol. 35 (ed. Janick, J.) 127–191 (Wiley, 2009).Chapter 

    Google Scholar 
    Fayek, M. A., Mohamed, A. E. & Rashedy, A. A. Responses of five pomegranate (Punica granatum L.) cultivars to contrasting water availability: Leaf morphophysiological and anatomical adaptation. Appl. Ecol. Environ. Res. 20, 967–978 (2022).Article 

    Google Scholar 
    Naeini, M. R., Khoshgoftarmanesh, A. H., Lessani, H. & Fallahi, E. Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. J. Plant Nutr. 27(8), 1319–1326 (2005).Article 
    CAS 

    Google Scholar 
    Sun, Y., Niu, G., Masabni, J. G. & Ganjegunte, G. Relative salt tolerance of 22 pomegranate (Punica granatum) cultivars. HortScience 53(10), 1513–1519 (2018).Article 

    Google Scholar 
    Lansky, E. P. & Newman, R. A. Review: Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 109(2), 177–206 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khedr, E. H. Application of different coating treatments to enhance storability and fruit quality of pomegranate (Punica granatum L., cv. Wonderful) during prolonged storage. Rev. Braz. Fruitc. 44(2), 1–13 (2022).MathSciNet 

    Google Scholar 
    FAO (Food and Agriculture organization). Extent and causes of salt-affected soils in participating countries. Global network on integrated soil management for sustainable use of salt-affected soils. FAO-AGL website. Available in https://xueshu.baidu.com/usercenter/paper/show?paperid=9e5044cfc974c52d785834bbd8438017 (2000).Mehanna, H. T., Fayed, T. A. & Rashedy, A. A. Response of two grape rootstocks to some salt tolerance treatments under saline water conditions. J. Hortic. Sci. Ornam. Plants 2(2), 93–106 (2010).
    Google Scholar 
    Rady, M. M., Elrys, A. S., Abo El-Maati, M. F. & Desoky, E. M. Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol. Biochem. 139, 558–568 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    El-Khawaga, A. S., Zaeneldeen, E. M. A. & Yossef, M. A. Response of three pomegranate cultivars (Punica granatum L.) to salinity stress. Middle East J. Agric. Res. 1(1), 64–75 (2013).
    Google Scholar 
    Khaled, H. & Fawy, H. A. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res. 6(1), 21–29 (2011).CAS 
    Article 

    Google Scholar 
    Jahromi, A. A. & Khankahdani, H. H. Effect of humic acid on some vegetative traits and ion concentrations of Mexican Lime (Citrus aurantifolia Swingle) seedlings under salt stress. Int. J. Hortic. Sci. Technol. 3(2), 255–264 (2016).CAS 

    Google Scholar 
    Hatami, E., Shokouhian, A. A., Ghanbari, A. R. & Naseri, L. A. Alleviating salt stress in almond rootstocks using of humic acid. Sci. Hortic. 237, 296–302 (2018).CAS 
    Article 

    Google Scholar 
    Shalaby, O. A. E. & El-Messairy, M. M. Humic acid and boron treatment to mitigate salt stress on the melon plant. Acta Agric. Slov. 111(2), 349–356 (2018).Article 
    CAS 

    Google Scholar 
    Kavi Kishor, P. B. et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88(3), 424–438 (2005).
    Google Scholar 
    Mahmoudi, M. & Aryaee, P. Study the effects of fulvic acid on physiological traits of citrus unshu under salt stress. Int. J. Chem. Environ. Biol. Sci. 3(3), 198–200 (2015).
    Google Scholar 
    Kaya, C., AKram, N. A., Ashraf, M. & Sonmez, O. Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Curr. Sci. 46, 67–78 (2018).CAS 

    Google Scholar 
    Hayat, S. et al. Role of proline under changing environments. Plant Signal. Behav. 7(11), 1456–1466 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meena, M. et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5, e02952 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A. & Abd El-Mageed, T. A. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 272, 109580 (2020).CAS 
    Article 

    Google Scholar 
    Abo-ogiala, A. Crop production of pomegranate cv. wonderful via foliar application of ascorbic acid, proline and glycinbetaine under environmental stresses. Int. J. Environ. 7(3), 95–103 (2018).
    Google Scholar 
    El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. & Savoure, A. How does proline treatment promote salt stress tolerance during crop plant development?. Front. Plant Sci. 11, 1127 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Orlov, S. N., Aksentsev, S. L. & Kotelevtsev, S. V. Extracellular calcium is required for the maintenance of plasma membrane integrity in nucleated cells. Cell Calcium 38(1), 53–57 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, G. Q. & Wang, S. M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ. 58(3), 121–127 (2012).CAS 
    Article 

    Google Scholar 
    Cheng, X., Zhang, X., Yu, L. & Xu, H. Calcium signaling in membrane repair. Semin. Cell Dev. Biol. 45, 24–31 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, P. et al. J. Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. J. Biol. Chem. 287, 44062–44070 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, P. H., Zhang, G. Y., Gonzales, N., Guo, Y. Q., Hu, H. H., Park, S. & Zhao, J.  Ca2+-regulated and diurnal rhythm-regulated Na+/Ca2+ exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. Plant Cell Environ. 39, 377–392 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paiva, E. A. S. Are calcium oxalate crystals a dynamic calcium store in plants?. New Phytol. 223, 1707–1711 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).CAS 
    Article 

    Google Scholar 
    Herbert, D., Phipps, P. J. & Strange, R. E. Chemical analysis of microbial cells. J. Microbiol. Methods 5, 209–344 (1971).Article 

    Google Scholar 
    Smith, G. S., Johnston, C. M. & Cornforth, I. S. Comparison of nutrient solutions for growth of plants in sand culture. New Phytol. 94(4), 537–548 (1983).CAS 
    Article 

    Google Scholar 
    Mastrogiannidou, E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A. & Therios, I. Response of pomegranate cv. wonderful plants to salinity. J. Soil Sci. Plant Nutr. 16(3), 621–636 (2016).CAS 

    Google Scholar 
    Temminghoff, E. E. J. M. & Houba, V. J. G. Plant Analysis Procedures. Second Edition Analysis 94–96 (Kluwer Academic Publishers, 2004). https://doi.org/10.1007/978-1-4020-2976-9.Book 

    Google Scholar 
    Jones, J. B. Jr. Kjeldahl Method for Nitrogen Determination (Micro-Macro Publishing, 1991).
    Google Scholar 
    Association of Official Analytical Chemists—A. O. A. C. Official Methods of Analysis of the Association of the Analytical Chemists 17th edn, 2200 (AOAC International, 2000).
    Google Scholar 
    Snedecor, W. & Cochran, W. G. Statistical Methods 8th edn, 503 (Iowa State University Press, 1989).MATH 

    Google Scholar 
    Ennab, H. A. Effect of humic acid on growth and productivity of egyptian lime trees (Citrus aurantifolia swingle) under salt stress conditions. J. Agric. Res. (Kafr El-Shaikh Univ.) 42(4), 494–505 (2016).
    Google Scholar 
    Genaidy, E. A. E., Merwad, M. A. & Haggag, L. F. Effect of algae, humic acid and waste organic material in culture media on growth performance of “Picual” olive seedlings. Int. J. Chemtech Res. 8(11), 43–50 (2015).
    Google Scholar 
    Fekry, W. M. E., Rashad, M. A. & Alalaf, A. H. Attempts to improve the growth and fruiting of barhi date palms under salinity stress. Asian J. Plant Sci. 19, 146–151 (2020).CAS 
    Article 

    Google Scholar 
    Abdelhamid, M. T., Rady, M. M., Osman, A. S. H. & Abdalla, M. A. Exogenous application of proline alleviates saltinduced oxidative stress in Phaseolus vulgaris L. plants. J. Hortic. Sci. Biotechnol. 88(4), 439–446 (2013).CAS 
    Article 

    Google Scholar 
    Wani, A. S., Ahmad, A., Hayat, S. & Tahir, I. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol. Biochem. 135, 385–394 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben Mahmoud, O. M. et al. Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. S. Afr. J. Bot. 128, 209–217 (2020).Article 
    CAS 

    Google Scholar 
    Nakhaie, A., Habibi, G. & Vaziri, A. Exogenous proline enhances salt tolerance in acclimated Aloe vera by modulating photosystem II efficiency and antioxidant defense. S. Afr. J. Bot. 147, 1–10 (2020).
    Google Scholar 
    Hasanuzzaman, M. et al. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res. Int. 2014, 1–17 (2014).
    Google Scholar 
    Shahid, M. A. et al. Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turk. J. Bot. 38, 914–926 (2014).CAS 
    Article 

    Google Scholar 
    Lima-Costa, M.E., Ferreira, S., Duarte, A. & Ferreira, A. L. Alleviation of salt stress using exogenous proline on a citrus cell line. Acta Hortic. 868, 109–112 (2010).CAS 
    Article 

    Google Scholar 
    Alotaibi, S., Ali, E., Darwesh, H., Ahmed, A. & Al-Thubaiti, E. Effect of proline on growth and nutrient uptake of Simmondsia chinensis (link) schneider under salinity stress. Pak. J. Biol. Sci. 22(9), 412–418 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    AlKahtani, M. D. F. et al. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants 10(3), 398 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, P. et al. Exogenous application of calcium to 24-epibrassinosteroid pretreated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci. Rep. 8, 13515 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jasim, A. M., Abbas, M. F. & Shareef, H. J. Calcium application mitigates salt stress in Date Palm (Phoenix dactylifera L.) offshoots cultivars of Berhi and Sayer. Acta Agric. Slov. 107(1), 103–112 (2016).Article 

    Google Scholar 
    Zhou, L., Lan, W., Jiang, Y., Fang, W. & Luan, S. Calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol. Plant 7(2), 369–376 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zou, J. J. et al. Arabidopsis calcium-dependent protein kinse8 and catalase3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27(5), 1445–1460 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Beltagi, H. S. & Mohamed, H. I. Alleviation of cadmium toxicity in Pisum sativum L. seedlings by calcium chloride. Not. Bot. Horti. Agrobot. Cluj Napoca 41, 157–168 (2013).CAS 
    Article 

    Google Scholar 
    White, P. J. Calcium channels in higher plants. Biochim. Biophys. Acta (BBA) Biomembr. 1465(1–2), 171–189 (2000).CAS 
    Article 

    Google Scholar 
    Salahshoor, F. & Kazemi, F. Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina. Plant Soil Environ. 62, 460–467 (2016).CAS 
    Article 

    Google Scholar 
    Tzortzakis, N. G. Potassium and calcium enrichment alleviate salinity-induced stress in hydroponically grown endives. Sci. Rep. 8, 13515 (2010).
    Google Scholar 
    Cha-um, S., Singh, H. P., Samphumphuang, T. & Kirdmanee, C. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): Physiological and morphological changes. Aust. J. Crop Sci. 6(1), 176–182 (2012).CAS 

    Google Scholar 
    Murillo-Amador, B. et al. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci. 193(6), 413–421 (2007).CAS 
    Article 

    Google Scholar 
    Zaman, B., Niazi, B.H., Athar, M. & Ahmad, M. Response of wheat plants to sodium and calcium ion interaction under saline environment. Int. J. Environ. Sci. Technol. 2, 7–12 (2005).CAS 
    Article 

    Google Scholar 
    Akladious, S. A. & Mohamed, H. I. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. 236, 244–250 (2018).CAS 
    Article 

    Google Scholar 
    Wójcik, P., Filipczak, J. & Wójcik, M. Effects of prebloom sprays of tryptophan and zinc on calcium nutrition, yielding and fruit quality of ‘Elstar’ apple trees. Sci. Hortic. 246, 212–216 (2019).Article 
    CAS 

    Google Scholar 
    Hagagg, L. F., Abd-Alhamid, N. & Maklad, M. F. Effect of kaolin and calcium carbonate on vegetative growth, leaf pigments and mineral content of kalamata and manzanillo olive trees. Middle East J. Agric. Res. 8(1), 298–310 (2019).
    Google Scholar 
    El-Hoseiny, H. M., Helaly, M. N., Elsheery, N. I. & Alam-Eldein, S. M. Quality of mango trees humic acid and boron to minimize the incidence of alternate bearing and improve the productivity and fruit quality of mango trees. HortScience 55, 1026–1037 (2020).CAS 
    Article 

    Google Scholar 
    Masoud, A. A. B., Khodair, O. A. & Gouda, F. E. M. Effect of gibberellic acid, naphthalenacetic acid, calcium and zinc spraying on fruiting of manfalouty pomegranate trees. Assiut J. Agric. Sci. 50(2), 219–228 (2019).
    Google Scholar 
    Russo, R. O. & Berlyn, G. P. The use of organic biostimulants to help low input sustainable agriculture. J. Sustain. Agric. 1(2), 19–42 (1990).Article 

    Google Scholar 
    Chen, Y. & Aviad, T. Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Science: Selected Readings (ed. Maccarthy, P.) 161–186 (CSSA and ASA, 1990).
    Google Scholar 
    El Sayed, O. M., El Gammal, O. H. M. & Salama, A. S. M. Effect of proline and tryptophan amino acids on yield and fruit quality of Manfalouty pomegranate variety. Sci. Hortic. 69, 1–5 (2014).Article 
    CAS 

    Google Scholar 
    Mattioli, R., Palombi, N., Funck, D. & Trovato, M. Proline accumulation in pollen grains as potential target for improved yield stability under salt stress. Front. Plant Sci. 11, 582877 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Badran, M. A. Benefits of calcium carbonate sprays on yield and fruit quality of samany and zaghloul date palm under new reclaimed soils. Assiut J. Agric. Sci. 46(5), 48–57 (2015).
    Google Scholar  More

  • in

    Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers

    Beillouin, D., Ben-Ari, T., Malezieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).CAS 
    Article 

    Google Scholar 
    Ditzler, L. et al. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 41, 26 (2021).Article 

    Google Scholar 
    Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl Acad. Sci. USA 107, 20840–20845 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodriguez, C., Mårtensson, L.-M. D., Jensen, E. S. & Carlsson, G. Combining crop diversification practices can benefit cereal production in temperate climates. Agron. Sustain. Dev. 41, 48 (2021).Article 

    Google Scholar 
    Zeng, Z. H. et al. in Crop Rotations: Farming Practices, Monitoring and Environmental Benefits (ed. Ma, B. L.) Ch. 1, 51–70 (Nova Science Publishers, 2016).Cusworth, G., Garnett, T. & Lorimer, J. Legume dreams: the contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Change 69, 102321 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reckling, M. et al. Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agron. Sustain. Dev. 38, 63 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: identification of promising ‘scale out’ options. Glob. Food Secur-Agr. 23, 22–32 (2019).Article 

    Google Scholar 
    Hegewald, H., Wensch-Dorendorf, M., Sieling, K. & Christen, O. Impacts of break crops and crop rotations on oilseed rape productivity: a review. Eur. J. Agron. 101, 63–77 (2018).Article 

    Google Scholar 
    Angus, J. F. et al. Break crops and rotations for wheat. Crop . Sci. 66, 523–552 (2015).
    Google Scholar 
    Franke, A. C., van den Brand, G. J., Vanlauwe, B. & Giller, K. E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: a review. Agric. Ecosyst. Environ. 261, 172–185 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preissel, S., Reckling, M., Schlaefke, N. & Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crops Res. 175, 64–79 (2015).Article 

    Google Scholar 
    Zhao, J. et al. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 245, 107659 (2020).Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cernay, C., Makowski, D. & Pelzer, E. Preceding cultivation of grain legumes increases cereal yields under low nitrogen input conditions. Environ. Chem. Lett. 16, 631–636 (2018).CAS 
    Article 

    Google Scholar 
    Peoples, M. B. et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48, 1–17 (2009).CAS 
    Article 

    Google Scholar 
    Watson, C. A. et al. Grain legume production and use in European agricultural systems. Adv. Agron. 144, 235–303 (2017).Article 

    Google Scholar 
    Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).PubMed 
    Article 

    Google Scholar 
    Drinkwater, L. E., Wagoner, P. & Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262–265 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, C. J. & Chalk, P. M. Grain legumes in crop rotations under low and variable rainfall: are observed short-term N benefits sustainable? Plant Soil 453, 271–279 (2020).CAS 
    Article 

    Google Scholar 
    Pullens, J. W. M., Sorensen, P., Melander, B. & Olesen, J. E. Legacy effects of soil fertility management on cereal dry matter and nitrogen grain yield of organic arable cropping systems. Eur. J. Agron. 122, 126169 (2021).CAS 
    Article 

    Google Scholar 
    Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl Acad. Sci. USA 118, 28 (2021).Article 

    Google Scholar 
    Kirkegaard, J., Christen, O., Krupinsky, J. & Layzell, D. Break crop benefits in temperate wheat production. Field Crops Res. 107, 185–195 (2008).Article 

    Google Scholar 
    Brisson, N. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 119, 201–212 (2010).Article 

    Google Scholar 
    Anderson, R. L. Synergism: a rotation effect of improved growth efficiency. Adv. Agron. 112, 205–226 (2011).Article 

    Google Scholar 
    Bonilla-Cedrez, C., Chamberlin, J. & Hijmans, R. Fertilizer and grain prices constrain food production in sub-Saharan Africa. Nat. Food 2, 766–772 (2021).Article 

    Google Scholar 
    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2, 378–385 (2019).Article 

    Google Scholar 
    Barbieri, P. et al. Global option space for organic agriculture is delimited by nitrogen availability. Nat. Food 2, 363–372 (2021).Article 

    Google Scholar 
    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowak, B., Nesme, T., David, C. & Pellerin, S. Disentangling the drivers of fertilising material inflows in organic farming. Nutr. Cycl. Agroecosyst. 96, 79–91 (2013).Article 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Mariotte, P. et al. Plant-soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed 
    Article 

    Google Scholar 
    Everwand, G., Cass, S., Dauber, J., Williams, M. & Stout, J. Legume crops and biodiversity. Legumes in Cropping Systems, 4, 55–69 (2017).Peoples, M. B., Giller, K. E., Jensen, E. S. & Herridge, D. F. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 469, 1–14 (2021).CAS 
    Article 

    Google Scholar 
    Abalos, D., van Groenigen, J. W., Philippot, L., Lubbers, I. M. & De Deyn, G. B. Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J. Appl. Ecol. 56, 2454–2466 (2019).Article 

    Google Scholar 
    Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article 

    Google Scholar 
    Pandey, A., Li, F., Askegaard, M., Rasmussen, I. A. & Olesen, J. E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 265, 350–362 (2018).CAS 
    Article 

    Google Scholar 
    Cook, R. J. Toward cropping systems that enhance productivity and sustainability. Proc. Natl Acad. Sci. USA 103, 18389–18394 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gan, Y. T. et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 5, 13 (2014).
    Google Scholar 
    Hufnagel, J., Reckling, M. & Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 40, 14 (2020).Article 

    Google Scholar 
    Ma, B. L. & Wu, W. in Crop Rotations: Farming Practices, Monitoring and Environmental Benefits (ed Ma B. L.) Ch. 1, 1–35 (Nova Science Publishers, 2016).Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia – insights from over three decades of research. Crop. Sci. 63, 1–16 (2012).
    Google Scholar 
    Sileshi, G., Akinnifesi, F. K., Ajayi, O. C. & Place, F. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 307, 1–19 (2008).CAS 
    Article 

    Google Scholar 
    Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).Article 

    Google Scholar 
    Danga, B. O., Ouma, J. P., Wakindiki, I. I. C. & Bar-Tal, A. Legume-wheat ration effects on residual soil moisture, nitrogen and wheat yield in tropical regions. Adv. Agron. 101, 315–349 (2009).Article 

    Google Scholar 
    Ghosh, P. K. et al. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems – An Indian perspective: a review. J. Sustain. Agric. 30, 59–86 (2007).Article 

    Google Scholar 
    Karlen, D. L., Varvel, G. E., Bullock, D. G. & Cruse, R. M. Crop rotation for the 21st century. Adv. Agron. 53, 1–45 (1994).Article 

    Google Scholar 
    Martin, G. et al. Role of ley pastures in tomorrow’s cropping systems. A review. Agron. Sustain. Dev. 40, 17 (2020).Article 

    Google Scholar 
    Ruisi, P. et al. Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Ital. J. Agron. 12, 233–245 (2017).
    Google Scholar 
    Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319 (2008).CAS 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Grp, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62, 1006–1012 (2009).PubMed 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1247 (2014).Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436. (1999).FAO. World Programme of the Census of Agriculture 2020. Vol. 1 (2015).Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    Yates, F. The analysis of experiments containing different crop rotations. Biometrics 10, 324–346 (1954).Article 

    Google Scholar 
    Zhao, J. et al. Dataset for evaluating global yield advantage and its drivers of legume-based rotations. Figshare, https://doi.org/10.6084/m9.figshare.20290923 (2022).Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    Van Lissa, C. MetaForest: Exploring Heterogeneity in Meta-analysis Using Random Forests. (2017).Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–CO603 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing v.4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 2021). More

  • in

    Pollen beetle offspring is more parasitized under moderate nitrogen fertilization of oilseed rape due to more attractive volatile signal

    Poelman, E. H., van Loon, J. J. A. & Dicke, M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13, 534–541 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Degenhardt, J. et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. USA 106, 13213–13218 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dicke, M. Behavioural and community ecology of plants that cry for help. Plant. Cell Environ. 32, 654–665 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Himanen, S. J. et al. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181, 174–186 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Girling, R. D. et al. Parasitoids select plants more heavily infested with their caterpillar hosts: A new approach to aid interpretation of plant headspace volatiles. Proc. Biol. Sci. 278, 2646–2653 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamiru, A. et al. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14, 1075–1083 (2011).PubMed 
    Article 

    Google Scholar 
    Njihia, T. N. et al. Identification of kairomones of second instar nymphs of the variegated coffee bug Antestiopsis thunbergii (Heteroptera: Pentatomidae). Chemoecology 27, 239–248 (2017).CAS 
    Article 

    Google Scholar 
    Becker, C. et al. Effects of abiotic factors on HIPV-mediated interactions between plants and parasitoids. BioMed. Res. Int. 2015, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Brilli, F., Loreto, F. & Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant. Sci. 10, 264 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aoun, W. B., El Akkari, M., Flénet, F., Jacquet, F. & Gabrielle, B. Recommended fertilization practices improve the environmental performance of biodiesel from winter oilseed rape in France. J. Cleaner Prod. 139, 242–249 (2016).Article 
    CAS 

    Google Scholar 
    Micha, E., Roberts, W., O’ Sullivan, L., O’ Connell, K. & Daly, K. Examining the policy-practice gap: the divergence between regulation and reality in organic fertiliser allocation in pasture based systems. Agric. Syst. 179, 102708 (2020).Article 

    Google Scholar 
    Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ormeño, E. & Fernandez, C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compd. 8, 71–79 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix. Environ. Pollut. 237, 205–217 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olson, D. M., Cortesero, A. M., Rains, G. C., Potter, T. & Lewis, W. J. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol. Control. 49, 239–244 (2009).CAS 
    Article 

    Google Scholar 
    Rosatto, L., Lainé, P. & Ourry, A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: Nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52, 1655–1663 (2001).Article 

    Google Scholar 
    Yoneyama, T., Ito, O. & Engelaar, W. M. H. G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev. 2, 121–132 (2003).CAS 
    Article 

    Google Scholar 
    Fahey, J. W., Zalcmann, A. T. & Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mithen, R. F. Glucosinolates and their degradation products. Adv. Bot. Res. 35, 213–262 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    García-Coronado, H. et al. Analysis of a suppressive subtractive hybridization library of Alternaria alternata resistant to 2-propenyl isothiocyanate. Electron. J. Biotechnol. 18, 320–326 (2015).Article 

    Google Scholar 
    Renwick, J. A. A., Haribal, M., Gouinguené, S. & Städler, E. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol. 32, 755–766 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butler, J., Garratt, M. P. D. & Leather, S. R. Fertilisers and insect herbivores: a meta-analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article 

    Google Scholar 
    Soufbaf, M., Fathipour, Y., Zalucki, M. P. & Hui, C. Importance of primary metabolites in canola in mediating interactions between a specialist leaf-feeding insect and its specialist solitary endoparasitoid. Arthropod-Plant Interact. 6, 241–250 (2012).Article 

    Google Scholar 
    De Vries, S. C., van de Ven, G. W. J., van Ittersum, M. K. & Giller, K. E. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34, 588–601 (2010).Article 
    CAS 

    Google Scholar 
    Hegewald, H., Koblenz, B., Wensch-Dorendorf, M. & Christen, O. Impacts of high intensity crop rotation and N management on oilseed rape productivity in Germany. Crop Pasture sci. 67, 439–449 (2016).CAS 
    Article 

    Google Scholar 
    Jankowski, K. J., Budzyński, W. S., Załuski, D., Hulanicki, P. S. & Dubis, B. Using a fractional factorial design to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field. Crop. Res. 188, 50–61 (2016).Article 

    Google Scholar 
    Chakwizira, E. et al. Effects of nitrogen rate on nitrate-nitrogen accumulation in forage kale and rape crops. Grass. Forage Sci. 70, 268–282 (2015).CAS 
    Article 

    Google Scholar 
    Rathke, G. W., Behrens, T. & Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 117, 80–108 (2006).CAS 
    Article 

    Google Scholar 
    Henke, J., Breustedt, G., Sieling, K. & Kage, H. Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. J. Agric. Sci. 145, 455–468 (2007).CAS 
    Article 

    Google Scholar 
    Eurostat. Agriculture, Forestry and Fishery Statistics (Publications Office of the European Union, 2020). https://doi.org/10.2785/143455.Book 

    Google Scholar 
    Zapata, N., Vargas, M., Reyes, J. F. & Belmar, G. Quality of biodiesel and press cake obtained from Euphorbia lathyris, Brassica napus and Ricinus communis. Ind. Crops Prod. 38, 1–5 (2012).CAS 
    Article 

    Google Scholar 
    Alford, D. V., Nilsson, C. & Ulber, B. Insect pests of oilseed rape crops. In Biocontrol of Oilseed Rape Pests (ed. Alford, D. V.) 9–42 (Blackwell Science, 2003).Chapter 

    Google Scholar 
    Veromann, E., Luik, E., Metspalu, L. & Williams, I. Key pests and their parasitoids on spring and winter oilseed rape in Estonia. Entomol. Fennica 17, 4 (2006).Article 

    Google Scholar 
    Meier, U. (ed.) Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph (Blackwell Wissenschaft, 1997).
    Google Scholar 
    Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).Article 

    Google Scholar 
    Williams, I. H. The major insect pests of oilseed rape in Europe and their management: An overview. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I. H.) 1–43 (Springer, 2010).Chapter 

    Google Scholar 
    Williams, I. H. & Free, J. B. The feeding and mating behaviour of pollen beetles (Meligethes aeneus Fab.) and seed weevils (Ceutorhynchus assimilis Payk.) on oil-seed rape (Brassica napus L.). J. Agric. Sci. 91, 453–459 (1978).Article 

    Google Scholar 
    Ekbom, B. & Borg, A. Pollen beetle (Meligethes aeneus) oviposition and feeding preference on different host plant species. Entomol. Exp. Appl. 78, 291–299 (1996).Article 

    Google Scholar 
    Kaasik, R. et al. Meligethes aeneus oviposition preferences, larval parasitism rate and species composition of parasitoids on Brassica nigra, Raphanus sativus and Eruca sativa compared with on Brassica napus. Biol. Control 69, 65–71 (2014).Article 

    Google Scholar 
    Thieme, T., Heimbach, U. & Müller, A. Chemical control of insect pests and insecticide resistance in oilseed rape. In Biocontrol-based integrated management of oilseed rape pests (ed. Williams, I. H.) 313–335 (Springer, 2010). https://doi.org/10.1007/978-90-481-3983-5_12.Chapter 

    Google Scholar 
    Slater, R. et al. Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): A coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest. Manag. Sci. 67, 633–638 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zimmer, C. T., Köhler, H. & Nauen, R. Baseline susceptibility and insecticide resistance monitoring in European populations of Meligethes aeneus and Ceutorhynchus assimilis collected in winter oilseed rape. Entomol Exp Appl 150, 279–288 (2014).CAS 
    Article 

    Google Scholar 
    Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Xue, Q. 2008. Documentation of pesticide resistance in arthropods. In Global Pesticide Resistance in Arthropods (eds Whalon, M. E. et al.) 32–39 (Cromwell Press, Berlin, 2008).Chapter 

    Google Scholar 
    Willow, J., Silva, A., Veromann, E. & Smagghe, G. Acute effect of low-dose thiacloprid exposure synergised by tebuconazole in a parasitoid wasp. PLoS ONE 14, e0212456 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osborne, P. Observations on the natural enemies of Meligethes aeneus (F.) and M. viridescens (F.) [Coleoptera: Nitidulidae]. Parasitology 50, 91–110 (1960).CAS 
    PubMed 
    Article 

    Google Scholar 
    Büchi, R. Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric. Ecosyst. Environ. 90, 255–263 (2002).Article 

    Google Scholar 
    Veromann, E., Saarniit, M., Kevväi, R. & Luik, A. Effect of crop management on the incidence of Meligethes aeneus Fab. and their larval parasitism rate in organic and conventional winter oilseed rape. Agronomy Res. 7, 548–554 (2009).
    Google Scholar 
    Veromann, E. et al. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot 43, 79–88 (2013).CAS 
    Article 

    Google Scholar 
    Kovács, G. et al. Effects of land use on infestation and parasitism rates of cabbage seed weevil in oilseed rape. Pest Manag Sci 75, 658–666 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaasik, R., Kovács, G., Toome, M., Metspalu, L. & Veromann, E. The relative attractiveness of Brassica napus, B. rapa, B. juncea and Sinapis alba to pollen beetles. Bio. Control. 59, 19–28 (2014).
    Google Scholar 
    Lucas-Barbosa, D. et al. Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Funct. Ecol. 31, 325–333 (2017).Article 

    Google Scholar 
    Toome, M. et al. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232, 235–243 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kännaste, A., Copolovici, L. & Niinemets, Ü. Gas chromatography–mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. Methods Mol. Biol. 1153, 161–169. https://doi.org/10.1007/978-1-4939-0606-2_11 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kask, K., Kännaste, A., Talts, E., Copolovici, L. & Niinemets, Ü. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell Environ. 39, 2027–2042 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niinemets, Ü. et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8, 2209–2246 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Copolovici, L., Kännaste, A., Remmel, T., Vislap, V. & Niinemets, Ü. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J. Chem. Ecol. 37, 18–28 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peck, J. E. In Multivariate Analysis for Ecologists: Step-by-Step 2nd edn (ed. Peck, J. E.) (MjM Software Design, 2016).
    Google Scholar 
    Narits, L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agron. Res. 8, 671–686 (2010).ADS 

    Google Scholar 
    Naderi, R. & Ghadiri, H. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. J. Agr. Sci. Technol. 13, 45–51 (2011).
    Google Scholar 
    Grzebisz, W., Łukowiak, R. & Kotnis, K. Evaluation of nitrogen fertilization systems based on the in-season variability in the nitrogenous growth factor and soil fertility factors—A case of winter oilseed rape (Brassica napus L.). Agronomy 10, 1701 (2020).CAS 
    Article 

    Google Scholar 
    He, H. et al. Genotypic variation in nitrogen utilization efficiency of oilseed rape (Brassica napus) under contrasting N supply in pot and field experiments. Front. Plant. Sci. 8, 1825 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: Effects on resistance to caterpillars and plant development. Ecology 94, 702–713 (2013).PubMed 
    Article 

    Google Scholar 
    Lucas-Barbosa, D., Loon van, J. J. A., Gols, R., Beek van, T. A. & Dicke, M. Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Funct. Ecol. 27, 245–254 (2013).Article 

    Google Scholar 
    Milchunas, D. G. & Noy-Meir, I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99, 113–130 (2002).Article 

    Google Scholar 
    Williams, I. H. & Free, J. B. Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. J. Agric. Sci. 92, 53–59. https://doi.org/10.1017/S0021859600060494 (1979).Article 

    Google Scholar 
    Tatchell, G. Compensation in spring-sown oil-seed rape (Brassica napus L.) plants in response to injury to their flower buds and pods. J. Agric. Sci. 101, 565–573. https://doi.org/10.1017/S0021859600038594 (1983).Article 

    Google Scholar 
    Tiffin, P. Mechanisms of tolerance to herbivore damage: What do we know?. Evol. Ecol. 14, 523–536. https://doi.org/10.1023/A:1010881317261 (2000).Article 

    Google Scholar 
    Pinet, A., Mathieu, A. & Jullien, A. Floral bud damage compensation by branching and biomass allocation in genotypes of Brassica napus with different architecture and branching potential. Front. Plant Sci 6, 70. https://doi.org/10.3389/fpls.2015.00070 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muzika, R. M. & Pregitzer, K. S. Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings. Trees 6, 241–244 (1992).Article 

    Google Scholar 
    Kesselmeier, J. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies. J. Atmos. Chem. 39, 219–233 (2001).CAS 
    Article 

    Google Scholar 
    Karl, T., Curtis, A. J., Rosenstiel, T. N., Monson, R. K. & Fall, R. Transient releases of acetaldehyde from tree leaves—Products of a pyruvate overflow mechanism?. Plant. Cell Environ. 25, 1121–1131 (2002).CAS 
    Article 

    Google Scholar 
    Szczepaniak, W., Grzebisz, W., Potarzycki, J., Łukowiak, R. & Przygocka-Cyna, K. Nutritional status of winter oilseed rape in cardinal stages of growth as the yield indicator. Plant Soil Environ. 61, 291–296 (2015).CAS 
    Article 

    Google Scholar 
    Anjum, N. A. et al. Improving growth and productivity of Oleiferous brassicas under changing environment: Significance of nitrogen and sulphur nutrition, and underlying mechanisms. Scientific World J. 2012, 657808 (2012).Article 
    CAS 

    Google Scholar 
    Okereke, C. N., Liu, B., Kaurilind, E. & Niinemets, Ü. Heat stress resistance drives coordination of emissions of suites of volatiles after severe heat stress and during recovery in five tropical crops. Environ. Exp. Bot. 184, 104375 (2021).CAS 
    Article 

    Google Scholar 
    Kanagendran, A., Pazouki, L. & Niinemets, Ü. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ. Exp. Bot. 145, 21–38 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robertson, G. W. et al. A comparison of the flower volatiles from hawthorn and four raspberry cultivars. Phytochemistry 33, 1047–1053 (1993).CAS 
    Article 

    Google Scholar 
    Robertson, G. W., Griffiths, D. W., Smith, W. M. & Butcher, R. D. The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (Brassica napus spp. oleifera). Phytochem. Anal. 4, 152–157 (1993).CAS 
    Article 

    Google Scholar 
    Kos, M. et al. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 77, 162–170 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niinemets, Ü., Kännaste, A. & Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant. Sci. 4, 262. https://doi.org/10.3389/fpls.2013.00262 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shannon, R. W. R. et al. Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Ann. Bot. 117, 1073–1082 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ruther, J., Reinecke, A. & Hilker, M. Plant volatiles in the sexual communication of Melolontha hippocastani: Response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27, 76–83 (2002).Article 

    Google Scholar 
    Khan, Z. R., Pickett, J. A., Berg, J. V. D., Wadhams, L. J. & Woodcock, C. M. Exploiting chemical ecology and species diversity: Stem borer and striga control for maize and sorghum in Africa. Pest. Manag. Sci. 56, 957–962 (2000).CAS 
    Article 

    Google Scholar 
    Jayanthi, P. D. K. et al. Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J. Chem. Ecol. 40, 259–266 (2014).Article 
    CAS 

    Google Scholar 
    Hu, Z. et al. Aldehyde volatiles emitted in succession from mechanically damaged leaves of poplar cuttings. J. Plant. Biol. 51, 269–275 (2008).Article 

    Google Scholar 
    Giacomuzzi, V., Mattheis, J. P., Basoalto, E., Angeli, S. & Knight, A. L. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). Pest. Manag. Sci. 73, 1837–1845 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torrens-Spence, M. P. et al. Structural basis for independent origins of new catalytic machineries in plant AAAD proteins. BioRxiv 404970 (2018)Birkett, M. A. et al. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med. Vet. Entomol. 18, 313–322 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodmann, J. et al. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 18, 740–744 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hervé, M. R. et al. Oviposition behavior of the pollen beetle (Meligethes aeneus): A functional study. J. Insect. Behav. 28, 107–119 (2015).Article 

    Google Scholar 
    Hilker, M. & Meiners, T. Plants and insect eggs: How do they affect each other?. Phytochemistry 72, 1612–1623 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibanez, S., Gallet, C. & Després, L. Plant insecticidal toxins in ecological networks. Toxins 4, 228–243 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Fine-scale movement of northern Gulf of Mexico red snapper and gray triggerfish estimated with three-dimensional acoustic telemetry

    Fodrie, F. J. et al. Measuring individuality in habitat use across complex landscapes: Approaches, constraints, and implications for assessing resource specialization. Oecologia 178, 75–87 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bacheler, N. M., Michelot, T., Cheshire, R. T. & Shertzer, K. W. Fine-scale movement patterns and behavioral states of gray triggerfish Balistes capriscus determined from acoustic telemetry and hidden Markov models. Fish. Res. 215, 76–89 (2019).Article 

    Google Scholar 
    Furey, N. B., Dance, M. A. & Rooker, J. R. Fine-scale movements and habitat use of juvenile southern flounder Paralichthys lethostigma in an estuarine seascape. J. Fish Biol. 82, 1469–1483 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Froehlich, C. Y. M., Garcia, A. & Kline, R. J. Daily movement patterns of red snapper (Lutjanus campechanus) on a large artificial reef. Fish. Res. 209, 49–57 (2019).Article 

    Google Scholar 
    Williams-Grove, L. J. & Szedlmayer, S. T. Acoustic positioning and movement patterns of red snapper, Lutjanus campechanus, around artificial reefs in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 553, 233–251 (2016).ADS 
    Article 

    Google Scholar 
    Secor, D. H., Zhang, F., O’Brien, M. H. P. & Li, M. Ocean destratification and fish evacuation caused by a Mid-Atlantic tropical storm. ICES J. Mar. Sci. 76, 573–584 (2019).Article 

    Google Scholar 
    Bacheler, N. M., Shertzer, K. W., Cheshire, R. T. & MacMahan, J. H. Tropical storms influence the movement behavior of a demersal oceanic fish species. Sci. Rep. 9, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    Lowerre-Barbieri, S. K., Walters, S., Bickford, J., Cooper, W. & Muller, R. Site fidelity and reproductive timing at a spotted seatrout spawning aggregation site: Individual versus population scale behavior. Mar. Ecol. Prog. Ser. 481, 181–197 (2013).ADS 
    Article 

    Google Scholar 
    Espinoza, M., Farrugia, T. J., Webber, D. M., Smith, F. & Lowe, C. G. Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish. Res. 108, 364–371 (2011).Article 

    Google Scholar 
    Roy, R. et al. Testing the VEMCO positioning system: Spatial distribution of the probability of location and the positioning error in a reservoir. Anim. Biotelemetry 2, 1 (2014).CAS 
    Article 

    Google Scholar 
    Guzzo, M. M. et al. Field testing a novel high residence positioning system for monitoring the fine-scale movements of aquatic organisms. Methods Ecol. Evol. 9, 1478–1488 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smedbol, S., Smith, F., Webber, D., Vallée, R. & King, T. Using underwater coded acoustic telemetry for fine scale positioning of aquatic animals. In 20th Symposium of the International Society on Biotelemetry Proceedings, 9–11 (2014).Dean, M. J., Hoffman, W. S., Zemeckis, D. R. & Armstrong, M. P. Fine-scale diel and gender-based patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the western Gulf of Maine. ICES J. Mar. Sci. 71, 1474–1489 (2014).Article 

    Google Scholar 
    Tarnecki, J. H. & Patterson, W. F. A mini ROV-based method for recovering marine instruments at depth. PLoS One 15, 1–9 (2020).
    Google Scholar 
    Ellis, R. D. et al. Acoustic telemetry array evolution: From species- and project-specific designs to large-scale, multispecies, cooperative networks. Fish. Res. 209, 186–195 (2019).Article 

    Google Scholar 
    Friess, C. et al. Regional-scale variability in the movement ecology of marine fishes revealed by an integrative acoustic tracking network. Mar. Ecol. Prog. Ser. 663, 157–177 (2021).ADS 
    Article 

    Google Scholar 
    Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).Article 

    Google Scholar 
    Ahrens, R. N. M., Walters, C. J. & Christensen, V. Foraging arena theory. Fish Fish. 13, 41–59 (2012).Article 

    Google Scholar 
    Schwartzkopf, B. D., Langland, T. A. & Cowan, J. H. Habitat selection important for red snapper feeding ecology in the northwestern Gulf of Mexico. Mar. Coast. Fish. 9, 373–387 (2017).Article 

    Google Scholar 
    Wells, R. J. D., Cowan, J. H. Jr. & Fry, B. Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 361, 213–225 (2008).ADS 
    Article 

    Google Scholar 
    Goldman, S. F., Glasgow, D. M. & Falk, M. M. Feeding habits of 2 reef-associated fishes, red porgy (Pagrus pagrus) and gray triggerfish (Balistes capriscus), off the Southeastern United States. Fish. Bull. 114, 317–329 (2016).Article 

    Google Scholar 
    Villegas-Ríos, D., Réale, D., Freitas, C., Moland, E. & Olsen, E. M. Personalities influence spatial responses to environmental fluctuations in wild fish. J. Anim. Ecol. 87, 1309–1319 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooker, J. R. et al. Seascape connectivity and the influence of predation risk on the movement of fishes inhabiting a back-reef ecosystem. Ecosphere 9, e02200 (2018).Article 

    Google Scholar 
    Forman, R. T. T. & Godron, M. Patches and structural components for a landscape ecology. Bioscience 31, 733–740 (1981).Article 

    Google Scholar 
    Dahl, K. A. & Patterson, W. F. Movement, home range, and depredation of invasive lionfish revealed by fine-scale acoustic telemetry in the northern Gulf of Mexico. Mar. Biol. 167, 1–22 (2020).Article 
    CAS 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Moulton, D. L. et al. Habitat partitioning and seasonal movement of red drum and spotted seatrout. Estuaries Coasts 40, 905–916 (2017).Article 

    Google Scholar 
    Hammerschlag, N., Luo, J., Irschick, D. J. & Ault, J. S. A Comparison of spatial and movement patterns between sympatric predators: bull sharks (Carcharhinus leucas) and Atlantic tarpon (Megalops atlanticus). PLoS ONE 7, e45958 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novak, A. J. et al. Scale of biotelemetry data influences ecological interpretations of space and habitat use in yellowtail snapper. Mar. Coast. Fish. 12, 364–377 (2020).Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393–425 (1984).Article 

    Google Scholar 
    Reale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).Article 

    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 

    Google Scholar 
    Huntingford, F. A. The relationship between anti-predator behavior and aggression among conspecifics in the three-spined stickleback, Gasterosteus aculeatus. Anim. Behav. 24, 245–260 (1976).Article 

    Google Scholar 
    Wilson, D. S., Clark, A. B., Coleman, K. & Dearstyne, T. Shyness and boldness in humans and other animals. Trends Ecol. Evol. 9, 442–446 (1994).Article 

    Google Scholar 
    Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45–86 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussey, N. E. et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642–1255642 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lowerre-Barbieri, S. K., Kays, R., Thorson, J. T. & Wikelski, M. The ocean’s movescape: Fisheries management in the bio-logging decade (2018–2028). ICES J. Mar. Sci. 76, 477–488 (2019).Article 

    Google Scholar 
    National Marine Fisheries Service. Fisheries Economics of the United State 2016. NOAA Tech. Memo. NMFS-F/SPO-187a. https://www.fisheries.noaa.gov/resource/document/fisheries-economics-united-states-report-2016 (2018). Accessed 08 January 2018.Patterson, W. F. III, Tarnecki, J., Addis, D. T. & Barbieri, L. R. Reef fish community structure at natural versus artificial reefs in the northern Gulf of Mexico. In Proc. 66th Gulf Caribb. Fish. Inst. 4–8 (2014).Streich, M. K. et al. Effects of a new artificial reef complex on red snapper and the associated fish community: An evaluation using a before–after control–impact approach. Mar. Coast. Fish. 9, 404–418 (2017).Article 

    Google Scholar 
    Dance, M. A., Patterson, W. F. III. & Addis, D. T. Fish community and trophic structure at artificial reef sites in the northeastern Gulf of Mexico. Bull. Mar. Sci. 87, 301–324 (2011).Article 

    Google Scholar 
    Cowan, J. H. Red snapper in the Gulf of Mexico and the U.S. South Atlantic: data, doubt, and debate. Fisheries 36, 319–331 (2011).Article 

    Google Scholar 
    Addis, D. T., Patterson, W. F. III. & Dance, M. A. The potential for unreported artificial reefs to serve as refuges from fishing mortality for reef fishes. N. Am. J. Fish. Manag. 36, 131–139 (2016).Article 

    Google Scholar 
    McCawley, J. R., Cowan, J. H. Jr. & Shipp, R. L. Feeding periodicity and prey habitat preference of red snapper, Lutjanus campechanus (Poey, 1860), on Alabama artificial reefs. Gulf Mex. Sci. 24, 14–27 (2006).
    Google Scholar 
    Glenn, H. D., Cowan, J. H. Jr. & Powers, J. E. A comparison of red snapper reproductive potential in the northwestern Gulf of Mexico: Natural versus artificial habitats. Mar. Coast. Fish. 9, 139–148 (2017).Article 

    Google Scholar 
    Kulaw, D. H., Cowan, J. H. Jr. & Jackson, M. W. Temporal and spatial comparisons of the reproductive biology of northern Gulf of Mexico (USA) red snapper (Lutjanus campechanus) collected a decade apart. PLoS One 12, e0172360 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vose, F. E. & Nelson, W. G. Gray triggerfish (Balistes capriscus Gmelin) feeding from artificial and natural substrate in shallow Atlantic waters of Florida. Bull. Mar. Sci. 55, 1316–1323 (1994).
    Google Scholar 
    Herbig, J. L. & Szedlmayer, S. T. Movement patterns of gray triggerfish, Balistes capriscus, around artificial reefs in the northern Gulf of Mexico. Fish. Manag. Ecol. 23, 418–427 (2016).Article 

    Google Scholar 
    Szedlmayer, S. T. & Schroepfer, R. L. Long-term residence of red snapper on artificial reefs in the northeastern Gulf of Mexico. Trans. Am. Fish. Soc. 134, 315–325 (2005).Article 

    Google Scholar 
    Watterson, J. C. III., Patterson, W. F. I. I. I., Shipp, R. L. & Cowan, J. H. Jr. Movement of red snapper, Lutjanus campechanus, in the north central Gulf of Mexico: Potential effects of hurricanes. Gulf Mex. Sci. 16, 92–104 (1998).
    Google Scholar 
    Ingram, G. W. Jr. & Patterson, W. F. I. I. I. Movement patterns of red snapper (Lutjanus campechanus), greater amberjack (Seriola dumerili), and gray triggerfish (Balistes capriscus) in the Gulf of Mexico and the utility of marine reserves as management tools. Proc. Gulf Caribb. Fish. Inst. 52, 686–699 (2001).
    Google Scholar 
    Strelcheck, A. J., Cowan, J. H. Jr. & Patterson, W. F. III. Site fidelity, movement, and growth of red snapper Lutjanus campechanus: implications for artificial reef management. In Red Snapper Ecology and Fisheries in the U.S. Gulf of Mexico. American Fisheries Society Symposium 60 (eds. Patterson, W. F. III, Cowan, J. H. Jr., Nieland, D. A. & Fitzhugh, G. R.), 147–162 (2007).Addis, D. T., Patterson, W. F. I. I. I., Dance, M. A. & Ingram, G. W. Jr. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).Article 

    Google Scholar 
    Topping, D. T. & Szedlmayer, S. T. Site fidelity, residence time and movements of red snapper Lutjanus campechanus estimated with long-term acoustic monitoring. Mar. Ecol. Prog. Ser. 437, 183–200 (2011).ADS 
    Article 

    Google Scholar 
    Everett, A. G., Szedlmayer, S. T. & Gallaway, B. J. Movement patterns of red snapper Lutjanus campechanus based on acoustic telemetry around oil and gas platforms in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 649, 155–173 (2020).Article 

    Google Scholar 
    Tarnecki, J. H. & Patterson, W. F. I. I. I. Changes in red snapper diet and trophic ecology following the Deepwater Horizon Oil Spill. Mar. Coast. Fish. 7, 135–147 (2015).Article 

    Google Scholar 
    McCawley, J. R. & Cowan, J. H. Jr. Seasonal and size specific diet and prey demand of Red Snapper on Alabama artificial reefs. In Red Snapper Ecology and Fisheries in the U.S. Gulf of Mexico. American Fisheries Society Symposium 60 (eds. Patterson, W. F. III., Cowan, J. H. Jr., Fitzhugh, G. R. & Nieland, D. L.), 77–104 (2007).Piraino, M. N. & Szedlmayer, S. T. Fine-scale movements and home ranges of red snapper around artificial reefs in the northern Gulf of Mexico. Trans. Am. Fish. Soc. 143, 988–998 (2014).Article 

    Google Scholar 
    Williams-Grove, L. J. & Szedlmayer, S. T. Depth preferences and three-dimensional movements of red snapper, Lutjanus campechanus, on an artificial reef in the northern Gulf of Mexico. Fish. Res. 190, 61–70 (2017).Article 

    Google Scholar 
    Topping, D. T. & Szedlmayer, S. T. Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fish. Res. 112, 77–84 (2011).Article 

    Google Scholar 
    Baker, M. S. J. & Wilson, C. A. Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnol. Oceanogr. 46, 1819–1824 (2001).ADS 
    Article 

    Google Scholar 
    Allman, R. J., Fioramonti, C. L., Patterson, W. F. III. & Pacicco, A. E. Validation of annual growth-zone formation in gray triggerfish Balistes capriscus dorsal spines, fin rays, and vertebrae. Gulf Mex. Sci. 33, 68–76 (2016).
    Google Scholar 
    Frazer, T. K., Lindberg, W. J. & Stanton, G. R. Predation on sand dollars by gray triggerfish, Balistes capriscus, in the northeastern Gulf of Mexico. Bull. Mar. Sci. 48, 159–164 (1991).
    Google Scholar 
    Delorenzo, D. M., Bethea, D. M. & Carlson, J. K. An assessment of the diet and trophic level of Atlantic sharpnose shark Rhizoprionodon terraenovae. J. Fish Biol. 86, 385–391 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aines, A. C., Carlson, J. K., Boustany, A., Mathers, A. & Kohler, N. E. Feeding habits of the tiger shark, Galeocerdo cuvier, in the northwest Atlantic Ocean and Gulf of Mexico. Environ. Biol. Fish. 101, 403–415 (2018).Article 

    Google Scholar 
    Castro, J. I. The Sharks of North America (Oxford University Press, 2011).
    Google Scholar 
    Springer, S. A collection of fishes from the stomachs of sharks taken off Salerno, Florida. Copeia 3, 174–175 (1946).Article 

    Google Scholar 
    Bohaboy, E. C., Guttridge, T. L., Hammerschlag, N., Van Zinnicq Bergmann, M. P. M. & Patterson, W. F. III. Application of three-dimensional acoustic telemetry to assess the effects of rapid recompression on reef fish discard mortality. ICES J. Mar. Sci. 77, 83–96 (2020).Article 

    Google Scholar 
    Drymon, J. M., Powers, S. P., Dindo, J., Dzwonkowski, B. & Henwood, T. Distributions of sharks across a continental shelf in the northern Gulf of Mexico. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 2, 440–450 (2010).Article 

    Google Scholar 
    Ajemian, M. J. et al. Movement patterns and habitat use of tiger sharks (Galeocerdo cuvier) across ontogeny in the Gulf of Mexico. PLoS One 15, 1–24 (2020).
    Google Scholar 
    Ouzts, A. C. & Szedlmayer, S. T. Diel feeding patterns of Red Snapper on artificial reefs in the north-central Gulf of Mexico. Trans. Am. Fish. Soc. 132, 1186–1193 (2003).Article 

    Google Scholar 
    White, D. B. & Palmer, S. M. Age, growth, and reproduction of the red snapper, Lutjanus campechanus, from the Atlantic waters of the Southeastern US. Bull. Mar. Sci. 75, 335–360 (2004).
    Google Scholar 
    Fitzhugh, G. R., Lyon, H. M. & Barnett, B. K. Reproductive parameters of gray triggerfish (Balistes capriscus) from the Gulf of Mexico: Sex ratio, maturity and spawning fraction. SEDAR43-WP-03. (2015). http://sedarweb.org/sedar-82-rd14-sedar43-wp-03reproductive-parameters-gray-triggerfish-balistes-capriscus-gulf-mexico. Accessed 12 April 2021.Kelly-Stormer, A. et al. Gray Triggerfish reproductive biology, age, and growth off the Atlantic coast of the Southeastern USA. Trans. Am. Fish. Soc. 146, 523–538 (2017).Article 

    Google Scholar 
    Porch, C. E., Fitzhugh, G. R., Lang, E. T., Lyon, H. M. & Linton, B. C. Estimating the dependence of spawning frequency on size and age in Gulf of Mexico red snapper. Mar. Coast. Fish. 7, 233–245 (2015).Article 

    Google Scholar 
    Lang, E. T. & Fitzhugh, G. R. Oogenesis and fecundity type of gray triggerfish in the Gulf of Mexico. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 7, 338–348 (2015).Article 

    Google Scholar 
    Woods, M. K. et al. Size and age at maturity of female red snapper Lutjanus campechanus in the Northern Gulf of Mexico. Proc. Gulf Caribb. Fish. Inst. 54, 526–537 (2003).
    Google Scholar 
    Simmons, C. M. & Szedlmayer, S. T. Territoriality, reproductive behavior, and parental care in gray triggerfish, Balistes capriscus, from the Northern Gulf of Mexico. Bull. Mar. Sci. 88, 197–209 (2012).Article 

    Google Scholar 
    Mackichan, C. A. & Szedlmayer, S. T. Reproductive behavior of the gray triggerfish, Balistes capriscus, in the northeastern Gulf of Mexico. Proc. Gulf Caribb. Fish. Inst. 59, 213–218 (2007).
    Google Scholar 
    Diamond, S. L. et al. Movers and stayers: Individual variability in site fidelity and movements of red snapper off Texas. In Red Snapper Ecology and Fisheries in the U.S. Gulf of Mexico. American Fisheries Society Symposium 60 (eds. Patterson, W. F. III, Cowan, J. H. Jr., Nieland, D. A. & Fitzhugh, G. R.), 163–187 (2007).Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Smith, F. Understanding HPE in the VEMCO Positioning System (VPS). (2013).US Department of Defense. Global Positioning System Standard Positioning Service Performance Standard. http://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf (2008). Accessed 08 July 2020.Heupel, M. R., Reiss, K. L., Yeiser, B. G. & Simpfendorfer, C. A. Effects of biofouling on performance of moored data logging acoustic receivers. Limnol. Oceanogr. Methods 6, 327–335 (2008).Article 

    Google Scholar 
    National Oceanic and Atmospheric Administration & National Weather Service. National Data Buoy Center: Station 42012—Orange Beach. http://www.ndbc.noaa.gov/station_page.php?station=42012 (2017). Accessed 07 November 2017.National Oceanic and Atmospheric Administration & National Weather Service. National Data Buoy Center: Station 42040- Luke Offshore Test Platform. https://www.ndbc.noaa.gov/station_page.php?station=42040 (2019). Accessed 07 January 2019.Lazaridis, E. R Package ‘lunar’: lunar phase & distance, seasons and other environmental factors. https://cran.r-project.org/web/packages/lunar/lunar.pdf (2015). Accessed 12 August 2019.Thieurmel, B. & Elmarhraoui, A. R Package ‘suncalc’: compute sun position, sunlight phases, moon position and lunar phase. https://cran.r-project.org/web/packages/suncalc/suncalc.pdf (2019). Accessed 22 June 2019.National Geophysical Data Center. U.S. Coastal Relief Model—Central Gulf of Mexico. https://doi.org/10.7289/V54Q7RW0 (2001).Cox, D. R. & Oakes, D. Analysis of Survival Data (Chapman and Hall, 1984).Benhamou, S. Dynamic approach to space and habitat use based on biased random bridges. PLoS One 6, e14592 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).PubMed 
    Article 

    Google Scholar 
    Tracey, J. A. et al. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation. PLoS One 9, e101205 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tracey, J. A. et al. R Package ‘mkde’: 2D and 3D movement-based kernel density estimates (MKDEs). https://CRAN.R-project.org/package=mkde (2014). Accessed 17 June 2019.Worton, B. J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Wood, S. N. Package ‘mgcv’: Mixed GAM computation vehicle with automatic smoothness estimation. https://doi.org/10.1201/9781315370279 (2019). More

  • in

    Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources

    The Insect Pollinators Initiative & Vanbergen, A. J. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459. https://doi.org/10.1038/ncomms12459 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. TREE 25, 345–353 (2010).PubMed 

    Google Scholar 
    Becher, M. A., Osborne, J. L., Thorbek, P., Kennedy, P. J. & Grimm, V. REVIEW: Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 50, 868–880 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becher, M. A. et al. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J. Appl. Ecol. 51, 470–482 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conti, I. et al. Sugar and protein content in different monofloral pollens – Building a database. Bull. Insectol. 69, 318–320 (2016).
    Google Scholar 
    Rodney, S. & Kramer, V. J. Probabilistic assessment of nectar requirements for nectar-foraging honey bees. Apidologie 51, 180–200 (2020).Article 

    Google Scholar 
    Cartar, R. V. Colony energy-reuirements affect response to predation risk in foraging bumble bees. Ethology 87, 90–96 (1991).Article 

    Google Scholar 
    Cook, S. M., Awmack, C. S., Murray, D. A. & Williams, I. H. Are honey bees’ foraging preferences affected by pollen amino acid composition?. Ecol. Entomol. 28, 622–627 (2003).Article 

    Google Scholar 
    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88. https://doi.org/10.1038/nature16532 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do Pollen quality and diversity matter?. PLoS ONE https://doi.org/10.1371/journal.pone.0072016 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150299. https://doi.org/10.1098/rspb.2015.0299 (2015).CAS 
    Article 

    Google Scholar 
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honeybees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    PPDB. The pesticide properties DataBase (PPDB) (Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2013).Belden, J. B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.4595 (2022).Article 
    PubMed 

    Google Scholar 
    Battisti, L. et al. Is glyphosate toxic to bees? A meta-analytical review. Sci. Tot. Environ. 767, 145397. https://doi.org/10.1016/j.scitotenv.2021.145397 (2021).CAS 
    Article 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).Article 

    Google Scholar 
    Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    Storkey, J. & Westbury, D. B. Managing arable weeds for biodiversity. Pest Manag. Sci. 63, 517–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutchinson, L. A. et al. Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ. 315, 107447. https://doi.org/10.1016/j.agee.2021.107447 (2021).Article 

    Google Scholar 
    Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).Article 

    Google Scholar 
    Alburaki, M., Gregorc, A., Adamczyk, J. & Stewart, S. D. Insights on pollen diversity of honey bee (Apis mellifera L.) colonies Located in various agricultural landscapes. Southwest. Nat. 63, 49–58 (2018).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cole, L. J., Brocklehurst, S., Robertson, D., Harrison, W. & McCracken, D. I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 246, 157–167 (2017).Article 

    Google Scholar 
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. Lond. B Biol. Sci. 270, 569–575 (2003).Article 

    Google Scholar 
    Woodcock, B. A. et al. Enhancing floral resources for pollinators in productive agricultural grasslands. Biol. Conserv. 171, 44–51 (2014).Article 

    Google Scholar 
    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. App. 25, 881–890 (2015).Article 

    Google Scholar 
    Ausseil, A. G. E., Dymond, J. R. & Newstrom, L. Mapping floral resources for honey bees in New Zealand at the catchment scale. Ecol. Appl. 28, 1182–1196. https://doi.org/10.1002/eap.1717 (2018).Article 
    PubMed 

    Google Scholar 
    Kamo, T. et al. A DNA barcoding method for identifying and quantifying the composition of pollen species collected by European honeybees, Apis mellifera (Hymenoptera: Apidae). Appl. Entomol. Zool. 53, 353–361 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurnberger, F., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28, 3602–3611 (2019).PubMed 
    Article 

    Google Scholar 
    Richardson, R. T. et al. Applications of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. https://doi.org/10.3732/apps.1400066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, A. E. et al. Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX 8, 101303. https://doi.org/10.1016/j.mex.2021.101303 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, L. et al. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 4, 37. https://doi.org/10.1038/s42003-020-01562-4 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barroso-Arevalo, S., Vicente-Rubiano, M., Ruiz, J. A., Bentabol, A. & Sanchez-Vizcaino, J. M. Does pollen diversity influence honey bee colony health?. Sp. J. Agric. Res. https://doi.org/10.5424/sjar/2019173-13991 (2019).Article 

    Google Scholar 
    Bansch, S., Tscharntke, T., Ratnieks, F. L. W., Hartel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106792 (2020).Article 

    Google Scholar 
    Danner, N., Molitor, A. M., Schiele, S., Hartel, S. & Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 26, 1920–1929 (2016).PubMed 
    Article 

    Google Scholar 
    EFSA. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2014).
    Google Scholar 
    Hatjina, F. et al. Citizen scientist initiative for measuring varroa damage thresholds: Common efforts for data collection—CSI varroa. Bee World 98, 132–135 (2021).Article 

    Google Scholar 
    Gratzer, K. & Brodschneider, R. How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. Environ. Sci. Pollut. Res. 28, 37995–38006 (2021).Article 

    Google Scholar 
    Brodschneider, R. et al. CSI pollen: Diversity of honey bee collected pollen studied by citizen scientists. Insects 12, 987. https://doi.org/10.3390/insects12110987 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodschneider, R. et al. A citizen science supported study on seasonal diversity and monoflorality of pollen collected by honey bees in Austria. Sci. Rep. https://doi.org/10.1038/s41598-019-53016-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    Nagaharu, U. Genome analysis in brassica with special reference to the experimental formation of B. Napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389–452 (1935).
    Google Scholar 
    Herbertsson, L., Lindstrom, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).Article 

    Google Scholar 
    Magrach, A., Gonzalez-Varo, J. P., Boiffier, M., Vila, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).PubMed 
    Article 

    Google Scholar 
    Adams-Groom, B., Martin, P. & Banon, A. Pollen characterization of English honey from Worcestershire, West Midlands (UK). Bee World https://doi.org/10.1080/0005772X.2019.1698105 (2019).Article 

    Google Scholar 
    Smart, M. D. et al. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ. Entomol. 46, 38–49 (2017).CAS 
    PubMed 

    Google Scholar 
    Danner, N., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE https://doi.org/10.1371/journal.pone.0183716 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroux, M. et al. Correlating the pollens gathered by Apis mellifera with the landscape features in Western France. Appl. Ecol. Environ. Res. 12, 423–439 (2014).Article 

    Google Scholar 
    Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE https://doi.org/10.1371/journal.pone.0162818 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donkersley, P. et al. Nutritional composition of honey bee food stores vary with floral composition. Oecologia 185, 749–761 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, R. F. et al. Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landsc. Ecol. 35, 513–527 (2020).Article 

    Google Scholar 
    LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. https://doi.org/10.1098/rsos.190279 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egan, P. A. et al. Plant toxin levels in nectar vary spatially across native and introduced populations. J. Ecol. 104, 1106–1115 (2016).CAS 
    Article 

    Google Scholar 
    Flombaum, P., Sala, O. E. & Rastetter, E. B. Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect: A modeling approach. Oecologia 174, 559–566 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE https://doi.org/10.1371/journal.pone.0225743 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature https://doi.org/10.1038/s41586-021-03787-7 (2021).Article 
    PubMed 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jarvis, S. G. et al. CEH land cover plus: Pesticides 2012-2017 (England, Scotland and Wales). NERC Environmental Information Data Centre. https://doi.org/10.5285/99a2d3a8-1c7d-421e-ac9f-87a2c37bda62 (2020).Simon-Delso, N. et al. Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE https://doi.org/10.1371/journal.pone.0103073 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. G., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    FERA. PUS STAT: Pesticide usage surveys. https://secure.fera.defra.gov.uk/pusstats/myindex.cfm (2015).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UKCEH. Land cover plus: Crops © NERC (CEH) 2019. (Remote Sensing Applications Consultants Ltd., 2019).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Kovach, J., Petzoldt, C., Degni, J. & Tette, J. A method to measure the environmental impact of pesticides, Vol. 139 1–8 (New York Food and Life Sciences Bulletin, 1992).Juraske, R., Antón, A. & Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 70, 1748–1755 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553. https://doi.org/10.1007/s13592-014-0273-6 (2014).CAS 
    Article 

    Google Scholar 
    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE https://doi.org/10.1371/journal.pone.0072587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridley, L. et al. Pesticide usage survey report 295. Arable crops in the United Kingdom 2020 (Food & Environment Research Agency, 2020).Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    R Core Development Team. R: Version 3.6.3. A language and environment for statistical computing. R Foundation for Statistical Computing, Bristol, UK. http://cran.r-project.org (2021).Pinheiro, J. C., Bates, D. & DebRoy, S. The R core team nlme: Linear and nonlinear mixed effects models. R Package nlme Version 3, 1–83 (2007).
    Google Scholar  More

  • in

    Spatial point patterns generation on remote sensing data using convolutional neural networks with further statistical analysis

    Appel, M., Lahn, F., Buytaert, W. & Pebesma, E. Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL. ISPRS J. Photogramm. Remote Sens. 138, 47–56 (2018).ADS 
    Article 

    Google Scholar 
    Audebert, N., Saux, B. L. & Lefvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018).ADS 
    Article 

    Google Scholar 
    Ball J. E., Anderson D. T., & Chan C. S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. https://doi.org/10.1117/1.JRS.11.042609 (2017).Proceedings of the Royal Society B: Biological Sciences. Vol. 282. 20141657 (2015).Velázquez, E., Paine, C. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).Article 

    Google Scholar 
    Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecol. Process. 10, 1–23 (2021).Article 

    Google Scholar 
    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).Article 

    Google Scholar 
    Pielou, E.C. Mathematical Ecology; Number 574.50151 P613 1977. (Wiley, 1977).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Brown, C., Law, R., Illian, J. B. & Burslem, D. F. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).Article 

    Google Scholar 
    Detto, M. & Muller-Landau, H. C. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am. Nat. 181, E68–E82 (2013).Article 

    Google Scholar 
    May, F., Huth, A., & Wiegand, T. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings. Biological sciences 282(1802), 20141657. https://doi.org/10.1098/rspb.2014.1657 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerr, J. T. & Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003).Article 

    Google Scholar 
    Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P. & Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32, 203–221 (2008).Article 

    Google Scholar 
    He, J., Zhang, L., Wang, Q. & Li, Z. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci. Remote Sens. Lett. 6(4), 767–771 (2009).ADS 
    Article 

    Google Scholar 
    Lechner, A.M., Foody, G.M., & Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2.5, 405–412 (2020).Arévalo, P., Olofsson, P. & Woodcock, C. E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. 238, 111051 (2020).ADS 
    Article 

    Google Scholar 
    Gillespie, T.W. et al. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32.2, 203–221 (2008).Lausch, A., Erasmi, S., King, D. J., Magdon, P. & Heurich, M. Understanding forest health with remote sensing-part II—A review of approaches and data models. Remote Sens. 9(2), 129 (2017).ADS 
    Article 

    Google Scholar 
    Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., et al. Monitoring vegetation systems in the Great Plains with ERTS. in NASA Special Publication. Vol. 351. 309 (1974).Chen, J. M. & Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15, 421–429 (1992).Article 

    Google Scholar 
    Zha, Y., Gao, J. & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003).Article 

    Google Scholar 
    Zhao, S. et al. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. Int. J. Appl. Earth Obs. Geoinf. 12, 351–358 (2010).ADS 

    Google Scholar 
    Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).ADS 
    Article 

    Google Scholar 
    Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).ADS 
    Article 

    Google Scholar 
    Xu, H., Wang, Y., Guan, H., Shi, T. & Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sensing 11, 2345 (2019).ADS 
    Article 

    Google Scholar 
    List of Top 10 Sources of Free Remote Sensing Data (2017).USGS Earth Explorer: Download Free Landsat Imagery (2021).Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65, 2–16 (2010).ADS 
    Article 

    Google Scholar 
    Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411 (2014).Article 

    Google Scholar 
    Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 103, 1560–1584 (2015).Article 

    Google Scholar 
    Alajlan, N., Bazi, Y., Melgani, F. & Yager, R. R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 217, 39–55 (2012).Article 

    Google Scholar 
    Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 9, 243 (2017).ADS 
    Article 

    Google Scholar 
    Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18, 18 (2018).ADS 
    Article 

    Google Scholar 
    Jiang, S., Zhao, H., Wu, W., & Tan, Q. A novel framework for remote sensing image scene classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42 (2018).Baddeley, A. Spatial Point Process Modelling and Its Applications. Vol. 20. (Publicacions de la Universitat Jaume I, 2004).Vasudevan, K., Eckel, S., Fleischer, F., Schmidt, V. & Cook, F. Statistical analysis of spatial point patterns on deep seismic reflection data: A preliminary test. Geophys. J. Int. 171, 823–840 (2007).ADS 
    Article 

    Google Scholar 
    Cheng, Y. & Luo, J. Statistical analysis of metastable pitting events on carbon steel. Br. Corros. J. 35, 125–130 (2000).CAS 
    Article 

    Google Scholar 
    Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A. & Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39, 1042–1055 (2016).Article 

    Google Scholar 
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).Article 

    Google Scholar 
    Stoyan, D., & Penttinen, A. Recent applications of point process methods in forestry statistics. Stat. Sci. 2000, 61–78 (2000).Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns. Vol. 70. (Wiley, 2008).Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evol. 34, 734–745 (2019).Article 

    Google Scholar 
    Liu, S., Luo, H., Tu, Y., He, Z., & Li, J. Wide contextual residual network with active learning for remote sensing image classification. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 7145–7148 (IEEE, 2018).Lee, H. & Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Cheng, G., Xie, X., Han, J., Guo, L. & Xia, G. S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3735–3756 (2020).ADS 
    Article 

    Google Scholar 
    Lewy, D., & Mandziuk, J. An overview of mixing augmentation methods and augmentation strategies. arXiv preprint arXiv:2107.09887 (2021).Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018).Naveed, H. Survey: Image mixing and deleting for data augmentation. arXiv preprint arXiv:2106.07085 (2021).Freeman, I., Roese-Koerner, L. & Kummert, A. Effnet: An efficient structure for convolutional neural networks. 25th IEEE international conference on image processing (ICIP). IEEE 2018, 6–10 (2018).
    Google Scholar 
    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

    Google Scholar 
    Raeisi, M., Bonneu, F. & Gabriel, E. A spatio-temporal multi-scale model for Geyer saturation point process: Application to forest fire occurrences. Spatial Stat. 41, 100492 (2021).MathSciNet 
    Article 

    Google Scholar 
    Baddeley, A. Analysing spatial point patterns in R. in Workshop Notes Version. Vol. 3 (2008). More

  • in

    A climate risk index for marine life

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).Article 

    Google Scholar 
    O’Hara, C. C., Frazier, M. & Halpern, B. S. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372, 84–87 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).CAS 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).CAS 
    Article 

    Google Scholar 
    Lotze, H. K., Bryndum-Buchholz, A. & Boyce, D. G. in The Impacts of Climate Change: Comprehensive Study of the Physical, Societal and Political Issues (ed. Letcher, T.) 205–231 (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-822373-4.00017-3Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, 2235 (2019).Article 

    Google Scholar 
    Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).Article 

    Google Scholar 
    Barange, M. et al. (eds) Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, 1–654 (2016).CAS 
    Article 

    Google Scholar 
    Boyce, D. G., Fuller, S., Karbowski, C., Schleit, K. & Worm, B. Leading or lagging: how well are climate change considerations being incorporated into Canadian fisheries management? Can. J. Fish. Aquat. Sci. 78, 1120–1129 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).Article 

    Google Scholar 
    de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).Article 

    Google Scholar 
    Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. 1–12 (2020).Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).CAS 
    Article 

    Google Scholar 
    Kesner-Reyes, K. et al. AquaMaps: algorithm and data sources for aquatic organisms. In FishBase v.04/2012 (eds. Froese, R. & Pauly, D.) www.fishbase.org (2016).Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J. et al.) (Cambridge Univ. Press, 2001).The IUCN Red List of Threatened Species v.2021-1 (IUCN, 2021); https://www.iucnredlist.orgTittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Rogers, A. et al. Critical Habitats and Biodiversity: Inventory, Thresholds and Governance. Sci. Rep. 10, 548 (World Resources Institute, 2020).Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).CAS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    Article 

    Google Scholar 
    Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate‐induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 
    CAS 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Res. 41, 83–116 (2016).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    Moilanen, A., Kujala, H. & Mikkonen, N. A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods Ecol. Evol. 11, 794–803 (2020).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).CAS 
    Article 

    Google Scholar 
    Williams, P. H., Gaston, K. J. & Humphries, C. J. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B 264, 141–148 (1997).Article 

    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).Article 

    Google Scholar 
    Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).Article 

    Google Scholar 
    Payne, N. L. et al. Fish heating tolerance scales similarly across individual physiology and populations. Commun. Biol. 4, 264 (2021).Article 

    Google Scholar 
    First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Bryndum‐Buchholz, A., Tittensor, D. P. & Lotze, H. K. The status of climate change adaptation in fisheries management: policy, legislation and implementation. Fish Fish. https://doi.org/10.1111/faf.12586 (2021).Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).Article 
    CAS 

    Google Scholar 
    Boyce, D. G. et al. Operationalizing climate risk for fisheries in a global warming hotspot. Preprint at: https://doi.org/10.1101/2022.07.19.500650 (2022).Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    Article 

    Google Scholar 
    Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).Article 

    Google Scholar 
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).CAS 
    Article 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature https://doi.org/10.1038/s41586-019-1132-4 (2019).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).Article 

    Google Scholar 
    Rosset, V. & Oertli, B. Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol. Conserv. 144, 2311–2319 (2011).Article 

    Google Scholar 
    Peters, R. L. The greenhouse effect and nature reserves. Biosciences 35, 707–717 (1985).Article 

    Google Scholar 
    Garcia, R. A. et al. Matching species traits to projected threats and opportunities from climate change. J. Biogeogr. 41, 724–735 (2014).Article 

    Google Scholar 
    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2012).Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    Article 

    Google Scholar 
    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).CAS 
    Article 

    Google Scholar 
    Worm, B. & Duffy, J. E. Biodiversity, productivity, and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Ottersen, G., Hjermann, D. O. & Stenseth, N. C. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15, 230–243 (2006).Article 

    Google Scholar 
    Le Bris, A. et al. Climate vulnerability and resilience in the most valuable North American fishery. Proc. Natl Acad. Sci. USA 115, 1831–1836 (2018).Article 
    CAS 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).CAS 
    Article 

    Google Scholar 
    Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).CAS 
    Article 

    Google Scholar 
    MacKenzie, B. R. et al. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491 (2014).Article 

    Google Scholar 
    Shackell, N. L., Ricard, D. & Stortini, C. Thermal habitat index of many Northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060. PLoS ONE 9 (2014).Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control across marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).Article 

    Google Scholar 
    Boyce, D. G., Frank, K. T. & Leggett, W. C. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18, 504–515 (2015).Article 

    Google Scholar 
    Frank, K. T., Petrie, B., Shackell, N. L. & Choi, J. S. Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol. Lett. 9, 1096–1105 (2006).Article 

    Google Scholar 
    Frank, K. T., Petrie, B. & Shackell, N. L. The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol. Evol. 22, 236–242 (2007).Article 

    Google Scholar 
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1056 (2009).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. L. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    Article 

    Google Scholar 
    Burek, K. A., Gulland, F. M. D. & O’Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).Article 

    Google Scholar 
    Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).Article 

    Google Scholar 
    Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18, S157–S165 (2008).Article 

    Google Scholar 
    Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).Article 

    Google Scholar 
    Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 6 (2013).Article 

    Google Scholar 
    Rogan, J. E. & Lacher, T. E. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-409548-9.10913-3Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).CAS 
    Article 

    Google Scholar 
    Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).Article 

    Google Scholar 
    Davidson, A. D. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl Acad. Sci. USA 109, 3395–3400 (2012).CAS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. 70, 1069–1074 (2013).Article 

    Google Scholar 
    Fenchel, T. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14, 317–326 (1974).Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).Article 

    Google Scholar 
    Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS ONE 7, e34418 (2012).CAS 
    Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).CAS 
    Article 

    Google Scholar 
    Donner, S. D. & Carilli, J. Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance. Sci. Rep. 9, 3484 (2019).Article 
    CAS 

    Google Scholar 
    Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol. Evol. 5, 4315–4326 (2015).Article 

    Google Scholar 
    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Modell. 221, 467–478 (2010).Article 

    Google Scholar 
    Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R. & Cheung, W. W. L. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecol. Modell. 225, 133–145 (2012).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase v.02/2022 www.fishbase.org (2022).Palomares, M. L. D. & Pauly, D. SeaLifeBase v.11/2014 www.sealifebase.org (2022).van Buuren, S. Flexible Imputation of Missing Data (Chapman & Hall/CRC, 2012).Dahlke, F. T., Wohlrab, S., Butzin, M. & Portner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar 
    Stortini, C. H., Shackell, N. L., Tyedmers, P. & Beazley, K. Assessing marine species vulnerability to projected warming on the Scotian Shelf, Canada. ICES J. Mar. Sci. 72, 1713–1743 (2015).Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).Article 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 
    Article 

    Google Scholar 
    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, art41 (2012).Article 

    Google Scholar 
    Rao, T. R. A curve for all reasons. Resonance 5, 85–90 (2000).Article 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, 10 (2013).Article 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Ensemble projections of global ocean animal biomass with climate change. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900194116 (2019).Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).Article 

    Google Scholar 
    Oppenheimer, M., Little, C. M. & Cooke, R. M. Expert judgement and uncertainty quantification for climate change. Nat. Clim. Change 6, 445–451 (2016).Article 

    Google Scholar 
    Budescu, D. V., Por, H. H. & Broomell, S. B. Effective communication of uncertainty in the IPCC reports. Climatic Change 113, 181–200 (2012).Article 

    Google Scholar 
    Swart, R., Bernstein, L., Ha-Duong, M. & Petersen, A. Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change 92, 1–29 (2009).Article 

    Google Scholar 
    NAFO Annual Fisheries Statistics Database (NAFO, 2021).Horton, T. et al. World Register of Marine Species (WoRMS) https://www.marinespecies.org (2020).Total Wealth per Capita, 1995 to 2014 (World Bank, 2022); https://ourworldindata.org/grapher/total-wealth-per-capitaDepth of the Food Deficit in Kilocalories per Person per Day, 1992 to 2016 (World Bank, 2022); https://ourworldindata.org/grapher/depth-of-the-food-deficitBoyce, D. G. et al. A climate risk index for marine life. Dryad https://doi.org/10.5061/dryad.7wm37pvwr (2022).R Core Team R: A Language and Environment for Statistical Computing Version 4.0.4 (R Foundation for Statistical Computing, 2021). More

  • in

    The European Green Deal misses Europe’s subterranean biodiversity hotspots

    European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions: The European Green Deal (European Commission, 2019).European Commission. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions: EU Biodiversity Strategy for 2030 (European Commission, 2020).Fan, P. et al. Proc. Natl Acad. Sci. USA 119, e2108038119 (2022).CAS 
    Article 

    Google Scholar 
    Schwarz, U. Hydropower Projects on the Balkan Rivers – Update. RiverWatch & EuroNatur; https://balkanrivers.net/sites/default/files/Hydropower%20dams%20in%20the%20Balkan230915_FINAL_EdUS.pdf (2015).Knez, S., Štrbac, S. & Podbregar, I. Energy Sustain. Soc. 12, 1 (2022).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    Zagmajster, M. et al. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. Nat. Commun. 12, 3688 (2021).CAS 
    Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Cetković, H. Front. Zool. 10, 5 (2013).Article 

    Google Scholar 
    Griebler, C. & Avramov, M. Freshw. Sci. 34, 355–367 (2015).Article 

    Google Scholar 
    Mammola, S. et al. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Jaćimović, N. et al. Vodoprivreda 47, 29–40 (2015).
    Google Scholar 
    Borko, Š., Altermatt, F., Zagmajster, M. & Fišer, C. Divers. Distrib. https://doi.org/10.1111/ddi.13500 (2022).European Commission. Evaluation of the EU Biodiversity Strategy to 2020 (European Commission, 2020); https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/1832-Evaluation-of-the-EU-Biodiversity-Strategy-to-2020_en More