More stories

  • in

    Feeding ecology of the endangered Asiatic wild dogs (Cuon alpinus) across tropical forests of the Central Indian Landscape

    Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manag. 42, 528 (1978).Article 

    Google Scholar 
    Ackerman, B. B., Lindzey, F. G. & Hemker, T. P. Cougar food habits in Southern Utah. J. Wildl. Manag. 48, 147 (1984).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Klare, U., Kamler, J. F. & Macdonald, D. W. A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Rev. 41, 294–312 (2011).Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Monterroso, P. et al. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mammal Rev. 49, 97–112 (2019).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J., Hofmeyr, M. & Kerley, G. I. H. Prey preferences of the African wild dog Lycaon Pictus (Canidae: Carnivora): Ecological requirements for conservation. J. Mammal. 87, 1122–1131 (2006).Article 

    Google Scholar 
    Crawford, K., Mcdonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Crossey, B., Chimimba, C., du Plessis, C., Ganswindt, A. & Hall, G. African wild dogs ( Lycaon pictus ) show differences in diet composition across landscape types in Kruger National Park, South Africa. J. Mammal. 102, 1211–1221 (2021).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).Article 

    Google Scholar 
    Kamler, J. F. et al. Cuon alpinus. IUCN Red List Threat. Spec. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).Article 

    Google Scholar 
    Johnsingh, A. J. T. Distribution and status of dhole Cuon alpinus Pallas, 1811 in South Asia. Mammalia 49, (1985).Acharya, B. B. Dissertation submitted to Saurashtra University, Rajkot, Gujarat, for the award of the Degree of Doctor of Philosophy in Wildlife Science. 133.Sillero-Zubiri, E. C., Hoffmann, M. & Macdonald, D. W. Canids: Foxes, Wolves, Jackals and Dogs. 443.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Karanth, K. U., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S. & Karanth, K. U. On a dhole trail: Examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS ONE 9, e98803 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).PubMed 
    Article 

    Google Scholar 
    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs 12, 14–34 (2017).Article 

    Google Scholar 
    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).Article 

    Google Scholar 
    Clements, H. S., Tambling, C. J., Hayward, M. W. & Kerley, G. I. H. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large african carnivores. PLoS ONE 9, e101054 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hayward, M. W., Lyngdoh, S. & Habib, B. Diet and prey preferences of dholes ( C uon alpinus ): Dietary competition within A sia’s apex predator guild. J. Zool. 294, 255–266 (2014).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S. & Oli, M. K. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore. Sci. Total Environ. 714, 136798 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. A. Cuon alpinus. Mamm. Spec. https://doi.org/10.2307/3503800 (1978).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    Ghaskadbi, P., Nigam, P. & Habib, B. Stranger Danger: Differential response to strangers and neighbors by a social carnivore, the Asiatic wild dog (Cuon alpinus). Behav. Ecol. Sociobiol. 76, 86. https://doi.org/10.1007/s00265-022-03188-4 (2022). Article 

    Google Scholar 
    Ghaskadbi, P., Das, J., Mahadev, V. & Habib, B. First record of mixed species association between dholes and a wolf from Satpura Tiger Reserve, India. Canid Biol. Conserv. 23(4): 15–17. http://www.canids.org/CBC/23/Dhole_wolf_association.pdf (2021).Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgaonkar, A. Satpura National Park, India. 135.Borah, J., Deka, K., Dookia, S. & Gupta, R. P. Food habits of dholes (Cuon alpinus) in Satpura Tiger Reserve. Madhya Pradesh, India. 73, 85–88 (2009).
    Google Scholar 
    Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger ( Panthera tigris ), leopard ( Panthera pardus ) and dhole ( Cuon alpinus ) in Nagarahole, India. J. Zool. 250, 255–265 (2000).Article 

    Google Scholar 
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope. Tetracerus quadricornis. 73, 1–6 (2009).
    Google Scholar 
    Sharma, K., Chundawat, R. S., Van Gruisen, J. & Rahmani, A. R. Understanding the patchy distribution of four-horned antelope Tetracerus quadricornis in a tropical dry deciduous forest in Central India. J. Trop. Ecol. 30, 45–54 (2014).Article 

    Google Scholar 
    Rahman, D. A., Syamsudin, M., Firdaus, A. Y. & Afriandi, H. T. Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia. J. Threat. Taxa 13, 20278–20283 (2021).Article 

    Google Scholar 
    Durbin, L. S., Venkataraman, A., Hedges, S. & Dukworth, W. South Asia—south of th e Himalaya (oriental). In Canids: Foxes, Wolves, Jackals and Dogs . Status Survey and Conserva- tion Action Plan. (IUCN Canid Specialist Group, 2004).Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the Endangered dhole Cuon alpinus in the high elevation Eastern Himalayan habitats of Khangchendzonga Biosphere Reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    Yoshimura, H., Hirata, S. & Kinoshita, K. Plant-eating carnivores: Multispecies analysis on factors influencing the frequency of plant occurrence in obligate carnivores. Ecol. Evol. 11, 10968–10983 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snake-in-the-diet-of-Cuon-alpinus-Pallas-1811-in-Kalakad-Mundanthurai-Tiger-Reserve-Tamil-Nadu.pdf.Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR)— Phase IV Monitoring Report and Report on Collaring of Leopards. (2014). 26 (2015).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2015). 62 (2016).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2016). 27 (2017).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2017). 44 (2018).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2018). 41 (2019).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2019). 47 https://ntca.gov.in/assets/uploads/Reports/WII/TATR%20Phase%20IV%202019.pdf (2020).Jhala, Y. V., Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018. 656 https://ntca.gov.in/assets/uploads/Reports/AITM/Tiger_Status_Report_2018.pdf (2019).Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. J. Zool. 260, 285–290 (2003).Article 

    Google Scholar 
    Woodroffe, R., Lindsey, P. A., Romañach, S. S. & Ranah, S. M. K. African Wild Dogs ( Lycaon pictus ) Can Subsist on Small Prey: Implications for Conservation. J. Mammal. 88, 181–193 (2007).Article 

    Google Scholar 
    Merrill, E. et al. Building a mechanistic understanding of predation with GPS-based movement data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2279–2288 (2010).Article 

    Google Scholar 
    Pitman, R. T., Mulvaney, J., Ramsay, P. M., Jooste, E. & Swanepoel, L. H. Global Positioning System-located kills and faecal samples: A comparison of leopard dietary estimates. J. Zool. 292, 18–24 (2014).Article 

    Google Scholar 
    Jansen, C., Leslie, A. J., Cristescu, B., Teichman, K. J. & Martins, Q. Determining the diet of an African mesocarnivore, the caracal: Scat or GPS cluster analysis?. Wildl. Biol. 2019, wlb.00579 (2019).Article 

    Google Scholar 
    Leighton, G. R. M. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst. 23, 569–583 (2020).Article 

    Google Scholar 
    Studd, E. K. et al. The Purr-fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol. Evol. 12, 1277–1287 (2021).Article 

    Google Scholar 
    Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing the effect of Prey availability and Apex predator. Ecol. Evol. 11, 4774–4785 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 11033 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, D. M., Vyver, D. B. & Bissett, C. The influence of an apex predator introduction on an already established subordinate predator. J. Zool. 313, 224–235 (2021).Article 

    Google Scholar 
    Johnsingh, A. J. T. Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56, (1992).Marucco, F., Pletscher, D. H. & Boitani, L. Accuracy of scat sampling for carnivore diet analysis: Wolves in the Alps as a case study. J. Mammal. 89, 665–673 (2008).Article 

    Google Scholar 
    Martins, Q., Horsnell, W. G. C., Titus, W., Rautenbach, T. & Harris, S. Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87 (2011).Article 

    Google Scholar 
    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    Thinley, P. et al. Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm. Biol. 76, 518–520 (2011).Article 

    Google Scholar 
    Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Modi, S., Mondol, S., Nigam, P. & Habib, B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci. Rep. 11, 16371 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Putman, R. J. Facts from faeces. Mammal Rev. 14, 79–97 (1984).Article 

    Google Scholar 
    Kohn, M. H. & Wayne, R. K. Facts from feces revisited. Trends Ecol. Evol. 12, 223–227 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukherjee, S., Goyal, S. P. & Chellam, R. Standardisation of scat analysis techniques for leopard (Panthera pardus) in Gir National Park, Western India. Mammalia 58, (1994).Bahuguna, A., Sahajpal, V., Goyal, S. P., Mukherjee, S. & Thakur, V. Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India (Wildlife Institute of India, 2010).
    Google Scholar 
    Leopold, B. D. & Krausman, P. R. Diets of 3 Predators in Big Bend National Park, Texas. J. Wildl. Manag. 50, 290 (1986).Article 

    Google Scholar 
    Van Ballenberghe, V., Erickson, A. W. & Byman, D. Ecology of the Timber Wolf in Northeastern Minnesota. Wildl. Monogr. 3–43 (1975).Ciucci, P., Boitani, L., Pelliccioni, E. R., Rocco, M. & Guy, I. A comparison of scat-analysis methods to assess the diet of the wolf Canis lupus. Wildl. Biol. 2, 37–48 (1996).Article 

    Google Scholar 
    Weaver, J. L. Refining the equation for interpreting prey occurrence in Gray wolf scats. J. Wildl. Manag. 57, 534–538 (1993).Article 

    Google Scholar 
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).PubMed 
    Article 

    Google Scholar 
    Lumetsberger, T. et al. Re-evaluating models for estimating prey consumption by leopards. J. Zool. 302, 201–210 (2017).Article 

    Google Scholar 
    Jacobs, J. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417 (1974).ADS 
    PubMed 
    Article 

    Google Scholar 
    Karanth, K. U. & Nichols, J. D. Distribution and Dynamics of Tiger and Prey Populations in Maharashtra, India Final Technical Report (October 2001 to August 2005). (2005).19 LIVESTOCK CENSUS-2012 ALL INDIA REPORT. https://d1wqtxts1xzle7.cloudfront.net/56129012/6ESSJan-6098P-with-cover-page-v2.pdf?Expires=1644491741&Signature=Apc1rT2raxYnUyrRJ64NqOd6oUEpnF2AiRQVPB-9gS2W2TIrOcInF3KnBJVA2dPxzfbIz8ap9IPe-l24mpYs9i8xEZAvsxRVnDhSHT8H9C9fd0voDxyUwl3gUyJgDDzLO-204J95UuopJQw5Df6xTNmTOs5Oiadk0Fkf9Fk-QRVajisuRjzyX2eLmrBH4LyTJFu5irffnKwnluqHl53KoMAQ6nTKi7dlqI4pdFIVCtisXpkSsI44xV1mYX6KC67zmKCZlvjpTxTuHCFV4nmfpgZpPXh4sIOE-0utbwcf5g~UdmRtVVhaXfjZ2iw0gOm7-bIuQILDldPr3OnNUqXbSw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (2012).The Measurement of Niche Overlap and Some Relatives – Hurlbert – 1978 – Ecology – Wiley Online Library. https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.2307/1936632.Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manag. 38, 541–545 (1974).Article 

    Google Scholar  More

  • in

    Biophysical and economic constraints on China’s natural climate solutions

    This study presents a comprehensive quantification of carbon sequestration as well as CO2/CH4/N2O emissions reductions from terrestrial ecosystems based on multiple sources of data from literature, inventories, public databases and documents. The pathways considered ecosystem restoration and protection from being converted into cropland or built-up areas, reforestation, management with improved nitrogen use in cropland, restricted deforestation, grassland recovery, reducing risk from forest wildfire and others. Here we describe the cross-cutting methods that apply across all 16 NCS pathways. The definitions, detailed methods and data sources for evaluating individual pathways can be found in the Supplementary Information.Cross-cutting methodsBaseline settingWe set 2000 as the base year because the large-scale national ecological projects, such as the Grain for Green Project, were started since then. We first evaluate the historical mitigation capacity during 2000–2020, which is the first 20 years of implementing the projects. From this procedure we can determine how much mitigation capacity has been realized through the previous projects in the past two decades and to what extent additional actions can be made after 2020. Relative to the baseline 2000–2020, we then evaluate the maximum potentials of the NCS mitigation in the future 10 (2020–2030) and 40 (2020–2060) years, corresponding to the timetable of China’s NDCs: carbon peak before 2030 and carbon neutrality by 2060.The settings of baseline in this study are different from the existing assessments (2000s–2010s as a baseline and 2010–2025/2030/2050 as scenarios)1,22,23,27,28. Baseline sets the temporal and spatial reference for NCS pathway scenarios, which may have a great impact on the NCS estimates. Notably, NCS actions during 2000–2020 will have a great impact in the future periods, which we refer to as the ‘legacy effect’. The legacy effect itself, mainly reforestation, is independent of being assessed, but it is conceptually attributed to natural flux and excluded from future NCS potential estimates.Maximum potentialThe MAMP refers to the additional CO2 sequestration or avoided GHG emissions measured in CO2 equivalents (CO2e) at given flux rates in a period on the maximum extent to which the stewardship options are applied (numbers are expressed as TgCO2e yr−1 for individual pathways and PgCO2e yr−1 for national total) (Extended Data Fig. 1 and Supplementary Table 2). ‘Additional’ means mitigation outcomes due to human actions taken beyond business-as-usual land-use activities (since 2020) and excluding existing land fluxes not attributed to direct human activities1. The MAMP of CH4 and N2O are accounted by three cropland and wetland pathways (cropland nutrient management, improved rice cultivation and peatland restoration). We adopt 100 yr global warming potential to calculate the warming equivalent for CH4 (25) and N2O (298), respectively38,39 because these values are used in national GHG inventories, although some researchers have argued that using the fixed 100 yr global warming potential to calculate the warming equivalents may be problematic because they cannot differentiate the contrasting impacts of the long- and short-lived climate pollutants39. Because the flux rate of the GHG by ecosystems may vary with the time of recovery or growth, the MAMP may also change for different periods even given the same extent.The ‘maximum’ is constrained by varied factors across the NCS pathways. We constrain forest and grassland restoration by the rate of implementation, farmland red line and tree surviving rate (Extended Data Fig. 2). Surviving rate here is the ratio of the area with increased vegetation cover due to reforestation to the total reforestation area. The farmland red line refers to ‘the minimum area of cultivated land’ given by the Ministry of Land and Resources of China. It defines the lowest limit, and the current red line is ~120 Mha. It is a rigid constraint below which the total amount of cultivated land cannot be reduced. From this total amount, there is provincial farmland red line. This red line sets a constraint on the implementation of the NCS pathways associated with land-use change. We set the future scenario of farmland area that can be used for grassland or forest restoration on the basis of the provincial farmland red line. Basic farmland is closely related to national food security. By 2050, China’s population is predicted to decrease slightly, but with economic development, the per capita demand for food may increase40. We assume that the food production in the future can meet the food demand via increasing agricultural investment and technological advancement. The N fertilizer reduction scenario is set to be below the level 60%, under which crop yield is not significantly affected19, because N fertilizer is surplus in many Chinese croplands. For timber production, we assume that the demand for timber can be met if the production level is maintained at the level of 2010–2020 (83.31 million m3 yr−1). As deforestation of natural forests is 100% forbidden since 2020, the future timber will come mainly from tree plantations. For grazing optimization, we assume that livestock production is not affected by grassland fencing due to refined livestock management such as improving feed nutrient and fine-seed breeding41.The areas of historical NCS implementation during 2000–2020 were estimated using statistical data, published literature and public documents, with a supplement from remote-sensing data. The flux rates were obtained either by directly using the values from multiple literature sources or from estimates using the empirical formulae. For the estimates of future NCS potential, the flux rate and extent of the pathway were determined on the basis of the baseline (2000–2020). The extent is assumed to be achieved by using the same rate but limited by the multiple constraints stated in the preceding unless the implementation scopes have been reported in national planning documents. We estimate the legacy effect by multiplying the implementation area in the past by the flux rates in the future two periods.SaturationThe future mitigation potential that we estimate for 2030 and 2060 will not persist indefinitely because the finite potential for natural ecosystems to store additional carbon will saturate. For each NCS pathway, we estimate the expected duration of the potential for sequestration at the maximum rate (Supplementary Table 3). Forests can continue to sequester carbon for 70–100 years or more. Restored grasslands and fenced grasslands can continue to sequester carbon for >50 years. Forest-fire management and cover crops can continue to sequester carbon for 40–50 years or more. Sea grasses and peatlands can continue to sequester carbon for millennia. Avoided pathways do not saturate as long as the business-as-usual cases indicate that there are potential areas for avoided losses of ecosystems. In this case, sea grass and salt marsh would disappear entirely after 64 years, but it would be 100–300 years or more for forest, grassland and peatland.Estimation of uncertaintiesThe extent (area or biomass amount) and flux (sequestration or reduced emission per area or biomass amount in unit time) are considered to estimate uncertainty of the historical mitigation capacity or future potential for each NCS pathway. We use the IPCC approaches to combine uncertainty42. Where mean and standard deviation can be estimated from collected literature, 95% CIs are presented on the basis of multiple published estimates. Where a sample of estimates is not available but only a range of a factor, we report uncertainty as a range and use Monte Carlo simulations (with normal distribution and 100,000 iterations) to combine the uncertainties of extent and flux (IPCC Approach 2). The overall uncertainties of the 16 NCS pathways were combined using IPCC Approach 142. If the extent estimate is based on a policy determination, rather than an empirical estimate of biophysical potential, we do not consider it a source of uncertainty.MACsThe economic/cost constraints refer to the amount of NCS that can be achieved at a given social cost. The MAC curve is fitted according to the total publicly funded investment and total mitigation capacity or potential during a period. The MAC curves are drawn to estimate the historical mitigation or MAMP at the cost thresholds of US$10, US$50 and US$100 (MgCO2e)−1, respectively. The trading price in China’s current carbon market is ~US$10 USD (as the minimum cost43), and the cost-effective price point44,45 to achieve the Paris Agreement goal of limiting global warming to below 2 °C above pre-industrial levels is US$100 (as the maximum cost). A carbon price of US$50 is regarded as a medium value1,46. For the pathways of reforestation, avoided grassland conversion, grazing optimization and grassland restoration, we collected the statistical data of investments in China from 2000 to 2020 and estimated the affordable MAMP below the three mitigation costs. Due to data limitations, the points used for fitting the MAC curve are values for cost (invested funds) and benefit (mitigation capacity) in each of the provinces. We rank the ratio of benefit to cost in a descending order to obtain the maximum marginal benefit for MAC by assuming that NCS measures are first implemented in the region with the highest cost/benefit rate. We refer to the investment standard before 2020 as the benchmark and estimate the cost of each pathway for the future periods with discount rates of 3% and 5%, respectively. The social discount rate 4–6% is usually used as a benchmark discount value in carbon price studies in China compared with lower scenarios (for example, 3.6%)46,47. In a global study for estimating country-level social cost of carbon, 3% and 5% are used for scenario analysis48. Note that the mean value from the two discount rates was used in presenting the results. For the other pathways where investment data cannot be obtained, we refer to relevant references to estimate MAC. All the cost estimates are expressed in 2015 dollars, transformed on the basis of the Renminbi and US dollar exchange rate of the same year. The year 2015 represents a relatively stable condition of economic increase over the past decade (2011–2020) in China (the increase rate of gross domestic product (GDP) in 2015 is similar to the 10 yr mean). In the cases when the MAC curves exceed the estimated maximum potentials in the period, we identify the historical capacity or the MAMP as limited by the biophysical estimates.Additional mitigation required to meet Paris Agreement NDCsOn 28 October 2021, China officially submitted ‘China’s Achievements, New Goals and New Measures for Nationally Determined Contributions’ (‘New Measures 2021’ hereafter) and ‘China’s Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy’ to the Secretariat of the United Nations Framework Convention on Climate Change as an enhanced strategy to China’s updated NDCs (first submission in 2015). The goal of China’s updated NDCs is to strive to peak CO2 emissions before 2030 and achieve carbon neutralization by 2060. It specified the goals to include the following: before 2030, China’s carbon dioxide emissions per unit of GDP are expected be more than 65% lower than that in 2005, and the forest stock volume is expected to be increased by around 6.0 (previously 4.5) billion m3 over the 2005 level. In the ‘New Measures 2021’9 and ‘Master Plan of Major Projects of National Important Ecosystem Protection and Restoration (2021–2035)’5, many NCS-related opportunities are proposed to consolidate the carbon sequestration of ecosystems and increase the future NCS potential, including protecting the existing ecosystems, implementing engineering to precisely improve forest quality, continuously increasing forest area and stock volume, strengthening grassland protection and recovery and wetland protection and improving the quality of cultivated land and the agricultural carbon sinks.Industrial CO2 emissionsThe historical CO2 emissions data from 2000 to 201749,50 are used as the benchmark of industrial CO2 emissions during 2000–2020. For future projections, we use the peak value of the A1B2C2 scenario (in the range of 10,000 to 12,000 Mt) in 2030 from ref. 11. We assume that CO2 emission increases linearly from 2017 to 2030.Characterizing co-benefitsNCS activities proposed in the future measures or plans may enhance co-benefits. Four generalized types of ecosystem services are identified: improving biodiversity, water-related, soil-related and air-related ecosystem services (Fig. 1). Biodiversity benefits refer to the increase in different levels of diversity (alpha, beta and/or gamma diversity)51. Water, soil and air benefits refer to flood regulation and water purification, improved fertility and erosion prevention, and improvements in air quality, respectively, as defined in the Millennium Ecosystem Assessment52. The evidence that each pathway produces co-benefits from one or more peer-reviewed publications was collected through reviewing the literature (see the details for co-benefits of each pathway in Supplementary Information).Mapping province-level mitigationThe data for extent of implementing forest pathways are obtained from the statistical yearbook and reported at the province level. To be consistent with the forest pathways, the other pathways were also aggregated to the provincial-level estimate from the spatial data. If the flux data were available in different climate regions, the provinces are first assigned to climate regions. When a province spans multiple climate zones, the weight value is set according to the proportion of area, and finally an estimated value of rate was calculated (for fire management, some grassland and wetland pathways). For the forest pathways, we first collected the flux-rate data from reviewing literature and then averaged these flux rates to region/province. The flux rates for reforestation and natural forest management were calculated separately by province and age group. Similarly, specified flux rates are applied for different times after ecosystem restoration or conversion for other pathways.Classification of NCS typesThree types of NCS pathways were classified: protection (of intact natural ecosystems), improved management (on managed lands) and restoration (of native cover)35. In our study, four (AVFC, AVGC, AVCI, AVPI), eight (IMP, NFM, FM, BIOC, CVCR, CRNM, IMRC, GROP) and four (RF, GRR, CWR, PTR) NCS pathways were identified as protection, management and restoration types, respectively (Supplementary Table 1). These pathways can be further divided into groups of ‘single’ type or ‘mixed’ type according to their contribution to individual pathways. Specifically, in a certain area, when the mitigation capacity of a certain pathway accounts for more than 50% of the total, it is regarded as a single or dominant NCS type; if no single pathway accounts for more than 50%, it is a mixed type, named by the top pathways whose NCS sum exceeds 50% of the total mitigation capacity. More

  • in

    Adaptive phenotypic plasticity is under stabilizing selection in Daphnia

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghalambor, C. K. et al. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    King, J. G. & Hadfield, J. D. The evolution of phenotypic plasticity when environments fluctuate in time and space. Evol. Lett. 3, 15–27 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, R. A. Genetic variation for phenotypic plasticity in the larval life history of spadefoot toads (Scaphiopus couchii). Evolution 48, 1773–1785 (1994).PubMed 

    Google Scholar 
    Nussey, D. H. et al. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, S. Selection experiments and the study of phenotypic plasticity 1. J. Evol. Biol. 15, 889–898 (2002).Article 

    Google Scholar 
    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reger, J. et al. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).PubMed 
    Article 

    Google Scholar 
    Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).Article 

    Google Scholar 
    Rountree, D. & Nijhout, H. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 41, 987–992 (1995).CAS 
    Article 

    Google Scholar 
    Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol. Evol. 2, 751–767 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonamour, S. et al. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B 374, 20180178 (2019).Article 

    Google Scholar 
    Fox, R.J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0174 (2019).Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–511 (2010).PubMed 
    Article 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yampolsky, L. Y., Schaer, T. M. & Ebert, D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. R. Soc. B 281, 20132744 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119, 214–225 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).PubMed 

    Google Scholar 
    Lynch, M. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136, 727–741 (1990).Article 

    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543–6549 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turelli, M. & Barton, N. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Noble, D. W., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66-9, 2891–2902 (2012).Article 

    Google Scholar 
    Houle, D. How should we explain variation in the genetic variance of traits? Genetica 102, 241–253 (1998).PubMed 
    Article 

    Google Scholar 
    Tollrian, R. Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76, 1691–1705 (1995).Article 

    Google Scholar 
    Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS 
    Article 

    Google Scholar 
    Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).Article 

    Google Scholar 
    Dennis, S. et al. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B 278, 1687–1696 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammill, E. & Beckerman, A. P. Reciprocity in predator–prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology. Oecologia 163, 193–202 (2010).PubMed 
    Article 

    Google Scholar 
    Hammill, E., Rogers, A. & Beckerman, A. P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex. J. Evol. Biol. 21, 705–715 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnard-Kubow, K. et al. Polygenic variation in sexual investment across an ephemerality gradient in Daphnia pulex. Mol. Bio. Evol. 39, msac121 (2022).Article 

    Google Scholar 
    Deng, H.-W. & Lynch, M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147, 147–155 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyfert, A. L. et al. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 178, 2113–2121 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24, 75 (2013).
    Google Scholar 
    Adams, D.C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. et al. Geomorph: software for geometric morphometric analyses (University of New England, 2016); https://hdl.handle.net/1959.11/21330Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).PubMed 
    Article 

    Google Scholar 
    Richards, C. L., Bossdorf, O. & Pigliucci, M. What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60, 232–237 (2010).Article 

    Google Scholar 
    Latta, L. C. IV et al. The phenotypic effects of spontaneous mutations in different environments. Am. Nat. 185, 243–252 (2015).PubMed 
    Article 

    Google Scholar 
    Lind, M. I. et al. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B 282, 20151651 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).Article 

    Google Scholar 
    Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tollrian, R. & Harvell, C.D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, 1999).Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).PubMed 
    Article 

    Google Scholar 
    Kvist, J. et al. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Mol. Ecol. 22, 602–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siepielski, A. M. et al. Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc. R. Soc. B 278, 1572–1580 (2011).PubMed 
    Article 

    Google Scholar 
    Muschick, M. et al. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11, 116 (2011).Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).Article 

    Google Scholar 
    Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eberle, S. et al. Hierarchical assessment of mutation properties in Daphnia magna. G3 Genes Genomes Genetics 8, 3481–3487 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).CAS 
    Article 

    Google Scholar 
    Reed, T. E., Schindler, D. E. & Waples, R. S. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25, 56–63 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    ASTM, Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians (American Society for Testing and Materials, 1988).Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).MarkDuplicates v.2.20 (Broad Institute, 2019); http://broadinstitute.github.io/picardMcKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).PubMed 
    Article 

    Google Scholar 
    Naraki, Y., Hiruta, C. & Tochinai, S. Identification of the precise kairomone-sensitive period and histological characterization of necktooth formation in predator-induced polyphenism in Daphnia pulex. Zool. Sci. 30, 619–625 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scrucca, L. et al. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2018).Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article 

    Google Scholar 
    Collyer, M., Adams, D. & and Collyer, M.M. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R package version 1.3 https://CRAN.R-project.org/package=RRPP (2021).Smirnov, P. robcor: Robust correlations. R package version 0.1-6.1 https://CRAN.R-project.org/package=ropcor (2014).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Yang, J. et al. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).Villanueva, R., Chen, Z. & Wickham, H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics (Springer-Verlag, 2016).Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9. 2 https://CRAN.R-project.org/package=cowplot (2020).Dowle, M. et al. data.table: Extension of ‘data.frame‘. R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2021).Daniel, M. foreach: Provides foreach looping construct. R package version 1.5.1 https://CRAN.R-project.org/package=foreach (2020).Weston, S. doMC: Foreach parallel adaptor for ‘parallel’. R package version 1.3.7 https://CRAN.R-project.org/package=doMC (2020).Clarke, E. & Sherrill-Mix, S. Ggbeeswarm: Categorical scatter (violin point) plots. R package version 0.6. 0 https://CRAN.R-project.org (2017).Garnier, S. et al. viridis: Default color maps from ‘matplotlib’. R package version 0.5.1 (2018). More

  • in

    Cell death responses to acute high light mediated by non-photochemical quenching in the dinoflagellate Karenia brevis

    Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14, 156–178 (2012).
    Google Scholar 
    Hetland, R. D. & Campbell, L. Convergent blooms of Karenia brevis along the Texas coast. Geophys. Res. Lett. 34, 1–5 (2007).
    Google Scholar 
    Liu, G., Janowitz, G. S. & Kamykowski, D. A biophysical model of population dynamics of the autotrophic dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser. 210, 101–124 (2001).ADS 
    CAS 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why?. J. Geophys. Res. 111, C11003 (2006).ADS 

    Google Scholar 
    Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7, 341–375 (2015).PubMed 

    Google Scholar 
    Bidle, K. D. & Bender, S. J. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 7, 223–236 (2008).CAS 
    PubMed 

    Google Scholar 
    Bidle, K. D., Haramaty, L., Barcelos, R. J. & Falkowski, P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. 104, 6049–6054 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vardi, A. et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061–1064 (1999).CAS 
    PubMed 

    Google Scholar 
    Zuppini, A., Andreoli, C. & Baldan, B. Heat stress: An inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 48, 1000–1009 (2007).CAS 
    PubMed 

    Google Scholar 
    Britt, A. B. DNA damage and repair in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75–100 (1996).CAS 
    PubMed 

    Google Scholar 
    Jimenez, C. et al. Different ways to die: Cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J. Exp. Bot. 60, 815–828 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moharikar, S., D’Souza, J. S., Kulkarni, A. B. & Rao, B. J. Apoptotic-like cell death pathway is induced in unicellular chlorophyte chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: Detection and functional analyses. J. Phycol. 42, 423–433 (2006).CAS 

    Google Scholar 
    Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).CAS 
    PubMed 

    Google Scholar 
    Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).CAS 
    PubMed 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, P., Li, X. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Bidle, K. D. Programmed cell death in unicellular phytoplankton. Curr. Biol. 26, R594–R607 (2016).CAS 
    PubMed 

    Google Scholar 
    McKay, L., Kamykowski, D., Milligan, E., Schaeffer, B. & Sinclair, G. Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains. Harmful Algae 5, 623–636 (2006).CAS 

    Google Scholar 
    Miller-Morey, J. S. & Van Dolah, F. M. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 138, 493–505 (2004).
    Google Scholar 
    Tilney, C. L., Shankar, S., Hubbard, K. A. & Corcoran, A. A. Is Karenia brevis really a low-light-adapted species?. Harmful Algae 90, 101709 (2019).CAS 
    PubMed 

    Google Scholar 
    Yuasa, K., Shikata, T., Kuwahara, Y. & Nishiyama, Y. Adverse effects of strong light and nitrogen deficiency on cell viability, photosynthesis, and motility of the red-tide dinoflagellate Karenia mikimotoi. Phycologia 57, 525–533 (2018).CAS 

    Google Scholar 
    Krause, G. H. & Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence 463–495 (Springer, Netherlands, Cham, 2004).
    Google Scholar 
    Evens, T. J. Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight. J. Plankton Res. 23, 1177–1194 (2001).CAS 

    Google Scholar 
    Heil, C. A. et al. Influence of daylight surface aggregation behavior on nutrient cycling during a Karenia brevis (Davis) G. Hansen & Ø Moestrup bloom: Migration to the surface as a nutrient acquisition strategy. Harmful Algae 38, 86–94 (2014).CAS 

    Google Scholar 
    Errera, R. Response of the Toxic Dinoflagellate Karenia Brevis to Current and Projected Environmental Conditions. (Texas A&M University, PhD dissertation, 2013).Guillard, R. R. L. & Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236 (1993).
    Google Scholar 
    Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
    Google Scholar 
    Lin, Q. et al. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS ONE 12(9), e0184849 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Choi, C. J., Brosnahan, M. L., Sehein, T. R., Anderson, D. M. & Erdner, D. L. Insights into the loss factors of phytoplankton blooms: The role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol. Oceanogr. 62, 1742–1753 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. G., Janech, M. G. & Van Dolah, F. M. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. Harmful Algae 31, 41–53 (2014).CAS 
    PubMed 

    Google Scholar 
    Jauzein, C. & Erdner, D. L. Stress-related responses in Alexandrium tamarense cells exposed to environmental Changes. J. Eukaryot. Microbiol. 60, 526–538 (2013).CAS 
    PubMed 

    Google Scholar 
    Severin, T. & Erdner, D. L. The phytoplankton taxon-dependent oil response and its microbiome: Correlation but not causation. Front. Microbiol. 10, 1–14 (2019).
    Google Scholar 
    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).CAS 

    Google Scholar 
    Suzuki, N. & Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126, 45–51 (2006).CAS 

    Google Scholar 
    Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).CAS 

    Google Scholar 
    Gechev, T. S. & Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17–20 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant. Cell Environ. 33, 453–467 (2010).CAS 
    PubMed 

    Google Scholar 
    Purvis, A. C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100, 165–170 (1997).CAS 

    Google Scholar 
    Demmig-Adams, B. & Adams Iii, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. 43, 599–626 (1992).CAS 

    Google Scholar 
    Cui, Y., Zhang, H. & Lin, S. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 8, 1–14 (2017).
    Google Scholar 
    Cassell, R. T., Chen, W., Thomas, S., Liu, L. & Rein, K. S. Brevetoxin, the dinoflagellate neurotoxin, localizes to thylakoid membranes and interacts with the light-harvesting complex II (LHCII) of photosystem II. ChemBioChem 16, 1060–1067 (2015).CAS 
    PubMed 

    Google Scholar 
    Milne, A., Davey, M. S., Worsfold, P. J., Achterberg, E. P. & Taylor, A. R. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection-chemiluminescence. Limnol. Oceanogr. Methods 7, 706–715 (2009).CAS 

    Google Scholar 
    Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium trichodesmium. Science (80-) 294, 1534–1537 (2001).ADS 
    CAS 

    Google Scholar 
    Triantaphylidès, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Y. & Erdner, D. L. Dynamics of cell death across growth stages and the diel cycle in the dinoflagellate Karenia brevis. J. Eukaryot. Microbiol. https://doi.org/10.1111/jeu.12874 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, K., Jiang, H., Juneau, P. & Qiu, B. Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes. J. Appl. Phycol. 24, 1113–1122 (2012).CAS 

    Google Scholar 
    Yamori, W., Makino, A. & Shikanai, T. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep. 6, 20147 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).ADS 

    Google Scholar  More

  • in

    Influence of suspended inorganic particles (kaolinite) on eggs and larvae of the pelagic shrimp Lucensosergia lucens

    Uchida, H. & Baba, O. Fishery management and the pooling arrangement in the Sakura ebi fishery in Japan, 175–189. https://www.fao.org/3/a1497e/a1497e16.pdf (2008).Omori, M. The biology of a sergestid shrimp Sergestes lucens Hansen. Bull. Ocean Res. Inst. Univ. Tokyo 4, 1–83 (1969).
    Google Scholar 
    Gurney, R. & Lebour, M. V. Larvae of decapod crustacea. Part VI. The genus Sergestes. Discov. Rep. 20, 1–68 (1940).
    Google Scholar 
    Holthuis, L. B. FAO species catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fish. Synop. Vol. 125, 1–271 (1980).Omori, M., Ukishima, Y. & Muranaka, F. New record of occurrence of Sergia lucens (Hansen) (Crustacea, Sergestidae) off Tung-kang, Taiwan, with special reference to phylogeny and distribution of the species. J. Oceanogr. Soc. Jpn. 44, 261–267 (1988) (in Japanese with English abstract).Article 

    Google Scholar 
    Isshiki, T. & Tajima, Y. The research of a sergestid shrimp, Sergia lucens (Hansen) in the mouth of Tokyo Bay I. The seasonal distribution of adult and the distribution of eggs. Bull. Kanagawa Pref. Fish. Exp. Stn. 13, 73–78 (1992) (in Japanese with English abstract).
    Google Scholar 
    Lee, D. A., Wu, S. H., Liao, I. C. & Yu, H. P. On three species of commercially important sergestid shrimps (Decapoda: Sergestidae) in the coastal waters of Taiwan. J. Taiwan Fish. Res. Inst. 4, 1–19 (1996) (in Chinese with English abstract).CAS 

    Google Scholar 
    Yinji, L. & Ratana, C. Governing in an uncertain time: The case of Sakura shrimp fishery, Japan. Marit. Stud. 20, 115–126 (2021).Article 

    Google Scholar 
    Isono, R. S., Kita, J. & Setoguma, T. Acute effects of kaolinite suspension on eggs and larvae of some marine teleosts. Comp. Biochem. Physiol. Part C 120, 449–455 (1998).CAS 
    Article 

    Google Scholar 
    Aoki, S. & Oinuma, K. Distribution of clay minerals in surface sediments of Suruga Bay, central Japan. J. Geol. Soc. Jpn. 87(7), 429–438 (1981) (in Japanese with English abstract).Article 

    Google Scholar 
    Nasnodkar, M. R. & Ganapati, N. N. Clay mineralogy and chemistry of mudflat core sediments from Sharavathi and Gurupur estuaries: Source and processes. Indian J. Geo-Mar. Sci. 48(3), 379–388 (2019).
    Google Scholar 
    Capper, N. The effects of suspended sediment on the aquatic organisms Daphnia magna and Pimephales promelas. All Theses. 2. https://tigerprints.clemson.edu/all_theses/2 (2006).Boyd, M. B. et al. Disposal of dredge spoil, problem identification and assessment and research program development. Technical report H-72–8, U.S. army engineer waterways experiment station, CE, Vicksburg, Miss. (1972).McFarland, V. A. & Peddicord, R. K. Lethality of a suspended clay to a diverse selection of marine and estuarine macrofauna. Arch. Environ. Contam. Toxicol. 9, 733–741 (1980).CAS 
    Article 

    Google Scholar 
    Arakawa, H. et al. The influence of suspended particles on larval development in the Manila clam Ruditapes philippinarum. Sci. Postp. 1, e00028. https://doi.org/10.14340/spp.2014.08A0002 (2014).Article 

    Google Scholar 
    Davis, H. C. Effects of turbidity-producing materials in sea water on eggs and larvae of the clam (Venus (Mercenaria) mercenaria). Biol. Bull. 118, 48–54 (1960).Article 

    Google Scholar 
    Tabata, A., Morinaga, T. & Arakawa, H. Influences of concentration, particle-size and kind of inorganic suspended matter on feed caught by Manila clam, Ruditapes philippinarum. La Mer 37, 163–171 (2000).CAS 

    Google Scholar 
    Annisa, Dwiatmoko, M. U., Saismana, U. & Maulanai, R. Characteristics of kaolin clay on Alluvial formation subdistrict mataraman based on physical properties and chemical properties. In MATEC Web of Conferences Vol. 280, 03009. https://doi.org/10.1051/matecconf/201928003009 (2019).Murray, H. H. Structure and composition of clay minerals and their physical and chemical properties. Dev. Clay Sci. 2, 7–31. https://doi.org/10.1016/S1572-4352(06)02002-2 (2006).Article 

    Google Scholar 
    Kumari, N. & Mohan, C. Basics of clay minerals and their characteristic properties. Clay Clay Miner. 1–29 (2021).Lively, J. S., Kaufman, Z. & Carpenter, E. J. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York. Estuar. Coast. Shelf Sci. 16(1), 51–68 (1983).ADS 
    Article 

    Google Scholar 
    Lloyd, D. S. Turbidity as a water quality standard for salmonid habitats in Alaska. N. Am. J. Fish. Manag. 7, 34–45 (1987).Article 

    Google Scholar 
    Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshw. Biol. 28, 103–109 (1992).Article 

    Google Scholar 
    McCabe, G. D. & O’Brien, W. J. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 110, 324–337 (1983).Article 

    Google Scholar 
    Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic Rotifers and Cladocerans. Ecology 71, 1741–1755 (1990).Article 

    Google Scholar 
    Loosanoff, V. L. Effects of turbidity on some larval and adult bivalves. Proc. Gulf. Carib. Fish. Inst. 14, 80–95 (1961).
    Google Scholar 
    Arruda, J. A., Marzolf, G. R. & Faulk, R. T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64, 1225–1235 (1983).Article 

    Google Scholar 
    Kathyayani, S. A., Muralidhar, M., Kumar, T. S. & Alavandi, S. V. Stress quantification in Penaeus vannamei exposed to varying levels of turbidity. J. Coast. Res. 86, 177–183 (2019).CAS 
    Article 

    Google Scholar 
    Wilber, D. H. & Clarke, D. G. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Am. J. Fish. Manag. 21, 855–875 (2001).Article 

    Google Scholar 
    Lin, H., Charmantier, G., Thuet, P. & Trilles, J. Effects of turbidity on survival, osmoregulation, and gill Na+-K+ ATPase in juvenile shrimp Penaeus japonicus. Mar. Ecol. Prog. Ser. 90, 31–37 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Davis, H. C. & Hidu, H. Effects of turbidity-producing substances in sea water on eggs and larvae of three genera of bivalve mollusks. Veliger 11, 316–323 (1969).
    Google Scholar 
    Nimmo, D. R., Hamaker, T. L., Matthews, E. & Young, W. T. The long-term effects of suspended particulates on survival and reproduction of the mysid shrimp, Mysidopsis bahia, in the laboratory. In Proceedings of a Symposium on the Ecological Effects of Environmental Stress, New York, 413–422 (1979).Peddicord, R. & McFarland, V. Effects of suspended dredged material on the commercial crab, Cancer magister. In Proceedings of the Specialty Conference on Dredging and Its Environmental Effects, Mobile, Alabama, 633–644 (1976).Peddicord, R. K. Direct Effects of Suspended Sediments on Aquatic Organisms. Contaminants and Sediments. Volume 1. Fate and Transport, Case Studies, Modeling, Toxicity 501–536 (Ann Arbor Science Publishers, 1980).
    Google Scholar 
    Wakeman, T., Peddicord, R. & Sustar, J. Effects of suspended solids associated with dredging operations on estuarine organisms. In Ocean 75 conference, 431–436 (1975).Gebauer, P., Walter, I. & Anger, K. Effects of substratum and conspecific adults on the metamorphosis of Chasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae. J. Exp. Mar. Biol. Ecol. 223, 185–198 (1998).Article 

    Google Scholar 
    Carvalho, L. & Calado, R. Trade-offs between timing of metamorphosis and grow out performance of a marine caridean shrimp juveniles and its relevance for aquaculture. Aquaculture 492, 97–102 (2018).Article 

    Google Scholar 
    Calado, R. et al. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture 546, 737391. https://doi.org/10.1016/j.aquaculture.2021.737391 (2022).Article 

    Google Scholar 
    Murphy, R. C. Factors affecting the distribution of the introduced bivalve, Mercenaria mercenaria, in a California lagoon—The importance of bioturbation. J. Mar. Res. 43, 673–692 (1985).Article 

    Google Scholar 
    Bricelj, V. M. & Malouf, R. E. Influence of algal and suspended sediment concentration on the feeding physiology of the hard clam Mercenaria mercenaria. Mar. Biol. 84, 155–165 (1984).Article 

    Google Scholar 
    Wenger, A. S., Jacob, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth, and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48 (2012).Article 

    Google Scholar 
    Robinson, W. E., Wehling, W. E. & Morse, M. P. The effect of suspended clay on feeding and digestive efficiency of the surf clam Spisula solidissima (Dillwyn). J. Exp. Mar. Biol. Ecol. 74, 1–12 (1984).CAS 
    Article 

    Google Scholar 
    Turner, E. J. & Miller, D. C. Behavior and growth of Mercenaria mercenaria during simulated storm events. Mar. Biol. 111, 55–64 (1991).Article 

    Google Scholar 
    Grant, J. & Thorpe, B. Effects of suspended sediment on growth, respiration, and excretion of the soft-shelled clam (Mya arenaria). Can. J. Fish. Aquat. Sci. 48, 1285–1292 (1991).Article 

    Google Scholar 
    Gleason, R. A., Euliss, N. H., Hubbard, D. E. & Duffy, W. G. Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23, 26–34 (2003).Article 

    Google Scholar 
    Jacek, R., Anna, S. & Miroslaw, S. The effect of lake sediment on the hatching success of Daphnia ephippial eggs. J. Limnol. 75, 597–605 (2016).
    Google Scholar 
    Newcombe, C. P. & McDonald, D. D. Effects of suspended sediment on aquatic ecosystems. N. Am. J. Fish. Manag. 11, 77–82 (1991).Article 

    Google Scholar 
    Chutter, F. M. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34, 57–76 (1968).Article 

    Google Scholar 
    Hellawell, J. M. Biological indicators of freshwater pollution and environmental management. In Pollution Monitoring Series (ed. Melanby, K.) https://doi.org/10.1007/978-94-009-4315-5 (1986).Makita, M. & Kondo, M. Rearing of the larvae of Seigia Lucens (Hansen). Bull. Shizuoka Pref. Fish. Exp. Stn. 16, 97–105 (1982) (in Japanese).
    Google Scholar  More

  • in

    Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests

    Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Camenzind, T., Httenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Hou, E., Luo, Y., Kuang, Y., Chen, C. & Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).Article 

    Google Scholar 
    Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).CAS 
    Article 

    Google Scholar 
    Mori, T., Lu, X., Aoyagi, R. & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct. Ecol. 32, 1145–1154 (2018).Article 

    Google Scholar 
    Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).Article 

    Google Scholar 
    Feng, J. et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochem. Cycles. 33, 559–569 (2019).CAS 

    Google Scholar 
    Cui, Y. et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440–1451 (2019).CAS 
    Article 

    Google Scholar 
    Jing, X. et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 141, 107657 (2020).CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 34, 1461–1471 (2020).Article 

    Google Scholar 
    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).CAS 
    Article 

    Google Scholar 
    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 115, 4015–4020 (2018).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).CAS 
    Article 

    Google Scholar 
    Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecol. Biogeogr. 30, 2297–2311 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Schulte-Uebbing, L. & Vries, W. D. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biol. 24, 416–431 (2017).Article 

    Google Scholar 
    Richardson, S. J., Peltzer, D. A., Allen, R. B. & Parfitt, M. G. L. Rapid development of phosphorus limitation in temperate rainforest along the Franz josef soil chronosequence. Oecologia 139, 267–276 (2004).Article 

    Google Scholar 
    Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biol. 23, 3808–3824 (2017).Article 

    Google Scholar 
    Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).Article 

    Google Scholar 
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).CAS 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198, 656–669 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21 (2018).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 147, 107814 (2020).CAS 
    Article 

    Google Scholar 
    Johnson, J. et al. The response of soil solution chemistry in european forests to decreasing acid deposition. Global Change Biol. 24, 3603–3619 (2018).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 
    Article 

    Google Scholar 
    Penuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in china over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419, 115868 (2022).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).CAS 
    Article 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biol. 27, 2633–2644 (2021).CAS 
    Article 

    Google Scholar 
    Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C. & Wookey, P. A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26, 5178–5188 (2020).Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    Rosinger, C., Rousk, J. & Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 128, 115–126 (2019).CAS 
    Article 

    Google Scholar 
    Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 146, 107816 (2020).CAS 
    Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 
    Article 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).CAS 
    Article 

    Google Scholar 
    Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
    Google Scholar 
    Legendre, P. & Legendre, L. Numerical ecology, 2nd English edition. Elsevier Science BV, Amsterdam (1998).Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8/1, 20–25 (2008).
    Google Scholar 
    Toms, J. D. & Lesperance, M. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).Article 

    Google Scholar 
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7 edn (2016).Development Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). More

  • in

    Mount Everest’s harsh heights shelter a rich array of life

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Nitrogen use aggravates bacterial diversity and network complexity responses to temperature

    Hwang, H. Y. et al. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 292, 49–58 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    IPCC. Climate change 2013: The physical science basis. The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013).
    Google Scholar 
    Cardoso, R. M., Soares, P. M. M., Lima, D. C. A. & Miranda, P. M. A. Mean and extreme temperatures in warming climate: EURO CORDEX and WRF regional climate high-resolution projection for Portugal. Clim. Dyn. 52, 129–157 (2019).Article 

    Google Scholar 
    Ding, T., Gao, H. & Li, W. J. Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Climatol. 38, 3579–3594 (2018).Article 

    Google Scholar 
    Escalas, A. et al. Functional diversity and redundancy across fish gut, sediment, and water bacterial communities. Environ. Microbiol. 19, 3268–3282 (2017).Article 

    Google Scholar 
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    Article 

    Google Scholar 
    Li, Y. B. et al. Serratia spp. Are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environ. Sci. Technol 56, 2033–2043 (2022).ADS 
    Article 

    Google Scholar 
    Jia, M., Gao, Z. W., Gu, H. J., Zhao, C. Y. & Han, G. D. Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS ONE 16, e0248194. https://doi.org/10.1371/journal.pone.0248194 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waghmode, T. R. et al. Response of nitrifier and denitrifier abundance and microbial community structure to experimental warming in an agricultural ecosystem. Front. Microbiol. 9, 474. https://doi.org/10.3389/fmicb.2018.00474 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y. L., Wang, S., Niu, B., Chen, Q. & Zhang, G. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ. Res. 189, 109917. https://doi.org/10.1016/j.envres.2020.109917 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, H. et al. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microb. Ecol. 71, 974–989 (2016).CAS 
    Article 

    Google Scholar 
    Wang, H. et al. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biol. Biochem. 133, 155–164 (2019).CAS 
    Article 

    Google Scholar 
    Haumann, F. A., Gruber, N. & Münnich, M. Sea-Ice Induced Southern Ocean Subsurface Warming and Surface Cooling in a Warming Climate. AGU Advances 1, e2019AV000132. https://doi.org/10.1029/2019AV000132 (2020).ADS 
    Article 

    Google Scholar 
    Ji, F., Wu, Z. H., Huang, J. P. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 4, 462–466 (2014).ADS 
    Article 

    Google Scholar 
    Sabri, N. S. A., Zakaria, Z., Mohamad, S. E., Jaafar, A. B. & Hara, H. Importance of soil temperature for the growth of temperate crops under a tropical climate and functional role of soil microbial diversity. Microbes Environ. 33, 144–150 (2018).Article 

    Google Scholar 
    McGrady-Steed, J. & Morin, P. T. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81, 361–373 (2000).Article 

    Google Scholar 
    Jiang, L. Density compensation can cause no effect of biodiversity on ecosystem function. Oikos 116, 324–334 (2007).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538. https://doi.org/10.1038/nrmicro283 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gao, X. X. et al. Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. CATENA 205, 105385. https://doi.org/10.1016/j.catena.2021.105385 (2021).CAS 
    Article 

    Google Scholar 
    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349. https://doi.org/10.1038/ncomms14349 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).Article 

    Google Scholar 
    Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).ADS 
    Article 

    Google Scholar 
    Ratzke, C., Barrere, J. M. R. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).Article 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 45, 193–199 (2009).ADS 
    Article 

    Google Scholar 
    Zhao, M. X., Cong, J., Cheng, J. M., Qi, Q. & Zhang, Y. G. Soil microbial community assembly and interactions are constrained by nitrogen and phosphorus in broadleaf forests of southern China. Forest 11, 285. https://doi.org/10.3390/f11030285 (2020).Article 

    Google Scholar 
    Wan, X. L. et al. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol. Biochem. 142, 07696. https://doi.org/10.1016/j.soilbio.2019.107696 (2020).CAS 
    Article 

    Google Scholar 
    Yuan, M. M., Guo, X., Wu, L., Zhang, Y. & Zhou, J. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).ADS 
    Article 

    Google Scholar 
    Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 11, 225–241 (2014).Article 

    Google Scholar 
    Phoenix, G. K. et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18, 1197–1215 (2012).ADS 
    Article 

    Google Scholar 
    Nakaji, T., Fukami, M., Dokiya, Y. & Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Struct. Funct. 15, 453–461 (2001).CAS 
    Article 

    Google Scholar 
    Wang, H. Y. et al. Reduction in nitrogen fertilizer use results in increased rice yields and improved environmental protection. Int. J. Agric. Sustain. 15, 681–692 (2017).Article 

    Google Scholar 
    Zhou, X. G. & Wu, F. Z. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Sci. Total Environ. 788, 147751. https://doi.org/10.1016/j.scitotenv.2021.147751 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Guo, H. et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol. Biochem. 113, 26–34 (2017).CAS 
    Article 

    Google Scholar 
    Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).CAS 
    Article 

    Google Scholar 
    Zhang, J. J. et al. Different responses of soil respiration and its components to nitrogen and phosphorus addition in a subtropical secondary forest. For. Ecosyst. 8, 37. https://doi.org/10.1186/s40663-021-00313-z (2021).Article 

    Google Scholar 
    Norse, D. & Ju, X. T. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 209, 5–14 (2015).Article 

    Google Scholar 
    Xu, H. F., Du, H., Zeng, F. P., Song, T. Q. & Peng, W. X. Diminished rhizosphere and bulk soil microbial abundance and diversity across succession stages in Karst area, southwest China. Appl. Soil Ecol. 158, 103799. https://doi.org/10.1016/j.apsoil.2020.103799 (2020).Article 

    Google Scholar 
    Li, Y. B. et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 153, 106522. https://doi.org/10.1016/j.envint.2021.106522 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, J. & Fong, J. J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 165, 103970. https://doi.org/10.1016/j.apsoil.2021.103970 (2021).Article 

    Google Scholar 
    Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 15, 2950–2957 (2009).ADS 
    Article 

    Google Scholar 
    Tan, E. H., Zou, W., Zheng, Z., Yan, X. & Kao, S. J. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nat. Clim. Change 10, 349–355 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Supramaniam, Y., Chong, C. W., Silvaraj, S. & Tan, K. P. Effect of short term variation in temperature and water content on the bacterial community in a tropical soil. Appl Soil Ecol. 107, 279–289 (2016).Article 

    Google Scholar 
    Zhu, Y. Z., Li, Y. Y., Zheng, N. G., Chapman, S. J. & Yao, H. Y. Similar but not identical resuscitation trajectories of the soil microbial community based on either DNA or RNA after flooding. Agronomy 10, 502. https://doi.org/10.3390/agronomy10040502 (2020).CAS 
    Article 

    Google Scholar 
    Donhauser, J., Qi, W., Bergk-Pinto, B. & Frey, B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Glob. Chang. Biol. 27, 1365–1386 (2021).ADS 
    Article 

    Google Scholar 
    Santoyo, G., Hernandez-Pacheco, C., Hernandez-Salmeron, J. & Hernandez-Leon, R. The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Span. J. Agric. Res. 15, e03R01-e11. https://doi.org/10.5424/sjar/2017151-9990 (2017).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936. https://doi.org/10.1038/ncomms7936 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Corrigendum: Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, B., Wang, H., Dsouza, M., Lou, J. & Xu, J. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10, 1891–1901 (2016).CAS 
    Article 

    Google Scholar 
    Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Melanie, K. et al. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol. Ecol. 82, 551–562 (2012).Article 

    Google Scholar 
    Zheng, H. F., Liu, Y., Chen, Y., Zhang, J. & Chen, Q. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 360, 113985. https://doi.org/10.1016/j.geoderma.2019.113985 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Finlay, B. J. & Cooper, J. L. Microbial diversity and ecosystem function. CEH Integrating Fund second progress report to the Director, Centre for Ecology and Hydrology Nov 1996–Sept (1997).Xing, X. Y. et al. Warming shapes nirS- and nosZ-type denitrifier communities and stimulates N2O emission in acidic paddy soil. Appl. Environ. Microbiol. 87, e02965-e3020. https://doi.org/10.1128/AEM.0296520 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Lin, Y. T., Whitman, W. B., Coleman, D. C., Jien, S. H. & Chiu, C. Y. Soil bacterial communities at the treeline in subtropical alpine areas. CATENA 201, 105205. https://doi.org/10.1016/j.catena.2021.105205 (2021).CAS 
    Article 

    Google Scholar 
    Wang, J. C. et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 112, 42–50 (2017).Article 

    Google Scholar 
    Chacón, J. M., Shaw, A. K. & Harcombe, W. R. Increasing growth rate slows adaptation when genotypes compete for diffusing resources. PLoS Comput. Biol. 16, e1007585. https://doi.org/10.1371/journal.pcbi.1007585 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 

    Google Scholar 
    Baath, E. Growth rates of bacterial communities in soils at varying pH: A comparison of the thymidine and leucine incorporation techniques. Microb. Ecol. 36, 316–327 (1998).CAS 
    Article 

    Google Scholar 
    Qin, H. L. et al. Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol. Fertil. Soils 56, 53–67 (2020).CAS 
    Article 

    Google Scholar 
    Chen, Z. et al. Impact of long term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60, 850–861 (2010).CAS 
    Article 

    Google Scholar 
    Wei, G. S. et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 144, 107759. https://doi.org/10.1016/j.soilbio.2020.107759 (2020).CAS 
    Article 

    Google Scholar 
    Bastian, F., Bouziri, L., Nicolardot, B. & Ranjard, A. L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009).CAS 
    Article 

    Google Scholar 
    Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book 

    Google Scholar  More