More stories

  • in

    Spatial and temporal variation in New Hampshire bat diets

    Whitaker, J. O., McCracken, G. F. & Siemers, B. M. Food habits analysis of insectivorous bats. in Ecological and Behavioral Methods for the Study of Bats. 567–592. (2011).Clare, E. L., Barber, B. R., Sweeney, B. W., Hebert, P. D. N. & Fenton, M. B. Eating local: Influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol. Ecol. 20(8), 1772–1780. https://doi.org/10.1111/j.1365-294X.2011.05040.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clare, E. L. et al. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Mol. Ecol. 23(15), 3618–3632. https://doi.org/10.1111/mec.12542 (2014).Article 
    PubMed 

    Google Scholar 
    Wray, A. K. et al. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol. Ecol. https://doi.org/10.1111/mec.15769 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agosta, S. J., Morton, D. & Kuhn, K. M. Feeding ecology of the bat Eptesicus fuscus: ‘Preferred’ prey abundance as one factor influencing prey selection and diet breadth. J. Zool. 260(2), 169–177. https://doi.org/10.1017/S0952836903003601 (2003).Article 

    Google Scholar 
    Clare, E. L., Symondson, W. O. C. & Fenton, M. B. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol. 23(15), 3633–3647. https://doi.org/10.1111/mec.12519 (2014).Article 
    PubMed 

    Google Scholar 
    O’Rourke, D. R. et al. Lord of the Diptera (and moths and a spider): Molecular diet analyses and foraging ecology of Indiana bats in Illinois. Front. Ecol. Evol. 9, 12 (2021).ADS 

    Google Scholar 
    Hope, P. R. et al. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front. Zool. 11(1), 39. https://doi.org/10.1186/1742-9994-11-39 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).Article 

    Google Scholar 
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).CAS 
    Article 

    Google Scholar 
    Barclay, R. M. R. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. J. Anim. Ecol. 60(1), 165. https://doi.org/10.2307/5452 (1991).Article 

    Google Scholar 
    Fraser, E. E. & Fenton, M. B. Age and food hardness affect food handling by insectivorous bats. Can. J. Zool. 85, 985–993 (2007).Article 

    Google Scholar 
    von Frenckell, B. & Barclay, R. M. R. Bat activity over calm and turbulent water. Can. J. Zool. 65, 219–222 (1987).Article 

    Google Scholar 
    Kaupas, L. A. & Barclay, R. M. R. Temperature-dependent consumption of spiders by little brown bats (Myotis lucifugus), but not northern long-eared bats (M. septentrionalis), in northern Canada. Can. J. Zool. 96(3), 261 (2018).Article 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Kunz, T. H. & Whitaker, J. O. An evaluation of fecal analysis for determining food habits of insectivorous bats. Can. J. Zool. 61, 1317–1321 (1983).Article 

    Google Scholar 
    Hamilton, I. M. & Barclay, R. M. R. Diets of juvenile, yearling, and adult big brown bats (Eptesicus fuscus) in Southeastern Alberta. J. Mammal. 79(3), 764. https://doi.org/10.2307/1383087 (1998).Article 

    Google Scholar 
    Moosman, P. R., Thomas, H. H. & Veilleux, J. P. Food habits of eastern small-footed bats (Myotis leibii) in New Hampshire. Am. Midl. Nat. 158(2), 354–360 (2007).Article 

    Google Scholar 
    Ober, H. K. & Hayes, J. P. Prey selection by bats in forests of Western Oregon. J. Mammal. 89(5), 1191–1200. https://doi.org/10.1644/08-MAMM-A-025.1 (2008).Article 

    Google Scholar 
    Long, B. L., Kurta, A. & Clemans, D. L. Analysis of DNA from feces to identify prey of big brown bats (Eptesicus fuscus) caught in apple orchards. Am. Midl. Nat. 170(2), 287–297 (2013).Article 

    Google Scholar 
    Gordon, R. et al. Molecular diet analysis finds an insectivorous desert bat community dominated by resource sharing despite diverse echolocation and foraging strategies. Ecol. Evol. 9, 3117–3129 (2019).Article 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: Emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323(5911), 227–227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frick, W. F. et al. Disease alters macroecological patterns of North American bats: Disease alters macroecology of bats. Glob. Ecol. Biogeogr. 24(7), 741–749. https://doi.org/10.1111/geb.12290 (2015).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Anthony, E. L. P. & Kunz, T. H. Feeding strategies of the little brown bat, Myotis lucifugus, Southern New Hampshire. Ecology 58(4), 775–786. https://doi.org/10.2307/1936213 (1977).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    Article 

    Google Scholar 
    Jusino, M. A. et al. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol. Ecol. Resour. 19, 176–190 (2019).CAS 
    Article 

    Google Scholar 
    O’Rourke, D. R., Bokulich, N. A., Jusino, M. A., MacManes, M. D., & Foster, J. T. A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecol. Evolut. https://doi.org/10.1002/ece3.6594 (2020).Langwig, K. E. et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B Biol. Sci. 372, 2160044 (2017).Article 

    Google Scholar 
    Maslo, B., Valent, M., Gumbs, J. F. & Frick, W. F. Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. Ecol. Appl. 25, 1832–1840 (2015).Article 

    Google Scholar 
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329(5992), 679–682. https://doi.org/10.1126/science.1188594 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res. News 52, 13–27 (2011).
    Google Scholar 
    Coleman, J. et al. A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats. https://s3.us-west-2.amazonaws.com/prod-is-cms-assets/wns/prod/b0634260-77d3-11e8-b37b-4f3513704a5e-white-nose_syndrome_national_plan_may_2011.pdf (2011).Szymanski, J. A., Runge, M. C., Parkin, M. J. & Armstrong, M. White-Nose Syndrome Management: Report on Structured Decision Making Initiative. Vol. 51. http://pubs.er.usgs.gov/publication/70003465 (2009).Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    Article 

    Google Scholar 
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332(6025), 41–42. https://doi.org/10.1126/science.1201366 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    Agosta, S. J. & Morton, D. Diet of the big brown bat, Eptesicus fuscus, from Pennsylvania and Western Maryland. Northeast. Nat. 10(1), 89–104 (2003).Article 

    Google Scholar 
    Brown, V. A., Braun de Torrez, E. & McCracken, G. F. Crop pests eaten by bats in organic pecan orchards. Crop Prot. 67, 66–71 (2015).Article 

    Google Scholar 
    Williams-Guillén, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a Neotropical agroforestry system. Science 320(5872), 70–70. https://doi.org/10.1126/science.1152944 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Held, D. W. & Ray, C. H. Asiatic garden beetle Maladera castanea (Coleoptera: Scarabaeidae) grubs found in damaged turf in Alabama. Fla. Entomol. 92(4), 670–672 (2009).Article 

    Google Scholar 
    Forschler, B. T. & Gardner, W. A. A review of the scientific literature on the biology and distribution of the genus Phyllophaga (Coleoptera: Scarabaeidae) in the Southeastern United States. J. Entomol. Sci. 25(4), 628–651. https://doi.org/10.18474/0749-8004-25.4.628 (1990).Article 

    Google Scholar 
    United States Forest Service. White Grubs in Forest Tree Nurseries and Plantations. Vol. 4. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_043588.pdf (1961).Chandler, D. University of New Hampshire—Entomology Collection. UNH Insect and Arachnid Collections. https://duncan.unh.edu/ento/home.php (2020).United States Forest Service. The Early Warning System for Forest Health Threads in the United States. https://www.fs.fed.us/foresthealth/publications/EWS_final_draft.pdf (2004).Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. bold: The barcode of life data system. http://www.barcodinglife.org. Mol. Ecol. Notes 7, 355–364 (2007).Robeson, M. S. et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. https://doi.org/10.1101/2020.10.05.326504 (2020).Article 

    Google Scholar 
    Chamberlain, S. BOLD: Interface to BOLD Systems API. (2017).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).Article 

    Google Scholar 
    Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ 8, e9593 (2020).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2018).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    McKinney, W. Data structures for statistical computing in Python. Proc. Python Sci. Conf. https://doi.org/10.25080/Majora-92bf1922-00a (2010).Article 

    Google Scholar 
    McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    Article 

    Google Scholar 
    Battaglia, T. btools: A Suite of R Function for All Types of Microbial Diversity Analyses. (2020).Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2017).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).Article 

    Google Scholar 
    Ogle, D. H. & Wheeler, P. FSA: Fisheries Stock Analysis. (2018).Bisanz, J. E. qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions. (2018).Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2018).Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. (2018).Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Grolemund, G., & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40(3). https://www.jstatsoft.org/index.php/jss/article/view/v040i03/v40i03.pdf (2011).Makiyama, K. magicfor: Magic Functions to Obtain Results from for Loops. (2016).Bates, D. & Maechler, M. Matrix: Sparse and Dense Matrix Classes and Methods. (2018).Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of Paired Comparisons. (2019).Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. (2017).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21(1), 1–20. https://doi.org/10.18637/jss.v021.i12 (2007).MathSciNet 
    Article 

    Google Scholar 
    Wickham, H. scales: Scale Functions for Visualization. (2018).Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article 

    Google Scholar 
    Wickham, H. et al. svglite: An ‘SVG’ Graphics Device. (2020).Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. (2017).Strochak, S., Ueyama, K. & Williams, A. urbnmapr: State and County Shapefiles in sf and Tibble Format. (2020).Bittinger, K. usedist: Distance Matrix Utilities. (2020). More

  • in

    Greater bee diversity is needed to maintain crop pollination over time

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).Article 

    Google Scholar 
    Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).Article 

    Google Scholar 
    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).Article 
    CAS 

    Google Scholar 
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).PubMed 
    Article 

    Google Scholar 
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).PubMed 
    Article 

    Google Scholar 
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).Article 

    Google Scholar 
    Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).Article 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).Article 

    Google Scholar 
    Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).Article 

    Google Scholar 
    McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).PubMed 
    Article 

    Google Scholar 
    Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).Article 

    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).PubMed 
    Article 

    Google Scholar 
    Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).Article 

    Google Scholar 
    Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).Article 

    Google Scholar 
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).PubMed 
    Article 

    Google Scholar 
    Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).Article 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).Article 

    Google Scholar 
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).PubMed 
    Article 

    Google Scholar 
    Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).PubMed 
    Article 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).
    Google Scholar 
    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).PubMed 
    Article 

    Google Scholar 
    Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).Article 

    Google Scholar 
    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).PubMed 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).Article 

    Google Scholar 
    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).PubMed 
    Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).PubMed 
    Article 

    Google Scholar 
    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).PubMed 
    Article 

    Google Scholar 
    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    The gut microbiota affects the social network of honeybees

    Wilson, E. O. Sociobiology: The New Synthesis (Harvard Univ. Press, 1975).Diamond, J. M. & Ordunio, D. Guns, Germs, and Steel (Books on Tape, 1999).Couzin, I. D. et al. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003).
    Google Scholar 
    Keller, L. Adaptation and the genetics of social behaviour. Philos. Trans. R. Soc. Lond. B 364, 3209–3216 (2009).
    Google Scholar 
    Kay, T., Keller, L. & Lehmann, L. The evolution of altruism and the serial rediscovery of the role of relatedness. Proc. Natl Acad. Sci. USA 117, 28894–28898 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).CAS 
    PubMed 

    Google Scholar 
    Johnson, K. V. A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).CAS 
    PubMed 

    Google Scholar 
    Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, M. et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. Sci. Adv. 6, eaba3760 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, W.-L. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    Schretter, C. E. Links between the gut microbiota, metabolism, and host behavior. Gut Microbes 11, 245–248 (2020).PubMed 

    Google Scholar 
    Liberti, J. & Engel, P. The gut microbiota–brain axis of insects. Curr. Opin. Insect Sci. 39, 6–13 (2020).PubMed 

    Google Scholar 
    O’Donnell, M. P., Fox, B. W., Chao, P.-H., Schroeder, F. C. & Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Harvard Univ. Press, 1971).Hölldobler, B. & Wilson, E. O. The Ants (Harvard Univ. Press, 1990).Teseo, S. et al. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim. Behav. 150, 239–254 (2019).
    Google Scholar 
    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, eabd3431 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, L. et al. Gut microbiome drives individual memory variation in bumblebees. Nat. Commun. 12, 6588 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, S. H. et al. Individual variations lead to universal and cross-species patterns of social behavior. Proc. Natl Acad. Sci. USA 117, 31754–31759 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl Acad. Sci. USA 117, 10406–10413 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).CAS 
    PubMed 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, e2003467 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).PubMed 

    Google Scholar 
    Mersch, D. P., Crespi, A. & Keller, L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340, 1090–1093 (2013).CAS 
    PubMed 

    Google Scholar 
    Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).CAS 
    PubMed 

    Google Scholar 
    Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. Lond. B 374, 20180378 (2019).
    Google Scholar 
    de Groot, A. P. Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiol. Comp. Oecol. 3, 197–285 (1953).
    Google Scholar 
    Billard, J.-M. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43, 1851–1860 (2012).CAS 
    PubMed 

    Google Scholar 
    Marcaggi, P. & Attwell, D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47, 217–225 (2004).PubMed 

    Google Scholar 
    Gage, S. L., Calle, S., Jacobson, N., Carroll, M. & DeGrandi-Hoffman, G. Pollen alters amino acid levels in the honey bee brain and this relationship changes with age and parasitic stress. Front. Neurosci. 14, 231 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kawase, T. et al. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 117, 775–783 (2017).CAS 
    PubMed 

    Google Scholar 
    Socha, E., Koba, M. & Koslinski, P. Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseases. Amino Acids 51, 367–371 (2019).CAS 
    PubMed 

    Google Scholar 
    Tarlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481–1494 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maynard, T. M. & Manzini, M. C. Balancing act: maintaining amino acid levels in the autistic brain. Neuron 93, 476–479 (2017).CAS 
    PubMed 

    Google Scholar 
    Kurochkin, I. et al. Metabolome signature of autism in the human prefrontal cortex. Commun. Biol. 2, 234 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van der Velpen, V. et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimer’s Res. Ther. 11, 93 (2019).
    Google Scholar 
    Aldana, B. I. et al. Glutamate–glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Mol. Brain 13, 125 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galizia, C. G., Eisenhardt, D. & Giurfa M. (eds) Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel (Springer Science & Business Media, 2011).Menzel, R. The honeybee as a model for understanding the basis of cognition. Nat. Rev. Neurosci. 13, 758–768 (2012).CAS 
    PubMed 

    Google Scholar 
    Ellegaard, K. M. & Engel, P. Genomic diversity landscape of the honey bee gut microbiota. Nat. Commun. 10, 446 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruno, F., Angilica, A., Cosco, F., Luchi, M. L. & Muzzupappa, M. Mixed prototyping environment with different video tracking techniques. In IMProVe 2011 International Conference on Innovative Methods in Product Design (eds Concheri, G. et al.) 105–113 (Libreria Internazionale Cortina Padova, 2011).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Anderson, K. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).CAS 
    PubMed 

    Google Scholar 
    Almasri, H., Liberti, J., Brunet, J. L., Engel, P. & Belzunces, L. P. Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci. Rep. 12, 4281 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).Gallup, J. M. in PCR Troubleshooting and Optimization: The Essential Guide (eds Kennedy, S. & Oswald, N.) 23–65 (Caister Academic Press, 2011).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
    Google Scholar 
    Patassini, S. et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem. Biophys. Res. Commun. 468, 161–166 (2015).CAS 
    PubMed 

    Google Scholar 
    Gonzalez-Riano, C., Garcia, A. & Barbas, C. Metabolomics studies in brain tissue: a review. J. Pharm. Biomed. Anal. 130, 141–168 (2016).CAS 
    PubMed 

    Google Scholar 
    Belle, J. E. L., Harris, N. G., Williams, S. R. & Bhakoo, K. K. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed. 15, 37–44 (2002).PubMed 

    Google Scholar 
    Wanichthanarak, K., Jeamsripong, S., Pornputtapong, N. & Khoomrung, S. Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data. Comput. Struct. Biotechnol. J. 17, 611–618 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 
    PubMed 

    Google Scholar 
    Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics 20, 275 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).CAS 
    PubMed 

    Google Scholar 
    Reijnders, M. J. & Waterhouse, R. M. Summary visualisations of gene ontology terms with GO-Figure! Front. Bioinform. 1, 638255 (2021).
    Google Scholar  More

  • in

    The European Green Deal misses Europe’s subterranean biodiversity hotspots

    European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions: The European Green Deal (European Commission, 2019).European Commission. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions: EU Biodiversity Strategy for 2030 (European Commission, 2020).Fan, P. et al. Proc. Natl Acad. Sci. USA 119, e2108038119 (2022).CAS 
    Article 

    Google Scholar 
    Schwarz, U. Hydropower Projects on the Balkan Rivers – Update. RiverWatch & EuroNatur; https://balkanrivers.net/sites/default/files/Hydropower%20dams%20in%20the%20Balkan230915_FINAL_EdUS.pdf (2015).Knez, S., Štrbac, S. & Podbregar, I. Energy Sustain. Soc. 12, 1 (2022).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    Zagmajster, M. et al. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. Nat. Commun. 12, 3688 (2021).CAS 
    Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Cetković, H. Front. Zool. 10, 5 (2013).Article 

    Google Scholar 
    Griebler, C. & Avramov, M. Freshw. Sci. 34, 355–367 (2015).Article 

    Google Scholar 
    Mammola, S. et al. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Jaćimović, N. et al. Vodoprivreda 47, 29–40 (2015).
    Google Scholar 
    Borko, Š., Altermatt, F., Zagmajster, M. & Fišer, C. Divers. Distrib. https://doi.org/10.1111/ddi.13500 (2022).European Commission. Evaluation of the EU Biodiversity Strategy to 2020 (European Commission, 2020); https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/1832-Evaluation-of-the-EU-Biodiversity-Strategy-to-2020_en More

  • in

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia

    Discovery and historiography of USNM PAL V 11367With basic image enhancement tools (e.g., Adobe Photoshop), we were able to better resolve the original but faded specimen label in the collections associated with USNM PAL V 11367 (Fig. 1 and Related file 1). Specifically, we were able to make the now-faded handwritten notes legible (Fig. 1A,B), revealing critical information about the specimen. The widespread availability of image enhancement for faded fieldnotes and labels provides a new source of information for uncovering legacy issues in museum collections (e.g.21,22,23), especially in cases where locality data or collecting information cannot be well resolved.Accession files with this specimen (Related file 1) show that it was gifted from Arthur M. Ames to the United States National Museum (now the National Museum of Natural History, Smithsonian Institution) on 15 October 1925, and approved by George P. Merrill, head curator of geology from 1917 to 1929. Prior to its accession to the museum, an anonymous individual identified the tooth as belonging to Desmostylus hesperus. Forty years later, on 17 November 1965, Charles A. Repenning reidentified this specimen as Paleoparadoxia sp. (Fig. 1A,B), an assertion that was incorporated into its catalog information. According to the label, USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, yet no precise information of its geological provenance was recorded. On the backside of the label, there are notes (Fig. 1B) referring to the US Geologic Survey Corona South 7.5′ quadrangle map for Riverside and Orange counties, California24. However, no geographic location, exact horizon, nor lithology was stated, and the specimen’s collector, A. M. Ames, lived in Santa Barbara, California but died on 25 August 193921,22,23.In nearly a century after its discovery, the only mention of USNM PAL V 11367 was by Panofsky25, who listed it in a catalog of desmostylian tooth specimens used as a comparative basis for a mandible restoration of the “Stanford specimen” N. repenningi. Panofsky25 identified USNM PAL V 11367 as a left m2 with six main cusps, with no additional cusps (Table 1 in25), while also stating that this specimen has “an open lake in the center of each of the seven cusps” (25: p. 103). The inconsistency of this description differs from our own, which we attribute to differences in morphological criteria or a typographic error.Geological horizon and age of USNM PAL V 11367In this paper, we refer to the “Topanga” Formation following recent studies20,26,27 of this geologic unit. This formation was originally based on a sequence of marine sandstones exposed in an anticline just west of Old Topanga Canyon in the central Santa Monica Mountains of Los Angeles County, California28. After its initial description, the name of the formation was applied to a much thicker and heterogeneous sequence of sedimentary and volcanic rocks29. Campbell et al.30 compiled the history and chronology of changes in usage of “Topanga” in the Miocene stratigraphic nomenclature in Southern California, showing that the criteria of continuous deposition and shared provenance were not demonstrated in every instance. Campbell et al.30 argued that strata assigned to the Topanga Formation in the Los Angeles Basin and eastern Ventura Basin areas are different from other units that have also been referred to the Topanga Formation in Orange County or in the Santa Monica Mountains of Los Angeles and Ventura counties. To distinguish these units, here we follow recent studies20,26,27 and use the name of “Topanga” Formation for the early to middle Miocene rocks bearing fossil marine mammals20,26,31,32,33 in Southern California.According to the collections records (Fig. 1), USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, USA. This city is in the western part of Riverside County, comprising an approximate area of 100 km234. Previously, Panofsky25 suggested that USNM PAL V 11367 would have derived from the Temblor Formation (14.8 to 15.8 Ma35), likely as a guess based on the prevalence of desmostylian teeth recovered from this unit in central California, yet today there are no Temblor Formation outcrops mapped near Corona24,36; the closest Temblor outcrops are located in Fresno and Kern counties37, approximately 200 km away.The geologic maps of Riverside County24,36,38 indicate that the city limits of Corona encompass a wide variety of sedimentary rocks from the Jurassic to the Holocene in age, but only a few marine deposits, such as the Jurassic Bedford Canyon Formation and the middle Miocene “Topanga” Formation are exposed24,39. Specifically, the marine sandstones of the “Topanga” Formation occur within the fault zone at the southeast and northwest of Corona.Outside of Riverside County, the “Topanga” Formation has yielded a diverse assemblage of fossil marine vertebrates in Southern California20,26,31, including desmostylians referred to Desmostylus hesperus and Paleoparadoxia sp. in Orange County (Supplementary 1). USNM PAL V 11367 represents the second reported fossil marine mammal from Riverside County. Previously, an isolated record of “Cetacea indet.” was mentioned from the Zanclean stage Imperial Formation40 and Supplementary Data 2), which is exposed far east of Corona’s city limits.In assessing the age of the “Topanga” Formation in Southern California, Boessenecker and Churchill26,31 argued that the land mammals (late Hemingfordian North American Land Mammal Age, represented by Aepycamelus, Copemys and Merychippus; 17.5–15.9 Ma35,41), benthic foraminifera, fossil mollusks, and K/Ar dating all placed the age range between 17.5 and 15 Ma for this geological unit41 in Orange County. More recently, Velez-Juarbe20 revised the age of “Topanga” Formation in this county to 16.5–14.5 Ma based on new foraminiferal zones presented in Ogg et al.42.We propose that USNM PAL V 11367 derives from exposures of the “Topanga” Formation in Riverside County. If this mapped unit in Riverside can be correlated with “Topanga” Formation units in Orange County, it would imply a middle Miocene age, likely 16.5–14.5 Ma20, and given the morphological similarities of this isolated tooth with more complete paleoparadoxiid material in Orange County with stronger age constraints, we think a middle Miocene age for USNM PAL V 11367 is warranted. Given the reduced distribution of outcrops of the “Topanga” Formation24,36 in Corona, we identify two potential localities for USNM PAL V 11367 (Fig. 3). These two localities are situated in urbanized areas, less than 21 km apart, in the northwest and the southeast corners of Corona’s city limits (see Fig. 3B). Both are notably less than 40 km apart from the type locality of N. cecilialina in Orange County, but we urge skepticism for a direct correlation as the marine units of Riverside County requires detailed stratigraphic revision to determine their age constraints; they likely belong to a different depositional basin than “Topanga” Formation exposures in westward Southern California counties.Morphological variation and potential diversity of PaleoparadoxiidaeOur comparisons reveal considerable morphological variation in the arrangement and number of dental cusps across Paleoparadoxiidae (Fig. 4). The cusps arrangement for the m2-3 of Archaeoparadoxia and Paleoparadoxia were previously reported by Inuzuka et al.43 (Fig. 4B), but the addition of another specimen (USNM PAL V 11367) reveals larger morphological variability than previously known for the genus Neoparadoxia (Fig. 4C). Specifically, the holotype of N. cecilialina displays slightly different configurations between its right and left m2, driven mainly by the position of the hypoconulid in occlusal view (Fig. 4C). USNM PAL V 11367, the second known Neoparadoxia m2 (or the first m3), is comparable in size and shape with the same teeth in the type specimen of N. cecilialina, especially the right m2. Both the Smithsonian and LACM specimens display a horizontal alignment of the extra cusp, the hypoconulid, and the entoconid; nevertheless, USNM PAL V 11367 shows a tighter configuration, lacking a wide internal spacing between cusps characteristic of the type specimen of N. cecilialina (Fig. 4C). Given the known ontogenetic changes that affect the dental nomenclature in desmostylians32,44, the addition of more comparative material should help discriminate between competing statements of homology45. The identification of USNM PAL V 11367 from the “Topanga” Formation of Corona represents a second diagnostic record of Neoparadoxia from three separate Middle Miocene units in Southern California, reaffirming its presence as a Middle Miocene taxon: USNM PAL V 11367 from the “Topanga” Formation of Riverside County; Neoparapdoxia (LACM 6920) from the Altamira Shale46; Neoparadoxia from the Topanga Formation of Orange County46,47; and the holotype of N. cecilialina from the lower part of Monterey Formation in the Capistrano syncline, Orange County46. It is possible that other records of Palaeoparadoxiidae from Orange County (e.g.47) and elsewhere in California may represent Neoparadoxia. For example, Awalt et al.32 noted that a palaeoparadoxiid from Orange County identified by Panofsky as Paleoparadoxia sp. (LACM 131889)25 is better referred to Paleoparadoxidae sp., pending a more detailed evaluation of this material, which differs in clear ways from N. ceciliana. One of the benefits of continued descriptive work on desmostylian material from well-constrained stratigraphic contexts in Southern California will be the biostratigraphic opportunities for cross-basin comparisons, especially for exposures of the “Topanga” Formation.Parham et al.46 emphasized that Neoparadoxia occurs widely in middle Miocene units across California: besides the aforementioned ones, Parham et al.46 noted records of this genus from the Sharktooth Hill Bonebed (LACM 120023), the Altamira Shale (LACM 6920), and the Ladera Sandstone15 (UCMP 81302). To date, Neoparadoxia is only known from California, yet it is likely that other paleoparadoxiid material tentatively assigned to other genera may expand the geographic range of this taxon. Interestingly, on the west side of the Pacific (Russia–Japan) and some parts of the east side of the Pacific (Oregon–Washington), Desmostylus spp. and paleoparadoxiids rarely co-occurred from the same formation48,49, yet there are many geological units in South California where desmostylids and paleoparadoxiids co-occurred (e.g., Santa Margarita Formation50,51, Rosarito Beach Formation52, Tortugas Formation51, and Temblor Formation3,4). The abundance of new material from the “Topanga” Formation from Orange and Riverside counties should contribute to the discussion of desmostylian environmental preferences48,53.Lastly, like other marine mammal lineages, desmostylian body sizes reached their maximum body size late in their evolutionary history54. By the middle to late Miocene, desmostylians were the largest herbivorous marine mammals along the North Pacific coastlines54, although they likely competed ecologically with co-occurring sirenians, which later eclipsed desmostylians in body size and survived until historical times in the North Pacific Ocean55. Specifically, in the “Topanga” Formation of Orange County, desmostylians co-occurred with sirenians such as Metaxytherium arctodites56, an ecological association that likely was repeated elsewhere in the mid-Miocene of California (e.g., coeval deposits of the Round Mountain Silt). Given the improving stratigraphic picture of Southern California marine mammal-bearing localities, future work on desmostylian paleoecology could test hypotheses of competition with taxonomic co-occurrence data grounded in strong comparative taphonomic and sedimentological frameworks. More

  • in

    FunAndes – A functional trait database of Andean plants

    Departamento de Biología, Escuela Politécnica Nacional del Ecuador, Ladrón de Guevara E11-253 y Andalucía, Quito, EcuadorSelene BáezBiology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, SpainLuis Cayuela & Guillermo Bañares de DiosDepartamento de Biología, Área de Botánica, Universidad Autónoma de Madrid, Madrid, Calle Darwin 2, ES–28049, Madrid, SpainManuel J. Macía, Celina Ben Saadi, Julia G. de Aledo & Laura Matas-GranadosCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Calle Darwin 2, ES–28049, Madrid, SpainManuel J. MacíaEscuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta a Distancia de Colombia, Sede José Celestino Mutis, Cl. 14 Sur 14-23, Bogotá, ColombiaEsteban Álvarez-DávilaInstituto Experimental de Biología Luis Adam Briancon, Universidad Mayor Real y Pontificia San Francisco Xavier de Chuquisaca, Dalence 235, Sucre, BoliviaAmira Apaza-QuevedoDepartamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Ecuador. San Cayetano Alto s/n. Paris y Marcelino Chamagnat, 1101608, Loja, EcuadorItziar Arnelas & Carlos Iván EspinosaDepartamento de Biología. Grupo de Biología de Páramos y Ecosistemas Andinos, Universidad de Nariño, Calle 18 # 50-02 Ciudadela Universitaria Torobajo, Pasto, ColombiaNatalia Baca-Cortes, Marian Cabrera & María Elena Solarte-CruzDepartment of Environment, CAVElab – Computational and Applied Vegetation Ecology, Ghent University, Coupure links 653, B-9000, Gent, BelgiumMarijn Bauters & Hans VerbeeckInstituto de Ecología Regional, Universidad Nacional de Tucumán, CONICET, Residencia Universitaria Horco Molle, Edificio Las Cúpulas, 4107, Tucumán, ArgentinaCecilia BlundoHerbario UIS, Escuela de Biología, Universidad Industrial de Santander, Carrera. 27, calle 9a, Bucaramanga, ColombiaFelipe CastañoHerbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, Calle 27 s/n, La Paz, BoliviaLeslie Cayola, Alfredo Fuentes, M. Isabel Loza & Carla MaldonadoCenter for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO, 63110, USALeslie Cayola, William Farfán-Rios, Alfredo Fuentes, M. Isabel Loza & J. Sebastián TelloSchool of Geography, University of Leeds, Leeds, LS2 9JT, UKBelén FadriqueLiving Earth Collaborative, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USAWilliam Farfán-RiosDepartment of Biology, University of Florida, 876 Newell Drive, ZIP 32611, Gainesville, Florida, USAClaudia Garnica-DíazInstituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28 A # 15-09, Bogotá, ColombiaMailyn González, Ana Belén Hurtado & Natalia NordenConservación Internacional, Colombia, Carrea 13 # 71-41, Bogotá, ColombiaDiego GonzálezInstitute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, D-06108, Halle, GermanyIsabell Hensen & Denis LippokEscuela de Ingeniería Agronómica, Universidad de Cuenca, Av. 12 de Abril y Av. Loja s/n, Cuenca, EcuadorOswaldo JadánGlobal Tree Conservation Program and the Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532-1293, USAM. Isabel LozaFacultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, San Salvador de Jujuy, CP 4600, Jujuy, ArgentinaLucio MaliziaDepartment of Biology, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USAJonathan A. MyersAMAP (Botanique et Modélisation de l’Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université  de Montpellier, TA-A51/PS, Boulevard de la Lironde, 34398 cedex 5, Montpellier, FranceImma Oliveras MenorEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, UKImma Oliveras Menor & Greta WeithmannPlant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, 37073, Goettingen, GermanyKerstin Pierick & Jürgen HomeierInstituto de Investigaciones para el Desarrollo Forestal (Indefor), Vía los Chorros de Milla, Mérida, VenezuelaHirma Ramírez-AnguloDepartamento de Biología, Universidad Nacional de Colombia, Cra 45 #26-85, Bogotá, ColombiaBeatriz Salgado-NegretSenckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt, GermanyMatthias SchleuningDepartment of Biology, Wake Forest University, Winston-Salem, NC, 27109, USAMiles SilmanWildlife Conservation Society (WCS), 2300 Southern Boulevard Bronx, New York, 10460, USAEmilio VilanovaFaculty of Resource Management, HAWK University of Applied Sciences and Arts, Büsgenweg 1 A, 37077, Goettingen, GermanyJürgen HomeierCentre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, GermanyJürgen HomeierL.C., J.H., M.J.M. and S.B. conceived the idea. S.B., L.C., M.J.M., J.A.M. and J.S.T. obtained funding and coordinated the L.E.C. and iDiv workshops. L.C., S.B., J.H. and K.P. compiled the data sets and performed data quality checks. L.C., S.B., J.H. and K.P. conceived and developed the figures. S.B., J.H. and L.C. wrote the manuscript. The rest of authors (ordered alphabetically) contributed data, revised and agreed on the final version of the manuscript. More

  • in

    Long term effects of crop rotation and fertilization on crop yield stability in southeast China

    Site descriptionThe field experiment was initiated in 2013 at the Yongchun County, Fujian Province, China (25°12′37″ N, 118°10′24″ E), using the two rotations of vegetables and rice (Fig. 1). The site is in the north of the Tropic of Cancer, with a typical subtropical marine monsoon climate, sufficient sunshine, and average annual solar radiation 462.26 kJ/cm2. The climate is mild and humid, with average annual temperature 16–21 °C and average annual rainfall about 1400 mm. Agricultural production allows for the cultivation of three crops annually. The soil of the test field was lateritic red soil.Figure 1Location of the field experiment site.Full size imageExperiment designThe experiment was conducted over 9 years from 2013 to 2021. Soil samples were collected before the experiment began to determine the main physical and chemical properties of the soil in the test plot, which were: organic matter content 19.96 g/kg, total nitrogen 2.25 g/kg, total phosphorus 1.31 g/kg, total potassium 27.86 g/kg, alkaline hydrolyzable nitrogen 107.73 mg/kg, available phosphorus 60.35 mg/kg, available potassium 116 mg/kg and soil pH 5.54. The test site was a rectangular field, 26 m long and 9 m wide, divided into 15 test blocks, each 5 m long and 2.8 m wide. Cement ridges were used to separate the test blocks, and irrigation drainage ditches were set outside the blocks. A protective isolation strip 1 m wide was formed around the test site. The experiment included two crop rotations: (I) rotation P–B–O: P, kidney bean (Phaseolus vulgaris L.), B, mustard (Brassica juncea L.), O, rice (Oryza sativa L.); and II) rotation P–B–V: P, kidney bean (P. vulgaris L.), B, mustard (B. juncea L.), V, cowpea (Vigna unguiculata L.). Four fertilizer treatments were selected: (1) recommended fertilization (RF) used with rotation P–B–O; (2) recommended fertilization (RF) used with P–B–V; (3) conventional fertilization (CF) used with P–B–O; (4) conventional fertilization (CF) used with P–B–V. A randomized complete block experimental design with three replications was used in the field study. The fertilization amounts used for treatments RF and CF are shown in Table 1. Under the CF, the amount of fertilizer applied to crops in each season is determined according to the years of fertilization habits of local farmers. The fertilization amount of crops in each season under the RF was calculated according to the measured basic soil fertility combined with the fertilization model of previous studies. The fertilization amount of crops in each season under the CF in this study is obtained by investigating the local farmers. The data on the fertilization amount of crops in each season under the RF is cited from the research report of Zhang et al.23. Urea (N 46%) was the nitrogen fertilizer, calcium superphosphate (P2O5 12%) was the phosphorus fertilizer, and potassium chloride (K2O 60%) was the potassium fertilizer. All phosphorus fertilizer applied to crops in each season was used as base fertilizer, and nitrogen and potassium fertilizer were applied separately as base fertilizer (40% of the total fertilization) and topdressing (60% of the total fertilization). The topdressing method was that nitrogen and potassium fertilizer for kidney bean and cowpea were applied twice, 30% of the fertilization amount each time; nitrogen and potassium fertilizer for mustard was applied three times, 20% of the fertilization amount each time; nitrogen fertilizer for rice was applied at two different growing stages, 50% of the fertilization amount at the tillering stage and 10% of the fertilization amount at the panicle stage; potassium fertilizer was applied once, using 60% of the fertilization amount. The first crop, kidney bean, was sown in early September and harvested in November. The second crop mustard, was sown in early December and harvested in February of the following year. The third crop, rice or cowpea, was sown in early April and harvested in July.Table 1 Fertilization rate of each treatment in the long term crop rotation experiment (kg/hm2).Full size tableData analysis and methodsYield stability analysis was conducted for the 9 years period using three different approaches. First, the coefficient of variation (CV) was calculated to give a measure of the temporal variability of yield for each treatment:$$CV=frac{upsigma }{Y}*100 {%}$$
    (1)
    where σ is the standard deviation of average crop yield in each year, and Y is the average crop yield in each year. A low value of CV indicates little variation, which implies that interannual difference in crop yield in the experimental plot is small and the yield is relatively stable over the years of the experimental period.A second yield stability indicator is the sustainable yield index (SYI), which is calculated by Singh et al.25:$$SYI=frac{mathrm{Y}-upsigma }{{Y}_{max}}$$
    (2)
    where Y is the average annual crop yield, σ is the standard deviation of the average annual crop yield, and YMax is the maximum annual crop yield. A high value of SYI indicates a greater capacity of the soil to sustain a particular crop yield over time.The third stability measure is Wricke’s ecovalence index (Wi2), which was calculated individually for each crop management system by Wricke26:$${Wi}^{2}={sum }_{j=1}^{q}({x}_{ij}-{{m}_{i}-{m}_{j}+m)}^{2}$$
    (3)
    where xij is the yield for treatment i in year j, mi is the yield for treatment i across all years, mj is the yield for year j across all treatments, and m is the average yield for all treatments across all years. When Wi2 is close to 0, the yield for treatment i is very stable.Analysis of crop yield trendsA simple linear regression analysis of grain yield (slopes and P values) over the years was performed to identify the yield trend (Choudhary et al.27):$$Y=a+bt$$
    (4)
    where Y is the crop yield (t/ha), a is a constant, t is the time in years, and b is the slope, or magnitude of the yield trend (annual rate of change in yield).Analysis of variance (ANOVA) was performed using MATLAB R2019b in order to compare crop yields in the long term experiment. Yield stability and univariate linear regression equations were created and statistically analyzed using the software toolbox. The coefficients of variation for yields, yield sustainability indexes, and graphs presented in this paper were calculated and drawn using MATLAB; differences were considered to be significant when P  More

  • in

    Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association

    Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V. & Fontaine, S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108, 528–545 (2020).CAS 
    Article 

    Google Scholar 
    Arft, A. M. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110-+ (2021).PubMed 
    Article 

    Google Scholar 
    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS 
    Article 

    Google Scholar 
    Shipley, B. & Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 16, 326–331 (2002).Article 

    Google Scholar 
    Eziz, A. et al. Drought effect on plant biomass allocation: a meta‐analysis. Ecol. Evolution 7, 11002–11010 (2017).Article 

    Google Scholar 
    Yan, Z. et al. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, C. et al. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. N. Phytol. 188, 187–198 (2010).Article 

    Google Scholar 
    Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).ADS 
    Article 

    Google Scholar 
    Keller, J. A. & Shea, K. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 102, e03219 (2020).PubMed 

    Google Scholar 
    Cavagnaro, R. A., Oyarzabal, M., Oesterheld, M. & Grimoldi, A. A. Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl. Sci. 60, 178–184 (2014).Article 

    Google Scholar 
    Rasheed, M. U. et al. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude field experiment. Soil Biol. Biochem. 114, 279–294 (2017).CAS 
    Article 

    Google Scholar 
    Xu, M., Liu, M., Xue, X. & Zhai, D. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. J. Arid Land 8, 773–786 (2016).Article 

    Google Scholar 
    Zhou, X., Talley, M. & Luo, Y. Biomass, litter, and soil respiration along a precipitation gradient in southern great plains, USA. Ecosystems 12, 1369–1380 (2009).CAS 
    Article 

    Google Scholar 
    Hertel, D., Strecker, T., Mueller-Haubold, H. & Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101, 1183–1200 (2013).Article 

    Google Scholar 
    Zhou, L. et al. Responses of biomass allocation to multi-factor global change: a global synthesis. Agriculture, Ecosyst. Environ. 304, 107115 (2020).CAS 
    Article 

    Google Scholar 
    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. N. Phytol. 193, 30–50 (2012).CAS 
    Article 

    Google Scholar 
    Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R. & Kaiser, C. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol. 10, 168 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).ADS 
    Article 

    Google Scholar 
    Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).PubMed 
    Article 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).PubMed 
    Article 

    Google Scholar 
    Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Vegetation Sci. 13, 378–387 (2010).
    Google Scholar 
    Johnson, N. C., Rowland, D. L., Corkidi, L. & Allen, E. B. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89, 2868–2878 (2008).PubMed 
    Article 

    Google Scholar 
    Xia, J., Yuan, W., Wang, Y. P. & Zhang, Q. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep. 7, 3341 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Litton, C. M. & Giardina, C. P. Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct. Ecol. 22, 941–954 (2008).Article 

    Google Scholar 
    Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    Hovenden, M. J. et al. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 14, 1633–1641 (2008).ADS 
    Article 

    Google Scholar 
    Olszyk, D. M. et al. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Can. J. For. Res. 33, 269–278 (2003).CAS 
    Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119-+ (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinto, R. S. & Reynolds, M. P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 128, 575–585 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS 
    Article 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, P., Huang, K. & Hu, S. Distinct fine‐root responses to precipitation changes in herbaceous and woody plants: a meta‐analysis. N. Phytol. 225, 1491–1499 (2020).Article 

    Google Scholar 
    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. N. Phytol. 193, 830–841 (2012).Article 

    Google Scholar 
    Bai, W. et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob. Change Biol. 16, 1306–1316 (2010).ADS 
    Article 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698–702 (2008).CAS 
    Article 

    Google Scholar 
    Phillips, L. A., Ward, V. & Jones, M. D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 8, 699–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez-Meler, M. A., Silva, L. B. C., Dias-De-Oliveira, E., Flower, C. E. & Martinez, C. A. Experimental air warming of a stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Front. Plant Sci. 8, 46 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A. & Newcomb, J. M. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347, 339–350 (2011).CAS 
    Article 

    Google Scholar 
    An, J. et al. Physiological and growth responses to experimental warming in first-year seedlings of deciduous tree species. Turkish J. Agriculture Forestry 41, 175–182 (2017).CAS 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, R., Li, Y., Wang, Y., Ma, J. & Cieraad, E. Variation of water use efficiency across seasons and years: Different role of herbaceous plants in desert ecosystem. Sci. Total Environ. 647, 827–835 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Duarte, A. G. & Maherali, H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8518 (2022).Bastos, A. & Fleischer, K. Fungi are key to CO2 response of soil. Nature 591, 532–534 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Peng, L. & Jin, Z. Effects of AMF inoculation on growth and photosynthetic physiological characteristics of Sinocalycanthus chinensis under conditions of simulated warming. Acta Ecologica Sin. 36, 5204–5214 (2016).CAS 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).Article 
    CAS 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159–8159 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    IPCC. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1535 (Cambridge University Press, 2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Task, G. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) (2000).Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical Software for Meta-analysis (Sinauer Associates, Incorporated, 2000).Kembel, S. W. et al. Picante: integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2018).Article 
    CAS 

    Google Scholar 
    Calcagno, V. & De, C. M. Glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).Pinheiro, J. C., Bates, D. J., Debroy, S. D. & Sakar, D. nlme: Linear and nonlinear mixed effects models. R. package version 3, 1–117 (2009).
    Google Scholar 
    Viechtbauer, W. Metafor: meta-analysis package for R. J. Stat. Softw. 2010, 1–10 (2010).
    Google Scholar 
    Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, https://doi.org/10.18637/jss.v048.i02 (2012). More