More stories

  • in

    Even a small nuclear war threatens food security

    Nuclear weapons obliterate targets. The soot ejected into the stratosphere spreads, changing global weather patterns. When weapons are especially high yielding, the resultant soot could trigger global famine.About 66 million years ago, roughly three-quarters of all species on Earth died when a 10–15-km-diameter asteroid travelling at 72,000 km h−1 struck at Chicxulub, Mexico1. Sulfates and soot lofted high in the atmosphere, cutting off sunlight. The Earth cooled, weather changed and primary productivity crashed. While the best-known victims of the asteroid impact were dinosaurs, the resultant food scarcity impacted the entire Earth; those not affected immediately by the impact eventually died from starvation. Any mechanism that can loft massive quantities of aerosols high into the atmosphere, such as massive volcanic explosions2 or nuclear wars3, can interfere with the weather globally and change world food security. More

  • in

    Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral

    Gregg T. M., Mead L., Burns J. H., Takabayashi M. Puka mai he ko ‘a: the significance of corals in Hawaiian culture. In: Ethnobiology of Corals and Coral Reefs). (Springer, 2015).Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hochachka P. W., Somero G. N. Biochemical adaptation: mechanism and process in physiological evolution. (Oxford university press, 2002).Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 
    Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).ADS 
    Article 

    Google Scholar 
    Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 159–166 (1976).
    Google Scholar 
    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).ADS 
    Article 

    Google Scholar 
    Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 1–11 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rivera, H. E. et al. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol. Ecol. 30, 1381–1397 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury C. & Lirman D. Genotype by environment interactions in coral bleaching. Proceedings of the Royal Society B: Biological Sciences 288, 20210177 (2021).Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, e0174000 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).PubMed 
    Article 

    Google Scholar 
    Eirin-Lopez J. M. & Putnam H. M. Marine environmental epigenetics. Annual review of marine science 11, 335–368 (2019).Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evolut. Appl. 9, 1165–1178 (2016).CAS 
    Article 

    Google Scholar 
    Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. 115, 13342–13346 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez‐Casariego, J. A., Cunning, R., Baker, A. C. & Eirin‐Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Meyer, E., Aglyamova, G. & Matz, M. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA‐Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, G., Abbott, E. & Matz, M. Meta‐analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumbi, S. R. Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Majerová, E., Carey, F. C., Drury, C. & Gates, R. D. Preconditioning improves bleaching tolerance in the reef‐building coral Pocillopora acuta through modulations in the programmed cell death pathways. Mol. Ecol. 30, 3560–3574 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Vidal-Dupiol, J. et al. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response. PLoS ONE 9, e107672 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).PubMed 
    Article 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. 112, 2307–2313 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    National Academies of Sciences E, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Kellett M., Hoffmann A. A., Mckechnie S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long-and short-term thermal acclimation. Proc. Natl Acad. Sci. 112, 4399–4404 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calosi, P., Bilton, D. T. & Spicer, J. I. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102 (2008).PubMed 
    Article 

    Google Scholar 
    Nyamukondiwa, C., Terblanche, J. S., Marshall, K. & Sinclair, B. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evolut. Biol. 24, 1927–1938 (2011).CAS 
    Article 

    Google Scholar 
    Bellantuono, A. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Resistance to thermal stress in corals without changes in symbiont composition. Proc. R. Soc. Lond. B: Biol. Sci. 279, 1100–1107 (2011).
    Google Scholar 
    DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs, 41, 1–11 (2022).Oliver, T. & Palumbi, S. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).ADS 
    Article 

    Google Scholar 
    Klepac, C. & Barshis, D. Reduced thermal tolerance of massive coral species in a highly variable environment. Proc. R. Soc. B 287, 20201379 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunning, R., Ritson-Williams, R. & Gates, R. D. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Coral Reefs 37, 423–430 (2018).ADS 
    Article 

    Google Scholar 
    Wall C. B., Ritson-Williams R., Popp B. N., Gates R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kane ‘ohe Bay, Hawai ‘i. Coral Reefs 10, 757–769 (2020).Article 

    Google Scholar 
    Drury, C. et al. Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Commun. Biol. 5, 1–10 (2022).Article 
    CAS 

    Google Scholar 
    Dilworth J., Caruso C., Kahkejian V. A., Baker A. C., Drury C. Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs 40, 151–163 (2020).Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. Lond. B: Biol. Sci. 284, 20171790 (2017).
    Google Scholar 
    Bertucci, A., Foret, S., Ball, E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light‐enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. Resilience in reef-building corals: the ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 00, 1–18 (2019).CAS 

    Google Scholar 
    Whitehead, A. & Crawford, D. L. Neutral and adaptive variation in gene expression. Proc. Natl Acad. Sci. 103, 5425–5430 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 1–6 (2016).
    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance? Trends Ecol. Evol. 35, 874–885 (2020).PubMed 
    Article 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Negative relationship between thermal tolerance and plasticity in tolerance emerges during experimental evolution in a widespread marine invertebrate. Evolut. Appl. 14, 2114–2123 (2021).Article 

    Google Scholar 
    Roach T.N., Dilworth J., Jones A.D., Quinn R.A., Drury C. Metabolomic signatures of coral bleaching history. Nat. Ecol. Evol. 5, 1–9 (2021).Snider, J., Thibault, G. & Houry, W. A. The AAA+ superfamily of functionally diverse proteins. Genome Biol. 9, 1–8 (2008).Article 
    CAS 

    Google Scholar 
    Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, G. A., Zhou, B., Cox, A. D. & Campbell, S. L. Rho GTPases, oxidation, and cell redox control. Small GTPases 5, e28579 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Majerová E., Drury C. A BI-1 mediated cascade improves redox homeostasis during thermal stress and prevents oxidative damage in a preconditioned reef-building coral. bioRxiv, (2021).Coleman, M. & Olson, M. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 9, 493–504 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Opalińska, M. & Jańska, H. AAA proteases: guardians of mitochondrial function and homeostasis. Cells 7, 163 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 1–14 (2020).Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. 118, 1–8 (2021).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. et al. Multi-omic characterization of the thermal stress phenome in the stony coral Montipora capitata. PeerJ 9, e12335 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shumaker, A. et al. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9, 2571 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leggat, W., Heron, S. F., Fordyce, A., Suggett, D. J. & Ainsworth, T. D. Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. J. Environ. Manag. 301, 113919 (2022).Article 

    Google Scholar 
    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PloS ONE 10, e0146021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Philip, D. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14, 927–930 (2003).Wright, R. M. et al. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. Glob. Change Biol. 25, 3294–3304 (2019).ADS 
    Article 

    Google Scholar 
    Drury C., Dilworth J., Majerová E., Caruso C., Greer J. B. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral [dataset]. Zenodo https://doi.org/10.5281/zenodo.6877825 (2022). More

  • in

    Prevalent emergence of reciprocity among cross-feeding bacteria

    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.CAS 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports. 2018;35:455–88.Article 

    Google Scholar 
    Garcia SL, Buck M, McMahon KD, Grossart H-P, Eiler A, Warnecke F. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecology. 2015;24:4449–59.CAS 
    Article 

    Google Scholar 
    Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecology. 2020;96:1–14.D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–70.Article 

    Google Scholar 
    Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci. 2014;111:17941–6.CAS 
    Article 

    Google Scholar 
    Pande S, Kost C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 2017;25:349–61.CAS 
    Article 

    Google Scholar 
    Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. Philos Trans R Soc B: Biological Sci. 2020;375:20190250.CAS 
    Article 

    Google Scholar 
    Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories. 2012;11:122.CAS 
    Article 

    Google Scholar 
    Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science. 2020;369:eaba0165.CAS 
    Article 

    Google Scholar 
    Zomorrodi AR, Segrè D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun. 2017;8:1563.Article 

    Google Scholar 
    D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genetics. 2016;12:e1006364.Article 

    Google Scholar 
    Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biology. 2021;31:5547–57.CAS 
    Article 

    Google Scholar 
    Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 2018;12:1443–56.CAS 
    Article 

    Google Scholar 
    Konstantinidis D, Pereira F, Geissen E-M, Grkovska K, Kafkia E, Jouhten P, et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol Syst Biology. 2021;17:e10189.CAS 
    Article 

    Google Scholar 
    Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci. 2018;115:12000–4.CAS 
    Article 

    Google Scholar 
    Giri S, Waschina S, Kaleta C, Kost C. Defining division of labor in microbial communities. J Mol Biol. 2019;431:4712–31.CAS 
    Article 

    Google Scholar 
    Sanchez A, Gore J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLOS Biology. 2013;11:e1001547.CAS 
    Article 

    Google Scholar 
    Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biology. 2020;30:3580–3590.e7.CAS 
    Article 

    Google Scholar 
    McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC Syst Biology. 2018;12:69.Article 

    Google Scholar 
    Estrela S, Morris JJ, Kerr B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ Microbiol. 2016;18:1415–27.Article 

    Google Scholar 
    Libby E, Hébert-Dufresne L, Hosseini S-R, Wagner A. Syntrophy emerges spontaneously in complex metabolic systems. PLOS Comput Biology. 2019;15:e1007169.Article 

    Google Scholar 
    Rabbers I, Gottstein W, Feist A, Teusink B, Bruggeman FJ, Bachmann H Selection for cell yield does not reduce overflow metabolism in E. coli. bioRxiv. 2021:2021.05.24.445453.Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Gude S, Pherribo GJ, Taga ME. Emergence of metabolite provisioning as a by-product of evolved biological functions. mSystems. 2020;5:e00259–20.CAS 
    Article 

    Google Scholar 
    Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Current Opinion in. Syst Biology. 2018;8:97–108.
    Google Scholar 
    Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genetics. 2015;31:475–82.CAS 
    Article 

    Google Scholar 
    van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.Article 

    Google Scholar 
    Shitut S, Ahsendorf T, Pande S, Egbert M, Kost C. Nanotube-mediated cross-feeding couples the metabolism of interacting bacterial cells. Environ Microbiol. 2019;21:1306–20.CAS 
    Article 

    Google Scholar 
    Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, et al. Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol. 2019;85:e00935–19.CAS 
    Article 

    Google Scholar 
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.CAS 
    Article 

    Google Scholar 
    Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M The exometabolome of two model strains of the Roseobacter group: A marketplace of microbial metabolites. Front Microbiol. 2017;8.Pinu FR, Granucci N, Daniell J, Han T-L, Carneiro S, Rocha I, et al. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics. 2018;14:43.Article 

    Google Scholar 
    Shiio I, Ôtsuka S-I, Takahashi M. Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. J Biochem. 1962;51:56–62.CAS 
    Article 

    Google Scholar 
    Konings WN, Poolman B, Driessen AJM. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992;8:93–108.CAS 
    Article 

    Google Scholar 
    Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun. 2019;10:3354.Article 

    Google Scholar 
    Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biology. 2021;17:e10064.CAS 
    Article 

    Google Scholar 
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.CAS 
    Article 

    Google Scholar 
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biology. 2006;2:2006.0008.Article 

    Google Scholar 
    Thomason LC, Costantino N, Court DL E. coli genome manipulation by P1 transduction. Curr Protocols Mol Biology. 2007;79:1.17.1-1.8.Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238.CAS 
    Article 

    Google Scholar 
    Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding expands the metabolic niche of bacteria. Nat Ecology Evolut. 2021;5:1224–32.Article 

    Google Scholar 
    Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2:443–8.CAS 
    Article 

    Google Scholar 
    Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP. Transposon Mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiology. 1987;53:410–5.CAS 
    Article 

    Google Scholar  More

  • in

    The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate

    Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bjorbækmo, M. F. M., Evenstad, A., Røsæg, L. L., Krabberød, A. K. & Logares, R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 14, 544–559 (2020).PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M., Staples, T. L. & Kiessling, W. Increased extinction in the emergence of novel ecological communities. Science 370, 220–222 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jürgens, K. & Massana, R. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (John Wiley & Sons, 2008).Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buck, K. R., Chavez, F. P. & Thomsen, H. A. Choanoflagellates of the central California waters: abundance and distribution. Ophelia 33, 179–186 (1991).Article 

    Google Scholar 
    Leadbeater, B. S. C. The Choanoflagellates: Evolution, Biology and Ecology (Cambridge Univ. Press, 2015).de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1, e00013 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl Acad. Sci. USA 113, 7894–7899 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woznica, A., Gerdt, J. P., Hulett, R. E., Clardy, J. & King, N. Mating in the closest living relatives of animals is induced by a bacterial chondroitinase. Cell 170, 1175–1183.e11 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. Lond. B 374, 20190086 (2019).CAS 
    Article 

    Google Scholar 
    Frank, N., Helge Abuldhauge, T. & Daniel, J. R. Bridging the gap between morphological species and molecular barcodes – exemplified by loricate choanoflagellates. Eur. J. Protistol. 57, 26–37 (2017).Article 

    Google Scholar 
    Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldin, C. et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).PubMed 
    Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. in Advances in Microbial Ecology (ed. Marshall, K. C.) 1–44 (Springer, 1988).Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, F., Sheyn, U., Porat, Z., Schatz, D. & Vardi, A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc. Natl Acad. Sci. USA 118, e2021586118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J 15, 41–54 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canbäck, B., Tamas, I. & Andersson, S. G. E. A phylogenomic study of endosymbiotic bacteria. Mol. Biol. Evol. 21, 1110–1122 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).Article 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 8, e46497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild. Prochlorococcus. Science 344, 416–420 (2014).CAS 
    PubMed 

    Google Scholar 
    Toft, C. & Andersson, S. G. E. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11, 465–475 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiu, J. & Luo, Z.-Q. Legionella and Coxiella effectors: strength in diversity and activity. Nat. Rev. Microbiol. 15, 591–605 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boamah, D. K., Zhou, G., Ensminger, A. W. & O’Connor, T. J. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol. 7, 477 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graf, J. S. et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 591, 445–450 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M. & Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brunet, T. et al. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326–334 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, E. E. et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925–933.e3 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801–e1007801 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Major, P., Embley, T. M. & Williams, T. A. Phylogenetic diversity of NTT nucleotide transport proteins in free-living and parasitic bacteria and eukaryotes. Genome Biol. Evol. 9, 480–487 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trentmann, O., Decker, C., Winkler, H. H. & Neuhaus, H. E. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur. J. Biochem. 267, 4098–4105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, G., Meredith, T. C. & Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 16, 779–785 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertani, B. & Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8, ESP-0001–2018 (2018).Article 

    Google Scholar 
    Russell, D. G., Vanderven, B. C., Glennie, S., Mwandumba, H. & Heyderman, R. S. The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat. Rev. Immunol. 9, 594–600 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).Article 

    Google Scholar 
    Omsland, A. & Heinzen, R. A. Life on the outside: the rescue of Coxiella burnetii from its host cell. Annu. Rev. Microbiol. 65, 111–128 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. Biol. Sci. 275, 293–299 (2008).PubMed 

    Google Scholar 
    Schulz, F. & Horn, M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. 25, 339–346 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamann, E. et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534, 254–258 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seah, B. K. B. et al. Sulfur-oxidizing symbionts without canonical genes for autotrophic CO2 fixation. mBio 10, e01112-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salonen, I. S., Chronopoulou, P.-M., Bird, C., Reichart, G.-J. & Koho, K. A. Enrichment of intracellular sulphur cycle-associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci. Rep. 9, 11692 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vallesi, A. et al. A new species of the γ-Proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an Antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb. Ecol. 77, 587–596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tashyreva, D. et al. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, R. A. & Zehr, J. P. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 73, 435–456 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, Y.-C. et al. Distribution patterns and phylogeny of marine stramenopiles in the North Pacific Ocean. Appl. Environ. Microbiol. 78, 3387–3399 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl Acad. Sci. USA 108, 1496–1500 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wylezich, C., Karpov, S. A., Mylnikov, A. P., Anderson, R. & Jürgens, K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12, 271 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, A. C. C. & Duncan, R. P. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc. Natl Acad. Sci. USA 112, 10255–10261 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, H. J. et al. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect. Immun. 75, 5575–5585 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boch, J., Bonas, U. & Lahaye, T. TAL effectors–pathogen strategies and plant resistance engineering. New Phytol. 204, 823–832 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. The genome of the amoeba symbiont ‘Candidatus Amoebophilus asiaticus’ reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192, 1045–1057 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 23080 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00662 (2020).Rose, J., Caron, D., Sieracki, M. & Poulton, N. Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquat. Microb. Ecol. 34, 263–277 (2004).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2 : high resolution sample inference from amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L. & Graf, J. Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE 9, e94249 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, F. & Zhang, C.-T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 9, 79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elbourne, L. D. H., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 45, D320–D324 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandoz, K. M. et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS ONE 11, e0149957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rekha, S. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455–5460 (2003).Article 
    CAS 

    Google Scholar 
    Bushnell, B. BBMap Short Read Aligner (Univ. California, Berkeley, 2016); http://sourceforge.net/projects/bbmapAnders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415–20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.1900v1 (2016).Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann, T. barrnap 0.9: Rapid Ribosomal RNA Prediction (2018); https://github.com/tseemann/barrnapFu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warren, D. L., Geneva, A. J. & Lanfear, R. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Mol. Biol. Evol. 34, 1016–1020 (2017).CAS 
    PubMed 

    Google Scholar 
    Bi, D. et al. SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res. 41, D660–D665 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philosof, A. & Béjà, O. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5, 475–482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boeuf, D., Audic, S., Brillet-Guéguen, L., Caron, C. & Jeanthon, C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database 2015, bav080 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Demir-Hilton, E. et al. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 5, 1095–1107 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time-series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC. Syst. Biol. 5, S15 (2011).
    Google Scholar 
    Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M. & Stahl, D. A. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Effectiveness of protected areas influenced by socio-economic context

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).CAS 
    Article 

    Google Scholar 
    IPBES Secretariat Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Bruner, A. G., Gullison, R. E., Rice, R. E. & Fonseca, G. A. Bda Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).CAS 
    Article 

    Google Scholar 
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–293 (2012).CAS 
    Article 

    Google Scholar 
    Conference of the Parties, The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets, COP-10 Decision X/2 (CBD, 2010).Protected Planet Report 2018 (UNEP-WCMC IUCN & NGS, 2018).Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).Article 

    Google Scholar 
    Joppa, L. N., Bailie, J. E. M. & Robinson, J. G. Protected Areas: Are They Safeguarding Biodiversity?. (Wiley Blackwell, 2016).Book 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).Article 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).Article 

    Google Scholar 
    Ferraro, P. J. & Pattanayak, S. K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4, 482–488 (2006).CAS 
    Article 

    Google Scholar 
    Polaina, E., González-Suárez, M. & Revilla, E. Socioeconomic correlates of global mammalian conservation status. Ecosphere 6, 1–34. (2015).Article 

    Google Scholar 
    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Philos. Trans. R. Soc. Lond. Biol. Sci. 370, 20140270 (2015).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    McGinnis, M. D. & Ostrom, E. Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19, 30 (2014).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).CAS 
    Article 

    Google Scholar 
    Palomo, I. et al. Incorporating the social-ecological approach in protected areas in the anthropocene. BioScience 64, 181–191 (2014).Article 

    Google Scholar 
    Poteete, A. R., Janssen, M. A., & Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice (Princeton Univ. Press, 2010).Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).Article 

    Google Scholar 
    Tebet, G., Trimble, M. & Pereira Medeiros, R. Using Ostrom’s principles to assess institutional dynamics of conservation: lessons from a marine protected area in Brazil. Mar. Policy 88, 174–181 (2018).Article 

    Google Scholar 
    Ban, N. C. et al. Social and ecological effectiveness of large marine protected areas. Glob. Environ. Change 43, 82–91 (2017).Article 

    Google Scholar 
    Fleischman, F. D. et al. Governing large-scale social-ecological systems: lessons from five cases. Int. J. Commons 8, 428–456 (2014).Article 

    Google Scholar 
    Faff, R., Ho, Y. K., Lin, W. & Yap, C. M. Diminishing marginal returns from R&D investment: evidence from manufacturing firms. Appl. Econ. 45, 611–622 (2013).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    Irwin, K., Mulder, L. & Simpson, B. The detrimental effects of sanctions on intragroup trust: comparing punishments and rewards. Soc. Psychol. Q. 77, 253–272 (2014).Article 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225. (2015).Article 

    Google Scholar 
    Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    Lovett, G. M. et al. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann. N. Y. Acad. Sci. 1162, 99–135 (2009).CAS 
    Article 

    Google Scholar 
    Backhaus, T., Snape, J. & Lazorchak, J. The impact of chemical pollution on biodiversity and ecosystem services: the need for an improved understanding. Integr. Environ. Assess. Manag. 8, 575–576 (2012).CAS 
    Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    CAS 

    Google Scholar 
    Calabrese, A. et al. Conservation status of Asian elephants: the influence of habitat and governance. Biodivers. Conserv. 26, 2067–2081 (2017).Article 

    Google Scholar 
    Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human–elephant conflict: a review of current management strategies and future directions. Front. Ecol. Evol. 6, 235 (2019).Article 

    Google Scholar 
    Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2014).Article 

    Google Scholar 
    Güneralp, P. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    Sherry, T.W., Johnson, M.D. & Strong, A. in Birds of Two Worlds. The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 414–425 (The John Hopkins Univ. Press, 2005).Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).CAS 
    Article 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    Article 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).Lacroix, K. & Richards, G. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom’s design principles for managing common-pool resources. Ecol. Soc. 20, 38 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Mainstreaming the social sciences in conservation. Conserv. Biol. 31, 56–66 (2017).Article 

    Google Scholar 
    Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Resasco, J. Meta-analysis on a decade of testing corridor efficacy: what new have we learned? Curr. Landsc. Ecol. Rep. 4, 61–69 (2019).Article 

    Google Scholar 
    Andrade, G. S. M. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. https://doi.org/10.5751/ES-05216-170414 (2012).Morell, V. Massive wolf kill disrupts long-running Yellowstone Park study. Science 375, 482–482 (2022).CAS 
    Article 

    Google Scholar 
    Post, G. & Geldmann, J. Exceptional responders in conservation. Conserv. Biol. 32, 576–583 (2018).Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).CAS 
    Article 

    Google Scholar 
    Ostrom, E. A general framework for analyzing sustainability of social–ecological systems. Science 325, 419–422 (2009).CAS 
    Article 

    Google Scholar 
    Kline, M. A., Waring, T. M. & Salerno, J. D. Designing cultural multilevel selection research for sustainability science. Sustainability Sci. 13, 9–19 (2017).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    The World Database on Protected Areas (WDPA) (IUCN & UNEP‐WCMC, 2018); https://www.protectedplanet.net/en/search-areas?geo_type=country&filters%5Bdb_type%5D%5B%5D=wdpaCoad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Living Planet Database (LPD) (Zoological Society of London, 2018); http://www.livingplanetindex.orgKühl, H., Williamson, L., Sanz, C. M., Morgan, D. & Boesch, C. Launch of A.P.E.S. database. Gorilla Journal 34, 20–21 (2007).
    Google Scholar 
    Koerner, S. E., Poulsen, J. R., Blanchard, E. J., Okouyi, J. & Clark, C. J. Vertebrate community composition and diversity declines along a defaunation gradient radiating from rural villages in Gabon. J. Appl. Ecol. 54, 805–814 (2017).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl Acad. Sci. U.S.A. 112, 14894–14899 (2015).CAS 
    Article 

    Google Scholar 
    Barr, D., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 1–43 (2014).
    Google Scholar 
    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).Article 

    Google Scholar 
    McElreath, R. in Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).Bürkner, P. C. (2017). brms: an R package for Bayesian multilevel models using Stan. J. Stat. Software https://doi.org/10.18637/jss.v080.i01 (2017).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).Gelman, A., Carlin, J. B. B., Stern, H. S. S. & Rubin, D. B. B. Bayesian Data Analysis (CRC Press, 2014).Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2019); www.protectedplanet.netChamberlain, S. rphylopic: Get ‘Silhouettes’ of ‘Organisms’ from ‘Phylopic’. R version 0.3.3.91 https://github.com/sckott/rphylopic (2022). More

  • in

    The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy

    Wakil SJ, Titchener EB, Gibson DM. Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta. 1958;29:225–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lardy HA, Peanasky R. Metabolic functions of biotin. Physiol Rev. 1953;33:560–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeczycki TN, Menefee AL, Adina-Zada A, Jitrapakdee S, Surinya KH, Wallace JC, et al. Novel Insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli. Biochemistry. 2011;50:9724–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waldrop GL, Holden HM, Maurice MS. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Sci Publ Protein Soc. 2012;21:1597–619.CAS 
    Article 

    Google Scholar 
    Entcheva P, Phillips DA, Streit WR. Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Appl Environ Microbiol. 2002;68:2843–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    E. Webb M, Marquet A, R. Mendel R, Rébeillé F, G. Smith A. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep. 2007;24:988–1008.Article 
    CAS 

    Google Scholar 
    Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol. 2003;61:21–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc Natl Acad Sci. 2010;107:20756–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell. 2006;5: 1175–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. The role of B vitamins in marine biogeochemistry. Annu Rev Mar Sci. 2014;6:339–67.Article 

    Google Scholar 
    Rodionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front Microbiol. 2019;10:1316.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carini P, Campbell EO, Morré J, Sañudo-Wilhelmy SA, Cameron Thrash J, Bennett SE, et al. Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea. ISME J. 2014;8:1727–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paerl RW, Sundh J, Tan D, Svenningsen SL, Hylander S, Pinhassi J, et al. Prevalent reliance of bacterioplankton on exogenous vitamin B1 and precursor availability. Proc Natl Acad Sci USA. 2018;115:E10447–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, et al. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Curr Biol. 2016;26:999–1008.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heal KR, Carlson LT, Devol AH, Armbrust EV, Moffett JW, Stahl DA, et al. Determination of four forms of vitamin B12 and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom RCM. 2014;28:2398–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wienhausen G, Dlugosch L, Jarling R, Wilkes H, Giebel H-A, Simon M. Availability of vitamin B12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. ISME J. 2022;16:2002–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, Wheeler GL, et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 2019;13:334–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-López R, Maske H, Yarimizu K, Holland NA. The B-Vitamin mutualism between the Dinoflagellate Lingulodinium polyedrum and the bacterium Dinoroseobacter shibae. Front Mar Sci. 2018;5:274.Article 

    Google Scholar 
    Blifernez-Klassen O, Klassen V, Wibberg D, Cebeci E, Henke C, Rückert C, et al. Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria ecosystems based on the biocoenosis of Botryococcus consortia. Sci Rep. 2021;11:1726.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burkholder PR, Lewis S. Some patterns of B vitamin requirements among neritic marine bacteria. Can J Microbiol. 1968;14:537–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Leonian LH, Lilly VG. Conversion of desthiobiotin into biotin or biotinlike substances by some microorganisms. J Bacteriol. 1945;3:291–7.Article 

    Google Scholar 
    Lilly VG, Leonian LH. The anti-biotin effect of desthiobiotin. Science. 1944;99:205–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmer K, Melville DB, du Vigneaud V. The possible synthesis of biotin from desthiobiotin by yeast and the anti-biotin effect of desthiobiotin for L. casei. Science. 1944;99:203–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Prakash O, Eisenberg MA. Active transport of biotin in Escherichia coli K-12. J Bacteriol. 1974;120:785–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Longnecker K, Sievert SM, Sylva SP, Seewald JS, Kujawinski EB. Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9°50′N. Org Geochem. 2018;125:41–49.CAS 
    Article 

    Google Scholar 
    Johnson WM, Soule MCK, Longnecker K, Bhatia MP, Hallam SJ, Lomas MW, et al. Insights into the controls on metabolite distributions along a latitudinal transect of the western Atlantic Ocean. 2021. bioRxiv. 2021.03.09.434501; https://doi.org/10.1101/2021.03.09.434501.Suffridge CP, Gómez‐Consarnau L, Monteverde DR, Cutter L, Arístegui J, Alvarez‐Salgado XA, et al. B vitamins and their congeners as potential drivers of microbial community composition in an oligotrophic marine ecosystem. J Geophys Res Biogeosciences. 2018;123:2890–907.CAS 
    Article 

    Google Scholar 
    Suffridge C, Cutter L, Sañudo-Wilhelmy SA. A new analytical method for direct measurement of particulate and dissolved B-vitamins and their congeners in seawater. Front Mar Sci. 2017;4:2296.Article 

    Google Scholar 
    Natarajan KV. Distribution of thiamine, biotin, and niacin in the sea. Appl Microbiol. 1968;16:366–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohwada K. Bioassay of biotin and its distribution in the sea. Mar Biol. 1972;14:10–17.CAS 
    Article 

    Google Scholar 
    Luo H, Moran MA. Evolutionary ecology of the marine roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guillard RRL, Ryther JH. Studies of marine planktonic diatoms: i. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Can J Microbiol. 1962;8:229–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol. 2005;7:961–8.PubMed 
    Article 

    Google Scholar 
    Osterholz H, Niggemann J, Giebel H-A, Simon M, Dittmar T. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat Commun. 2015;6:7422.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taga ME, Xavier KB. Methods for analysis of bacterial autoinducer-2 production. Curr Protoc Microbiol. 2011;Chapter 1:Unit1C.1.PubMed 

    Google Scholar 
    Cakić N, Kopke B, Rabus R, Wilkes H. Suspect screening and targeted analysis of acyl coenzyme A thioesters in bacterial cultures using a high-resolution tribrid mass spectrometer. Anal Bioanal Chem. 2021;413:3599–610.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13:789–804.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P. Prediction of effective genome size in metagenomic samples. Genome Biol. 2007;8:R10.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dlugosch L, Poehlein A, Wemheuer B, Pfeiffer B, Badewien TH, Daniel R, et al. Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome. Nat Commun. 2022;13:456.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mende DR, Letunic I, Huerta-Cepas J, Li SS, Forslund K, Sunagawa S, et al. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes. Nucleic Acids Res. 2017;45:D529–D534.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wildiers E. Nouvelle substance indispensable au developpement de la levure. La Cellule. 1901;18:311–33.
    Google Scholar 
    du Vigneaud V, Hofmann K, Melville DB, Rachele JR. The preparation of free crystaline biotin. J Biol Chem. 1941;140:763–6.Article 

    Google Scholar 
    Firestone BY, Koser SA. Growth promoting effect of some biotin analogues for Candida albicans. J Bacteriol. 1960;79:674–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gómez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sañudo-Wilhelmy SA, et al. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community. Environ Microbiol. 2018;20:2809–23.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carini PJ. Genome-enabled investigation of the minimal growth requirements andphosphate metabolism for Pelagibacter marine bacteria. Oregon State University 2014; dissertation: 9593v081hBertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.CAS 
    Article 

    Google Scholar 
    Azhar A, Booker G, Polyak S. Mechanisms of biotin transport. Biochem Anal Biochem. 2015,4:210.
    Google Scholar 
    Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Mechanistic basis of vitamin B12 and cobinamide salvaging by the Vibrio species. Biochim Biophys Acta BBA—Proteins Proteom. 2019;1867:140–51.CAS 
    Article 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris JJ. Black queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M. The exometabolome of two model strains of the roseobacter group: a marketplace of microbial metabolites. Front Microbiol. 2017;8:1985.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wienhausen G, Paerl RW, Bittner M. Key knowledge gaps to fill at the cell-to-ecosystem level in marine B-vitamin cycling. Front Perspect. 2022;9:835.
    Google Scholar 
    Cohen NR A, Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, et al. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. Limnol Oceanogr. 2017;62:2076–96.Article 
    CAS 

    Google Scholar 
    Marinov I, Doney SC, Lima ID. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences. 2010;7:3941–59.Article 

    Google Scholar 
    Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77.PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Accelerated marsh erosion following the Deepwater Horizon oil spill confirmed, ameliorated by planting

    We start by looking at our field erosion data, collected through 6 years post-spill (7 years total), to determine the duration of oiling effects, and to look for longer-term cleanup treatment influences. We previously observed increased erosion in our heavily oiled marsh sites for a 2-year period after the spill, the duration of our study at that time7. We also observed no major differences in erosion among oiled sites that were untreated versus those with manual cleanup treatments. In a separate but related experiment, using slightly different methods, there were indirect indications that mechanical cleanup treatments may have further worsened erosion and direct evidence that planting limited erosion in mechanically treated sites over a 1 year study period7.
    In the present study, our field-based comparisons of oiling/treatment categories included reference, oiled and untreated, oiled and manually treated, and oiled and mechanically treated sites. Untreated sites had no active cleanup (i.e., natural recovery), an approach which is commonly prescribed for oiled marshes (see Zengel et al.7 for background on the trade-offs of typical oiled marsh treatment tactics). Manual cleanup treatment involved raking, cutting, and removal of oiled wrack, oiled vegetation mats (laid over oiled and dead vegetation that was still rooted), and underlying thick oil on the substrate by small crews using hand tools, to remove surface oiling to the extent possible and to better expose remaining oil to natural weathering and degradation processes7. Hand crews used walking boards to minimize foot traffic on the marsh surface. Mechanical cleanup treatment involved mechanized grappling to remove oiled wrack and mechanized raking, cutting, and scraping to remove or reduce oiled vegetation mats and oil on the substrate. The mechanical treatments were applied using long-reach hydraulic arms mounted on shallow-draft barges and large airboats stationed just seaward of the marsh shoreline7,23. Mechanical treatment was aimed toward the same goals as manual cleanup but with anticipated increases in speed and scale; however, mechanical treatment can also be less precise, resulting in removal of soils, mixing of oil into the substrate, etc. Oiling conditions were highly consistent across all the oiled sites, characterized as heavy oiling using Shoreline Cleanup Assessment Technique (SCAT) methods7, although we agree that oiling in our sites could be considered “very heavy” as proposed by others19. Oiling conditions consisted of a continuous 6–13 meters (m) wide oiling band along the marsh shoreline, with heavily oiled wrack and vegetation mats overlying a 2–3 centimeter (cm) layer of emulsified oil on the marsh surface with ~ 90–100% oil cover7. The heavily oiled sites all experienced complete or near complete vegetation die-off, with vegetation recovery spanning multiple years7,23. Nearby reference sites on the same shoreline had lighter to no oiling, intact vegetation structure, and no cleanup treatments7. Further details on oiling conditions, cleanup treatments, and vegetation response are included in our prior papers (including photographs)7,23.Annual shoreline erosion rates were determined each year by ground surveys using tape measures and differentially corrected GPS (± 10 cm horizontal accuracy) to measure shoreline position along established transects. In the present study, we observed 147–198% greater marsh shoreline erosion for the oiled versus reference sites over 2 years (2010–2011 and 2011–2012), with no clear differences among oiled sites with or without cleanup treatments (Fig. 2, Supplementary Table S1). There was some indication that mechanical treatment may possibly have worsened erosion in some sites in 2011–2012, which matched our field observations and prior experiments7, though our sample size was small and highly variable in this case.Figure 2Field measured marsh shoreline erosion rates 2010–2016 (m yr−1). Data are means with 90% confidence intervals, n = 5 for Reference, 9 for Oiled-Untreated, 5 for Oiled-Manual, and 2–6 for Oiled-Mechanical treatments (n = 14–20 for Oiled sites combined) depending on year. Due to missing values, the desire to use as much data as possible, and the lack of clear differences among cleanup treatments, we pooled the oiled site data for statistical analysis. Marsh erosion rates differed among Reference and Oiled sites (F1,17 = 9.751, p = 0.006); among years (F2.32,39.40 = 2.703, p = 0.072); and for the interaction of oiling and year (F2.32,39.40 = 2.648, p = 0.076). Pairwise differences (Tukey’s test) among Reference and Oiled sites were observed for 2010–2011 (p = 0.003) and 2011–2012 (p = 0.001), but not for other years. See Supplementary Table S1 for detailed two-way mixed ANOVA results.Full size imagePotential causes for increased shoreline erosion in oiled marshes may lie most directly with the die-off of marsh vegetation, which baffles wave energy and binds marsh soils. Die-off of vegetation at the marsh edge was likely caused by several related factors, including thick persistent oiling covering all or most of the aboveground vegetation and soil surface, repetitive oiling, and penetration and mixing of oil into the soils, resulting in fouling and smothering effects on the plants such as interference with photosynthesis, gas exchange, thermal regulation, etc., leading to plant death. Our prior work showed substantial reductions (77–100%) in aboveground total plant cover (all species) and Spartina alterniflora cover (the dominant marsh species) in our oiled sites versus reference over 2010–2011 (and 45–99% reductions over 2011–2012)7. Belowground plant biomass was likely also reduced, although this was not measured in our study. However, belowground biomass was reduced in similarly oiled sites in studies by others5,9,14,24. Significant relationships have been established between marsh belowground biomass and soil shear strength (a measure of erosion potential)25, including in oiled marshes9, and belowground biomass is the main vegetation trait that resists erosion in coastal marshes26. Working in collaboration with us, Lin et al.9 conducted ancillary sampling in a subset of our study sites over the 2011–2012 period and provided their unpublished soil shear strength data (0–6 cm) for our use (their sampling did not include our planted sites). There was a 42% reduction in soil shear strength in the oiled sites relative to the reference sites (Fig. 3, Supplementary Table S2). Our reference site mean values are very similar to marsh soil shear strength values reported by others in our study region9,27, whereas our oiled site values are much lower. Thus, there is evidence that oiling affected both the marsh vegetation and the erodibility of the marsh soils, which likely led to the observed differences in marsh erosion between the reference and oiled sites. Oyster beds were not present near the marsh edge in our study area; thus, oyster cover impacts did not contribute to observed erosion differences between our oiled and reference sites (see Powers et al.17).Figure 3Field measured marsh soil shear strength 2011–2012 (KPa). Data are means with 90% confidence intervals, n = 4 for Reference and 13 for Oiled sites. Soil shear strength differences were observed among the Reference and Oiled sites (t6.29 = − 3.877, p = 0.007, Welch’s t-test). See Supplementary Table S2 for further details.Full size image More

  • in

    Pollinator and floral odor specificity among four synchronopatric species of Ceropegia (Apocynaceae) suggests ethological isolation that prevents reproductive interference

    Fly pollination in African and in Asian Ceropegia
    The four Ceropegia we investigated were pollinated by Diptera of two families, Chloropidae and Milichiidae, the latter represented by two genera, Milichiella and Neophyllomyza. Pollinator assemblages were significantly different between all pairs of plant species. With regard to the pollinator specialization, there are two aspects: functional specialization, i.e. interacting with a functional group of pollinators, and ecological specialization, i.e. interacting with relatively few species of pollinators. We consider the four Ceropegia species in our study as equally functionally specialized since they are pollinated by Chloropidae and Milichiidae flies, both of which are long-tongued flies and often kleptoparasites. Therefore, the way these flies interact with Ceropegia flowers may exert similar selective pressures on floral traits. Functional specialization on pollination by Diptera of only one or two families has been generally documented in Ceropegia21,22. However, ecological specialization18,19 is so far infrequent in the genus. It has been shown by Heiduk et al.24 for other species of Ceropegia from East Africa and South Africa that they are not ecologically highly specialized, because the functional group of pollinators often included several fly species. A different trend is revealed here: three of the four are ecologically specialized on pollination by only two, species-specific, pollinating fly morphospecies. Ceropegia citrina, which only relied on two fly morphospecies of the same genus, i.e., Neophyllomyza, is the most specialized. In contrast, C. boonjarasii is most generalist, being pollinated by six Chloropidae morphospecies. Each of the other two plant species, C. acicularis and C. tenuicaulis, was pollinated by two fly morphospecies of different families. In terms of the diversity of pollinator species, these two were thus more ecologically specialized than C. boojarasii, but less than C. citrina. Both Chloropidae and Milichiidae were also reported as pollinators of C. thaithongiae, another Thai endemic species33. Neophyllomyza flies were found to be pollinators of C. dolichophylla in China24,26 and visitors of C. nilotica in southern Africa21, while Milichiella flies were visitors of C. arabica var. powysii in East Africa21 and C. sandersonii in South Africa23.Large-scale studies of Ceropegia (including the stapeliads s. str.) covering the five major centers of diversity21,22, i.e., the Indian subcontinent (barring Southeast Asia), the Arabian Peninsula, East Africa, southern Africa, and West Africa, revealed flies of 16 families as pollinators. These studies also showed that the proportional use of different fly families as pollinators did not differ across all centers of diversity, thus no difference was found in this respect between Ceropegia from Africa and Asia. Moreover, in all regions, Chloropidae and Milichiidae were important pollinators. Note that the pollinator families used by Ceropegia s. str. were very different from those of the stapeliads s. str.Pollinator attraction and pollination strategyA main driving force behind floral visitation by adult Diptera, which can subsequently lead to successful pollination, is their requirement for sugar as a primary energy source, which can be obtained from floral nectar, and/or nutrients necessary for reproduction, which can be obtained from pollen35. Ceropegia flowers, however, do not offer pollen that can be consumed by flies, and are generally known to be nectarless. It has been suggested that they attract fly pollinators by deception through food source or brood site mimicry20,21,24. Nectar has thus far only been shown to be present in an African species (C. ampliata25) and a species endemic to Thailand, C. thaithongiae33. Also, a preliminary study on C. acicularis and C. tenuicaulis revealed the presence of viscous nectar in very small volume. In both species, nectar contained about 60% of fructose and 40% of glucose (unpublished data). Despite the presence of small quantities of nectar, these species can still be regarded as deceptive since they advertise another reward via scent mimicry21,22,24. As Ceropegia flowers trap flies for several hours or days, the function of nectar has been thought to be to maintain pollinators alive until they are released22,29,36. In the four Ceropegia species studied here, oviposition has not been observed; therefore, brood-site deception is unlikely.Recently, prey mimicry has been described in C. sandersonii23 and C. dolichophylla26. Both plant species were experimentally shown to be kleptomyiophilous, targeting their kleptoparasitic Desmometopa (Milichiidae) pollinators through the emission of VOCs that mimicked a particular food source for female flies. Many species of Choropidae and Milichiidae are kleptoparasites, attracted by various types of prey, frequently true bugs, killed by other arthropods. There is increasing evidence that flowers pollinated by such flies are kleptomyiophilous22,23,24,28. Typically, only females are kleptoparasitic26,37, because they require protein for egg maturation. The overwhelming majority (99%) of Diptera found in flowers of the four studied Ceropegia species were female, which is in accordance with previous findings for floral visitors of this plant group21,22. Forty percent of all major compounds identified in the four Ceropegia species are known to be released from insects, in particular by certain Hemiptera (Coreidae, Miridae, Pentatomidae). For example, (Z)-3-octen-1-yl acetate, (E)-2-octen-1-yl acetate and butyl butyrate were reported from Miridae38,39, and (E)-2-decen-1-yl acetate from Pentatomidae40. Hexyl butyrate, which was detected in the floral scents of C. citrina in a large proportion, is known to be released in prey defense secretions and responsible for the attraction of kleptoparasitic Neophyllomyza flies39,41,42,43 Hexyl acetate and 1-hexanol, the main compounds in the floral scents respectively emitted by C. tenuicaulis and C. acicularis, are known as components of the secretion of Coreidae bugs44,45. Interestingly, a species of Milichiella, the genus of flies that pollinated these two Ceropegia species, was reported to be attracted to various crushed Coreidae and Pentatomidae46. Certain VOCs have also been reported in other Ceropegia species, e.g., (E)-2-hexenyl acetate in C. sandersonii23, which is pollinated by kleptoparasitic Desmometopa flies and also visited by Milichiella flies. Aristolochia rotunda (Aristolochiaceae)28, a species with trap flowers similar to those of Ceropegia, emits volatiles similar to those of freshly killed Miridae bugs that were shown to attract its pollinating kleptoparasitic Chloropidae flies. These components included, inter alia, hexyl butyrate and octyl butyrate, which were present in C. acicularis, whose main pollinators we have also shown to be Chloropidae flies. Pollination by kleptoparasitic flies and emission of compounds also released in insect secretions support our assumption that, like other Ceropegia spp., C. acicularis, C. boonjarasii, C. citrina and C. tenuicaulis are kleptomyiophilous, and it is likely that VOCs play a major role in attracting their dipteran pollinators from a distance. In our study, a clear distinction in both the chemical profiles of VOC emissions of the four Ceropegia species and the identities of pollinating flies attracted to them suggests that each of them, if truly kleptomyiophilous, mimicks a different model. Further investigation should determine which compounds actually attract the particular pollinating flies, and which insects (models) are potentially mimicked by each species.In addition to VOCs, which appear to play a key functional role, morphological attributes, such as shape and size of floral parts, colors and patterns or other functional traits of flowers, which were very distinctive between the investigated Ceropegia species, may also affect the attractiveness of flowers. The experiments performed here on C. boonjarasii support the hypothesis that the vibratile trichomes on the corolla lobe tips play a role in attracting the fly pollinators of this species. In their natural habitats, Ceropegia generally grow close to the ground, hidden among the tall grasses or in small bushes47. It has therefore been suggested that olfactory cues are more important than visual cues in pollinator attraction20. However, in the case of the twiner C. boonjarasii, which climbs higher up in the vegetation and can present its flowers at a level up to 200 cm above the ground, the visually attractive vibratile trichomes of its flowers appear well adapted to its growth habit and the place where it grows, playing a key role in short-distance attraction, as proposed by Vogel20. Similar motile floral appendages48 are known in other Asclepiadoideae, including Stapelia spp. (Ceropegieae)49, and in plants of unrelated angiosperm families, e.g., Trichosalpinx spp. (Orchidaceae, Pleurothallidinae)50, pollinated by Diptera28,31,50.Our video recordings of flies trapped inside the flowers of C. tenuicaulis (Video 2) and C. acicularis (Video 3) are the first such recordings for Ceropegia trap flowers and showed that flies actively moved downwards to the base of the corolla inflation. This has been described by Vogel20 as positive phototaxis due to lighter-colored epidermal cells (“light windows”) around the gynostegium that direct the flies to move into contact with the reproductive organs, where they then remove pollinaria (the corpusculum being attached to the insect’s proboscis) or deposit pollinia (the guide rails take up the insertion crest of a pollinium). This uniform placement of pollinaria on different regions of insect mouthparts (e.g. rostrum, labellum or trichomes on lip pads) has been shown to be a phylogenetically conserved trait in the entire tribe Ceropegieae, which use flies, wasps, or beetles as pollinators20,21,22,29,49. In this regard, nectar (known to be present in certain species, see above) or probably minimal amounts of sugar-containing secretion contained in the cups formed by the corona appendages around the central gynostegium, may play a role in positioning the pollinators correctly.Entrapment of flies by the tubular corolla and guidance of trapped flies to the floral reproductive organs by the light windows are the important mechanisms ensuring successful pollination in Ceropegia. The circumstance observed on C. acicularis—most of whose Chloropidae pollinators moved purposefully downward into the corolla tube, but often left the flower after a short while—implies that the flower of this species is less efficient in trapping flies. Interestingly, the main pollinators of this species preferentially visited its flowers at the end of the day, when the light intensity had decreased drastically. Therefore, once flies entered the flower, whose opening at the top of the corolla tube (i.e., the fly’s exit) was already obscured by the darkness outside, their directional movement in response to light was impeded, forcing flies to stay overnight inside the flower. Whether these circumstances reflect coincidence or alternatively specialization for pollination by flies that seek overnight shelter, they seem to mitigate the effect of inefficient entrapment of flies by flowers of C. acicularis.Reproductive isolationThe four species of Ceropegia under consideration were found in the same habitat with individuals of different species occurring close to each other, and had largely overlapping flowering phenology. All species seem to share the same pollination strategy and attracted flies of only one or two families (Chloropidae and Milichiidae) with similar ecological traits. Their flowers were receptive all day long, and visits of fly pollinators, although varying according to the Ceropegia species they visited, largely overlapped. Overall, the combination of these factors might lead to pollinator sharing and, in turn, to interspecific pollinia transfer. Hereof, Meve and Liede-Schumann51 suggested that hybridization mediated by small flies was most likely responsible for morphological transitions between the taxa of Ceropegia s. str. and those of Brachystelma s. str. (recently merged into the former). Moreover, one of the authors (M. Kidyoo, unpublished data) found putative hybrids in various Ceropegia populations across Thailand. Thus, natural hybridization in the genus is known from co-occurring species. Nevertheless, in continued observations from 2014 to 2019, no putative hybrid plant individuals (i.e., with vegetative and floral morphology intermediate between the four studied species) have ever been found in Pha Taem National Park, indicating that species integrity is well maintained through efficient reproductive isolation among the four species. Whether or not post-zygotic reproductive isolation occurs, we expect pre-zygotic isolation mechanisms to have evolved because of the relatively high value of each pollinarium (only five per flower and few flowers per plant).The four species have diverged over time in particular floral traits. There are sharp floral morphological differences in shape, color patterns and other functional traits such as vibratile trichomes, which were shown to contribute to pollinator attraction in C. boonjarasii. Some similarities between the VOCs emitted by flowers of the four species suggest that the identities and proportions of compounds have changed over time due to selection exerted by different flies at this locality, which are all likely to be kleptoparasites but with different preferences for certain volatiles. Overall, specific pollinator attraction mediated by olfactory and visual floral cues—‘ethological isolation’—is a crucial pre-zygotic isolation mechanism to avoid interspecific visitation and pollinator limitation due to sharing. A contrasting case has been found in two other Ceropegia species, each native to different geographical regions, C. sandersonii from South Africa and C. dolichophylla from China. In that case, there is thus no selection pressure for divergence. In their natural habitats, each species uses different floral scent profiles to attract fly pollinators of the same genus, i.e., the kleptoparasitic Desmometopa spp. It has thus been proposed that these two Ceropegia exploit different olfactory preferences of flies of the same genus23,24,26.Pre-zygotic isolation can also be achieved through ‘mechanical isolation’17, requiring morphological fit either between flower and pollinator and/or between male (pollinium, in particular insertion crest) and female (guide rails) reproductive organs, known as a lock-and-key mechanism52, which can be achieved through various morphological adaptations. The role of floral proportions in regulating the fly sizes that can function as pollinators has been suggested in Ceropegia taxa21. It has also been highlighted in a stem-succulent, open-flowered stapeliad, Orbea lutea subsp. lutea, the head width of whose effective pollinating Atherigona (Muscidae) flies is small enough to fit and probe the cavity formed by the inner corona lobes beneath the guide rails for nectar53. In the present study, the size of the floral entrance, i.e. the smallest diameter of the corolla tube, was thought to be the first filter screening out visitors of the four Ceropegia flowers. However, no effect of corolla tube diameter on the fly sizes was detected. Each fly morphospecies that pollinates one of these four Ceropegia species was small enough to enter the tubular corolla of the other co-occurring species. Moreover, the pollinator exchange experiment performed in this study demonstrated that, in spite of distinctive corona structure (shape, size and spatial arrangement of corona lobes) between the investigated Ceropegia species, which concealed to varying extents the central floral reproductive organs, all fly morphospecies tested, including flies that were not natural pollinators (even a laboratory strain of D. melanogaster, a widespread Diptera of a family completely different from the identified pollinators), were able to remove the pollinaria, even those of C. citrina that appeared to be well hidden (Fig. 2G–I). Therefore, corona structure seems not to restrict visitors from removing the pollinaria. The fact that some removed pollinaria fell off and were found free inside the flowers shows that the pollinaria were not firmly attached to the experimental non-natural visitors. It is thus likely that their micromorphology did not fit properly that of the plant’s reproductive organs. Therefore, non-specific flies can lose pollinaria in flowers and are unlikely to be able to actually insert pollinia. Whatever the fate of the removed pollinia, they are lost from the flower if they do not reach another flower of the same species. The fact that pollinaria can be removed by flies that are not naturally attracted to and visiting flowers suggests that there is selective pressure for efficient ethological isolation. The distinct floral scents among Ceropegia species evidenced in this study might be the result of such selective pressure.
    Another aspect of mechanical isolation is the lock-and-key relation between the guide rails (lock) and pollinium (key) that has been reported from several Asclepiadoideae, e.g., Cynanchum s. l. (former Sarcostemma)54 and the stapeliads32. Other studies, however, confirmed the lack of such a precise mechanism, e.g., in Asclepias55 and Vincetoxicum s. l. (former Tylophora)52. Here, the preliminary study of morphology of pollinaria showed strong differences between the studied Ceropegia species in the shape and size of corpuscula, translator arms and pollinia, especially the insertion crest, which is the portion that is inserted as a “key” between the guide rails (the “lock”). This result is suggestive of a possible lock-and-key mechanism.Although this first study has not yet reached a full conclusion about the mechanisms enforcing the reproductive boundaries between the four Ceropegia species, it advances our understanding of how these investigated species maintain their integrity, and highlights the crucial role of ethological isolation. Other core elements of work need to be done to exactly examine the risk of interspecific pollinia transfers and hybridization. On the one hand, the morphological fit between the guide rails and pollinia has to be inspected by a detailed micromorphological study. On the other, further field experiments must be conducted to test if a pollinator of a given plant species, e.g., C. acicularis, can insert pollinia of this plant into the guide rails of any of the other three ‘wrong’ Ceropegia species (and all possible combinations thereof). A simpler experiment would test if those fly species that are attracted to more than one species (e.g., Milichiella sp. 1) are actually capable of exporting pollen to flowers of the wrong species. More