Philippa Kaur
More stories
113 Shares169 Views
in EcologyFactors determining the dorsal coloration pattern of aposematic salamanders
Dobzhansky, T. Geographical variation in lady-beetles. Am. Nat. 67, 97–126 (1933).Article
Google Scholar
Jablonski, N. G. & Chaplin, G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968 (2010).ADS
CAS
ArticleGoogle Scholar
Wallace, A. R. The colors of animals and plants. Am. Nat. 11, 641–662. https://doi.org/10.1086/271979 (1877).ArticleGoogle Scholar
Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).ArticleGoogle Scholar
Branham, M. A. & Wenzel, J. W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1–22. https://doi.org/10.1016/s0748-3007(02)00131-7 (2003).Article
PubMedGoogle Scholar
Maan, M. E. & Cummings, M. E. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62, 2334–2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x (2008).Article
PubMedGoogle Scholar
Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
Google Scholar
Ruxton, G. D., Sherratt, T. N. & Michael, P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).BookGoogle Scholar
Mappes, J., Marples, N. & Endler, J. A. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598–603 (2005).ArticleGoogle Scholar
Joron, M. & Mallet, J. L. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).CAS
ArticleGoogle Scholar
Summers, R. W. et al. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41, 513–525 (2004).ArticleGoogle Scholar
Nokelainen, O., Hegna, R. H., Reudler, J. H., Lindstedt, C. & Mappes, J. Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc. R. Soc. B Biol. Sci. 279, 257–265 (2012).ArticleGoogle Scholar
Ronka, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663. https://doi.org/10.1111/ele.13597 (2020).Article
PubMedGoogle Scholar
Abram, P. K. et al. An insect with selective control of egg coloration. Curr. Biol. 25, 2007–2011. https://doi.org/10.1016/j.cub.2015.06.010 (2015).CAS
Article
PubMedGoogle Scholar
Briolat, E. S. et al. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94, 388–414. https://doi.org/10.1111/brv.12460 (2019).Article
PubMedGoogle Scholar
Frost-Mason, S. K. & Mason, K. A. What insights into vertebrate pigmentation has the axolotl model system provided?. Int. J. Dev. Biol. 40, 685–693 (1996).CAS
PubMedGoogle Scholar
Stückler, S., Cloer, S., Hödl, W. & Preininger, D. Carotenoid intake during early life mediates ontogenetic colour shifts and dynamic colour change during adulthood. Anim. Behav. 187, 121–135. https://doi.org/10.1016/j.anbehav.2022.03.007 (2022).ArticleGoogle Scholar
Benito, M. M., Gonzalez-Solis, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549. https://doi.org/10.1007/s00360-010-0537-z (2011).CAS
Article
PubMedGoogle Scholar
Stuckert, A. M. M. et al. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 19, 15. https://doi.org/10.1186/s12862-019-1410-7 (2019).ArticleGoogle Scholar
Ohsaki, N. A common mechanism explaining the evolution of female-limited and both-sex Batesian mimicry in butterflies. J. Anim. Ecol. 74, 728–734 (2005).ArticleGoogle Scholar
Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282 (1998).ADS
ArticleGoogle Scholar
Friman, V. P., Lindstedt, C., Hiltunen, T., Laakso, J. & Mappes, J. Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4, e6761 (2009).ADS
ArticleGoogle Scholar
Rojas, B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol. Rev. 92, 1059–1080. https://doi.org/10.1111/brv.12269 (2017).Article
PubMedGoogle Scholar
Hegna, R. H., Saporito, R. A. & Donnelly, M. A. Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evol. Ecol. 27, 831–845 (2013).ArticleGoogle Scholar
Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linnean Soc. 130, 345–358 (2020).ArticleGoogle Scholar
Nielsen, M. E. & Mappes, J. Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).ArticleGoogle Scholar
Lindstedt, C., Suisto, K., Burdfield-Steel, E., Winters, A. E. & Mappes, J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav. Ecol. 31, 844–850. https://doi.org/10.1093/beheco/araa033 (2020).Article
PubMed
PubMed CentralGoogle Scholar
Freeborn, L. R. The Genetic, Cellular, and Evolutionary Basis of Skin Coloration in the Highly Polymorphic Poison Frog, Oophaga pumilio (University of Pittsburgh, 2021).
Google Scholar
Garcia, T. S., Straus, R. & Sih, A. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Can. J. Zool. 81, 710–715. https://doi.org/10.1139/z03-036 (2003).ArticleGoogle Scholar
Caspers, B. A. et al. Developmental costs of yellow colouration in fire salamanders and experiments to test the efficiency of yellow as a warning colouration. Amphibia-Reptilia 41, 373–385. https://doi.org/10.1163/15685381-bja10006 (2020).ArticleGoogle Scholar
Wells, K. D. The Ecology and Behaviour of Amphibians (The University of Chicago Press, 2007).BookGoogle Scholar
Balogova, M., Kyselova, M. & Uhrin, M. Changes in dorsal spot pattern in adult Salamandra salamandra (LINNAEUS, 1758). Herpetozoa 28, 167–171 (2016).
Google Scholar
Brejcha, J. et al. Variability of colour pattern and genetic diversity of Salamandra salamandra (Caudata: Salamandridae) in the Czech Republic. J. Vertebr. Biol. https://doi.org/10.25225/jvb.21016 (2021).ArticleGoogle Scholar
Romeo, G., Giovine, G., Ficetola, G. F. & Manenti, R. Development of the fire salamander larvae at the altitudinal limit in Lombardy (north-western Italy): effect of two cohorts occurrence on intraspecific aggression. North-West J. Zool. 11, 234–240 (2015).
Google Scholar
Manenti, R. & Ficetola, G. F. Salamanders breeding in subterranean habitats: local adaptations or behavioural plasticity?. J. Zool. 289, 182–188. https://doi.org/10.1111/j.1469-7998.2012.00976.x (2013).ArticleGoogle Scholar
Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).
Google Scholar
Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol. Ecol. 13, 1665–1677. https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).Article
PubMedGoogle Scholar
Manenti, R., Denoel, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382. https://doi.org/10.1016/j.anbehav.2013.05.028 (2013).ArticleGoogle Scholar
Fernandez-Conradi, P., Mocellin, L., Desfossez, E. & Rasmann, S. Seasonal changes in arthropod diversity patterns along an Alpine elevation gradient. Ecol. Entomol. 45(5), 1035–1043 (2020).ArticleGoogle Scholar
Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS
CAS
Article
PubMedGoogle Scholar
Ficetola, G. F., Manenti, R., De Bernardi, F. & Padoa-Schioppa, E. Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander. Ecography 35, 693–703. https://doi.org/10.1111/j.1600-0587.2011.06483.x (2012).ArticleGoogle Scholar
Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. Tetra-EU 1.0: a species-level trophic meta-web of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).ArticleGoogle Scholar
Caldonazzi, M., Nistri, A. & Tripepi, S. in Amphibia Vol. XLII (eds B. Lanza et al.) 221–227 (2007).Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).ArticleGoogle Scholar
Bernini, F. et al. Atlante degli Anfibi e dei Rettili della Lombardia (Provincia di Cremona, 2004).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569. https://doi.org/10.1111/jbi.13680 (2019).ArticleGoogle Scholar
Limongi, L., Ficetola, G. F., Romeo, G. & Manenti, R. Environmental factors determining growth of salamander larvae: a field study. Curr. Zool. 61, 421–427. https://doi.org/10.1093/czoolo/61.3.421 (2015).ArticleGoogle Scholar
Czeczuga, B. Some carotenoids in Chironomus annularius Meig. larvae (Diptera: Chironomidae). Hydrobiologia 36, 353–360. https://doi.org/10.1007/BF00039794 (1970).CAS
ArticleGoogle Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).ArticleGoogle Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).ArticleGoogle Scholar
visreg: Visualization of regression models. R package version 2.2-0. http://CRAN.R-project.org/package=visreg (2015).Preißler, K. et al. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J. Zool. 308, 293–300. https://doi.org/10.1111/jzo.12676 (2019).ArticleGoogle Scholar
Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D. & Mappes, J. Why aren’t warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol. Rev. 96, 2446–2460 (2021).ArticleGoogle Scholar
Abd El-Wakeil, K. F. Trophic structure of macro- and meso-invertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Systematics Ecol. 37, 317–324. https://doi.org/10.1016/j.bse.2009.05.008 (2009).CAS
ArticleGoogle Scholar
Frelich, L. E. et al. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235 (2012).ArticleGoogle Scholar
Umbers, K. D. L., Silla, A. J., Bailey, J. A., Shaw, A. K. & Byrne, P. G. Dietary carotenoids change the colour of Southern corroboree frogs. Biol. J. Linnean Soc. 119, 436–444. https://doi.org/10.1111/bij.12818 (2016).ArticleGoogle Scholar
Balogova, M. & Uhrin, M. Sex-biased dorsal spotted patterns in the fire salamander (Salamandra salamandra). Salamandra 51, 12–18 (2015).
Google Scholar
Arenas, L. M. & Stevens, M. Diversity in warning coloration is easily recognized by avian predators. J. Evol. Biol. 30, 1288–1302. https://doi.org/10.1111/jeb.13074 (2017).CAS
Article
PubMed
PubMed CentralGoogle Scholar
Gilby, B. L., Burfeind, D. D. & Tibbetts, I. R. Better red than dead? Potential aposematism in a harpacticoid copepod, Metis holothuriae. Mar. Environ. Res. 74, 73–76. https://doi.org/10.1016/j.marenvres.2011.12.001 (2012).CAS
Article
PubMedGoogle Scholar
Przeczek, K., Mueller, C. & Vamosi, S. M. The evolution of aposematism is accompanied by increased diversification. Integr. Zool. 3, 149–156. https://doi.org/10.1111/j.1749-4877.2008.00091.x (2008).Article
PubMedGoogle Scholar
Moore, M. P. & Martin, R. A. On the evolution of carry-over effects. J Anim. Ecol. 88, 1832–1844. https://doi.org/10.1111/1365-2656.13081 (2019).Article
PubMedGoogle Scholar
Raffaëlli, J. Les Urodeles du monde (Penclen Edition, 2007).Velo-Anton, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418. https://doi.org/10.1038/Hdy.2011.91 (2012).CAS
Article
PubMedGoogle Scholar
Rodriguez, A. et al. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol. 115, 16–26. https://doi.org/10.1016/j.ympev.2017.07.009 (2017).Article
PubMedGoogle Scholar
Speed, M. P. & Ruxton, G. D. Aposematism: what should our starting point be?. Proc. Biol. Sci. 272, 431–438. https://doi.org/10.1098/rspb.2004.2968 (2005).Article
PubMed
PubMed CentralGoogle Scholar
Tarvin, R. D., Powell, E. A., Santos, J. C., Ron, S. R. & Cannatella, D. C. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol. Phylogenet. Evol. 109, 283–295. https://doi.org/10.1016/j.ympev.2016.12.035 (2017).Article
PubMedGoogle Scholar
Jusczcyk, W. & Zakrzewski, M. External morphology of larval stages of the spotted salamander Salamandra salamandra (L.). Acta Biol. Crac. 23, 127–135. https://doi.org/10.1111/jzo.12676 (1981).ArticleGoogle Scholar More
200 Shares199 Views
in EcologyThe future of Viscum album L. in Europe will be shaped by temperature and host availability
Walas, Ł, Ganatsas, P., Iszkuło, G., Thomas, P. A. & Dering, M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS ONE 14, e0226225 (2019).PubMed
PubMed Central
ArticleGoogle Scholar
Song, Y. G. et al. Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): Integrating fossil records, niche modeling, and phylogeography for conservation. Eur. J. For. Res. 140, 1323–1339 (2021).ArticleGoogle Scholar
Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).ADS
ArticleGoogle Scholar
Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).ArticleGoogle Scholar
Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).ArticleGoogle Scholar
Watling, J. I. et al. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 309, 48–59 (2015).ADS
ArticleGoogle Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).ArticleGoogle Scholar
Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions. url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 13 July 2022.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).ArticleGoogle Scholar
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166, 221–230 (2013).ArticleGoogle Scholar
Rigling, A., Eilmann, B., Koechli, R. & Dobbertin, M. Mistletoe-induced crown degradation in Scots pine in a xeric environment. Tree Physiol. 30, 845–852 (2010).PubMed
ArticleGoogle Scholar
Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Mistletoe effects on Scots pine decline following drought events: Insights from within-tree spatial patterns, growth and carbohydrates. Tree Physiol. 32, 585–598 (2012).PubMed
ArticleGoogle Scholar
Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P. & Suckow, F. Mistletoe-induced growth reductions at the forest stand scale. Tree Physiol. 38, 735–744 (2018).PubMed
ArticleGoogle Scholar
Schulze, E. D. & Ehleringer, J. R. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162, 268–275 (1984).PubMed
ArticleGoogle Scholar
Escher, P. et al. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album L: Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana). Plant Physiol. Biochem. 46, 64–70 (2008).PubMed
ArticleGoogle Scholar
Zweifel, R., Bangerter, S., Rigling, A. & Sterck, F. J. Pine and mistletoes: How to live with a leak in the water flow and storage system?. J. Exp. Bot. 63, 2565–2578 (2012).PubMed
ArticleGoogle Scholar
Mutlu, S., Osma, E., Ilhan, V., Turkoglu, H. I. & Atici, O. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees 30, 815–824 (2016).ArticleGoogle Scholar
Tsopelas, P., Angelopoulos, A., Economou, A. & Soulioti, N. Mistletoe (Viscum album) in the fir forest of Mount Parnis Greece. For. Ecol. Manag. 202, 59–65 (2004).ArticleGoogle Scholar
Dobbertin, M. & Rigling, A. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For. Pathol. 36, 309–322 (2006).ArticleGoogle Scholar
Lech, P., Żółciak, A. & Hildebrand, R. Occurrence of European mistletoe (Viscum album L.) on forest trees in Poland and its dynamics of spread in the period 2008–2018. Forests 11, 83 (2020).ArticleGoogle Scholar
Iszkuło, G. et al. Jemioła jako zagrożenie dla zdrowotności drzewostanów iglastych. Sylwan 164, 226–236 (2020) ([In Polish]).
Google Scholar
Mellado, A., Morillas, L., Gallardo, A. & Zamora, R. Temporal dynamic of parasite-mediated linkages between the forest canopy and soil processes and the microbial community. New Phytol. 211, 1382–1392 (2016).PubMed
ArticleGoogle Scholar
Mellado, A. & Zamora, R. Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia 176, 139–147 (2014).ADS
PubMed
ArticleGoogle Scholar
Hódar, J. A., Lázaro-González, A. & Zamora, R. Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Ann. For. Sci. 75, 1–8 (2018).ArticleGoogle Scholar
Zuber, D. Biological flora of Central Europe: Viscum album L. Flora Morphol. Distrib Funct. Ecol. Plants 199, 181–203 (2004).ArticleGoogle Scholar
Urech, K. & Baumgartner, S. Chemical constituents of Viscum album L.: Implications for the pharmaceutical preparation of mistletoe. In: Mistletoe: From mythology to evidence-based medicine. (eds. Zänker, K.S. & Kaveri, S. V.), 11–23. (S. Karger AG, Basel, Switzerland, 2015).Singh, B. N. et al. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 6, 23837–23857 (2016).ADS
ArticleGoogle Scholar
Jeffree, C. E. & Jeffree, E. P. Redistribution of the potential geographical ranges of mistletoe and colorado beetle in Europe in response to the temperature component of climate change. Funct. Ecol. 10, 562–577 (1996).ArticleGoogle Scholar
Troels-Smith, J. Ivy, mistletoe and elm climate indicators-fodder plants. A contribution to the interpretation of the pollen zone border VII-VIII. Dan. Geol. Undersøg. IV Række 4, 1–32 (1960).
Google Scholar
Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming?. Int. J. Biometeorol. 50, 40–47 (2005).ADS
PubMed
ArticleGoogle Scholar
Zamora, R. & Mellado, A. Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biol. 21, 307–317 (2019).PubMed
ArticleGoogle Scholar
Barney, C. W., Hawksworth, F. G. & Geils, B. W. Hosts of Viscum album. Eur. J. Plant Pathol. 28, 187–208 (1998).
Google Scholar
Böhling, N. et al. Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae). Isr. J. Plant Sci. 50, 77–84 (2002).
Google Scholar
Plants of the World Online [Internet] url: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:921668-1. Accessed 13 July 2022.Zuber, D. & Widmer, A. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol. Ecol. 18, 1946–1962 (2009).PubMed
ArticleGoogle Scholar
Schaller, G., Urech, K., Grazi, G. & Giannattasio, M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med 64, 677–678 (1998).PubMed
ArticleGoogle Scholar
Kahle-Zuber, D. Biology and evolution of the European mistletoe (Viscum album). Doctoral Thesis. ETH Zurich. (2008).Zuber, D. & Widmer, A. Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae). Mol. Ecol. 9, 1069–1073 (2000).PubMed
ArticleGoogle Scholar
Mejnartowicz, L. Relationship and genetic diversity of mistletoe [Viscum album L.] subspecies. Acta Soc. Bot. Pol. Pol. 75, 39–49 (2006).ArticleGoogle Scholar
Xie, W., Adolf, J. & Melzig, M. F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 12, e0187776 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
Valle, A. C. V., de Carvalho, A. C. & Andrade, R. V. Viscum album-literature review. Int. J. Sci. Res 10, 63–71 (2021).
Google Scholar
Schröder, L. et al. The gene space of European mistletoe (Viscum album). Plant J. 109, 278–294 (2022).PubMed
ArticleGoogle Scholar
Sangüesa-Barreda, G. et al. Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. J. Ecol. 106, 2218–2229 (2018).ArticleGoogle Scholar
GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.zw6f5q. Accessed 27 July 2021.GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.6wmc9d. Accessed 6 August 2021.FloraWeb [Internet] url: https://www.floraweb.de. Accessed 10 December 2021.Pladias – Database of the Czech Flora and Vegetation. [Internet] url: www.pladias.cz. Accessed 14 July 2022.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce. 593 (Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków, 2001) [In Polish].Idžojtić, M., Kogelnik, M., Franjić, J. & Škvorc, Ž. Hosts and distribution of Viscum album L. ssp. album in Croatia and Slovenia. Plant Biosyst. 140, 50–55 (2006).ArticleGoogle Scholar
Varga, I. et al. Changes in the Distribution of European Mistletoe (Viscum album) in Hungary During the Last Hundred Years. Folia Geobot 49, 559–577 (2014).ArticleGoogle Scholar
Wild, J. et al. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia 91, 1–24 (2019).ArticleGoogle Scholar
Krasylenko, Y. et al. The European mistletoe (Viscum album L.): Distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine. Botany 98, 499–516 (2020).ArticleGoogle Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
Karger D. N., et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository (2018).Gutjahr, O. et al. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).ADS
ArticleGoogle Scholar
Hijmans, R. J., & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. (2012).R Core Team. The Comprehensive R Archive Network. [Internet] url: https://cran.r-project.org/ Accessed 14 July 2022.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with European tree species distribution models under climate change (Version v1). Zenodo https://doi.org/10.5281/zenodo.3686918 (2020).Wang, Z., Chang, Y. I., Ying, Z., Zhu, L. & Yang, Y. A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics 23, 2788–2794 (2007).PubMed
ArticleGoogle Scholar
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).ArticleGoogle Scholar
QGIS Development Team. QGIS Geographic Information Sys-tem. Open Source Geospatial Foundation Project. [Internet]. url: https://www.qgis.org/en/site/. Accessed 14 July 2022.Fischer, J. T. Water relations of mistletoes and their hosts. In: The biology of mistletoes. (eds. Calder, M., & Bernhard, T.), 163–184 (Academic Press, Sydney, 1983).Skre, O. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. Norweg. J. Bot. 26, 295–318 (1979).
Google Scholar
Wangerin, B. Loranthaceae. In: Lebensgeschichte der Blütenpflanzen Mitteleuropas (eds. Kirchner, O. V., Loew, E., & Schroeter, C.) 2, 953–1146 (E. Ulmer, Stuttgart, 1937).Rybalka, I. A. Relationship between density of the white mistletoe (Viscum album L.) and some landscape and environmental characteristics of urban areas in the case of Kharkiv. Ekologicheskiy Vestnik 1, 87–97 (2017).
Google Scholar
Patykowski, J. & Kołodziejek, J. Comparative analysis of antioxidant activity in leaves of different hosts infected by mistletoe (Viscum album L. subsp. album). Arch. Biol. Sci. 65, 851–861 (2013).ArticleGoogle Scholar
Skrypnik, L., Maslennikov, P., Feduraev, P., Pungin, A. & Belov, N. Ecological and landscape factors affecting the spread of European mistletoe (Viscum album L.) in urban areas (A Case Study of the Kaliningrad City, Russia). Plants 9, 394 (2020).PubMed Central
ArticleGoogle Scholar
Kunick, W. Veränderungen von Flora und Vegetation einer Grosstadt dargestellt am Beispiel von Berlin (West). PhD Thesis, Technische Universität (1974). [In German].Kołodziejek, J., Patykowski, J. & Kołodziejek, R. Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz Poland. Biol. 68, 55–64 (2013).
Google Scholar
Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691, 4–9 (2012).
Google Scholar
Luther, P., Becker, H. & Leroi, R. Die Mistel: Botanik, Lektine, medizinische Anwendung. Springer (1987).Gazol, A. et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42, 1150–1162 (2015).ArticleGoogle Scholar
Tikkanen, O. P. et al. Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. For. Ecol. Manag. 482, 118806 (2021).ArticleGoogle Scholar
Pilichowski, S. et al. Wpływ Viscum album ssp. austriacum (Wiesb.) Vollm. na przyrost radialny Pinus sylvestris L. Sylwan 162, 452–459 (2018) ([In Polish]).
Google Scholar
Szmidla, H., Tkaczyk, M., Plewa, R., Tarwacki, G. & Sierota, Z. Impact of common mistletoe (Viscum album L.) on scots pine forests—A call for action. Forests 10, 847 (2019).ArticleGoogle Scholar
Wójcik, R. & Kędziora, W. Abundance of Viscum in central Poland: Results from a large-scale mistletoe inventory. Environ. Sci. Proc. 3, 98 (2020).
Google Scholar
Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Drought and mistletoe reduce growth and water-use efficiency of Scots pine. For. Ecol. Manag. 296, 64–73 (2013).ArticleGoogle Scholar
Mathiasen, R. L., Nickrent, D. L., Shaw, D. C. & Watson, D. M. Mistletoes: Pathology, systematics, ecology, and management. Plant Dis. 92, 988–1006 (2008).PubMed
ArticleGoogle Scholar
Catal, Y. & Carus, S. Effect of pine mistletoe on radial growth of crimean pine (Pinus nigra) in Turkey. J. Environ. Biol. 32, 263 (2011).PubMedGoogle Scholar
Skre, O. High temperature demands for growth and development in Norway Spruce [Picea abies (L.) Karst.] in Scandinavia. Meld Nor Landbrukshøgsk 51, 1–29 (1971).
Google Scholar
Utaaker, K. A temperature-growth index—the respiration equivalent—used in climatic studies on the meso-scale in Norway. Agric. Meteorol. 5, 351–359 (1968).ArticleGoogle Scholar
Iversen, J. Viscum, Hedera and Ilex as climate indicators: A contribution to the study of the post-glacial temperature climate. Geol. fören. Stockh. förh. 66, 463–483 (1944).ArticleGoogle Scholar
Briggs, J. Mistletoe, Viscum album (Santalaceae), in Britain and Ireland; a discussion and review of current status and trends. Brit. Ir. Bot. 3, 419–454 (2021).
Google Scholar More213 Shares139 Views
in EcologyProtecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678 (2011).ADS
CAS
Article
PubMedGoogle Scholar
Ceballos, G. et al. Accelerated human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, 5. https://doi.org/10.1126/sciadv.1400253 (2015).ArticleGoogle Scholar
Purvis, A. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Nature https://doi.org/10.5281/zenodo.5517457.svg (2019).Balvernara, P. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Drivers. Change https://doi.org/10.5281/zenodo.5517423 (2019).Carrol, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 35, 155–167. https://doi.org/10.1111/cobi.13531 (2020).ArticleGoogle Scholar
Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geog. 65, 152–165. https://doi.org/10.1111/cag.12635 (2020).ArticleGoogle Scholar
Convention on Biological Diversity. Aichi Target 11, Convention on Biological Diversity. https://www.cbd.int/aichi-targets/target/11. Accessed 14 May 2021.United Nations. Climate Change Pathways. https://unfccc.int/climate-action/marrakech-partnership/reporting-and-tracking/climate_action_pathways. Accessed 12 Sept 2022.Government of Canada. Canada’s nature legacy: Protecting our nature conservation/nature-legacy.html (2021).Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: A science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562. https://doi.org/10.1139/facets-2017-0102 (2017).ArticleGoogle Scholar
De Barros, A. E. et al. Identification of areas in Brazil that optimize areas that optimize conservation of forest carbon, Jaguars and Biodiversity. Conserv. Biol. 28, 580–593. https://doi.org/10.1111/cobi.12202 (2013).Article
PubMedGoogle Scholar
Jantz, P., Scott, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142. https://doi.org/10.1038/nclimate2105 (2014).ADS
CAS
ArticleGoogle Scholar
Beaudrot, L. et al. Limited carbon and biodiversity co-benefits for tropical mammals and birds. Ecol. Appl. 26, 10998–11111. https://doi.org/10.1890/15-0935 (2016).ArticleGoogle Scholar
Morelli, T. L. et al. Climate-change refugia: Biodiversity in a slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).Article
PubMed
PubMed CentralGoogle Scholar
Stralberg, et al. Macrorefugia for North American trees ad songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703. https://doi.org/10.1111/geb.12731 (2018).ArticleGoogle Scholar
Caroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang Biol. 27, 3395–3414. https://doi.org/10.1111/gcb.15645 (2020).ArticleGoogle Scholar
Bradshaw, C. J., Warkentin, I. G. & Sodhi, N. S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24, 541–548. https://doi.org/10.1016/j.tree.2009.03.019 (2009).Article
PubMedGoogle Scholar
Harris, L. I. et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 20, 222–230 (2022).ArticleGoogle Scholar
Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Canada’s conserved areas. environmental-indicators/conserved-areas.html (2020).Office of the Auditor General of Canada. Lessen learnt from 30 years of climate change challenges and opportunities. https://www.oag-bvg.gc.ca/internet/English/att__e_43948.html#hd3l (2020).Shea, T. et al. Canada’s Conservation Vision: A report of the National Advisory Panel. Government of Canada, 43 pp (2018).Environment and Climate Change Canada. Pan-Canadian Approach to transforming species at risk conservation in Canada. species-at-risk-conservation.html (2018).Bergerund, A. T. Caribou, wolves and man. Trends Ecol. Evol. 3, 68–72. https://doi.org/10.1016/0169-5347(88)90019-5 (1988).ArticleGoogle Scholar
Vernier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).ArticleGoogle Scholar
Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Slegers, S. M. The state of conservation in North America’s Borel Forest: Issues and opportunities. Front. For. Glob. Change 3, 90. https://doi.org/10.3389/ffgc.2020.00090/full (2020).ArticleGoogle Scholar
COSEWIC. COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 98 pp. (2002).COSEWIC. COSEWIC assessment and status report on the caribou Rangifer tarandus, Newfoundland population, Atlantic-Gaspésie population and Boreal population, in Canada. Committee on the Status of Endangered Wildlifein Canada. Ottawa. xxiii + 128 pp. (2014).Environment and Climate Change Canada. Amended Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. xiii + 143pp. (2020).Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer tarandus caribou), Boreal population in Canada for the Period 2012–2017. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. ix + 94 (2017).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Conserv. 206, 102–111. https://doi.org/10.1016/j.biocon.2016 (2017).ArticleGoogle Scholar
Fortin, D., McLoughlin, P. D. & Hebblewhite, M. When the protection of a threatened species depends on the economy of a foreign nation. PLoS ONE 15, e0229555. https://doi.org/10.1371/journal.pone.0229555 (2020).CAS
Article
PubMed
PubMed CentralGoogle Scholar
Drever, R. C. et al. Conservation through co-occurrence: Woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252. https://doi.org/10.1016/j.biocon.2019.01.026 (2019).ArticleGoogle Scholar
Government of Canada. Pan-Canadian Framework on clean growth and climate change climatechange/pan-canadian-framework.html.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet Chang 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004 (2015).ADS
ArticleGoogle Scholar
Jennings, M. D. Gap analysis: Concept, methods, recent results. Land Ecol. 5, 15–20 (2010).
Google Scholar
Environment and Climate Change Canada. Canadian Protected and Conserved Areas database. national-wildlife-areas/protected-conserved-areas-database (2019).DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution function and modelling. Forestry 85, 161–184. https://doi.org/10.1093/forestry/cps003 (2012).ArticleGoogle Scholar
Price, et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365. https://doi.org/10.1139/er-2013-0042 (2013).ArticleGoogle Scholar
Southee, F. M., Edwards, B. A., Chetkiewicz, C. B. & O’Connor, C. M. Freshwater conservation planning in the far north of Ontario, Canada: Identifying priority watersheds for conservation of fish biodiversity in an intact boreal landscape. Facets 6, 90–117. https://doi.org/10.1139/facets-2020-0015 (2021).ArticleGoogle Scholar
Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS
CAS
ArticleGoogle Scholar
Labadie, G. P. D., McLoughlin, M. H. & Fortin, D. Insect-mediated apparent competition between mammals in a boreal food web. Proc. Natl. Acad. Sci. U S A. 118, e2022892118. https://doi.org/10.1073/pnas.2022892118 (2021).CAS
Article
PubMed
PubMed CentralGoogle Scholar
Cameron, V. & Hargreaves, A. L. Spatial distribution and conservation hotspots of mammals in Canada. Facets 5, 692–703. https://doi.org/10.1139/facets-2020-0018 (2020).ArticleGoogle Scholar
Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2016).ADS
ArticleGoogle Scholar
Anielski, M. & Wilson, S. Counting Canada’s natural capital: Assessing the real value of Canada’s boreal ecosystems. Ottawa, On: Canadian Boreal Initiative and Pembina Institute counting-canadas-natural-capital (2009).Kumaraswamy, S. & Udyakumar, M. Biodiversity banking: A strategic conservation mechanism. Biodiver. Conserv. 20, 1155–1165. https://doi.org/10.1007/s10531-011-0020-5 (2011).ArticleGoogle Scholar
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).ArticleGoogle Scholar
Godden, L. & Cowell, S. Conservation planning and Indigenous governance in Australia’s Indigenous Protected Areas. Restor. Ecol. 24, 692–697. https://doi.org/10.1111/rec.12394 (2016).ArticleGoogle Scholar
Greg Brown, B. & Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecol. Ser. 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007 (2021).ArticleGoogle Scholar
Martin, A. E., Neave, E., Kirby, P., Drever, C. R. & Johnson, C. A. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Sci. Rep. 12, 11895. https://doi.org/10.1038/s41598-022-15274-8 (2022).ADS
CAS
Article
PubMed
PubMed CentralGoogle Scholar
COSEWIC. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada (2018).Alberta Environment and Parks and Alberta Conservation Association. Status of the Arctic Grayling (Thymallus arcticus) in Alberta: Update 2015. Alberta Environment and Parks. Alberta Wildlife Status Report No. 57 (Update 2015). Edmonton, AB. 96 pp. (2015).Environment and Climate Change Canada (ECCC). 2016. Range map extents, species at risk, Canada. Government of Canada. Open Government Dataset. https://open.canada.ca/data/en/dataset/d00f8e8c-40c4-435a-b790-980339ce3121.Magurran, A. E. Measuring Biological Diversity 256 (Blackwell Publishing, 2004).
Google Scholar
Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C. G. & Hargreaves, A. L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732 (2020).ArticleGoogle Scholar
Gaston, K. J. Rarity 201 (Chapman & Hall, 1994).BookGoogle Scholar
Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo. https://doi.org/10.5281/zenodo.2579337 (2019).Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853. https://doi.org/10.1038/nclimate2392 (2014).ADS
CAS
ArticleGoogle Scholar
Chen, I., Hill, J. K., Ohlemüller, R. D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS
CAS
Article
PubMedGoogle Scholar
Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).ArticleGoogle Scholar
Iverson, L. R., Schwartz, M. W. & Prasad, A. M. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 13, 209–219 (2004).ArticleGoogle Scholar
McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).ArticleGoogle Scholar
Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301. https://doi.org/10.1111/gcb.13622 (2017).ADS
ArticleGoogle Scholar
Ping, C. L. et al. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci. Soc. Am. J. 74, 969–978. https://doi.org/10.2136/sssaj2009.0152 (2010).ADS
CAS
ArticleGoogle Scholar
Hengl, T. et al. SoilGrids250m: Global soil information based on machine learning. PLoS ONE 12, e0169748 (2017).ArticleGoogle Scholar
Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 29, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).ArticleGoogle Scholar
Chung, N. C., Miasojedow, B., Startek, M. & Gambin A. Jaccard: Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients. R package version 0.1.0. https://CRAN.R-project.org/package=jaccard (2018). More75 Shares119 Views
in EcologyGlobal hotspots for soil nature conservation
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS
CAS
PubMed
ArticleGoogle Scholar
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS
CAS
PubMed
ArticleGoogle Scholar
Wall, D. H. et al. (eds) Soil Ecology and Ecosystem Services (Oxford University Press, 2012).Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS
PubMed
ArticleGoogle Scholar
de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—a global review. Geoderma 262, 101–111 (2016).ADS
CAS
ArticleGoogle Scholar
Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).ArticleGoogle Scholar
Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. 10, 550–554 (2020).ADS
ArticleGoogle Scholar
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Guerra, C. A. et al. Global vulnerability of soil ecosystems to erosion. Landsc. Ecol. 35, 823–842 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS
PubMed
ArticleGoogle Scholar
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).PubMed
ArticleGoogle Scholar
Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).PubMed
ArticleGoogle Scholar
Díaz, S. et al. (eds). Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019); https://zenodo.org/record/3553579#.YyhIsXbMK70Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).ADS
PubMed
ArticleGoogle Scholar
Delgado-baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 320–325 (2018).ADS
ArticleGoogle Scholar
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed
ArticleGoogle Scholar
Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: global soil microbial biomass C, N and P. Glob. Ecol. Biogeogr. 22, 737–749 (2013).ArticleGoogle Scholar
Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed
ArticleGoogle Scholar
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed
ArticleGoogle Scholar
El Moujahid, L. et al. Effect of plant diversity on the diversity of soil organic compounds. PLoS One 12, e0170494 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).ArticleGoogle Scholar
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).ADS
CAS
PubMed
ArticleGoogle Scholar
Egoh, B., Reyers, B., Rouget, M., Bode, M. & Richardson, D. M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 142, 553–562 (2009).ArticleGoogle Scholar
Jürgens, N. et al. The BIOTA Biodiversity Observatories in Africa—a standardized framework for large-scale environmental monitoring. Environ. Monit. Assess. 184, 655–678 (2012).PubMed
ArticleGoogle Scholar
Wyborn, C. & Evans, M. C. Conservation needs to break free from global priority mapping. Nat. Ecol. Evol. 5, 1322–1324 (2021).PubMed
ArticleGoogle Scholar
Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed
ArticleGoogle Scholar
Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Eisenhauer, N., Schulz, W., Scheu, S. & Jousset, A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct. Ecol. 27, 282–288 (2013).ArticleGoogle Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Haines-Young, R. H. & Potschin, M. B. in Ecosystems Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) Ch. 6 (2012).Smith, L. C. et al. Large‐scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).ArticleGoogle Scholar
Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).ADS
CAS
PubMed
ArticleGoogle Scholar
Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, 2000146 (2021).CAS
ArticleGoogle Scholar
Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Chang. 3, 1055–1061 (2013).ADS
ArticleGoogle Scholar
Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).ArticleGoogle Scholar
Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Chang. Biol. 23, 5331–5343 (2017).ADS
PubMed
ArticleGoogle Scholar
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).ArticleGoogle Scholar
Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).ADS
CAS
PubMed
ArticleGoogle Scholar
Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 376, 1094–1101 (2022).ADS
CAS
PubMed
ArticleGoogle Scholar
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA. 116, 6891–6896 (2019).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).ADS
CAS
PubMed
ArticleGoogle Scholar
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4, e6372 (2009).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS
PubMed
ArticleGoogle Scholar
Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 20141988 (2014).PubMed
PubMed CentralGoogle Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
PubMed
ArticleGoogle Scholar
Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).CAS
PubMed
ArticleGoogle Scholar
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at bioRxiv https://doi.org/10.1101/081257 (2016).Tedersoo, L. et al. Towards understanding diversity, endemicity and global change vulnerability of soil fungi. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484796 (2022).Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
ArticleGoogle Scholar
Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Phillips, H. R. P., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29, 655–657 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
Xiong, W. et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438 (2021).PubMed
ArticleGoogle Scholar
Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).PubMed
PubMed Central
ArticleGoogle Scholar
Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS
ArticleGoogle Scholar
Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).CAS
ArticleGoogle Scholar
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed
ArticleGoogle Scholar
Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis (CRC Press, 2007).Sparks, D. L. et al. (eds) Methods of Soil Analysis, Part 3: Chemical Methods (Wiley, 2020).Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).ArticleGoogle Scholar
Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA. 116, 6187–6192 (2019).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
Durán, J., Delgado-Baquerizo, M., Rodríguez, A., Covelo, F. & Gallardo, A. Ionic exchange membranes (IEMs): a good indicator of soil inorganic N production. Soil Biol. Biochem. 57, 964–968 (2013).ArticleGoogle Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH
ArticleGoogle Scholar
Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet
MATH
ArticleGoogle Scholar
Sharma, N. XGBoost. The Extreme Gradient Boosting for Mining Applications (GRIN Verlag, 2018).Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).Wilson. ParBayesianOptimization: Parallel Bayesian Optimization of Hyperparameters. R version 1 https://CRAN.R-project.org/package=ParBayesianOptimization (2021).Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning (Springer, 2001).Jackson, D. A. & Chen, Y. Robust principal component analysis and outlier detection with ecological data. Environmetrics 15, 129–139 (2004).ArticleGoogle Scholar
Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH
ArticleGoogle Scholar
Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (Routledge, 1984).Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (2010).ArticleGoogle Scholar
Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (2010).ArticleGoogle Scholar
Prasannakumar, V., Vijith, H., Charutha, R. & Geetha, N. Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia Soc. Behav. Sci. 21, 317–325 (2011).ArticleGoogle Scholar
Lin, G. Comparing spatial clustering tests based on rare to common spatial events. Comput. Environ. Urban Syst. 28, 691–699 (2004).ArticleGoogle Scholar
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
Rousseeuw, P. J. & van Zomeren, B. C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85, 633–639 (1990).ArticleGoogle Scholar
Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).ADS
ArticleGoogle Scholar
Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).ADS
ArticleGoogle Scholar
Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. 11, 4537–4562 (2018).Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).ArticleGoogle Scholar
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).ADS
ArticleGoogle Scholar
Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).ADS
CAS
ArticleGoogle Scholar
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).ArticleGoogle Scholar
O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).ADS
ArticleGoogle Scholar
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS
CAS
PubMed
ArticleGoogle Scholar
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).ADS
ArticleGoogle Scholar More
100 Shares129 Views
in EcologyGlobal soil map pinpoints key sites for conservation
Johnson, N. et al. (eds) Global Soil Biodiversity Atlas (EU, 2016).
Google Scholar
FAO et al. State of Knowledge of Soil Biodiversity — Status, Challenges and Potentialities (FAO, 2020).
Google Scholar
Cameron, E. K. et al. Nature Ecol. Evol. 2, 1042–1043 (2018).PubMed
ArticleGoogle Scholar
van den Hoogen, J. et al. Nature 572, 194–198 (2019).PubMed
ArticleGoogle Scholar
Phillips, H. R. P. et al. Science 366, 480–485 (2019).PubMed
ArticleGoogle Scholar
Guerra, C. A. et al. Nature https://doi.org/10.1038/s41586-022-05292-x (2022).ArticleGoogle Scholar
Moore, J. C. & de Ruiter, P. C. Energetic Food Webs: An Analysis of Real and Model Ecosystems (Oxford Univ. Press, 2012).
Google Scholar
Wolters V. et al. Bioscience 50, 1089–1098 (2000).ArticleGoogle Scholar
Schimel, J. P. & Schaeffer, S. M. Front. Microbiol. 3, 348 (2012).PubMed
ArticleGoogle Scholar
IPCC. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Impacts, Adaptation, and Vulnerability: Summary for Policymakers (eds Shukla, P. R. et al.) 50 (Cambridge Univ. Press, 2022).
Google Scholar
Chenu, C. et al. Soil Till. Res. 188, 41–52 (2019).ArticleGoogle Scholar
Liang, C., Schimel, J. P. & Jastrow, J. D. Nature Microbiol. 2, 17105 (2017).PubMed
ArticleGoogle Scholar
Hannula, S. E. & Morriën, E. Geoderma 413, 115767 (2022).ArticleGoogle Scholar More
63 Shares169 Views
in EcologyNew catalogue of Earth’s ecosystems
Keith, D. A. et al. Nature https://doi.org/10.1038/s41586-022-05318-4 (2022).Article
Google Scholar
Domesday Book, or, The Great Survey of England of William the Conqueror A.D. MLXXXVI (Ordnance Survey Office, 1862).McMahon, G. et al. Environ. Manage. 28, 293–316 (2001).PubMed
ArticleGoogle Scholar
Spalding, M. D. et al. BioScience 57, 573–583 (2007).ArticleGoogle Scholar
Holdridge, L. R. Science 105, 367–368 (1947).PubMed
ArticleGoogle Scholar
Köppen, W. in Handbuch der Klimatologie (eds Köppen, W. & Geiger, G. C.) 1–44 (Gebrüder Borntraeger, 1936).
Google Scholar
Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).
Google Scholar
Keddy, P. A. Trends Ecol. Evol. 9, 231–234 (1994).PubMed
ArticleGoogle Scholar
United Nations. Convention on Biological Diversity (UN, 1992).
Google Scholar
MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1972).
Google Scholar
Schoener, T. W. in Community Ecology (eds Diamond, J. D. & Case, T. ) 467–479 (Harper & Row, 1986).
Google Scholar
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Ecol. Lett. 18, 737–751 (2015).PubMed
ArticleGoogle Scholar More
75 Shares129 Views
in EcologyA function-based typology for Earth’s ecosystems
We developed the IUCN Global Ecosystem Typology in the following sequence of steps: design criteria; hierarchical structure and definition of levels; generic ecosystem assembly model; top-down classification of the upper hierarchical levels; iterative circumscription of the units and ecosystem-specific adaptations of the assembly model; full description of the units; and map compilation. Some iteration proved necessary, as the description and review process sometimes revealed a need for circumscribing additional units.Design criteria and other typologiesUnder the auspices of the IUCN Commission on Ecosystem Management, we developed six design principles to guide the development of a typology that would meet the needs for global ecosystem reporting, risk assessment, natural capital accounting and ecosystem management: (1) representation of ecological processes and ecosystem functions; (2) representation of biota; (3) conceptual consistency throughout the biosphere; (4) scalable structure; (5) spatially explicit units; and (6) parsimony and utility (see Supplementary Table 1.1 and Supplementary Information, Appendix 1 for definitions and rationale).We assessed 23 existing ecological classifications with global coverage of terrestrial, freshwater, and/or marine environments against these principles to determine their fitness for IUCN’s purpose (Supplementary Information, Appendix 1). These include general classifications of land, water or bioclimate, as well as classifications of units that conform with the definition of ecosystems adopted in the United Nations Convention on Biological Diversity45 or an equivalent definition in the IUCN Red List of Ecosystems30. We reviewed documentation on methods of derivation, descriptions of classification units and maps to assess each classification against the six design principles (Supplementary Table 1.2 for details).Typology structure and ecosystem assemblyWe developed the structure of the Global Ecosystem Typology and the generic ecosystem assembly model at a workshop attended by 48 terrestrial, freshwater and marine ecosystem experts at Kings College London, UK, in May 2017. Participants agreed that a hierarchical structure would provide an effective framework for integrating ecological processes and functional properties (Supplementary Table 1.1, design principle 1), and biotic composition (principle 2) into the typology, while also meeting the requirement for scalability (principle 4). Although neither function nor composition were intended to take primacy within the typology, we reasoned that a hierarchy representing functional features in the upper levels is likely to support generalizations and predictions by leveraging evolutionary convergence13. By contrast, a typology reflecting compositional similarities in its upperlevels is less likely to be stable owing to dynamism of species assemblages and evolving knowledge on species taxonomy and distributions. Furthermore, representation of compositional relationships at a global scale would require many more units in upper levels, and possibly more hierarchical levels. Therefore, we concluded that a hierarchical structure recognizing compositional variants at lower levels within broad functionally based groupings at upper levels would be more parsimonious and robust (principle 6) than one representing composition at upper levels and functions at lower levels.Workshop participants initially agreed that three hierarchical levels for ecosystem function and three levels for biotic composition could be sufficient to represent global variation across the whole biosphere. Participants developed the concepts of these levels into formal definitions (Supplementary Table 3.1), which were reviewed and refined during the development process.To ensure conceptual consistency of the typology and its units throughout the biosphere (principle 3), we drew from community assembly theory to develop a generic model of ecosystem assembly. The traditional community assembly model incorporates three types of filters (dispersal, the abiotic environment and biotic interactions) that determine which biota from a larger pool of potential colonists can occupy and persist in an area13. We extended this model to ecosystems by: (1) defining three groups of abiotic filters (resources, ambient environment and disturbance regimes) and two groups of biotic filters (biotic interactions and human activity); (2) incorporating evolutionary processes that shape characteristic biotic properties of ecosystems over time; (3) defining the outcomes of filtering and evolution in terms of all ecosystem properties including both ecosystem-level functions and species-level traits, rather than only in terms of species traits and composition; and (4) incorporating interactions and feedbacks among filters and selection agents and ecosystem properties to elucidate hypotheses about processes that influence temporal and spatial variability in the properties of ecosystems and their component biota. In community assembly, only a small number of filters are likely to be important in any given habitat13. In keeping with this proposition, we used the generic model to identify biological and physical features that distinguish functionally different groups of ecosystems from one another by focusing on different ecological drivers that come to the fore in structuring their assembly and shaping their properties.Hierarchical levelsThe top level of classification (Fig. 2 and Extended Data Tables 1–4) defines five core realms of the biosphere based on contrasting media that reflect ecological processes and functional properties: terrestrial; freshwaters and inland saline waters (hereafter freshwater); marine; subterranean; and atmospheric. Biome gradient concepts25 highlight continuous variation in ecosystem properties, which is represented in the typology by transitional realms that mark the interfaces between the five core realms (for example, floodplains (terrestrial–freshwater), estuaries (freshwater–marine), and so on). In Supplementary Information, Appendix 3 (pages 3–16) and Supplementary Table 3.1, we describe the five core realms and review the hypothesized assembly filters and ecosystem properties that distinguish different groups within them. The atmospheric realm is included for comprehensive coverage, but we deferred resolution of its lower levels because its biota is poorly understood, sparse, itinerant and represented mainly by dispersive life stages46.Functional biomes (level 2) are components of the biosphere united by one or more major assembly processes that shape key ecosystem functions and ecological processes, irrespective of taxonomic identity (Supplementary Information, Appendix 3, page 17). Our interpretation aligns broadly with ‘functional biomes’ described elsewhere24,25,47, extended here to reflect dominant assembly filters and processes across all realms, rather than the more restricted basis of climate-vegetation relationships that traditionally underpin biome definition on land. Hence, the 25 functional biomes (Supplementary Information, Appendix 4, pages 52–186 and https://global-ecosystems.org/) include some ‘traditional’ terrestrial biomes47, as well as lentic and lotic freshwater systems, pelagic and benthic marine systems, and anthropogenic functional biomes assembled and usually maintained by human activity48.Level 3 of the typology defines 110 ecosystem functional groups described with illustrated profiles in Supplementary Information, Appendix 4 (pages 52–186) and at https://global-ecosystems.org/. These are key units for generalization and prediction, because they include ecosystem types with convergent ecosystem properties shaped by the dominance of a common set of drivers (Supplementary Information, Appendix 3, pages 17–19). Ecosystem functional groups are differentiated along environmental gradients that define spatial and temporal variation in ecological drivers (Figs. 2 and 3 and Supplementary Figs. 3.2 and 3.4). For example, depth gradients of light and nutrients differentiate functional groups in pelagic ocean waters (Fig. 3c and Extended Data Table 4), influencing assembly directly and indirectly through predation. Resource gradients defined by flow regimes (influenced by catchment precipitation and evapotranspiration) and water chemistry, modulated by environmental gradients in temperature and geomorphology, differentiate functional groups of freshwater ecosystems25 (Fig. 3b and Extended Data Table 3). Terrestrial functional groups are distinguished primarily by gradients in water and nutrient availability and by temperature and seasonality (Fig. 3a and Extended Data Table 1), which mediate uptake of those resources and regulate competitive dominance and productivity of autotrophs. Disturbance regimes, notably fire, are important global drivers in assembly of some terrestrial ecosystem functional groups49.Three lower levels of the typology distinguish functionally similar ecosystems based on biotic composition. Our focus in this paper is on global functional relationships of ecosystems represented in the upper three levels of the typology, but the lower levels (Supplementary Information, Appendix 3, pages 19 and 20) are crucial for representing the biota in the typology, and facilitate the scaling up of information from established local-scale typologies that support decisions where most conservation action takes place. These lower levels are being developed progressively through two contrasting approaches with different trade-offs, strengths and weaknesses. First, level 4 units (regional ecosystem subgroups) are ecoregional expressions of ecosystem functional groups developed from the top-down by subdivisions based on biogeographic boundaries (for example, in ref. 50) that serve as simple and accessible proxies for biodiversity patterns51. Second, level 5 units (global ecosystem types) are also regional expressions of ecosystem functional groups, but unlike level 4 units they are explicitly linked to local information sources by bottom-up aggregation52 and rationalization of level 6 units from established subglobal ecological classifications. Subglobal classifications, such as those for different countries (see examples for Chile and Myanmar in Supplementary Tables 3.3 and 3.4), are often developed independently of one another, and thus may involve inconsistencies in methods and thematic resolution of units (that is, broadly defined or finely split). Aggregation of level 6 units to broader units at level 5 based on compositional resemblance is necessary to address inconsistencies among different subglobal classifications and produce compositionally distinctive units suitable for global or regional synthesis.Integrating local classifications into the global typology, rather than replacing them, exploits considerable efforts and investments to produce existing classifications, already developed with local expertise, accuracy and precision. By placing national and regional ecosystems into a global context, this integration also promotes local ownership of information to support local action and decisions, which are critical to ecosystem conservation and management outcomes (Supplementary Information, Appendix 3, page 20). These benefits of bottom-up approaches come at the cost of inevitable inconsistencies among independently developed classifications from different regions, a limitation avoided in the top-down approach applied to level 4.Circumscribing upper-level unitsWe formed specialist working groups (terrestrial/subterranean, freshwater and marine) to develop descriptions of the units within the upper levels of the hierarchy, subdividing realms into functional biomes, and biomes into ecosystem functional groups. We used definitions of the hierarchical levels (Supplementary Table 3.1) and the conceptual model of ecosystem assembly (Fig. 1) to maintain consistency in defining the units at each level during iterative discussions within and between the working groups.Working groups agreed on preliminary lists of functional biomes and ecosystem functional groups by considering variation in major drivers along ecological gradients (Figs. 2 and 3 and Supplementary Figs. 3.2 and 3.4) based on published literature, direct experience and expertise of working group members, and consultation with colleagues in their respective research networks. After the workshop, working groups sought recent global reviews of the candidate units and recent case studies of exemplars to shape descriptions of the major groups of ecosystem drivers and properties for each unit. Circumscriptions and descriptions of the units were reviewed and revised iteratively to ensure clear distinctions among units, with a total of 206 reviews of descriptive profiles undertaken by 60 specialists, a mean of 2.4 reviews per profile (Supplementary Table 5.1). The working groups concurrently adapted the generic model of ecosystem assembly (Fig. 1) to represent working hypotheses on salient drivers and ecosystem properties for each ecosystem functional group.Incorporating human influenceVery few of the ecological typologies reviewed in Supplementary Information, Appendix 1 integrate anthropogenic ecosystems in their classificatory frameworks. Anthropogenic influences create challenges for ecosystem classification, as they may modify defining features of ecosystems to a degree that varies from negligible to major transformation across different locations and times. We addressed this problem by distinguishing transformative outcomes of human activity at levels 2 and 3 of the typology from lesser human influences that may be represented either at levels 5 and 6, or through measurements of ecosystem integrity or condition that reflect divergence from reference states arising from human activity.Anthropogenic ecosystems grouped within levels 2 and 3 were thus defined as those created and sustained by intensive human activities, or arising from extensive modification of natural ecosystems such that they function very differently. These activities are ultimately driven by socio-economic and cultural-spiritual processes that operate across local to global scales of human organization. In many agricultural and aquacultural systems and some others, cessation of those activities may lead to transformation into ecosystem types with qualitatively different properties and organizational processes (see refs. 53,54 for cropland and urban examples, respectively). Indices such as human appropriation of net primary productivity55, combined with land-use maps56, offer useful insights into the distribution of some anthropogenic ecosystems, but further development of indices is needed to adequately represent others, particularly in marine, and freshwater environments. Beyond land-use classification and mapping approaches (Supplementary Information, Appendix 1, page 6), a more comprehensive elaboration of the intensity of human influence underpinning the diverse range of anthropogenic ecosystems requires a multidimensional framework incorporating land-use inputs, outputs, their interactions, legacies of earlier activity and changes in system properties17.Where less intense human activities occur within non-anthropogenic ecosystem types, we focused descriptions on low-impact reference states. Therefore, human activities are not shown as drivers in the assembly models for non-anthropogenic ecosystem groups, even though they may have important influences on the contemporary ecosystem distribution. This approach enables the degree and nature of human influence to be described and measured against these reference states using assessment methods such as the Red List of Ecosystems protocol30, with appropriate data on ecosystem change.Indicative distribution mapsFinally, to produce spatially explicit representations of the units at level 3 of the typology (principle 5), we sought published global maps (sources in Supplementary Table 4.1) that were congruent with the concepts of respective ecosystem functional groups. Where several candidate maps were available, we selected maps with the closest conceptual alignment, finest spatial resolution, global coverage, most recent data and longest time series. The purpose of maps for our study was to visualize global distributions. Prior to applications of map data to spatial analysis, we recommend critical review of methods and validation outcomes reported in each data source to ensure fitness for purpose (Supplementary Information, Appendix 4).Extensive searches of published literature and data archives identified high-quality datasets for some ecosystem functional groups (for example, T1.3 Tropical–subtropical montane rainforests; MT1.4 Muddy shorelines; M1.5 Sea ice) and datasets that met some of these requirements for a number of other ecosystem functional groups (see Supplementary Table 4.1 for details). Where evaluations by authors or reviewers identified limitations in available maps, we used global environmental data layers and biogeographic regionalizations as masks to adjust source maps and improve their congruence to the concept of the relevant functional group (for example, F1.2 Permanent lowland rivers). For ecosystem functional groups with no specific global mapping, we used ecoregions50,57,58 as biogeographic templates to identify broad areas of occurrence. We consulted ecoregion descriptions, global and regional reviews, national and regional ecosystem maps, and applied in situ knowledge of participating experts to identify ecoregions that contain occurrences of the relevant ecosystem functional group (for example, T4.4 Temperate woodlands) (see Supplementary Table 4.1 for details). We mapped ecosystem functional groups as major occurrences where they dominated a landscape or seascape matrix and minor occurrences where they were present, but not dominant in landscape–seascape mosaics, or where dominance was uncertain. Although these two categories in combination communicate more information about ecosystem distribution than binary maps, simple spatial overlays using minor occurrences are likely to inflate spatial statistics. The maps are progressively upgraded in new versions of the typology as explicit spatial models are developed and new data sources become available (see ref. 27 for a current archive of spatial data).The classification and descriptive profiles, including maps, for each functional biome and ecosystem functional group underwent extensive consultation, and targeted peer review and revision through a series of four phases described in Supplementary Information, Appendix 5 (pages 2–4). The reviewer comments and revisions from targeted peer review are documented in Supplementary Table 5.1. In all, more than 100 ecosystem specialists have contributed to the development of v2.1 of the typology.LimitationsUneven knowledge of Earth’s biosphere has constrained the delimitation and description of units within the typology. There is a considerable research bias across the full range of Earth’s ecosystems, with few formal research studies evaluating the relative influence of different ecosystem drivers in many of the functional groups, and abiotic assembly filters generally receiving more attention than biotic and dispersal filters. This poses challenges for developing standardized models of assembly for each ecosystem functional group. The models therefore represent working hypotheses, for which available evidence varies from large bodies of published empirical evidence to informal knowledge of ecosystem experts and their extensive research networks. Large numbers of empirical studies exist for some forest functional groups, savannas, temperate heathlands in Mediterranean-type climates, coral reefs, rocky shores, kelp forests, trophic webs in pelagic waters, small permanent freshwater lakes, and others (see references in the respective profiles (Supplementary Information, Appendix 4)). For example, Bond49 reviewed empirical and modelling evidence on the assembly and function of tropical savannas that make up three ecosystem functional groups, showing that they have a large global biophysical envelope that overlaps with tropical dry forests, and that their distribution and dynamics within that envelope is strongly influenced by top-down regulation via biotic filters (large herbivores and their predators) and recurrent disturbance regimes (fires). Despite the development of this critical knowledge base, savannas suffer from an awareness disparity that hinders effective conservation and management59. In other ecosystems, our assembly models rely more heavily on inferences and generalizations of experts drawn from related ecosystems, are more sensitive to interpretations of participating experts, and await empirical testing and adjustment as understanding improves. Empirical tests could examine hypothesized variation in ecosystem properties along gradients within and between ecosystem functional groups and should return incremental improvements on group delineation and description of assembly processes.High-quality maps at suitable resolution are not yet available for the full set of ecosystem functional groups, which limits current readiness for global analysis. The maps most fit for global synthesis are based on remote sensing and environmental predictors that align closely to the concept of their ecosystem functional group, incorporate spatially explicit ground observations and have low rates of omission and commission errors, ‘high’ spatial resolution (that is, rasters of 1 km2 (30 arcsec) or better), and time series of changes. Sixty of the maps currently in our archive27 aligned directly or mostly with the concept of their corresponding ecosystem functional group, while the remainder were based on indirect spatial proxies, and most were derived from polygon data or rasters of 30 arcsec or finer (Supplementary Table 4.1). Maps for 81 functional groups were based either on known records, or on spatial data validated by quantitative assessments of accuracy or efficacy. Therefore, we suggest that maps currently available for 60–80 of the 110 functional groups are potentially suitable for global spatial analysis of ecosystem distributions. Although, a significant advance on broad proxies such as ecoregions, the maps currently available for ecosystem functional groups would benefit from expanded application of recent advances in remote sensing, environmental datasets, spatial modelling and cloud computing to redress inequalities in reliability and resolution. The most urgent priorities for this work are those identified in Supplementary Table 4.1 as relying on indirect proxies for alignment to concept, qualitative evaluation by experts and coarse resolution ( >1 km2) spatial data.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More
