Physiological responses to low CO2 over prolonged drought as primers for forest–grassland transitions
Bond, W. Open Ecosystems (Oxford Univ. Press, 2019).Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article
Google Scholar
Haverd, V. et al. Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences 13, 761–779 (2016).CAS
Article
Google Scholar
Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).Article
Google Scholar
Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).CAS
Article
Google Scholar
Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol. 197, 862–872 (2013).CAS
Article
Google Scholar
Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160, 235–246 (2009).PubMed
Article
Google Scholar
Wigley, B., Cramer, M. & Bond, W. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).Article
Google Scholar
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. & Consortium, C. G. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS
PubMed
Article
Google Scholar
Spriggs, E. L., Christin, P.-A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9, e97722 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
McKay, R. M. et al. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Phil. Trans. R. Soc. A 374, 20140301 (2016).PubMed
Article
CAS
Google Scholar
Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).CAS
Article
Google Scholar
Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).CAS
PubMed
Article
Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS
PubMed
Article
Google Scholar
Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).CAS
PubMed
Article
Google Scholar
Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Bellasio, C. & Farquhar, G. D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. N. Phytol. 223, 150–166 (2019).CAS
Article
Google Scholar
Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO(2) on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).CAS
PubMed
Article
Google Scholar
Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS
Article
Google Scholar
Ward, J. K., Tissue, D. T., Thomas, R. B. & Strain, B. R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 5, 857–867 (1999).Article
Google Scholar
Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article
Google Scholar
February, E. C. & Higgins, S. I. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S. Afr. J. Bot. 76, 517–523 (2010).Article
Google Scholar
February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).PubMed
Article
Google Scholar
Fynn, R. W. S. & Naiken, J. Different responses of Eragrostis curvula and Themeda triandra to rapid- and slow-release fertilisers: insights into their ecology and implications for fertiliser selection in pot experiments. Afr. J. Range Forage Sci. 26, 43–46 (2009).Article
Google Scholar
Osmolovskaya, N. et al. Methodology of drought stress research: experimental setup and physiological characterization. Int. J. Mol. Sci. 19, 4089 (2018).PubMed Central
Article
Google Scholar
Quirk, J., Bellasio, C., Johnson, D. A., Osborne, C. P. & Beerling, D. J. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Funct. Ecol. 33, 388–398 (2019).Article
Google Scholar
Taylor, S. H. et al. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob. Change Biol. 20, 1992–2003 (2014).Article
Google Scholar
Bellasio, C., Quirk, J. & Beerling, D. J. Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci. 274, 181–192 (2018).CAS
PubMed
Article
Google Scholar
Kipchirchir, K. O., Ngugi, K. R., Mwangi, M. S., Njomo, K. G. & Raphael, W. Water stress tolerance of six rangeland grasses in the Kenyan semi-arid rangelands. Am. J. Agric. For. 3, 222–229 (2015).
Google Scholar
Kadioglu, A. & Terzi, R. A dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73, 290–302 (2007).Article
Google Scholar
Bittman, S. & Simpson, G. M. Drought effect on leaf conductance and leaf rolling in forage grasses. Crop Sci. 29, 338–344 (1989).Article
Google Scholar
O’Toole, J. C. & Cruz, R. T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65, 428–432 (1980).PubMed
PubMed Central
Article
Google Scholar
Redmann, R. E. Adaptation of grasses to water stress—leaf rolling and stomate distribution. Ann. Mo. Bot. Gard. 72, 833–842 (1985).Article
Google Scholar
Volder, A., Tjoelker, M. G. & Briske, D. D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 16, 3349–3362 (2010).Article
Google Scholar
Medeiros, J. S. & Ward, J. K. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. N. Phytol. 199, 738–748 (2013).CAS
Article
Google Scholar
Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).CAS
PubMed
Article
Google Scholar
Nackley, L. L. et al. CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: a missing mechanism explaining savanna bush encroachment. Environ. Exp. Bot. 155, 98–106 (2018).CAS
Article
Google Scholar
Apgaua, D. M. et al. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiol. 39, 1806–1820 (2019).CAS
PubMed
Article
Google Scholar
Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641–659 (2008).Article
Google Scholar
Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).Article
Google Scholar
Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J. Ecol. 101, 202–209 (2013).Article
Google Scholar
Jacobsen, J. V., Hanson, A. D. & Chandler, P. C. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 80, 350–359 (1986).CAS
PubMed
PubMed Central
Article
Google Scholar
Brodersen, C. & McElrone, A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00108 (2013).Chitarra, W. et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239, 887–899 (2014).CAS
PubMed
Article
Google Scholar
Hasibeder, R., Fuchslueger, L., Richter, A. & Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. N. Phytol. 205, 1117–1127 (2015).CAS
Article
Google Scholar
Bradford, K. J. & Hsiao, T. C. in Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Lange, O. L. et al.) 263–324 (Springer Berlin Heidelberg, 1982).Knox, K. J. E. & Clarke, P. J. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct. Ecol. 19, 690–698 (2005).Article
Google Scholar
Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140, 252–260 (2004).PubMed
Article
Google Scholar
Palacio, S., Maestro, M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS
Article
Google Scholar
Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).CAS
PubMed
Article
Google Scholar
Galvez, D. A., Landhausser, S. M. & Tyree, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol. 31, 250–257 (2011).PubMed
Article
Google Scholar
Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. N. Phytol. https://doi.org/10.1111/nph.17802 (2022).Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).CAS
PubMed
Article
Google Scholar
Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. N. Phytol. 195, 653–666 (2012).Article
Google Scholar
Quirk, J., Bellasio, C., Johnson, D. A. & Beerling, D. J. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Ann. Bot. Lond. 124, 77–90 (2019).Article
CAS
Google Scholar
Davies, J. et al. in AGU Fall Meeting Abstracts EP41D-2374. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP41D2374D/abstractMills, A. J., Rogers, K. H., Stalmans, M. & Witkowski, E. T. F. A framework for exploring the determinants of savanna and grassland distribution. BioScience 56, 579–589 (2006).Article
Google Scholar
Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. N. Phytol. 216, 1151–1160 (2017).CAS
Article
Google Scholar
Cardoso, A. W. et al. Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecol. Evol. 6, 3417–3429 (2016).PubMed
PubMed Central
Article
Google Scholar
Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0406 (2013).Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Change 5, 823–829 (2015).Article
Google Scholar
Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Ripley, B. S., Gilbert, M. E., Ibrahim, D. G. & Osborne, C. P. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351–1363 (2007).CAS
PubMed
Article
Google Scholar
McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).Article
Google Scholar
Osborne, C. P. & Sack, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).CAS
Article
Google Scholar
Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. N. Phytol. 201, 908–915 (2014).CAS
Article
Google Scholar
Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).Article
Google Scholar
Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 61–64 (1993).Article
Google Scholar
Stevens, N., Lehmann, C. E., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).Article
Google Scholar
Charles-Dominique, T., Midgley, G. F., Tomlinson, K. W. & Bond, W. J. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. N. Phytol. 218, 1419–1429 (2018).Article
Google Scholar
Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).CAS
PubMed
Article
Google Scholar
Bellasio, C., Fini, A. & Ferrini, F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE 9, e86645 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Kozloski, G. V., Rocha, J. B., Ribeiro Filho, H. M. N. & Perottoni, J. Comparison of acid and amyloglucosidase hydrolysis for estimation of non‐structural polysaccharides in feed samples. J. Sci. Food Agric. 79, 1112–1116 (1999).CAS
Article
Google Scholar
Bellasio, C., Beerling, D. J. & Griffiths, H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ. 39, 1180–1197 (2016).CAS
PubMed
Article
Google Scholar
Bellasio, C., Beerling, D. J. & Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant Cell Environ. 39, 1164–1179 (2016).CAS
PubMed
Article
Google Scholar
Ethier, G. J. & Livingston, N. J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ. 27, 137–153 (2004).CAS
Article
Google Scholar
von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO, 2000).Bellasio, C. & Griffiths, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ. 37, 1046–1058 (2014).CAS
PubMed
Article
Google Scholar
Fini, A., Bellasio, C., Pollastri, S., Tattini, M. & Ferrini, F. Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J. Arid Environ. 89, 21–29 (2013).Article
Google Scholar
Ghannoum, O., Caemmerer, S. V. & Conroy, J. P. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct. Plant Biol. 29, 1337–1348 (2002).CAS
PubMed
Article
Google Scholar More
