More stories

  • in

    COVID-19’s impact on visitation behavior to US national parks from communities of color: evidence from mobile phone data

    MaterialsData sourcesSupplementary Table S1 summarizes the definitions of all the variables and Supplementary Table S2 displays the descriptive statistics of the variables. A detailed description of our data sources is summarized in Supplementary Table S3.In summary, our mobile phone data, containing Jan 2018 to Apr 2021 visitation records to each national park and the visitors’ respective census block groups, are courtesy of SafeGraph Inc47. The geographical boundaries of national parks that are used to extract records only relevant to national parks are provided by the NPS Land Resources Division48. Finally, the racial and population demographics of each census block group are provided by the 2015-2019 American Community Survey (ACS)16.The utilization of each distinct dataset towards the extraction of our materials of interest are elaborated in the subsequent sections.Validation of SafeGraph’s mobile-phone datasetThe validation of SafeGraph’s mobile-phone dataset in its application to national parks has been previously validated by Yun et al17. Specifically, Yun et al’s17 work showed a close resemblance between the NPS visitor use survey and SafeGraph’s mobile-phone dataset in terms of visitation counts, temporal visitation patterns, racial demographics, and state-level residential origins of the visitors to Yellowstone National Park. However, SafeGraph’s POI classification of “National Parks” remains inconsistent with the NPS’s official definition of National Park. To circumvent this problem, we have utilized shapefiles courtesy of the NPS OpenData48 to extract the most visited POIs that fall within the shapefiles of each respective “National Park”. This process would be detailed in the subsequent sub-sections below.Selection of mainland US national parksWe adopted the official and formal definition of national parks as defined and listed by the NPS System49.We selected national parks within the 48 states encompassing the contiguous U.S. We chose to omit the parks that fall within the states of Alaska, Hawaii, Puerto Rico and other US minor Islands considering the fact that air travel is a necessity for out-of-state visitors to visit these select parks. These separate travel behavioral patterns could result in confounding variables towards our analysis, particularly since air travel faced major disruptions amidst the COVID-19 pandemic50.It is worth noting that New River George National Park was declared as a national park only following the COVID-19 pandemic51. Hence, it is excluded from our study.Finally, we lack the data availability for White Sands National Park and Dry Tortugas National Park. The former is due to its proximity to White Sands Missile Range and security concerns on mobile device data52. The latter’s lack of data availability could be attributed to the fact that the park is an island off the coast of Key West, FL53.Henceforth, we included a grand total of 48 national parks in our study.Extraction of POIsWe selected our points-of-interests (POIs) based on the dataset made available by SafeGraph47. While SafeGraph does provide its own classification of “national parks”, its classification methodology remains inconsistent with the NPS’s official definition and formal list of “national parks”17,49.Hence, we extracted POIs that fall within the encompassed polygon shapefiles of each respective national park. The polygon shapefiles are courtesy of the NPS OpenData48.We then selected the POI with the highest average monthly visitation records for each distinct national park.The choice to select the POI with the highest visitation record could be attributed to the fact that a brief analysis reveals that in many parks, the top 5 most populated POIs tends to fall within the same vicinity17. Specifically, the top 5 most populated POIs for many large national parks, like Cuyahoga National Park, Indiana Dunes National park, and Yellowstone National Park, typically encompass the areas surrounding the park entrances17. This remains rational since visitors would have to pass through park entrances to enter the parks and gain access other areas of the park. Hence, selecting only the POI with the highest visitation record for each park prevents us from making duplicate counts from separate POIs.Computing census block group-based racial demographicsThe aforementioned Safegraph47 data provides us with the census block group origins of the visitors to each distinct POI. The census block group origins are identified by its 12-digit Federal Information Processing Standard (FIPS) code. We are thus able to retrieve our racial demographics of interests (% of non-whites, % of African-, % Hispanics-, % of Asian-, and % Native Americans) pertaining to each visitors census block origins.Our study only considered all visitations across mainland U.S. As such, we have excluded visitors from Hawaii, Alaska, Puerto Rico and other minor US islands for their visitation patterns are expected to be abruptly disrupted following the pandemic due to restrictions put in place from air travel50. This decision would prevent the effects of confounding variables and avoid drastically skewing our data.Computing distance travelled by visitor to each national parkLikewise, we obtain the variables of distance through the utilization of the Haversine formula54 between the POIs coordinates and the centroids of the visitors census block group. We standardize the units of distance to kilometers in our analysis.Categorization of visitation records falling before and after COVID-19We categorize pre-COVID era as any time-period that occurs prior to the month of March 2020. Hence, we classify the COVID era as any time period from the month of March 2020 onward. We selected March 2020 for it was the month in which the UN declared COVID-19 a global pandemic55. This declaration was proceeded by numerous state and local lockdown measures which drastically impacted American commerce56 and the lifestyles of many Americans57.Methods and ModelOffsetting visitation counts with the census block group populationWe offset our dependent variable of visitation counts per census block population because racial demographics of the visitors’ census origins are measured at a census block level. This allows us to account for the fact that one would naturally expect higher visitation counts from more populated census block groups. Hence, the visitation counts per thousand population of the census block group would serve as a function of our independent variables (COVID-19 era, distance and racial demographics). This could be illustrated in Eq. (1) in the introduction section.Gravity ModelWe incorporated gravity models into our methodology. In the context of tourism, the gravity model explores the behavior and travel patterns over distances between two unique POIs.The gravity model was adopted from Newton’s law of universal gravitation in physics58. Newton’s law of universal gravitation states that distance and mass determine the gravitational forces between two objects. The gravity model has since been adapted by numerous disciplines in the social sciences. These topics include trade21, tourism19,20, and migration22. For instance, the gravity model is popular in studies involving bilateral trade21. This is because the gravity model allows economists to measure how specific economic indicators (such as GDP) could attract trade between two countries, given the distances between them21.We thus elected to use the gravity model because it best represents our research theme of seeking to analyze the changes in visitations to national parks amongst individual racial communities across the U.S. Henceforth, the gravity model allows us to best analyze the change in visitations from different racial communities to each specified national park given the required distance of travel. The selection of our variables, in seeking to optimally represent the gravity model, while preserving its assumptions, would be elaborated in the subsequent subsections below.Our application of the gravity model works as such: given (i{mathrm{th}}) census block group and (j{mathrm{th}}) national park where (alpha _k) symbolizes each respective coefficient towards the determined independent variable, the gravity model could be demonstrated as such:$$begin{aligned} frac{visitation_{ijt}}{left( frac{population_i}{1000}right) }propto frac{race_i^{alpha _1}*interaction_terms^{alpha _2}}{distance_{ij}^{alpha _3}} end{aligned}$$
    (2)
    which can be remodelled as:$$begin{aligned} visitation_{ijt}propto frac{race_i^{alpha _1}*(interaction~terms)^{alpha _2}*left( frac{population_i}{1000}right) ^{alpha _4}}{distance_{ij}^{alpha _3}} end{aligned}$$
    (3)
    using natural logarithms could be transformed to:$$begin{aligned} ln (visitation_{ijt})propto {alpha _1}ln (race_i)+{alpha _2}ln (interaction~terms)+alpha _3ln (distance_{ij})+ {alpha _4}ln left( frac{population_i}{1000}right) end{aligned}$$
    (4)
    Model SpecificationThe gravity model is incorporated using panel data with interaction terms19,21. Incorporating panel data allows us to control for unobservable individual effects19,21, such as time invariant monthly and seasonal fluctuations in park visitations, as best illustrated in the peaks and troughs witnessed in Fig. 1. The interaction terms allows us to measure the impact of COVID-19 towards our selected predictors. Specifically, the random-effects panel approach was selected in favor of the fixed-effects panel model and the pooled ordinary least squares (OLS) model as evident by the results of the F-tests, Hausman’s Chi-Squared, and the Breusch-Pagan (BP) Lagrange Multiplier59 tests displayed in Supplementary Table S4.This results in Eq. (5), given each (i{mathrm{th}}) census block group’s visitation to (j{mathrm{th}}) national parks during (t{mathrm{th}}) month over specified race (race_i).$$begin{aligned} begin{aligned} ln left( visitation_{ijt}right)&= beta _0+beta _1(COVID~era)+beta _2[ln (race_{i})] +beta _3[ln (distance_{ij})] +beta _4left[ ln left( frac{population_{i}}{1000}right) right] \ {}&quad +,beta _5[COVID~eratimes ln (race_{i})] +beta _6[(COVID~eratimes ln (distance_{ij})] +beta _7[ln (distance_{ij})times ln (race_i)] \ {}&quad +,beta _8[(COVID~eratimes ln (distance_{ij})times ln (race_i)]+V_{ijt} \ end{aligned} end{aligned}$$
    (5)
    The assumptions of log-linearity and multi-collinearity19,20,21 in our specified model, per Eq. (5), have been tested and could be referenced in Supplementary Table S5.Consideration of variables in our modelWe explored using the size area (in km(^2)) of each respective park, instead of distance travelled, as the denominator of our gravity model per Eq. (2). However, the substantially lower (R^2) values obtained when using a park’s size suggests that a park’s area is a poor factor in explaining visitation trends across socio-economic variables. These are detailed in Supplemental Table S6.We also initially considered fitting other socio-economic independent variables into the same analysis. We did so in the hopes of gaining further insights on COVID-19’s impact towards park visitation. Some other independent variables that were considered included median income and median age. However, fitting them into same analysis resulted in high multi-collinearity. These are detailed in Supplemental Table S6. Multi-collinearity occurs when an independent variable is highly correlated with another independent variable in an analysis involving multiple independent variables60. This could consequently “undermine the statistical significance of an independent variable”60.To mitigate concerns of multi-collinearity in our analysis involving different racial groups, we adopt the procedures outlined by Lewis-Beck and Lewis-Beck60. Lewis-Beck and Lewis-Beck recommends separating our analysis of each racial composition. This means that we would analyze the composition of non-whites, African-, Asian-, Hispanic-, and Native American with our other variables separately.Finally, we considered analyzing the variables of income and age separately. However, the variables of income and age still resulted in high multi-collinearity amongst the existing independent variables. Furthermore, the different characteristics displayed amongst our analysis involving variables like income and age (compared to race) meant that our suggested random-effects gravity model is not a one-size-fits-all model for other analysis involving separate variables. These are detailed in Supplemental Table S6. For this reason, we hope to study variables like age and income in some of our future studies, using a different model. More

  • in

    Phenotypic plasticity promotes species coexistence

    Pigliucci, M. Phenotypic plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, 2001).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Aerts, R., Boot, R. G. A. & Van Der Aart, P. J. M. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87, 551–559 (1991).CAS 
    Article 

    Google Scholar 
    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).Article 

    Google Scholar 
    van Kleunen, M. & Fischer, M. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82, 3309–3319 (2001).Article 

    Google Scholar 
    Relyea, R. A. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Signs of stabilisation and stable coexistence. Ecol. Lett. 22, 1957–1975 (2019).Article 

    Google Scholar 
    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).Article 

    Google Scholar 
    Chesson, P. in Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef (eds F. Valladares et al.) 119–164 (Fundación Banco Bilbao Vizcaya Argentaria, 2008).Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).Article 

    Google Scholar 
    Vasseur, D. A., Amarasekare, P., Rudolf, V. H. W. & Levine, J. M. Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am. Nat. 178, E96–E109 (2011).Article 

    Google Scholar 
    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).Article 

    Google Scholar 
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).CAS 
    Article 

    Google Scholar 
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).Article 

    Google Scholar 
    Grainger, T. N., Levine, J. M. & Gilbert, B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).Article 

    Google Scholar 
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).Article 

    Google Scholar 
    Adler, P., HilleRisLambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump Simon, M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Evolution’s Wedge: Competition and the Origins of Diversity (Univ. California Press, 2012).Ayala, F. J. Reversal of dominance in competing species of Drosophila. Am. Nat. 100, 81–83 (1966).Article 

    Google Scholar 
    Pease, C. M. On the evolutionary reversal of competitive dominance. Evolution 38, 1099–1115 (1984).Article 

    Google Scholar 
    Pimentel, D., Feinberg, E. H., Wood, P. W. & Hayes, J. T. Selection, spatial distribution, and the coexistence of competing fly species. Am. Nat. 99, 97–109 (1965).Article 

    Google Scholar 
    Lankau, R. A. & Strauss, S. Y. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317, 1561–1563 (2007).CAS 
    Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).CAS 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).Article 

    Google Scholar 
    Abrams, P. A. Alternative models of character displacement and niche shift. 2. Displacement when there is competition for a single resource. Am. Nat. 130, 271–282 (1987).Article 

    Google Scholar 
    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 

    Google Scholar 
    Harmon, E. A. & Pfennig, D. W. Evolutionary rescue via transgenerational plasticity: evidence and implications for conservation. Evol. Dev. 23, 292–307 (2021).Article 

    Google Scholar 
    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).CAS 
    Article 

    Google Scholar 
    Brass, D. P. et al. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol. Lett. 24, 2406–2417 (2021).Article 

    Google Scholar 
    Macarthur, R. H. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (UK Ministry of Agriculture, Fisheries and Food, 1957).Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 2: The Family of Lemnaceae—A Monographic Study, Vol.1 (Geobotanischen Institute, ETH Zürich, 1986).Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311 (2014).CAS 
    Article 

    Google Scholar 
    Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil (College of Agriculture, Agricultural Experiment Station, Univ. California, 1950).Inouye, B. D. Response surface experimental designs for investigating interspecific competition. Ecology 82, 2696–2706 (2001).Article 

    Google Scholar 
    Law, R. & Watkinson, A. R. Response-surface analysis of two-species competition: an experiment on Phleum arenarium and Vulpia fasciculata. J. Ecol. 75, 871–886 (1987).Article 

    Google Scholar 
    MATLAB v.9.0 (MathWorks, 2016).Stan Modeling Language Users Guide and Reference Manual, v.2.27 (Stan Development Team, 2021); https://mc-stan.orgVehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Bürkner, P.C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models, v.2.4.1 (2020).ImageJ (US NIH, 1997–2016). More

  • in

    Climate change did not alter the effects of Bt maize on soil Collembola in northeast China

    Chaudhary, G. & Singh, S. K. Global status of genetically modified crops and its commercialization: environmental issues in logistics and manufacturing. (2019).Zwahlen, C., Hilbeck, A., Gugerli, P. & Nentwig, W. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol. Ecol. 12, 765–775 (2010).Article 

    Google Scholar 
    Kamota, A., Muchaonyerwa, P. & Mnkeni, P. N. S. Decomposition of surface-applied and soil-incorporated Bt maize leaf litter and Cry1Ab protein during winter fallow in South Africa. Pedosphere 24, 251–257 (2014).CAS 
    Article 

    Google Scholar 
    Xue, K., Diaz, B. R. & Thies, J. E. Stability of Cry3Bb1 protein in soils and its degradation in transgenic corn residues. Soil Biol. Biochem. 76, 119–126 (2014).CAS 
    Article 

    Google Scholar 
    Griffiths, N. A. et al. Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. Sci. Total Environ. 592, 97–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, B. F., Yin, J. Q., Wu, F. C., Jiang, Z. L. & Song, X. Y. Field decomposition of Bt-506 maize leaves and its effect on Collembola in the black soil region of Northeast China. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2021.e01480 (2021).Article 

    Google Scholar 
    Shu, Y. H., Zhang, Y. Y., Zeng, H., Zhang, Y. H. & Wang, J. W. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia Fetida. Chemosphere 173, 1–13 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Čerevková, A., Miklisová, D., Szoboszlay, M. S., Tebbe, C. C. & Cagáň, L. The responses of soil nematode communities to Bt maize cultivation at four field sites across Europe. Soil Biol. Biochem. 119, 194–202 (2018).Article 
    CAS 

    Google Scholar 
    Liu, T. et al. Root and detritus of transgenic Bt crop did not change nematode abundance and community composition but enhanced trophic connections. Sci. Total Environ. 644, 822–829 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Domínguez, M. T., Holthof, E., Smith, A. R., Koller, E. & Emmett, B. A. Contrasting response of summer soil respiration and enzyme activities to long-term warming and drought in a wet shrubland (NE Wales, UK). Appl. Soil Ecol. 110, 151–155 (2016).Article 

    Google Scholar 
    Zhang, Q. F. et al. Are the combined effects of warming and drought on foliar C:N:P:K stoichiometry in a subtropical forest greater than their individual effects?. Forest Ecol. Manag. 448, 256–266 (2019).Article 

    Google Scholar 
    Chen, Q., Niu, B., Hu, Y., Luo, T. & Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 714, 136787.1-136787.9 (2020).
    Google Scholar 
    Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article 

    Google Scholar 
    Martin, J. T., Pederson, G. T., Woodhouse, C. A., Cook, E. R. & King, J. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl. Acad. Sci. USA 117, 201916208 (2020).
    Google Scholar 
    Ma, S., Zhu, C. & Liu, J. Combined impacts of warm central equatorial pacific sea surface temperatures and anthropogenic warming on the 2019 severe drought in east China. Adv. Atmos. Sci. 37, 1149–1163 (2020).Article 

    Google Scholar 
    Peñuelas, J. et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north–south European gradient. Ecosystems 7, 598–612 (2004).Article 

    Google Scholar 
    Sardans, J., Peñuelas, J. & Estiarte, M. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289, 227–238 (2006).CAS 
    Article 

    Google Scholar 
    Viciedo, D. O., Prado, R., Martinez, C. A., Habermann, H. & Piccolo, M. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 681, 267–274 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Meeran, K. et al. Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. Glob. Change Biol. 27, 3230–3243 (2021).Article 

    Google Scholar 
    Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2014).Article 

    Google Scholar 
    Pold, G., Melillo, J. M. & Deangelis, K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. 6, 480 (2010).
    Google Scholar 
    Séneca, J. et al. Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. ISME J. 14, 1–16 (2020).Article 
    CAS 

    Google Scholar 
    Santos, A. et al. Water stress alters lignin content and related gene expression in two sugarcane genotypes. J. Agric. Food Chem. 63, 4708 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albert, K. R. et al. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ. 34, 1207–1222 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7, 598–612 (2004).Article 

    Google Scholar 
    Zhu, E., Cao, Z., Jia, J., Liu, C. & Feng, X. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. https://doi.org/10.1111/gcb.15541 (2021).Article 

    Google Scholar 
    Sardans, J., Peñuelas, J. & Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 39, 223–235 (2008).Article 

    Google Scholar 
    Xu, G. L. et al. Seasonal exposure to drought and air warming affects soil Collembola and Mites. PLoS ONE 7, e43102 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chang, L. et al. Warming limits daytime but not nighttime activity of epigeic microarthropods in Songnen grasslands. Appl. Soil Ecol. 141, 79–83 (2019).Article 

    Google Scholar 
    Dai, A. G., Trenberth, K. E. & Qian, T. T. A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).ADS 
    Article 

    Google Scholar 
    Bongaarts, J. Intergovernmental panel on climate change special report on global warming of 1.5 °C Switzerland: IPCC, 2018. Popul. Dev. Rev. 45, 251–252 (2019).Article 

    Google Scholar 
    Bellinger, P.F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World. 1996–2019. http://www.collembola.org (Accessed 10 Sept 2021).Hopkin, S. P. Biology of the Springtails (Insecta:Collembola) 1–330 (Oxford University Press, 1997).
    Google Scholar 
    Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 7, 1207–1219 (1998).Article 

    Google Scholar 
    Filser, J. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46, 234–245 (2002).
    Google Scholar 
    Endlweber, K. & Scheu, S. Effects of Collembola on root properties of two competing ruderal plant species. Soil Biol. Biochem. 38, 2025–2031 (2006).CAS 
    Article 

    Google Scholar 
    Rebek, E. J., Hogg, D. B. & Young, D. K. Effect of four cropping systems on the abundance and diversity of epedaphic Springtails (Hexapoda: Parainsecta: Collembola) in southern Wisconsin. Environ. Entomol. 31, 37–46 (2002).Article 

    Google Scholar 
    Santorufo, L. et al. An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy- and trait-based approaches. Appl. Soil Ecol. 78, 48–56 (2014).Article 

    Google Scholar 
    Rossetti, I. et al. Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric. Ecosyst. Environ. 202, 203–216 (2015).Article 

    Google Scholar 
    Hönemann, L., Zurbrügg, C. & Nentwig, W. Effects of Bt-corn decomposition on the composition of the soil meso- and macrofauna. Appl. Soil Ecol. 40, 203–209 (2008).Article 

    Google Scholar 
    Arias-Martín, M. et al. Effects of three-year cultivation of Cry1Ab-expressing Bt maize on soil microarthropod communities. Agric. Ecosyst. Environ. 220, 125–134 (2016).Article 
    CAS 

    Google Scholar 
    Song, X. Y. et al. Use of taxonomic and trait-based approaches to evaluate the effects of transgenic Cry1Ac corn on the community characteristics of soil Collembola. Environ. Entomol. 48, 263–269 (2019).PubMed 
    Article 

    Google Scholar 
    Thibaud, J. M. Intermue ettemperatures lethales chez les insects collemboles arthropleones. II.—Isotomidae, Entomobryidae et Tomoceridae. Rev. Ecol. Biol. Sol. 14, 267–278 (1977).
    Google Scholar 
    Eisenbeis, G. & Wichard, W. Atlas on the Biology of Soil Arthropods 200–228 (Springer, 1987).Book 

    Google Scholar 
    Wang, B. F., Wu, F. C., Yin, J. Q., Jiang, Z. L. & Song, X. Y. Use of taxonomic and trait-based approaches to evaluate the effect of Bt maize expressing cry1Ie protein on non-target Collembola: A case study in Northeast China. Insects. https://doi.org/10.3390/insects12020088 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chang, L., Song, X. Y., Wang, B. F., Wu, D. H. & Reddy, G. Effect of Bt corn (Bt 38) cultivation on community structure of Collembola. Ann. Entomol. Soc. Am. 113, 1–5 (2020).CAS 
    Article 

    Google Scholar 
    Al-Deeb, M., Wilde, G. E., Blair, J. M. & Todd, T. C. Effect of Bt corn for corn rootworm control on nontarget soil microarthropods and nematodes. Environ. Entomol. 32, 859–865 (2003).Article 

    Google Scholar 
    Bitzer, R. J., Rice, M. E., Pilcher, C. D., Pilcher, C. L. & Lam, W. F. Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt maize. Environ. Entomol. 34, 1346–1376 (2005).Article 

    Google Scholar 
    Yang, Y. et al. Toxicological and biochemical analyses demonstrate no toxic effect of Cry1C and Cry2A to Folsomia candida. Sci. Rep. 5, 15619 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, Z., Zhou, L., Wang, B. F., Wang, D. M. & Song, X. Y. Toxicological and biochemical analyses demonstrate no toxic effect of Bt maize on the Folsomia candida. PLoS ONE 15, e0232747 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Helingerová, M. & Kocourek, F. The effect of bt corn on soil invertebrates, soil microbial community and decomposition rates of corn post-harvest residues under field and laboratory conditions. J. Sustain. Agric. 32, 645–655 (2008).Article 

    Google Scholar 
    Daghighi, E., Filser, J., Koehler, H. & Kesel, R. Long-term succession of Collembola communities in relation to climate change and vegetation. Pedobiologia 64, 25–38 (2017).Article 

    Google Scholar 
    Chang, L. et al. Green more than brown food resources drive the effect of simulated climate change on Collembola: A soil transplantation experiment in Northeast China. Geoderma 392, 115008 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Convey, P., Block, W. & Peat, H. J. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats. Glob. Change Biol. 9, 1718–1730 (2003).ADS 
    Article 

    Google Scholar 
    Alvarez, T., Frampton, G. K. & Goulson, D. The effects of drought upon epigeal Collembola from arable soils. Agric. For. Entomol. 1, 243–248 (2015).Article 

    Google Scholar 
    Fountain, M. T. & Hopkin, S. P. Folsomia candida (collembola): A “standard” soil arthropod. Annu. Rev. Entomol. 50, 201–222 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holmstrup, M. Water relations and drought sensitivity of Folsomia candida eggs (Collembola: Isotomidae). Eur. J. Entomol. 116, 229–234 (2019).Article 

    Google Scholar 
    Meehan, M. L., Barreto, C., Turnbull, M. S., Bradley, R. L. & Lindo, Z. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).Article 

    Google Scholar 
    Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).CAS 
    Article 

    Google Scholar 
    Lindberg, N. Soil fauna and global change: responses to experimental drought, irrigation, fertilisation and soil warming. Acta Universitatis Agriculturae Sueciae Silvestria 37, + Papers I-IV (2003).Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biolo. 18, 1152–1162 (2012).Macfadyen, A. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30, 171–184 (1961).Article 

    Google Scholar 
    Christiansen, K. A. & Bellinge, P. F. The Collembola of North America, North of the Rio Grande: A Taxonomic Analysis 2nd edn. (Grinnell College, 1998).
    Google Scholar 
    Fjellberg, A. The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. In Fauna Entomologica Scandinavica, Vol. 42, 1−264 (Koninklijke Brill, 2007).Potapov, M. Synopses on Palaearctic Collembola: Isotomidae. Abhandlungen und Berichte des Naturkundemuseums, Görlitz, Poland 73, 1–603 (2001).
    Google Scholar 
    Yin, W. Y. Pictorial Keys to Soil Animals of China. 282−292, 592−600 (Science Press, 1998).Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    Cerabolini, B., Pierce, S., Luzzaro, A. & Ossola, A. Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecol. 207, 333–345 (2010).Article 

    Google Scholar  More

  • in

    More than half of data deficient species predicted to be threatened by extinction

    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation? Trends Ecol. Evol. 27, 167–171 (2012).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Sci. (80-.). 366, eaax3100 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Sci. (80-.) 353, 288–291 (2016).CAS 
    Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Sci. (80-.). 344, 1246752–1246752 (2014).CAS 
    Article 

    Google Scholar 
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo (2019) https://doi.org/10.5281/zenodo.3831674.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M. & Brooks, T. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bachman, S. P. et al. Progress, challenges and opportunities for Red Listing. Biol. Conserv. 234, 45–55 (2019).Article 

    Google Scholar 
    Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN red list. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org (2021).Cazalis, V. et al. Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).PubMed 
    Article 

    Google Scholar 
    IUCN Standards and Petitions Committee. Guidelines for using the IUCN Red List Categories and Criteria. Prepared by the Standards and Petitions Committee. Downloadable from https://www.iucnredlist.org/documents/RedListGuidelines.pdf vol. 15 (2022).Bland, L. M. et al. Toward reassessing data‐deficient species. Conserv. Biol. 31, 531–539 (2017).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. & Bird, J. P. Data Deficient birds on the IUCN Red List: What don’t we know and why does it matter? Biol. Conserv. 143, 239–247 (2010).Article 

    Google Scholar 
    Zhao, L. et al. Spatial knowledge deficiencies drive taxonomic and geographic selectivity in data deficiency. Biol. Conserv. 231, 174–180 (2019).Article 

    Google Scholar 
    Parsons, E. C. M. Why IUCN should replace “Data Deficient” conservation status with a precautionary “Assume Threatened” Status—A Cetacean Case Study. Front. Mar. Sci. 3, 2015–2017 (2016).
    Google Scholar 
    Roberts, D. L., Taylor, L. & Joppa, L. N. Threatened or Data Deficient: assessing the conservation status of poorly known species. Divers. Distrib. 22, 558–565 (2016).Article 

    Google Scholar 
    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140016 (2015).Article 

    Google Scholar 
    Howard, S. D. & Bickford, D. P. Amphibians over the edge: silent extinction risk of Data Deficient species. Divers. Distrib. 20, 837–846 (2014).Article 

    Google Scholar 
    Jarić, I., Courchamp, F., Gessner, J. & Roberts, D. L. Potentially threatened: a Data Deficient flag for conservation management. Biodivers. Conserv. 25, 1995–2000 (2016).Article 

    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. et al. Measuring Global Trends in the status of biodiversity: red list indices for birds. PLoS Biol. 2, e383 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (2015).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B Biol. Sci. 360, 255–268 (2005).CAS 
    Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for Phylogenetic Conservation Prioritization. PLoS One 3, e3700 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Runting, R. K., Phinn, S., Xie, Z., Venter, O. & Watson, J. E. M. Opportunities for big data in conservation and sustainability. Nat. Commun. 11, 2003 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).PubMed 
    Article 

    Google Scholar 
    Hino, M., Benami, E. & Brooks, N. Machine learning for environmental monitoring. Nat. Sustain 1, 583–588 (2018).Article 

    Google Scholar 
    Wearn, O. R., Freeman, R. & Jacoby, D. M. P. Responsible AI for conservation. Nat. Mach. Intell. 1, 72–73 (2019).Article 

    Google Scholar 
    Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).Article 

    Google Scholar 
    Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 

    Google Scholar 
    Luiz, O. J., Woods, R. M., Madin, E. M. P. & Madin, J. S. Predicting IUCN extinction risk categories for the World’s Data Deficient Groupers (Teleostei: Epinephelidae). Conserv. Lett. 9, 342–350 (2016).Article 

    Google Scholar 
    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea. Sci. Rep. 11, 15397 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    IUCN. Species Information Service. Version 2020-3. https://www.iucnredlist.org/resources/spatial-data-download (2021).IUCN. The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org (2020).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    Selig, E. R. et al. Global priorities for Marine biodiversity conservation. PLoS One 9, e82898 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Hara, C. C., Afflerbach, J. C., Scarborough, C., Kaschner, K. & Halpern, B. S. Aligning marine species range data to better serve science and conservation. PLoS One 12, e0175739 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittermeier, R. A., Goetsch Mittermeier, C., Gil, P. R. & Wilson, E. O. Megadiversity: Earth’s Biologically Wealthiest Nations. CEMEX (2005).Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0. (2020).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).OBIS. Ocean Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. www.obis.org. (2021).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client. R package version 2.3.9. https://CRAN.R-project.org/package=robis. (2020).Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Sci. (80-.) 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).Article 

    Google Scholar 
    Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Byers, L. et al. A Global Database of Power Plants. World Resour. Inst. 1–18 (2019).Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).Article 

    Google Scholar 
    Barbarossa, V. et al. Erratum: FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci. Data 5, 180078 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. 117, 3648–3655 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 
    Article 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163 (2006).PubMed 
    Article 

    Google Scholar 
    Schlossberg, S., Chase, M. J., Gobush, K. S., Wasser, S. K. & Lindsay, K. State-space models reveal a continuing elephant poaching problem in most of Africa. Sci. Rep. 10, 10166 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burn, R. W., Underwood, F. M. & Blanc, J. Global trends and factors associated with the illegal killing of Elephants: a hierarchical Bayesian Analysis of Carcass Encounter Data. PLoS One 6, e24165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hauenstein, S., Kshatriya, M., Blanc, J., Dormann, C. F. & Beale, C. M. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 2242 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    UNDP. Human Development Report 2020. The Next Frontier: Human Development and the Anthropocene. New York. http://hdr.undp.org/en/content/human-development-report-2020. (2020).Transparency International. Corruption Perceptions Index 2020. (2020).Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Sci. (80-.) 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article 

    Google Scholar 
    Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).PubMed 
    Article 

    Google Scholar 
    Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. The Elements of Statistical Learning vol. 27 (Springer New York, 2001).Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. & Arriaga-Weiss, S. Classification in conservation biology: a comparison of five machine-learning methods. Ecol. Inform. 5, 441–450 (2010).Article 

    Google Scholar 
    LeDell, E. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package version 3.36.0.4. https://github.com/h2oai/h2o-3 (2022).H2O.ai. H2O AutoML. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (2022).Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    Kuhn, M. Building Predictive Models in R using the caret Package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    Harrell Jr, F. E. Hmisc: Harrell miscellaneous. R package version 4.5-0. (2021).van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super Learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).RStudio Team. RStudio: integrated development environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Pebesma, E. Simple features for R: standardized support for Spatial Vector Data. R. J. 10, 439 (2018).Article 

    Google Scholar 
    Ross, N. Fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3. https://CRAN.R-project.org/package=fasterize (2020).Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).Wickham, H. stringr: simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr (2019).Tuszynski, J. caTools: tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.1. https://CRAN.R-project.org/package=caTools (2021).Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686 (2019).Dragulescu, A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5. (2020).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).ESRI. ArcGIS Pro version 2.9.0. https://www.esri.com/en-us/home (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, NY (2016).Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. R package version 0.5.3. https://CRAN.R-project.org/package=ggridges (2021).South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth (2017).Garnier, S. viridis: Default Color Maps from ‘matplotlib’. R package version 0.5.1. https://CRAN.R-project.org/package=viridis (2018).Borgelt, J. jannebor/dd_forecast: Code for study ‘More than half of Data Deficient species predicted to be threatened by extinction’ (v1.0.1). https://doi.org/10.5281/zenodo.6627688.Zenodo (2022). More

  • in

    Effects of landscape structure on restoration success in tropical premontane forest

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. mobt 102, 251–257 (2017).
    Google Scholar 
    Crouzeilles, R., Lorini, M. L. & Grelle, C. Applying graph theory to design networks of protected areas: using inter-patch distance for regional conservation planning. Natureza Conservaçao Rev. Brasileira de Conservaçao da Natureza 9, 219–224 (2011).
    Google Scholar 
    Crouzeilles, R., Lorini, M. L. & Grelle, C. E. V. The importance of using sustainable use protected areas for functional connectivity. Biol. Cons. 159, 450–457 (2013).Article 

    Google Scholar 
    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).PubMed 
    Article 

    Google Scholar 
    O’Farrell, P. J. & Anderson, P. M. Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ. Sustain. 2, 59–65 (2010).Article 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica 53, 496–508 (2021).Article 

    Google Scholar 
    Crouzeilles, R. et al. A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. J. Appl. Ecol. 56, 2675–2686 (2019).Article 

    Google Scholar 
    Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).Article 

    Google Scholar 
    Taylor, P. D., Fahrig, L. & With, K. A. Landscape connectivity: a return to the basics. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 29–43 (Cambridge University Press, 2006).Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90, 7–19 (2000).Article 

    Google Scholar 
    McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7, e52604 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Torrubia, S. et al. Getting the most connectivity per conservation dollar. Front. Ecol. Environ. 12, 491–497 (2014).Article 

    Google Scholar 
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leal-Ramos, D. et al. Forest and connectivity loss drive changes in movement behavior of bird species. Ecography 43, 1203–1214 (2020).Article 

    Google Scholar 
    Pérez-Cárdenas, N. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. For. Ecol. Manage. 482, 118818 (2021).Article 

    Google Scholar 
    Holl, K. D., Reid, J. L., Chaves-Fallas, J. M., Oviedo-Brenes, F. & Zahawi, R. A. Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. J. Appl. Ecol. 54, 1091–1099 (2017).Article 

    Google Scholar 
    Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R. & Cordell, S. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restor. Ecol. 19, 470–479 (2011).Article 

    Google Scholar 
    Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zahawi, R. A., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).Article 

    Google Scholar 
    Reid, J. L., Kormann, U., Zarrate-Chary, D., Holl, K. D. & Zahawi, R. A. Predicting toucan-mediated seed dispersal in tropical forest restoration. Ecosphere (In press).Zahawi, R. A. et al. Proximity and abundance of mother trees affects recruitment patterns in a long-term tropical forest restoration study. Ecography 44,1826–1837 (2021).Lehouck, V. et al. Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118, 1023–1034 (2009).Article 

    Google Scholar 
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Article 

    Google Scholar 
    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Cons. 230, 179–186 (2019).Article 

    Google Scholar 
    Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).Article 

    Google Scholar 
    Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).Article 

    Google Scholar 
    Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. J. Forest environments in tropical life zones: a pilot study (Pergamon Press, 1971).
    Google Scholar 
    Zahawi, R. A., Duran, G. & Kormann, U. Sixty-seven years of land-use change in Southern Costa Rica. PLoS ONE 10, e0143554 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holl, K. D. et al. Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study. J. Appl. Ecol. 57, 2316–2328 (2020).Article 

    Google Scholar 
    Reid, J. L., Mendenhall, C. D., Rosales, J. A., Zahawi, R. A. & Holl, K. D. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9, e90573 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrara, E. et al. Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol. Conser. 184, 117–126 (2015).Article 

    Google Scholar 
    Chao, A. & Shen, T. J. Program SPADE (Species Prediction and Diversity Estimation). Program and User’s Guide. (http://chao.stat.nthu.edu.tw, 2010).Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343 (2011).PubMed 
    Article 

    Google Scholar 
    de Souza, R. P. & Válio, I. F. M. Seed size, seed germination, and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33, 447–457 (2001).Article 

    Google Scholar 
    Werden, L. K., Holl, K. D., Rosales, J. A., Sylvester, J. M. & Zahawi, R. A. Effects of dispersal- and niche-based factors on tree recruitment in tropical wet forest restoration. Ecol. Appl. 30, e02139 (2020).PubMed 

    Google Scholar 
    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. PNAS 113, 14544–14551 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jesus, F. M., Pivello, V. R., Meirelles, S. T., Franco, G. A. D. C. & Metzger, J. P. The importance of landscape structure for seed dispersal in rain forest fragments. J. Veg. Sci. 23, 1126–1136 (2012).Article 

    Google Scholar 
    Galán-Acedo, C., Arroyo-Rodríguez, V., Estrada, A. & Ramos-Fernández, G. Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41, 2027–2037 (2018).Article 

    Google Scholar 
    Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Cons. 124, 253–266 (2005).Article 

    Google Scholar 
    Forman, R. T. T. & Godron, M. Landscape ecology. (Wiley, 1986).QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation, 2016).Gillies, C. S. & Clair, C. C. S. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. PNAS 105, 19774–19779 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harvey, C. A., Tucker, N. I. & Estrada, A. Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. in Agroforestry and biodiversity conservation in tropical landscapes 261–289 (2004).Harvey, C. A. et al. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 111, 200–230 (2005).Article 

    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).Article 

    Google Scholar 
    He, H. S., DeZonia, B. E. & Mladenoff, D. J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol. 15, 591–601 (2000).Article 

    Google Scholar 
    Radford, J. Q., Bennett, A. F. & Cheers, G. J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol. Cons. 124, 317–337 (2005).Article 

    Google Scholar 
    Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Şekercioğlu, Ç. H. et al. Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersing forest birds in a fragmented landscape. J Ornithol 156, 343–353 (2015).Article 

    Google Scholar 
    Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144, 298–305 (2011).Article 

    Google Scholar 
    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. (2012).Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale?. Global Ecol. Biogeography 24, 52–63 (2015).Article 

    Google Scholar 
    Jackson, H. B. & Fahrig, L. What size is a biologically relevant landscape?. Landscape Ecol 27, 929–941 (2012).Article 

    Google Scholar 
    McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31, 1161–1175 (2016).Article 

    Google Scholar 
    Huais, P. Y. multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecol 33, 1023–1028 (2018).Article 

    Google Scholar 
    R Development Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).Crawley, M. J. Statistical modelling in the R book. (John Wiley & Sons Ltd., 2007).Leite, M. de S., Tambosi, L. R., Romitelli, I. & Metzger, J. P. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Natureza & Conservação 11, 108–118 (2013).Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied linear statistical models. (McGraw-Hill/Irwin, 1996).Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Calcagno, V. & Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Soft. 34, 1–29 (2010).Article 

    Google Scholar 
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).Article 

    Google Scholar 
    Fagan, M. E., DeFries, R. S., Sesnie, S. E., Arroyo-Mora, J. P. & Chazdon, R. L. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26, 1456–1474 (2016).PubMed 
    Article 

    Google Scholar 
    Reid, J. L. & Holl, K. D. Arrival ≠ survival. Restor. Ecol. 21, 153–155 (2013).Article 

    Google Scholar 
    Pejchar, L. et al. Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol. Cons. 141, 536–544 (2008).Article 

    Google Scholar 
    Norden, N. et al. Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. J. Ecol. 95, 507–516 (2007).Article 

    Google Scholar 
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).Article 

    Google Scholar 
    Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).Article 

    Google Scholar 
    Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica 39, 61–66 (2012).ADS 
    Article 

    Google Scholar 
    Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E. & Fahrig, L. What determines the spatial extent of landscape effects on species?. Landscape Ecol 31, 1177–1194 (2016).Article 

    Google Scholar  More

  • in

    Effects of organic fertilizers on growth characteristics and fruit quality in Pear-jujube in the Loess Plateau

    Effect of different organic fertilizers on the growth of Pear-jujubeEffect of different organic fertilizers on the bearing branch length of Pear-jujubeJujube-bearing branch has the dual role of fruiting and photosynthesis32,33. It can be seen from Fig. 1 that different organic fertilizer treatments have a significant impact on the growth of jujube-bearing branches. Among them, the longest jujube-bearing branch in the SC treatment is 20.17 cm, which is significantly higher than that in CK and CF; the jujube-bearing branch length in the SC, SM and BM treatment are increased by 34%, 23% and 25% compared with that in CK, and the difference is significant (P  SM  > SC  > CK. Among them, the density of light of BM is the largest. It reaches 38.06 mol/(m2 d). CF, SC, SM and BM respectively increase by 11.54%, 8.09%, 7.96% and 15.13% compared with CK, and the difference is significant. The canopy transmittance of jujube is BM  CF  > SM  > SC. The highest Tr of BM reaches 8.66 µmol/moL. It may be related to higher LAI, and the instantaneous water use efficiency of SC is highest, which reaches 3.30%. The WUEp of CF, SC, SM and BM treatments increase by 22.4%, 64.2%, 44.3% and 30.8%, respectively, compared with that of CK. It reaches a significant difference level (P  SM  > BM  > CF  > CK. Compared with CK (9.37%), the SC, SM, BM, and CF increased by 3.69, 3.18, 1.11 and 0.40% points, respectively. Organic fertilizer is beneficial to increase the water content of the soil. Among them, soybean cake fertilizer (SC) has the largest increase, which is significantly different from CK (P  SM  > SC  > CF  > CK. The RWC of BM reaches 94.20%, which is significantly different from CK (P  SM  > BM  > CK. The total flavonoid content of SC reaches 14.35 mg/kg, which is 24.57% higher than that of CK. The total flavonoid content of SM and BM increase by 17.01% and 9.2%, respectively, compared with that of CK. Moreover, each treatment is significantly different from CK (P  More

  • in

    Humans pressure wetland multifunctionality

    Daskalova, G. N. et al. Science 368, 1341–1347 (2020).CAS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Nature 448, 188–190 (2007).CAS 
    Article 

    Google Scholar 
    Fanin, N. et al. Nat. Ecol. Evol. 2, 269–278 (2018).Article 

    Google Scholar 
    Duffy, J. E. Front. Ecol. Environ. 7, 437–444 (2009).Article 

    Google Scholar 
    Manning, P. et al. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Nat. Commun. 6, 6936 (2015).CAS 
    Article 

    Google Scholar 
    Soliveres, S. et al. Nature 536, 456–459 (2016).CAS 
    Article 

    Google Scholar 
    Moi, D. A. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01827-7 (2022).Article 

    Google Scholar 
    Venter, O. et al. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Allan, E. et al. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    Article 

    Google Scholar 
    Manning, P. et al. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Gamfeldt, L. et al. Nat. Commun. 4, 1340 (2013).Article 

    Google Scholar 
    Schuldt, A. et al. Nat. Commun. 9, 2989 (2018).Article 

    Google Scholar 
    Jochum, M. et al. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    Dudgeon, D. et al. Biol. Rev. 81, 163–182 (2005).Article 

    Google Scholar 
    Blois, J. L. et al. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    Article 

    Google Scholar 
    França, F. et al. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Ewers, R. M. et al. Nat. Commun. 6, 6836 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinctions risk. Nat. Commun. 9, 4621 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).CAS 
    PubMed 

    Google Scholar 
    Schuldt, A. et al. Biodiversity across trophic levels drive multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 211–220 (2020).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).PubMed 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    PubMed 

    Google Scholar 
    Moi, D. A. et al. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversities, and ecosystem multifunctionality. J. Anim. Ecol. 91, 551–565 (2022).PubMed 

    Google Scholar 
    Moi, D. A. et al. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct. Ecol. 35, 942–954 (2021).CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Li, F. et al. Human activitiesʼ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 26, 6867–6879 (2020).
    Google Scholar 
    Enquist, B. J. et al. The megabiota are disproportionately importante for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4, 255–268 (2004).
    Google Scholar 
    Chiaravalloti, R. M., Homewood, K. & Erikson, K. Sustainability and land tenure: who owns the floodplain in the Pantanal, Brazil? Land Use Policy 64, 511–524 (2017).
    Google Scholar 
    Pelicice, F. M. et al. Large-scale degradation of the Tocantins–Araguaia River Basin. Environ. Manag. 68, 445–452 (2021).
    Google Scholar 
    Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).
    Google Scholar 
    McIntyre, P. B. et al. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2006).
    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2020).PubMed 

    Google Scholar 
    Bridgewater, P. & Kim, R. E. The Ramsar conservation on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2020).
    Google Scholar 
    Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lansac-Tôha, F. M. et al. Scale-depedent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48, 872–885 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Weiss, K. C. B. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).
    Google Scholar 
    Laliberté, E. & Legendre, R. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 

    Google Scholar 
    Mackereth, F. J. H, Heron, J & Talling, J. F. Water Analysis: Some Revised Methods for Limnologists. Publication No. 36 (Freshwater Biological Association, 1978).Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwaters (Blackwell Scientific Publications, 1978).Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).
    Google Scholar 
    Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankt. Res. 25, 1331–1346 (2003).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); www.fishbase.orgPorter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora1. Limnol. Oceanogr. 25, 943–948 (1980).
    Google Scholar 
    Manning, P. et al. Redifining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).PubMed 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R version 2.0–12 https://rspatial.org/raster (2012).World Urbanization Prospects: The 2020 Revision: Highlights (United Nations, 2020).Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshwater Ecosyst. 24, 5–22 (2013).
    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R version 3.1.137 https://CRAN.Rproject.org/package=nlme (2018).K. Barton, MuMIn: Model selection and model averaging based on information criteria (AICc and alike). R version 1–1 https://CRAN.R-project.org/package=MuMIn (2014).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Schielzeth, H. Simple means to improve the interpretability ofregression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 
    Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (Sage Publications, 1991).Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2015).
    Google Scholar 
    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).
    Google Scholar 
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More