More stories

  • in

    Low phosphorus levels limit carbon capture by Amazonian forests

    Pan, Y. et al. Science 333, 988–993 (2011).PubMed 
    Article 

    Google Scholar 
    Bonan, G. B. Science 320, 1444–1449 (2008).PubMed 
    Article 

    Google Scholar 
    Craine, J. M. et al. Nature Ecol. Evol. 2, 1735–1744 (2018).PubMed 
    Article 

    Google Scholar 
    Cunha, H. F. V. et al. Nature 608, 558–562 (2022).Article 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Jr Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Ostertag, R. & DiManno, N. M. Front. Earth Sci. 4, 23 (2016).Article 

    Google Scholar 
    Wright, S. J. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Lugli, L. F. et al. New Phytol. 230, 116–128 (2021).PubMed 
    Article 

    Google Scholar 
    Muller-Landau, H. C. et al. New Phytol. 229, 3065–3087 (2021).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Earth Syst. Sci. Data 13, 5831–5846 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Arora, V. K. et al. Biogeosciences 17, 4173–4222 (2020).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
    Google Scholar  More

  • in

    Potential of microbiome-based solutions for agrifood systems

    German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, François Buscot, Antonis Chatzinotas, Narendrakumar M. Chaudhari, Anna Heintz-Buschart, Kirsten Küsel & Rine C. ReubenInstitute of Biology, Leipzig University, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, Antonis Chatzinotas & Rine C. ReubenDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, GermanyStephanie D. Jurburg, Antonis Chatzinotas, Rene Kallies, Susann Müller & Ulisses Nunes da RochaDepartment of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Halle, GermanyFrançois Buscot & Anna Heintz-BuschartAquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, GermanyNarendrakumar M. Chaudhari & Kirsten KüselSwammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the NetherlandsAnna Heintz-BuschartKellogg Biological Station, Michigan State University, Hickory Corners, MI, USAElena LitchmanEcology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USAElena LitchmanDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA, USAElena LitchmanHawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, AustraliaCatriona A. Macdonald & Brajesh K. SinghLeibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, GermanyGianni PanagiotouThe State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouDepartment of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouInstitut für Biologie, Freie Universität Berlin, Berlin, GermanyMatthias C. RilligBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyMatthias C. RilligGlobal Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, AustraliaBrajesh K. SinghB.K.S. conceived the idea in consultation with N.E. and S.J., and led the discussion which was attended by all authors. S.J. and B.K.S. wrote the manuscript and all contributed to refine it. More

  • in

    Reviewing the ecological impacts of offshore wind farms

    International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).Article 

    Google Scholar 
    Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).Article 

    Google Scholar 
    IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).Article 

    Google Scholar 
    IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).Article 

    Google Scholar 
    WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).CAS 
    Article 

    Google Scholar 
    Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).Article 

    Google Scholar 
    Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).Article 
    CAS 

    Google Scholar 
    Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).CAS 
    Article 

    Google Scholar 
    Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).Article 

    Google Scholar 
    Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).Article 

    Google Scholar 
    Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).Article 

    Google Scholar 
    Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).Article 

    Google Scholar 
    Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).Article 

    Google Scholar 
    van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).Article 

    Google Scholar 
    De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).Article 
    CAS 

    Google Scholar 
    Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).Article 

    Google Scholar 
    Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).Article 

    Google Scholar 
    Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).Article 

    Google Scholar 
    Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).Article 

    Google Scholar 
    Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).Article 

    Google Scholar 
    Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).Article 

    Google Scholar 
    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).CAS 
    Article 

    Google Scholar 
    Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).Article 
    CAS 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).Article 

    Google Scholar 
    Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).Article 

    Google Scholar 
    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).Article 

    Google Scholar 
    Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).Article 

    Google Scholar 
    Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).Article 

    Google Scholar 
    Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).Article 

    Google Scholar 
    Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).Article 

    Google Scholar 
    Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).Article 

    Google Scholar 
    Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).Article 

    Google Scholar 
    Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).Article 

    Google Scholar 
    Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).Article 

    Google Scholar 
    Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).Article 

    Google Scholar 
    Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).Article 

    Google Scholar 
    van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).Article 

    Google Scholar 
    Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).Article 

    Google Scholar 
    Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).Article 

    Google Scholar 
    Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).CAS 
    Article 

    Google Scholar 
    Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).Article 

    Google Scholar 
    Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).Article 

    Google Scholar 
    Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).Article 

    Google Scholar 
    Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).Article 

    Google Scholar 
    Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).CAS 
    Article 

    Google Scholar 
    Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).Article 

    Google Scholar 
    Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).Article 

    Google Scholar 
    Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).Article 

    Google Scholar 
    Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).Article 

    Google Scholar 
    Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).Article 

    Google Scholar 
    Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).CAS 
    Article 

    Google Scholar 
    Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).CAS 
    Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).Article 

    Google Scholar 
    Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).Article 

    Google Scholar 
    Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).Article 

    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).Article 

    Google Scholar 
    Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).Article 

    Google Scholar 
    Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).Article 

    Google Scholar 
    Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).Article 

    Google Scholar 
    Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).Article 

    Google Scholar 
    Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).Article 

    Google Scholar 
    Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).Article 

    Google Scholar 
    European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).Article 
    CAS 

    Google Scholar 
    Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).Article 

    Google Scholar 
    Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).Article 

    Google Scholar 
    Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).Article 

    Google Scholar 
    Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).Article 

    Google Scholar 
    Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).Article 

    Google Scholar 
    Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).Article 

    Google Scholar 
    Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).Article 

    Google Scholar 
    Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).Article 
    CAS 

    Google Scholar 
    Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).CAS 
    Article 

    Google Scholar 
    Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).Article 

    Google Scholar 
    Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).Article 

    Google Scholar 
    González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).Article 

    Google Scholar 
    Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).Article 

    Google Scholar 
    Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).Article 

    Google Scholar  More

  • in

    A sustainable ocean for all

    Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Lisbon, PortugalCatarina Frazão SantosMARE–Marine and Environmental Sciences Center / ARNET–Aquatic Research Network, University of Lisbon, Lisbon, PortugalCatarina Frazão Santos & Carina Vieira da SilvaEnvironmental Economics Knowledge Center, NOVA-SBE, Carcavelos, PortugalCatarina Frazão Santos & Carina Vieira da SilvaSound Seas, Bethesda, MD, USATundi AgardyWorldFish, Batu Maung, Penang, MalaysiaEdward H. AllisonThe Peopled Seas Initiative, Vancouver, CanadaNathan J. BennettEqualSea Lab, University of Santiago de Compostela, A Coruña, SpainNathan J. Bennett & Sebastián VillasanteEnvironmental Sustainability Research Centre, Brock University, St. Catharines, ON, CanadaJessica L. BlytheMarine and Environmental Sciences Center, University of the Azores – FCT, Ponta Delgada, PortugalHelena CaladoHopkins Marine Station, Stanford University, Stanford, CA, USALarry B. Crowder & Elena GissiARC Centre of Excellence for Coral Reef Studies, Townsville, AustraliaJon C. DayQueen’s University Belfast, Belfast, Northern Ireland, UKWesley FlanneryNational Research Council, Institute of Marine Sciences, Venice, ItalyElena GissiInternational Union for Conservation of Nature and World Commission on Protected Areas, Cambridge, MA, USAKristina M. GjerdeMiddlebury Institute of International Studies at Monterey, Monterey, MA, USAKristina M. GjerdeThe University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoJudith F. GobinPermanent Mission of the Federated States of Micronesia to the United Nations, New York, USAClement Yow MulalapDuke University Marine Laboratory, Duke University, Durham, NC, USAMichael OrbachCentre for Marine Socioecology, University of Tasmania, Hobart, AustraliaGretta PeclInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, AustraliaGretta PeclFederal University of Santa Catarina, Florianópolis, SC, BrazilMarinez SchererCenter for Island Sustainability and Sea Grant, University of Guam, Mangilao, USAAustin J. SheltonSchool of Geography and the Environment, University of Oxford, Oxford, UKLisa Wedding More

  • in

    Correction to: Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Authors and AffiliationsDepartment of Agronomy, Universidade Federal do Espírito Santo, Alegre, BrazilAléxia Gonçalves Pereira, Marcia Flores da Silva Ferreira, Thamyres Cardoso da Silveira, José Henrique Soler-Guilhen, Guilherme Bravim Canal, Luziane Brandão Alves, Francine Alves Nogueira de Almeida & Adésio FerreiraDepartment of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrazilFernanda Amato GaiottoAuthorsAléxia Gonçalves PereiraMarcia Flores da Silva FerreiraThamyres Cardoso da SilveiraJosé Henrique Soler-GuilhenGuilherme Bravim CanalLuziane Brandão AlvesFrancine Alves Nogueira de AlmeidaFernanda Amato GaiottoAdésio FerreiraCorresponding authorCorrespondence to
    Marcia Flores da Silva Ferreira. More

  • in

    Global dataset of species-specific inland recreational fisheries harvest for consumption

    Arlinghaus, R., Tillner, R. & Bork, M. Explaining participation rates in recreational fishing across industrialised countries. Fisheries Management and Ecology 22, 45–55 (2015).Article 

    Google Scholar 
    Cooke, S. J. & Cowx, I. G. The Role of Recreational Fishing in Global Fish Crises. BioScience 54, 857 (2004).Article 

    Google Scholar 
    World Bank. Hidden harvest: The global contribution of capture fisheries (World Bank, Washington, DC), Report 66469-GLB (2012).Nyboer, E. A. et al. Overturning stereotypes: the fuzzy boundary between recreation and subsistence in inland fisheries. Fish and Fisheries https://doi.org/10.1111/faf.12688 (2022).Article 

    Google Scholar 
    Gupta, N. et al. Catch-and-release angling as a management tool for freshwater fish conservation in India. Oryx 50, 250–256 (2016).Article 

    Google Scholar 
    Bower, S. D. et al. Knowledge Gaps and Management Priorities for Recreational Fisheries in the Developing World. Reviews in Fisheries Science & Aquaculture 1–18, https://doi.org/10.1080/23308249.2020.1770689 (2020).FAO. The State of World Fisheries and Aquaculture – 2016 (SOFIA). Rome, Italy (2016).Golden, C. D. et al. Aquatic foods to nourish nations. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 
    PubMed 

    Google Scholar 
    Cooke, S. J. et al. The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries 19, 201–224 (2018).Article 

    Google Scholar 
    Joosse, S., Hensle, L., Boonstra, W. J., Ponzelar, C. & Olsson, J. Fishing in the city for food—a paradigmatic case of sustainability in urban blue space. npj Urban Sustain 1, 41, https://doi.org/10.1038/s42949-021-00043-9 (2021).Article 

    Google Scholar 
    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National Academy of Sciences 115, 7623–7628 (2018).CAS 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture – 2020 (SOFIA). Rome, Italy. (2020).IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.3831674 (2019).Arlinghaus, R. et al. Global Participation in and Public Attitudes Toward Recreational Fishing: International Perspectives and Developments. Reviews in Fisheries Science & Aquaculture 29, 58–95 (2021).Article 

    Google Scholar 
    Chan, N. “Large Ocean States”: Sovereignty, Small Islands, and Marine Protected Areas in Global Oceans Governance. Global Governance: A Review of Multilateralism and International Organizations 24, 537–555 (2018).Article 

    Google Scholar 
    Arlinghaus, R. & Cooke, S. J. Recreational Fisheries: Socioeconomic Importance, Conservation Issues and Management Challenges. in Recreational Hunting, Conservation and Rural Livelihoods (eds. Dickson, B., Hutton, J. & Adams, W. M.) 39–58, https://doi.org/10.1002/9781444303179.ch3 (Wiley-Blackwell, 2009).Arlinghaus, R. et al. Opinion: Governing the recreational dimension of global fisheries. Proceedings of the National Academy of Sciences 116, 5209–5213 (2019).CAS 
    Article 

    Google Scholar 
    Cisneros-Montemayor, A. M. & Sumaila, U. R. A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. Journal of Bioeconomics 12, 245–268 (2010).Article 

    Google Scholar 
    Czarkowski, T., Wołos, A. & Kapusta, A. Socio-economic portrait of Polish anglers and its implications for recreational fisheries management in freshwater bodies. Aquatic Living Resources 19, 14, https://doi.org/10.1051/alr/2021018 (2021).Article 

    Google Scholar 
    Dill, W. A. Inland Fisheries of Europe. Italy: Food and Agriculture Organization of the United Nations. (1993).Baigún, C., Oldani, N., Madirolas, A. & Colombo, G. A. Assessment of Fish Yield in Patagonian Lakes (Argentina): Development and Application of Empirical Models. Transactions of the American Fisheries Society 136, 846–857 (2007).Article 

    Google Scholar 
    Vigliano, P. H., Bechara, J., & Quiros, R. Allocation policies and its implications for recreational fisheries management in inland waters of Argentina. Sharing the Fish ‘06, 210 (2006).Henry, G. W., & Lyle, J. M. National recreational and indigenous fishing survey. (2003).Murphy J. J. et al. Survey of recreational fishing in NSW, 2019/20 – Key Results. Fisheries Final Report Series No. 161. Department of Primary Industries, New South Wales. 180 pp. (2022).Aas, Øystein, ed. Global challenges in recreational fisheries. (John Wiley & Sons, 2008).DoF. Yearbook of Fisheries Statistics of Bangladesh, 2017-18. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries. 35: p. 129 (2018).Mozumder, M., Uddin, M., Schneider, P., Islam, M. & Shamsuzzaman, M. Fisheries-Based Ecotourism in Bangladesh: Potentials and Challenges. Resources 7, 61 (2018).Article 

    Google Scholar 
    Craig, John F., ed. Freshwater fisheries ecology. (John Wiley & Sons, 2016).Barkhuizen, L. M., Weyl, O. L. F. & Van As, J. G. An assessment of recreational bank angling in the Free State Province, South Africa, using licence sale and tournament data. WSA 43, 442 (2017).Article 

    Google Scholar 
    Treer, T. & Kubatov, I. The co-existence of recreational and artisanal fisheries in the central parts of the Danube and Sava rivers. Croatian Journal of Fisheries 75(3), 116–127 (2017).
    Google Scholar 
    Freire, K. M. F., Machado, M. L. & Crepaldi, D. Overview of Inland Recreational Fisheries in Brazil. Fisheries 37, 484–494 (2012).Article 

    Google Scholar 
    Freire, K. M. F. et al. Brazilian recreational fisheries: current status, challenges and future direction. Fish Manag Ecol 23, 276–290, https://doi.org/10.1111/fme.12171 (2016).Article 

    Google Scholar 
    Fisheries and Oceans Canada. Survey of Recreational Fishing in Canada, 2015. 26 (2019).Arismendi, I. & Nahuelhual, L. Non-native Salmon and Trout Recreational Fishing in Lake Llanquihue, Southern Chile: Economic Benefits and Management Implications. Reviews in Fisheries Science 15, 311–325 (2007).Article 

    Google Scholar 
    Lyach, R., & Čech, M. Differences in fish harvest, fishing effort, and angling guard activities between urban and natural fishing grounds. Urban Ecosystems, 1–13 (2019).Lyach, R. The effect of fishing effort, fish stocking, and population density of overwintering cormorants on the harvest and recapture rates of three rheophilic fish species in central Europe. Fisheries Research 223, 105440 (2020).Article 

    Google Scholar 
    Lyach, R. The effect of a large-scale angling restriction in minimum angling size on harvest rates, recapture rates, and average body weight of harvested common carps Cyprinus carpio. Fisheries Research 223, 105438 (2020).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. Journal of Applied Ichthyology 35(5), 1094:1104 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Does harvest of the European grayling, Thymallus thymallus (Actinopterygii: Salmoniformes: Salmonidae), change over time with different intensity of fish stocking and fishing effort? Acta Ichthyol. Piscat. 50(1), 53–62 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. The effects of environmental factors and fisheries management on recreational catches of perch Perca fluviatilis in the Czech Republic. Aquatic Living Resources 32, 15, https://doi.org/10.1051/alr/2019013 (2019).Article 

    Google Scholar 
    Rasmussen, G. & Geertz‐Hansen, P. Fisheries management in inland and coastal waters in Denmark from 1987 to 1999. Fisheries Management and Ecology 8(4‐5), 311–322 (2001).
    Google Scholar 
    Armulik, T. & Sirp, S. Estonian Fishery 2018. (2019).Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries. FAO Fisheries and Aquaculture Circular No. 942, Rev. 2. Rome, FAO. 97 pp. (2011).West Greenland Commission, 2020 Report on the Salmon Fishery in Greenland. 8 (2020).Guðbergsson, G. Catch statistics for Atlantic salmon, Arctic char and brown trout in Icelandic rivers and lakes 2013. Institute of Freshwater Fisheries, Iceland Report VMST/14045 (2014).Inland Fisheries Ireland. Wild Salmon and Sea Trout Statistics Report. IFI/2020/1-4513 (2019).Vycius, J. & Radzevicius, A. Fishery and Fishculture Challenges in Lithuania. International Journal of Water Resources Development 25(1), 81–94, https://doi.org/10.1080/07900620802576240 (2009).Article 

    Google Scholar 
    Bacal, P., Jeleapov, A., Burduja, V. D., & Moroz, I. State and use of lakes from central region of the Republic of Moldova. Present Environment and Sustainable Development, (2), 141–156 (2019).Moroccan Ministry of Fisheries, Annual Report of Fisheries and Fish Farming in Inland Waters, Season 2020/2021 (2021).Centre for Fisheries Research. Recreational fisheries in the Netherlands: Analyses of the 2017 screening survey and the 2016–2017 logbook survey. CVO report: 18.025 (2019).Dedual, M. & Rohan, M. Long‐term trends in the catch characteristics of rainbow trout Oncorhynchus mykiss, in a self‐sustained recreational fishery, Tongariro River, New Zealand. Fisheries Management and Ecology 23(3-4), 234–242 (2016).Article 

    Google Scholar 
    Unwin, M.J. Angler usage of New Zealand lake and river fisheries. National Institute of Water and Atmospheric Research (2016).Ipinmoroti, M. O. & Ayanboye, O. Biological and socioeconomic viability of recreational fisheries of two Nigerian lakes. IIFET 2012 Tanzania Proceedings (2012).Amaral, S., Ferreira, M.T., Cravo, M.T. Resultado do ‘Inquérito aos Pescadores Desportivos de Áquas Intenores” realizado pela Direcção Geral das Florestas em 1998 a 1999. Pesca Desportivos em Albufeiras do Centro e Sul de Portugal: Contribuição para a reduçao da eutrofização. Instituto Superior de Agronomia. Autoridade Florestal Nacional. Lisboa: III.1-III.53. (2010).Povž, M., Šumer, S. & Leiner, S. Sport fishing catch as an indicator of population size of the Danube roach Rutilus pigus virgo in Slovenia (Cyprinidae). Italian Journal of Zoology 65(S1), 545–548 (1998).Article 

    Google Scholar 
    Embke, H. S., Beard, T. D., Lynch, A. J. & Vander Zanden, M. J. Fishing for Food: Quantifying Recreational Fisheries Harvest in Wisconsin Lakes. Fisheries fsh.10486, https://doi.org/10.1002/fsh.10486 (2020).Karimov, B. et al. Inland capture fisheries and aquaculture in the Republic of Uzbekistan: current status and planning. FAO Fisheries and Aquaculture Circular. No. 1030/1. Rome, FAO. 124 p. (2009).Magqina, T., Nhiwatiwa, T., Dalu, M. T., Mhlanga, L. & Dalu, T. Challenges and possible impacts of artisanal and recreational fisheries on tigerfish Hydrocynus vittatus Castelnau 1861 populations in Lake Kariba, Zimbabwe. Scientific African 10, e00613 (2020).Article 

    Google Scholar 
    Embke, H. S. Global dataset of species-specific inland recreational fisheries harvest for consumption. U.S. Geological Survey https://doi.org/10.5066/P9904C3R (2022).Amano, T., González-Varo, J. P. & Sutherland, W. J. Languages are still a major barrier to global science. PLoS biology 14(12), e2000933 (2016).Article 

    Google Scholar 
    Cooke, S. J. et al. Recreational fisheries in inland waters. In J. F. Craig (Ed.) Freshwater Fisheries Ecology. John Wiley and Sons Ltd. (2016). More

  • in

    Even modest climate change may lead to major transitions in boreal forests

    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).Article 

    Google Scholar 
    Wang, Y., Hogg, H. E., Price, T. D., Edwards, J. & Williamson, T. Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chron. 90, 678–691 (2014).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. Forest Ecol. Manag. 448, 355–363 (2019).Article 

    Google Scholar 
    Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).ADS 
    Article 

    Google Scholar 
    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).ADS 
    Article 

    Google Scholar 
    Tam, B. Y. et al. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can. Water Resour. J. 44, 90–107 (2019).Article 

    Google Scholar 
    Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol. 17, 927–942 (2011).ADS 
    Article 

    Google Scholar 
    Zhao, J., Hartmann, H., Trumbore, S., Ziegler, W. & Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 200, 330–339 (2013).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).Article 

    Google Scholar 
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    Article 

    Google Scholar 
    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).ADS 
    Article 

    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).ADS 
    Article 

    Google Scholar 
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).ADS 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).ADS 
    Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Rodgers, V. L., Smith, N. G., Hoeppner, S. S. & Dukes, J. S. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB Plants 10, ply003 (2018).Article 

    Google Scholar 
    Moyes, A. B., Castanha, C., Germino, M. J. & Kueppers, L. M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171, 271–282 (2013).ADS 
    Article 

    Google Scholar 
    Balducci, L. et al. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 66, 377–389 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Chang. 5, 148–152 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Coursolle, C. et al. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. Forest Res. 42, 1908–1918 (2012).CAS 
    Article 

    Google Scholar 
    Khomik, M., Williams, C. A., Vanderhoof, M. K., MacLean, R. G. & Dillen, S. Y. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiol. 34, 686–700 (2014).Article 

    Google Scholar 
    Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Friedman, S. K. & Reich, P. B. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol. Appl. 15, 726–744 (2005).Article 

    Google Scholar 
    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.0.1 for Phase 2 https://www.fia.fs.fed.us/library/database-documentation/ (Forest Service, US Department of Agriculture, 2022).Cumming, S. G. et al. A gap analysis of tree species representation in the protected areas of the Canadian boreal forest: applying a new assemblage of digital Forest Resource Inventory data. Can. J. Forest Res. 45, 163–173 (2015).Article 

    Google Scholar 
    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401 (2013).Article 

    Google Scholar 
    Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).ADS 
    Article 

    Google Scholar 
    Stralberg, D. et al. Climate‐change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).Article 

    Google Scholar 
    Solarik, K. A., Cazelles, K., Messier, C., Bergeron, Y. & Gravel, D. Priority effects will impede range shifts of temperate tree species into the boreal forest. J. Ecol. 108, 1155–1173 (2020).Article 

    Google Scholar 
    Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. & Reich, P. B. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest. Glob. Chang. Biol. 26, 746–759 (2020).ADS 
    Article 

    Google Scholar 
    Perala, D. A. How endemic injuries affect early growth of aspen suckers. Can. J. Forest Res. 14, 755–762 (1984).Article 

    Google Scholar 
    Buckman, R. E. Effects of prescribed burning on hazel in Minnesota. Ecology 45, 626–629 (1964).Article 

    Google Scholar 
    Harvey, B. D. & Bergeron, Y. Site patterns of natural regeneration following clear-cutting in northwestern Quebec. Can. J. Forest Res. 19, 1458–1469 (1989).Article 

    Google Scholar 
    Harris, I. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Peters, M. P., Prasad, A. M., Matthews, S. N. & Iverson, L. R. Climate Change Tree Atlas, Version 4 https://www.nrs.fs.fed.us/atlas (Northern Research Station and Northern Institute of Applied Climate Science, US Forest Service, 2020)Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).Article 

    Google Scholar  More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More