More stories

  • in

    Even modest climate change may lead to major transitions in boreal forests

    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).Article 

    Google Scholar 
    Wang, Y., Hogg, H. E., Price, T. D., Edwards, J. & Williamson, T. Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chron. 90, 678–691 (2014).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. Forest Ecol. Manag. 448, 355–363 (2019).Article 

    Google Scholar 
    Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).ADS 
    Article 

    Google Scholar 
    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).ADS 
    Article 

    Google Scholar 
    Tam, B. Y. et al. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can. Water Resour. J. 44, 90–107 (2019).Article 

    Google Scholar 
    Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol. 17, 927–942 (2011).ADS 
    Article 

    Google Scholar 
    Zhao, J., Hartmann, H., Trumbore, S., Ziegler, W. & Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 200, 330–339 (2013).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).Article 

    Google Scholar 
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    Article 

    Google Scholar 
    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).ADS 
    Article 

    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).ADS 
    Article 

    Google Scholar 
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).ADS 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).ADS 
    Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Rodgers, V. L., Smith, N. G., Hoeppner, S. S. & Dukes, J. S. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB Plants 10, ply003 (2018).Article 

    Google Scholar 
    Moyes, A. B., Castanha, C., Germino, M. J. & Kueppers, L. M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171, 271–282 (2013).ADS 
    Article 

    Google Scholar 
    Balducci, L. et al. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 66, 377–389 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Chang. 5, 148–152 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Coursolle, C. et al. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. Forest Res. 42, 1908–1918 (2012).CAS 
    Article 

    Google Scholar 
    Khomik, M., Williams, C. A., Vanderhoof, M. K., MacLean, R. G. & Dillen, S. Y. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiol. 34, 686–700 (2014).Article 

    Google Scholar 
    Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Friedman, S. K. & Reich, P. B. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol. Appl. 15, 726–744 (2005).Article 

    Google Scholar 
    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.0.1 for Phase 2 https://www.fia.fs.fed.us/library/database-documentation/ (Forest Service, US Department of Agriculture, 2022).Cumming, S. G. et al. A gap analysis of tree species representation in the protected areas of the Canadian boreal forest: applying a new assemblage of digital Forest Resource Inventory data. Can. J. Forest Res. 45, 163–173 (2015).Article 

    Google Scholar 
    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401 (2013).Article 

    Google Scholar 
    Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).ADS 
    Article 

    Google Scholar 
    Stralberg, D. et al. Climate‐change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).Article 

    Google Scholar 
    Solarik, K. A., Cazelles, K., Messier, C., Bergeron, Y. & Gravel, D. Priority effects will impede range shifts of temperate tree species into the boreal forest. J. Ecol. 108, 1155–1173 (2020).Article 

    Google Scholar 
    Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. & Reich, P. B. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest. Glob. Chang. Biol. 26, 746–759 (2020).ADS 
    Article 

    Google Scholar 
    Perala, D. A. How endemic injuries affect early growth of aspen suckers. Can. J. Forest Res. 14, 755–762 (1984).Article 

    Google Scholar 
    Buckman, R. E. Effects of prescribed burning on hazel in Minnesota. Ecology 45, 626–629 (1964).Article 

    Google Scholar 
    Harvey, B. D. & Bergeron, Y. Site patterns of natural regeneration following clear-cutting in northwestern Quebec. Can. J. Forest Res. 19, 1458–1469 (1989).Article 

    Google Scholar 
    Harris, I. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Peters, M. P., Prasad, A. M., Matthews, S. N. & Iverson, L. R. Climate Change Tree Atlas, Version 4 https://www.nrs.fs.fed.us/atlas (Northern Research Station and Northern Institute of Applied Climate Science, US Forest Service, 2020)Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).Article 

    Google Scholar  More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More

  • in

    Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40. https://doi.org/10.1126/science.281.5374.237CAS 
    Article 
    PubMed 

    Google Scholar 
    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9. https://doi.org/10.1126/science.1153213CAS 
    Article 
    PubMed 

    Google Scholar 
    Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722. https://doi.org/10.1126/science.aac4722Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. 2010;7:979–1005. https://doi.org/10.5194/bg-7-979-2010CAS 
    Article 

    Google Scholar 
    Henson SA, Cael BB, Allen SR, Dutkiewicz S. Future phytoplankton diversity in a changing climate. Nat Commun. 2021;12:5372. https://doi.org/10.1038/s41467-021-25699-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8. https://doi.org/10.1126/science.1224836CAS 
    Article 
    PubMed 

    Google Scholar 
    Collins S, Boyd PW, Doblin MA. Evolution, microbes, and changing ocean conditions. Annu Rev Mar Sci. 2020;12:181–208. https://doi.org/10.1146/annurev-marine-010318-095311Article 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719. https://doi.org/10.1038/s41467-018-03906-5CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck KT, Riebesell U, Reusch TBH. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346–51. https://doi.org/10.1038/ngeo1441CAS 
    Article 

    Google Scholar 
    Jin P, Gao K, Beardall J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution. 2013;67:1869–78. https://doi.org/10.1111/evo.12112CAS 
    Article 
    PubMed 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30. https://doi.org/10.1038/nclimate2379CAS 
    Article 

    Google Scholar 
    Listmann L, LeRoch M, Schlüter L, Thomas MK, Reusch TBH. Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl. 2016;9:1156–64. https://doi.org/10.1111/eva.12362Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167. https://doi.org/10.1016/j.scitotenv.2021.145167CAS 
    Article 
    PubMed 

    Google Scholar 
    Brennan GL, Colegrave N, Collins S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci USA. 2017;114:9930–5. https://doi.org/10.1073/pnas.1703375114CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang S, Wu Y, Lin L, Wang D. Molecular insights into the circadian clock in marine diatoms. Acta Oceano Sin. 2022;41:1–12. https://doi.org/10.1007/s13131-021-1962-4Article 

    Google Scholar 
    Nagelkerken I, Connell SD. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA. 2015;112:13272–7. https://doi.org/10.1073/pnas.1510856112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review. Glob Change Biol. 2018;24:2239–61. https://doi.org/10.1111/gcb.14102Article 

    Google Scholar 
    Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res. 2011;109:191–203. https://doi.org/10.1007/s11120-011-9623-7CAS 
    Article 
    PubMed 

    Google Scholar 
    Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, et al. CO2-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 2012;158:499–513. https://doi.org/10.1104/pp.111.190249CAS 
    Article 
    PubMed 

    Google Scholar 
    Hennon GMM, Ashworth J, Groussman RD, Berthiaume C, Morales RL, Baliga NS, et al. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Change. 2015;5:761–5. https://doi.org/10.1038/nclimate2683CAS 
    Article 

    Google Scholar 
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84. https://doi.org/10.1038/nclimate1989CAS 
    Article 

    Google Scholar 
    Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Mar Sci. 2019;6:322. https://doi.org/10.3389/fmars.2019.00322Article 

    Google Scholar 
    Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 2020;11:971. https://doi.org/10.1038/s41467-020-14776-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, et al. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nat Plants. 2020;6:1031–43. https://doi.org/10.1038/s41477-020-0729-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Van den Bergh B, Swings T, Fauvart M, Michels J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol Mol Biol Rev. 2018;82:e00008–18.PubMed 
    PubMed Central 

    Google Scholar 
    Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457–69. https://doi.org/10.1038/nrg1088CAS 
    Article 
    PubMed 

    Google Scholar 
    Colegrave N, Collins S. Experimental evolution: experimental evolution and evolvability. Heredity. 2008;100:464–70. https://doi.org/10.1038/sj.hdy.6801095CAS 
    Article 
    PubMed 

    Google Scholar 
    Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, et al. A reduction in metabolism explains the trade‐offs associated with the long‐term adaptation of phytoplankton to high CO2 concentrations. N Phytol. 2022;233:2155–67. https://doi.org/10.1111/nph.17917CAS 
    Article 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9. https://doi.org/10.1073/pnas.1307701110CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, Mcllvin MR, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun. 2015;6:8155. https://doi.org/10.1038/ncomms9155Article 
    PubMed 

    Google Scholar 
    Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett. 2016;19:133–42.Article 

    Google Scholar 
    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–54. https://doi.org/10.1126/science.aan5712CAS 
    Article 
    PubMed 

    Google Scholar 
    Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325:1095–8. https://doi.org/10.1126/science.1175826CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–5. https://doi.org/10.1038/nature17951CAS 
    Article 
    PubMed 

    Google Scholar 
    Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun. 2019;10:5821. https://doi.org/10.1038/s41467-019-13767-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai YT, Yeung CK, Omland KE, Pang EL, Hao Y, Liao BY, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci USA. 2019;116:2152–7. https://doi.org/10.1073/pnas.1813597116Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92. https://doi.org/10.1038/nature08057CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, et al. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. ISME J. 2020;14:347–63. https://doi.org/10.1038/s41396-019-0528-3Article 
    PubMed 

    Google Scholar 
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett. 2020;23:722–33.Article 

    Google Scholar 
    Guillard RR, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8:229–39. https://doi.org/10.1139/m62-029CAS 
    Article 
    PubMed 

    Google Scholar 
    Huysman MJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, et al. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 2010;11:R17. https://doi.org/10.1186/gb-2010-11-2-r17CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC; 2021.Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2004;40:651–4. https://doi.org/10.1111/j.1529-8817.2004.03112.xCAS 
    Article 

    Google Scholar 
    Pérez EB, Pina IC, Rodríguez LP. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 2008;40:520–5. https://doi.org/10.1016/j.bej.2008.02.007CAS 
    Article 

    Google Scholar 
    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study. PLoS One. 2013;8:e63091 https://doi.org/10.1371/journal.pone.0063091CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng X, Jin P, Jiang Y, Yang H, Zhong J, Liang Z, et al. Light alters the responses of two marine diatoms to increased warming. Mar Environ Res. 2020;154:104871. https://doi.org/10.1016/j.marenvres.2019.104871CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.CAS 
    Article 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. https://doi.org/10.1093/nar/gkq603CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gifford RM. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol. 2003;30:171–86. https://doi.org/10.1071/FP02083Article 
    PubMed 

    Google Scholar 
    Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 1976;21:540–7. https://doi.org/10.4319/lo.1976.21.4.0540CAS 
    Article 

    Google Scholar  More

  • in

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Short-term experimentsPotential toxic and cryoprotection effects of different CPA combinationsFocusing on toxicity bioassays (Figs. 1A, 2A), although there were certain CPA combinations that yielded significant abnormality percentages compared to controls, in general the CPA combinations did not yield any significant toxic effect. The use of Milli-Q Water instead of FSW did not enhance normal larval development after CPA exposure, neither did the addition of PVP at the concentrations tested, even in combination with trehalose (TRE) (p  > 0.05). In fact, the highest concentrations of PVP used in this experiment (9 and 12%) yielded significant abnormal development on exposed trochophores (Fig. 1A) (p  More

  • in

    The early arrival of spring doesn’t boost annual tree growth

    Dow, C. et al. Nature 608, 552–557 (2022).Article 

    Google Scholar 
    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    Menzel, A. & Fabian, P. Nature 397, 659 (1999).Article 

    Google Scholar 
    Piao, S. et al. Nature Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Cuny, H. E. et al. Nature Plants 1, 15160 (2015).PubMed 
    Article 

    Google Scholar 
    Körner, C. Curr. Opin. Plant Biol. 25, 107–114 (2015).PubMed 
    Article 

    Google Scholar 
    Gessler, A. & Treydte, K. New Phytol. 209, 1338–1340 (2016).PubMed 
    Article 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. New Phytol. 232, 25–41 (2021).PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. Nature 580, 227–231 (2020).PubMed 
    Article 

    Google Scholar 
    Guillemot, J. et al. New Phytol. 214, 180–193 (2017).PubMed 
    Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. New Phytol. 221, 652–668 (2019).PubMed 
    Article 

    Google Scholar 
    Friend, A. D. et al. Annu. For. Sci. 76, 49 (2019).Article 

    Google Scholar 
    Zuidema, P. A., Poulter, B. & Frank, D. C. Trends Plant Sci. 23, 1006–1015 (2018).PubMed 
    Article 

    Google Scholar 
    Martínez-Sancho, E., Treydte, K., Lehmann, M. M., Rigling, A. & Fonti, P. New Phytol. https://doi.org/10.1111/nph.18224 (2022).Article 

    Google Scholar  More

  • in

    IPBES responds to critics of its assessment of wild-species use

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran

    Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 

    Google Scholar 
    Vamberger, M. et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool. Scr. 44, 233–249 (2015).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib. Reptil. 30, 63–80 (2009).Article 

    Google Scholar 
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex;Testudines, Testudinidae). Amphib. Reptil. 28, 97–121 (2007).Article 

    Google Scholar 
    Mikulíček, P., Jandzik, D., Fritz, U., Schneider, C. & Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108, 151–160 (2013).Article 

    Google Scholar 
    Parham, J. F. et al. Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises. Proc. Calif. Acad. Sci. 57, 955–964 (2006).
    Google Scholar 
    Javanbakht, H. et al. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 121, 627–640 (2017).Article 

    Google Scholar 
    Mashkaryan, V. et al. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib. Reptilia. 34, 337–351 (2013).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Lavin, B. R., Bardakcı, F. & Parham, J. F. Morphological and mitochondrial variation of spur-thighed tortoises, Testudo graeca, Turkey. Herpetol. J. 28, 1–9 (2017).
    Google Scholar 
    Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines:Testudinidae). Biol. J. Linn. Soc. 121(3), 641–654 (2017).Article 

    Google Scholar 
    Harris, D. J., Znari, M., Macé, J. C. & Carretero, M. A. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17, 5–9 (2003).
    Google Scholar 
    Van Der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5, 29 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Highfield, A. C. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelonian. Herpetol. 1, 1–56 (1990).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758–Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17, 19–47 (2004).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15, 3–28 (2002).
    Google Scholar 
    Pieh, A. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest Marokko). Salamandra 36, 209–222 (2000).
    Google Scholar 
    Arakelyan, M., Türkozan, O., Hezaveh, N. & Parham, J. F. Ecomorphology of tortoises (Testudo graeca complex) from the Araks river valley. Russ. J. Herpetol. 25, 245–252 (2018).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Parham, J. F., Olgun, K. & Taskavak, E. A quantitative reassessment of morphology based taxonomic schemes for Turkish tortoises. Amphib. Reptil. 31, 69–83 (2010).Article 

    Google Scholar 
    Van Dijk, P. P., Corti, C., Mellado, V. P. & Cheylan, M. Testudo graeca. The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species. Version 12/2004 (2004).Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Pringle, R. M., Webb, J. K. & Shine, R. Canopy structure, microclimate, and habitat selection by a nocturnal snake (Hoplocephalus bungaroides). Ecology 84, 2668–2679 (2003).Article 

    Google Scholar 
    Rastegar-Pouyani, N. et al. Sustainable management of the Herpetofauna of the Iranian Plateau and coastal Iran. Amphib. Reptil. Conserv. 9, 1–15 (2015).
    Google Scholar 
    Rouag, R., Ziane, N. & Benyacoub, S. Home range of the spur-thighed tortoise, Testudo graeca (Testudines, Testudinidae), in the national park of El-Kala, Algeria. Vestn. Zool. 51, 45–52 (2017).Article 

    Google Scholar 
    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, 721–735 (2020).Article 
    CAS 

    Google Scholar 
    Frankham, R., Ballou, J., Briscoe, D., & McInnes, K. Frontmatter. In A Primer of Conservation Genetics I–Iv (Cambridge University Press, 2004).Rhodin, A. G. J., Iverson, J. B., Bour, R., Fritz, U., Georges, A., Shaffer, H. B. & van Dijk, P.P. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.) (2021).Heshmati, G. A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2, 215–224 (2007).
    Google Scholar 
    Graciá, E. et al. Human-mediated secondary contact of two tortoise lineages results in sex-biased introgression. Sci. Rep. 7, 4019 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vamberger, M., Corti, C., Stuckas, H. & Fritz, U. Is the imperilled Spur-thighed tortoise (Testudo graeca) native in Sardinia? Implications from population genetics and for conservation. Amphib. Reptil. 32, 9–25 (2011).Article 

    Google Scholar 
    Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and longterm deformation rates. Tectonics 23, TC2008. https://doi.org/10.1029/2003TC001530 (2004).ADS 
    Article 

    Google Scholar 
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the revolution. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    Golubovi, A., Tomovi, L. & Ivanovi, A. Geometry of self righting: the case of Hermann’s tortoises. Zool. Anz. 254, 99–105 (2015).Article 

    Google Scholar 
    Arakelyan, M., Parham J. F., Türkozan, O., & Danielyan, F. Sympatrisches Vorkommen Zweier For men von Testudo graeca. In Armenien und der Republik Nagorno-Karabakh Marginata 26–30 (2008).Guyot, G. & Devaux, B. Variation in shell morphology and color of Hermann’s tortoise, Testudo hermanni, in southern Europe. Chelonian Res. Found. 2, 390–395 (1997).
    Google Scholar 
    Macale, D., Venchi, A. & Scalici, M. Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60, 167–175 (2011).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—A case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. 48, 348–359 (2010).Article 

    Google Scholar 
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).Article 

    Google Scholar 
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carretero, M. A., Znari, M., Harris, D. J. & Macé, J. C. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55, 259–279 (2005).Article 

    Google Scholar 
    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    Ljubisavljević, K., Džukić, G., Vukov, T. D. & Kalezić, M. L. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the Central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    Casacci, L. P., Barbero, F. & Balletto, E. The evolutionarily significant unit concept and its applicability in biological conservation. Ital. J. Zool. 81, 182–193 (2014).Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Bio. 18, e3000411 (2020).CAS 
    Article 

    Google Scholar 
    Dutton, P. & Balazs, G. H. Simple biopsy technique for sampling skin for DNA analysis of sea turtles. M.T.N. 69, 9–10 (1995).
    Google Scholar 
    Filippi, E., Rugiero, L., Capula, M., Burke, R. L. & Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 9, 54–60 (2010).Article 

    Google Scholar 
    Fritz, U. et al. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool. Scr. 35, 531–543 (2006).Article 

    Google Scholar 
    Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32, 164–182 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elliott, N. G., Haskard, K. & Koslow, J. A. Morphometric analysis of orange roughy (Huplustetlius atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46, 202–220 (1995).Article 

    Google Scholar 
    Anadón, J. D. et al. Individualistic response to past climate changes: Niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38, 956–966 (2015).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    McKenzie, J. D. Minitab Student Release 14: Statistical Software for Education (Pearson Addison-Wesley, 2004).
    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 9–12 (2015).
    Google Scholar 
    Rohlf, F. J. & Slice, D. E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article 

    Google Scholar 
    Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2004).MATH 

    Google Scholar 
    Klingeberg, C. P. Morpho J: An integrated software package for geometric morphometric. Mol. Ecol. Resour. 11, 353–357 (2011).Article 

    Google Scholar  More

  • in

    Effects of oceanographic environment on the distribution and migration of Pacific saury (Cololabis saira) during main fishing season

    NPFC. 8th Meeting of the Small Scientific Committee on Pacific Saury Report. NPFC-2021-SSC PS08-Final Report. Preprint at https://www.npfc.int/meetings/8th-ssc-ps-meeting (2021).Hubbs, C. L. & Wisner, R. L. Revision of the sauries (Pisces, Scomberesocidae) with descriptions of two new genera and one new species. Fish. Bull. 77, 521–566 (1980).
    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes. Fish. Res. 60, 439–454 (2003).Article 

    Google Scholar 
    Huang, W. B. Comparisons of monthly and geographical variations in abundance and size composition of Pacific saury between the high-seas and coastal fishing grounds in the northwestern Pacific. Fish. Sci. 76, 21–31 (2010).CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Builer, J. L. & Mori, T. Growth of Pacific saury, Cololabis saira, in the northeastern and northwestern Pacific Ocean. Fish. Bull. 86, 489–498 (1988).
    Google Scholar 
    Nakaya, M. et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions. Fish. Sci. 76, 45–53 (2010).CAS 
    Article 

    Google Scholar 
    Kosaka, S. Life history of Pacific saury Cololabis saira in the Northwest Pacific and consideration of resource fluctuation based on it. Bull. Tohoku Natl. Fish. Res. Inst. 63, 1–96 (2000).
    Google Scholar 
    Suyama, S. Study on the age, growth, and maturation process of Pacific saury Cololabis saira (Brevoort) in the north Pacific. Bull. Fish. Res. Agen. 5, 68–113 (2002).
    Google Scholar 
    Huang, W. B., Lo, N. C. H., Chiu, T. S. & Chen, C. S. Geographical distribution and abundance of Pacific saury fishing stock in the Northwestern Pacific in relation to sea temperature. Zool. Stud. 46, 705–716 (2007).
    Google Scholar 
    Liu, S. et al. Using novel spawning ground indices to analyze the effects of climate change on Pacifc saury abundance. J. Mar. Syst. 191, 13–23 (2019).Article 

    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Long-term variability in the abundance of Pacific Saury in the Northwestern Pacific Ocean and climate changes during the last century. Bull. Jpn. Soc. Fish. Oceanogr. 66, 16–25 (2002).
    Google Scholar 
    Tian, Y., Ueno, Y., Suda, M. & Akamine, T. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century. J. Mar. Syst. 52, 235–257 (2004).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, T. Chlorophyll a variation in the Kuroshio Extension revealed with a mixed-layer tracking float: Implication on the long-term change of Pacific saury (Cololabis saira). Fish. Oceanogr. 16, 482–488 (2007).Article 

    Google Scholar 
    Fuji, T., Kurita, Y., Suyama, S. & Ambe, D. Estimating the spawning ground of Pacific saury Cololabis saira by using the distribution and geographical variation in maturation status of adult fish during the main spawning season. Fish. Oceanogr. 30, 382–396 (2020).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, Y. On the relationship between the Oyashio front and saury fishing grounds in the northewestern Pacific: A forecasting method for fishing ground locations. Fish. Oceanogr. 3, 172–181 (1994).Article 

    Google Scholar 
    Kuroda, H. & Yokouchi, K. Interdecadal decrease in potential fishing areas for Pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceanogr. 26, 439–454 (2017).Article 

    Google Scholar 
    Fukushima, S. Synoptic analysis of migration and fishing conditions of saury in the northwestern Pacific Ocean. Bull. Tohoku. Reg. Fish. Res. Lab 41, 1–70 (1979).
    Google Scholar 
    Sugisaki, H. & Kurita, Y. Daily rhythm and seasonal variation of feeding habit of Pacific saury (Cololabis saira) in relation to their migration and oceanographic conditions off Japan. Fish. Oceanogr. 13, 63–73 (2004).Article 

    Google Scholar 
    Huang, W. B. & Huang, Y. C. Maturity characteristics of Pacific saury during fishing season in the Northwest pacific. J. Mar. Sci. Tech. 23, 819–826 (2015).
    Google Scholar 
    Tseng, C. T. et al. Influence of climate-driven sea surface temperature increase on potential habitats of the Pacific saury (Cololabis saira). ICES J. Mar. Sci. 68, 1105–1113 (2011).Article 

    Google Scholar 
    Tseng, C. T. et al. Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Res II Top. Stud. Oceanogr. 107, 15–21 (2014).ADS 
    Article 

    Google Scholar 
    Hua, C., Li, F., Zhu, Q., Zhu, G. & Meng, L. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fish. Res. 221, 105408. https://doi.org/10.1016/j.fishres.2019.105408 (2020).Article 

    Google Scholar 
    Mugo, R., Saitoh, S. I., Nihira, A. & Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 19, 382–396 (2010).Article 

    Google Scholar 
    Yu, W., Chen, X., Chen, Y., Yi, Q. & Zhang, Y. Effects of environmental variations on the abundance of western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Acta Oceanol. Sin. 34, 43–51 (2015).CAS 
    Article 

    Google Scholar 
    Kakehi, S. et al. Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model. Ecol. Model. 431, 109150. https://doi.org/10.1016/j.ecolmodel.2020.109150 (2020).Article 

    Google Scholar 
    Swain, D. P. & Wade, E. J. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): Tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 60, 897–909 (2003).Article 

    Google Scholar 
    Chang, Y. J. et al. Modelling the impacts of environmental variation on habitat suitability for Pacific saury in the Northwestern Pacific Ocean. Fish. Oceanogr. 28, 291–304 (2018).Article 

    Google Scholar 
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).Article 

    Google Scholar 
    Oozeki, Y., Watanabe, Y. & Kitagawa, D. Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean. Fish. Oceanogr. 13, 44–53 (2004).Article 

    Google Scholar 
    Ito, S. I. et al. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish. Oceanogr. 13, 111–124 (2004).Article 

    Google Scholar 
    Miyamoto, H. et al. Geographic variation in feeding of Pacific saury Cololabis saira in June and July in the North Pacific Ocean. Fish. Oceanogr. 29, 558–571 (2020).CAS 
    Article 

    Google Scholar 
    Tseng, C. T. et al. Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES J. Mar. Sci. 70, 991–999 (2013).Article 

    Google Scholar 
    Ichii, T. et al. Oceanographic factors affecting interannual recruitment variability of Pacific saury (Cololabis saira) in the central and western North Pacific. Fish. Oceanogr. 27, 445–457 (2018).Article 

    Google Scholar 
    Coletto, J. L., Pinho, M. P. & Madureira, L. S. P. Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish. Oceanogr. 28, 82–93 (2018).Article 

    Google Scholar 
    Shi, Y., Zhu, Q., Hua, C. & Zhang, Y. Evaluation of saury stick-held net performance between model test and on-sea measurements. Haiyang Xuebao 41, 123–133 (2019).CAS 

    Google Scholar 
    Semedi, B., Saitoh, S., Saitoh, K. & Yoneta, K. Application of multi-sensor satellite remote sensing for determining distribution and movement of Pacific saury, Cololabis saira. Fish. Sci. 68, 1781–1784 (2002).Article 

    Google Scholar 
    Syah, A. F., Saitoh, S. I., Alabia, I. D. & Hirawake, T. Detection of potential fishing zone for Pacific saury (Cololabis saira) using generalized additive model and remotely sensed data. IOP Conf. Ser. Earth Env. Sci. 54, 012074. https://doi.org/10.1088/1755-1315/54/1/012074 (2017).Article 

    Google Scholar 
    Xing, Q. et al. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 201, 102743. https://doi.org/10.1016/j.pocean.2022.102743 (2022).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prants, S. V., Budyansky, M. V. & Uleysky, M. Y. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 90, 27–35 (2014).ADS 
    Article 

    Google Scholar 
    Saito, H., Tsuda, A. & Kasai, H. Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 49, 5463–5486 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Kurita, Y., Noto, M., Oozeki, Y. & Kitagawa, D. Growth and survival of Pacific Saury Cololabis saira in the Kuroshio-Oyashio transitional waters. J. Oceanogr. 59, 403–414 (2003).Article 

    Google Scholar 
    Bakun, A. Ocean eddies, predator pits and bluefin tuna: Implications of an inferred ‘low risk-limited payoff’ reproductive scheme of a (former) archetypical top predator. Fish Fish. 14, 424–438 (2013).Article 

    Google Scholar 
    Iwahashi, M., Isoda, Y., Ito, S. I., Oozeki, Y. & Suyama, S. Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the western North Pacific. Fish. Oceanogr. 15, 128–138 (2006).Article 

    Google Scholar 
    Oozeki, Y., Okunishi, T., Takasuka, A. & Ambe, D. Variability in transport processes of Pacific saury Cololabis saira larvae leading to their broad dispersal: Implications for their ecological role in the western North Pacific. Prog. Oceanogr. 138, 448–458 (2015).ADS 
    Article 

    Google Scholar 
    Polovina, J. J., Kleiber, P. & Kobayashi, D. R. Application of TOPEX-Poseidon satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996. Fish. Bull. 97, 132–143 (1999).
    Google Scholar 
    Kawai, H. Hydrography of the Kuroshio extension. In Kuroshio—Its Physical Aspects (eds Stommel, H. & Yoshida, K.) 235–352 (University of Tokyo, 1972).
    Google Scholar 
    Yamada, F. & Sekine, Y. Variations in sea surface temperature and 500 hPa height over the north Pacific with reference to the occurrence of anomalous southward Oyashio intrusion east of Japan. J. Meteorol. Soc Jpn. Ser. II 75, 995–1000 (1997).Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Stat. Sci. 1, 297–310 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Litzow, M. A., Hobday, A. J., Frusher, S. D., Dann, P. & Tuck, G. N. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia. Prog. Oceanogr. 141, 96–108 (2016).ADS 
    Article 

    Google Scholar 
    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).Article 

    Google Scholar  More