More stories

  • in

    The deglacial forest conundrum

    Birks, H. J. B. Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).Article 

    Google Scholar 
    Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).Article 

    Google Scholar 
    Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dyn. 37, 775–802 (2011).Article 

    Google Scholar 
    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).Article 

    Google Scholar 
    Harrison, S. BIOME 6000 DB classified plotfile version 1. https://doi.org/10.17864/1947.99. (2017).Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed 
    Article 

    Google Scholar 
    Neilson, R. P. et al. Forecasting regional to global plant migration in response to climate change. BioScience 55 https://academic.oup.com/bioscience/article/55/9/749/285963 (2005).Normand, S. et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B: Biol. Sci. 278, 3644–3653 (2011).Article 

    Google Scholar 
    Seltzer, A. M. et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021).Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, N. & Adams, J. M. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).Birks, H. J. B. & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Article 

    Google Scholar 
    Roberts, D. R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B: Biol. Sci. 282, 20142903 (2015).Clark, J. S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, S. & Overpeck, J. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Harrison, S. P. & Goñi, M. F. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).ADS 
    Article 

    Google Scholar 
    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).Article 

    Google Scholar 
    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).PubMed 
    Article 

    Google Scholar 
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).Article 

    Google Scholar 
    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).Article 

    Google Scholar 
    Jackson, S. T. & Williams, J. W. Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annu. Rev. Earth Planet. Sci. 32, 495–537 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 
    Article 

    Google Scholar 
    He, F. Simulating transient climate evolution of the last deglaciation with CCSM3 Dissertation at the University of Wisconsin – Madison (2011).Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. in Quaternary Science Reviews vol. 19 213–226 (Pergamon, 2000).He, C. et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Modeling Earth Syst. 5, 459–482 (2013).Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M. & Brovkin, V. Harmonising plant functional type distributions for evaluating Earth system models. Clim 15, 335–366 (2019).
    Google Scholar 
    Ni, J., Cao, X., Jeltsch, F. & Herzschuh, U. Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 33–47 (2014).Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Sobol, M. K., Scott, L. & Finkelstein, S. A. Reconstructing past biomes states using machine learning and modern pollen assemblages: a case study from Southern Africa. Quat. Sci. Rev. 212, 1–17 (2019).ADS 
    Article 

    Google Scholar 
    Marinova, E. et al. Pollen‐derived biomes in the Eastern Mediterranean–Black Sea–Caspian‐Corridor. J. Biogeogr. 45, 484–499 (2018).Article 

    Google Scholar 
    Cao, X. et al. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim. Past 15, 1503–1536 (2019).Article 

    Google Scholar 
    Geng, R. et al. Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for major taxa. Front. Ecol. Evol. 10, 508 (2022).Article 

    Google Scholar 
    Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).ADS 
    Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241 (2007).ADS 
    Article 

    Google Scholar 
    Githumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: Methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).ADS 
    Article 

    Google Scholar 
    Snell, R. S. et al. Using dynamic vegetation models to simulate plant range shifts. Ecography 37, 1184–1197 (2014).Article 

    Google Scholar 
    Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).Article 

    Google Scholar 
    Svenning, J. C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).Article 

    Google Scholar 
    Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Herzschuh, U. Legacy of the Last Glacial on the present‐day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 29, 198–206 (2020).Article 

    Google Scholar 
    Väliranta, M. et al. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Schulte, L., Li, C., Livsovski, S. & Herzschuh, U. Forest-permafrost feedbacks and glacial refugia help explain the unequal distribution of larch across continents. J. Biogeogr. 9, 0305–0270 (2022).
    Google Scholar 
    Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).Article 

    Google Scholar 
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).Article 

    Google Scholar 
    Pennington, W. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67, 105–118 (1986).Article 

    Google Scholar 
    MacDonald, G. M., Kremenetski, K. V. & Beilman, D. W. Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B: Biol. Sci. 363, 2285–2299 (2008).CAS 
    Article 

    Google Scholar 
    Prentice, I. C., Bartlein, P. J. & Webb, T. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).Article 

    Google Scholar 
    Cao, X. Y., Herzschuh, U., Telford, R. J. & Ni, J. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Rev. Palaeobot. Palynol. 211, 87–96 (2014).Article 

    Google Scholar 
    Leroy, S. A. G., Arpe, K., Mikolajewicz, U. & Wu, J. Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum. Clim 16, 2039–2054 (2020).
    Google Scholar 
    Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020).Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reick, C. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Hamburg: MPI für Meteorologie. Berichte zur Erdsystemforsch. (2021).Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).ADS 
    Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).ADS 
    Article 

    Google Scholar 
    Loana Meccia, V. & Mikolajewicz, U. Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2). Geosci. Model Dev. 11, 4677–4692 (2018).ADS 
    Article 

    Google Scholar 
    Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geosci. Model Dev. 11, 4291–4316 (2018).ADS 
    Article 

    Google Scholar 
    Kapsch, M., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice‐sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).ADS 
    Article 

    Google Scholar 
    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18, 389–404 (2011).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Cao, X. Y., Ni, J., Herzschuh, U., Wang, Y. B. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).Article 

    Google Scholar 
    Bigelow, N. H. et al. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. Atmos. 108, 8170 (2003).Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wessel, P. et al. Generic mapping tools: improved version released. EOS Trans. AGU 94, 409–410 (2013).ADS 
    Article 

    Google Scholar  More

  • in

    First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea

    Schmidt, J. Breeding places and migrations of the eel. Nature 111, 51–54 (1923).ADS 
    Article 

    Google Scholar 
    Tucker, D. W. A new solution to the Atlantic eel problem. Nature 183, 495–501 (1959).ADS 
    Article 

    Google Scholar 
    Voorhis, A. D. & Hersey, J. B. Oceanic thermal fronts in the Sargasso Sea. J. Geophys. Res. 69(18), 3809–3814 (1964).ADS 
    Article 

    Google Scholar 
    Kleckner, R. C. & McCleave, J. D. The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J. Mar. Res. 46, 647–667 (1988).Article 

    Google Scholar 
    Ullman, D. S., Cornillon, P. C. & Shan, Z. On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res: Oceans 112, C01010 (2007).ADS 

    Google Scholar 
    Miller, M. J. et al. Spawning by the European eel across 2000 km of the Sargasso Sea. Biol. Lett. 15, 20180835 (2019).Article 

    Google Scholar 
    Westerberg, H. et al. Larval abundance across the European eel spawning area: An analysis of recent and historic data. Fish. 19, 890–902 (2018).
    Google Scholar 
    Halliwell, G. R. Jr., Olson, D. B. & Peng, G. Stability of the Sargasso Sea subtropical frontal zone. J. Phys. Oceanogr. 24(6), 1166–1183 (1994).ADS 
    Article 

    Google Scholar 
    van Ginneken, V. J. T. & Maes, G. E. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: A literature review. Rev. Fish Biol. Fish. 15, 367–398 (2005).Article 

    Google Scholar 
    Friedland, K. D., Miller, M. J. & Knights, B. Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J. Mar. Sci. 64, 519–530 (2007).Article 

    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).Article 

    Google Scholar 
    Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199 (2018).Article 

    Google Scholar 
    Righton, D. et al. Important questions to progress science and sustainable management of anguillid eels. Fish 22, 762–788 (2021).
    Google Scholar 
    Aoyama, J. Life history and evolution of migration in catadromous eels (genus Anguilla). Aquat. Bio Sci. Monogr. 2, 1–42 (2009).
    Google Scholar 
    Tsukamoto, K., Aoyama, J. & Miller, M. J. Migration, speciation, and the evolution of diadromy in anguillid eels. Can. J. Fish. Aquat. Sci. 59, 1989–1998 (2002).Article 

    Google Scholar 
    Tesch, F.-W. Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Env. Biol. Fish. 3, 203–209 (1978).Article 

    Google Scholar 
    Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Westerberg, H. et al. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).ADS 
    Article 

    Google Scholar 
    Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).ADS 
    Article 

    Google Scholar 
    Verhelst, P. et al. Mapping silver eel migration routes in the North Sea. Sci Rep. 12, 318 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroki, M. et al. Hatching time and larval growth of Atlantic eels in the Sargasso Sea. Mar. Biol. 164, 118. https://doi.org/10.1007/s00227-017-3150-9 (2017).Article 

    Google Scholar 
    Acton, L. et al. What is the Sargasso Sea? The problem of fixing space in a fluid ocean. Polit. Geogr. 68, 86–100 (2019).Article 

    Google Scholar 
    GEBCO Compilation Group. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).Miller, M. J. & Hanel, R. The Sargasso Sea Subtropical Gyre: The spawning and larval development area of both freshwater and marine eels. Sargasso Sea Alliance Science Report Series, 7, 20 pp (2011).Munk, P. et al. Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc. Biol. Sci. 277, 3593–3599 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Béguer-Pon, M., Castonguay, M., Shan, S., Benchetrit, J. & Dodson, J. J. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea. Nat. Commun. 6, 8705 (2015).ADS 
    Article 

    Google Scholar 
    Westin, L. The spawning migration of European silver eel (Anguilla anguilla L.) with particular reference to stocked eel in the Baltic. Fish. Res. 38(3), 257–270 (1998).
    Article 

    Google Scholar 
    Tesch, F.-W., Wendt, T. & Karlsson, L. Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol. Freshw. Fish 1(1), 52–60 (1992).Article 

    Google Scholar 
    Tesch, F.-W. The Eel (Blackwell Science, Oxford, UK, 2003).Book 

    Google Scholar 
    Durif, C. M. F. et al. Magnetic compass orientation in the European eel. PLoS ONE 8(3), e59212 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Schabetsberger, R. et al. Hydrographic features of anguillid spawning areas: Potential signposts for migrating eels. Mar. Ecol. Prog. Ser. 554, 141–155 (2016).ADS 
    Article 

    Google Scholar 
    Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).CAS 
    Article 

    Google Scholar 
    Dekker, W. Status of the European eel stock and fisheries. In Eel Biology (eds Aida, K. et al.) 237–254 (Springer, New York, 2003).Chapter 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish (Oxf) 19, 903–930 (2018).Article 

    Google Scholar 
    ICES. Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). ICES Scientific Reports. 2(85) (2020).Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species 2020: e.T60344A152845178 (2020).Durif, C., Dufour, S. & Elie, P. The silvering process of Anguilla anguilla: A new classification from the yellow resident to the silver migrating stage. J. Fish. Biol. 66, 1025–1043 (2005).Article 

    Google Scholar 
    Pankhurst, N. W. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla Anguilla (L.). J. Fish Biol. 21, 127–140 (1982).Article 

    Google Scholar 
    Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelem. 1, 3 (2013).Article 

    Google Scholar  More

  • in

    Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs

    Birkeland, C. Coral Reefs in the Anthropocene (Springer, 2015).Book 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39(1), 146–159. https://doi.org/10.1093/icb/39.1.146 (1999).Article 

    Google Scholar 
    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432. https://doi.org/10.1007/s00338-003-0330-5 (2003).Article 

    Google Scholar 
    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878. https://doi.org/10.1071/mf99121 (1999).Article 

    Google Scholar 
    Mies, M. et al. South atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 514. https://doi.org/10.3389/fmars.2020.00514 (2020).Article 

    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefsin a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116. https://doi.org/10.1590/S1679-875920160916064sp2 (2016).Article 

    Google Scholar 
    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126. https://doi.org/10.1007/s11160-013-9319-5 (2014).Article 

    Google Scholar 
    Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 118. https://doi.org/10.1890/ES11-00185.1 (2011).Article 

    Google Scholar 
    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Glob. Change Biol. 12, 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x (2006).ADS 
    Article 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. https://doi.org/10.1038/s43017-020-0068-4 (2020).ADS 
    Article 

    Google Scholar 
    Bleuel, J., Pennino, M. G. & Longo, G. O. Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci. Rep. 11, 12833. https://doi.org/10.1038/s41598-021-92202-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fontoura, L. et al. The macroecology of reef fish agonistic behaviour. Ecography 43, 1278–1290. https://doi.org/10.1111/ecog.05079 (2020).Article 

    Google Scholar 
    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Change Biol. 26, 6805–6812. https://doi.org/10.1111/gcb.15346 (2020).ADS 
    Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296. https://doi.org/10.1201/9781420065756.ch6 (2008).Article 

    Google Scholar 
    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x (2007).Article 
    PubMed 

    Google Scholar 
    Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. R. Soc. B 288, 20210274. https://doi.org/10.1098/rspb.2021.0274 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClenachan, L. Extinction risk in reef fishes 199–207 (Cambridge University Press, 2015).
    Google Scholar 
    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620. https://doi.org/10.2307/1312990 (1996).Article 

    Google Scholar 
    Pereira, P. H. C. et al. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol. Res. 61, 375–384. https://doi.org/10.1007/s10228-014-0409-8 (2014).Article 

    Google Scholar 
    Coni, E. O. C. et al. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fish. 96, 45–55. https://doi.org/10.1007/s10641-012-0021-6 (2013).Article 

    Google Scholar 
    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, 7650. https://doi.org/10.1126/sciadv.aay7650 (2020).ADS 
    Article 

    Google Scholar 
    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148. https://doi.org/10.1016/j.marenvres.2019.03.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452. https://doi.org/10.1371/journal.pone.0198452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and Coral Reefs of Brazil 9–52 (Elsevier Publisher, 2003).
    Google Scholar 
    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965. https://doi.org/10.1111/ddi.12729 (2018).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x (2008).Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169(5), 61. https://doi.org/10.1007/s00227-022-04045-8 (2022).Article 

    Google Scholar 
    Leal, I. C. S., Araújo, M. E. D., Cunha, S. R. D. & Pereira, P. H. C. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar. Environ. Res. 108, 45–54. https://doi.org/10.1016/j.marenvres.2015.04.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. A. Applied hierarchical modeling in ecology: Analysis of distribution abundance and species richness in R and BUGS. In Prelude and Static Models Vol. 1 (eds Kéry, M. & Royle, J. A.) (Academic Press, 2016).MATH 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.640619 (2021).Article 

    Google Scholar 
    McLean, M. et al. Trait similarity in reef fish faunas across the world’s oceans. PNAS 118(12), e2012318118. https://doi.org/10.1073/pnas.2012318118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf S. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).ADS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974).
    Google Scholar 
    Garcia, G. S., Dias, M. S. & Longo, G. O. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. J. Fish Biol. 99(3), 896–904. https://doi.org/10.1111/jfb.14776 (2021).Article 
    PubMed 

    Google Scholar 
    Quimbayo, J. P. et al. Life-history traits, geographical range, and conservation aspects ofreef fishes from the Atlantic and Eastern Pacific. Ecology 102, e03298. https://doi.org/10.1002/ecy.3298 (2021).Article 
    PubMed 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat. Biol. 16, 31–52. https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. https://doi.org/10.1890/07-1206.1 (2008).Article 
    PubMed 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740. https://doi.org/10.1111/geb.12299 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021)Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. R package version 1.5.2. https://CRAN.R-project.org/package=jagsUI (2021)Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish. 61, 353–369 (2001).Article 

    Google Scholar 
    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 21, 700–717. https://doi.org/10.1111/faf.12455 (2020).Article 

    Google Scholar 
    Ferreira, L. C. L. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168, 54. https://doi.org/10.1007/s00227-021-03863-6 (2021).CAS 
    Article 

    Google Scholar 
    Lonzetti, B. C., Vieira, E. A. & Longo, G. O. Ocean warming can help zoanthids outcompete branching hydrocorals. Coral Reefs 41, 175–189. https://doi.org/10.1007/s00338-021-02212-9 (2022).Article 

    Google Scholar 
    Grillo, A. C., Candido, C. F., Giglio, V. J. & Longo, G. O. Unusual high coral cover in a Southwestern Atlantic subtropical reef. Mar. Biodivers. 51, 77. https://doi.org/10.1007/s12526-021-01221-9 (2021).Article 

    Google Scholar 
    Matheus, Z. et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE 14(1), e0210664. https://doi.org/10.1371/journal.pone.0210664 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirelles, P. M. et al. Baseline assessment of mesophotic reefs of the vitória-trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6), e0130084. https://doi.org/10.1371/journal.pone.0130084 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x (2004).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol.-Prog. Ser. 367, 249–260. https://doi.org/10.3354/meps07580 (2008).ADS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a Tropical Western Atlantic reef ecosystem. Ecosystems 25, 843–857. https://doi.org/10.1007/s10021-021-00691-z (2022).Article 

    Google Scholar 
    Fogliarini, C. O., Longo, G. O., Francini-Filho, R. B., McClenachan, L. & Bender, M. G. Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. PECON 20(3), 231–239. https://doi.org/10.1007/10.1016/j.pecon.2022.05.003 (2022).Article 

    Google Scholar 
    Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. Marine ornamental trade in Brazil. Biodivers. Conserv. 14, 2883–2899. https://doi.org/10.1007/s10531-004-0222-1 (2005).Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Brazil 163–198 (Springer, 2019).
    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901. https://doi.org/10.1111/brv.12259 (2017).Article 
    PubMed 

    Google Scholar 
    Nunes, L. T. et al. Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago. Coral Reefs 38, 955–960. https://doi.org/10.1007/s00338-019-01822-8 (2019).ADS 
    Article 

    Google Scholar 
    Liedke, A. et al. Abundance, diet, foraging and nutritional condition of the banded butterflyfish (Chaetodon striatus) along the western Atlantic. Mar. Biol. 163, 6. https://doi.org/10.1007/s00227-015-2788-4 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Vapour pressure deficit determines critical thresholds for global coffee production under climate change

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P. & Grab, S. W. Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric. For. Meteorol. 207, 1–10 (2015).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biol. 25, 390–403 (2019).ADS 
    Article 

    Google Scholar 
    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).PubMed 
    Article 

    Google Scholar 
    Kath, J. et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biol. 26, 3677–3688 (2020).ADS 
    Article 

    Google Scholar 
    Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).PubMed 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 8, 723–729 (2018).ADS 
    Article 

    Google Scholar 
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schneider, S. H. Abrupt non-linear climate change, irreversibility and surprise. Global Environ. Change 14, 245–258 (2004).Article 

    Google Scholar 
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).ADS 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature. 575, 592–595 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigden, A., Mueller, N., Holbrook, N., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinclair, T. R. et al. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260, 109–118 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biol. 27, 1704–1720 (2021).ADS 
    Article 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1–7 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 10, 407–412 (2011).
    Google Scholar 
    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).ADS 
    Article 

    Google Scholar 
    IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32, 945–952 (2005).PubMed 
    Article 

    Google Scholar 
    Martins, M. Q. et al. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front. Plant Sci. 7, 947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodrigues, W. P. et al. Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biol. 22, 415–431 (2016).ADS 
    Article 

    Google Scholar 
    Ghini, R. et al. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Change 132, 307–320 (2015).ADS 
    Article 

    Google Scholar 
    Rakocevic, M. et al. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regul. 91, 305–316 (2020).CAS 
    Article 

    Google Scholar 
    Hammer, G. L. et al. Designing crops for adaptation to the drought and high‐temperature risks anticipated in future climates. Crop Sci. 60, 605–621 (2020).Article 

    Google Scholar 
    Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).PubMed 
    Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. Hot coffee: the identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 5, 740137 (2021).Article 

    Google Scholar 
    Sarmiento-Soler, A. et al. Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative growth in smallholder coffee systems. Agric. Ecosyst. Environ. 326, 107786 (2022).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. M. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Future 6, 410–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ovalle-Rivera, O. et al. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor. Syst. 94, 2033–2051 (2020).Article 

    Google Scholar 
    Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 1–8 (2006).Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Son, H. & Fong, Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models. Environmetrics 32, e2664 (2021).MathSciNet 
    Article 

    Google Scholar 
    Wintgens, J. N. et al. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers (Wiley, 2004). More

  • in

    Factors determining the dorsal coloration pattern of aposematic salamanders

    Dobzhansky, T. Geographical variation in lady-beetles. Am. Nat. 67, 97–126 (1933).Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wallace, A. R. The colors of animals and plants. Am. Nat. 11, 641–662. https://doi.org/10.1086/271979 (1877).Article 

    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).Article 

    Google Scholar 
    Branham, M. A. & Wenzel, J. W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1–22. https://doi.org/10.1016/s0748-3007(02)00131-7 (2003).Article 
    PubMed 

    Google Scholar 
    Maan, M. E. & Cummings, M. E. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62, 2334–2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x (2008).Article 
    PubMed 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Ruxton, G. D., Sherratt, T. N. & Michael, P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).Book 

    Google Scholar 
    Mappes, J., Marples, N. & Endler, J. A. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598–603 (2005).Article 

    Google Scholar 
    Joron, M. & Mallet, J. L. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).CAS 
    Article 

    Google Scholar 
    Summers, R. W. et al. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41, 513–525 (2004).Article 

    Google Scholar 
    Nokelainen, O., Hegna, R. H., Reudler, J. H., Lindstedt, C. & Mappes, J. Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc. R. Soc. B Biol. Sci. 279, 257–265 (2012).Article 

    Google Scholar 
    Ronka, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663. https://doi.org/10.1111/ele.13597 (2020).Article 
    PubMed 

    Google Scholar 
    Abram, P. K. et al. An insect with selective control of egg coloration. Curr. Biol. 25, 2007–2011. https://doi.org/10.1016/j.cub.2015.06.010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Briolat, E. S. et al. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94, 388–414. https://doi.org/10.1111/brv.12460 (2019).Article 
    PubMed 

    Google Scholar 
    Frost-Mason, S. K. & Mason, K. A. What insights into vertebrate pigmentation has the axolotl model system provided?. Int. J. Dev. Biol. 40, 685–693 (1996).CAS 
    PubMed 

    Google Scholar 
    Stückler, S., Cloer, S., Hödl, W. & Preininger, D. Carotenoid intake during early life mediates ontogenetic colour shifts and dynamic colour change during adulthood. Anim. Behav. 187, 121–135. https://doi.org/10.1016/j.anbehav.2022.03.007 (2022).Article 

    Google Scholar 
    Benito, M. M., Gonzalez-Solis, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549. https://doi.org/10.1007/s00360-010-0537-z (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stuckert, A. M. M. et al. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 19, 15. https://doi.org/10.1186/s12862-019-1410-7 (2019).Article 

    Google Scholar 
    Ohsaki, N. A common mechanism explaining the evolution of female-limited and both-sex Batesian mimicry in butterflies. J. Anim. Ecol. 74, 728–734 (2005).Article 

    Google Scholar 
    Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282 (1998).ADS 
    Article 

    Google Scholar 
    Friman, V. P., Lindstedt, C., Hiltunen, T., Laakso, J. & Mappes, J. Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4, e6761 (2009).ADS 
    Article 

    Google Scholar 
    Rojas, B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol. Rev. 92, 1059–1080. https://doi.org/10.1111/brv.12269 (2017).Article 
    PubMed 

    Google Scholar 
    Hegna, R. H., Saporito, R. A. & Donnelly, M. A. Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evol. Ecol. 27, 831–845 (2013).Article 

    Google Scholar 
    Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linnean Soc. 130, 345–358 (2020).Article 

    Google Scholar 
    Nielsen, M. E. & Mappes, J. Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).Article 

    Google Scholar 
    Lindstedt, C., Suisto, K., Burdfield-Steel, E., Winters, A. E. & Mappes, J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav. Ecol. 31, 844–850. https://doi.org/10.1093/beheco/araa033 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeborn, L. R. The Genetic, Cellular, and Evolutionary Basis of Skin Coloration in the Highly Polymorphic Poison Frog, Oophaga pumilio (University of Pittsburgh, 2021).
    Google Scholar 
    Garcia, T. S., Straus, R. & Sih, A. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Can. J. Zool. 81, 710–715. https://doi.org/10.1139/z03-036 (2003).Article 

    Google Scholar 
    Caspers, B. A. et al. Developmental costs of yellow colouration in fire salamanders and experiments to test the efficiency of yellow as a warning colouration. Amphibia-Reptilia 41, 373–385. https://doi.org/10.1163/15685381-bja10006 (2020).Article 

    Google Scholar 
    Wells, K. D. The Ecology and Behaviour of Amphibians (The University of Chicago Press, 2007).Book 

    Google Scholar 
    Balogova, M., Kyselova, M. & Uhrin, M. Changes in dorsal spot pattern in adult Salamandra salamandra (LINNAEUS, 1758). Herpetozoa 28, 167–171 (2016).
    Google Scholar 
    Brejcha, J. et al. Variability of colour pattern and genetic diversity of Salamandra salamandra (Caudata: Salamandridae) in the Czech Republic. J. Vertebr. Biol. https://doi.org/10.25225/jvb.21016 (2021).Article 

    Google Scholar 
    Romeo, G., Giovine, G., Ficetola, G. F. & Manenti, R. Development of the fire salamander larvae at the altitudinal limit in Lombardy (north-western Italy): effect of two cohorts occurrence on intraspecific aggression. North-West J. Zool. 11, 234–240 (2015).
    Google Scholar 
    Manenti, R. & Ficetola, G. F. Salamanders breeding in subterranean habitats: local adaptations or behavioural plasticity?. J. Zool. 289, 182–188. https://doi.org/10.1111/j.1469-7998.2012.00976.x (2013).Article 

    Google Scholar 
    Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).
    Google Scholar 
    Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol. Ecol. 13, 1665–1677. https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).Article 
    PubMed 

    Google Scholar 
    Manenti, R., Denoel, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382. https://doi.org/10.1016/j.anbehav.2013.05.028 (2013).Article 

    Google Scholar 
    Fernandez-Conradi, P., Mocellin, L., Desfossez, E. & Rasmann, S. Seasonal changes in arthropod diversity patterns along an Alpine elevation gradient. Ecol. Entomol. 45(5), 1035–1043 (2020).Article 

    Google Scholar 
    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Manenti, R., De Bernardi, F. & Padoa-Schioppa, E. Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander. Ecography 35, 693–703. https://doi.org/10.1111/j.1600-0587.2011.06483.x (2012).Article 

    Google Scholar 
    Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. Tetra-EU 1.0: a species-level trophic meta-web of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).Article 

    Google Scholar 
    Caldonazzi, M., Nistri, A. & Tripepi, S. in Amphibia Vol. XLII (eds B. Lanza et al.) 221–227 (2007).Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).Article 

    Google Scholar 
    Bernini, F. et al. Atlante degli Anfibi e dei Rettili della Lombardia (Provincia di Cremona, 2004).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569. https://doi.org/10.1111/jbi.13680 (2019).Article 

    Google Scholar 
    Limongi, L., Ficetola, G. F., Romeo, G. & Manenti, R. Environmental factors determining growth of salamander larvae: a field study. Curr. Zool. 61, 421–427. https://doi.org/10.1093/czoolo/61.3.421 (2015).Article 

    Google Scholar 
    Czeczuga, B. Some carotenoids in Chironomus annularius Meig. larvae (Diptera: Chironomidae). Hydrobiologia 36, 353–360. https://doi.org/10.1007/BF00039794 (1970).CAS 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    visreg: Visualization of regression models. R package version 2.2-0. http://CRAN.R-project.org/package=visreg (2015).Preißler, K. et al. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J. Zool. 308, 293–300. https://doi.org/10.1111/jzo.12676 (2019).Article 

    Google Scholar 
    Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D. & Mappes, J. Why aren’t warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol. Rev. 96, 2446–2460 (2021).Article 

    Google Scholar 
    Abd El-Wakeil, K. F. Trophic structure of macro- and meso-invertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Systematics Ecol. 37, 317–324. https://doi.org/10.1016/j.bse.2009.05.008 (2009).CAS 
    Article 

    Google Scholar 
    Frelich, L. E. et al. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235 (2012).Article 

    Google Scholar 
    Umbers, K. D. L., Silla, A. J., Bailey, J. A., Shaw, A. K. & Byrne, P. G. Dietary carotenoids change the colour of Southern corroboree frogs. Biol. J. Linnean Soc. 119, 436–444. https://doi.org/10.1111/bij.12818 (2016).Article 

    Google Scholar 
    Balogova, M. & Uhrin, M. Sex-biased dorsal spotted patterns in the fire salamander (Salamandra salamandra). Salamandra 51, 12–18 (2015).
    Google Scholar 
    Arenas, L. M. & Stevens, M. Diversity in warning coloration is easily recognized by avian predators. J. Evol. Biol. 30, 1288–1302. https://doi.org/10.1111/jeb.13074 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilby, B. L., Burfeind, D. D. & Tibbetts, I. R. Better red than dead? Potential aposematism in a harpacticoid copepod, Metis holothuriae. Mar. Environ. Res. 74, 73–76. https://doi.org/10.1016/j.marenvres.2011.12.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Przeczek, K., Mueller, C. & Vamosi, S. M. The evolution of aposematism is accompanied by increased diversification. Integr. Zool. 3, 149–156. https://doi.org/10.1111/j.1749-4877.2008.00091.x (2008).Article 
    PubMed 

    Google Scholar 
    Moore, M. P. & Martin, R. A. On the evolution of carry-over effects. J Anim. Ecol. 88, 1832–1844. https://doi.org/10.1111/1365-2656.13081 (2019).Article 
    PubMed 

    Google Scholar 
    Raffaëlli, J. Les Urodeles du monde (Penclen Edition, 2007).Velo-Anton, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418. https://doi.org/10.1038/Hdy.2011.91 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodriguez, A. et al. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol. 115, 16–26. https://doi.org/10.1016/j.ympev.2017.07.009 (2017).Article 
    PubMed 

    Google Scholar 
    Speed, M. P. & Ruxton, G. D. Aposematism: what should our starting point be?. Proc. Biol. Sci. 272, 431–438. https://doi.org/10.1098/rspb.2004.2968 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarvin, R. D., Powell, E. A., Santos, J. C., Ron, S. R. & Cannatella, D. C. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol. Phylogenet. Evol. 109, 283–295. https://doi.org/10.1016/j.ympev.2016.12.035 (2017).Article 
    PubMed 

    Google Scholar 
    Jusczcyk, W. & Zakrzewski, M. External morphology of larval stages of the spotted salamander Salamandra salamandra (L.). Acta Biol. Crac. 23, 127–135. https://doi.org/10.1111/jzo.12676 (1981).Article 

    Google Scholar  More

  • in

    The future of Viscum album L. in Europe will be shaped by temperature and host availability

    Walas, Ł, Ganatsas, P., Iszkuło, G., Thomas, P. A. & Dering, M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS ONE 14, e0226225 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, Y. G. et al. Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): Integrating fossil records, niche modeling, and phylogeography for conservation. Eur. J. For. Res. 140, 1323–1339 (2021).Article 

    Google Scholar 
    Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).ADS 
    Article 

    Google Scholar 
    Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).Article 

    Google Scholar 
    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).Article 

    Google Scholar 
    Watling, J. I. et al. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 309, 48–59 (2015).ADS 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions. url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 13 July 2022.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166, 221–230 (2013).Article 

    Google Scholar 
    Rigling, A., Eilmann, B., Koechli, R. & Dobbertin, M. Mistletoe-induced crown degradation in Scots pine in a xeric environment. Tree Physiol. 30, 845–852 (2010).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Mistletoe effects on Scots pine decline following drought events: Insights from within-tree spatial patterns, growth and carbohydrates. Tree Physiol. 32, 585–598 (2012).PubMed 
    Article 

    Google Scholar 
    Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P. & Suckow, F. Mistletoe-induced growth reductions at the forest stand scale. Tree Physiol. 38, 735–744 (2018).PubMed 
    Article 

    Google Scholar 
    Schulze, E. D. & Ehleringer, J. R. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162, 268–275 (1984).PubMed 
    Article 

    Google Scholar 
    Escher, P. et al. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album L: Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana). Plant Physiol. Biochem. 46, 64–70 (2008).PubMed 
    Article 

    Google Scholar 
    Zweifel, R., Bangerter, S., Rigling, A. & Sterck, F. J. Pine and mistletoes: How to live with a leak in the water flow and storage system?. J. Exp. Bot. 63, 2565–2578 (2012).PubMed 
    Article 

    Google Scholar 
    Mutlu, S., Osma, E., Ilhan, V., Turkoglu, H. I. & Atici, O. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees 30, 815–824 (2016).Article 

    Google Scholar 
    Tsopelas, P., Angelopoulos, A., Economou, A. & Soulioti, N. Mistletoe (Viscum album) in the fir forest of Mount Parnis Greece. For. Ecol. Manag. 202, 59–65 (2004).Article 

    Google Scholar 
    Dobbertin, M. & Rigling, A. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For. Pathol. 36, 309–322 (2006).Article 

    Google Scholar 
    Lech, P., Żółciak, A. & Hildebrand, R. Occurrence of European mistletoe (Viscum album L.) on forest trees in Poland and its dynamics of spread in the period 2008–2018. Forests 11, 83 (2020).Article 

    Google Scholar 
    Iszkuło, G. et al. Jemioła jako zagrożenie dla zdrowotności drzewostanów iglastych. Sylwan 164, 226–236 (2020) ([In Polish]).
    Google Scholar 
    Mellado, A., Morillas, L., Gallardo, A. & Zamora, R. Temporal dynamic of parasite-mediated linkages between the forest canopy and soil processes and the microbial community. New Phytol. 211, 1382–1392 (2016).PubMed 
    Article 

    Google Scholar 
    Mellado, A. & Zamora, R. Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia 176, 139–147 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hódar, J. A., Lázaro-González, A. & Zamora, R. Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Ann. For. Sci. 75, 1–8 (2018).Article 

    Google Scholar 
    Zuber, D. Biological flora of Central Europe: Viscum album L. Flora Morphol. Distrib Funct. Ecol. Plants 199, 181–203 (2004).Article 

    Google Scholar 
    Urech, K. & Baumgartner, S. Chemical constituents of Viscum album L.: Implications for the pharmaceutical preparation of mistletoe. In: Mistletoe: From mythology to evidence-based medicine. (eds. Zänker, K.S. & Kaveri, S. V.), 11–23. (S. Karger AG, Basel, Switzerland, 2015).Singh, B. N. et al. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 6, 23837–23857 (2016).ADS 
    Article 

    Google Scholar 
    Jeffree, C. E. & Jeffree, E. P. Redistribution of the potential geographical ranges of mistletoe and colorado beetle in Europe in response to the temperature component of climate change. Funct. Ecol. 10, 562–577 (1996).Article 

    Google Scholar 
    Troels-Smith, J. Ivy, mistletoe and elm climate indicators-fodder plants. A contribution to the interpretation of the pollen zone border VII-VIII. Dan. Geol. Undersøg. IV Række 4, 1–32 (1960).
    Google Scholar 
    Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming?. Int. J. Biometeorol. 50, 40–47 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Zamora, R. & Mellado, A. Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biol. 21, 307–317 (2019).PubMed 
    Article 

    Google Scholar 
    Barney, C. W., Hawksworth, F. G. & Geils, B. W. Hosts of Viscum album. Eur. J. Plant Pathol. 28, 187–208 (1998).
    Google Scholar 
    Böhling, N. et al. Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae). Isr. J. Plant Sci. 50, 77–84 (2002).
    Google Scholar 
    Plants of the World Online [Internet] url: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:921668-1. Accessed 13 July 2022.Zuber, D. & Widmer, A. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol. Ecol. 18, 1946–1962 (2009).PubMed 
    Article 

    Google Scholar 
    Schaller, G., Urech, K., Grazi, G. & Giannattasio, M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med 64, 677–678 (1998).PubMed 
    Article 

    Google Scholar 
    Kahle-Zuber, D. Biology and evolution of the European mistletoe (Viscum album). Doctoral Thesis. ETH Zurich. (2008).Zuber, D. & Widmer, A. Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae). Mol. Ecol. 9, 1069–1073 (2000).PubMed 
    Article 

    Google Scholar 
    Mejnartowicz, L. Relationship and genetic diversity of mistletoe [Viscum album L.] subspecies. Acta Soc. Bot. Pol. Pol. 75, 39–49 (2006).Article 

    Google Scholar 
    Xie, W., Adolf, J. & Melzig, M. F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 12, e0187776 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valle, A. C. V., de Carvalho, A. C. & Andrade, R. V. Viscum album-literature review. Int. J. Sci. Res 10, 63–71 (2021).
    Google Scholar 
    Schröder, L. et al. The gene space of European mistletoe (Viscum album). Plant J. 109, 278–294 (2022).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G. et al. Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. J. Ecol. 106, 2218–2229 (2018).Article 

    Google Scholar 
    GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.zw6f5q. Accessed 27 July 2021.GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.6wmc9d. Accessed 6 August 2021.FloraWeb [Internet] url: https://www.floraweb.de. Accessed 10 December 2021.Pladias – Database of the Czech Flora and Vegetation. [Internet] url: www.pladias.cz. Accessed 14 July 2022.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce. 593 (Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków, 2001) [In Polish].Idžojtić, M., Kogelnik, M., Franjić, J. & Škvorc, Ž. Hosts and distribution of Viscum album L. ssp. album in Croatia and Slovenia. Plant Biosyst. 140, 50–55 (2006).Article 

    Google Scholar 
    Varga, I. et al. Changes in the Distribution of European Mistletoe (Viscum album) in Hungary During the Last Hundred Years. Folia Geobot 49, 559–577 (2014).Article 

    Google Scholar 
    Wild, J. et al. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia 91, 1–24 (2019).Article 

    Google Scholar 
    Krasylenko, Y. et al. The European mistletoe (Viscum album L.): Distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine. Botany 98, 499–516 (2020).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger D. N., et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository (2018).Gutjahr, O. et al. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).ADS 
    Article 

    Google Scholar 
    Hijmans, R. J., & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. (2012).R Core Team. The Comprehensive R Archive Network. [Internet] url: https://cran.r-project.org/ Accessed 14 July 2022.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with European tree species distribution models under climate change (Version v1). Zenodo https://doi.org/10.5281/zenodo.3686918 (2020).Wang, Z., Chang, Y. I., Ying, Z., Zhu, L. & Yang, Y. A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics 23, 2788–2794 (2007).PubMed 
    Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information Sys-tem. Open Source Geospatial Foundation Project. [Internet]. url: https://www.qgis.org/en/site/. Accessed 14 July 2022.Fischer, J. T. Water relations of mistletoes and their hosts. In: The biology of mistletoes. (eds. Calder, M., & Bernhard, T.), 163–184 (Academic Press, Sydney, 1983).Skre, O. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. Norweg. J. Bot. 26, 295–318 (1979).
    Google Scholar 
    Wangerin, B. Loranthaceae. In: Lebensgeschichte der Blütenpflanzen Mitteleuropas (eds. Kirchner, O. V., Loew, E., & Schroeter, C.) 2, 953–1146 (E. Ulmer, Stuttgart, 1937).Rybalka, I. A. Relationship between density of the white mistletoe (Viscum album L.) and some landscape and environmental characteristics of urban areas in the case of Kharkiv. Ekologicheskiy Vestnik 1, 87–97 (2017).
    Google Scholar 
    Patykowski, J. & Kołodziejek, J. Comparative analysis of antioxidant activity in leaves of different hosts infected by mistletoe (Viscum album L. subsp. album). Arch. Biol. Sci. 65, 851–861 (2013).Article 

    Google Scholar 
    Skrypnik, L., Maslennikov, P., Feduraev, P., Pungin, A. & Belov, N. Ecological and landscape factors affecting the spread of European mistletoe (Viscum album L.) in urban areas (A Case Study of the Kaliningrad City, Russia). Plants 9, 394 (2020).PubMed Central 
    Article 

    Google Scholar 
    Kunick, W. Veränderungen von Flora und Vegetation einer Grosstadt dargestellt am Beispiel von Berlin (West). PhD Thesis, Technische Universität (1974). [In German].Kołodziejek, J., Patykowski, J. & Kołodziejek, R. Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz Poland. Biol. 68, 55–64 (2013).
    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Luther, P., Becker, H. & Leroi, R. Die Mistel: Botanik, Lektine, medizinische Anwendung. Springer (1987).Gazol, A. et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42, 1150–1162 (2015).Article 

    Google Scholar 
    Tikkanen, O. P. et al. Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. For. Ecol. Manag. 482, 118806 (2021).Article 

    Google Scholar 
    Pilichowski, S. et al. Wpływ Viscum album ssp. austriacum (Wiesb.) Vollm. na przyrost radialny Pinus sylvestris L. Sylwan 162, 452–459 (2018) ([In Polish]).
    Google Scholar 
    Szmidla, H., Tkaczyk, M., Plewa, R., Tarwacki, G. & Sierota, Z. Impact of common mistletoe (Viscum album L.) on scots pine forests—A call for action. Forests 10, 847 (2019).Article 

    Google Scholar 
    Wójcik, R. & Kędziora, W. Abundance of Viscum in central Poland: Results from a large-scale mistletoe inventory. Environ. Sci. Proc. 3, 98 (2020).
    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Drought and mistletoe reduce growth and water-use efficiency of Scots pine. For. Ecol. Manag. 296, 64–73 (2013).Article 

    Google Scholar 
    Mathiasen, R. L., Nickrent, D. L., Shaw, D. C. & Watson, D. M. Mistletoes: Pathology, systematics, ecology, and management. Plant Dis. 92, 988–1006 (2008).PubMed 
    Article 

    Google Scholar 
    Catal, Y. & Carus, S. Effect of pine mistletoe on radial growth of crimean pine (Pinus nigra) in Turkey. J. Environ. Biol. 32, 263 (2011).PubMed 

    Google Scholar 
    Skre, O. High temperature demands for growth and development in Norway Spruce [Picea abies (L.) Karst.] in Scandinavia. Meld Nor Landbrukshøgsk 51, 1–29 (1971).
    Google Scholar 
    Utaaker, K. A temperature-growth index—the respiration equivalent—used in climatic studies on the meso-scale in Norway. Agric. Meteorol. 5, 351–359 (1968).Article 

    Google Scholar 
    Iversen, J. Viscum, Hedera and Ilex as climate indicators: A contribution to the study of the post-glacial temperature climate. Geol. fören. Stockh. förh. 66, 463–483 (1944).Article 

    Google Scholar 
    Briggs, J. Mistletoe, Viscum album (Santalaceae), in Britain and Ireland; a discussion and review of current status and trends. Brit. Ir. Bot. 3, 419–454 (2021).
    Google Scholar  More

  • in

    Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, 5. https://doi.org/10.1126/sciadv.1400253 (2015).Article 

    Google Scholar 
    Purvis, A. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Nature https://doi.org/10.5281/zenodo.5517457.svg (2019).Balvernara, P. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Drivers. Change https://doi.org/10.5281/zenodo.5517423 (2019).Carrol, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 35, 155–167. https://doi.org/10.1111/cobi.13531 (2020).Article 

    Google Scholar 
    Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geog. 65, 152–165. https://doi.org/10.1111/cag.12635 (2020).Article 

    Google Scholar 
    Convention on Biological Diversity. Aichi Target 11, Convention on Biological Diversity. https://www.cbd.int/aichi-targets/target/11. Accessed 14 May 2021.United Nations. Climate Change Pathways. https://unfccc.int/climate-action/marrakech-partnership/reporting-and-tracking/climate_action_pathways. Accessed 12 Sept 2022.Government of Canada. Canada’s nature legacy: Protecting our nature conservation/nature-legacy.html (2021).Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: A science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562. https://doi.org/10.1139/facets-2017-0102 (2017).Article 

    Google Scholar 
    De Barros, A. E. et al. Identification of areas in Brazil that optimize areas that optimize conservation of forest carbon, Jaguars and Biodiversity. Conserv. Biol. 28, 580–593. https://doi.org/10.1111/cobi.12202 (2013).Article 
    PubMed 

    Google Scholar 
    Jantz, P., Scott, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142. https://doi.org/10.1038/nclimate2105 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Beaudrot, L. et al. Limited carbon and biodiversity co-benefits for tropical mammals and birds. Ecol. Appl. 26, 10998–11111. https://doi.org/10.1890/15-0935 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Climate-change refugia: Biodiversity in a slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stralberg, et al. Macrorefugia for North American trees ad songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703. https://doi.org/10.1111/geb.12731 (2018).Article 

    Google Scholar 
    Caroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang Biol. 27, 3395–3414. https://doi.org/10.1111/gcb.15645 (2020).Article 

    Google Scholar 
    Bradshaw, C. J., Warkentin, I. G. & Sodhi, N. S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24, 541–548. https://doi.org/10.1016/j.tree.2009.03.019 (2009).Article 
    PubMed 

    Google Scholar 
    Harris, L. I. et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 20, 222–230 (2022).Article 

    Google Scholar 
    Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Canada’s conserved areas. environmental-indicators/conserved-areas.html (2020).Office of the Auditor General of Canada. Lessen learnt from 30 years of climate change challenges and opportunities. https://www.oag-bvg.gc.ca/internet/English/att__e_43948.html#hd3l (2020).Shea, T. et al. Canada’s Conservation Vision: A report of the National Advisory Panel. Government of Canada, 43 pp (2018).Environment and Climate Change Canada. Pan-Canadian Approach to transforming species at risk conservation in Canada. species-at-risk-conservation.html (2018).Bergerund, A. T. Caribou, wolves and man. Trends Ecol. Evol. 3, 68–72. https://doi.org/10.1016/0169-5347(88)90019-5 (1988).Article 

    Google Scholar 
    Vernier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Slegers, S. M. The state of conservation in North America’s Borel Forest: Issues and opportunities. Front. For. Glob. Change 3, 90. https://doi.org/10.3389/ffgc.2020.00090/full (2020).Article 

    Google Scholar 
    COSEWIC. COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 98 pp. (2002).COSEWIC. COSEWIC assessment and status report on the caribou Rangifer tarandus, Newfoundland population, Atlantic-Gaspésie population and Boreal population, in Canada. Committee on the Status of Endangered Wildlifein Canada. Ottawa. xxiii + 128 pp. (2014).Environment and Climate Change Canada. Amended Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. xiii + 143pp. (2020).Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer tarandus caribou), Boreal population in Canada for the Period 2012–2017. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. ix + 94 (2017).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Conserv. 206, 102–111. https://doi.org/10.1016/j.biocon.2016 (2017).Article 

    Google Scholar 
    Fortin, D., McLoughlin, P. D. & Hebblewhite, M. When the protection of a threatened species depends on the economy of a foreign nation. PLoS ONE 15, e0229555. https://doi.org/10.1371/journal.pone.0229555 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drever, R. C. et al. Conservation through co-occurrence: Woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252. https://doi.org/10.1016/j.biocon.2019.01.026 (2019).Article 

    Google Scholar 
    Government of Canada. Pan-Canadian Framework on clean growth and climate change climatechange/pan-canadian-framework.html.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet Chang 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004 (2015).ADS 
    Article 

    Google Scholar 
    Jennings, M. D. Gap analysis: Concept, methods, recent results. Land Ecol. 5, 15–20 (2010).
    Google Scholar 
    Environment and Climate Change Canada. Canadian Protected and Conserved Areas database. national-wildlife-areas/protected-conserved-areas-database (2019).DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution function and modelling. Forestry 85, 161–184. https://doi.org/10.1093/forestry/cps003 (2012).Article 

    Google Scholar 
    Price, et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365. https://doi.org/10.1139/er-2013-0042 (2013).Article 

    Google Scholar 
    Southee, F. M., Edwards, B. A., Chetkiewicz, C. B. & O’Connor, C. M. Freshwater conservation planning in the far north of Ontario, Canada: Identifying priority watersheds for conservation of fish biodiversity in an intact boreal landscape. Facets 6, 90–117. https://doi.org/10.1139/facets-2020-0015 (2021).Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Labadie, G. P. D., McLoughlin, M. H. & Fortin, D. Insect-mediated apparent competition between mammals in a boreal food web. Proc. Natl. Acad. Sci. U S A. 118, e2022892118. https://doi.org/10.1073/pnas.2022892118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, V. & Hargreaves, A. L. Spatial distribution and conservation hotspots of mammals in Canada. Facets 5, 692–703. https://doi.org/10.1139/facets-2020-0018 (2020).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2016).ADS 
    Article 

    Google Scholar 
    Anielski, M. & Wilson, S. Counting Canada’s natural capital: Assessing the real value of Canada’s boreal ecosystems. Ottawa, On: Canadian Boreal Initiative and Pembina Institute counting-canadas-natural-capital (2009).Kumaraswamy, S. & Udyakumar, M. Biodiversity banking: A strategic conservation mechanism. Biodiver. Conserv. 20, 1155–1165. https://doi.org/10.1007/s10531-011-0020-5 (2011).Article 

    Google Scholar 
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).Article 

    Google Scholar 
    Godden, L. & Cowell, S. Conservation planning and Indigenous governance in Australia’s Indigenous Protected Areas. Restor. Ecol. 24, 692–697. https://doi.org/10.1111/rec.12394 (2016).Article 

    Google Scholar 
    Greg Brown, B. & Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecol. Ser. 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007 (2021).Article 

    Google Scholar 
    Martin, A. E., Neave, E., Kirby, P., Drever, C. R. & Johnson, C. A. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Sci. Rep. 12, 11895. https://doi.org/10.1038/s41598-022-15274-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    COSEWIC. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada (2018).Alberta Environment and Parks and Alberta Conservation Association. Status of the Arctic Grayling (Thymallus arcticus) in Alberta: Update 2015. Alberta Environment and Parks. Alberta Wildlife Status Report No. 57 (Update 2015). Edmonton, AB. 96 pp. (2015).Environment and Climate Change Canada (ECCC). 2016. Range map extents, species at risk, Canada. Government of Canada. Open Government Dataset. https://open.canada.ca/data/en/dataset/d00f8e8c-40c4-435a-b790-980339ce3121.Magurran, A. E. Measuring Biological Diversity 256 (Blackwell Publishing, 2004).
    Google Scholar 
    Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C. G. & Hargreaves, A. L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732 (2020).Article 

    Google Scholar 
    Gaston, K. J. Rarity 201 (Chapman & Hall, 1994).Book 

    Google Scholar 
    Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo. https://doi.org/10.5281/zenodo.2579337 (2019).Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853. https://doi.org/10.1038/nclimate2392 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R. D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).Article 

    Google Scholar 
    Iverson, L. R., Schwartz, M. W. & Prasad, A. M. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 13, 209–219 (2004).Article 

    Google Scholar 
    McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).Article 

    Google Scholar 
    Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301. https://doi.org/10.1111/gcb.13622 (2017).ADS 
    Article 

    Google Scholar 
    Ping, C. L. et al. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci. Soc. Am. J. 74, 969–978. https://doi.org/10.2136/sssaj2009.0152 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 29, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin A. Jaccard: Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients. R package version 0.1.0. https://CRAN.R-project.org/package=jaccard (2018). More