More stories

  • in

    Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns

    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).Article 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science (1979) 366, 120–124 (2019).CAS 

    Google Scholar 
    Isaksson, C. Impact of Urbanization on Birds https://doi.org/10.1007/978-3-319-91689-7_13 (2018).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pipoly, I. et al. Extreme hot weather has stronger impacts on Avian reproduction in forests than in cities. Front. Ecol. Evol. 10, 1 (2022).Article 

    Google Scholar 
    Newberry, G. N., O’Connor, R. S. & Swanson, D. L. Urban rooftop-nesting Common Nighthawk chicks tolerate high temperatures by hyperthermia with relatively low rates of evaporative water loss. Condor 123, 016 (2021).Article 

    Google Scholar 
    da Silva, A., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B: Biol. Sci. 370, 126 (2015).Article 

    Google Scholar 
    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. 5, 55 (2017).Article 

    Google Scholar 
    van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA. 114, 11175–11180 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, M. W. Apparent effects of light pollution on singing behavior of American Robins. Condor 108, 130–139 (2006).Article 

    Google Scholar 
    Nemeth, E. & Brumm, H. Birds and anthropogenic noise: Are urban songs adaptive?. Am. Nat. 176, 465 (2010).PubMed 
    Article 

    Google Scholar 
    Nemeth, E. et al. Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proc. R. Soc. B: Biol. Sci. 280, 20122798 (2013).Article 

    Google Scholar 
    Senzaki, M., Yamaura, Y., Francis, C. D. & Nakamura, F. Traffic noise reduces foraging efficiency in wild owls. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 74, 6–22 (2012).Article 

    Google Scholar 
    Sanderfoot, O. V. & Holloway, T. Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ. Res. Lett. 12, 832. https://doi.org/10.1088/1748-9326/aa8051 (2017).CAS 
    Article 

    Google Scholar 
    Eeva, T. & Lehikoinen, E. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia 102, 312–323 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tablado, Z. et al. Effect of human disturbance on bird telomere length: An experimental approach. Front. Ecol. Evol. 9, 1 (2022).Article 

    Google Scholar 
    Kang, W., Minor, E. S., Park, C. R. & Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 18, 857–870 (2015).Article 

    Google Scholar 
    Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).Article 

    Google Scholar 
    Estela, F. A. et al. Changes in the nocturnal activity of birds during the covid–19 pandemic lockdown in a neotropical city. Anim. Biodivers. Conserv. 44, 1 (2021).
    Google Scholar 
    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665. https://doi.org/10.1016/j.biocon.2020.108665 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 
    PubMed 

    Google Scholar 
    Czech, K., Davy, A. & Wielechowski, M. Does the covid-19 pandemic change human mobility equally worldwide? Cross-country cluster analysis. Economies 9, 182 (2021).Article 

    Google Scholar 
    Galeazzi, A. et al. Human mobility in response to COVID-19 in France, Italy and UK. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Dobbie, L. J., Hydes, T. J., Alam, U., Tahrani, A. & Cuthbertson, D. J. The impact of the COVID-19 pandemic on mobility trends and the associated rise in population-level physical inactivity: Insights From International Mobile Phone and National Survey Data. Front. Sports Active Living 4, 80 (2022).Article 

    Google Scholar 
    Basu, B. et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 65, 102597 (2021).Article 

    Google Scholar 
    Lecocq, T. et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science (1979) 369, 1338 (2020).
    Google Scholar 
    Terry, C., Rothendler, M., Zipf, L., Dietze, M. C. & Primack, R. B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Cons. 256, 109039 (2021).Article 

    Google Scholar 
    Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci U S A 117, 18984 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Archer, C. L., Cervone, G. & Golbazi, M. Changes in air quality and human mobility in the US during the COVID-19 pandemic. Bull. Atmosp. Sci. Technol. 1, 491–541. https://doi.org/10.1007/s42865-020-00019-0 (2020).Article 

    Google Scholar 
    Jiang, Z. et al. Modeling the impact of COVID-19 on air quality in Southern California: Implications for future control policies. Atmosp. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2020-1197 (2020).Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 7, 6696 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Hentati-Sundberg, J., Berglund, P. A., Hejdström, A. & Olsson, O. COVID-19 lockdown reveals tourists as seabird guardians. Biol. Conserv. 254, 108950 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science (1979) 370, 575 (2020).CAS 

    Google Scholar 
    Schrimpf, M. B. et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 7, 5073 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2252 (2002).Article 

    Google Scholar 
    Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B: Biol. Sci. 288, 20202513 (2021).CAS 
    Article 

    Google Scholar 
    Johnson, D. H. In defense of indices: The Case of Bird Surveys. J. Wildl. Manag. 72, 857–868 (2008).Article 

    Google Scholar 
    Sanderfoot, O. V. & & Gardner, B.,. Wildfire smoke affects detection of birds in Washington State. Ornithol. Appl. 123, 28 (2021).
    Google Scholar 
    Sumasgutner, P. et al. Raptor research during the COVID-19 pandemic provides invaluable opportunities for conservation biology. Biol. Conserv. 260, 109149 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crimmins, T. M., Posthumus, E., Schaffer, S. & Prudic, K. L. COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biol. Conserv. 256, 109017 (2021).Article 

    Google Scholar 
    Basile, M., Russo, L. F., Russo, V. G., Senese, A. & Bernardo, N. Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biol. Conserv. 256, 109079 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kishimoto, K. & Kobori, H. COVID-19 pandemic drives changes in participation in citizen science project “City Nature Challenge” in Tokyo. Biol. Conserv. 255, 109001 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282 (2009).Article 

    Google Scholar 
    Pacifici, K., Simons, T. R. & Pollock, K. H. Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125, 600–607 (2008).Article 

    Google Scholar 
    Mitchell, M. S. et al. Testing a priori hypotheses improves the reliability of wildlife research. J. Wildl. Manag. 82, 1568. https://doi.org/10.1002/jwmg.21568 (2018).Article 

    Google Scholar 
    Sells, S. N. et al. Increased scientific rigor will improve reliability of research and effectiveness of management. J. Wildl. Manag. 82, 485. https://doi.org/10.1002/jwmg.21413 (2018).Article 

    Google Scholar 
    Strimas-Mackey, M., E. Miller, and W. Hochachka. auk: eBird Data Extraction and Processing with AWK. R package version 0.3.0. (2018) https://cornelllabofornithology.github.io/auk/R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/.U.S. Environmental Protection Agency (EPA). Air Quality System Data Mart (2020). https://www.epa.gov/airdataKaragulian, F. et al. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475. https://doi.org/10.1016/j.atmosenv.2015.08.087 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ito, K., Thurston, G. D. & Silverman, R. A. Characterization of PM25, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Exposure Sci. Environ. Epidemiol. 17, S45–S60 (2007).CAS 
    Article 

    Google Scholar 
    Google LLC “Google COVID-19 Community Mobility Reports”. https://www.google.com/covid19/mobility/ Accessed: November 1, 2020.Waze “Global Mobility Report”. https://www.waze.com Accessed: May 22, 2020.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17 (2019). https://CRAN.R-project.org/package=ncdf4Esri “USA NLCD Land Cover” [imagery layer]. Esri Inc (2019). https://www.arcgis.com/home/item.html?id=3ccf118ed80748909eb85c6d262b426f.Esri Inc. ArcMap (Version 10.8.1). Esri Inc. Redlands, California, USA (2020). https://desktop.arcgis.com/en/arcmap/.Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23 (2011).Article 

    Google Scholar 
    Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1 (2012).Article 

    Google Scholar 
    Lee, B. P. Y. H., Davies, Z. G. & Struebig, M. J. Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia. Environ. Res. Lett. 12, 094022 (2017).ADS 
    Article 

    Google Scholar 
    Leonard, R. J. & Hochuli, D. F. Exhausting all avenues: why impacts of air pollution should be part of road ecology. Front. Ecol. Environ. 15, 443. https://doi.org/10.1002/fee.1521 (2017).Article 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 1 (2019).CAS 
    Article 

    Google Scholar 
    Cleary, G. P. et al. Avian assemblages at bird baths: A comparison of urban and rural bird baths in Australia. PLoS ONE 11, e0150899 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. L., Mackenzie, D. I. & Nichols, J. D. Advances and applications of occupancy models. Methods Ecol. Evol. 5, 1269 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 1. https://doi.org/10.1098/rsbl.2018.0082 (2018).Article 

    Google Scholar  More

  • in

    Accurate phenology analyses require bud traits and energy budgets

    Peñuelas, J. & Filella, I. Phenology. Responses to a warming world. Science 294, 793–795 (2001).PubMed 
    Article 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 
    Article 

    Google Scholar 
    Ramos-Jiliberto, R., Moisset de Espanés, P., Franco-Cisterna, M., Petanidou, T. & Vázquez, D. P. Phenology determines the robustness of plant-pollinator networks. Sci. Rep. 8, 14873 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3149–3160 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chmielewski, F.-M. in Phenology: An Integrative Environmental Science 2nd edn (ed. Schwartz M. D.) 539–561 (Springer, 2013).Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).Article 

    Google Scholar 
    Katelaris, C. H. & Beggs, P. J. Climate change: allergens and allergic diseases. Intern. Med. J. 48, 129–134 (2018).PubMed 
    Article 

    Google Scholar 
    Schwartz, M. D. (ed.) Phenology: An Integrative Environmental Science 2nd edn (Springer, 2013).Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Vitasse, Y. et al. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses. Agric. For. Meteorol. 149, 735–744 (2009).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982-2012. PLoS ONE 11, e0157134 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).PubMed 
    Article 

    Google Scholar 
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zohner, C. M., Mo, L., Pugh, T. A. M., Bastin, J.-F. & Crowther, T. W. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees. Glob. Change Biol. https://doi.org/10.1111/gcb.15098 (2020).Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).Zohner, C. M., Benito, B. M., Svenning, J.-C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).Article 

    Google Scholar 
    Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).PubMed 
    Article 

    Google Scholar 
    Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 74016 (2017).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).Article 

    Google Scholar 
    Chuine, I., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res 132, 1–8 (2013).Article 

    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 
    Article 

    Google Scholar 
    Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenology under global warming. Science 327, 1461–1462 (2010).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).Article 

    Google Scholar 
    Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol. 213, 511–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brelsford, C. C., Nybakken, L., Kotilainen, T. K. & Robson, T. M. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiol. 39, 925–950 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strømme, C. B. et al. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula. Plant Cell Environ. 38, 867–877 (2015).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).Article 

    Google Scholar 
    Huang, Y., Jiang, N., Shen, M. & Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 112, 106161 (2020).Article 

    Google Scholar 
    Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Isabel, N., Huang, J.-G., Ren, H. & Rossi, S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. Int. J. Biometeorol. 63, 1631–1640 (2019).PubMed 
    Article 

    Google Scholar 
    Meng, L. et al. Divergent responses of spring phenology to daytime and nighttime warming. Agric. For. Meteorol. 281, 107832 (2020).Article 

    Google Scholar 
    Bigler, C. & Vitasse, Y. Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Front. Plant Sci. 10, 398 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol. 212, 590–597 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. et al. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. https://doi.org/10.1111/nph.17606 (2021).Azeez, A. et al. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat. Commun. 12, 1123 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamer, P. The heat balance of apple buds and blossoms. Part I. Heat transfer in the outdoor environment. Agric. For. Meteorol. 35, 339–352 (1985).Article 

    Google Scholar 
    Landsberg, J. J., Butler, D. R. & Thorpe, M. R. Apple bud and blossom temperatures. J. Horticultural Sci. 49, 227–239 (1974).Article 

    Google Scholar 
    Grace, J. The temperature of buds may be higher than you thought. N. Phytol. 170, 1–3 (2006).Article 

    Google Scholar 
    Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knohl, A., Schulze, E.-D., Kolle, O. & Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric. For. Meteorol. 118, 151–167 (2003).Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, B. N., Stoll, R., Pardyjak, E. R. & Miller, N. E. A new three-dimensional energy balance model for complex plant canopy geometries: Model development and improved validation strategies. Agric. For. Meteorol. 218-219, 146–160 (2016).Article 

    Google Scholar 
    Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 36, 2839–2851 (2006).Article 

    Google Scholar 
    Sanchez‐Lorenzo, A. et al. Reassessment and update of long‐term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).Pfeifroth, U., Sanchez‐Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface‐ and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ma, Q., Huang, J.-G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1920816117 (2020).Xiao, L. et al. Estimating spring frost and its impact on yield across winter wheat in China. Agric. For. Meteorol. 260–261, 154–164 (2018).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Leolini, L. et al. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 222, 197–208 (2018).Article 

    Google Scholar 
    Greco, S. et al. Late spring frost in mediterranean beech forests: extended crown dieback and short-term effects on moth communities. Forests 9, 388 (2018).Article 

    Google Scholar 
    Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).Article 

    Google Scholar 
    Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).Article 

    Google Scholar 
    Jones, H. G. Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).University Of East Anglia Climatic Research Unit (CRU) & Harris, I. C. CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017, 2019; https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac4b0ee8f4edDupleix, A., Sousa Meneses, D., de, Hughes, M. & Marchal, R. Mid-infrared absorption properties of green wood. Wood Sci. Technol. 47, 1231–1241 (2013).CAS 
    Article 

    Google Scholar 
    Howard, R. & Stull, R. IR radiation from trees to a ski run: a case study. J. Appl. Meteorol. Climatol. 52, 1525–1539 (2013).Article 

    Google Scholar 
    Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics. Plants, Animals, and the Atmosphere 4th edn (Elsevier/Academic Press, 2013).Bergman, T. L., Incropera, F. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (J. Wiley & Sons, 2011).Jacobs, A., Heusinkveld, B. G. & Kessel, G. Simulating of leaf wetness duration within a potato canopy. NJAS Wagening. J. Life Sci. 53, 151–166 (2005).Article 

    Google Scholar 
    Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).Article 

    Google Scholar 
    Muñoz Sabater, J. Copernicus Climate Change Service: ERA5-Land hourly data from 1981 to present, 2019; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-landKusch, E. & Davy, R. KrigR – A tool for downloading and statistically downscaling climate reanalysis data. Environ. Res. Lett. 17, 024005 (2022).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/ More

  • in

    Large carnivores and naturalness affect forest recreational value

    Nash, R. Wilderness and the American Mind (Yale University Press, 1982).
    Google Scholar 
    Kirchhoff, T. & Vicenzotti, V. A historical and systematic survey of European perceptions of wilderness. Environ. Values 23, 443–464 (2014).Article 

    Google Scholar 
    Aplet, G., Thomson, J. & Wilbert, M. Indicators of wildness: Using attributes of the land to assess the context of wilderness in Wilderness Science in a Time of Change (eds. McCool, S.F., Cole, D.N., Borrie, W.T., O’Loughlin, J.) 89–98 (USDA Forest Service, RMRS-P-15-Vol-2, 2000).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. Protect the last of the wild. Nature 563, 27–30 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayward, M. W. et al. Reintroducing rewilding to restoration: Rejecting the search for novelty. Biol. Conserv. 233, 255–259 (2019).Article 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soulé, M. & Noss, R. Rewilding and biodiversity: Complementary goals for continental conservation. Wild Earth 8, 18–28 (1998).
    Google Scholar 
    Torres, A. et al. Measuring rewilding progress. Philos. Trans. R. Soc. Lond. B 373, 20170433 (2018).Article 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fish, R., Church, A. & Winter, M. Conceptualising cultural ecosystem services: A novel framework for research and critical engagement. Ecosyst. Serv. 21B, 208–217 (2016).Article 

    Google Scholar 
    Nilsson, K. et al. Forests, Trees and Human Health (Springer, 2011).Book 

    Google Scholar 
    Cheesbrough, A. E., Garvin, T. & Nykiforuk, C. I. J. Everyday wild: Urban natural areas, health, and well-being. Health Place 56, 43–52 (2019).PubMed 
    Article 

    Google Scholar 
    Child, M. F. Wildness, infinity and freedom. Ecol. Econ. 186, 107055 (2021).Article 

    Google Scholar 
    Lev, E., Kahn, P. H. Jr., Chen, H. & Esperum, G. Relatively wild urban parks can promote human resilience and flourishing: A case study of Discovery Park, Seattle, Wasshington. Front. Sustain. Cities 2, 2 (2020).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 
    Article 

    Google Scholar 
    Giergiczny, M., Czajkowski, M., Żylicz, T. & Angelstam, P. Choice experiment assessment of public preferences for forest structural attributes. Ecol. Econ. 119, 8–23 (2015).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are Europe’s last primary forests?. Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    Kirby, K. & Watkins, C. Europe’s changing woods and forests: from wildwood to managed landscapes. CABI (2015).Schirpke, U., Meisch, C. & Tappeiner, U. Symbolic species as a cultural ecosystem service in the European Alps: Insights and open issues. Landsc. Ecol. 33, 711–730 (2018).Article 

    Google Scholar 
    Bruskotter, J. T. & Wilson, R. S. Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. Conserv. Lett. 7, 158–165 (2014).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Røskaft, E., Händel, B., Bjerke, T. & Kaltenborn, B. P. Human attitudes towards large carnivores in Norway. Wildl. Biol. 13, 172–186 (2007).Article 

    Google Scholar 
    Arbieu, U. et al. Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter. Biol. Conserv. 234, 202–210 (2019).Article 

    Google Scholar 
    Gundersen, V. S. & Frivold, L. H. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban For. Urban Green. 7, 241–258 (2008).Article 

    Google Scholar 
    Filyushkina, A., Agimass, F., Lundhede, T., Strange, N. & Jacobsen, J. B. Preferences for variation in forest characteristics: Does diversity between stands matter?. Ecol. Econ. 140, 22–29 (2017).Article 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: A systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Rode, J., Flinzberger, L., Karutz, R., Berghöfer, A. & Schröter-Schlaack, C. Why so negative? Exploring the socio-economic impacts of large carnivores from a European perspective. Biol. Conserv. 255, 108918 (2021).Article 

    Google Scholar 
    Gren, M., Häggmark-Svensson, T., Elofsson, K. & Engelmann, M. Economics of wildlife management—An overview. Eur. J. Wildl. Res. 64, 1–6 (2018).Article 

    Google Scholar 
    Wilson, E. O. Biophilia and the conservation ethic in The Biophilia Hypothesis (eds. Kellert, S.R. & Wilson, E.O.) 31–41 (Island Press, 1993).Thompson, S. C. G. & Barton, M. A. Ecocentric and anthropocentric attitudes toward the environment. J. Environ. Psychol. 14, 149–157 (1994).Article 

    Google Scholar 
    Kaltenborn, B. P. & Bjerke, T. Associations between environmental value orientations and landscape preferences. Landsc. Urban Plan. 59, 1–11 (2002).Article 

    Google Scholar 
    Bjerke, T. & Kaltenborn, B. P. The relationship of ecocentric and anthropocentric motives to attitudes toward large carnivores. J. Environ. Psychol. 19, 415–421 (1999).Article 

    Google Scholar 
    Johansson, M., Ferreira, I. A., Støen, O. G., Frank, J. & Flykt, A. Targeting human fear of large carnivores—Many ideas but few known effects. Biol. Conserv. 201, 261–269 (2016).Article 

    Google Scholar 
    Bauer, N., Wallner, A. & Hunziker, M. The change of European landscapes: Human–nature relationships, public attitudes towards rewilding, and the implications for landscape management in Switzerland. J. Environ. Manag. 90, 2910–2920 (2009).Article 

    Google Scholar 
    Arts, K., Fischer, A. & Van der Wal, R. The promise of wilderness between paradise and hell: A cultural-historical exploration of a Dutch National Park. Landsc. Res. 37, 239–256 (2012).Article 

    Google Scholar 
    De Groot, W. T. & van den Born, R. J. G. Visions of nature and landscape preferences:an exploration in the Netherlands. Landsc. Urban Plan. 63, 127–138 (2003).Article 

    Google Scholar 
    Bombieri, G. et al. Brown bear attacks on humans: A worldwide perspective. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Johansson, M., Sjöström, M., Karlsson, J. & Brännlund, R. Is human fear affecting public willingness to pay for the management and conservation of large carnivores?. Soc. Nat. Resour. 25, 610–620 (2012).Article 

    Google Scholar 
    Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trajçe, A. et al. All carnivores are not equal in the rural people’s view. Should we develop conservation plans for functional guilds or individual species in the face of conflicts?. Glob. Ecol. Conserv. 19, e00677 (2019).Article 

    Google Scholar 
    Eriksson, M., Sandström, C. & Ericsson, G. Direct experience and attitude change towards bears and wolves. Wildl. Biol. 21, 131–137 (2015).Article 

    Google Scholar 
    Methorst, J., Arbieu, U., Bonn, A., Böhning-Gaese, K. & Müller, T. Non-material contributions of wildlife to human well-being: A systematic review. Environ. Res. Lett. 15, 093005 (2020).ADS 
    Article 

    Google Scholar 
    Russell, R. et al. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 38, 473–502 (2013).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. Health and social benefits of living with ‘wild’ nature in Rewilding (eds. Pettorelli, N., Durant, S. M. & du Toit, J. T.) 165–181 (Cambridge University Press, 2019).Nevin, O. T., Swain, P. & Convery, I. Bears, place-making, and authenticity in British Columbia. Nat. Areas J. 34, 216–221 (2014).Article 

    Google Scholar 
    Schnitzler, A. Towards a new European wilderness: Embracing unmanaged forest growth and the decolonisation of nature. Landsc. Urban Plan. 126, 74–80 (2014).Article 

    Google Scholar 
    Hensher, D., Rose, J. & Greene, D. Applied Choice Analysis (Cambridge University Press, 2005).MATH 
    Book 

    Google Scholar 
    Johnston, R. J. et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4, 319–405 (2017).
    Google Scholar 
    Riera, P. et al. Non-market valuation of forest goods and services: Good practice guidelines. J. For. Econ. 18, 259–270 (2012).
    Google Scholar 
    Larsen, J. B. & Nielsen, A. B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice. For. Ecol. Manag. 238, 107–117 (2007).Article 

    Google Scholar 
    Ferrini, S. & Scarpa, R. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. J. Environ. Econ. Manag. 53, 342–363 (2007).MATH 
    Article 

    Google Scholar 
    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).Article 

    Google Scholar 
    Train, K. Discrete Choice Methods with Simulation (Cambridge University Press, 2009).MATH 

    Google Scholar  More

  • in

    The role of phylogenetic relatedness on alien plant success depends on the stage of invasion

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilà, M. & Hulme, P. E. in Impact of Biological Invasions on Ecosystem Services Vol. 12 Invading Nature – Springer Series in Invasion Ecology (eds Vilà, M. & Hulme, P. E.) 1–14 (Springer, 2017).Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).PubMed Central 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Bacher, S. et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018).Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).CAS 
    Article 

    Google Scholar 
    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003).Article 

    Google Scholar 
    Thuiller, W., Richardson, D. M. & Midgley, G. F. in Biological Invasions (ed. Nentwig, W.) 197–211 (Springer, 2007).Hobbs, R. J. in Invasive Species in a Changing World (eds Mooney, H. A. & Hobbs, R. J.) 55–64 (Island Press, 2000).Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).PubMed 
    Article 

    Google Scholar 
    Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bucharova, A. & van Kleunen, M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009).Article 

    Google Scholar 
    Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).Article 

    Google Scholar 
    van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed 
    Article 

    Google Scholar 
    Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M. & Huxman, T. E. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). Am. J. Bot. 105, 1188–1197 (2018).PubMed 
    Article 

    Google Scholar 
    Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banerjee, A. K., Prajapati, J., Bhowmick, A. R., Huang, Y. & Mukherjee, A. Different factors influence naturalization and invasion processes – a case study of Indian alien flora provides management insights. J. Environ. Manag. 294, 113054 (2021).Article 

    Google Scholar 
    Ni, M. et al. Invasion success and impacts depend on different characteristics in non-native plants. Divers. Distrib. 27, 1194–1207 (2021).Article 

    Google Scholar 
    Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA 118, e2021173118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Omer, A. et al. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44, 1812–1825 (2021).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed 
    Article 

    Google Scholar 
    Omer, A., Kordofani, M., Gibreel, H. H., Pyšek, P. & van Kleunen, M. The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biol. Invasions 23, 2033–2045 (2021).Article 

    Google Scholar 
    Duncan, R. P. & Williams, P. A. Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos 82, 282–294 (1998).Article 

    Google Scholar 
    Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Resident–invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186, 59–71 (2015).PubMed 
    Article 

    Google Scholar 
    Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).Article 

    Google Scholar 
    Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).Article 

    Google Scholar 
    Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2016).Article 

    Google Scholar 
    Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).Procheş, Ş., Wilson, J. R. U., Richardson, D. M. & Rejmánek, M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 17, 5–10 (2008).
    Google Scholar 
    Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Campbell, S. E., Li, S. P., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev. Plant Biol. 69, 661–684 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).Article 

    Google Scholar 
    Park, D. S., Feng, X., Maitner, B. S., Ernst, K. C. & Enquist, B. J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA 117, 10904–10910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diez, J. M. et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174–1183 (2009).PubMed 
    Article 

    Google Scholar 
    Malecore, E. M., Dawson, W., Kempel, A., Müller, G. & van Kleunen, M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 107, 781–793 (2019).Article 

    Google Scholar 
    Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G. & Savolainen, V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 14, 389–396 (2011).PubMed 
    Article 

    Google Scholar 
    Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA 103, 5841–5845 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S.-p. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).PubMed 
    Article 

    Google Scholar 
    Pellock, S., Thompson, A., He, K., Mecklin, C. & Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 14, 172–179 (2013).Article 

    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).PubMed 
    Article 

    Google Scholar 
    Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008).PubMed 
    Article 

    Google Scholar 
    Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).Article 

    Google Scholar 
    Rejmánek, M. in Invasive Species and Biodiversity Management (eds Schei, P. J. & Vilken, A.) 79–102 (Kluwer Academic, 1998).Rejmánek, M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996).Article 

    Google Scholar 
    Maurel, N., Hanspach, J., Kuhn, I., Pysek, P. & van Kleunen, M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25, 1500–1509 (2016).Article 

    Google Scholar 
    Glen, H. F. Cultivated Plants of Southern Africa: Botanical Names, Common Names, Origins, Literature (National Botanical Institute, 2002).Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001).Article 

    Google Scholar 
    Faulkner, K. T., Robertson, M. P., Rouget, M. & Wilson, J. R. U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 18, 73–87 (2016).Article 

    Google Scholar 
    Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015).Article 

    Google Scholar 
    Lambdon, P.-W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
    Google Scholar 
    Bennett, B. M. Naturalising Australian trees in South Africa: climate, exotics and experimentation. J. South. Afr. Stud. 37, 265–280 (2011).Article 

    Google Scholar 
    Richardson, D. M. et al. in Biological Invasions in South Africa (eds van Wilgen, B. W. et al.) 67–96 (Springer, 2020).Li, S.-p. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).CAS 
    Article 

    Google Scholar 
    Duarte, M., Verdú, M., Cavieres, L. A. & Bustamante, R. O. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. Oikos 130, 248–259 (2021).Article 

    Google Scholar 
    Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).Article 

    Google Scholar 
    Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).Article 

    Google Scholar 
    Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).PubMed 
    Article 

    Google Scholar 
    Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).PubMed 
    Article 

    Google Scholar 
    Levin, S. C., Crandall, R. M., Pokoski, T., Stein, C. & Knight, T. M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proc. R. Soc. B 287, 20201070 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, E. W., Zeldin, J., Semski, W. R., Hipp, A. L. & Larkin, D. J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia 197, 459–469 (2021).PubMed 
    Article 

    Google Scholar 
    Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & Van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in Southern Africa. J. Ecol. 103, 871–879 (2015).Article 

    Google Scholar 
    Trotta, L. B., Siders, Z. A., Sessa, E. B. & Baiser, B. The role of phylogenetic scale in Darwin’s naturalization conundrum in the critically imperilled pine rockland ecosystem. Divers. Distrib. 27, 618–631 (2021).Article 

    Google Scholar 
    Sol, D. et al. A test of Darwin’s naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecol. Lett. 25, 661–672 (2022).PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    Henderson, L. Comparisons of invasive plants in Southern Africa originating from southern temperate, northern temperate and tropical regions. Bothalia 36, 201–222 (2006).Article 

    Google Scholar 
    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2019).Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).Article 

    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 
    Article 

    Google Scholar 
    Zengeya, T. A. & Wilson, J. R. (eds) The Status of Biological Invasions and Their Management in South Africa in 2019 (South African National Biodiversity Institute and DSI-NRF Centre of Excellence for Invasion Biology, 2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).Article 

    Google Scholar 
    rcompanion: Functions to support extension education program evaluation v. 2.4.1 (R Foundation for Statistical Computing, 2021).Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar  More

  • in

    Distribution and genetic diversity of Anisakis spp. in cetaceans from the Northeast Atlantic Ocean and the Mediterranean Sea

    Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: A habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mattiucci, S. & Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66, 47–148 (2008).PubMed 
    Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).PubMed 
    Article 

    Google Scholar 
    Colón-Llavina, M. M. et al. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol. Res. 105, 1239–1252 (2009).PubMed 
    Article 

    Google Scholar 
    Iñiguez, A. M., Santos, C. P. & Vicente, A. C. P. Genetic characterization of Anisakis typica and Anisakis physeteris from marine mammals and fish from the Atlantic Ocean off Brazil. Vet. Parasitol. 165, 350–356 (2009).PubMed 
    Article 

    Google Scholar 
    Gomes, T. L. et al. Anisakis spp. in toothed and baleen whales from Japanese waters with notes on their potential role as biological tags. Parasitol. Int. 80, 102228 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Irigoitia, M. et al. Genetic identification of Anisakis spp. (Nematoda: Anisakidae) from cetaceans of the Southwestern Atlantic Ocean: Ecological and zoogeographical implications. Parasit. Res. 120, 1–13 (2021).Article 

    Google Scholar 
    Ugland, K. I., Strømnes, E., Berland, B. & Aspholm, P. E. Growth, fecundity and sex ratio of adult whaleworm (Anisakis simplex; Nematoda, Ascaridoidea, Anisakidae) in three whale species from the North-East Atlantic. Parasitol. Res. 92, 484–489 (2004).PubMed 
    Article 

    Google Scholar 
    Berland, B. Musings on nematode parasites. Fisken og Havet 11, 1–26 (2006).
    Google Scholar 
    Roca-Geronès, X., Alcover, M. M., Godínez-González, C., Montoliu, I. & Fisa, R. Hybrid genotype of Anisakis simplex (s.s.) and A. pegreffii identified in third- and fourth-stage larvae from sympatric and allopatric Spanish marine waters. Animals 11, 2458 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, J. Ulcers associated with larval Anisakis simplex B (Nematoda: Ascaridoidea) in the forestomach of harbour porpoises Phocoena phocoena (L.). Can. J. Zool. 67, 2270–2276 (1989).Article 

    Google Scholar 
    Abollo, E., Lopez, A., Gestal, C., Benavente, P. & Pascual, S. Macroparasites in cetaceans stranded on the northwestern Spanish Atlantic coast. Dis. Aquat. Org. 32, 227–231 (1998).CAS 
    Article 

    Google Scholar 
    Hrabar, J., Bočina, I., Gudan Kurilj, A., Đuras, M. & Mladineo, I. Gastric lesions in dolphins stranded along the Eastern Adriatic coast. Dis. Aquat. Organ. 125, 125–139 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pons-Bordas, C. et al. Recent increase of ulcerative lesions caused by Anisakis spp. in cetaceans from the north-east Atlantic. J. Helminthol. 94, E127 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryeng, K. A., Lakemeyer, J., Roller, M., Wohlsein, P. & Sieber, U. Pathological findings in bycaught harbour porpoises (Phocoena phocoena) from the coast of Northern Norway. Polar Biol. 45, 45–57 (2021).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Paoletti, M., Levsen, A. & Nascetti, G. Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North East Atlantic Ocean. J. Helminthol. 91, 422–439 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s.s.) (Nematoda: Anisakidae): Implications for species recognition and population genetic analysis. Parasitology 146, 1387–1403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shamsi, S., Sprohnle-Barrera, C. & Hossen, M. D. S. Occurrence of Anisakis spp. (Nematoda: Anisakidae) in a pygmy sperm whale Kogia breviceps (Cetacea: Kogiidae) in Australian waters. Dis. Aquat. Organ. 134, 65–74 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavallero, S., Nadler, S. A., Paggi, L., Barros, N. B. & D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 108, 781–792 (2011).PubMed 
    Article 

    Google Scholar 
    Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in Parasitology, Parasitology Research Monographs Vol. 2 (ed. Mehlhorn, H.) 201–222 (Springer, 2011).
    Google Scholar 
    Li, L. et al. Molecular phylogeny and dating reveal a terrestrial origin in the early Carboniferous for Ascaridoid nematodes. Syst. Biol. 67, 888–900 (2018).PubMed 
    Article 

    Google Scholar 
    Shamsi, S. Recent advances in our knowledge of Australian anisakid nematodes. Int. J. Parasitol. Parasites Wildl. 3, 178–187 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Amelio, S. et al. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int. J. Parasitol. 30, 223–226 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S. et al. No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s.s.) and hybridization events between them: A multi-marker nuclear genotyping approach. Parasitology 143, 998–1011 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palomba, M., Paoletti, M., Webb, S. C., Nascetti, G. & Mattiucci, S. A novel nuclear marker and development of an ARMS-PCR assay targeting the metallopeptidase 10 (nas 10) locus to identify the species of the Anisakis simplex (s. l.) complex (Nematoda, Anisakidae). Parasite 27, 39 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mladineo, I. et al. Anisakis simplex complex: Ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats. Int. J. Parasitol. 47, 215–223 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bello, E., Paoletti, M., Webb, S. C., Nascetti, G. & Mattiucci, S. Cross-species utility of microsatellite loci for the genetic characterisation of Anisakis berlandi (Nematoda: Anisakidae). Parasite 27, 9 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bello, E. et al. Investigating the genetic structure of the parasites Anisakis pegreffii and A. berlandi (Nematoda: Anisakidae) in a sympatric area of the southern Pacific Ocean waters using a multilocus genotyping approach: First evidence of their interspecific hybridization. Infect. Genet. Evol. 92, 104887 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klapper, R. et al. Anisakid nematodes in beaked redfish (Sebastes mentella) from three fishing grounds in the North Atlantic, with special notes on distribution in the fish musculature. Vet. Parasit. 207, 72–80 (2015).Article 

    Google Scholar 
    Bušelić, I. et al. Geographic and host size variations as indicators of Anisakis pegreffii infection in European pilchard (Sardina pilchardus) from the Mediterranean Sea: Food safety implications. Int. J. Food Microb. 266, 126–132 (2018).Article 
    CAS 

    Google Scholar 
    Cipriani, P. et al. Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy Engraulis encrasicolus from the Mediterranean Sea: Fishing ground as a predictor of parasite distribution. Fish. Res. 202, 59–68 (2018).Article 

    Google Scholar 
    Cipriani, P. et al. The Mediterranean European hake, Merluccius merluccius: Detecting drivers influencing the Anisakis spp. larvae distribution. Fish. Res. 202, 79–89 (2018).Article 

    Google Scholar 
    Levsen, A. et al. A survey of zoonotic nematodes of commercial key fish species from major European fishing grounds—Introducing the FP7 PARASITE exposure assessment study. Fish. Res. 202, 4–21 (2018).Article 

    Google Scholar 
    Gibson, D. I. et al. A survey of the helminth parasites of cetaceans stranded on the coast of England and Wales during the period 1990–1994. J. Zool. 244, 563–574 (1998).Article 

    Google Scholar 
    Mattiucci, S. et al. Evidence for a new species of Anisakis Dujardin, 1845: Morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst. Parasitol. 61, 157–171 (2005).PubMed 
    Article 

    Google Scholar 
    Blažeković, K., Pleić, I. L., Đuras, M., Gomerčić, T. & Mladineo, I. Three Anisakis spp. isolated from toothed whales stranded along the eastern Adriatic Sea coast. Int. J. Parasitol. 45, 17–31 (2015).PubMed 
    Article 

    Google Scholar 
    Mazzariol, S. et al. Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy. Sci. Rep. 8, 11577 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gomerčić, M. et al. Bottlenose dolphin (Tursiops truncatus) depredation resulting in larynx strangulation with gill-net parts. Mar. Mammal Sci. 25, 392–401 (2009).Article 

    Google Scholar 
    Pyenson, N. The high fidelity of the cetacean stranding record: Insights into measuring diversity by integrating taphonomy and macroecology. Proc. R. Soc. B. 278, 3608–3616 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacLeod, C. D., Santos, B., López Fernandez, A. & Pierce, G. Relative prey size consumption in toothed whales: Implications for prey selection and level of specialisation. Mar. Ecol. Prog. Ser. 326, 295–307 (2006).ADS 
    Article 

    Google Scholar 
    Santos, M. B. et al. Pygmy sperm whales Kogia Breviceps in the Northeast Atlantic: New information on stomach contents and strandings. Mar. Mammal Sci. 22, 600–616 (2006).Article 

    Google Scholar 
    Covelo, P., Martínez-Cedeira, J., Llavona, A., Díaz, J. & López Fernandez, A. Strandings of Beaked Whales (Ziphiidae) in Galicia (NW Spain) between 1990 and 2013. J. Mar. Biol. Assoc. U. K. 1, 1–7 (2016).
    Google Scholar 
    Moura, J. et al. Stranding events of Kogia whales along the Brazilian Coast. PLoS ONE 11, e0146108 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordes, D. O. The causes of whale strandings. N. Z. Vet. J. 30, 21–24 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frantzis, A. Does acoustic testing strand whales?. Nature 392, 29 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Laist, D. W., Knowlton, A. R., Mead, J. G., Collet, A. S. & Podesta, M. Collisions between ships and whales. Mar. Mammal Sci. 17, 35–75 (2001).Article 

    Google Scholar 
    Jepson, P. D. et al. Gas-bubble lesions in stranded cetaceans. Nature 425, 575–576 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pierce, G. J., Santos, M. B., Smeenk, C., Saveliev, A. & Zuur, A. F. Historical trends in the incidence of strandings of sperm whales (Physeter macrocephalus) on North Sea coasts: An association with positive temperature anomalies. Fish. Res. 87, 219–228 (2007).Article 

    Google Scholar 
    Coombs, E. et al. What can cetacean stranding records tell us? A study of UK and Irish cetacean diversity over the past 100 years. Mar. Mammal Sci. 35, 1527–1555 (2019).Article 

    Google Scholar 
    Fossi, M. C., Baini, M., Panti, C. & Baulch, S. Chapter 6—Impacts of marine litter on cetaceans: A focus on plastic pollution. In Marine Mammal Ecotoxicology (eds Fossi, M. C. & Panti, C.) 147–184 (Academic Press, 2018).Chapter 

    Google Scholar 
    Alexiadou, P., Foskolos, I. & Frantzis, A. Ingestion of macroplastics by odontocetes of the Greek Seas, Eastern Mediterranean: Often deadly!. Mar. Poll. Bull. 146, 67–75 (2019).CAS 
    Article 

    Google Scholar 
    Nicol, C. et al. Anthropogenic threats to Wild Cetacean welfare and a tool to inform policy in this area. Vet. Sci. Res. J. 7, 57 (2020).
    Google Scholar 
    Abollo, E., Paggi, L., Pascual, S. & D’Amelio, S. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 3, 175–181 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marques, J. F., Cabral, H., Busi, M. & D’Amelio, S. Molecular identification of Anisakis species from Pleuronectiformes off the Portuguese coast. J. Helminthol. 80, 47–51 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. H., Cheon, D. & Choi, C. Molecular genotyping of Anisakis species from Korean sea fish by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP). Food Control 20, 623–626 (2009).CAS 
    Article 

    Google Scholar 
    Suzuki, J., Murata, R., Hosaka, M. & Araki, J. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food Microbiol. 137, 88–93 (2010).PubMed 
    Article 

    Google Scholar 
    Molina-Fernández, D. et al. Fishing area and fish size as risk factors of Anisakis infection in sardines (Sardina pilchardus) from Iberian waters, southwestern Europe. Int. J. Food Microb. 203, 27–34 (2015).Article 

    Google Scholar 
    Cipriani, P. et al. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s.s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: Implications for food safety. Int. J. Food Microbiol. 198, 1–8 (2015).PubMed 
    Article 

    Google Scholar 
    Gómez-Mateos, M., Merino-Espinosa, G., Corpas-López, V., Valero-López, A. & Martín-Sánchez, J. A multi-restriction fragment length polymorphism genotyping approach including the beta-tubulin gene as a new differential nuclear marker for the recognition of the cryptic species Anisakis simplex s.s. and Anisakis pegreffii and their hybridization events. Vet. Parasitol. 283, 109162 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Klimpel, S., Busch, M. W., Kuhn, T., Rohde, A. & Palm, H. The Anisakis simplex complex off the South Shetland Islands (Antarctica): Endemic populations versus introduction through migratory hosts. Mar. Ecol. Progr. Ser. 40, 1–11 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Organ. 129, 175–182 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S., Nascetti, G., Bullini, L., Orecchia, P. & Paggi, L. Genetic structure of Anisakis physeteris and its differentiation from the Anisakis simplex complex (Ascaridida: Anisakidae). Parasitology 93, 383–387 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palomba, M., Mattiucci, S., Crocetta, F., Osca, D. & Santoro, M. Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters. Sci. Rep. 11, 7135 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarke, M. R., Martins, H. R. & Pascoe, P. The diet of sperm whales (Physeter macrocephalus Linnaeus 1758) off the Azores. Philos. Trans. R. Soc. Lond. B. 339, 67–82 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Santos, M. & Pierce, G. A note on niche overlap in teuthophagous whales in the northern Northeast Atlantic. Phuket Mar. Biol. Cent. Res. Bull. 66, 291–298 (2005).
    Google Scholar 
    Rendell, L. & Frantzis, A. Mediterranean Sperm Whales, Physeter macrocephalus: The precarious state of a lost tribe. In Advances in Marine Biology (eds Notarbartolo di Sciara, G. et al.) 37–74 (Academic Press, 2016).
    Google Scholar 
    Foskolos, I., Koutouzi, N., Polychronidis, L., Alexiadou, P. & Frantzis, A. A taste for squid: the diet of sperm whales stranded in Greece, Eastern Mediterranean. Deep Sea Res. I Oceanogr. Res. Pap. 155, 103164 (2020).Article 

    Google Scholar 
    Mattiucci, S. et al. Genetic heterogeneity within Anisakis physeteris (sensu lato) (Nematoda: Anisakidae) from sperm whales, Physeter macrocephalus, from Mediterranean Sea (Apulian coast) and Atlantic Ocean (Canaries coast). Abstract of XXVI Congresso Nazionale SoIPa. Parassitologia 52, 357 (2010).
    Google Scholar 
    Mattiucci, S. et al. Genetic identification and insights into the ecology of Contracaecum rudolphii A and C. rudolphii B (Nematoda: Anisakidae) from cormorants and fish of aquatic ecosystems of Central Italy. Parasitol. Res. 119, 1243–1257 (2020).PubMed 
    Article 

    Google Scholar 
    Karvonen, A., Jokela, J. & Laine, A. L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).PubMed 
    Article 

    Google Scholar 
    Paggi, L. et al. A new species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae) from beaked whale (Ziphiidae): Allozyme and morphological evidence. Syst. Parasitol. 40, 161–174 (1998).Article 

    Google Scholar 
    Mattiucci, S., Paoletti, M. & Webb, S. C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: Morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 74, 199–217 (2009).PubMed 
    Article 

    Google Scholar 
    Leatherwood, S. & Reeves, R. R. The Sierra Club Handbook of Whales and Dolphins 302 (Sierra Club Books, 1983).
    Google Scholar 
    Ross, G. J. B. The smaller cetaceans of the South East coast of southern Africa. Ann. Cape Prov. Mus. Nat. Hist. 15, 173–410 (1984).
    Google Scholar 
    Santos, B. et al. Feeding ecology of Cuvier’s beaked whale (Ziphius cavirostris): A review with new information on the diet of this species. J. Mar. Biol. Assoc. U. K. 81, 687–694 (2001).Article 

    Google Scholar 
    Lakemeyer, J. et al. Anisakid nematode species identification in harbour porpoises (Phocoena phocoena) from the North Sea, Baltic Sea and North Atlantic using RFLP analysis. Int. J. Parasitol. Parasites Wildl. 12, 93–98 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Højgaard, D. No significant development of Anisakis simplex (Nematoda, Anisakidae) eggs in the intestine of long-finned pilot whales, Globicephala melas (Traill, 1809). Sarsia 84, 479–482 (1999).Article 

    Google Scholar 
    Smith, J. W. & Wootten, R. Experimental studies on the migration of Anisakis sp. larvae (Nematoda: ascaridida) into the flesh of herring, Clupea harengus L. Int. J. Parasitol. 5, 133–136 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iglesias, L., Valero, A., Benítez, R. & Adroher, F. J. In vitro cultivation of Anisakis simplex: Pepsin increases survival and moulting from fourth larval to adult stage. Parasitology 123, 285–291 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mladineo, I. & Poljak, V. Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species. Appl. Environ. Microbiol. 80, 1281–1290 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mladineo, I., Bušelić, I., Hrabar, J., Vrbatović, A. & Radonić, I. Population parameters and mito-nuclear mosaicism of Anisakis spp. in the Adriatic Sea. Mol. Biochem. Parasitol. 212, 46–54 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levsen, A. et al. Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus, from major European fishing grounds—Reflecting changing fish host distribution and migration pattern. Fish. Res. 202, 112–121 (2018).Article 

    Google Scholar 
    Gay, M. et al. Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size. Fish. Res. 202, 90–102 (2018).Article 

    Google Scholar 
    Stevick, P. et al. Segregation of migration by feeding ground origin in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 259, 231–237 (2003).Article 

    Google Scholar 
    Lambert, E. et al. Cetacean range and climate in the eastern North Atlantic: Future predictions and implications for conservation. Glob. Change Biol. 20, 1782–1793 (2014).ADS 
    Article 

    Google Scholar 
    Szesciorka, A. et al. Timing is everything: Drivers of interannual variability in blue whale migration. Sci. Rep. 10, 7710 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoelzel, A. R., Goldsworthy, S. D. & Fleischer, R. C. Population genetic structure. In Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 1–134 (Blackwell Publishing, 2002).
    Google Scholar 
    Lahaye, V. et al. Long-term dietary segregation of common dolphins Delphinus delphis in the Bay of Biscay, determined using cadmium as an ecological tracer. Mar. Ecol. Prog. Ser. 305, 275–285 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Population genetic structure of the parasite Anisakis simplex (s.s.) collected in Clupea harengus L. from North East Atlantic fishing grounds. Fish. Res. 202, 103–111 (2018).Article 

    Google Scholar 
    Natoli, A. et al. Conservation genetics of the short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea and in the eastern North Atlantic Ocean. Conserv. Genet. 9, 1479–1487 (2008).Article 

    Google Scholar 
    Mazzariol, S. et al. Sometimes sperm whales (Physeter macrocephalus) cannot find their way back to the high seas: A multidisciplinary study on a mass stranding. PLoS ONE 6, e19417 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mazzariol, S. et al. Dolphin Morbillivirus associated with a mass stranding of sperm Whales, Italy. Emerg. Infect. Dis. 23, 144–146 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podestà, M. et al. Cuvier’s beaked whale, Ziphius cavirostris, distribution and occurrence in the Mediterranean Sea: High-use areas and conservation threats. Adv. Mar. Biol. 75, 103–140 (2016).PubMed 
    Article 

    Google Scholar 
    Davies, K., Pagan, C. & Nadler, S. A. Host population expansion and the genetic architecture of the pinniped hookworm Uncinaria lucasi. J. Parasitol. 106, 383–391 (2020).PubMed 
    Article 

    Google Scholar 
    IJsseldijk, L. L., Brownlow, A. C. & Mazzariol, S. European best practice on cetacean post-mortem investigation and tissue sampling (ed. IJsseldijk, L. L., Brownlow, A. C., & Mazzariol, S.) 1–72 (ASCOBANS/ACCOBAMS, 2019).Nadler, S. A. & Hudspeth, D. S. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zuckerkandl, E. & Pauling, L. Molecular disease, evolution, and genetic heterogeneity. In Horizons in Biochemistry (eds Kasha, M. & Pullman, B.) 189–225 (Academic Press, 1962).
    Google Scholar 
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weir, B. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Invasion stages help resolve Darwin’s naturalization conundrum

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants https://doi.org/10.1038/s41477-022-01216-9 (2022). More

  • in

    Potential of microbiome-based solutions for agrifood systems

    German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, François Buscot, Antonis Chatzinotas, Narendrakumar M. Chaudhari, Anna Heintz-Buschart, Kirsten Küsel & Rine C. ReubenInstitute of Biology, Leipzig University, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, Antonis Chatzinotas & Rine C. ReubenDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, GermanyStephanie D. Jurburg, Antonis Chatzinotas, Rene Kallies, Susann Müller & Ulisses Nunes da RochaDepartment of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Halle, GermanyFrançois Buscot & Anna Heintz-BuschartAquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, GermanyNarendrakumar M. Chaudhari & Kirsten KüselSwammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the NetherlandsAnna Heintz-BuschartKellogg Biological Station, Michigan State University, Hickory Corners, MI, USAElena LitchmanEcology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USAElena LitchmanDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA, USAElena LitchmanHawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, AustraliaCatriona A. Macdonald & Brajesh K. SinghLeibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, GermanyGianni PanagiotouThe State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouDepartment of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouInstitut für Biologie, Freie Universität Berlin, Berlin, GermanyMatthias C. RilligBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyMatthias C. RilligGlobal Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, AustraliaBrajesh K. SinghB.K.S. conceived the idea in consultation with N.E. and S.J., and led the discussion which was attended by all authors. S.J. and B.K.S. wrote the manuscript and all contributed to refine it. More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More