More stories

  • in

    A global dataset of seaweed net primary productivity

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science. 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).Article 

    Google Scholar 
    Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 1–34 (2015).Article 

    Google Scholar 
    Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Sayers, M. J., Fahnenstiel, G. L., Shuchman, R. A. & Bosse, K. R. A new method to estimate global freshwater phytoplankton carbon fixation using satellite remote sensing: initial results. Int. J. Remote Sens. 42, 3708–3730 (2021).Article 

    Google Scholar 
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cycles 24, GB3016 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 939–951 (2009).ADS 
    MATH 
    Article 

    Google Scholar 
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, V. S. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, 1–8 (2010).Article 
    CAS 

    Google Scholar 
    Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).
    Google Scholar 
    Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography. 31(7), 1422–1439, https://doi.org/10.1111/geb.13515 (2022).Duggins, D. O. & Estes, J. A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science. 245, 170–173 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunton, K. H. & Schell, D. M. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: 13C evidence. Mar. Biol. 625, 615–625 (1987).Article 

    Google Scholar 
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).ADS 
    Article 

    Google Scholar 
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum belt. Nat. Commun. 12, 2556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci. 4 (2017).Kanwisher, J. W. Photosynthesis and respiration in some seaweeds. in Some contemporary studies in marine science:: a collection of original scientific papers presented to Dr. S.M. Marshall, O.B.E., F.R.S. in recognition of her contribution with the late Dr. A.P. Orr to marine biological progress (eds. Barnes, H. & Marshall, S. M.) 407 (Allen & Unwin, 1966).Blinks, L. R. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14, 363–373 (1955).
    Google Scholar 
    Printz, H. Seasonal growth and production of dry matter in Ascophyllum nodosum. Avh. Utg. Av Det Nor. Videnskaps-akademi i Oslo. I. Mat. Klasse 4, 1–15 (1950).
    Google Scholar 
    Rassweiler, A., Reed, D. C., Harrer, S. L. & Nelson, J. C. Improved estimates of net primary production, growth and standing crop of Macrosystis pryifera in Southern California. Ecology 99, 2132 (2018).PubMed 
    Article 

    Google Scholar 
    Littler, M. M. & Arnold, K. E. Primary Productivity of Marine Macroalgal Functional-Form Groups From Southwestern North America. Journal of Phycology 18, 307–311 (1982).Article 

    Google Scholar 
    Krause-Jensen, D. et al. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob. Chang. Biol. 18, 2981–2994 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smale, D. A. et al. Environmental factors influencing primary productivity of the forest – forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. Global seaweed productivity. Science Advances https://doi.org/10.1126/sciadv.abn2465 (2022) (in press).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).Article 

    Google Scholar 
    Tebbett, S. B. & Bellwood, D. R. Algal turf productivity on coral reefs: A meta-analysis. Mar. Environ. Res. 168, 105311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s kelp forests. in World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) 57–78, https://doi.org/10.1016/B978-0-12-805052-1.00003-6 (Academic Press, 2019).Gómez, I. et al. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 52, 593–608 (2009).Article 

    Google Scholar 
    Kindig, A. C. & Littler, M. M. Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Mar. Environ. Res. 3, 81–100 (1980).Article 

    Google Scholar 
    Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: The significance of grazing. Aquat. Bot. 3, 357–390 (1977).Article 

    Google Scholar 
    Hatcher, B. G. Reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Odum, H. T. & Odum, E. P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).Article 

    Google Scholar 
    Owen, D. P., Long, M. H., Fitt, W. K. & Hopkinson, B. M. Taxon-specific primary production rates on coral reefs in the Florida Keys. Limnol. Oceanogr. 1–14, https://doi.org/10.1002/lno.11627 (2020).Attard, K. M. et al. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: An eddy covariance study. Mar. Ecol. Prog. Ser. 535, 99–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Attard, K. M. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).ADS 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. (2019).Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).ADS 
    Article 

    Google Scholar 
    Thom, R. M. Spatial and Temporal Patterns of Fucus distichus ssp. edentatus (de la Pyl.) Pow. (Phaeophyceae: Fucales) in Central Puget Sound. Bot. Mar. 26, 471–486 (1983).Article 

    Google Scholar 
    Johnston, C. S., Jones, R. G. & Hunter, D. R. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 527–545 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Chang. Biol. 1–17, https://doi.org/10.1111/gcb.15837 (2021).Randall, J., Wotherspoon, S., Ross, J., Hermand, J. & Johnson, C. An in situ study of production from diel oxygen modelling, oxygen exchange, and electron transport rate in the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 615, 51–65 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rodgers, K. L., Rees, T. A. V. & Shears, N. T. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528, 101–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanderson, J. C. Subtidal Macroalgal Studies in East and South Eastern Tasmanian Coastal Waters. (University of Tasmania, 1990).Miller, R. J., Reed, D. C. & Brzezinski, M. A. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388, 1–11 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. A global dataset of seaweed net primary productivity, Figshare, https://doi.org/10.6084/m9.figshare.14882322 (2021).Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).PubMed 
    Article 

    Google Scholar 
    Lees, D. C., Houghton, J. P., Erickson, D. E., Driskell, W. B. & Boettcher, D. E. Ecological studies of intertidal and shallow subtidal habitats in lower Cook Inlet, Alaska. (1980).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. C. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60 (2012).ADS 
    Article 

    Google Scholar 
    Kain, J. M. The biology of Laminaria hyperborea X. The effect of depth on some populations. J. Mar. Biol. Assoc. United Kingdom 57, 587–607 (1977).Article 

    Google Scholar 
    Yatsuya, K., Nishigaki, T., Douke, A., Itani, M. & Wada, Y. Annual net productions of sargassacean species in coastal areas with different environmental characteristics in Kyoto Prefecture, the Sea of Japan. Nippon Suisan Gakkaishi 73, 880–890 (2007).Article 

    Google Scholar 
    Carter, A. R. & Simons, R. H. Regrowth and Production Capacity of Gelidium pristoides (Gelidiales, Rhodophyta) under Various Harvesting Regimes at Port Alfred, South Africa. Bot. Mar. 30, 227–232 (1987).Article 

    Google Scholar 
    Santelices, B., Vásquez, J., Ohme, U. & Fonck, E. Managing wild crops of Gracilaria in central Chile. in Eleventh International Seaweed Symposium (eds. Bird, C. J. & Ragan, M. A.) 77–89 (Springer Netherlands, 1984).Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 10, 91–104 (2018).
    Google Scholar 
    Dunton, K. H. An annual carbon budget for an arctic kelp community. in The Alaskan Beaufort Sea: ecosystems and environments. (eds. Barnes, P. W., Schell, D. & Reimnitz, E.) 311–326 (Academic press, 1984).Klumpp, D. W. & McKinnon, A. D. Commmunity structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef; dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 86, 77–89 (1992).ADS 
    Article 

    Google Scholar 
    Westphalen, G. & Cheshire, A. C. Quantum efficiency and photosynthetic production of a temperate turf algal community. Aust. J. Bot. 45, 343–349 (1997).Article 

    Google Scholar 
    Morrissey, J. Primary productivity of coral reef benthic macroalgae. Proceedings of the 5th International Coral Reef Congress 77–82 (1985).Howard, K. L. & Menzies, R. J. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Bot. Mar. 12, 244–254 (1969).Article 

    Google Scholar 
    Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, 1–17 (2020).
    Google Scholar 
    Tait, L. W., South, P. M., Lilley, S. A., Thomsen, M. S. & Schiel, D. R. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J. Exp. Mar. Bio. Ecol. 469, 10–17 (2015).CAS 
    Article 

    Google Scholar 
    Rodgers, K. & Shears, N. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar. Ecol. Prog. Ser. 553, 67–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Alpine shrub growth follows bimodal seasonal patterns across biomes – unexpected environmental controls

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).Article 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life (Springer International Publishing, 2021).Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).CAS 
    Article 

    Google Scholar 
    AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (2021).Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).Article 

    Google Scholar 
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Self‐amplifying feedbacks accelerate greening and warming of the arctic. Geophys. Res. Lett. 45, 7102–7111 (2018).Article 

    Google Scholar 
    Körner, C. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41, 197–206 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pellizzari, E. et al. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Glob. Change Biol. 23, 3169–3180 (2017).Article 

    Google Scholar 
    Dobbert, S., Pape, R. & Löffler, J. How does spatial heterogeneity affect inter‐ and intraspecific growth patterns in tundra shrubs. J. Ecol. 7, 1 (2021).
    Google Scholar 
    Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Change Biol. 23, 4294–4302 (2017).Article 

    Google Scholar 
    Stendel, M., Christensen, J. H. & Petersen, D. in High-Arctic Ecosystem Dynamics in a Changing Climate (eds. Meltofte, H.) 13–43 (Elsevier, 2008).Prislan, P. et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 7, 1923 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).Article 

    Google Scholar 
    Olano, J. M., Almería, I., Eugenio, M. & Arx, G. V. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 27, 1295–1303 (2013).Article 

    Google Scholar 
    Voltas, J. et al. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell Environ. 36, 1435–1448 (2013).CAS 
    Article 

    Google Scholar 
    Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).Article 

    Google Scholar 
    Castagneri, D., Battipaglia, G., Arx, G. V., Pacheco, A. & Carrer, M. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 38, 1098–1109 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabon, A., Peters, R. L., Fonti, P., Martínez-Vilalta, J. & Cáceres, M. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. N. Phytologist 226, 1325–1340 (2020).CAS 
    Article 

    Google Scholar 
    Camarero, J. J., Valeriano, C., Gazol, A., Colangelo, M. & Sánchez-Salguero, R. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid mediterranean conditions. Forests 12, 381 (2021).Article 

    Google Scholar 
    García-Cervigón Morales, A. I., Olano Mendoza, J. M., Eugenio Gozalbo, M. & Camarero Martínez, J. J. Arboreal and prostrate conifers coexisting in Mediterranean high mountains differ in their climatic responses. Dendrochronologia 30, 279–286 (2012).Article 

    Google Scholar 
    Oladi, R., Emaminasab, M. & Eckstein, D. The dendroecological potential of shrubs in north Iranian semi-deserts. Dendrochronologia 44, 94–102 (2017).Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evolution 5, 243–254 (2015).Article 

    Google Scholar 
    Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).PubMed 
    Article 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist 210, 459–470 (2016).CAS 
    Article 

    Google Scholar 
    Rathgeber, C. B. K., Cuny, H. E. & Fonti, P. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7, 734 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Carbon limitation in trees. J. Ecol. 91, 4–17 (2003).Article 

    Google Scholar 
    Thompson, J. D. Plant Evolution in the Mediterranean (Oxford University Press, 2005).Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22, 3804–3813 (2016).Article 

    Google Scholar 
    Löffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. N. Phytologist 231, 2174–2185 (2021).Article 

    Google Scholar 
    González-Rodríguez, Á. M. et al. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 127, 97–108 (2017).Article 

    Google Scholar 
    Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage. N. Phytologist 211, 839–849 (2016).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).Article 

    Google Scholar 
    Mitrakos, K. A Theory for Mediterranean Plant Life (Acta oecologica, 1980).Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist 185, 471–480 (2010).Article 

    Google Scholar 
    Alday, J. G., Camarero, J. J., Revilla, J. & Resco de Dios, V. Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. Tree Physiol. 40, 956–968 (2020).PubMed 
    Article 

    Google Scholar 
    Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).CAS 
    PubMed 
    Article 

    Google Scholar 
    Descals, A. et al. Soil thawing regulates the spring growth onset in tundra and alpine biomes. Sci. total Environ. 742, 140637 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgner, E., Elberling, B., Strebel, D. & Cooper, E. J. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29, 58–74 (2010).CAS 
    Article 

    Google Scholar 
    Weijers, S., Beckers, N. & Löffler, J. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9, e02328 (2018).Article 

    Google Scholar 
    Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).Article 

    Google Scholar 
    Wang, Y. et al. Warming‐induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 44, 1631–1641 (2021).Article 

    Google Scholar 
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).CAS 
    Article 

    Google Scholar 
    Francon, L., Corona, C., Till-Bottraud, I., Carlson, B. Z. & Stoffel, M. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. Am. J. Bot. 107, 607–617 (2020).PubMed 
    Article 

    Google Scholar 
    Lu, X., Liang, E., Babst, F., Camarero, J. J. & Büntgen, U. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proc. Natl Acad. Sci. USA 119, e2118120119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sabater, A. M. et al. Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13, e2190 (2019).
    Google Scholar 
    Larson, P. R. The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Am. J. Bot. 49, 132–137 (1962).Article 

    Google Scholar 
    Jackson, S. D. Plant responses to photoperiod. N. Phytologist 181, 517–531 (2009).CAS 
    Article 

    Google Scholar 
    Waisel, Y. & Fahn, A. The effects of environment on wood formation and cambial activity in Robina Pseudacacia L. N. Phytologist 64, 436 (1965).Article 

    Google Scholar 
    Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).Article 

    Google Scholar 
    Gričar, J. et al. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 6, 730 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oberhuber, W., Sehrt, M. & Kitz, F. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol. 290, 108026 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonntag, D. Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrometer formulae. Z. f.ür. Meteorologie 70, 340–344 (1990).
    Google Scholar 
    Löffler, J., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of arctic-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in central Norway. Erdkunde 75, DP311201 (2021).
    Google Scholar 
    Löffler, J., Albrecht, E. C., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of Mediterranean-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in the Sierra Nevada, Spain (LTAER-ES). Erdkunde 76, DP311202 (2022).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).Wood, S. N. Generalized Additive Models. An introduction with R (2nd edition) (Chapman & Hall/CRC, 2017).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73, 3–36 (2011).Article 

    Google Scholar 
    Byun, J. G. et al. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6, 380–392 (2013).Article 

    Google Scholar 
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Vegetation Sci. 2, 587–602 (1991).Article 

    Google Scholar 
    Gasparrini, A., Scheipl, F., Armstrong, B. & Kenward, M. G. A penalized framework for distributed lag non-linear models. Biometrics 73, 938–948 (2017).PubMed 
    Article 

    Google Scholar 
    Scott, E. R., Uriarte, M. & Bruna, E. M. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. https://doi.org/10.1101/2021.06.28.450186 (2021).Almon, S. The distributed lag between capital appropriations and expenditures. Econometrica 33, 178 (1965).Article 

    Google Scholar 
    Vanoni, M., Bugmann, H., Nötzli, M. & Bigler, C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For. Ecol. Manag. 382, 51–63 (2016).Article 

    Google Scholar 
    Pukienė, R., Vitas, A., Kažys, J. & Rimkus, E. Four-decadal series of dendrometer measurements reveals trends in Pinus sylvestris L. inter- and intra-annual growth response to climatic conditions. Can. J. For. Res. 51, 445–454 (2020).Article 

    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw. 43, https://doi.org/10.18637/jss.v043.i08 (2011).Kartverket. Terrain Map. https://www.norgeskart.no/ (Norwegian Mapping Authority, 2008).Autonomous body National Center for Geographic Information (CNIG). Digital Terrain Model – DTM25. http://centrodedescargas.cnig.es/ (2009). More

  • in

    Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities

    Wei, Z. L., Liu, X., Feng, T. & Chang, Y. Q. Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int. J. Biol. Sci. 7, 180 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Z. H., Zhang, J., Zhang, W. J. & Chang, Y. Q. Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 698, 72–81 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willoughby, L. News feature: Can predators have a big impact on carbon emissions calculations?. PNAS 115(10), 2260–2263 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ling, S. D., Kriegisch, N., Woolley, B. & Reeves, S. E. Density dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100(2), e02577 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cirino, P., Ciaravolo, M., Paglialonga, A. & Toscano, A. Long term maintenance of the sea urchin Paracentrotus lividus in culture. Aquac. Rep. 7, 27–33 (2017).Article 

    Google Scholar 
    Brundu, G., Farina, S. & Domenici, P. Going back into the wild: The behavioural effects of raising sea urchins in captivity. Conserv. Physiol. 8(1), 015 (2020).Article 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, 2004).
    Google Scholar 
    Abelson, A. & Denny, M. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst. 28(1), 317–339 (1997).Article 

    Google Scholar 
    Boxshall, A. J. The importance of flow and settlement cues to larvae of the abalone, Haliotis rufescens Swainson. J. Exp. Mar. Biol. Ecol. 254(2), 143–167 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities: Water flow mediates rarity and diversity. Ecol. Lett. 14(1), 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Fischer-Rousseau, L., Chu, K. P. & Cloutier, R. Developmental plasticity in fish exposed to a water velocity gradient: A complex response. J. Exp. Zool. 314(1), 67–85 (2010).Article 

    Google Scholar 
    Moëzzi, F., Poorbagher, H., Ghadermazi, A., Parvizi, F. & Benam, S. Variation in the shell form of the swanmussel, Anodonta cygnea (Linea, 1876) in response to water current. Int. J. Aquat. Biol. 5(4), 275–281 (2017).
    Google Scholar 
    Pan, Y. et al. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol. Behav. 144, 52–59 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dumont, C. P., Drolet, D., Deschenes, I. & Himmelman, J. H. Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis. Anim. Behav. 73(6), 979–986 (2007).Article 

    Google Scholar 
    Li, X. J. et al. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish Shellfish Immunol. 86, 1169–1176 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kirby-Smith, W. W. Growth of the bay scallop: The influence of experimental water currents. J. Exp. Mar. Biol. Ecol. 8(1), 7–18 (1972).Article 

    Google Scholar 
    Morse, B. L. & Hunt, H. L. Effect of unidirectional water currents on displacement behaviour of the green sea urchin Strongylocentrous droebachiensis. J. Mar. Biol. Assoc. U. K. 93(7), 1923–1928 (2013).Article 

    Google Scholar 
    Shi, D. T. et al. Effects of flow velocity on fitness related behaviours of the sea urchin Mesocentrotus nudus: New information on stock enhancement. J. Mar. Biol. Assoc. U. K. 100(6), 963–967 (2020).CAS 
    Article 

    Google Scholar 
    Agca, C., Elhajj, M. C., Klein, W. H. & Venuti, J. M. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J. Comp. Neurol. 519(17), 3566–3579 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen-Rengifo, M., Moureaux, C., Dubois, P. & Flammang, P. Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties. Mar. Biol. 164(4), 79 (2017).Article 

    Google Scholar 
    Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L. & Haroun, R. J. Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow induced forces. Estuar. Coast. Shelf Sci. 73, 481–488 (2007).ADS 
    Article 

    Google Scholar 
    Stewart, H. L. & Britton-Simmons, K. H. Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow. J. Exp. Biol. 214(16), 2655–2659 (2011).PubMed 
    Article 

    Google Scholar 
    Toubarro, D. et al. Cloning, characterization, and expression levels of the nectin gene from the tube feet of the sea urchin Paracentrotus Lividus. Mar. Biotechnol. 18(3), 372–383 (2016).CAS 
    Article 

    Google Scholar 
    Milan, M. et al. Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: Genomic tools for environmental monitoring. BMC Genom. 12, 234 (2011).CAS 
    Article 

    Google Scholar 
    Evans, T. G. et al. Ocean acidification research in the ‘post-genomic’ era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp. Biochem. Phys. A. 185, 33–42 (2015).CAS 
    Article 

    Google Scholar 
    Wang, L. K., Feng, Z. X., Wang, X. & Zhang, X. G. DEGseq: An R package for identifying differentially expressed genes from RNA-Seq Data. Bioinformatics 26(1), 136–138 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ding, J. Y. et al. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 519, 734873 (2019).Article 

    Google Scholar 
    Shi, D. T., Zhao, C., Yin, D. H., Chen, Y. & Chang, Y. Q. Effects of velocity on behaviors and growth of the sea urchin Mesocentrotus nudus. Acta Ecol. Sin. 42(10) (2022) (in Chinese with an English abstract).Zhao, C. et al. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation. Ecotoxicol. Environ. Saf. 167, 236–241 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhan, Y. Y. et al. The impact of chronic heat stress on the growth, survival, feeding, and differential gene expression in the sea urchin Strongylocentrotus intermedius. Front. Genet. 10, 301 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, P. F. et al. Gene expression patterns of sea urchins (Strongylocentrotus intermedius) exposed to different combinations of temperature and hypoxia. Comp. Biochem. Physiol. Part D. Cenom. Proteom. 41, 100953 (2022).CAS 

    Google Scholar 
    Albarano, L. et al. PAHs and PCBs affect functionally intercorrelated genes in the sea urchin Paracentrotus lividus embryos. Int. J. Mol. Sci. 22, 12498 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Láruson, A. J., Coppard, S. E., Pespeni, M. H. & Reed, F. A. Gene expression across tissues, sex, and life stages in the sea urchin Tripneustes gratilla [Toxopneustidae, Odontophora, Camarodonta]. Mar. Genom. 41, 12–18 (2018).Article 

    Google Scholar 
    Xu, Y. Q. Effects of flow velocity on growth, nonspecific immunity and fatty acid composition of juvenile Rhynchocypris lagowskii. Dalian Ocean University, Master Thesis (2020).Ogata, H. Y. & Oku, H. Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus. J. World Aquac. Soc. 31(2), 225–231 (2000).Article 

    Google Scholar 
    Gao, J., Wang, Y. B., Liu, J. Y., Guo, Y. L. & Fu, S. Y. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity. South China Fish. Sci. 18(1), 107–117 (2022).
    Google Scholar 
    Arai, M., Otsu, K., Maclennan, D. H. & Periasamy, M. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262, C614–C620 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gallagher, P. G., Romana, M., Tse, W. T., Lux, S. E. & Forge, B. G. The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 96(3), 1136–1143 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gallagher, P. G. & Forget, B. G. An alternate promoter directs expression of a truncated, muscle specific isoform of the human Ankyrin-1 gene. J. Biol. Chem. 273(3), 1339–1348 (1997).Article 

    Google Scholar 
    Yi, Y., Li, Z. & Kuipers, O. P. Plant–microbe interaction: transcriptional response of bacillus mycoides to potato root exudates. J. Vis. Exp. 137, e57606 (2018).
    Google Scholar 
    Sun, X. et al. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. BMC Genom. 19, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29(7), 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 25–34 (2009).Article 
    CAS 

    Google Scholar 
    Tatusov, R. T., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Nucleic Acids Res. 28, 33–36 (1997).Article 

    Google Scholar 
    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbeville, J., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).CAS 
    PubMed 

    Google Scholar 
    Vergara-Amado, J., Silva, A. X., Manzi, C., Nespolo, R. F. & Cárdenas, L. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus. J. Therm. Biol. 68, 104–109 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCT method. Methods 25(4), 402–408 (2001).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Maps of cropping patterns in China during 2015–2021

    Study areaThere is a long history of diversified cropping patterns due to the climatic and topographic complexity in China4. Cropping intensity increases from north to south, and multiple cropping dominates in regions south of 400N4. For example, multiple cropping systems of double rice and winter wheat plus maize are popular in the Middle-lower Yangtze river plain and the Huang-Huai-Hai plain, respectively (Fig. 1)22. Three staple crops, maize, paddy rice, and wheat, are widely distributed across the country (Figure S1). These three major crops contributed to more than half (57.08%) of the total sown area in China in 2020 (http://www.stats.gov.cn/english/).Fig. 1The distribution map of cropping patterns in 2021, 9 agricultural regions and validation sites in China. Notes: A to I represented nine agricultural regions in China. (A) Middle-lower Yangtze River Plain; (B) Huang-Huai-Hai plain; (C) Northeast China; (D) Inner Mongolia and along the Great Wall; (E) Loess plateau; (F) Southwest China; (G) Southern China; (H) Gansu-Xinjiang region; (I) Qinghai-Tibet region.Full size imageMODIS images and pre-processingWe used the 500 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance products (MOD09A1) from 2015 to 2021. Three spectral indices were calculated: the 2-band Enhanced Vegetation Index (EVI2)23, LSWI16, and Normalized Multi-band Drought Index (NMDI)24 (Fig. 2). The functions of EVI2, LSWI, and NMDI are provided in Eqs. 1–3 as follows.$${rm{EVI2}}=2.5times left({rho }_{NIR}-{rho }_{{rm{Red}}}right)/left({rho }_{NIR}+2.4times {rho }_{{rm{Red}}}+1right)$$
    (1)
    $${rm{LSWI}}=left({rho }_{NIR}-{rho }_{SWIR6}right)/left({rho }_{NIR}+{rho }_{SWIR6}right)$$
    (2)
    $$NMDI=frac{{rho }_{NIR}-left({rho }_{SWIR6}-{rho }_{SWIR7}right)}{{rho }_{NIR}+left({rho }_{SWIR6}-{rho }_{SWIR7}right)}$$
    (3)
    where, ρNIR, ρRed, ρSWIR6 and ρSWIR7 represented the surface reflectance values from the red (620–670 nm), Near-infrared (841–875 nm), short wave infrared band centered at 1640 nm (1628–1652 nm) and 2130 nm (2105–2155 nm), respectively.Fig. 2The workflow of the methodology: Data preprocessing, deriving cropping intensity, mapping three staple crops and obtaining annual maps of cropping patterns in China.Full size imageFor each spectral index (EVI2, LSWI, and NMDI), a daily continuous time series was developed based on the cloud-free observations using the Whittaker Smoother (WS)25. The WS smoother performed well in multiple cropping regions and therefore was applied here26.Validation data and other datasetsThe validation data in this study included the ground truth reference data and agricultural census data. The ground truth reference data were collected in major agricultural regions with GPS receivers and digital cameras during the study period (2015–2021) (Fig. 1, Table S1). For each sampling site, the geographic location and crop types were recorded. The reliability of ground survey data was improved through visual confirmation based on high-resolution images in Google Earth. Some reference sites with small field sizes were removed to considering the mixed-pixel problems of MODIS images. Finally, we obtained a total of 18,379 ground samples collected during 2015–2021 (Table S1). All the ground truth reference data were used to validate the cropping pattern data in its corresponding year. Agricultural census data were obtained from the National Statistical Bureau of China (NSBC) (http://www.stats.gov.cn/english/), which was collected through sampling statistics. The crop calendar data from agro-meteorological stations recorded the sowing, seedling, tillering, heading, and harvesting dates of winter wheat (210 sites) or spring wheat (90 sites). The calendar data were applied to establish the trend surfaces of key phenological stages of winter wheat and spring wheat, respectively. The crop calendar data were provided by the National Meteorological Information Center, China Meteorological Administration.The cropland distribution data were derived from the 30 m GlobeLand30 global land cover data in 202027. The total accuracy of GlobeLand30 in 2020 is 85.72%, and the Kappa coefficient is 0.82 (www.globallandcover.com). To correspond to MODIS images, the 30 m cropland pixels from GlobeLand30 data were spatially aggregated to a 500 m cropland fraction map. For simplification, we classified pixel purity of MODIS pixels into three groups: cropland percentages of >90%, 50–90%, and More

  • in

    Staphylococcus aureus lineages associated with a free-ranging population of the fruit bat Pteropus livingstonii retained over 25 years in captivity

    Fischer, C. P. & Romero, L. M. Chronic captivity stress in wild animals is highly species-specific. Conserv. Physiol. 7, coz093 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGill, I. et al. Isosporoid coccidiosis in translocated cirl buntings (Emberiza cirlus). Vet. Rec. 167, 656–660 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mohajeri, M. H. et al. The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57, 1–14 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, S. J. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).Article 
    CAS 

    Google Scholar 
    Peters, A., Meredith, A., Skerratt, L., Carver, S. & Raidal, S. Infectious disease and emergency conservation interventions. Conserv. Biol. 34, 784–785 (2020).PubMed 
    Article 

    Google Scholar 
    Northover, A. S. et al. Altered parasite community structure in an endangered marsupial following translocation. Int. J. Parasitol. Parasites Wildl. 10, 13–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daniel, B. M. et al. A bat on the brink? A range-wide survey of the Critically Endangered Livingstone’s fruit bat Pteropus livingstonii. Oryx 51, 742–751 (2017).Article 

    Google Scholar 
    IUCN. Pteropus livingstonii: Sewall, B.J., Young, R., Trewhella, W.J. & Rodríguez-Clark, K.M. and Granek, E.F. IUCN Red List of Threatened Species (2016) https://doi.org/10.2305/iucn.uk.2016-2.rlts.t18732a22081502.en.IUCN Species Survival Commission. Species action plan for Livingstone’s fruit bat ‘Pteropus livingstonii’. https://portals.iucn.org/library/node/7368 (1995).Haag, A. F., Ross Fitzgerald, J. & Penadés, J. R. Staphylococcus aureus in animals. Gram-Positive Pathog. https://doi.org/10.1128/9781683670131.ch46 (2019).Article 

    Google Scholar 
    Pirolo, M. et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control 8, 1–10 (2019).Article 

    Google Scholar 
    Young, B. C. et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 6, e30637 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heaton, C. J., Gerbig, G. R., Sensius, L. D., Patel, V. & Smith, T. C. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics 9, 89 (2020).PubMed Central 
    Article 

    Google Scholar 
    Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bacigalupe, R., Tormo-Mas, M. Á., Penadés, J. R. & Ross Fitzgerald, J. A multihost bacterial pathogen overcomes continuous population bottlenecks to adapt to new host species. Sci. Adv. 5, eaax0063 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spoor, L. E. et al. Recombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation. Microb. Genomics 1(4), e000036. https://doi.org/10.1099/mgen.0.000036 (2015).Article 

    Google Scholar 
    Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fountain, K. et al. Diversity of staphylococcal species cultured from captive Livingstone’s fruit bats (Pteropus livingstonii) and their environment. J. Zoo Wildl. Med. 50, 266–269 (2019).PubMed 
    Article 

    Google Scholar 
    Fountain, K. et al. Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent clone (ST49) from reservoir hosts. Microb. Genom. 7(5), 000565. https://doi.org/10.1099/mgen.0.000565 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Rohmer, C. & Wolz, C. The role of hlb-converting bacteriophages in Staphylococcus aureus host adaption. Microb. Physiol. 31 109–122. https://doi.org/10.1159/000516645 (2021).
    PubMed 
    Article 

    Google Scholar 
    Senghore, M. et al. Transmission of Staphylococcus aureus from humans to green monkeys in The Gambia as revealed by whole-genome sequencing. Appl. Environ. Microbiol. 82, 5910–5917 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xue, H., Lu, H. & Zhao, X. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer. PLoS ONE 6, e20332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paharik, A. E. et al. The Spl serine proteases modulate protein production and virulence in a rabbit model of pneumonia. mSphere 1, e00208-16 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 2595 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cheng, A. G., Missiakas, D. & Schneewind, O. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J. Bacteriol. 196, 971–981 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lin, Y.-C. et al. Staphylococcal phosphatidylinositol-specific phospholipase C potentiates lung injury via complement sensitisation. Cell. Microbiol. 21, e13085 (2019).PubMed 

    Google Scholar 
    Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273–2280 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakamura, Y. et al. Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci. Rep. 10, 17845 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, X. et al. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol. Evol. 7, 8804–8811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pence, M. A. et al. Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS ONE 10, e0136605 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Raafat, D. et al. Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the nasal S. aureus population. Toxins 12, 80 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    National Library of Medicine (US), National Center for Biotechnology Information. Genbank. (1982).PubMLST—Public databases for molecular typing and microbial genome diversity. https://pubmlst.org/.Wick, R. R., Judd, L. M. & Holt, K. E. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 14, e1006583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seeman, T. MLST. Github https://github.com/tseemann/mlst.Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Snippy: Fast Bacterial Variant Calling from NGS Reads (2015).Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Abricate; Mass screening of contigs for antimicrobial resistance or virulence genes. Github https://github.com/tseemann/abricate.Feldgarden, M. et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, e00483-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694–D697 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Arndt, D., Marcu, A., Liang, Y. & Wishart, D. S. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief. Bioinform. 20, 1560–1567 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Antipov, D. et al. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btw493 (2016).Article 
    PubMed 

    Google Scholar 
    Robertson, J. & Nash, J. H. E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4(8), e000206. https://doi.org/10.1099/mgen.0.000206 (2018).CAS 
    Article 

    Google Scholar 
    Jaillard, M. et al. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS Genet. 14, e1007758 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L.

    Effects of aqueous plant extracts on germination and early growth of B. bipinnata by in vitro bioassaysSeed germination and seedling growth of B. bipinnata were investigated after treatment with DT, RC, PT, and JG aqueous extracts to explore the allelopathic effects of these plant species. The pH of the aqueous extracts corresponded to 6.62 for DL, 5.59 for RC, 7.20 for PT, and 7.42 for JG, with no significant difference in pH values between DL and RC extracts or between PT and JG extracts; however, the pH of DL and RC extracts differed significantly (p  1000 cm−1 were attributed to the C − H out-of-plane bending vibration of aliphatic alkenes and aromatic benzene rings49,50.The range between 1800 and 600 cm−1 of the infrared spectra was selected for the PCA, as it is the most representative region of the differences present in the spectra. In the PC1 versus PC2 score plot (Fig. 6), representing 85.78% of the total variance, it is possible to observe the separation of the samples into three distinct groups. The samples of DL and RC extracts formed two distinct groups, since they showed a significant separation in the PC1 axis, with positive and negative scores for PC1, respectively. The samples of JG and PT extracts formed a single group, remaining superimposed and located close to the zero value of PC1, indicating intermediate spectral characteristics in relation to the DL and RC extracts. These results may be correlated with the allelopathic activity of these extracts, since the RC extract showed better performance, followed by the JG and PT extracts, with intermediate performance, and the DL extract showed lower activity compared to the others.Figure 6PCA score plot (PC1 × PC2) of D. lacunifera (DL), R. communis (RC), P. tuberculatum (PT), and J. gossypiifolia (JG) extracts.Full size imageThe PC1 loading plot (Fig. S1) has as main contributors the negative bands associated with signals at approximately 1732, 1595, 1404, 1200–1025, 1049, and 780–600 cm−1, which significantly contributed to the separation of RC extract samples that presented greater intensity than in DL extract samples. On the other hand, the positive bands in PC1 in the region of 780–970 cm−1 were more intense in DL extracts. When evaluating the negative region of the PC1 loading plot, it is possible to observe that the functional groups responsible for the discrimination are probably those present in flavonoids and phenolic acids, corroborating the data in the literature that demonstrate the identification of these compound classes in RC leaves, such as gallic acid, quercetin, gentisic acid, rutin, epicatechin, ellagic acid, etc.51,52,53.The presence of flavonoids can be observed due to the stretching of C=O at approximately 1732 cm−1, C=C of aromatics at 1600 cm−1, C–O at 1200–1000 cm−1, and O–H at 3284–3174 cm−1. Phenolic acids can be verified due to stretching of the O–H of carboxylic acid, C=O and aromatic ring, as well as the C − H out-of-plane bending vibration of aromatic benzene ring at  More

  • in

    Schistosomes in the Persian Gulf: novel molecular data, host associations, and life-cycle elucidations

    Brant, S. V. & Loker, E. S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 95, 941–963 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P. et al. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 28, 165–190 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brant, S. V. et al. An approach to revealing blood fluke life cycles, taxonomy, and diversity: Provision of key reference data including DNA sequence from single life cycle stages. J. Parasitol. 92, 77–88 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends Parasitol. 29, 449–459 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lorenti, E., Brant, S. V, Gilardoni, C., Diaz, J. I. & Cremonte, F. Two new genera and species of avian schistosomes from Argentina with proposed recommendations and discussion of the polyphyletic genus Gigantobilharzia (Trematoda, Schistosomatidae). Parasitology. 149, 1–59 (2022).Article 

    Google Scholar 
    Khalil, L. F. Family Schistosomatidae Stiles & Hassall, 1898. Keys Trematoda 1, 419–432 (2002).Article 

    Google Scholar 
    Snyder, S. D. & Loker, E. S. Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. J. Parasitol. 86, 283–288 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. et al. Cercarial dermatitis transmitted by exotic marine snail. Emerg. Infect. Dis. 16, 1357 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, W. H. The morphology of Gigantobilharzia huttoni (Leigh, 1953) an avian schistosome with marine dermatitis-producing larvae. J. Parasitol. 41, 262–269 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ewers, W. H. A new intermediate host of schistosome trematodes from New South Wales. Nature 190, 283–284 (1961).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rudolphi, K. A. Entozoorum synopsis cui accedunt mantissa duplex et indices locupletissimi. (Sumtibus A. Rücker, 1819).Odhner, T. Zum natürlichen System der digenen Trematoden. V. Zool. Anz. 41, 54–71 (1912).
    Google Scholar 
    Farley, J. A review of the family Schistosomatidae: Excluding the genus Schistosoma from mammals. J. Helminthol. 45, 289–320 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The biology of a marine dermatitis-producing schistosome cercaria from Batillaria minima (Gmelin). J. Parasitol. 39, 19–20 (1953).
    Google Scholar 
    Al-Kandari, W. Y., Al-Bustan, S. A., Isaac, A. M., George, B. A. & Chandy, B. S. Molecular identification of Austrobilharzia species parasitizing Cerithidea cingulata (Gastropoda: Potamididae) from Kuwait Bay. J. Helminthol. 86, 470 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. E. An annotated key to the cercariae that develop in the snail Cerithidea californica. Bull South Calif. Acad. Sci. 71, 39–43 (1972).
    Google Scholar 
    Holliman, R. B. Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their superfamilies. Tulane Stud. Zool. 9, 1–74 (1961).
    Google Scholar 
    Short, R. B. & Holliman, R. B. Austrobilharzia penneri, a new schistosome from marine snails. J. Parasitol. 47, 447–450 (1961).Article 

    Google Scholar 
    Lindberg, W. F. P. D. R. Phylogeny and Evolution of the Mollusca (Univ of California Press, 2008).
    Google Scholar 
    Chong-ti, T. Philophthalmid larval trematodes from Hong Kong and the coast of south China. In The Marine Flora and Fauna of Hong Kong and Southern China II: Proceedings of the Second International Marine Biological Workshop Hong Kong, 2–24 April 1986 Vol. 1, 213 (Hong Kong University Press, 1990).Taraschewski, H. Investigations on the prevalence of Heterophyes species in twelve populations of the first intermediate host in Egypt and Sudan. J. Trop. Med. Hyg. 88, 265–271 (1985).CAS 
    PubMed 

    Google Scholar 
    Reid, D. G. & Ozawa, T. The genus Pirenella Gray, 1847 (= Cerithideopsilla Thiele, 1929) (Gastropoda: Potamididae) in the Indo-West Pacific region and Mediterranean Sea. Zootaxa 4076, 1–91 (2016).PubMed 
    Article 

    Google Scholar 
    Vahidi, F., Fatemi, S. M. R., Danehkar, A., Mashinchian, A. & Nadushan, R. M. Benthic macrofaunal dispersion within different mangrove habitats in Hara Biosphere Reserve, Persian Gulf. Int. J. Environ. Sci. Technol. 17, 1295–1306 (2020).CAS 
    Article 

    Google Scholar 
    Nazeer, Z. et al. Macrofaunal assemblage in the intertidal area of Saudi Arabian Gulf Coast. Reg. Stud. Mar. Sci. 47, 101954 (2021).
    Google Scholar 
    Snyder, S. D. Phylogeny and paraphyly among tetrapod blood flukes (Digenea: Schistosomatidae and Spirorchiidae). Int. J. Parasitol. 34, 1385–1392 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Zaidan, A. S. Y., Kennedy, H., Jones, D. A. & Al-Mohanna, S. Y. Role of microbial mats in Sulaibikhat Bay (Kuwait) mudflat food webs: Evidence from δ13C analysis. Mar. Ecol. Prog. Ser. 308, 27–36 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bearup, A. J. A schistosomc larva from the marine snail Pyrazus australisas a cause of cercarial dermatitis in man. Med. J. Aust. 1, 955–960 (1955).Article 

    Google Scholar 
    Grodhaus, G. & Keh, B. The marine, dermatitis-producing cercaria of Austrobilharzia variglandis in California (Trematoda: Schistosomatidae). J. Parasitol. 44, 633–638 (1958).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678–684 (1960).Article 

    Google Scholar 
    Pinto, H. A., Pulido-Murillo, E. A., de Melo, A. L. & Brant, S. V. Putative new genera and species of avian schistosomes potentially involved in human cercarial dermatitis in the Americas, Europe and Africa. Acta Trop. 176, 415–420 (2017).PubMed 
    Article 

    Google Scholar 
    Hechinger, R. F. & Lafferty, K. D. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B Biol. Sci. 272, 1059–1066 (2005).Article 

    Google Scholar 
    Aldhoun, J. A. & Horne, E. C. Schistosomes in South African penguins. Parasitol. Res. 114, 237–246 (2015).PubMed 
    Article 

    Google Scholar 
    Vanstreels, R. E. T. et al. Schistosomes and microfilarial parasites in Magellanic penguins. J. Parasitol. 104, 322–328 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Can specialized pathogens colonize distantly related hosts? Schistosome evolution as a case study. PLoS Pathog. 1, e38 (2005).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blair, D., Davis, G. M. & Wu, B. Evolutionary relationships between trematodes and snails emphasizing schistosomes and paragonimids. Parasitology 123, 229–243 (2001).Article 

    Google Scholar 
    Miller, H. M. Jr. & Northup, F. E. The seasonal infestation of Nassa obsoleta (Say) with larval trematodes. Biol. Bull. 50, 490–508 (1926).Article 

    Google Scholar 
    Chu, G. & Cutress, C. E. Human dermatitis caused by marine organisms in Hawaii. In Proceedings of the Hawaiian Academy of Science. 29th Annual Meeting (1953–54) (1954).Szidat, L. Investigaciones sobre Cercaria chascomusi n. sp. Agente causal de una nueva enfermedad humana en la Argentina: La dermatitis de los bañistas de la laguna Chascomús. Bol Mus Argent Cienc Nat Bernardino Rivadavia 18, 1–16 (1958).
    Google Scholar 
    ITO, J. Studies on the morphology and life cycle of Pseudobilharziella corvi Yamaguti, 1941 (Trematoda: Schistosomatidae). Jpn. J. Med. Sci. Biol. 13, 53–58 (1960).Article 

    Google Scholar 
    Karamian, M. et al. Parasitological and molecular study of the furcocercariae from Melanoides tuberculata as a probable agent of cercarial dermatitis. Parasitol. Res. 108, 955–962 (2011).PubMed 
    Article 

    Google Scholar 
    Leedom, W. S. & Short, R. B. Cercaria pomaceae sp. n., a dermatitis-producing schistosome cercaria from Pomacea paludosa, the Florida apple snail. J. Parasitol. 67, 257–261 (1981).Article 

    Google Scholar 
    Aldhoun, J. A., Faltýnková, A., Karvonen, A. & Horák, P. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitol. Int. 58, 314–317 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P., Kolářová, L. & Adema, C. M. Biology of the schistosome genus Trichobilharzia. (2002).Martorelli, S. R. Sobre una cercaria de la familia Schistosomatidae (Digenea) parásita de Chilina gibbosa Sowerby, 1841 en el lago Pellegrini, Provincia de Río Negro, República Argentina. Neotrópica 30, 97–106 (1984).
    Google Scholar 
    Braun, M. Zur Revision der Trematoden der Vögel II. Zentralblatt fur Bakteriol. Abth I(29), 895–897 (1901).
    Google Scholar 
    Cheatum, E. L. Dendritobilharzia anatinarum n. sp., a blood fluke from the mallard. J. Parasitol. 27, 165–170 (1941).Article 

    Google Scholar 
    Leite, A. C. R., Costa, H. M. D. A. & Costa, J. O. Trichobilharzia jequitibaensis sp. n (Trematoda, Schistosomatidae) in Cairina moschata domestica (Anatidae). Rev. Bras. Biol. 38, 843–846 (1978).
    Google Scholar 
    McLeod, J. A. Two new schistosomid trematodes from water-birds. J. Parasitol. 23, 456–466 (1937).Article 

    Google Scholar 
    Ebbs, E. T. et al. Schistosomes with wings: How host phylogeny and ecology shape the global distribution of Trichobilharzia querquedulae (Schistosomatidae). Int. J. Parasitol. 46, 669–677 (2016).PubMed 
    Article 

    Google Scholar 
    Flores, V., Viozzi, G., Casalins, L., Loker, E. S. & Brant, S. V. A new schistosome (Digenea: Schistosomatidae) from the nasal tissue of South America black-necked swans, Cygnus melancoryphus (Anatidae) and the endemic pulmonate snail Chilina gibbosa. Zootaxa 4948, zootaxa-4948 (2021).Article 

    Google Scholar 
    Kolářová, L., Horák, P., Skírnisson, K., Marečková, H. & Doenhoff, M. Cercarial dermatitis, a neglected allergic disease. Clin. Rev. Allergy Immunol. 45, 63–74 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    QGIS.org, QGIS 3.4. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2019).Tkach, V., Grabda-Kazubska, B., Pawlowski, J. & Swiderski, Z. Molecular and morphological evidence for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma [Digenea, Plagiorchiata]. Acta Parasitol. 44, 3 (1999).
    Google Scholar 
    Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M. & Swiderski, Z. Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst. Parasitol. 56, 1–15 (2003).PubMed 
    Article 

    Google Scholar 
    Littlewood, D. T. J., Curini-Galletti, M. & Herniou, E. A. The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol. Phylogenet. Evol. 16, 449–466 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A. & Littlewood, D. T. J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 33, 733–755 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowles, J. & McManus, D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol. Biochem. Parasitol. 57, 231–239 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, O. et al. Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). Int. J. Parasitol. 35, 793–801 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telford, M. J., Herniou, E. A., Russell, R. B. & Littlewood, D. T. J. Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proc. Natl. Acad. Sci. 97, 11359–11364 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway: a community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery 1–8 (2011).Rambaut, A. & Drummond, A. J. Tracer v1. 5 http://beast.bio.ed.ac.uk/Tracer (2009).Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. J. FigTree v1. 4. 2012. (2012).Lockyer, A. E. et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126, 203 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, J. C. Austrobilharzia terrigalensis: A schistosome dominant in interspecific interactions in the molluscan host. Int. J. Parasitol. 9, 137–140 (1979).Article 

    Google Scholar 
    Appleton, C. C. Studies on austrobilharzia terrigalensis (trematoda: schistosomatidae) in the swan estuary, Western Australia: Observations on the biology of the cercaria. Int. J. Parasitol. 13, 239–247 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Frequency of infection in the intermediate host population. Int. J. Parasitol. 13, 51–60 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. H. On the Trematodes of Australian Birds. (1916).Appleton, C. C. Observations on the histology of Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) infection in the silver gull, Larus novaehollandiae. Int. J. Parasitol. 14, 23–28 (1984).Article 

    Google Scholar 
    Bearup, A. J. Life cycle of Austrobilharzia terrigalensis Johnston, 1917. Parasitology 46, 470–479 (1956).CAS 
    PubMed 
    Article 

    Google Scholar 
    CAMismoN, G. M., Bacha Jr, W. J. & Stempen, H. The circumoval precipitate and cercarienhiillen reaktion of Austrobilharzia variglandis. In Proc. Helminthol. Soc. Wash Vol. 48, 202–208 (1981).Zibulewsky, J., Fried, B. & Bacha Jr, W. J. Skin surface lipids of the domestic chicken, and neutral lipid standards as stimuli for the penetration response of Austrobilharzia variglandis cercariae. J. Parasitol. 68, 905–908 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bacha, W. J., Roush, R. & Icardi, S. Infection of the gerbil by the avian schistosome Austrobilharzia variglandis (Miller and Northup 1926; Penner 1953). J. Parasitol. 68, 505–507 (1982).CAS 
    Article 

    Google Scholar 
    Wood, L. M. & Bacha Jr, W. J. Distribution of eggs and the host response in chickens infected with Austrobilharzia variglandis (Trematoda). J. Parasitol. 69, 682–688 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. The ecology of marine dermatitis-producing schistosomes. I. Seasonal variation in infection of mud snails (Nassa obsoleta) with larvae of Austrobilharzia variglandis. J. Parasitol. 42, 27 (1956).
    Google Scholar 
    Cutress, C. E. Austrobilharzia variglandis (Miller and Northup, 1926) Penner, 1953,(Trematoda: Schistosomatidae) in Hawaii with notes on its biology. J. Parasitol. 40, 515–524 (1954).PubMed 
    Article 

    Google Scholar 
    Rohde, K. The bird schistosome Austrobilharzia terrigalensis from the Great Barrier Reef, Australia. Zeitschrift für Parasitenkd. 52, 39–51 (1977).CAS 
    Article 

    Google Scholar 
    Price, E. W. A synopsis of the trematode family Schistosomidae, with descriptions of new genera and species. Proc. United States Natl. Museum (1929).McLeod, J. A. Studies on cercarial dermatitis and the trematode family Schistosomatidae in Manitoba. Can. J. Res. 18, 1–28 (1940).Article 

    Google Scholar 
    Keppner, E. J. Some internal parasites of the California gull Larus californicus Lawrence, in Wyoming. Trans. Am. Microsc. Soc. 92, 288–291 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. J. On the trematodes of Australian birds. J. R. Soc. New South Wales 50, 187–261 (1917).
    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Infection in the definitive host, Larus novaehollandiae. Int. J. Parasitol. 13, 249–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The red-breasted merganser as a natural avian host of the causative agent of clam diggers’ itch. J. Parasitol. 39, 20 (1953).
    Google Scholar 
    Johnston, T. H. Bather’s itch (schistosome dermatitis) in the Murray Swamps, South Australia. Trans. R. Soc. South Aust. 65, 276–284 (1941).
    Google Scholar 
    Witenberg, G. & Lengy, J. Redescription of Ornithobilharzia canaliculata (Rud.) Odhner, with notes on classification of the genus Ornithobilharzia and the subfamily Schistosomatinae (Trematoda). Isr. J. Zool. 16, 193–204 (1967).CAS 
    PubMed 

    Google Scholar 
    Curtis, L. A. Ilyanassa obsoleta (Gastropoda) as a host for trematodes in Delaware estuaries. J. Parasitol. 83, 793–803 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Curtis, L. A. & Tanner, N. L. Trematode accumulation by the estuarine gastropod Ilyanassa obsoleta. J. Parasitol. 85, 419–425 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barber, K. E. & Caira, J. N. Investigation of the life cycle and adult morphology of the avian blood fluke Austrobilharzia variglandis (Trematoda: Schistosomatidae) from Connecticut. J. Parasitol. 81, 584–592 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leighton, B. J. et al. Schistosome dermatitis at Crescent Beach, preliminary report. Environ. Heal. Rev. 48, 5–13 (2004).
    Google Scholar 
    Ferris, M. & Bacha Jr, W. J. Response of leukocytes in chickens infected with the avian schistosome Austrobilharzia variglandis (Trematoda). Avian Dis. 30, 683–686 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The life-cycle of Microbilharzia variglandis (== Cercaría varíglandis Miller and Northup, 1926), an avian schistosome whose larvae produce’swimmer’s itch’of ocean beaches. Anat. Rec. 3, 529–530 (1951).
    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The morphology and life-history of Microbilharzia variglandis (Miller and Northup, 1926) Stunkard and Hinchliffe, 1951, avian blood-flukes whose larvae cause” swimmer’s itch” of ocean beaches. J. Parasitol. 38, 248–265 (1952).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. Experimental infections of avian hosts with Cercaria littorinalinae Penner, 1950. J. Parasitol. 39, 20 (1953).

    Google Scholar 
    Faust, E. C. Notes on Ornithobilharzia odhneri n. sp. from the Asiatic Curlew. J. Parasitol. 11, 50–54 (1924).Article 

    Google Scholar 
    Sousa, W. P. Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecol. Monogr. 63, 103–128 (1993).Article 

    Google Scholar 
    Chu, G. W. T. C. First report of the presence of a dermatitis-producing marine larval schistosome in Hawaii. Science 115, 151–153 (1952).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canestri-Trotti, G., Fioravanti, M. L. & Pampiglione, S. Cercarial dermatitis in Italy. Helminthologia 38, 245 (2001).
    Google Scholar 
    Penner, L. R. Cercaria littorinalinae sp. nov., a dermatitis-producing schistosome larva from the marine snail, Littorina planaxis Philippi. J. Parasitol. 36, 466–472 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abdul-Salam, J. & Sreelatha, B. S. Description and surface topography of the cercaria of Austrobilharzia sp. (Digenea: Schistosomatidae). Parasitol. Int. 53, 11–21 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinsella, J. M. & Forrester, D. J. Parasitic helminths of the common loon, Gavia immer, on its wintering grounds in Florida. Helminthol. Soc. Washingt. 66, 1–6 (1999).
    Google Scholar 
    Appleton, C. C. The eggs of some blood-flukes (Trematoda: Schistosomatidae) from South African birds. Afr. Zool. 17, 147–150 (1982).
    Google Scholar 
    Appleton, C. C. Occurrence of avian Schistosomatidae (Trematoda) in South African birds as determined by a faecal survey. Afr. Zool. 21, 60–67 (1986).
    Google Scholar 
    Courtney, C. H. & Forrester, D. J. Helminth parasites of the brown pelican in Florida and Louisiana. (1973).Morales, G. A., Helmboldt, C. F. & Penner, L. R. Pathology of experimentally induced schistosome dermatitis in chickens: the role of Ornithobilharzia canaliculata (Rudolphi, 1819) Odhner 1912 (Trematoda: Schistosomatidae). Avian Dis. 262–276 (1971).
    Travassos, L., Freitas, J. F. & Kohn, A. Trematódeos do Brazil. Mem. Inst. Oswaldo Cruz 67, 1–886 (1969).CAS 
    PubMed 

    Google Scholar 
    Saidov, Y. S. Gel’mintofauna ryb i ryboyadnykh ptits Dagestana (Helminthofauna of Fish and Ichthyophagous Birds of Dagestan). Candidate Thesis, VIGIS (1953).Bykhovskaya-Pavlovskaya, I. E. et al. Key to parasites of freshwater fishes of the USSR, Academy of Science of the USSR. Zool. Inc (1962).Leonov, V. A. New trematodes of ichthyophagus birds. Uchenye Zapiski Gorkovskogo Gosudarstvennogo Peda-gogicheskogo Instituta 19, 43–52 (1957).
    Google Scholar 
    Macro, J. K. Revision of Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae). Helminthologia 4, 303–311 (1963).
    Google Scholar 
    Bykhovskaya-Pavlovskaya, I. E. Trematode fauna of birds of Leningrad region. In Contrib. to Helminthol. Publ. to Commem. 75th Birthd. KI Skryabin.] Izd. Akad. Nauk SSSR, Moscov 85–92 (1953).Santoro, M. et al. Helminth community structure of the Mediterranean gull (Ichthyaetus melanocephalus) in Southern Italy. J. Parasitol. 97, 364–366 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanmartín, M. L., Cordeiro, J. A., Alvarez, M. F. & Leiro, J. Helminth fauna of the yellow-legged gull Larus cachinnans in Galicia, north-west Spain. J. Helminthol. 79, 361–371 (2005).PubMed 
    Article 

    Google Scholar 
    Panova, L. G. On the trematode fauna of sea-gulls of the Don district. Trudy Leningrad. Gosudarstv. Vet. Inst. 1(1), 52–62 (1927) (in Russian).
    Google Scholar 
    Travassos, L. Contribucoes ao conhecimento dos Schistosomatidae. Sobre (Rudolphi, 1819). Rev. Bras. Biol. 2, 473–476 (1942).
    Google Scholar 
    Rind, S. The blood fluke Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae) from the gull Larus dominicanus at Lyttelton, New Zealand. (1984).Szidat, L. Vergleichende helminthologische Untersuchungen an den argentinischen Grossmowen Larus marinus dominicanus Lichtenstein und Larus ridibundus maculipennis Lichtenstein neuen Beobachtungen uber die Artbildung bei Parasiten. Zeitschrift für Parasitenkd. 24, 351–414 (1964).CAS 

    Google Scholar 
    Parona, C. & Ariola, V. Bilharzìa kowalewskii n. sp. nel Larus melanocephalus [Nota preventiva]. Atti. Soc. Ligust. Sc. Nat. e Georg 7, 114–116 (1896).
    Google Scholar 
    Jothikumar, N. et al. Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples. Appl. Environ. Microbiol. 81, 4207–4215 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shigin A.A. The helminth fauna of the Rybinsk Reservoir. Author’s abstract of dissertation, (1954).Witenberg, G. Studies on the trematode—family Heterophyidae. Ann. Trop. Med. Parasitol. 23, 131–239 (1929).Article 

    Google Scholar 
    Bush, A. O. & Forrester, D. J. Helminths of the white ibis in Florida. Proc. Helminthol. Soc. Wash. 43, 17–23 (1976).
    Google Scholar 
    Mamaev, Y. L. Helminth fauna of Galliformes and Charadriiformes in Eastern Siberia. Tr. Gelmintol. Lab. Akad. Nauk SSSR (1959). More

  • in

    Fungal findings excite truffle researchers and gastronomes

    A white truffle (Tuber magnatum Pico) in the laboratory of Robin Pépinières, a nursery in Saint Laurent-du-Cros, France.Philippe Desmazes/AFP via Getty Images

    On 10 October 2019, a dog began pawing excitedly at the ground beneath a young oak tree in western France. Its owner eased it out of the way and pulled an Italian white truffle (Tuber magnatum Pico) from the earth. Knobbly, covered in soil and about the size of a hen’s egg, it was not much to look at, but the fungal discovery nonetheless generated ripples of excitement among researchers, chefs and truffle growers worldwide.That’s not just because T. magnatum is the most expensive truffle species, for which wealthy gastronomes are willing to pay up to US$11,000 per kilogram. Although more than 90% of the also highly sought-after black Périgord truffles (Tuber melanosporum) served in restaurants today are farmed, previous attempts to cultivate their more elusive white counterparts had failed.That changed three years ago, when the Lagotto Romagnolo, the Italian dog breed commonly used as a truffle hunter, unearthed the first Italian white truffle confirmed to have been cultivated outside its natural range. The dog made the find at its owner’s plantation in the Nouvelle Aquitaine region of France, but the precise location is being kept secret to deter thieves.Scientists at a laboratory run jointly by France’s National Research Institute for Agriculture, Food and the Environment (INRAE) and the University of Lorraine in Nancy reported1 that since that first T. magnatum truffle was unearthed, two more were found at the site in 2019 and four in 2020. In an article published last month in Le Trufficulteur, the magazine of the French Federation of Truffle Growers, the researchers report the cultivation of 26 truffles last year2.“I was very happy to hear these results,” says Alessandra Zambonelli, a mycologist at the University of Bologna, Italy, who has studied Italian white truffles for more than 40 years, and whose own attempts to cultivate them in the 1980s failed. “I was sure it was possible to cultivate T. magnatum, but only now do we have the scientific proof.”The INRAE project is helping growers to better understand the optimal conditions for cultivating Italian white truffles. Some scientists think the breakthrough could help to reverse falls in harvests of wild truffles that have been linked to climate change. Researchers also hope the work will help them to answer outstanding questions about the life cycle of the species and understand why it is so much harder to farm than are other truffles.Farming failureTuber magnatum’s natural range is more limited than those of other sought-after truffles, growing as it does in parts of Italy, southeastern France, the Balkans and Switzerland. It is highly prized for its intense, some say intoxicating, aroma and flavour, variously described as reminiscent of garlic, fermented cheese and methanethiol — the additive that gives domestic gas its smell. Prices fluctuate in line with supply, which varies according to climatic conditions. These hit an all-time high in 2021, when US prices were more than triple what they were in 2019.Most land plants form symbiotic relationships with fungi to access extra water and mineral nutrients. In return, the plants provide their fungal partners, which grow around and into their root tips, with carbon-rich nutrients. These associations are known as mycorrhizae. What most people call truffles are, in fact, just the spore-containing fruiting bodies of the fungus.In the 1970s, French scientists successfully induced Périgord truffles to form mycorrhizal associations with tree seedlings by inoculating the seedlings with their spores. The same technique was used at the time to produce trees with T. magnatum mycorrhizae. More than 500,000 of these were planted in Italy. But when researchers later began using the polymerase chain reaction (PCR) technique to accurately identify truffle mycorrhizae, fruiting bodies and the root-like mycelia, it became clear that this species’ physical characteristics had been poorly described, and that, as a result, many of the trees had in fact partnered with less sought-after truffle species.Some sites in Italy did produce T. magnatum truffles 15–20 years after planting, but only in areas where the species occurs naturally. “It is likely that those found so long after being planted came from chance colonization of host plants by native T. magnatum strains in the environment,” says Claudia Riccioni, a plant and fungal biologist at Italy’s Institute of Biosciences and BioResources in Perugia.After the Italian white and Périgord truffles, the next most sought-after species is the summer truffle (Tuber aestivum), which grows in many European countries and sells for much less than its more highly regarded cousins. Plantations of T. aestivum have been established in France, Italy, Scandinavia, Germany and elsewhere.Buried treasuresIn 1999, INRAE researchers joined forces with Robin Pépinières, a nursery based in Saint-Laurent-du-Cros, southern France. Genetic analysis confirmed that the nursery had produced trees that partnered with T. magnatum, leading, from 2008, to the establishment of plantations in France1. In 2018, the INRAE group selected five of these, all outside the part of southeastern France where T. magnatum grows naturally, to see whether it had become established and to record the conditions under which any truffle fruiting bodies were produced.PCR tests confirmed the fungus’s mycelia were present in soil samples taken from near the trees at four of the locations. The first three truffles, found in Nouvelle Aquitaine, were discovered four-and-a-half years after the inoculated trees had been planted. Further PCR tests confirmed they were T. magnatum. The 26 truffles found in 2021 were unearthed beneath 11 different trees, with 5 under one of them. The largest weighed 150g.Mycologists Claude Murat and Cyrille Bach, both members of the INRAE–University of Lorraine lab, were present when one of the four fruiting bodies produced in 2020 was discovered. Asked how sure he was that the truffle grew in the plantation and hadn’t originated elsewhere, Murat said: “I’m 100% sure. We could see the soil had not been disturbed and that grasses were growing there.”Mycorrhizal mysteryPrevious attempts to cultivate Italian white truffles failed in part because their life cycle remains poorly understood. Twenty years ago, it was widely assumed that truffles, including T. magnatum, were self-fertile. However, research then showed they have one of two ‘mating type’ genes, and that the mycelia of individuals of different mating types must meet for reproduction to occur3.A remaining unresolved puzzle is why researchers have found T. magnatum mycorrhizae much harder to locate than those of other truffles. Mycologist Paul Thomas works to establish joint ventures with truffle growers through Mycorrhizal Systems, his UK-based company. He inoculated host trees with T. magnatum, and generated mycorrhizae at the company’s greenhouses in Preston, but these did not last long, so the trials were abandoned.“When you find fruiting bodies, you quite often can’t find mycorrhizae,” says Thomas, “and sometimes you get mycorrhizae but no fruiting bodies. Perhaps, in the case of T. magnatum we’ve become too focused on linking truffle production to mycorrhizae.”When Zambonelli’s group analysed soil from four Italian white-truffle sites over three years, they found a correlation between production of fruiting bodies and a location’s concentration of DNA from T. magnatum mycelia4. Some researchers began to suspect that the host–fungus relationship might not be as important as previously thought, and that T. magnatum might be saprotrophic, meaning that it digests dead or decaying organic matter.However, a 2018 comparison5 of the genomes of truffle species with those of several saprotrophic fungi showed this to be unlikely. “T. magnatum has very few plant-wall-degrading enzymes, which does not support the saprotrophic hypothesis,” says Riccioni, one of the study’s authors. Other researchers have tried to explain the elusiveness of T. magnatum mycorrhizae by pointing out that other truffles can form endophytic relationships with plants in which they which live throughout them, not just at their roots.Murat wonders whether he and others have just been looking in the wrong place. “We look on the roots down to 20 centimetres, never looked at 50 centimetres, even though we know other mycorrhizae can be found at those depths,” he says. “Or perhaps they produce mycorrhizae just for a very short time; we just don’t know.”A growing body of research shows that microorganisms have important roles in truffle life cycles. A 2015 review found that bacteria in T. magnatum fruiting bodies help to create the truffles’ odours6. Zambonelli and her colleagues found that bacteria in T. magnatum fruiting bodies can fix nitrogen for nutritional purposes7. Another Italian team found that microbes commonly associated with white truffles are involved in fruiting-body maturation8. “Some bacteria could also help T. magnatum become established at tree roots and fruiting-body formation,” says Zambonelli.A changing climateGathering accurate statistics on truffle yields before cultivation is difficult, although it is widely accepted that these fell significantly during the twentieth century. One study reports that Périgord truffle harvests in France collapsed from 500–1,000 tonnes annually in the 1900s to 10–50 tonnes by the 2000s. Yields in Italy declined, too, but not by as much, and mostly in the first half of the twentieth century9.The reasons for falls in truffle harvests are complex and vary by location, but researchers have blamed depopulation, loss of knowledge about truffle hunting and deforestation. Some of the older men who featured in the highly rated 2020 documentary The Truffle Hunters, set in Piedmont, northern Italy, say they will take what they know about truffles to the grave rather than pass it on to younger generations because of the greed they see in the industry.

    A canine forager and his owner who feature in the 2020 documentary The Truffle Hunters, set in northern Italy.BFA/Alamy

    More recently, some researchers have highlighted climate change as another cause of declining yields. Truffle gastronomy and tourism are economically and culturally important in places where truffles occur naturally. That’s certainly true in parts of Croatia, where, from 2003 to 2013, reported annual harvests were 1–3 tonnes for Italian white truffles and 1–6 tonnes for Périgords, except for the years 2009, 2010 and 2013, when they fell to 0.1–0.5 tonnes.Field mycologist Željko Žgrablić at the Ruđer Bošković Institute in Zagreb says truffles have become harder to find on the Istria peninsula, where he grew up, in part because of increasingly frequent and severe droughts. Yields have also been affected by big increases in wild-boar populations as a result of warmer winters. The animals forage for the truffles and reduce human harvests, and, according to Žgrablić, also damage the fungus’s mycelia. “The climate has become unpredictable, with more extremes,” says Žgrablić. “It’s hard to prove it, but I think we have fewer white truffles as a result.”In a 2019 study, Thomas analysed annual Périgord truffle yields in the Mediterranean region over a 36-year period10. He concluded that decreased summer rain and increased summer temperatures significantly reduced subsequent winter harvests. He forecast declines of 78–100% in harvests between 2071 and 2100 as a result of further predicted warming. “White truffles need relatively moist soil, so in its natural range it might be okay in mountainous areas but particularly vulnerable in areas where falls in rainfall are predicted,” says Thomas.Future farmingBeyond producing the first confirmed cultivated white truffles, the INRAE project is also generating data on the optimal conditions for production. The soil temperature at the site that yielded the truffles was around 20 °C in the summer, and Murat says that the team’s tests suggest white truffles need more water than do Périgords.So could the increasing knowledge of how best to get Italian white truffles to grow be adopted more widely to help reverse declining yields? Fruiting bodies have been confirmed at only one site, so other growers are waiting to see whether this success will be repeated elsewhere. Murat is in the process of trying to confirm recent claims from two other owners that they, too, have cultivated T. magnatum truffles.Thomas is downbeat about the future of Italian white-truffle cultivation. “In parts of Spain, more and more orchards can no longer irrigate because of water shortages. Already, in France, it is hard to get permission to extract water from rivers for irrigation, and that’s only going to get worse.”Oak trees inoculated with Périgord- and summer-truffle spores are due to be planted later this year in Croatia as part of a collaboration run by the state-owned Croatian Forests. If successful, the group could try white truffles. Žgrablić, who is part of the project, is also advising an enthusiast who planted 650 seedlings inoculated with T. magnatum, also in Croatia, earlier this year. “We’re seeing increasing interest from private investors in cultivating Italian white truffles,” he says. “There is certainly a lot of potential, but what the results will be, I can’t tell.”Alongside his research work, Murat acts as a scientific consultant for WeTruf, a company he co-founded in Nancy that provides advice and monitoring services for truffle farmers. He is cautious about the potential for white-truffle cultivation, if optimistically so. “We are careful when people tell us they want to start big white-truffle plantations,” says Murat. “I tell them ‘we are only at the beginning, we don’t know if it will succeed or not’. But I think there will be more and more plantations, and, if they apply good management practices, I hope, more and more truffles.” More