Effects of landscape structure on restoration success in tropical premontane forest
Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).ADS
CAS
PubMed
Article
Google Scholar
Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. mobt 102, 251–257 (2017).
Google Scholar
Crouzeilles, R., Lorini, M. L. & Grelle, C. Applying graph theory to design networks of protected areas: using inter-patch distance for regional conservation planning. Natureza Conservaçao Rev. Brasileira de Conservaçao da Natureza 9, 219–224 (2011).
Google Scholar
Crouzeilles, R., Lorini, M. L. & Grelle, C. E. V. The importance of using sustainable use protected areas for functional connectivity. Biol. Cons. 159, 450–457 (2013).Article
Google Scholar
Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).PubMed
Article
Google Scholar
O’Farrell, P. J. & Anderson, P. M. Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ. Sustain. 2, 59–65 (2010).Article
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article
Google Scholar
César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica 53, 496–508 (2021).Article
Google Scholar
Crouzeilles, R. et al. A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. J. Appl. Ecol. 56, 2675–2686 (2019).Article
Google Scholar
Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).Article
Google Scholar
Taylor, P. D., Fahrig, L. & With, K. A. Landscape connectivity: a return to the basics. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 29–43 (Cambridge University Press, 2006).Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90, 7–19 (2000).Article
Google Scholar
McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7, e52604 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Torrubia, S. et al. Getting the most connectivity per conservation dollar. Front. Ecol. Environ. 12, 491–497 (2014).Article
Google Scholar
Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Leal-Ramos, D. et al. Forest and connectivity loss drive changes in movement behavior of bird species. Ecography 43, 1203–1214 (2020).Article
Google Scholar
Pérez-Cárdenas, N. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. For. Ecol. Manage. 482, 118818 (2021).Article
Google Scholar
Holl, K. D., Reid, J. L., Chaves-Fallas, J. M., Oviedo-Brenes, F. & Zahawi, R. A. Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. J. Appl. Ecol. 54, 1091–1099 (2017).Article
Google Scholar
Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R. & Cordell, S. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restor. Ecol. 19, 470–479 (2011).Article
Google Scholar
Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS
PubMed
Article
Google Scholar
Zahawi, R. A., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).Article
Google Scholar
Reid, J. L., Kormann, U., Zarrate-Chary, D., Holl, K. D. & Zahawi, R. A. Predicting toucan-mediated seed dispersal in tropical forest restoration. Ecosphere (In press).Zahawi, R. A. et al. Proximity and abundance of mother trees affects recruitment patterns in a long-term tropical forest restoration study. Ecography 44,1826–1837 (2021).Lehouck, V. et al. Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118, 1023–1034 (2009).Article
Google Scholar
Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Article
Google Scholar
Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Cons. 230, 179–186 (2019).Article
Google Scholar
Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).PubMed
Article
Google Scholar
Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).Article
Google Scholar
Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).Article
Google Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. J. Forest environments in tropical life zones: a pilot study (Pergamon Press, 1971).
Google Scholar
Zahawi, R. A., Duran, G. & Kormann, U. Sixty-seven years of land-use change in Southern Costa Rica. PLoS ONE 10, e0143554 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Holl, K. D. et al. Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study. J. Appl. Ecol. 57, 2316–2328 (2020).Article
Google Scholar
Reid, J. L., Mendenhall, C. D., Rosales, J. A., Zahawi, R. A. & Holl, K. D. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9, e90573 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Carrara, E. et al. Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol. Conser. 184, 117–126 (2015).Article
Google Scholar
Chao, A. & Shen, T. J. Program SPADE (Species Prediction and Diversity Estimation). Program and User’s Guide. (http://chao.stat.nthu.edu.tw, 2010).Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343 (2011).PubMed
Article
Google Scholar
de Souza, R. P. & Válio, I. F. M. Seed size, seed germination, and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33, 447–457 (2001).Article
Google Scholar
Werden, L. K., Holl, K. D., Rosales, J. A., Sylvester, J. M. & Zahawi, R. A. Effects of dispersal- and niche-based factors on tree recruitment in tropical wet forest restoration. Ecol. Appl. 30, e02139 (2020).PubMed
Google Scholar
Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. PNAS 113, 14544–14551 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Jesus, F. M., Pivello, V. R., Meirelles, S. T., Franco, G. A. D. C. & Metzger, J. P. The importance of landscape structure for seed dispersal in rain forest fragments. J. Veg. Sci. 23, 1126–1136 (2012).Article
Google Scholar
Galán-Acedo, C., Arroyo-Rodríguez, V., Estrada, A. & Ramos-Fernández, G. Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41, 2027–2037 (2018).Article
Google Scholar
Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Cons. 124, 253–266 (2005).Article
Google Scholar
Forman, R. T. T. & Godron, M. Landscape ecology. (Wiley, 1986).QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation, 2016).Gillies, C. S. & Clair, C. C. S. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. PNAS 105, 19774–19779 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Harvey, C. A., Tucker, N. I. & Estrada, A. Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. in Agroforestry and biodiversity conservation in tropical landscapes 261–289 (2004).Harvey, C. A. et al. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 111, 200–230 (2005).Article
Google Scholar
Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).Article
Google Scholar
He, H. S., DeZonia, B. E. & Mladenoff, D. J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol. 15, 591–601 (2000).Article
Google Scholar
Radford, J. Q., Bennett, A. F. & Cheers, G. J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol. Cons. 124, 317–337 (2005).Article
Google Scholar
Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article
Google Scholar
Holbrook, K. M. Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43, 357–364 (2011).Article
Google Scholar
Şekercioğlu, Ç. H. et al. Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersing forest birds in a fragmented landscape. J Ornithol 156, 343–353 (2015).Article
Google Scholar
Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144, 298–305 (2011).Article
Google Scholar
McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. (2012).Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale?. Global Ecol. Biogeography 24, 52–63 (2015).Article
Google Scholar
Jackson, H. B. & Fahrig, L. What size is a biologically relevant landscape?. Landscape Ecol 27, 929–941 (2012).Article
Google Scholar
McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31, 1161–1175 (2016).Article
Google Scholar
Huais, P. Y. multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecol 33, 1023–1028 (2018).Article
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).Crawley, M. J. Statistical modelling in the R book. (John Wiley & Sons Ltd., 2007).Leite, M. de S., Tambosi, L. R., Romitelli, I. & Metzger, J. P. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Natureza & Conservação 11, 108–118 (2013).Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied linear statistical models. (McGraw-Hill/Irwin, 1996).Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Calcagno, V. & Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Soft. 34, 1–29 (2010).Article
Google Scholar
Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).Article
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS
PubMed
Article
Google Scholar
Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).Article
Google Scholar
Fagan, M. E., DeFries, R. S., Sesnie, S. E., Arroyo-Mora, J. P. & Chazdon, R. L. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26, 1456–1474 (2016).PubMed
Article
Google Scholar
Reid, J. L. & Holl, K. D. Arrival ≠ survival. Restor. Ecol. 21, 153–155 (2013).Article
Google Scholar
Pejchar, L. et al. Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol. Cons. 141, 536–544 (2008).Article
Google Scholar
Norden, N. et al. Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. J. Ecol. 95, 507–516 (2007).Article
Google Scholar
Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).Article
Google Scholar
Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).Article
Google Scholar
Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica 39, 61–66 (2012).ADS
Article
Google Scholar
Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E. & Fahrig, L. What determines the spatial extent of landscape effects on species?. Landscape Ecol 31, 1177–1194 (2016).Article
Google Scholar More