More stories

  • in

    Effects of landscape structure on restoration success in tropical premontane forest

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. mobt 102, 251–257 (2017).
    Google Scholar 
    Crouzeilles, R., Lorini, M. L. & Grelle, C. Applying graph theory to design networks of protected areas: using inter-patch distance for regional conservation planning. Natureza Conservaçao Rev. Brasileira de Conservaçao da Natureza 9, 219–224 (2011).
    Google Scholar 
    Crouzeilles, R., Lorini, M. L. & Grelle, C. E. V. The importance of using sustainable use protected areas for functional connectivity. Biol. Cons. 159, 450–457 (2013).Article 

    Google Scholar 
    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).PubMed 
    Article 

    Google Scholar 
    O’Farrell, P. J. & Anderson, P. M. Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ. Sustain. 2, 59–65 (2010).Article 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica 53, 496–508 (2021).Article 

    Google Scholar 
    Crouzeilles, R. et al. A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. J. Appl. Ecol. 56, 2675–2686 (2019).Article 

    Google Scholar 
    Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).Article 

    Google Scholar 
    Taylor, P. D., Fahrig, L. & With, K. A. Landscape connectivity: a return to the basics. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 29–43 (Cambridge University Press, 2006).Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90, 7–19 (2000).Article 

    Google Scholar 
    McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7, e52604 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Torrubia, S. et al. Getting the most connectivity per conservation dollar. Front. Ecol. Environ. 12, 491–497 (2014).Article 

    Google Scholar 
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leal-Ramos, D. et al. Forest and connectivity loss drive changes in movement behavior of bird species. Ecography 43, 1203–1214 (2020).Article 

    Google Scholar 
    Pérez-Cárdenas, N. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. For. Ecol. Manage. 482, 118818 (2021).Article 

    Google Scholar 
    Holl, K. D., Reid, J. L., Chaves-Fallas, J. M., Oviedo-Brenes, F. & Zahawi, R. A. Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. J. Appl. Ecol. 54, 1091–1099 (2017).Article 

    Google Scholar 
    Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R. & Cordell, S. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restor. Ecol. 19, 470–479 (2011).Article 

    Google Scholar 
    Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zahawi, R. A., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).Article 

    Google Scholar 
    Reid, J. L., Kormann, U., Zarrate-Chary, D., Holl, K. D. & Zahawi, R. A. Predicting toucan-mediated seed dispersal in tropical forest restoration. Ecosphere (In press).Zahawi, R. A. et al. Proximity and abundance of mother trees affects recruitment patterns in a long-term tropical forest restoration study. Ecography 44,1826–1837 (2021).Lehouck, V. et al. Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118, 1023–1034 (2009).Article 

    Google Scholar 
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Article 

    Google Scholar 
    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Cons. 230, 179–186 (2019).Article 

    Google Scholar 
    Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).Article 

    Google Scholar 
    Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).Article 

    Google Scholar 
    Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. J. Forest environments in tropical life zones: a pilot study (Pergamon Press, 1971).
    Google Scholar 
    Zahawi, R. A., Duran, G. & Kormann, U. Sixty-seven years of land-use change in Southern Costa Rica. PLoS ONE 10, e0143554 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holl, K. D. et al. Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study. J. Appl. Ecol. 57, 2316–2328 (2020).Article 

    Google Scholar 
    Reid, J. L., Mendenhall, C. D., Rosales, J. A., Zahawi, R. A. & Holl, K. D. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9, e90573 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrara, E. et al. Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol. Conser. 184, 117–126 (2015).Article 

    Google Scholar 
    Chao, A. & Shen, T. J. Program SPADE (Species Prediction and Diversity Estimation). Program and User’s Guide. (http://chao.stat.nthu.edu.tw, 2010).Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343 (2011).PubMed 
    Article 

    Google Scholar 
    de Souza, R. P. & Válio, I. F. M. Seed size, seed germination, and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33, 447–457 (2001).Article 

    Google Scholar 
    Werden, L. K., Holl, K. D., Rosales, J. A., Sylvester, J. M. & Zahawi, R. A. Effects of dispersal- and niche-based factors on tree recruitment in tropical wet forest restoration. Ecol. Appl. 30, e02139 (2020).PubMed 

    Google Scholar 
    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. PNAS 113, 14544–14551 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jesus, F. M., Pivello, V. R., Meirelles, S. T., Franco, G. A. D. C. & Metzger, J. P. The importance of landscape structure for seed dispersal in rain forest fragments. J. Veg. Sci. 23, 1126–1136 (2012).Article 

    Google Scholar 
    Galán-Acedo, C., Arroyo-Rodríguez, V., Estrada, A. & Ramos-Fernández, G. Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41, 2027–2037 (2018).Article 

    Google Scholar 
    Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Cons. 124, 253–266 (2005).Article 

    Google Scholar 
    Forman, R. T. T. & Godron, M. Landscape ecology. (Wiley, 1986).QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation, 2016).Gillies, C. S. & Clair, C. C. S. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. PNAS 105, 19774–19779 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harvey, C. A., Tucker, N. I. & Estrada, A. Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. in Agroforestry and biodiversity conservation in tropical landscapes 261–289 (2004).Harvey, C. A. et al. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 111, 200–230 (2005).Article 

    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).Article 

    Google Scholar 
    He, H. S., DeZonia, B. E. & Mladenoff, D. J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol. 15, 591–601 (2000).Article 

    Google Scholar 
    Radford, J. Q., Bennett, A. F. & Cheers, G. J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol. Cons. 124, 317–337 (2005).Article 

    Google Scholar 
    Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Şekercioğlu, Ç. H. et al. Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersing forest birds in a fragmented landscape. J Ornithol 156, 343–353 (2015).Article 

    Google Scholar 
    Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144, 298–305 (2011).Article 

    Google Scholar 
    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. (2012).Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale?. Global Ecol. Biogeography 24, 52–63 (2015).Article 

    Google Scholar 
    Jackson, H. B. & Fahrig, L. What size is a biologically relevant landscape?. Landscape Ecol 27, 929–941 (2012).Article 

    Google Scholar 
    McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31, 1161–1175 (2016).Article 

    Google Scholar 
    Huais, P. Y. multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecol 33, 1023–1028 (2018).Article 

    Google Scholar 
    R Development Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).Crawley, M. J. Statistical modelling in the R book. (John Wiley & Sons Ltd., 2007).Leite, M. de S., Tambosi, L. R., Romitelli, I. & Metzger, J. P. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Natureza & Conservação 11, 108–118 (2013).Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied linear statistical models. (McGraw-Hill/Irwin, 1996).Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Calcagno, V. & Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Soft. 34, 1–29 (2010).Article 

    Google Scholar 
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).Article 

    Google Scholar 
    Fagan, M. E., DeFries, R. S., Sesnie, S. E., Arroyo-Mora, J. P. & Chazdon, R. L. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26, 1456–1474 (2016).PubMed 
    Article 

    Google Scholar 
    Reid, J. L. & Holl, K. D. Arrival ≠ survival. Restor. Ecol. 21, 153–155 (2013).Article 

    Google Scholar 
    Pejchar, L. et al. Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol. Cons. 141, 536–544 (2008).Article 

    Google Scholar 
    Norden, N. et al. Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. J. Ecol. 95, 507–516 (2007).Article 

    Google Scholar 
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).Article 

    Google Scholar 
    Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).Article 

    Google Scholar 
    Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica 39, 61–66 (2012).ADS 
    Article 

    Google Scholar 
    Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E. & Fahrig, L. What determines the spatial extent of landscape effects on species?. Landscape Ecol 31, 1177–1194 (2016).Article 

    Google Scholar  More

  • in

    Seedling ectomycorrhization is central to conifer forest restoration: a case study from Kashmir Himalaya

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 4, 599–610 (2018).Article 

    Google Scholar 
    Verdone, M. & Seidl, A. Time, space, place, and the Bonn Challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).Article 

    Google Scholar 
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanturf, J. A., Palik, B. J. & Dumroese, R. K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 331, 292–323 (2014).Article 

    Google Scholar 
    Wang, J. et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 493, 119243 (2021).Article 

    Google Scholar 
    Han, A. R., Kim, H. J., Jung, J. B. & Park, P. S. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. For. Ecol. Manag. 429, 579–588 (2018).Article 

    Google Scholar 
    Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).Article 

    Google Scholar 
    Hawkins, B. J., Jones, M. D. & Kranabetter, J. M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 46, 747–771 (2015).Article 

    Google Scholar 
    Perry, D. A., Molina, R. & Amaranthus, M. P. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987).Article 

    Google Scholar 
    Duñabeitia, M. K. et al. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14, 11–18 (2004).PubMed 
    Article 

    Google Scholar 
    Rincón, A., De Felipe, M. R. & Fernández-Pascual, M. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18, 23–32 (2007).PubMed 
    Article 

    Google Scholar 
    Sanchez-Zabala, J. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For. Ecol. Manag. 320, 50–55 (2014).Article 

    Google Scholar 
    Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. & Bhatnagar, J. M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article 

    Google Scholar 
    Jones, M. D., Durall, D. M. & Cairney, J. W. G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157, 399–422 (2003).PubMed 
    Article 

    Google Scholar 
    Policelli, N., Bruns, T. D., Vilgalys, R. & Nuñez, M. A. Suilloid fungi as global drivers of pine invasions. New Phytol. 222, 714–725 (2019).PubMed 
    Article 

    Google Scholar 
    Visser, S. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129, 389–401 (1995).Article 

    Google Scholar 
    Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders pinaceae invasions. Ecology 90, 2352–2359 (2009).PubMed 
    Article 

    Google Scholar 
    Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 130, 173–183 (2020).Article 

    Google Scholar 
    Grossnickle, S. C. & Reid, C. P. P. The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Can. J. For. Res. 12, 354–361 (1982).Article 

    Google Scholar 
    Teste, F. P., Schmidt, M. G., Berch, S. M., Bulmer, C. & Egger, K. N. Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can. J. For. Res. 34, 2074–2088 (2004).Article 

    Google Scholar 
    Trappe, J. M. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15, 203–222 (1977).Article 

    Google Scholar 
    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Finlay, R. D., Frostegård, Å. & Sonnerfeldt, A. M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl ex. Loud. New Phytol. 120, 105–115 (1992).Article 

    Google Scholar 
    Keller, G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989–998 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Hatakeyama, T. & Ohmasa, M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45, 169–176 (2004).CAS 
    Article 

    Google Scholar 
    Itoo, Z. A. & Reshi, Z. A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomycorrhizal fungi under in-vitro conditions. Scand. J. For. Res. 29, 619–628 (2014).Article 

    Google Scholar 
    Lazarević, J., Stojičić, D. & Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 25, 3 (2016).
    Google Scholar 
    Valdés, R. C., Villarreal, R. M., García, F. G., Morales, S. G. & Peña, S. S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 81, 23–30 (2019).Article 

    Google Scholar 
    Daza, A. et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.: Fr.) Pers. Mycorrhiza 16, 133–136 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wani, A. A., Joshi, P. K., Singh, O. & Shafi, S. Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. J. Mt. Sci. 13, 1431–1441 (2016).Article 

    Google Scholar 
    Chung, H. C., Kim, D. H. & Lee, S. S. Mycorrhizal formations and seedling growth of Pinus desiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30, 70–75 (2002).Article 

    Google Scholar 
    Barroetaveña, C., Cázares, E. & Rajchenberg, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: A comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17, 355–373 (2007).PubMed 
    Article 

    Google Scholar 
    Ekwebelam, S. A. Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var. bahamensis seedlings. E. Afr. Agric. For. J. 45, 290–295 (1980).
    Google Scholar 
    Kasuya, M. C. M. & Igarashi, T. In vitro ectomycorrhizal formation in Picea glehnii seedlings. Mycorrhiza 6, 451–454 (1996).Article 

    Google Scholar 
    Wang, E. J., Jeon, S. M., Jang, Y. & Ka, K. H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 44, 166–170 (2016).CAS 

    Google Scholar 
    Dar, A. R. & Dar, G. H. Taxonomic appraisal of conifers of Kashmir Himalaya. Pak. J. Biol. Sci. 9, 859–867 (2006).Article 

    Google Scholar 
    Adeleke, R. A., Nunthkumar, B., Roopnarain, A. & Obi, L. Applications of plant-microbe interactions in agro-ecosystems. In Microbiome in Plant Health and Disease 1–34 (Springer, 2019).
    Google Scholar 
    Yamanaka, T. Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol. Res. 103, 811–816 (1999).CAS 
    Article 

    Google Scholar 
    Berredjem, A., Garnier, A., Putra, D. P. & Botton, B. Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol. Res. 102, 427–434 (1998).CAS 
    Article 

    Google Scholar 
    Cairney, J. W. G. Intra-specific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135 (1999).Article 

    Google Scholar 
    France, R. C. & Reid, C. P. P. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb. Ecol. 10, 187–195 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kibar, B. & Peksen, A. Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom Tricholoma terreum. Zemdirb. Agric. 4, 409–414 (2011).
    Google Scholar 
    Nygren, C. M. R. et al. Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol. 180, 875–889 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rangel-Castro, I. J., Danell, E. & Taylor, A. F. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12, 131–137 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, M. L., Cripps, C. L. & Gains-Germain, L. Scorched Earth: Suillus colonization of Pinus albicaulis seedlings planted in wildfire-impacted soil affects seedling biomass, foliar nutrient content, and isotope signatures. Plant Soil 425, 113–131 (2018).CAS 
    Article 

    Google Scholar 
    Taudière, A., Richard, F. & Carcaillet, C. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457 (2017).Article 

    Google Scholar 
    Bigelow, H. E. & Smith, A. H. The status of Lepista: A new section of Clitocybe. Brittonia 21, 144–177 (1969).Article 

    Google Scholar 
    Kuo, M. Clitocybe Nuda. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/clitocybe_nuda.html (2010).Mycobank. www.mycobank.org. Accessed on Jan 28, 2020. (2020).Peck, C. H. Report of the Botanist 1869. Annu. Rep. N.Y. State Mus. Nat. Hist. 23, 27–135 (1873).
    Google Scholar 
    Kuo, M. Cortinarius Distans. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/cortinarius_distans.html (2011).Losinger, W. C. Germination and Growth of Some Ectomycorrhizal Basidiomycetes in Culture. Doctoral dissertation, Kalamazoo College (1980).Norvell, L. L. & Exeter, R. L. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs 89, 159–190 (2004).
    Google Scholar  More

  • in

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security

    Study designWe used a food systems framing to conceptually position our research to investigate how small-scale fisheries shape two key aspects of food environments – physical access to food via living in proximity to small-scale fisheries (fish as food pathway), and economic access to food via small-scale fisheries livelihoods (fish as income pathway).We examined food system components of supply chains (small-scale fisheries livelihoods related to harvesting, processing and trade), food environments (proximity to small-scale fisheries and livelihoods), income poverty status, and household diets (fish consumption and annual food security) (Supplementary Fig 7)40,41. Small-scale fisheries are notably recognised for their safety net function during times of shocks and extreme events, increasing the ability of households to recover, exit poverty and afford food over the longer-term42.Country selection and household survey dataWe selected Malawi, Tanzania and Uganda, given these countries represent a region where small-scale fisheries provides the main supply of fish and are important for rural inland and coastal livelihoods24,43, and yet substantial data gaps remain in valuing small-scale fisheries in the regional food system. Small-scale fisheries, particularly inland fisheries, in this region are known to be highly productive with a linear increasing trend in catches over the last three decades25,35. On average 70% of the total catches consist of small pelagic species, which are largely driven by climate, and are highly productive, resilient, and under-exploited34. However, challenges do exist in fisheries governance and signs of over-exploitation of some few fish stocks44, as well as high post-harvest fish waste and loss across value-chains undermine the potential benefits from the sector23. We analysed the World Bank’s Living Standards Measurement Surveys and its Integrated Surveys on Agriculture (LSMS-ISA) from Malawi, Tanzania and Uganda. The LSMS-ISA surveys conducted in these countries collected georeferenced household-level data and had been designed and implemented with a dedicated fishery module39 which contained questions on household fish consumption (frequency, quantity, and form of fresh or dried fish) and small-scale fisheries livelihoods across value chains (harvesting, processing and trading). The fishery module was collected across different years in Malawi (2016–17), Tanzania (2014–15) and Uganda (2010–11), and accordingly these are the years analysed in this study. The LSMS-ISA surveys collects consumption data over a period of 12 months so that the indicator captures the intrinsic variability due to seasonality, such as low and high periods of food consumption.Geospatial data and distance to fishing groundsGeoreferenced household data from LSMS-ISA surveys were matched with geospatial data on the location of inland water bodies and coastlines (Supplementary Table 11) to investigate geographic correlates (e.g., distance to fishing grounds – water bodies where fisheries occur) of poverty and food security. Data on inland water bodies were from the Global Lakes and Wetlands Database (GLWD)45, and the European Space Agency GlobCover databases for coastlines46. Inland water bodies from the GLWD database include permanent, open water bodies (e.g., lakes, reservoirs, rivers) with a surface area ≥0.1 km2 for each country, including cross-border water bodies. We selected water bodies to represent types of water bodies known to support fisheries, based on catch data24,43. We assume the entire coastline of Tanzania was accessible and used for marine small-scale fisheries. We use the term ‘water body’ to mean either freshwater or marine waters.Distance between water bodies and households was calculated as the shortest, straight line, distance from the household location (identified through the GPS coordinates of the households) to any point of the nearest water body. The distance was expressed in km.In our descriptive statistics, a cut-off threshold of 5 km from fishing grounds was used to compare the key indicators presented in this study (e.g., percent of poor and food insecure households, frequency and quantity of fish consumption, etc), for households proximate and distant (≤5 km was considered close and >5 km was considered far) from fished water bodies, as well as between fishing and non-fishing households. The choice of the cut-off threshold used for our descriptive statistics was guided by other studies16,17, in addition to reflecting the distribution of households by quintile of distance to water bodies. Concerning the latter, we found that the average distance from fishing ground of the first quintile was always lower than 5 km in all countries.In the regression analyses, the distance to water bodies was included as a continuous variable (in km). This choice reflects the need to better understand dynamics for households that tend to live more distant from fishing grounds. These dynamics were captured by measuring the marginal increase in the probability of being poor or food insecure for a one-unit increase (1 km) from the mean distance to fishing grounds.We acknowledge two limitations behind the calculation of the straight-line distance to water bodies. First, using the straight-line distance to water bodies may introduce biases in the statistical analyses presented, especially for households located in any particular landscapes within the country. The walking or travel time distance over a road network would provide a better alternative, however there is lack of data on road networks. Despite the straight-line distance to water bodies encompasses some limitations, we still believe that this method of calculation provides a good proxy to categorize household in relation to their distance to water bodies, and the results from the analyses should not deviate substantially from other method of calculation. For example, a study51 found that the straight-line distance tends to be highly correlated (R  > 0.91) with both walking and travel time distance.Second, an additional bias in the presented analyses may be introduced due to the modification strategy of the households GPS coordinates. This strategy was implemented before dissemination of household level data to avoid the risk of disclosure of sampled households. In its essence, the modification strategy relies on random offset of cluster center-point within a specified range. For urban areas a range of 0–2 km is used. In rural areas, where risk of disclosure may be higher due to more dispersed communities, a range of 0–5 km offset was used. While we had no control over this modification strategy, we believe that the modification of the GPS coordinates does not affect the way households are classified in relation to their distance to fishing grounds: considering that the modification strategy was applied to both distant and proximate households, we expect that the distribution between households close and distant to water bodies has remained unchanged and, hence, the presented statistics are still valid for the analysis.Variable constructionWe used a range of socio-economic indicators across food system components (Supplementary Table 11). As a measure of physical and economic access to food we used two indicators of small-scale fisheries: proximity to fishing grounds and fishing households. Household livelihoods were assigned according to whether households primarily, but not exclusively, engaged in small-scale fisheries (fishing, harvesting, processing and/or trading which varied by survey), agriculture (e.g., crop or livestock), or neither fisheries or agriculture. For each country survey, households were categorised according to their engagement in fishing and/or agriculture activities in the prior 12 months. Households in which one or more member engaged in fish-related activities were defined as ‘fishing households’. Fish-related livelihood activities were defined as fish harvesting, processing, and trading in Malawi and Tanzania, whilst in Uganda they were defined only as fishing. Households with one or more member engaged in agriculture, but not in fish-related activities, were defined as ‘agriculture households’. Through data exploration of livelihood categories, we found that 96% of all fishing households in our study combine fish-related and agricultural activities, with only 4% engaging exclusively in small-scale fisheries. Examination of diverse livelihood typologies within fishing household category (e.g., fisher-farmer, which is common in the region or exclusive fisher) was deemed out of the scope of this study and not feasible due to the small number of observations of exclusive fishers.Household poverty was measured using the per-capita monthly expenditure (equivalized using the adult equivalent scale). Poor households were defined as those households with a per-capita monthly expenditure below the national poverty line. The national poverty line –which was defined by national authorities in the three countries analysed–is a country-specific monetary threshold below which a household (and its members) cannot meet their basic needs. The poverty metric, as defined above, was used across physical, natural and human capital: asset wealth, distance to markets, access to land and education level of head of household. Since the asset wealth captures the typologies and number of assets owned by the household (durable goods – radio, bicycle, TV; utilities and infrastructure – access to protected water source and electricity), we developed an index for assets using the principal component analysis. This technique reduced the multi-dimensionality of the asset’s variables, and it allowed the data to identify the linear combinations of the assets components that explain the greatest share of the variation in wealth. As the final wealth index was standardised across households, this index allowed providing a ranking of households which reflected their ownership of assets.Food security was measured using two indicators; household-level food consumption profile – using the Food Consumption Score (FCS) index20, and subjective food insecurity defined as the number of months during a year that a household reported not having enough food to feed the household. Together, these indicators provide a more comprehensive understanding of household food security over a longer period than other surveys (e.g. Demographic and Health)47,48,49. The LSMS-ISA surveys collects food consumption data over a 7-day recall period. To capture seasonal variation in the food consumption indicators, sampled households were interviewed over a 12-month period: for each month of the year, a different portion of sampled households was interviewed so that the derived indicators reflect the intrinsic variability in food consumption, which may be due to seasonality. We used the FCS index as a food security indicator as it is akin to the data collected via the LSMS-ISA surveys, and that there was a need for comparison across select countries. The FCS index measures the frequency (number of days) and diversity of food groups consumed over a 7-day recall period, with weights given to groups based on nutritional value. The FCS index is validated as a proxy for energy sufficiency (quantity of food) and food access, and is associated with other household-level diet diversity measures (e.g. household dietary diversity score (HDDS))20,48. The difference between FCS and other indicators such as HDDS is the recall period (7-days versus 24 h), diversity of groups, weights assigned based on nutrition, and use of frequency together with diversity of groups consumed. The FCS with a longer recall period can show more habitual consumption but can also have limitations with people’s recall reliability. Although it has not been validated yet as an indicator for micronutrient intake, it does provide weights to nutrient-rich food groups and accounts for frequency of consumption, which other indicators do not. Fish consumption was described in terms of the (i) quantity (kg of wet weight equivalent per household per week), (ii) form (fresh, dried, smoked, other) and (iii) source (purchased, own consumption, gift) of fish consumed. The share of households reporting consumption of other animal source foods was also calculated to examine the relative role of fish in overall diets.We also examined the prices of foods consumed to investigate the accessibility of fish as food in terms of affordability compared to animal source foods. The LSMS-ISA survey collects data on the value and volume of food that were purchased and consumed. Those two variables were further used to construct the average price for each food item. To control for price level differences between countries, food prices data calculated from the survey were converted from local currency unit to international USD, using the Purchase power parity conversion factor corresponding to the year of the survey (Source: World Development Indicators database, World Bank). Moreover, since the surveys were conducted in different years, nominal prices corresponding to the years of the surveys were converted into real, inflation-adjusted prices using the Consumer Price Index (CPI, base year: 2010). This allowed to control for potential inflation patterns within countries and provide a better comparison of food prices per Kg. across the three countries analyzed (Source: World Development Indicators database, World Bank).Finally, we drew upon nutritional databases (food composition tables, FishBase and Illuminating Hidden Harvest Initiative) to understand the relative nutritional value of fish; by species, size (small or large) and form (e.g., fresh or dried), compared to other animal source foods (Supplementary Table 12). This enables us to contextualise the nutritional importance of consumption patterns.Descriptive statisticsWe created a harmonized multi-country dataset for Malawi, Tanzania and Uganda with 18,715 nationally representative household-level observations. The sample included in this study represents more than 19 million households corresponding to a population of 93.8 million people across the three countries (Supplementary Information).Descriptive statistics were calculated to compare poverty and food security indicators among households proximate and distant from fished water bodies, and between fishing and non-fishing households (see full details in Supplementary Information). For this analysis, households distant and proximate from fished water bodies were clustered into two groups based on a cut-off threshold of 5 km (distant  > 5 km; proximate ≤5 km). The Welch’s t-test was then used throughout to assess the statistical significance of mean statistics between these two groups.Econometric modelThe estimated probabilities of being poor (household living below the national poverty line) and food insecure (household with a poor food consumption profile) were modelled through two separate probit regression models, where the outcome variable was equal to 1 for poor and food insecure households and 0 otherwise. The independent variables in both models included the household’s distance to water bodies and the distance to food market. Both variables are expressed as continuous variables (in km), reflecting the need to measure the marginal increase in the probability of being poor or food insecure (i.e., the estimated β coefficients) given a one-unit change (1 km) in the distance to fishing ground (or food markets) from its mean. Both models also included an interaction variable which measured the household’s distance to water bodies but restricted to only those households who were unable to reach the food market. We tested this interaction as we expected that living in proximity to water bodies could mitigate the negative effects on poverty and food insecurity when households are unable to access food markets. In order to measure the conditional difference in the average probability to be poor and food insecure between households who engaged in fisheries and households who engaged in other non-fishing activities, we constructed a categorical variable that classified households according to their main livelihood activity, namely (1) neither fishing, nor agriculture households (i.e., the reference baseline household category), (2) fishing households and (3) agriculture households. This categorical variable was further restricted to only households living in proximity to water bodies to better measure for which typology of household the proximity to fishing grounds is most beneficial. Both models were controlled for the age, sex and the highest level of education attained by the head of the household, as well as the total number of household members employed (over total household members) and the wealth index of the household.For each model (poverty and food insecurity), we examined associations at the cross-country, national and rural levels (Tables 1 and 2, also available as Supplementary Data 1 and 2). Stata 15 was used for all statistical analyses. Both descriptive statistics and the regression coefficients were estimated using the household probability weight, the latter instrumental to make the derived indicators from the surveys representative of the population of interest thus allowing general inference for the three countries.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Author Correction: Mapping peat thickness and carbon stocks of the central Congo Basin using field data

    School of Geography, University of Leeds, Leeds, UKBart Crezee, Greta C. Dargie, Timothy R. Baker, Andy J. Baird, Paul J. Morris & Simon L. LewisFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama T.Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Jean-Bosco N. NdjangoSchool of GeoSciences, University of Edinburgh, Edinburgh, UKEdward T. A. MitchardDépartement de Biologie, Géographie et Gestion de l’environnement, Institut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba B. & Pierre BolaSchool of Water, Energy and Environment, Cranfield University, Cranfield, UKNicholas T. GirkinLaboratoire de Botanique et Ecologie, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. BockoÉcole Normale Supérieure, Département des Sciences et Vie de la Terre, Laboratoire de Télédétection et d’Ecologie Forestière, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoDepartment of Environment, Laboratory of Wood Technology, Ghent University, Ghent, BelgiumWannes HubauService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumWannes HubauDepartment of Archaeology, Ghent University, Ghent, BelgiumDirk SeidenstickerDépartement des Sciences de l’Environnement, Université du Cinquantenaire de Lwiro, Kabare, Democratic Republic of the CongoRodrigue BatumikeDépartement de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of the CongoGérard ImaniDepartment of Environment and Geography, University of York, York, UKAida Cuní-SanchezDepartment of International Environmental and Development Studies (NORAGRIC), Norwegian University of Life Sciences, Ås, NorwayAida Cuní-SanchezInstitute for the Advanced Study of Culture and the Environment, University of South Florida, Tampa, FL, USAChristopher A. KiahtipesInstitute of Prehistoric Archaeology, University of Cologne, Köln, GermanyJudicaël Lebamba & Hans-Peter WotzkaDépartement de Biologie, Université des Sciences et Techniques de Masuku, Franceville, GabonJudicaël LebambaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKHollie Bean, Arnoud Boom & Susan E. PageSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKIan T. LawsonDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    Linking personality traits and reproductive success in common marmoset (Callithrix jacchus)

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Gasparini, C., Speechley, E. M. & Polverino, G. The bold and the sperm: Positive association between boldness and sperm number in the guppy. R. Soc. Open Sci. 6, 190474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jokela, M., Alvergne, A., Pollet, T. V. & Lummaa, V. Reproductive behavior and personality traits of the five factor model. Eur. J. Pers. 25, 487–500 (2011).Article 

    Google Scholar 
    Schuett, W., Dall, S. R. X. & Royle, N. J. Pairs of zebra finches with similar ‘personalities’ make better parents. Anim. Behav. 81, 609–618 (2011).Article 

    Google Scholar 
    Vetter, S. G. et al. Shy is sometimes better: Personality and juvenile body mass affect adult reproductive success in wild boars, Sus scrofa. Anim. Behav. 115, 193–205 (2016).Article 

    Google Scholar 
    Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 
    Article 

    Google Scholar 
    Bergmüller, R. & Taborsky, M. Animal personality due to social niche specialisation. Trends Ecol. Evol. 25, 504–511 (2010).PubMed 
    Article 

    Google Scholar 
    Montiglio, P. O., Wey, T. W., Chang, A. T., Fogarty, S. & Sih, A. Correlational selection on personality and social plasticity: Morphology and social context determine behavioural effects on mating success. J. Anim. Ecol. 86, 213–226 (2017).PubMed 
    Article 

    Google Scholar 
    Wolf, M. & McNamara, J. M. On the evolution of personalities via frequency-dependent selection. Am. Nat. 179, 679–692 (2012).PubMed 
    Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).PubMed 
    Article 

    Google Scholar 
    Muller, H. & Chittka, L. Animal personalities: The advantage of diversity. Curr. Biol. 18, 961–963 (2008).Article 
    CAS 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 
    Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B 271, 847–852 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boon, A. K., Réale, D. & Boutin, S. The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecol. Lett. 10, 1094–1104 (2007).PubMed 
    Article 

    Google Scholar 
    Nicolaus, M., Tinbergen, J. M., Ubels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).PubMed 
    Article 

    Google Scholar 
    Altschul, D. M. et al. Personality links with lifespan in chimpanzees. eLife 7, e33781 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Réale, D., Martin, J., Coltman, D. W., Poissant, J. & Festa-Bianchet, M. Male personality, life-history strategies and reproductive success in a promiscuous mammal. J. Evol. Biol. 22, 1599–1607 (2009).PubMed 
    Article 

    Google Scholar 
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).PubMed 
    Article 

    Google Scholar 
    Rangassamy, M., Dalmas, M., Féron, C., Gouat, P. & Rödel, H. G. Similarity of personalities speeds up reproduction in pairs of a monogamous rodent. Anim. Behav. 103, 7–15 (2015).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. X. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).PubMed 
    Article 

    Google Scholar 
    Carlstead, K., Fraser, J., Bennett, C. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: II. Behavior, breeding success, and mortality in relation to housing facilities. Zoo Biol. 18, 35–52 (1999).Article 

    Google Scholar 
    Martin-Wintle, M. S. et al. Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biol. Conserv. 207, 27–37 (2017).Article 

    Google Scholar 
    Fox, R. A. & Millam, J. R. Personality traits of pair members predict pair compatibility and reproductive success in a socially monogamous parrot breeding in captivity. Zoo Biol. 33, 166–172 (2014).PubMed 
    Article 

    Google Scholar 
    Choi, S., Grocutt, E., Erlandsson, R. & Angerbjörn, A. Parent personality is linked to juvenile mortality and stress behavior in the arctic fox (Vulpes lagopus). Behav. Ecol. Sociobiol. 73, 162 (2019).Article 

    Google Scholar 
    Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).Article 

    Google Scholar 
    Tardif, S. D. et al. Reproduction in captive common marmosets (Callithrix jacchus). Comp. Med. 53, 364–368 (2003).CAS 
    PubMed 

    Google Scholar 
    Marini, R., Wachtman, L., Tardif, S., Mansfield, K. & Fox, J. The Common Marmoset in Captivity and Biomedical Research (Academic Press, 2019). https://doi.org/10.1016/C2016-0-00861-6.Book 

    Google Scholar 
    Arruda, M. D. F., Yamamoto, M. E., Pessoa, D. M. A. & Araujo, A. Taxonomy and Natural History. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 3–15 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-811829-0.00001-7.Chapter 

    Google Scholar 
    Buchanan-Smith, H. M. Marmosets and tamarins. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) (Wiley-Blackwell, 2010). https://doi.org/10.1002/9781444318777.ch36.Chapter 

    Google Scholar 
    Smucny, D. A. et al. Reproductive output, maternal age, and survivorship in captive common marmoset females (Callithrix jacchus). Am. J. Primatol. 64, 107–121 (2004).PubMed 
    Article 

    Google Scholar 
    Ash, H. & Buchanan-Smith, H. M. Long-term data on reproductive output and longevity in captive female common marmosets (Callithrix jacchus). Am. J. Primatol. 76, 1062–1073 (2014).PubMed 
    Article 

    Google Scholar 
    Frye, B. M. et al. After short interbirth intervals, captive callitrichine monkeys have higher infant mortality. iScience 25, 103724 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaquish, C. E., Tardif, S. D. & Cheverud, J. M. Interactions between infant growth and survival: Evidence for selection on age-specific body weight in captive common marmosets (Callithrix jacchus). Am. J. Primatol. 42, 269–280 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D. & Jaquish, C. E. Number of ovulations in the marmoset monkey (Callithrix jacchus): Relation to body weight, age and repeatability. Am. J. Primatol. 42, 323–329 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poole, T. B. & Evans, R. G. Reproduction, infant survival and productivity of a colony of common marmosets (Callithrix jacchus jacchus). Lab. Anim. 16, 88–97 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D., Richter, C. B. & Carson, R. L. Effects of sibling-rearing experience on future reproductive success in two species of callitrichidae. Am. J. Primatol. 6, 377–380 (1984).PubMed 
    Article 

    Google Scholar 
    Rothe, H., Koenig, A. & Darms, K. Infant survival and number of helpers in captive groups of common marmosets (Callithrix jacchus). Am. J. Primatol. 30, 131–137 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koski, S. E., Buchanan-Smith, H. M., Burkart, J. M., Bugnyar, T. & Weiss, A. Common marmoset (Callithrix jacchus) personality. J. Comp. Psychol. 131, 326–336 (2017).PubMed 
    Article 

    Google Scholar 
    Šlipogor, V., Burkart, J. M., Martin, J. S., Bugnyar, T. & Koski, S. E. Personality method validation in common marmosets (Callithrix jacchus): Getting the best of both worlds. J. Comp. Psychol. 134, 52–70 (2020).PubMed 
    Article 

    Google Scholar 
    Weiss, A., Yokoyama, C., Hayashi, T. & Inoue-Murayama, M. Personality, subjective well-being, and the serotonin 1a receptor gene in common marmosets (Callithrix jacchus). PLoS ONE 16, e0238663 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, H., Gosling, S. D. & Schapiro, S. J. Comparison of methods for assessing personality in nonhuman primates. In Personality and Temperament in Nonhuman Primates (eds Weiss, A. et al.) 17–40 (Springer, 2011).Chapter 

    Google Scholar 
    Finkenwirth, C. & Burkart, J. M. Why help? Relationship quality, not strategic grooming predicts infant-care in group-living marmosets. Physiol. Behav. 193, 108–116 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haines, J. A. et al. Sex- and context-specific associations between personality and a measure of fitness but no link with life history traits. Anim. Behav. 167, 23–39 (2020).Article 

    Google Scholar 
    Carlstead, K., Mellen, J. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: I. Individual behavior profiles and their relationship to breeding success. Zoo Biol. 18, 17–34 (1999).Article 

    Google Scholar 
    Berg, V., Lummaa, V., Lahdenperä, M., Rotkirch, A. & Jokela, M. Personality and long-term reproductive success measured by the number of grandchildren. Evol. Hum. Behav. 35, 533–539 (2014).Article 

    Google Scholar 
    Silva, H. P. A. & Sousa, M. B. C. The pair-bond formation and its role in the stimulation of reproductive function in female common marmosets (Callithrix jacchus). Int. J. Primatol. 18, 387–400 (1997).Article 

    Google Scholar 
    Cavanaugh, J., Mustoe, A. C., Taylor, J. H. & French, J. A. Oxytocin facilitates fidelity in well-established marmoset pairs by reducing sociosexual behavior toward opposite-sex strangers. Psychoneuroendocrinology 49, 1–10 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, I. L., Nævdal, E. & Bøe, K. E. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behav. Ecol. Sociobiol. 65, 1159–1167 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnstone-Yellin, T. L., Shipley, L. A., Myers, W. L. & Robinson, H. S. To twin or not to twin? Trade-offs in litter size and fawn survival in mule deer. J. Mammal. 90, 453–460 (2009).Article 

    Google Scholar 
    Ariyomo, T. O. & Watt, P. J. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim. Behav. 83, 41–46 (2012).Article 

    Google Scholar 
    Patterson, L. D. & Schulte-Hostedde, A. I. Behavioural correlates of parasitism and reproductive success in male eastern chipmunks, Tamias striatus. Anim. Behav. 81, 1129–1137 (2011).Article 

    Google Scholar 
    Mutzel, A., Dingemanse, N. J., Araya-Ajoy, Y. G. & Kempenaers, B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B 280, 20131019 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costa, T. S. O. et al. Individual behavioral differences and health of golden-headed lion tamarins (Leontopithecus chrysomelas). Am. J. Primatol. 82, e23118 (2020).PubMed 
    Article 

    Google Scholar 
    Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    Tardif, S. D., Power, M., Oftedal, O. T., Power, R. A. & Layne, D. G. Lactation, maternal behavior and infant growth in common marmoset monkeys (Callithrix jacchus): Effects of maternal size and litter size. Behav. Ecol. Sociobiol. 51, 17–25 (2001).Article 

    Google Scholar 
    Mills, D. A., Windle, C. P., Baker, H. F. & Ridley, R. M. Analysis of infant carrying in large, well-established family groups of captive marmosets (Callithrix jacchus). Primates 45, 259–265 (2004).PubMed 
    Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20, 280–293 (1973).CAS 
    Article 

    Google Scholar 
    Schultz-Darken, N., Ace, L. & Ash, H. Behavior and behavioral management. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 109–117 (Academic Press, 2019). https://doi.org/10.1016/b978-0-12-811829-0.00007-8.Chapter 

    Google Scholar 
    Bardi, M. & Petto, A. J. Parental failure in captive common marmosets (Callithrix jacchus): A comparison with tamarins. Folia Primatol. 73, 46–48 (2002).Article 

    Google Scholar 
    Barbosa, M. N. & da Silva Mota, M. T. Alloparental responsiveness to newborns by nonreproductive, adult male, common marmosets (Callithrix jacchus). Am. J. Primatol. 75, 145–152 (2013).PubMed 
    Article 

    Google Scholar 
    Rutherford, J. N. et al. Womb to womb: Maternal litter size and birth weight but not adult characteristics predict early neonatal death of offspring in the common marmoset monkey. PLoS ONE 16, e0252093 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkenwirth, C., Martins, E., Deschner, T. & Burkart, J. M. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Horm. Behav. 80, 10–18 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, H. A., Dugdale, H. L., Richardson, D. S., Komdeur, J. & Burke, T. Extra-pair parentage and personality in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 72, 37 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schürch, R. & Heg, D. Variation in helper type affects group stability and reproductive decisions in a cooperative breeder. Ethology 116, 257–269 (2010).Article 

    Google Scholar 
    Class, B. & Dingemanse, N. J. A variance partitioning perspective of assortative mating: Proximate mechanisms and evolutionary implications. J. Evol. Biol. 35, 483–490 (2022).PubMed 
    Article 

    Google Scholar 
    Scherer, U., Godin, J. G. J. & Schuett, W. Do female rainbow kribs choose males on the basis of their apparent aggression and boldness? A non-correlational mate choice study. Behav. Ecol. Sociobiol. 74, 34 (2020).Article 

    Google Scholar 
    Schuett, W., Godin, J.-G.J. & Dall, S. R. X. Do female zebra finches, Taeniopygia guttata, choose their mates based on their ‘personality’?. Ethology 117, 908–917 (2011).Article 

    Google Scholar 
    Ophir, A. G., Crino, O. L., Wilkerson, Q. C., Wolff, J. O. & Phelps, S. M. Female-directed aggression predicts paternal behavior, but female prairie voles prefer affiliative males to paternal males. Brain. Behav. Evol. 71, 32–40 (2008).PubMed 
    Article 

    Google Scholar 
    Lazaro-Perea, C. Intergroup interactions in wild common marmosets, Callithrix jacchus: Territorial defence and assessment of neighbours. Anim. Behav. 62, 11–21 (2001).Article 

    Google Scholar 
    Koski, S. E. & Burkart, J. M. Common marmosets show social plasticity and group-level similarity in personality. Sci. Rep. 5, 8878 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norman, M., Rowden, L. J. & Cowlishaw, G. Potential applications of personality assessments to the management of non-human primates: A review of 10 years of study. PeerJ 9, e12044 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorsuch, R. L. Factor Analysis 2nd edn. (Lawrence Erlbaum Associates, 1983).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Christensen, R. H. B. Ordinal—Regression Models for Ordinal Data. R package version 2019.4-25. (2019).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer-Verlag, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Bartoń, K. Mu-MIn: Multi-model inference. R package version 2019 1.43.6. (2019).Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richards, S. A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218–227 (2008).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.7 (2020).Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.2 (2020)du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment

    Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115. https://doi.org/10.1038/nclimate1329 (2012).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. 115, 201713936. https://doi.org/10.1073/pnas.1713936115 (2018).CAS 
    Article 

    Google Scholar 
    Gigauri, K., Akhalkatsi, M., Abdaladze, O. & Nakhutsrishvili, G. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pak. J. Bot. 48, 1893–1902 (2016).
    Google Scholar 
    Gritsch, A., Dirnböck, T. & Dullinger, S. Recent changes in alpine vegetation differ among plant communities. J. Veg. Sci. 27, 1177–1186. https://doi.org/10.1111/jvs.12447 (2016).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625. https://doi.org/10.1111/j.1654-1103.2012.01391.x (2012).Article 

    Google Scholar 
    Grytnes, J. A. et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884. https://doi.org/10.1111/geb.12170 (2014).Article 

    Google Scholar 
    Johnson, D. R., Ebert-May, D., Webber, P. J. & Tweedie, C. E. Forecasting alpine vegetation change using repeat sampling and a novel modeling approach. Ambio 40, 693. https://doi.org/10.1007/s13280-011-0175-z (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amagai, Y., Kudo, G. & Sato, K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 21, 561–571. https://doi.org/10.1111/avsc.12387 (2018).Article 

    Google Scholar 
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327. https://doi.org/10.1126/science.1199040 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol. 17, 2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x (2011).ADS 
    Article 

    Google Scholar 
    Matteodo, M., Ammann, K., Verrecchia, E. P. & Vittoz, P. Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecol. Evol. 6, 6969–6982. https://doi.org/10.1002/ece3.2354 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. 106, 19637–19643. https://doi.org/10.1073/pnas.0901562106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cuesta, F. et al. Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. J. Biogeogr. 47, 408–420. https://doi.org/10.1111/jbi.13759 (2020).Article 

    Google Scholar 
    Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R. & Singh, C. P. Assessment of alpine summit flora in Kashmir Himalaya and its implications for long-term monitoring of climate change impacts. J. Mt. Sci. 17, 1974–1988. https://doi.org/10.1007/s11629-019-5924-7 (2020).Article 

    Google Scholar 
    Steinbauer, K., Lamprecht, A., Semenchuk, P., Winkler, M. & Pauli, H. Dieback and expansions: Species-specific responses during 20 years of amplified warming in the high Alps. Alpine Bot. 130, 1–11. https://doi.org/10.1007/s00035-019-00230-6 (2019).Article 

    Google Scholar 
    Noroozi, J. et al. Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345. https://doi.org/10.1038/s41598-018-28504-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Global Ecol. Biogeogr. 30, 12181–12231. https://doi.org/10.1111/geb.13297 (2021).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 1. Plant ecology at high elevations, 1–22 (Springer, 2021).Smith, J. G., Sconiers, W., Spasojevic, M. J., Ashton, I. W. & Suding, K. N. Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct. Antarct. Alp. Res. 44, 135–142. https://doi.org/10.1657/1938-4246-44.1.135 (2012).Article 

    Google Scholar 
    Körner, C. Alpine Plant Life. (Springer, 2021).Pauli, H. et al. The GLORIA field manual–standard Multi-Summit approach, supplementary methods and extra approaches. 5th edn, (GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, 2015).Kuo, C.-C., Su, Y., Liu, H.-Y. & Lin, C.-T. Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. Plant Ecol. 222, 933–951. https://doi.org/10.1007/s11258-021-01152-2 (2021).Article 

    Google Scholar 
    Suonan, J., Classen, A. T., Zhang, Z. & He, J. S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct. Ecol. 31, 2147–2156. https://doi.org/10.1111/1365-2435.12909 (2017).Article 

    Google Scholar 
    Lamprecht, A. et al. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Bot. 131, 27–39. https://doi.org/10.1007/s00035-021-00246-x (2021).Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopold. 92, 61–83 (2005).
    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327. https://doi.org/10.1073/pnas.0810306106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, S.-F. Historical biogeography of the flora of Taiwan. J. Natl. Taiwan Museum 64, 33–63. https://doi.org/10.1111/j.1756-1051.1995.tb02123.x (2011).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    TCCIP. The past and future of climate in Taiwan. 1–31 (National Science and Technology Center for Disaster Reduction & Research Center for Environmental Change, Academia Sinica, New Taipei City, 2018).Central Weather Bureau. in The Typhoon Database (ed Central Weather Bureau;) (https://rdc28.cwb.gov.tw/TDB/, 2021).Henny, L., Thorncroft, C. D., Hsu, H.-H. & Bosart, L. F. Extreme rainfall in Taiwan: Seasonal statistics and trends. J. Climate https://doi.org/10.1175/jcli-d-20-0999.1 (2021).Article 

    Google Scholar 
    Tu, J.-Y. & Chou, C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events. Environ. Res. Lett. 8, 014023. https://doi.org/10.1088/1748-9326/8/1/014023 (2013).ADS 
    Article 

    Google Scholar 
    Liang, A., Oey, L., Huang, S. & Chou, S. Long-term trends of typhoon-induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades. J. Geophys. Res. Atmos. 122, 2750–2765. https://doi.org/10.1002/2017jd026446 (2017).ADS 
    Article 

    Google Scholar 
    Lee, Y.-C., Wang, C.-C., Weng, S.-P., Chen, C.-T. & Cheng, C.-T. Future projections of meteorological drought characteristics in Taiwan. Atmos. Sci. https://doi.org/10.3966/025400022019034701003 (2019).Article 

    Google Scholar 
    Kudo, G., Kawai, Y., Amagai, Y. & Winkler, D. E. Degradation and recovery of an alpine plant community: Experimental removal of an encroaching dwarf bamboo. Alpine Bot. 127, 75–83. https://doi.org/10.1007/s00035-016-0178-2 (2017).Article 

    Google Scholar 
    Richman, S. K., Levine, J. M., Stefan, L. & Johnson, C. A. Asynchronous range shifts drive alpine plant–pollinator interactions and reduce plant fitness. Global Change Biol. 26, 3052–3064. https://doi.org/10.1111/gcb.15041 (2020).ADS 
    Article 

    Google Scholar 
    Spasojevic, M. J., Bowman, W. D., Humphries, H. C., Seastedt, T. R. & Suding, K. N. Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4, 1–18. https://doi.org/10.1890/es13-00133.1 (2013).Article 

    Google Scholar 
    Rogora, M. et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci. Total Environ. 624, 1429–1442. https://doi.org/10.1016/j.scitotenv.2017.12.155 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Malanson, G. P., Resler, L. M., Butler, D. R. & Fagre, D. B. Mountain plant communities: Uncertain sentinels? Prog. Phys. Geogr. Earth Environ. 43, 521–543. https://doi.org/10.1177/0309133319843873 (2019).Article 

    Google Scholar 
    Berauer, B. J. et al. Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arct Antarct. Alp. Res. 51, 215–231. https://doi.org/10.1080/15230430.2019.1618116 (2019).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 9. Water relations, 333–383 (Springer, 2021).Cai, Y. et al. Photosynthetic response of an alpine plant, rhododendron delavayi Franch, to water stress and recovery: The role of Mesophyll conductance. Front. Plant Sci. 6, 1089. https://doi.org/10.3389/fpls.2015.01089 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. in Sustainable Agriculture (eds E. Lichtfouse et al.) 153–188 (Springer, 2009).Greenwood, S., Chen, J. C., Chen, C. T. & Jump, A. S. Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. J. Veg. Sci. 26, 711–721. https://doi.org/10.1111/jvs.12269 (2015).Article 

    Google Scholar 
    Morley, P. J., Donoghue, D. N. M., Chen, J. C. & Jump, A. S. Montane forest expansion at high elevations drives rapid reduction in non-forest area, despite no change in mean forest elevation. J. Biogeogr. 47, 2405–2416. https://doi.org/10.1111/jbi.13951 (2020).Article 

    Google Scholar 
    Salick, J., Ghimire, S. K., Fang, Z., Dema, S. & Konchar, K. M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 34, 276–293. https://doi.org/10.2993/0278-0771-34.3.276 (2014).Article 

    Google Scholar 
    Winkler, M. et al. The rich sides of mountain summits–a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43, 2261–2273. https://doi.org/10.1111/jbi.12835 (2016).Article 

    Google Scholar 
    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83. https://doi.org/10.1093/biosci/biw150 (2016).Article 
    PubMed 

    Google Scholar 
    Ganjurjav, H. et al. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Sci. Rep. 6, 1–10. https://doi.org/10.1038/srep23356 (2016).CAS 
    Article 

    Google Scholar 
    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Huang, T.-J. & Chou, C.-H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210. https://doi.org/10.1111/j.1600-0587.2011.06984.x (2012).Article 

    Google Scholar 
    Cowles, J., Boldgiv, B., Liancourt, P., Petraitis, P. S. & Casper, B. B. Effects of increased temperature on plant communities depend on landscape location and precipitation. Ecol. Evol. 8, 5267–5278. https://doi.org/10.1002/ece3.3995 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arct. Antarct. Alp. Res. 51, 201–214. https://doi.org/10.1080/15230430.2019.1618148 (2019).Article 

    Google Scholar 
    Shao, K.-T. Taiwan’s biodiversity research achievements over the past 10 years (2001–2011). Biodivers. Sci. https://doi.org/10.3724/sp.j.1003.2012.06123 (2012).Article 

    Google Scholar 
    Chen, J.-M., Lu, F.-C., Kuo, S.-L. & Shih, C.-F. Summer climate variability in Taiwan and associated large-scale processes. J. Meteorol. Soc. Japan 83, 499–516. https://doi.org/10.2151/jmsj.83.499 (2005).ADS 
    Article 

    Google Scholar 
    Chen, T.-C., Wang, S.-Y., Huang, W.-R. & Yen, M.-C. Variation of the East Asian summer monsoon rainfall. J. Climate 17, 744–762. https://doi.org/10.1175/1520-0442(2004)017%3c0744:voteas%3e2.0.co;2 (2004).ADS 
    Article 

    Google Scholar 
    Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. https://doi.org/10.2307/210739 (1948).Article 

    Google Scholar 
    Kambach, S. et al. Of niches and distributions: Range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 42, 467–477. https://doi.org/10.1111/ecog.03495 (2019).Article 

    Google Scholar 
    Luna, B. & Moreno, J. M. Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol. 210, 85–95. https://doi.org/10.1007/s11258-010-9740-y (2010).Article 

    Google Scholar 
    Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geog. 34, 3–22. https://doi.org/10.1177/0309133309355630 (2010).Article 

    Google Scholar 
    Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307. https://doi.org/10.1038/s41597-021-01084-6 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welham, S. J., Gezan, S. A., Clark, S. J. & Mead, A. Statistical Methods in Biology: Design and Analysis of Experiments and Regression. (Chapman and Hall/CRC, 2014).R: A Language and Environment for Statistical Computing v. 4.0.3 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023. https://doi.org/10.1002/joc.3887 (2014).Article 

    Google Scholar 
    rgbif: Interface to the Global Biodiversity Information Facility API v. 3.7.1 (2022). More

  • in

    Soil carbon stocks in forest-tundra ecotones along a 500 km latitudinal gradient in northern Norway

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Zackrisson, O. & Gallet, C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 35, 827–835 (2003).CAS 
    Article 

    Google Scholar 
    Moen, J., Cairns, D. M. & Lafon, C. W. Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol. Divers. 1, 77–87 (2008).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biol. Biochem. 34, 1633–1646 (2002).Article 

    Google Scholar 
    Sjögersten, S., Turner, B. L., Mahieu, N., Condron, L. M. & Wookey, P. A. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Change Biol. 9, 759–772 (2003).ADS 
    Article 

    Google Scholar 
    IPCC. IPCC report global warming of 1.5 °C. Ipcc Sr15. 2, 17–20 (2018).
    Google Scholar 
    Hobbie, S. E., Nadelhoffer, K. J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242, 163–170 (2002).CAS 
    Article 

    Google Scholar 
    DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution, function and modelling. Forestry 85, 161–184 (2012).Article 

    Google Scholar 
    Hansson, A., Dargusch, P. & Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291–306 (2021).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38, 2–10 (2009).PubMed 
    Article 

    Google Scholar 
    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).Article 

    Google Scholar 
    Lloyd, A. H. & Fastie, C. L. Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10, 176–185 (2003).Article 

    Google Scholar 
    Truong, C., Palmé, A. E. & Felber, F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: Genetic and ecological study in northern Sweden. J. Evol. Biol. 20, 369–380 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Danby, R. K. & Hik, D. S. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J. Ecol. 95, 352–363 (2007).Article 

    Google Scholar 
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 

    Google Scholar 
    Tingstad, L., Olsen, S. L., Klanderud, K., Vandvik, V. & Ohlson, M. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia 179, 599–608 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hofgaard, A. Inter-Relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Annika Hofgaard Source Glob. Ecol. Biogeogr. Lett. 6(6), 419–429 (1997).Article 

    Google Scholar 
    Olsson, E. G. A., Austrheim, G. & Grenne, S. N. Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landsc. Ecol. 15, 155–170 (2000).Article 

    Google Scholar 
    Weintraub, M. N. & Schimel, J. P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6, 129–143 (2003).CAS 
    Article 

    Google Scholar 
    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).Kammer, A. et al. Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob. Change Biol. 15, 1570–1583 (2009).ADS 
    Article 

    Google Scholar 
    Parker, T. C., Subke, J. A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).ADS 
    Article 

    Google Scholar 
    Speed, J. D. M. et al. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone. Biogeosciences 12, 1615–1627 (2015).ADS 
    Article 

    Google Scholar 
    Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Chang. 2, 875–879 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Yoo, K., Amundson, R., Heimsath, A. M. & Dietrich, W. E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 130, 47–65 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, M. et al. Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA 152, 94–102 (2017).CAS 
    Article 

    Google Scholar 
    Hilli, S., Stark, S. & Derome, J. Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Appl. Soil Ecol. 46, 200–208 (2010).Article 

    Google Scholar 
    Parker, T. C. et al. Exploring drivers of litter decomposition in a greening Arctic: Results from a transplant experiment across a treeline. Ecology 99, 2284–2294 (2018).PubMed 
    Article 

    Google Scholar 
    Strand, L. T., Callesen, I., Dalsgaard, L. & de Wit, H. A. Carbon and nitrogen stocks in Norwegian forest soils—The importance of soil formation, climate, and vegetation type for organic matter accumulation. Can. J. For. Res. 46, 1459–1473 (2016).CAS 
    Article 

    Google Scholar 
    Thieme, N., Bollandsås, O. M., Gobakken, T. & Næsset, E. Detection of small single trees in the forest-tundra ecotone using height values from airborne laser scanning. Can. J. Remote Sens. 37, 264–274 (2011).ADS 
    Article 

    Google Scholar 
    Mienna, I. M., Klanderud, K., Ørka, H. O., Bryn, A. & Bollandsås, O. M. Land cover classification of treeline ecotones along a 1100 km latitudinal transect using spectral- and three-dimensional information from UAV -based aerial imagery. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.260 (2022).Article 

    Google Scholar 
    Tveito, O. E., Bjørdal, I., Skjelvåg, A. O. & Aune, B. A GIS-based agro-ecological decision system based on gridded climatology. Meteorol. Appl. 12, 57–68 (2005).ADS 
    Article 

    Google Scholar 
    Carter, T. R. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric. Food Sci. Finl. 7, 161–179 (1998).Article 

    Google Scholar 
    Abdi, H. Partial least square regression PLS-regression. Encyclopedia Res. Methods Social Sci. 792.295 (2003).Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    Liland, K. H., Mevik, B.-H., Wehrens, R. & Hiemstra, P. Package ‘ pls ’. (2021).Mevik, B.-H. & Wehrens, R. Introduction to the pls Package. Help Sect. ‘pls’ Packag. RStudio Softw. 1–23 (2015).Huang, X. et al. Soil moisture dynamics within soil profiles and associated environmental controls. CATENA 136, 189–196 (2016).Article 

    Google Scholar 
    Trap, J., Hättenschwiler, S., Gattin, I. & Aubert, M. Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. For. Ecol. Manage. 302, 338–345 (2013).Article 

    Google Scholar 
    Sørensen, M. V. et al. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 21, 316–330 (2018).Article 
    CAS 

    Google Scholar 
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Chang. Biol. 16, 641–656 (2010).ADS 
    Article 

    Google Scholar 
    Sturm, M. et al. Snow—Shrub interactions in Arctic Tundra : A hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).ADS 
    Article 

    Google Scholar 
    Grogan, P. & Jonasse, S. Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Glob. Change Biol. 12, 1479–1495 (2006).ADS 
    Article 

    Google Scholar 
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–617 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Brooks, P. D. & Williams, M. W. Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological processes 13, 2177–2190 (1999).Broll, G. et al. Landscape mosaic in the treeline ecotone on Mt. Rodjanoaivi, Subarctic Finland. Fenn. J. Geogr. 185, 89–105 (2007).
    Google Scholar 
    Turetsky, M. R. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106, 395–409 (2003).Article 

    Google Scholar  More

  • in

    The role of gene expression and symbiosis in reef-building coral acquired heat tolerance

    Larvae display conserved gene expression response to heat stressLarval gene expression (GE) was quantified to assess if plastic responses in gene expression to heat stress varied depending on site of origin or parental identity. Larval survival under heat stress varied between crosses, with larvae produced from dams sourced from far Northern GBR sites exhibiting higher thermal tolerance (Fig. 1b). The cross with the lowest thermal tolerance (LSxSB) did not have any larvae survive the heat treatment (Fig. 1b, Supplementary Fig. 2). GE was examined in aposymbiotic larvae experiencing ambient conditions prior to the heat treatment (“pre”), larvae after exposure to simulated heat stress (35.5 °C for 56 hours, “post heat”), and a simultaneous control temperature of 27 °C (“post ambient”). Therefore, the “pre” larval treatment provided transcriptomic baselines of GE between genetic crosses while “post heat” and “post ambient” comparisons show a baseline for cross-specific heat responses without the confounding effect of symbiosis found in the post-metamorphic phase. Using a principal coordinates analysis (PCoA), we find that GE patterns in larvae were driven by treatment (“pre”, “post ambient”, “post heat”), explaining 29.2% of the variation in survival (padonis  More