More stories

  • in

    Soil carbon stocks in forest-tundra ecotones along a 500 km latitudinal gradient in northern Norway

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Zackrisson, O. & Gallet, C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 35, 827–835 (2003).CAS 
    Article 

    Google Scholar 
    Moen, J., Cairns, D. M. & Lafon, C. W. Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol. Divers. 1, 77–87 (2008).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biol. Biochem. 34, 1633–1646 (2002).Article 

    Google Scholar 
    Sjögersten, S., Turner, B. L., Mahieu, N., Condron, L. M. & Wookey, P. A. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Change Biol. 9, 759–772 (2003).ADS 
    Article 

    Google Scholar 
    IPCC. IPCC report global warming of 1.5 °C. Ipcc Sr15. 2, 17–20 (2018).
    Google Scholar 
    Hobbie, S. E., Nadelhoffer, K. J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242, 163–170 (2002).CAS 
    Article 

    Google Scholar 
    DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution, function and modelling. Forestry 85, 161–184 (2012).Article 

    Google Scholar 
    Hansson, A., Dargusch, P. & Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291–306 (2021).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38, 2–10 (2009).PubMed 
    Article 

    Google Scholar 
    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).Article 

    Google Scholar 
    Lloyd, A. H. & Fastie, C. L. Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10, 176–185 (2003).Article 

    Google Scholar 
    Truong, C., Palmé, A. E. & Felber, F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: Genetic and ecological study in northern Sweden. J. Evol. Biol. 20, 369–380 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Danby, R. K. & Hik, D. S. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J. Ecol. 95, 352–363 (2007).Article 

    Google Scholar 
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 

    Google Scholar 
    Tingstad, L., Olsen, S. L., Klanderud, K., Vandvik, V. & Ohlson, M. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia 179, 599–608 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hofgaard, A. Inter-Relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Annika Hofgaard Source Glob. Ecol. Biogeogr. Lett. 6(6), 419–429 (1997).Article 

    Google Scholar 
    Olsson, E. G. A., Austrheim, G. & Grenne, S. N. Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landsc. Ecol. 15, 155–170 (2000).Article 

    Google Scholar 
    Weintraub, M. N. & Schimel, J. P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6, 129–143 (2003).CAS 
    Article 

    Google Scholar 
    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).Kammer, A. et al. Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob. Change Biol. 15, 1570–1583 (2009).ADS 
    Article 

    Google Scholar 
    Parker, T. C., Subke, J. A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).ADS 
    Article 

    Google Scholar 
    Speed, J. D. M. et al. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone. Biogeosciences 12, 1615–1627 (2015).ADS 
    Article 

    Google Scholar 
    Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Chang. 2, 875–879 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Yoo, K., Amundson, R., Heimsath, A. M. & Dietrich, W. E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 130, 47–65 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, M. et al. Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA 152, 94–102 (2017).CAS 
    Article 

    Google Scholar 
    Hilli, S., Stark, S. & Derome, J. Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Appl. Soil Ecol. 46, 200–208 (2010).Article 

    Google Scholar 
    Parker, T. C. et al. Exploring drivers of litter decomposition in a greening Arctic: Results from a transplant experiment across a treeline. Ecology 99, 2284–2294 (2018).PubMed 
    Article 

    Google Scholar 
    Strand, L. T., Callesen, I., Dalsgaard, L. & de Wit, H. A. Carbon and nitrogen stocks in Norwegian forest soils—The importance of soil formation, climate, and vegetation type for organic matter accumulation. Can. J. For. Res. 46, 1459–1473 (2016).CAS 
    Article 

    Google Scholar 
    Thieme, N., Bollandsås, O. M., Gobakken, T. & Næsset, E. Detection of small single trees in the forest-tundra ecotone using height values from airborne laser scanning. Can. J. Remote Sens. 37, 264–274 (2011).ADS 
    Article 

    Google Scholar 
    Mienna, I. M., Klanderud, K., Ørka, H. O., Bryn, A. & Bollandsås, O. M. Land cover classification of treeline ecotones along a 1100 km latitudinal transect using spectral- and three-dimensional information from UAV -based aerial imagery. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.260 (2022).Article 

    Google Scholar 
    Tveito, O. E., Bjørdal, I., Skjelvåg, A. O. & Aune, B. A GIS-based agro-ecological decision system based on gridded climatology. Meteorol. Appl. 12, 57–68 (2005).ADS 
    Article 

    Google Scholar 
    Carter, T. R. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric. Food Sci. Finl. 7, 161–179 (1998).Article 

    Google Scholar 
    Abdi, H. Partial least square regression PLS-regression. Encyclopedia Res. Methods Social Sci. 792.295 (2003).Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    Liland, K. H., Mevik, B.-H., Wehrens, R. & Hiemstra, P. Package ‘ pls ’. (2021).Mevik, B.-H. & Wehrens, R. Introduction to the pls Package. Help Sect. ‘pls’ Packag. RStudio Softw. 1–23 (2015).Huang, X. et al. Soil moisture dynamics within soil profiles and associated environmental controls. CATENA 136, 189–196 (2016).Article 

    Google Scholar 
    Trap, J., Hättenschwiler, S., Gattin, I. & Aubert, M. Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. For. Ecol. Manage. 302, 338–345 (2013).Article 

    Google Scholar 
    Sørensen, M. V. et al. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 21, 316–330 (2018).Article 
    CAS 

    Google Scholar 
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Chang. Biol. 16, 641–656 (2010).ADS 
    Article 

    Google Scholar 
    Sturm, M. et al. Snow—Shrub interactions in Arctic Tundra : A hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).ADS 
    Article 

    Google Scholar 
    Grogan, P. & Jonasse, S. Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Glob. Change Biol. 12, 1479–1495 (2006).ADS 
    Article 

    Google Scholar 
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–617 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Brooks, P. D. & Williams, M. W. Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological processes 13, 2177–2190 (1999).Broll, G. et al. Landscape mosaic in the treeline ecotone on Mt. Rodjanoaivi, Subarctic Finland. Fenn. J. Geogr. 185, 89–105 (2007).
    Google Scholar 
    Turetsky, M. R. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106, 395–409 (2003).Article 

    Google Scholar  More

  • in

    Seedling ectomycorrhization is central to conifer forest restoration: a case study from Kashmir Himalaya

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 4, 599–610 (2018).Article 

    Google Scholar 
    Verdone, M. & Seidl, A. Time, space, place, and the Bonn Challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).Article 

    Google Scholar 
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanturf, J. A., Palik, B. J. & Dumroese, R. K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 331, 292–323 (2014).Article 

    Google Scholar 
    Wang, J. et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 493, 119243 (2021).Article 

    Google Scholar 
    Han, A. R., Kim, H. J., Jung, J. B. & Park, P. S. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. For. Ecol. Manag. 429, 579–588 (2018).Article 

    Google Scholar 
    Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).Article 

    Google Scholar 
    Hawkins, B. J., Jones, M. D. & Kranabetter, J. M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 46, 747–771 (2015).Article 

    Google Scholar 
    Perry, D. A., Molina, R. & Amaranthus, M. P. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987).Article 

    Google Scholar 
    Duñabeitia, M. K. et al. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14, 11–18 (2004).PubMed 
    Article 

    Google Scholar 
    Rincón, A., De Felipe, M. R. & Fernández-Pascual, M. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18, 23–32 (2007).PubMed 
    Article 

    Google Scholar 
    Sanchez-Zabala, J. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For. Ecol. Manag. 320, 50–55 (2014).Article 

    Google Scholar 
    Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. & Bhatnagar, J. M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article 

    Google Scholar 
    Jones, M. D., Durall, D. M. & Cairney, J. W. G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157, 399–422 (2003).PubMed 
    Article 

    Google Scholar 
    Policelli, N., Bruns, T. D., Vilgalys, R. & Nuñez, M. A. Suilloid fungi as global drivers of pine invasions. New Phytol. 222, 714–725 (2019).PubMed 
    Article 

    Google Scholar 
    Visser, S. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129, 389–401 (1995).Article 

    Google Scholar 
    Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders pinaceae invasions. Ecology 90, 2352–2359 (2009).PubMed 
    Article 

    Google Scholar 
    Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 130, 173–183 (2020).Article 

    Google Scholar 
    Grossnickle, S. C. & Reid, C. P. P. The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Can. J. For. Res. 12, 354–361 (1982).Article 

    Google Scholar 
    Teste, F. P., Schmidt, M. G., Berch, S. M., Bulmer, C. & Egger, K. N. Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can. J. For. Res. 34, 2074–2088 (2004).Article 

    Google Scholar 
    Trappe, J. M. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15, 203–222 (1977).Article 

    Google Scholar 
    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Finlay, R. D., Frostegård, Å. & Sonnerfeldt, A. M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl ex. Loud. New Phytol. 120, 105–115 (1992).Article 

    Google Scholar 
    Keller, G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989–998 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Hatakeyama, T. & Ohmasa, M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45, 169–176 (2004).CAS 
    Article 

    Google Scholar 
    Itoo, Z. A. & Reshi, Z. A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomycorrhizal fungi under in-vitro conditions. Scand. J. For. Res. 29, 619–628 (2014).Article 

    Google Scholar 
    Lazarević, J., Stojičić, D. & Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 25, 3 (2016).
    Google Scholar 
    Valdés, R. C., Villarreal, R. M., García, F. G., Morales, S. G. & Peña, S. S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 81, 23–30 (2019).Article 

    Google Scholar 
    Daza, A. et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.: Fr.) Pers. Mycorrhiza 16, 133–136 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wani, A. A., Joshi, P. K., Singh, O. & Shafi, S. Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. J. Mt. Sci. 13, 1431–1441 (2016).Article 

    Google Scholar 
    Chung, H. C., Kim, D. H. & Lee, S. S. Mycorrhizal formations and seedling growth of Pinus desiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30, 70–75 (2002).Article 

    Google Scholar 
    Barroetaveña, C., Cázares, E. & Rajchenberg, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: A comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17, 355–373 (2007).PubMed 
    Article 

    Google Scholar 
    Ekwebelam, S. A. Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var. bahamensis seedlings. E. Afr. Agric. For. J. 45, 290–295 (1980).
    Google Scholar 
    Kasuya, M. C. M. & Igarashi, T. In vitro ectomycorrhizal formation in Picea glehnii seedlings. Mycorrhiza 6, 451–454 (1996).Article 

    Google Scholar 
    Wang, E. J., Jeon, S. M., Jang, Y. & Ka, K. H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 44, 166–170 (2016).CAS 

    Google Scholar 
    Dar, A. R. & Dar, G. H. Taxonomic appraisal of conifers of Kashmir Himalaya. Pak. J. Biol. Sci. 9, 859–867 (2006).Article 

    Google Scholar 
    Adeleke, R. A., Nunthkumar, B., Roopnarain, A. & Obi, L. Applications of plant-microbe interactions in agro-ecosystems. In Microbiome in Plant Health and Disease 1–34 (Springer, 2019).
    Google Scholar 
    Yamanaka, T. Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol. Res. 103, 811–816 (1999).CAS 
    Article 

    Google Scholar 
    Berredjem, A., Garnier, A., Putra, D. P. & Botton, B. Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol. Res. 102, 427–434 (1998).CAS 
    Article 

    Google Scholar 
    Cairney, J. W. G. Intra-specific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135 (1999).Article 

    Google Scholar 
    France, R. C. & Reid, C. P. P. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb. Ecol. 10, 187–195 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kibar, B. & Peksen, A. Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom Tricholoma terreum. Zemdirb. Agric. 4, 409–414 (2011).
    Google Scholar 
    Nygren, C. M. R. et al. Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol. 180, 875–889 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rangel-Castro, I. J., Danell, E. & Taylor, A. F. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12, 131–137 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, M. L., Cripps, C. L. & Gains-Germain, L. Scorched Earth: Suillus colonization of Pinus albicaulis seedlings planted in wildfire-impacted soil affects seedling biomass, foliar nutrient content, and isotope signatures. Plant Soil 425, 113–131 (2018).CAS 
    Article 

    Google Scholar 
    Taudière, A., Richard, F. & Carcaillet, C. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457 (2017).Article 

    Google Scholar 
    Bigelow, H. E. & Smith, A. H. The status of Lepista: A new section of Clitocybe. Brittonia 21, 144–177 (1969).Article 

    Google Scholar 
    Kuo, M. Clitocybe Nuda. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/clitocybe_nuda.html (2010).Mycobank. www.mycobank.org. Accessed on Jan 28, 2020. (2020).Peck, C. H. Report of the Botanist 1869. Annu. Rep. N.Y. State Mus. Nat. Hist. 23, 27–135 (1873).
    Google Scholar 
    Kuo, M. Cortinarius Distans. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/cortinarius_distans.html (2011).Losinger, W. C. Germination and Growth of Some Ectomycorrhizal Basidiomycetes in Culture. Doctoral dissertation, Kalamazoo College (1980).Norvell, L. L. & Exeter, R. L. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs 89, 159–190 (2004).
    Google Scholar  More

  • in

    Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment

    Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115. https://doi.org/10.1038/nclimate1329 (2012).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. 115, 201713936. https://doi.org/10.1073/pnas.1713936115 (2018).CAS 
    Article 

    Google Scholar 
    Gigauri, K., Akhalkatsi, M., Abdaladze, O. & Nakhutsrishvili, G. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pak. J. Bot. 48, 1893–1902 (2016).
    Google Scholar 
    Gritsch, A., Dirnböck, T. & Dullinger, S. Recent changes in alpine vegetation differ among plant communities. J. Veg. Sci. 27, 1177–1186. https://doi.org/10.1111/jvs.12447 (2016).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625. https://doi.org/10.1111/j.1654-1103.2012.01391.x (2012).Article 

    Google Scholar 
    Grytnes, J. A. et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884. https://doi.org/10.1111/geb.12170 (2014).Article 

    Google Scholar 
    Johnson, D. R., Ebert-May, D., Webber, P. J. & Tweedie, C. E. Forecasting alpine vegetation change using repeat sampling and a novel modeling approach. Ambio 40, 693. https://doi.org/10.1007/s13280-011-0175-z (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amagai, Y., Kudo, G. & Sato, K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 21, 561–571. https://doi.org/10.1111/avsc.12387 (2018).Article 

    Google Scholar 
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327. https://doi.org/10.1126/science.1199040 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol. 17, 2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x (2011).ADS 
    Article 

    Google Scholar 
    Matteodo, M., Ammann, K., Verrecchia, E. P. & Vittoz, P. Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecol. Evol. 6, 6969–6982. https://doi.org/10.1002/ece3.2354 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. 106, 19637–19643. https://doi.org/10.1073/pnas.0901562106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cuesta, F. et al. Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. J. Biogeogr. 47, 408–420. https://doi.org/10.1111/jbi.13759 (2020).Article 

    Google Scholar 
    Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R. & Singh, C. P. Assessment of alpine summit flora in Kashmir Himalaya and its implications for long-term monitoring of climate change impacts. J. Mt. Sci. 17, 1974–1988. https://doi.org/10.1007/s11629-019-5924-7 (2020).Article 

    Google Scholar 
    Steinbauer, K., Lamprecht, A., Semenchuk, P., Winkler, M. & Pauli, H. Dieback and expansions: Species-specific responses during 20 years of amplified warming in the high Alps. Alpine Bot. 130, 1–11. https://doi.org/10.1007/s00035-019-00230-6 (2019).Article 

    Google Scholar 
    Noroozi, J. et al. Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345. https://doi.org/10.1038/s41598-018-28504-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Global Ecol. Biogeogr. 30, 12181–12231. https://doi.org/10.1111/geb.13297 (2021).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 1. Plant ecology at high elevations, 1–22 (Springer, 2021).Smith, J. G., Sconiers, W., Spasojevic, M. J., Ashton, I. W. & Suding, K. N. Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct. Antarct. Alp. Res. 44, 135–142. https://doi.org/10.1657/1938-4246-44.1.135 (2012).Article 

    Google Scholar 
    Körner, C. Alpine Plant Life. (Springer, 2021).Pauli, H. et al. The GLORIA field manual–standard Multi-Summit approach, supplementary methods and extra approaches. 5th edn, (GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, 2015).Kuo, C.-C., Su, Y., Liu, H.-Y. & Lin, C.-T. Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. Plant Ecol. 222, 933–951. https://doi.org/10.1007/s11258-021-01152-2 (2021).Article 

    Google Scholar 
    Suonan, J., Classen, A. T., Zhang, Z. & He, J. S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct. Ecol. 31, 2147–2156. https://doi.org/10.1111/1365-2435.12909 (2017).Article 

    Google Scholar 
    Lamprecht, A. et al. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Bot. 131, 27–39. https://doi.org/10.1007/s00035-021-00246-x (2021).Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopold. 92, 61–83 (2005).
    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327. https://doi.org/10.1073/pnas.0810306106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, S.-F. Historical biogeography of the flora of Taiwan. J. Natl. Taiwan Museum 64, 33–63. https://doi.org/10.1111/j.1756-1051.1995.tb02123.x (2011).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    TCCIP. The past and future of climate in Taiwan. 1–31 (National Science and Technology Center for Disaster Reduction & Research Center for Environmental Change, Academia Sinica, New Taipei City, 2018).Central Weather Bureau. in The Typhoon Database (ed Central Weather Bureau;) (https://rdc28.cwb.gov.tw/TDB/, 2021).Henny, L., Thorncroft, C. D., Hsu, H.-H. & Bosart, L. F. Extreme rainfall in Taiwan: Seasonal statistics and trends. J. Climate https://doi.org/10.1175/jcli-d-20-0999.1 (2021).Article 

    Google Scholar 
    Tu, J.-Y. & Chou, C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events. Environ. Res. Lett. 8, 014023. https://doi.org/10.1088/1748-9326/8/1/014023 (2013).ADS 
    Article 

    Google Scholar 
    Liang, A., Oey, L., Huang, S. & Chou, S. Long-term trends of typhoon-induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades. J. Geophys. Res. Atmos. 122, 2750–2765. https://doi.org/10.1002/2017jd026446 (2017).ADS 
    Article 

    Google Scholar 
    Lee, Y.-C., Wang, C.-C., Weng, S.-P., Chen, C.-T. & Cheng, C.-T. Future projections of meteorological drought characteristics in Taiwan. Atmos. Sci. https://doi.org/10.3966/025400022019034701003 (2019).Article 

    Google Scholar 
    Kudo, G., Kawai, Y., Amagai, Y. & Winkler, D. E. Degradation and recovery of an alpine plant community: Experimental removal of an encroaching dwarf bamboo. Alpine Bot. 127, 75–83. https://doi.org/10.1007/s00035-016-0178-2 (2017).Article 

    Google Scholar 
    Richman, S. K., Levine, J. M., Stefan, L. & Johnson, C. A. Asynchronous range shifts drive alpine plant–pollinator interactions and reduce plant fitness. Global Change Biol. 26, 3052–3064. https://doi.org/10.1111/gcb.15041 (2020).ADS 
    Article 

    Google Scholar 
    Spasojevic, M. J., Bowman, W. D., Humphries, H. C., Seastedt, T. R. & Suding, K. N. Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4, 1–18. https://doi.org/10.1890/es13-00133.1 (2013).Article 

    Google Scholar 
    Rogora, M. et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci. Total Environ. 624, 1429–1442. https://doi.org/10.1016/j.scitotenv.2017.12.155 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Malanson, G. P., Resler, L. M., Butler, D. R. & Fagre, D. B. Mountain plant communities: Uncertain sentinels? Prog. Phys. Geogr. Earth Environ. 43, 521–543. https://doi.org/10.1177/0309133319843873 (2019).Article 

    Google Scholar 
    Berauer, B. J. et al. Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arct Antarct. Alp. Res. 51, 215–231. https://doi.org/10.1080/15230430.2019.1618116 (2019).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 9. Water relations, 333–383 (Springer, 2021).Cai, Y. et al. Photosynthetic response of an alpine plant, rhododendron delavayi Franch, to water stress and recovery: The role of Mesophyll conductance. Front. Plant Sci. 6, 1089. https://doi.org/10.3389/fpls.2015.01089 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. in Sustainable Agriculture (eds E. Lichtfouse et al.) 153–188 (Springer, 2009).Greenwood, S., Chen, J. C., Chen, C. T. & Jump, A. S. Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. J. Veg. Sci. 26, 711–721. https://doi.org/10.1111/jvs.12269 (2015).Article 

    Google Scholar 
    Morley, P. J., Donoghue, D. N. M., Chen, J. C. & Jump, A. S. Montane forest expansion at high elevations drives rapid reduction in non-forest area, despite no change in mean forest elevation. J. Biogeogr. 47, 2405–2416. https://doi.org/10.1111/jbi.13951 (2020).Article 

    Google Scholar 
    Salick, J., Ghimire, S. K., Fang, Z., Dema, S. & Konchar, K. M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 34, 276–293. https://doi.org/10.2993/0278-0771-34.3.276 (2014).Article 

    Google Scholar 
    Winkler, M. et al. The rich sides of mountain summits–a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43, 2261–2273. https://doi.org/10.1111/jbi.12835 (2016).Article 

    Google Scholar 
    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83. https://doi.org/10.1093/biosci/biw150 (2016).Article 
    PubMed 

    Google Scholar 
    Ganjurjav, H. et al. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Sci. Rep. 6, 1–10. https://doi.org/10.1038/srep23356 (2016).CAS 
    Article 

    Google Scholar 
    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Huang, T.-J. & Chou, C.-H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210. https://doi.org/10.1111/j.1600-0587.2011.06984.x (2012).Article 

    Google Scholar 
    Cowles, J., Boldgiv, B., Liancourt, P., Petraitis, P. S. & Casper, B. B. Effects of increased temperature on plant communities depend on landscape location and precipitation. Ecol. Evol. 8, 5267–5278. https://doi.org/10.1002/ece3.3995 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arct. Antarct. Alp. Res. 51, 201–214. https://doi.org/10.1080/15230430.2019.1618148 (2019).Article 

    Google Scholar 
    Shao, K.-T. Taiwan’s biodiversity research achievements over the past 10 years (2001–2011). Biodivers. Sci. https://doi.org/10.3724/sp.j.1003.2012.06123 (2012).Article 

    Google Scholar 
    Chen, J.-M., Lu, F.-C., Kuo, S.-L. & Shih, C.-F. Summer climate variability in Taiwan and associated large-scale processes. J. Meteorol. Soc. Japan 83, 499–516. https://doi.org/10.2151/jmsj.83.499 (2005).ADS 
    Article 

    Google Scholar 
    Chen, T.-C., Wang, S.-Y., Huang, W.-R. & Yen, M.-C. Variation of the East Asian summer monsoon rainfall. J. Climate 17, 744–762. https://doi.org/10.1175/1520-0442(2004)017%3c0744:voteas%3e2.0.co;2 (2004).ADS 
    Article 

    Google Scholar 
    Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. https://doi.org/10.2307/210739 (1948).Article 

    Google Scholar 
    Kambach, S. et al. Of niches and distributions: Range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 42, 467–477. https://doi.org/10.1111/ecog.03495 (2019).Article 

    Google Scholar 
    Luna, B. & Moreno, J. M. Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol. 210, 85–95. https://doi.org/10.1007/s11258-010-9740-y (2010).Article 

    Google Scholar 
    Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geog. 34, 3–22. https://doi.org/10.1177/0309133309355630 (2010).Article 

    Google Scholar 
    Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307. https://doi.org/10.1038/s41597-021-01084-6 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welham, S. J., Gezan, S. A., Clark, S. J. & Mead, A. Statistical Methods in Biology: Design and Analysis of Experiments and Regression. (Chapman and Hall/CRC, 2014).R: A Language and Environment for Statistical Computing v. 4.0.3 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023. https://doi.org/10.1002/joc.3887 (2014).Article 

    Google Scholar 
    rgbif: Interface to the Global Biodiversity Information Facility API v. 3.7.1 (2022). More

  • in

    Vertically migrating phytoplankton fuel high oceanic primary production

    Westberry, T., Behrenfeld, M., Siegel, D. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22 (2008).Richardson, K. & Bendtsen, J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar. Ecol. Prog. Ser. 620, 33–46 (2019).CAS 

    Google Scholar 
    Oschlies, A. in Ocean Modeling in an Eddying Regime (eds Hecht, M. W. & Hasumi, H.) 115–130 (AGU, 2008).Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).CAS 

    Google Scholar 
    Johnson, K. S., Riser, S. C. & Karl, D. M. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465, 1062–1065 (2010).CAS 

    Google Scholar 
    Fawcett, S. E., Lomas, M. W., Casey, J. R., Ward, B. B. & Sigman, D. M. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4, 717–722 (2011).CAS 

    Google Scholar 
    Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G. & Capone, D. G. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl Acad. Sci. USA 113, 4398–4403 (2016).CAS 

    Google Scholar 
    Böttjer, D. et al. Temporal variability of nitrogen fixation and particulate nitrogen export at station ALOHA. Limnol. Oceanogr. 62, 200–216 (2017).
    Google Scholar 
    Gruber, N., Keeling, C. D. & Stocker, T. F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep Sea Res. 1 45, 673–717 (1998).CAS 

    Google Scholar 
    Doney, S. C., Glover, D. M. & Najjar, R. G. A new coupled, one-dimensional biological–physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 43, 591–624 (1996).CAS 

    Google Scholar 
    Ascani, F. et al. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep Sea Res 2 93, 119–134 (2013).CAS 

    Google Scholar 
    Gran, H. H. in Rapport Vol. 56, 1–112 (Bureau du Conseil permanent international pour l’exploration de la mer, 1929).Hasle, G. R. Phototactic vertical migration in marine dinoflagellates. Oikos 2, 162–175 (1950).
    Google Scholar 
    Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).CAS 

    Google Scholar 
    Villareal, T. & Carpenter, E. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).CAS 

    Google Scholar 
    Wirtz, K. & Smith, S. L. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci. Rep. 10, 1142 (2020).CAS 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).CAS 

    Google Scholar 
    Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205–211 (2019).CAS 

    Google Scholar 
    Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F. & Winn, C. D. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J. et al.) 219–237 (Springer, 1992).Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).
    Google Scholar 
    Masuda, Y. et al. Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean. Commun. Earth Environ. 2, 1–8 (2021).
    Google Scholar 
    Anugerahanti, P., Kerimoglu, O. & Smith, S. L. Enhancing ocean biogeochemical models with phytoplankton variable composition. Front. Mar. Sci. 8, 675428 (2021).
    Google Scholar 
    Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G. & Zubkov, M. V. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res. 1 53, 1616–1634 (2006).
    Google Scholar 
    Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Glob. Biogeochem. Cycles 35, e2020GB006759 (2021).CAS 

    Google Scholar 
    Li, Q. P., Wang, Y., Dong, Y. & Gan, J. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120, 3913–3936 (2015).
    Google Scholar 
    Latif, S., Ayub, Z. & Siddiqui, G. Seasonal variability of phytoplankton in a coastal lagoon and adjacent open sea in Pakistan. Turk. J. Botany 37, 398–410 (2013).CAS 

    Google Scholar 
    Liang, Y. et al. Nutrient-limitation induced diatom–dinoflagellate shift of spring phytoplankton community in an offshore shellfish farming area. Mar. Pollut. Bull. 141, 1–8 (2019).CAS 

    Google Scholar 
    Rahlff, J. et al. Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 658, 59–74 (2021).CAS 

    Google Scholar 
    Kahru, M., Savchuk, O. & Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15–23 (2007).
    Google Scholar 
    Klais, R., Tamminen, T., Kremp, A., Spilling, K. & Olli, K. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6, e21567 (2011).CAS 

    Google Scholar 
    Klais, R., Norros, V., Lehtinen, S., Tamminen, T. & Olli, K. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31, 760–767 (2017).
    Google Scholar 
    Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).
    Google Scholar 
    Mignot, A. et al. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a bio-argo float investigation. Glob. Biogeochem. Cycles 28, 856–876 (2014).CAS 

    Google Scholar 
    Chen, B., Smith, S. L. & Wirtz, K. W. Effect of phytoplankton size diversity on primary productivity in the North Pacific: trait distributions under environmental variability. Ecol. Lett. 22, 56–66 (2019).
    Google Scholar 
    Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).
    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Mod. Earth Sys. 5, 572–597 (2013).
    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
    Google Scholar 
    Gliwicz, M. Z. Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–748 (1986).
    Google Scholar 
    Huettel, M., Forster, S., Kloser, S. & Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62, 1863–1872 (1996).CAS 

    Google Scholar 
    Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W. & Watson, S. W. A cyanobacterium capable of swimming motility. Science 230, 74–76 (1985).CAS 

    Google Scholar 
    McCarren, J. et al. Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J. Bacteriol. 187, 224–230 (2005).CAS 

    Google Scholar 
    Eppley, R. W., Holm-Hansen, O. & Strickland, J. D. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4, 333–340 (1968).CAS 

    Google Scholar 
    Sengupta, A., Carrara, F. & Stocker, R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543, 555–558 (2017).CAS 

    Google Scholar 
    Waite, A., Fisher, A., Thompson, P. & Harrison, P. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).
    Google Scholar 
    Throndsen, J. Motility in some marine nanoplankton flagellates. Nor. J. Zool. 21, 193–200 (1973).
    Google Scholar 
    Gittleson, S. M., Hotchkiss, S. K. & Valencia, F. G. Locomotion in the marine dinoflagellate Amphidinium carterae (Hulburt). Trans. Am. Microsc. Soc. 93, 101–105 (1974).Barsanti, L. et al. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae). J. Phycol. 52, 209–218 (2016).
    Google Scholar 
    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).
    Google Scholar 
    Eppley, R. W., Holmes, R. W. & Strickland, J. D. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1, 191–208 (1967).
    Google Scholar 
    Bienfang, P. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61, 69–77 (1980).
    Google Scholar 
    Lisicki, M., Rodrigues, M. F. V., Goldstein, R. E. & Lauga, E. Swimming eukaryotic microorganisms exhibit a universal speed distribution. Elife 8, e44907 (2019).CAS 

    Google Scholar 
    Moore, J. & Villareal, T. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Mar. Ecol. Prog. Ser. 132 (1996).Hawaii Ocean Time-series (HOT) (School of Ocean and Earth Science and Technology at the University of Hawai’i, 2020); http://hahana.soest.hawaii.edu/hot/hot-dogsBermuda Atlantic Time-Series (BATS) (Bermuda Institure of Ocean Sciences, 2020); http://bats.bios.eduThe Japanese 55-Year Reanalysis (JRA-55) (Japan Meteorological Agency, 2020); http://jra.kishou.go.jp/JRA-55Ridgway, K., Dunn, J. & Wilkin, J. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Google Scholar 
    CSIRO Atlas of Regional Seas (CARS) (CSIRO, 2009); http://www.marine.csiro.au/~dunn/cars2009Ocean Colour (ESA-CCI, 2020); http://www.esa-oceancolour-cci.orgCloud (ESA-CCI, 2020); http://www.esa-cloud-cci.orgSea Surface Temperature (ESA-CCI, 2020); http://www.esa-sst-cci.orgRosati, A. & Miyakoda, K. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18, 1601–1626 (1988).
    Google Scholar 
    Ralston, D. K., McGillicuddy, D. J. & Townsend, D. W. Asynchronous vertical migration and bimodal distribution of motile phytoplankton. J. Plankton Res. 29, 803–821 (2007).
    Google Scholar 
    Kamykowski, D. & Yamazaki, H. A study of metabolism-influenced orientation in the diel vertical migration of marine dinoflagellates. Limnol. Oceanogr. 42, 1189–1202 (1997).
    Google Scholar 
    Richardson, T. L., Cullen, J. J., Kelley, D. E. & Lewis, M. R. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankton Res. 20, 219–241 (1998).
    Google Scholar 
    Ross, O. N. & Sharples, J. Phytoplankton motility and the competition for nutrients in the thermocline. Mar. Ecol. Prog. Ser. 347, 21–38 (2007).CAS 

    Google Scholar 
    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Saba, V. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).CAS 

    Google Scholar 
    Bhattathiri, P., Devassy, V. & Radhakrishna, K. Primary production in the Bay of Bengal during southwest monsoon of 1978. Mahasagar Bull. Natl Inst. Oceanogr. 13, 315–323 (1980).
    Google Scholar 
    Sarupria, J. & Bhargava, R. Seasonal primary production in different sectors of the EEZ of India. Mahasagar Bull. Natl Inst. Oceanogr. 26, 139–147 (1993).
    Google Scholar 
    Jyothibabu, R. et al. Differential response of winter cooling on biological production in the northeastern Arabian Sea and northwestern Bay of Bengal. Curr. Sci. 87, 783–791 (2004).
    Google Scholar 
    Kumar, S. P. et al. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 98, 1331–1339 (2010).CAS 

    Google Scholar 
    Kumar, S. P. et al. Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Ind. J. Mar. Sci. 39, 388–405 (2010).CAS 

    Google Scholar 
    Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).CAS 

    Google Scholar  More

  • in

    Warmth signals male growth

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Fresh-marketable tomato yields enhanced by moderate weed control and suppressed fruit dehiscence with woodchip mulching

    Zangoueinejad, R. & Alebrahim, M. T. Use of conventional and innovative organic materials as alternatives to black plastic mulch to suppress weeds in tomato production. Biol. Agric. Hortic. 37, 267–284. https://doi.org/10.1080/01448765.2021.1947377 (2021).Article 

    Google Scholar 
    Biswas, S. K., Akanda, A. R., Rahman, M. S. & Hossain, M. A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 61, 97–102. https://doi.org/10.17221/804/2014-PSE (2015).Article 

    Google Scholar 
    Haapala, T., Palonen, P., Tamminen, A. & Ahokas, J. Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agric. Food Sci. 24, 52–58. https://doi.org/10.23986/afsci.47220 (2015).CAS 
    Article 

    Google Scholar 
    Shiukhy, S., Raeini-Sarjaz, M. & Chalavi, V. Colored plastic mulch microclimates affect strawberry fruit yield and quality. Int. J. Biometeorol. 59, 1061–1066. https://doi.org/10.1007/s00484-014-0919-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Sideman, R. G. Performance of sweetpotato cultivars grown using biodegradable black plastic mulch in New Hampshire. HortTechnology 25, 412–416. https://doi.org/10.21273/HORTTECH.25.3.412 (2015).Article 

    Google Scholar 
    Ferdous, Z., Datta, A. & Anwar, M. Plastic mulch and indigenous microorganism effects on yield and yield components of cauliflower and tomato in inland and coastal regions of Bangladesh. J. Crop Improv. 31, 261–279. https://doi.org/10.1080/15427528.2017.1293578 (2017).Article 

    Google Scholar 
    Lament, W. J. Jr. Plastic mulches for the production of vegetable crops. HortTechnology 3, 35–39. https://doi.org/10.21273/HORTTECH.3.1.35 (1993).Article 

    Google Scholar 
    Abdul-Baki, A. A., Teasdale, J. R., Goth, R. W. & Haynes, K. G. Marketable yields of fresh-market tomatoes grown in plastic and hairy vetch mulches. HortScience 37, 878–881. https://doi.org/10.21273/HORTSCI.37.6.878 (2002).Article 

    Google Scholar 
    Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25, 239–249. https://doi.org/10.24266/0738-2898-25.4.239 (2007).Article 

    Google Scholar 
    Kasirajan, S. & Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 32, 501–529. https://doi.org/10.1007/s13593-011-0068-3 (2012).CAS 
    Article 

    Google Scholar 
    Iqbal, R. et al. Potential agricultural and environmental benefit of mulches—A review. Bull. Natl. Res. Cent. 44, 752020. https://doi.org/10.1186/s42269-020-00290-3 (2020).Article 

    Google Scholar 
    Travlos, I. et al. Efficacy of different herbicides on Echinocholoa colona (L.) Link control and the first case of its glyphosate resistance in Greece. Agronomy 10, 1056. https://doi.org/10.3390/agronomy10071056 (2000).CAS 
    Article 

    Google Scholar 
    Travlos, I. S. & Chachalis, D. Glyphsate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24, 569–573. https://doi.org/10.1614/WT-D-09-00080.1 (2010).CAS 
    Article 

    Google Scholar 
    Tahmasebi, B. K. et al. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 112, 350–355. https://doi.org/10.1016/j.cropro.2018.06.021 (2018).CAS 
    Article 

    Google Scholar 
    Kanatas, P., Anthonopoulos, N., Gazoulis, I. & Travlos, I. S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 69, 704–718. https://doi.org/10.1017/wsc.2021.55 (2021).Article 

    Google Scholar 
    Anthonopoulos, N. et al. Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agric. Technol. 3, 1000063. https://doi.org/10.1016/j.atech.2022.100063 (2023).Article 

    Google Scholar 
    Espí, E., Salmerón, A., Fontecha, A., García, Y. & Real, A. I. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–102. https://doi.org/10.1177/8756087906064220 (2006).CAS 
    Article 

    Google Scholar 
    Li, C. et al. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. https://doi.org/10.1016/j.apsoil.2014.02.012 (2014).ADS 
    Article 

    Google Scholar 
    van Sebille, E. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006. https://doi.org/10.1088/1748-9326/10/12/124006 (2015).ADS 
    Article 

    Google Scholar 
    Moreno, M. M., Cirujeda, A., Aibar, J. & Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.). Crop. Soil Res. 54, 207–215. https://doi.org/10.1071/SR15065 (2016).Article 

    Google Scholar 
    Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108, 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lim, X. Microplastics are everywhere—But are they harmful?. Nature 593, 22–25. https://doi.org/10.1038/d41586-021-01143-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cardinael, Ŕ, Cadisch, G., Gosme, M., Oelbermann, M. & van Noordwik, M. Climate change mitigation and adaptation agriculture: Why agroforestry should be part of the solution. Agric. Ecosyst. Environ. 319, 107555. https://doi.org/10.1016/j.agee.2021.107555 (2021).Article 

    Google Scholar 
    Ji, S. & Unger, P. W. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci. Soc. Am. J. 65, 442–448. https://doi.org/10.2136/sssaj2001.652442x (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmithals, A. & Kühn, N. To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings. PLoS ONE 12, e0171533. https://doi.org/10.1371/journal.pone.0171533 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 51, 239–248. https://doi.org/10.1023/A:1009701323580 (1998).Article 

    Google Scholar 
    Cline, G. R. & Silvernail, A. F. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. HortTechnology 11, 219–225. https://doi.org/10.21273/HORTTECH.11.2.219 (2001).CAS 
    Article 

    Google Scholar 
    Cherr, C. M., Scholberg, J. M. S. & McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 98, 302–319. https://doi.org/10.2134/agronj2005.0035 (2006).Article 

    Google Scholar 
    Nguyen, L. T. T., Ortner, K. A., Tiemann, L. K., Renner, K. A. & Kravchenko, A. N. Soil properties after one year of interseeded cover cropping in topographically diverse agricultural landscape. Agric. Ecosyst. Environ. 326, 107803. https://doi.org/10.1016/j.agee.2021.107803 (2021).CAS 
    Article 

    Google Scholar 
    Breton, V., Crosaz, Y. & Rey, F. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France). Solid Earth 7, 599–610. https://doi.org/10.5194/se-2016-11 (2016).ADS 
    Article 

    Google Scholar 
    Wang, L., Gruber, S. & Claupein, W. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Res. 52, 161–168. https://doi.org/10.1111/j.1365-3180.2012.00905.x (2012).Article 

    Google Scholar 
    Jabran, K. Use of mulches for managing field bindweed and purple nutsedge, and weed control in spinach. Int. J. Agric. Biol. 23, 1114–1120. https://doi.org/10.17957/IJAB/15.1394 (2020).CAS 
    Article 

    Google Scholar 
    Keeley, J. E., Morton, B. A., Pedrosa, A. & Trotter, P. Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73, 445–458. https://doi.org/10.2307/2260486 (1985).Article 

    Google Scholar 
    Schumann, A. W., Little, K. M. & Eccles, N. S. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12, 170–172. https://doi.org/10.1080/02571862.1995.10634359 (1995).Article 

    Google Scholar 
    Rathinasabapathi, B., Ferguson, J. & Gal, M. Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. HortScience 40, 711–713. https://doi.org/10.21273/HORTSCI.40.3.711 (2005).Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1142/q0088 (2014).Article 

    Google Scholar 
    Rahmathulla, V. K. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: A review. Psyche J. Entomol. 2012, 121234. https://doi.org/10.1155/2012/121234 (2012).Article 

    Google Scholar 
    Guttikunda, S. K. & Kopakka, R. V. Source emissions and health impacts of urban air pollution in Hyderadad, India. Air Qual. Atmos. Health 7, 195–207. https://doi.org/10.1007/s11869-013-0221-z (2014).CAS 
    Article 

    Google Scholar 
    Dhaka, S. K. et al. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Sci. Rep. 10, 13442. https://doi.org/10.1038/s41598-020-70179-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ehret, D. L., Helmer, T. & Hall, J. W. Cuticle cracking in tomato fruit. J. Hortic. Sci. 68, 195–201. https://doi.org/10.1080/00221589.1993.11516343 (1993).Article 

    Google Scholar 
    Peet, M. M. & Willits, D. H. Role of excess water in tomato fruit cracking. Hortic. Sci. 30, 65–68. https://doi.org/10.21273/HORTSCI.30.1.65 (1995).Article 

    Google Scholar 
    Ikeda, T., Sakamoto, Y., Watanabe, S. & Okano, K. Water relations in fruit cracking of single-truss tomato plants. Environ. Control Biol. 37, 153–158. https://doi.org/10.2525/ecb1963.37.153 (1999).Article 

    Google Scholar 
    Uetani, M., Fujitani, S. & Kimura, M. Mitigation techniques on fruit cracking in tomato cultivation under rain shelter in summer and autumn. Bull. Oita Pref Agr. For. Fish. Res. Cent. 4, 11–25 (2014) (in Japanese with English summary).
    Google Scholar 
    Kuhns, L. J. Efficacy and phytotoxicity of three landscape herbicides with and without a light mulch. Proc. Northeast. Weed Sci. Soc. 46, 85–89 (1992).
    Google Scholar 
    Petrikovszki, R., Zalai, M., Bogdányi, F. T. & Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil weed seed bank of tomato. Plants 9, 66. https://doi.org/10.3390/plants9010066 (2020).Article 
    PubMed Central 

    Google Scholar 
    Egley, G. H. Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci. 31, 404–409. https://doi.org/10.1017/S0043174500069253 (1983).Article 

    Google Scholar 
    Ashworth, S. & Harrison, H. Evaluation of mulches for use in the home garden. HortScience 18, 180–182 (1983).
    Google Scholar 
    Chakrabory, R. C. & Sadhu, M. K. Effect of mulch type and colour on growth and yield of tomato (Lycopersicon esculentum). Indian J. Agric. Sci. 64, 608–612 (1994).
    Google Scholar 
    Bhella, H. S. Tomato response to trickle irrigation and black polyethylene mulch. J. Am. Soc. Hortic. Sci. 113, 543–546 (1988).
    Google Scholar 
    Garnaud, J. C. The Intensification of Horticultural Crop Production in the Mediterranean Basin by Protected Cultivation (FAO of the United Nations, 1974).
    Google Scholar 
    Ahmad, S. et al. Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J. Anim. Plant Sci. 30, 154–162. https://doi.org/10.36899/japs.2020.1.0018 (2020).Article 

    Google Scholar 
    Ahmad, S. et al. Mulching strategies for weeds control and water conservation in cotton. ARPN J. Agric. Biol. Sci. 10, 299–306 (2015).
    Google Scholar 
    Hartwing, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50, 688–699. https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Samedani, B., Ranjbar, M., Rahimian, H. & Jahansoz, M. R. Utilization of rye and hairy vetch cover crops for weed control in transplanted tomato. Pak. J. Biol. Sci. 9, 2323–2327. https://doi.org/10.3923/pjbs.2006.2323.2327 (2006).Article 

    Google Scholar 
    Pickering, J. S. & Shepherd, A. Evaluation of organic landscape mulches: composition and nutrient releases characteristics. Arboric J. 24, 175–187. https://doi.org/10.1080/03071375.2000.9747271 (2000).Article 

    Google Scholar 
    Marí, A. I., Pardo, G., Aibar, J. & Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 263, 109111. https://doi.org/10.1016/j.scienta.2019.109111 (2020).CAS 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment of Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458. https://doi.org/10.1038/bmt.2012.244 (2013).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Impacts on tourism demand

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Selection on offspring size and contemporary evolution under ocean acidification

    Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).CAS 
    Article 

    Google Scholar 
    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).Article 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).Article 

    Google Scholar 
    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).Article 

    Google Scholar 
    Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).CAS 
    Article 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).Article 

    Google Scholar 
    Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).Article 

    Google Scholar 
    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).CAS 
    Article 

    Google Scholar 
    Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).CAS 
    Article 

    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).CAS 
    Article 

    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).CAS 
    Article 

    Google Scholar 
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).CAS 
    Article 

    Google Scholar 
    Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 
    Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).CAS 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).Article 

    Google Scholar 
    Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).Article 

    Google Scholar 
    Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).Article 

    Google Scholar 
    González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).Article 

    Google Scholar 
    Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).CAS 
    Article 

    Google Scholar 
    Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).Article 

    Google Scholar 
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).Article 

    Google Scholar 
    Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).Article 

    Google Scholar 
    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).Article 

    Google Scholar 
    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).CAS 
    Article 

    Google Scholar 
    Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).Article 
    CAS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).CAS 
    Article 

    Google Scholar 
    Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).Article 

    Google Scholar 
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).CAS 
    Article 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).Article 

    Google Scholar 
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).Article 

    Google Scholar 
    Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022) More