More stories

  • in

    Warm springs alter timing but not total growth of temperate deciduous trees

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Finzi, A. C. et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecol. Monogr. 90, e01423 (2020).Article 

    Google Scholar 
    Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol. 17, 886–897 (2011).Article 
    ADS 

    Google Scholar 
    Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric. For. Meteorol. 226–227, 246–256 (2016).Article 
    ADS 

    Google Scholar 
    Fu, Z. et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    Savage, J. A. & Chuine, I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytol. 230, 1700–1715 (2021).PubMed 
    Article 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Xue, B.-L. et al. Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochem. Cycles 31, 821–835 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 18, 566–584 (2012).Article 
    ADS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).Article 
    ADS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 
    ADS 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).Article 
    ADS 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707 (2008).Article 

    Google Scholar 
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. New Phytol. 231, 2174–2185 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumajer, J., Scharnweber, T., Smiljanic, M. & Wilmking, M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 233, 2429–2441 (2022).PubMed 
    Article 

    Google Scholar 
    Etzold, S. et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25, 427–439 (2022).PubMed 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zohner, C. M., Renner, S. S., Sebald, V. & Crowther, T. W. How changes in spring and autumn phenology translate into growth-experimental evidence of asymmetric effects. J. Ecol. 109, 2717–2728 (2021).Article 

    Google Scholar 
    Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helcoski, R. et al. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 223, 1204–1216 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evol. 5, 243–254 (2015).PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316 (2022).PubMed 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, J. C. & Conciatori, F. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can. J. For. Res. 36, 2317–2330 (2006).Article 

    Google Scholar 
    Roibu, C.-C. et al. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).Article 

    Google Scholar 
    Kern, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293, 257–267 (2013).Article 

    Google Scholar 
    Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 14C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).Article 
    ADS 

    Google Scholar 
    Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).Article 
    CAS 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Churkina, G., Schimel, D., Braswell, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).CAS 
    Article 
    ADS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).Article 
    ADS 

    Google Scholar 
    Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    Herrmann, V. et al. Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0169020 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. LAADS DAAC https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).Anderson-Teixeira, K. et al. Forestgeo/Climate: initial release. Zenodo https://doi.org/10.5281/ZENODO.4041609 (2020).Benestad, R. E., Hanssen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1964–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5DAA17222A738C105B9FA60C4 (2021).Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/69E92642B512897032446CFE795CFFB8 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).Article 

    Google Scholar 
    Gabry, J. et al. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Stan Development Team. Stan modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).Speer, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).Article 

    Google Scholar 
    Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7, e01454 (2016).Article 

    Google Scholar 
    Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProQuest (Columbia Univ., 2005).Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (Univ. Arizona, 1985).Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).Article 
    ADS 

    Google Scholar 
    Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).Article 

    Google Scholar  More

  • in

    Low phosphorus levels limit carbon capture by Amazonian forests

    Pan, Y. et al. Science 333, 988–993 (2011).PubMed 
    Article 

    Google Scholar 
    Bonan, G. B. Science 320, 1444–1449 (2008).PubMed 
    Article 

    Google Scholar 
    Craine, J. M. et al. Nature Ecol. Evol. 2, 1735–1744 (2018).PubMed 
    Article 

    Google Scholar 
    Cunha, H. F. V. et al. Nature 608, 558–562 (2022).Article 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Jr Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Ostertag, R. & DiManno, N. M. Front. Earth Sci. 4, 23 (2016).Article 

    Google Scholar 
    Wright, S. J. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Lugli, L. F. et al. New Phytol. 230, 116–128 (2021).PubMed 
    Article 

    Google Scholar 
    Muller-Landau, H. C. et al. New Phytol. 229, 3065–3087 (2021).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Earth Syst. Sci. Data 13, 5831–5846 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Arora, V. K. et al. Biogeosciences 17, 4173–4222 (2020).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
    Google Scholar  More

  • in

    Potential of microbiome-based solutions for agrifood systems

    German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, François Buscot, Antonis Chatzinotas, Narendrakumar M. Chaudhari, Anna Heintz-Buschart, Kirsten Küsel & Rine C. ReubenInstitute of Biology, Leipzig University, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, Antonis Chatzinotas & Rine C. ReubenDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, GermanyStephanie D. Jurburg, Antonis Chatzinotas, Rene Kallies, Susann Müller & Ulisses Nunes da RochaDepartment of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Halle, GermanyFrançois Buscot & Anna Heintz-BuschartAquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, GermanyNarendrakumar M. Chaudhari & Kirsten KüselSwammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the NetherlandsAnna Heintz-BuschartKellogg Biological Station, Michigan State University, Hickory Corners, MI, USAElena LitchmanEcology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USAElena LitchmanDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA, USAElena LitchmanHawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, AustraliaCatriona A. Macdonald & Brajesh K. SinghLeibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, GermanyGianni PanagiotouThe State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouDepartment of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouInstitut für Biologie, Freie Universität Berlin, Berlin, GermanyMatthias C. RilligBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyMatthias C. RilligGlobal Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, AustraliaBrajesh K. SinghB.K.S. conceived the idea in consultation with N.E. and S.J., and led the discussion which was attended by all authors. S.J. and B.K.S. wrote the manuscript and all contributed to refine it. More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More

  • in

    Global dataset of species-specific inland recreational fisheries harvest for consumption

    Arlinghaus, R., Tillner, R. & Bork, M. Explaining participation rates in recreational fishing across industrialised countries. Fisheries Management and Ecology 22, 45–55 (2015).Article 

    Google Scholar 
    Cooke, S. J. & Cowx, I. G. The Role of Recreational Fishing in Global Fish Crises. BioScience 54, 857 (2004).Article 

    Google Scholar 
    World Bank. Hidden harvest: The global contribution of capture fisheries (World Bank, Washington, DC), Report 66469-GLB (2012).Nyboer, E. A. et al. Overturning stereotypes: the fuzzy boundary between recreation and subsistence in inland fisheries. Fish and Fisheries https://doi.org/10.1111/faf.12688 (2022).Article 

    Google Scholar 
    Gupta, N. et al. Catch-and-release angling as a management tool for freshwater fish conservation in India. Oryx 50, 250–256 (2016).Article 

    Google Scholar 
    Bower, S. D. et al. Knowledge Gaps and Management Priorities for Recreational Fisheries in the Developing World. Reviews in Fisheries Science & Aquaculture 1–18, https://doi.org/10.1080/23308249.2020.1770689 (2020).FAO. The State of World Fisheries and Aquaculture – 2016 (SOFIA). Rome, Italy (2016).Golden, C. D. et al. Aquatic foods to nourish nations. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 
    PubMed 

    Google Scholar 
    Cooke, S. J. et al. The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries 19, 201–224 (2018).Article 

    Google Scholar 
    Joosse, S., Hensle, L., Boonstra, W. J., Ponzelar, C. & Olsson, J. Fishing in the city for food—a paradigmatic case of sustainability in urban blue space. npj Urban Sustain 1, 41, https://doi.org/10.1038/s42949-021-00043-9 (2021).Article 

    Google Scholar 
    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National Academy of Sciences 115, 7623–7628 (2018).CAS 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture – 2020 (SOFIA). Rome, Italy. (2020).IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.3831674 (2019).Arlinghaus, R. et al. Global Participation in and Public Attitudes Toward Recreational Fishing: International Perspectives and Developments. Reviews in Fisheries Science & Aquaculture 29, 58–95 (2021).Article 

    Google Scholar 
    Chan, N. “Large Ocean States”: Sovereignty, Small Islands, and Marine Protected Areas in Global Oceans Governance. Global Governance: A Review of Multilateralism and International Organizations 24, 537–555 (2018).Article 

    Google Scholar 
    Arlinghaus, R. & Cooke, S. J. Recreational Fisheries: Socioeconomic Importance, Conservation Issues and Management Challenges. in Recreational Hunting, Conservation and Rural Livelihoods (eds. Dickson, B., Hutton, J. & Adams, W. M.) 39–58, https://doi.org/10.1002/9781444303179.ch3 (Wiley-Blackwell, 2009).Arlinghaus, R. et al. Opinion: Governing the recreational dimension of global fisheries. Proceedings of the National Academy of Sciences 116, 5209–5213 (2019).CAS 
    Article 

    Google Scholar 
    Cisneros-Montemayor, A. M. & Sumaila, U. R. A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. Journal of Bioeconomics 12, 245–268 (2010).Article 

    Google Scholar 
    Czarkowski, T., Wołos, A. & Kapusta, A. Socio-economic portrait of Polish anglers and its implications for recreational fisheries management in freshwater bodies. Aquatic Living Resources 19, 14, https://doi.org/10.1051/alr/2021018 (2021).Article 

    Google Scholar 
    Dill, W. A. Inland Fisheries of Europe. Italy: Food and Agriculture Organization of the United Nations. (1993).Baigún, C., Oldani, N., Madirolas, A. & Colombo, G. A. Assessment of Fish Yield in Patagonian Lakes (Argentina): Development and Application of Empirical Models. Transactions of the American Fisheries Society 136, 846–857 (2007).Article 

    Google Scholar 
    Vigliano, P. H., Bechara, J., & Quiros, R. Allocation policies and its implications for recreational fisheries management in inland waters of Argentina. Sharing the Fish ‘06, 210 (2006).Henry, G. W., & Lyle, J. M. National recreational and indigenous fishing survey. (2003).Murphy J. J. et al. Survey of recreational fishing in NSW, 2019/20 – Key Results. Fisheries Final Report Series No. 161. Department of Primary Industries, New South Wales. 180 pp. (2022).Aas, Øystein, ed. Global challenges in recreational fisheries. (John Wiley & Sons, 2008).DoF. Yearbook of Fisheries Statistics of Bangladesh, 2017-18. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries. 35: p. 129 (2018).Mozumder, M., Uddin, M., Schneider, P., Islam, M. & Shamsuzzaman, M. Fisheries-Based Ecotourism in Bangladesh: Potentials and Challenges. Resources 7, 61 (2018).Article 

    Google Scholar 
    Craig, John F., ed. Freshwater fisheries ecology. (John Wiley & Sons, 2016).Barkhuizen, L. M., Weyl, O. L. F. & Van As, J. G. An assessment of recreational bank angling in the Free State Province, South Africa, using licence sale and tournament data. WSA 43, 442 (2017).Article 

    Google Scholar 
    Treer, T. & Kubatov, I. The co-existence of recreational and artisanal fisheries in the central parts of the Danube and Sava rivers. Croatian Journal of Fisheries 75(3), 116–127 (2017).
    Google Scholar 
    Freire, K. M. F., Machado, M. L. & Crepaldi, D. Overview of Inland Recreational Fisheries in Brazil. Fisheries 37, 484–494 (2012).Article 

    Google Scholar 
    Freire, K. M. F. et al. Brazilian recreational fisheries: current status, challenges and future direction. Fish Manag Ecol 23, 276–290, https://doi.org/10.1111/fme.12171 (2016).Article 

    Google Scholar 
    Fisheries and Oceans Canada. Survey of Recreational Fishing in Canada, 2015. 26 (2019).Arismendi, I. & Nahuelhual, L. Non-native Salmon and Trout Recreational Fishing in Lake Llanquihue, Southern Chile: Economic Benefits and Management Implications. Reviews in Fisheries Science 15, 311–325 (2007).Article 

    Google Scholar 
    Lyach, R., & Čech, M. Differences in fish harvest, fishing effort, and angling guard activities between urban and natural fishing grounds. Urban Ecosystems, 1–13 (2019).Lyach, R. The effect of fishing effort, fish stocking, and population density of overwintering cormorants on the harvest and recapture rates of three rheophilic fish species in central Europe. Fisheries Research 223, 105440 (2020).Article 

    Google Scholar 
    Lyach, R. The effect of a large-scale angling restriction in minimum angling size on harvest rates, recapture rates, and average body weight of harvested common carps Cyprinus carpio. Fisheries Research 223, 105438 (2020).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. Journal of Applied Ichthyology 35(5), 1094:1104 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Does harvest of the European grayling, Thymallus thymallus (Actinopterygii: Salmoniformes: Salmonidae), change over time with different intensity of fish stocking and fishing effort? Acta Ichthyol. Piscat. 50(1), 53–62 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. The effects of environmental factors and fisheries management on recreational catches of perch Perca fluviatilis in the Czech Republic. Aquatic Living Resources 32, 15, https://doi.org/10.1051/alr/2019013 (2019).Article 

    Google Scholar 
    Rasmussen, G. & Geertz‐Hansen, P. Fisheries management in inland and coastal waters in Denmark from 1987 to 1999. Fisheries Management and Ecology 8(4‐5), 311–322 (2001).
    Google Scholar 
    Armulik, T. & Sirp, S. Estonian Fishery 2018. (2019).Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries. FAO Fisheries and Aquaculture Circular No. 942, Rev. 2. Rome, FAO. 97 pp. (2011).West Greenland Commission, 2020 Report on the Salmon Fishery in Greenland. 8 (2020).Guðbergsson, G. Catch statistics for Atlantic salmon, Arctic char and brown trout in Icelandic rivers and lakes 2013. Institute of Freshwater Fisheries, Iceland Report VMST/14045 (2014).Inland Fisheries Ireland. Wild Salmon and Sea Trout Statistics Report. IFI/2020/1-4513 (2019).Vycius, J. & Radzevicius, A. Fishery and Fishculture Challenges in Lithuania. International Journal of Water Resources Development 25(1), 81–94, https://doi.org/10.1080/07900620802576240 (2009).Article 

    Google Scholar 
    Bacal, P., Jeleapov, A., Burduja, V. D., & Moroz, I. State and use of lakes from central region of the Republic of Moldova. Present Environment and Sustainable Development, (2), 141–156 (2019).Moroccan Ministry of Fisheries, Annual Report of Fisheries and Fish Farming in Inland Waters, Season 2020/2021 (2021).Centre for Fisheries Research. Recreational fisheries in the Netherlands: Analyses of the 2017 screening survey and the 2016–2017 logbook survey. CVO report: 18.025 (2019).Dedual, M. & Rohan, M. Long‐term trends in the catch characteristics of rainbow trout Oncorhynchus mykiss, in a self‐sustained recreational fishery, Tongariro River, New Zealand. Fisheries Management and Ecology 23(3-4), 234–242 (2016).Article 

    Google Scholar 
    Unwin, M.J. Angler usage of New Zealand lake and river fisheries. National Institute of Water and Atmospheric Research (2016).Ipinmoroti, M. O. & Ayanboye, O. Biological and socioeconomic viability of recreational fisheries of two Nigerian lakes. IIFET 2012 Tanzania Proceedings (2012).Amaral, S., Ferreira, M.T., Cravo, M.T. Resultado do ‘Inquérito aos Pescadores Desportivos de Áquas Intenores” realizado pela Direcção Geral das Florestas em 1998 a 1999. Pesca Desportivos em Albufeiras do Centro e Sul de Portugal: Contribuição para a reduçao da eutrofização. Instituto Superior de Agronomia. Autoridade Florestal Nacional. Lisboa: III.1-III.53. (2010).Povž, M., Šumer, S. & Leiner, S. Sport fishing catch as an indicator of population size of the Danube roach Rutilus pigus virgo in Slovenia (Cyprinidae). Italian Journal of Zoology 65(S1), 545–548 (1998).Article 

    Google Scholar 
    Embke, H. S., Beard, T. D., Lynch, A. J. & Vander Zanden, M. J. Fishing for Food: Quantifying Recreational Fisheries Harvest in Wisconsin Lakes. Fisheries fsh.10486, https://doi.org/10.1002/fsh.10486 (2020).Karimov, B. et al. Inland capture fisheries and aquaculture in the Republic of Uzbekistan: current status and planning. FAO Fisheries and Aquaculture Circular. No. 1030/1. Rome, FAO. 124 p. (2009).Magqina, T., Nhiwatiwa, T., Dalu, M. T., Mhlanga, L. & Dalu, T. Challenges and possible impacts of artisanal and recreational fisheries on tigerfish Hydrocynus vittatus Castelnau 1861 populations in Lake Kariba, Zimbabwe. Scientific African 10, e00613 (2020).Article 

    Google Scholar 
    Embke, H. S. Global dataset of species-specific inland recreational fisheries harvest for consumption. U.S. Geological Survey https://doi.org/10.5066/P9904C3R (2022).Amano, T., González-Varo, J. P. & Sutherland, W. J. Languages are still a major barrier to global science. PLoS biology 14(12), e2000933 (2016).Article 

    Google Scholar 
    Cooke, S. J. et al. Recreational fisheries in inland waters. In J. F. Craig (Ed.) Freshwater Fisheries Ecology. John Wiley and Sons Ltd. (2016). More

  • in

    A sustainable ocean for all

    Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Lisbon, PortugalCatarina Frazão SantosMARE–Marine and Environmental Sciences Center / ARNET–Aquatic Research Network, University of Lisbon, Lisbon, PortugalCatarina Frazão Santos & Carina Vieira da SilvaEnvironmental Economics Knowledge Center, NOVA-SBE, Carcavelos, PortugalCatarina Frazão Santos & Carina Vieira da SilvaSound Seas, Bethesda, MD, USATundi AgardyWorldFish, Batu Maung, Penang, MalaysiaEdward H. AllisonThe Peopled Seas Initiative, Vancouver, CanadaNathan J. BennettEqualSea Lab, University of Santiago de Compostela, A Coruña, SpainNathan J. Bennett & Sebastián VillasanteEnvironmental Sustainability Research Centre, Brock University, St. Catharines, ON, CanadaJessica L. BlytheMarine and Environmental Sciences Center, University of the Azores – FCT, Ponta Delgada, PortugalHelena CaladoHopkins Marine Station, Stanford University, Stanford, CA, USALarry B. Crowder & Elena GissiARC Centre of Excellence for Coral Reef Studies, Townsville, AustraliaJon C. DayQueen’s University Belfast, Belfast, Northern Ireland, UKWesley FlanneryNational Research Council, Institute of Marine Sciences, Venice, ItalyElena GissiInternational Union for Conservation of Nature and World Commission on Protected Areas, Cambridge, MA, USAKristina M. GjerdeMiddlebury Institute of International Studies at Monterey, Monterey, MA, USAKristina M. GjerdeThe University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoJudith F. GobinPermanent Mission of the Federated States of Micronesia to the United Nations, New York, USAClement Yow MulalapDuke University Marine Laboratory, Duke University, Durham, NC, USAMichael OrbachCentre for Marine Socioecology, University of Tasmania, Hobart, AustraliaGretta PeclInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, AustraliaGretta PeclFederal University of Santa Catarina, Florianópolis, SC, BrazilMarinez SchererCenter for Island Sustainability and Sea Grant, University of Guam, Mangilao, USAAustin J. SheltonSchool of Geography and the Environment, University of Oxford, Oxford, UKLisa Wedding More

  • in

    Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40. https://doi.org/10.1126/science.281.5374.237CAS 
    Article 
    PubMed 

    Google Scholar 
    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9. https://doi.org/10.1126/science.1153213CAS 
    Article 
    PubMed 

    Google Scholar 
    Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722. https://doi.org/10.1126/science.aac4722Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. 2010;7:979–1005. https://doi.org/10.5194/bg-7-979-2010CAS 
    Article 

    Google Scholar 
    Henson SA, Cael BB, Allen SR, Dutkiewicz S. Future phytoplankton diversity in a changing climate. Nat Commun. 2021;12:5372. https://doi.org/10.1038/s41467-021-25699-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8. https://doi.org/10.1126/science.1224836CAS 
    Article 
    PubMed 

    Google Scholar 
    Collins S, Boyd PW, Doblin MA. Evolution, microbes, and changing ocean conditions. Annu Rev Mar Sci. 2020;12:181–208. https://doi.org/10.1146/annurev-marine-010318-095311Article 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719. https://doi.org/10.1038/s41467-018-03906-5CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck KT, Riebesell U, Reusch TBH. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346–51. https://doi.org/10.1038/ngeo1441CAS 
    Article 

    Google Scholar 
    Jin P, Gao K, Beardall J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution. 2013;67:1869–78. https://doi.org/10.1111/evo.12112CAS 
    Article 
    PubMed 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30. https://doi.org/10.1038/nclimate2379CAS 
    Article 

    Google Scholar 
    Listmann L, LeRoch M, Schlüter L, Thomas MK, Reusch TBH. Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl. 2016;9:1156–64. https://doi.org/10.1111/eva.12362Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167. https://doi.org/10.1016/j.scitotenv.2021.145167CAS 
    Article 
    PubMed 

    Google Scholar 
    Brennan GL, Colegrave N, Collins S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci USA. 2017;114:9930–5. https://doi.org/10.1073/pnas.1703375114CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang S, Wu Y, Lin L, Wang D. Molecular insights into the circadian clock in marine diatoms. Acta Oceano Sin. 2022;41:1–12. https://doi.org/10.1007/s13131-021-1962-4Article 

    Google Scholar 
    Nagelkerken I, Connell SD. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA. 2015;112:13272–7. https://doi.org/10.1073/pnas.1510856112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review. Glob Change Biol. 2018;24:2239–61. https://doi.org/10.1111/gcb.14102Article 

    Google Scholar 
    Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res. 2011;109:191–203. https://doi.org/10.1007/s11120-011-9623-7CAS 
    Article 
    PubMed 

    Google Scholar 
    Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, et al. CO2-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 2012;158:499–513. https://doi.org/10.1104/pp.111.190249CAS 
    Article 
    PubMed 

    Google Scholar 
    Hennon GMM, Ashworth J, Groussman RD, Berthiaume C, Morales RL, Baliga NS, et al. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Change. 2015;5:761–5. https://doi.org/10.1038/nclimate2683CAS 
    Article 

    Google Scholar 
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84. https://doi.org/10.1038/nclimate1989CAS 
    Article 

    Google Scholar 
    Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Mar Sci. 2019;6:322. https://doi.org/10.3389/fmars.2019.00322Article 

    Google Scholar 
    Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 2020;11:971. https://doi.org/10.1038/s41467-020-14776-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, et al. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nat Plants. 2020;6:1031–43. https://doi.org/10.1038/s41477-020-0729-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Van den Bergh B, Swings T, Fauvart M, Michels J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol Mol Biol Rev. 2018;82:e00008–18.PubMed 
    PubMed Central 

    Google Scholar 
    Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457–69. https://doi.org/10.1038/nrg1088CAS 
    Article 
    PubMed 

    Google Scholar 
    Colegrave N, Collins S. Experimental evolution: experimental evolution and evolvability. Heredity. 2008;100:464–70. https://doi.org/10.1038/sj.hdy.6801095CAS 
    Article 
    PubMed 

    Google Scholar 
    Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, et al. A reduction in metabolism explains the trade‐offs associated with the long‐term adaptation of phytoplankton to high CO2 concentrations. N Phytol. 2022;233:2155–67. https://doi.org/10.1111/nph.17917CAS 
    Article 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9. https://doi.org/10.1073/pnas.1307701110CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, Mcllvin MR, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun. 2015;6:8155. https://doi.org/10.1038/ncomms9155Article 
    PubMed 

    Google Scholar 
    Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett. 2016;19:133–42.Article 

    Google Scholar 
    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–54. https://doi.org/10.1126/science.aan5712CAS 
    Article 
    PubMed 

    Google Scholar 
    Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325:1095–8. https://doi.org/10.1126/science.1175826CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–5. https://doi.org/10.1038/nature17951CAS 
    Article 
    PubMed 

    Google Scholar 
    Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun. 2019;10:5821. https://doi.org/10.1038/s41467-019-13767-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai YT, Yeung CK, Omland KE, Pang EL, Hao Y, Liao BY, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci USA. 2019;116:2152–7. https://doi.org/10.1073/pnas.1813597116Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92. https://doi.org/10.1038/nature08057CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, et al. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. ISME J. 2020;14:347–63. https://doi.org/10.1038/s41396-019-0528-3Article 
    PubMed 

    Google Scholar 
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett. 2020;23:722–33.Article 

    Google Scholar 
    Guillard RR, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8:229–39. https://doi.org/10.1139/m62-029CAS 
    Article 
    PubMed 

    Google Scholar 
    Huysman MJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, et al. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 2010;11:R17. https://doi.org/10.1186/gb-2010-11-2-r17CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC; 2021.Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2004;40:651–4. https://doi.org/10.1111/j.1529-8817.2004.03112.xCAS 
    Article 

    Google Scholar 
    Pérez EB, Pina IC, Rodríguez LP. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 2008;40:520–5. https://doi.org/10.1016/j.bej.2008.02.007CAS 
    Article 

    Google Scholar 
    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study. PLoS One. 2013;8:e63091 https://doi.org/10.1371/journal.pone.0063091CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng X, Jin P, Jiang Y, Yang H, Zhong J, Liang Z, et al. Light alters the responses of two marine diatoms to increased warming. Mar Environ Res. 2020;154:104871. https://doi.org/10.1016/j.marenvres.2019.104871CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.CAS 
    Article 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. https://doi.org/10.1093/nar/gkq603CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gifford RM. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol. 2003;30:171–86. https://doi.org/10.1071/FP02083Article 
    PubMed 

    Google Scholar 
    Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 1976;21:540–7. https://doi.org/10.4319/lo.1976.21.4.0540CAS 
    Article 

    Google Scholar  More

  • in

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Short-term experimentsPotential toxic and cryoprotection effects of different CPA combinationsFocusing on toxicity bioassays (Figs. 1A, 2A), although there were certain CPA combinations that yielded significant abnormality percentages compared to controls, in general the CPA combinations did not yield any significant toxic effect. The use of Milli-Q Water instead of FSW did not enhance normal larval development after CPA exposure, neither did the addition of PVP at the concentrations tested, even in combination with trehalose (TRE) (p  > 0.05). In fact, the highest concentrations of PVP used in this experiment (9 and 12%) yielded significant abnormal development on exposed trochophores (Fig. 1A) (p  More