More stories

  • in

    Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N2 fixation in the pelagic ocean

    Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, et al. Dinitrogen fixation in the world’s oceans. In: Boyer EW, Howarth RW, editors. The nitrogen cycle at regional to global scales. Dordrecht: Springer; 2002. p. 47–98.Berthelot H, Benavides M, Moisander PH, Grosso O, Bonnet S. High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas): N2 fixation in the Western Pacific. Geophys Res Lett. 2017;44:8414–23.CAS 
    Article 

    Google Scholar 
    Rahav E, Bar-Zeev E, Ohayion S, Elifantz H, Belkin N, Herut B, et al. Dinitrogen fixation in aphotic oxygenated marine environments. Front Microbiol. 2013;4:227.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 2015;9:273–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Messer LF, Doubell M, Jeffries TC, Brown MV, Seymour JR. Prokaryotic and diazotrophic population dynamics within a large oligotrophic inverse estuary. Aquat Micro Ecol. 2015;74:1–15.Article 

    Google Scholar 
    Sipler RE, Gong D, Baer SE, Sanderson MP, Roberts QN, Mulholland MR, et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol Oceanogr Lett. 2017;2:159–66.Article 

    Google Scholar 
    Benavides M, Bonnet S, Berman-Frank I, Riemann L. Deep into oceanic N2 fixation. Front Mar Sci. 2018;5:1–4.Article 

    Google Scholar 
    Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, Western North Atlantic coastal waters expand the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Riemann L, Farnelid H, Steward G. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Micro Ecol. 2010;61:235–47.Article 

    Google Scholar 
    Farnelid H, Andersson AF, Bertilsson S, Al-Soud WA, Hansen LH, Sørensen S, et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE. 2011;6:e19223.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–1083.e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bombar D, Paerl RW, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 2016;24:916–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front Microbiol. 2017;8:1736.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eady RR, Postgate JR. Nitrogenase. Nature. 1974;249:805–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong PP, Burris RH. Nature of oxygen inhibition of nitrogenase from azotobacter vinelandii. Proc Natl Acad Sci USA 1972;69:672–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L. Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr. 2007;52:2260–9.Article 

    Google Scholar 
    Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11:166–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl HW. Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol Oceanogr. 1985;30:1246–52.CAS 
    Article 

    Google Scholar 
    Paerl HW, Prufert LE. Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Env Microbiol. 1987;53:1078–87.CAS 
    Article 

    Google Scholar 
    Riemann L, Rahav E, Passow U, Grossart H-P, de Beer D, Klawonn I, et al. Planktonic aggregates as hotspots for heterotrophic diazotrophy: the plot thickens. Front Microbiol. 2022;13:1092.Article 

    Google Scholar 
    Braun ST, Proctor LM, Zani S, Mellon MT, Zehr JP. Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiol Ecol. 1999;28:273–9.CAS 
    Article 

    Google Scholar 
    Farnelid H, Tarangkoon W, Hansen G, Hansen PJ, Riemann L. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate–Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Micro Ecol. 2010;61:105–17.Article 

    Google Scholar 
    Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean: diazotroph community in association with copepods. Environ Microbiol. 2015;17:3754–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farnelid H, Turk-Kubo K, Ploug H, Ossolinski JE, Collins JR, Van Mooy BAS, et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 2019;13:170–82.PubMed 
    Article 

    Google Scholar 
    Geisler E, Bogler A, Rahav E, Bar-Zeev E. Direct detection of heterotrophic diazotrophs associated with planktonic aggregates. Sci Rep. 2019;9:1–9.CAS 
    Article 

    Google Scholar 
    Pedersen JN, Bombar D, Paerl RW, Riemann L. Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front Microbiol. 2018;9:2759.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paerl RW, Hansen TNG, Henriksen NNSE, Olesen AK, Riemann L. N2-fixation and related O2 constraints on model marine diazotroph Pseudomonas stutzeri BAL361. Aquat Micro Ecol. 2018;81:125–36.Article 

    Google Scholar 
    Rahav E, Giannetto MJ, Bar-Zeev E. Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep. 2016;6:27858.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chakraborty S, Andersen KH, Visser AW, Inomura K, Follows MJ, Riemann L. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun. 2021;12:4085.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 2008;105:4209–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stocker R, Seymour JR. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev. 2012;76:792–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007.CAS 
    PubMed 
    Article 

    Google Scholar 
    Son K, Menolascina F, Stocker R. Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci USA 2016;113:8624–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brumley DR, Carrara F, Hein AM, Yawata Y, Levin SA, Stocker R. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc Natl Acad Sci USA 2019;116:10792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller‐Niklas G, Stefan S, Kaltenböok E, Herndl GJ. Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnol Oceanogr. 1994;39:58–68.Article 

    Google Scholar 
    Grossart H-P, Czub G, Simon M. Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol. 2006;8:1074–84.PubMed 
    Article 

    Google Scholar 
    Smith DC, Simon M, Alldredge AL, Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 1992;359:139–42.CAS 
    Article 

    Google Scholar 
    Kiørboe T, Ploug H, Thygesen UH. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar Ecol Prog Ser. 2001;211:1–13.Article 

    Google Scholar 
    Kiørboe T, Jackson GA. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol Oceanogr. 2001;46:1309–18.Article 

    Google Scholar 
    Raina J-B, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, et al. Chemotaxis shapes the microscale organisation of the ocean’s microbiome. Nature. 2022;605:132–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert BS, Raina J-B, Fernandez VI, Rinke C, Siboni N, Rubino F, et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat Microbiol. 2017;2:1344–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clerc EE, Raina J-B, Lambert BS, Seymour J, Stocker R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J Vis Exp. 2020;159:e61062.
    Google Scholar 
    Boström KH, Riemann L, Kühl M, Hagström Å. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol. 2007;9:152–64.PubMed 
    Article 
    CAS 

    Google Scholar 
    Farnelid H, Harder J, Bentzon-Tilia M, Riemann L. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters: heterotrophic diazotrophs in the Baltic Sea. Environ Microbiol. 2014;16:3072–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    ZoBell CE. Studies on Marine Bacteria I. The cultural requirements of heterotrophic aerobes. J Mar Res. 1941;4:41–75.Alldredge AL, Gotschalk C, Passow U, Riebesell U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res Part II Top Stud Oceanogr. 1995;42:9–27.CAS 
    Article 

    Google Scholar 
    Thornton DCO. Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol. 2002;37:149–61.Article 

    Google Scholar 
    Turner J. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Micro Ecol. 2002;27:57–102.Article 

    Google Scholar 
    Schnetzer A, Lampe RH, Benitez-Nelson CR, Marchetti A, Osburn CL, Tatters AO. Marine snow formation by the toxin-producing diatom, Pseudo-nitzschia australis. Harmful Algae. 2017;61:23–30.CAS 
    Article 

    Google Scholar 
    Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods. 2008;6:230–5.CAS 
    Article 

    Google Scholar 
    Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green. Appl Environ Microbiol. 1997;63:186–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bramucci AR, Focardi A, Rinke C, Hugenholtz P, Tyson GW, Seymour JR, et al. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 2021;1:1–5.Article 

    Google Scholar 
    Rinke C, Low S, Woodcroft BJ, Raina J-B, Skarshewski A, Le XH, et al. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ. 2016;4:e2486.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013.Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. Plymouth: Primer-E Ltd; 2014.Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edler D, Klein J, Antonelli A, Silvestro D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. 2019. https://doi.org/10.1101/800912.Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–9.PubMed 
    Article 

    Google Scholar 
    Czech L, Barbera P, Stamatakis A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Bentzon-Tilia M, Severin I, Hansen LH, Riemann L. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. mBio. 2015;6:e00929–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM, Schunck H, et al. Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone: novel N2-fixer from oxygen minimum zone off Peru. Environ Microbiol. 2018;20:755–68.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Eschemann A, Kühl M, Cypionka H. Aerotaxis in Desulfovibrio. Environ Microbiol. 1999;1:489–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu S, Kojima S, Homma M. Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol. 2013;4:410.Silva MA, Salgueiro CA. Multistep signaling in nature: a close-up of Geobacter chemotaxis sensing. Int J Mol Sci. 2021;22:9034.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taylor BL, Zhulin IB, Johnson MS. Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol. 1999;53:103–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Colin R, Sourjik V. Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol. 2017;39:24–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stocker R. Marine microbes see a sea of gradients. Science. 2012;338:628–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turk‐Kubo KA, Karamchandani M, Capone DG, Zehr JP. The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ Microbiol. 2014;16:3095–114.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bentzon-Tilia M, Farnelid H, Jürgens K, Riemann L. Cultivation and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea. FEMS Microbiol Ecol. 2014;88:358–71.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Grizzly man

    In this picture, I’m face to face with an anaesthetized 250-kilogram male grizzly bear (Ursus arctos horribilis), which was caught near Sparwood and Elkford in Canada. With help from conservation inspector Joe Caravetta, who is sitting next to me, and my field technician Laura Smit, I’m putting a GPS-enabled collar on the bear so that we can track his movements.The first time I worked with a bear this size, it was absolutely exhilarating, a real adrenaline rush. I thought, “My whole head could fit inside this animal’s jaws.” Over time, it has become fairly routine. I learnt to trust the anaesthetic — a mix of drugs given using an air-powered dart gun — and we constantly monitor the bears’ vital signs.While I’m attaching the collar, Laura collects hair samples for genetic studies. We measure the bear’s temperature and oxygen levels, and take hair samples to get an idea of his diet. We weigh him, which is quite a challenge: we use a custom-made tarpaulin with handles to wrap him up like a bear taco. We attach the handles to a hanging scale and, with a rope over a tree branch, winch him up. This particular bear is eight years old and has 29% body fat, which is very healthy for spring.Ultimately, the collars will help us to reduce conflict between bears and the people who live in the area — I’ve seen bears rip shed doors off to get to livestock, and peel open an outdoor freezer like a can of sardines.At times, it’s chaos for both humans and bears, and people react by shooting the bear — the most common cause of death for younger ones. Tracking bears with collars will help us to find solutions.From tracking the bears, we’ve learnt that they are adapting their habits to avoid people, and they become more nocturnal as they get older. We’ve helped local communities to adapt, too: we’ve launched cost-share initiatives for electrical fencing, which is a really effective bear deterrent. More

  • in

    Clay and climatic variability explain the global potential distribution of Juniperus phoenicea toward restoration planning

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (80-) https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zimmermann, N. E., Edwards, T. C. Jr., Graham, C. H., Pearman, P. B. & Svenning, J. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).Article 

    Google Scholar 
    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).Article 

    Google Scholar 
    Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).Article 

    Google Scholar 
    Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830 (2022).Article 
    CAS 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. Int. J. 30, 224–235 (2010).Article 

    Google Scholar 
    Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20, 309–321 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubuis, A. et al. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J. Veg. Sci. 24, 593–606 (2013).Article 

    Google Scholar 
    Walthert, L. & Meier, E. S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 7, 9473–9484 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Figueiredo, F. O. G. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45, 190–200 (2018).Article 

    Google Scholar 
    Arar, A., Nouidjem, Y., Bounar, R., Tabet, S. & Kouba, Y. Potential future changes of the geographic range size of Juniperus phoenicea in Algeria based on present and future climate change projections. Contemp. Probl. Ecol. 13, 429–441 (2020).Article 

    Google Scholar 
    Coudun, C., Gégout, J., Piedallu, C. & Rameau, J. Soil nutritional factors improve models of plant species distribution: An illustration with Acer campestre (L.) in France. J. Biogeogr. 33, 1750–1763 (2006).Article 

    Google Scholar 
    Buri, A. et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J. Biogeogr. 47, 1143–1153 (2020).Article 

    Google Scholar 
    Buri, A. et al. Soil factors improve predictions of plant species distribution in a mountain environment. Prog. Phys. Geogr. 41, 703–722 (2017).Article 

    Google Scholar 
    Mod, H. K., Scherrer, D., Luoto, M. & Guisan, A. What we use is not what we know: environmental predictors in plant distribution models. J. Veg. Sci. 27, 1308–1322 (2016).Article 

    Google Scholar 
    Scherrer, D. & Guisan, A. Ecological indicator values reveal missing predictors of species distributions. Sci. Rep. 9, 1–8 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Boulos, L. Flora of Egypt, Vol. 1. vol. 1 (Al Hadara Publishing, 1999).Farjon, A. & Filer, D. An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. (Brill, 2013).Allen, DJ. Juniperus phoenicea. The IUCN red list of threatened species 2017: e.T16348983A99965052. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS. T16348983A99965052.en. Downloaded on 19 May 2020El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai Egypt. Flora-Morphol. Distrib. Funct. Ecol. Plants 205, 171–178 (2010).Article 

    Google Scholar 
    Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. Growing in Gebel Halal, North Sinai Egypt. Catrina Int. J. Environ. Sci. 15, 11–23 (2016).
    Google Scholar 
    Farahat, E. A. Age structure and static life tables of the endangered Juniperus phoenicea L. in North Sinai Mountains, Egypt. J. Mt. Sci. 17, 2170–2178 (2020).Article 

    Google Scholar 
    El-Wahab, A. Condition assessment of plant diversity of Gebel Maghara, North Sinai, Egypt. Catrina Int. J. Environ. Sci. 3, 21–40 (2008).
    Google Scholar 
    Youssef, A. M., Morsy, A. A., Mosallam, H. A. & Hashim, A. M. Vegetation and soil relationships in some wadis from the North-Central part of Sinai Peninsula Egypt. Minia Sci. Bull. 25, 1–28 (2014).
    Google Scholar 
    Fisher, M. Decline in the juniper woodlands of Raydah Reserve in southwestern Saudi Arabia: A response to climate changes?. Glob. Ecol. Biogeogr. Lett. 6, 379–386 (1997).Article 

    Google Scholar 
    Salvà-Catarineu, M. et al. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol. Evol. 11, 5075–5095 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quevedo, L., Rodrigo, A. & Espelta, J. M. Post-fire resprouting ability of 15 non-dominant shrub and tree species in Mediterranean areas of NE Spain. Ann. For. Sci. 64(8), 883–890 (2007).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort. Spat. Inf. 89, 1–2 (2009).
    Google Scholar 
    Hengl, T. et al. SoilGrids1km—Global soil information based on automated mapping. PLoS One 9, e105992 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Documentation for the global human modification of terrestrial systems (2020).Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (Cop.) 39, 368–375 (2016).Article 

    Google Scholar 
    Naimi, B. usdm: Uncertainty analysis for species distribution models. R Packag. Version 1, 1–12 (2015).
    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. In Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).Dakhil, M. A. et al. Global invasion risk assessment of Prosopis juliflora at biome level : Does soil matter?. Biology 10, 203 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturbide, M., Bedia, J. & Gutiérrez, J. M. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166, 19–29 (2018).ADS 
    Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Zhang, Z., Mammola, S., Xian, W. & Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 26, 126–137 (2020).Article 

    Google Scholar 
    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article 

    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed 
    Article 

    Google Scholar 
    Haider, S. M., Benscoter, A. M., Pearlstine, L., D’Acunto, L. E. & Romañach, S. S. Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach. Ecol. Modell. 461, 109774 (2021).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book 

    Google Scholar 
    Kabiel, H. F., Hegazy, A. K., Lovett-Doust, L., Al-Rowaily, S. L. & Al Borki, A. E. N. S. Ecological assessment of populations of Juniperus phoenicea L. in the Al-Akhdar mountainous landscape of Libya. Arid L. Res. Manag. 30, 269–289 (2016).Article 

    Google Scholar 
    Camarero, J. J. et al. Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agric. For. Meteorol. 291, 108078 (2020).ADS 
    Article 

    Google Scholar 
    Sánchez-Salguero, R. & Camarero, J. J. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sci. Total Environ. 721, 137599 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).ADS 
    Article 

    Google Scholar 
    Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).ADS 
    Article 

    Google Scholar 
    González-Hidalgo, J. C. et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 66, 381–392 (2018).ADS 
    Article 

    Google Scholar 
    Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016).ADS 
    Article 

    Google Scholar 
    Navarro Cerrillo, R. M. et al. Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain?. New For. 52, 89–112 (2021).Article 

    Google Scholar  More

  • in

    DNA barcode reference library for the West Sahara-Sahel reptiles

    Ceballos, G. et al. Accelerated modern human – induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253, https://doi.org/10.1126/sciadv.1400253 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509, https://doi.org/10.1126/science.1194442 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23, https://doi.org/10.1111/j.1366-9516.2005.00143.x (2005).Article 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167, https://doi.org/10.1146/annurev.energy.28.050302.105532 (2003).Article 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545, https://doi.org/10.1093/biosci/bix014 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. 89, 215–231, https://doi.org/10.1111/brv.12049 (2014).Article 
    PubMed 

    Google Scholar 
    Sampaio, M. et al. Beyond the comfort zone: amphibian diversity and distribution in the West Sahara-Sahel using mtDNA and nuDNA barcoding and spatial modelling. Conserv. Genet. 22(2), 233–248, https://doi.org/10.1007/s10592-021-01331-8 (2021).Article 

    Google Scholar 
    Velo-Antón, G. et al. DNA barcode reference library for the West Sahara-Sahel reptiles, figshare, https://doi.org/10.6084/m9.figshare.20338335 (2022).Carranza, S., Arnold, E. N., Geniez, P., Roca, J. & Mateo, J. A. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phyl. Evol. 46, 1071–1094, https://doi.org/10.1016/j.ympev.2007.11.018 (2008).CAS 
    Article 

    Google Scholar 
    Gonçalves, D. V. et al. Phylogeny of North African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. Mol. Phyl. Evol. 64, 582–591, https://doi.org/10.1016/j.ympev.2012.05.007 (2012).Article 

    Google Scholar 
    Gonçalves, D. V. et al. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol. Phyl. Evol. 118, 64–74, https://doi.org/10.1016/j.ympev.2017.09.009 (2018).Article 

    Google Scholar 
    Gonçalves, D. V. et al. Assessing the role of aridity-induced vicariance and ecological divergence in species diversification in North-West Africa using Agama lizards. Biol. J. Linn. Soc. 124, 363–380, https://doi.org/10.1093/biolinnean/bly055 (2018).Article 

    Google Scholar 
    Metallinou, M. et al. Conquering the Sahara and Arabian deserts: Systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evol. Biol. 12, 258, https://doi.org/10.1186/1471-2148-12-258 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metallinou, M. et al. Species on the rocks: Systematics and biogeography of the rock-dwelling Ptyodactylus geckos (Squamata: Phyllodactylidae) in North Africa and Arabia. Mol. Phyl. Evol. 85, 208–220, https://doi.org/10.1016/j.ympev.2015.02.010 (2015).Article 

    Google Scholar 
    Kapli, P. et al. Historical biogeography of the lacertid lizard Mesalina in North Africa and the Middle East. J. Biogeog. 42, 267–279, https://doi.org/10.1111/jbi.12420 (2015).Article 

    Google Scholar 
    Tamar, K., Geniez, P., Brito, J. C. & Crochet, P. A. Systematic revision of Acanthodactylus busacki (Squamata: Lacertidae) with a description of a new species from Morocco. Zootaxa 4276(3), 357–386, https://doi.org/10.11646/ZOOTAXA.4276.3.3 (2017).Article 

    Google Scholar 
    Velo-Antón, G., Martínez-Freiría, F., Pereira, P., Crochet, P.-A. & Brito, J. C. Living on the edge: ecological and genetic connectivity of the Spiny-footed lizard, Acanthodactylus aureus, confirms the Atlantic Sahara desert as biogeographic corridor and centre of lineage diversification. J. Biogeog. 45, 1031–1042, https://doi.org/10.1111/jbi.13176 (2018).Article 

    Google Scholar 
    Vale, C. G., Pimm, S. L. & Brito, J. C. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity. PLoS ONE 10, e0118367, https://doi.org/10.1371/journal.pone.0118367 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Conservation Biogeography of the Sahara-Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384, https://doi.org/10.1111/ddi.12416 (2016).Article 

    Google Scholar 
    Hawlitschek, O. et al. Comprehensive DNA barcoding of the herpetofauna of Germany. Mol. Ecol. Res. 16, 242–253, https://doi.org/10.1111/1755-0998.12416 (2016).CAS 
    Article 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & Jeremy, R. Biological Identifications through DNA Barcodes. P. Roy. Soc. Lond. B Bio. 270, 313–321, https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Murphy, R. W. et al. Cold Code: the global initiative to DNA barcode amphibians and nonavian reptiles. Mol. Ecol. Res. 13, 161–167, https://doi.org/10.1111/1755-0998.12050 (2013).CAS 
    Article 

    Google Scholar 
    Vasconcelos, R. et al. Unexpectedly high levels of cryptic diversity uncovered by a complete DNA barcoding of reptiles of the Socotra Archipelago. PLoS ONE 11, e0149985, https://doi.org/10.1371/journal.pone.0149985 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krishnamurthy, P. K. & Francis, R. A. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiv. Conserv. 21, 1901–1919, https://doi.org/10.1007/s10531-012-0306-2 (2012).Article 

    Google Scholar 
    DeSalle, R. & Amato, G. The expansion of conservation genetics. Nat. Rev. Genet. 5, 702–12, https://doi.org/10.7312/amat12832-006 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Campos, J. C. & Brito, J. C. Mapping underrepresented land cover heterogeneity in arid regions: the Sahara-Sahel example. ISPRS J. Photogramm 146, 211–220, https://doi.org/10.1016/j.isprsjprs.2018.09.012 (2018).Article 

    Google Scholar 
    Brito, J. C. et al. Armed conflicts and wildlife decline: Challenges and recommendations for effective conservation policy in the Sahara‐Sahel. Conserv. Lett. 11(5), e12446, https://doi.org/10.1111/conl.12446 (2018).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336, https://doi.org/10.1038/nature25181 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Geniez, P., Mateo, J. A. & Bons, J. A checklist of the amphibians and reptiles of Western Sahara (Amphibia, Reptilia). Herpetozoa 133, 149–63 (2000).
    Google Scholar 
    Geniez, P., Mateo, J. A., Geniez, M. & Pether, J. The Amphibians and Reptiles of the Western Sahara. An Atlas and Field Guide. Chimaira Editions (2004). Available at https://doi.org/10.1643/0045-8511(2007)2007[772:TAAROT]2.0.CO;2Trape, J. – F. & Mané, Y. Guide des Serpents d’Afrique Occidentale: Savane et Désert. IRD éditions (2006).Trape, J.-F., Trape, S. & Chirio, L. Lézards, Crocodiles et Tortues d’Afrique Occidentale et du Sahara. IRD éditions (2012).Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763, https://doi.org/10.1073/pnas.1314445110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagy, Z. T., Sonet, G., Glaw, F. & Vences, M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE 7, e34506, https://doi.org/10.1371/journal.pone.0034506 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids. Res. 32, 1792–1797, https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120, https://doi.org/10.1007/BF01731581 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown, S. D. et al. Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Res. 12, 562–565, https://doi.org/10.1111/j.1755-0998.2011.03108.x (2012).ADS 
    Article 

    Google Scholar 
    Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728, https://doi.org/10.1080/10635150600969864 (2006).Article 
    PubMed 

    Google Scholar 
    Pizzigalli, C. et al. Phylogeographic diversification of the Mesalina olivieri species complex (Squamata: Lacertidae) with the description of a new species and a new subspecies endemic from North West Africa. J. Zool. Syst. Evol. Res. 59, 2321–2349, https://doi.org/10.1111/jzs.12516 (2021).Article 

    Google Scholar 
    Mediannikov, O., Trape, S. & Trape, J.-F. A molecular study of the genus Agama (Squamata: Agamidae) in West Africa, with description of two new species and a review of the taxonomy, geographic distribution, and ecology of currently recognized species. Russ. J. Herpetol. 19, 115–142, https://doi.org/10.30906/1026-2296-2012-19-2-115-142 (2012).Article 

    Google Scholar 
    Wagner, P., Wilms, T. M., Bauer, A. & Böhme, W. Studies on African Agama. V. On the origin of Lacerta agama Linnaeus, 1758 (Squamata: Agamidae). Bonn. zool. Beitr. 56, 215–223 (2009).
    Google Scholar  More

  • in

    An experimental study: effects of boulder placement on hydraulic metrics of instream habitat complexity

    Effects of grid spacing on habitat hydraulic complexity metricsThe sensitivity of the habitat hydraulic complexity metrics to Δs was examined by calculating the metrics for Δs = 0.06, 0.12, 0.18, and 0.24 m (for M4, Δs = Δx = Δy). Figure 3 shows the variation of the metrics with grid spacing for scenarios with boulders. A preliminary assessment of no-boulder scenarios (S1-L and S1-H) showed that all the metrics decreased by increasing the grid spacing. However, because the metrics are mostly used in complex rather than non-obstructed and 1-D flows, the plots only include scenarios with boulder placement to highlight the effects of grid spacing on the metrics in complex flows. All the metrics generally decreased as Δs increased. At the low flow rate, by changing the Δs from the smallest to largest, i.e., 0.06 m to 0.024, the mean decreases in the M1, M2, and M4 metrics (averaged over all the scenarios with boulders) were 45.1, 9.9, and 74.7%, respectively. At the high flow rate, these reductions were 34.8, 14.7, and 82.5% for M1, M2, and M4, respectively. Table 2 shows the p-values associated with the changes in the metrics due to increasing Δs from 0.06 to 0.24 m for all scenarios. The table indicates that changes in M1 and M4 were statistically significant while for M2 they were not (p-values  > 0.05 for all scenarios except for S2-H). This result indicated the considerable influence of grid spacing on M1 and M4 metrics in the reaches with boulder placement. Additionally, the differences in the reported average reductions due to changing the flow rate were less than 10%, indicating an insubstantial effect of flow rate on the habitat hydraulic complexity metrics’ sensitivity to the grid spacing. The significant sensitivity of the metrics M1 and M4 to the grid spacing in this study is contrary to the findings of a previous study in which an insignificant correlation was found between the habitat hydraulic complexity metrics and Δs29. This difference can be attributed to different topographic features in the studied reaches. In the previous findings, measurements were mainly taken around the bends and reaches with no significant obstruction29, in which a more uniform flow with smaller velocity gradients is expected. However, in this study, the systematic boulder placement generated more complex flow patterns with noticeable velocity gradients. Therefore, due to the variations of flow velocities in the zone studied, substantially different values for the metrics are anticipated by computing the metrics over different spatial scales.Figure 3Variation of the habitat hydraulic complexity metrics with grid spacing (Δs) for scenarios with boulder placement. (a) kinetic energy gradient metric, M1, (b) normalized kinetic energy gradient metric, M2, (c) modified recirculation metric M4.Full size imageTable 2 p-values associated with changing the grid spacing from 0.06 to 0.24 m.Full size tableStatistical distribution of habitat hydraulic complexity metricsTable 3 lists the mean, minimum, maximum, and standard deviations of the habitat hydraulic complexity metrics (Δs = 0.06 m) for all the scenarios. To complement the results from Table 3 and assess whether the influences of solely changing the boulder concentration or flow rate on the metrics were statistically significant, Table 4 shows p-values associated with changing flow rate from low to high for a given boulder concentration, and Table 5 shows p-values associated with gradually increasing the boulder concentration for a given flow rate.Table 3 The statistical parameters of the habitat hydraulic complexity metrics in the detailed measurement zone.Full size tableTable 4 p-values from a t-test associated with changes in flow rate for a given boulder concentration.Full size tableTable 5 p-values from a t-test associated with changes in boulder concertation for a given flow rate.Full size tableFor metric M1, the mean M1 values for scenarios incorporating boulders showed the same order of magnitude as values from previous studies for reaches with single and multiple boulders27 but they were about one order of magnitude larger than calculated values in the confluence of two rivers11. Using a larger grid spacing in the study in the confluence of two rivers11 can be the reason for this difference. For a scenario at the higher flow rate, the mean M1 was on average (averaged for all the scenarios) 36% greater than its counterpart at the lower flow rate and this change in M1 values was statistically significant with p  More

  • in

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).ADS 

    Google Scholar 
    Reyes, J., Santodomingo, N. & Florez, P. Corales Escleractinios de Colombia. (Invemar Serie de Publicaciones Especiales, 2010).Alonso, D. et al. Behind the scenes for the designation of the Corales de Profundidad national natural park of Colombia. Front. Mar. Sci. 8, 1147 (2021).
    Google Scholar 
    Hughes, J. A., Menot, L. & Levin, L. Habitat classification and mapping on deep continental margins. Research and Consultancy Report, No 54. COMARGE Workshop (2008).Rogers, A. The biology, ecology and vulnerability of deep-water coral reefs. International Union for Conservation of Nature and Natural Resources (2004).Maier, C., Hegeman, J., Weinbauer, M. G. & Burg, D. Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 1, 1671–1680 (2009).ADS 

    Google Scholar 
    DeLeo, D. M., Glazier, A., Herrera, S., Barkman, A. & Cordes, E. E. Transcriptomic responses of deep-sea corals experimentally exposed to crude oil and dispersant. Front. Mar. Sci. 8, 1–17 (2021).
    Google Scholar 
    Buddemeier, R., Kleypas, J. A. & Aronson, R. B. Potential contributions of climate change to stresses on coral reef ecosystems. Coral Reefs Global Clim. Change 15, 17789 (2004).
    Google Scholar 
    Schmidt, C. A. et al. Faster crystallization during coral skeleton formation correlates with resilience to ocean acidification. J. Am. Chem. Soc. 144, 1332–1341 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bors, E. K. et al. Patterns of deep-sea genetic connectivity in the New Zealand Region: Implications for management of benthic ecosystems. PLoS One 7, 11047 (2012).
    Google Scholar 
    Hernández-Ávila, I. Patterns of deep-water coral diversity in the Caribbean basin and adjacent southern waters: An approach based on records from the R/V Pillsbury Expeditions. PLoS ONE 9, 11 (2014).
    Google Scholar 
    Alonso, D. et al. Corales de Profundidad: descripción de comunidades coralinas y fauna asociada. (Serie de Publicaciones Generales del Invemar, 2015).Frade, P. R. et al. Semi-permeable species boundaries in the coral genus Madracis: the role of introgression in a brooding coral system. Mol. Phylogenet. Evol. 57, 1072–1090 (2010).CAS 
    PubMed 

    Google Scholar 
    Locke, J. M. & Coates, K. A. What are the costs of bad taxonomic practices: and what is Madracis mirabilis? Proc. 11th Int. Coral Reef Symp. 7, 1348–1351 (2008).
    Google Scholar 
    Palumbi, S. R. The Ecology of Marine Protected Areas. in Marine Community Ecology (eds. Bertness, M., Gaines, S. & Hay, M.) 509–530 (Sinauer Press, Inc, 2001).Jones, G. P., Srinivasan, M. & Almany, G. R. Population connecivity and conservation of marine biodiversity. Oceanography 20, 100 (2007).
    Google Scholar 
    Fogarty, M. J. & Botsford, L. W. Population connectivity and spatial management of marine fisheries. Oceanography 20, 112–123 (2007).
    Google Scholar 
    Gillis, L. G. et al. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503, 289–303 (2014).ADS 

    Google Scholar 
    Griffiths, S. M. et al. A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conserv. Genet. Resour. 8, 481–486 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: Matching empirical efforts to predictive needs. Coral Reefs 28, 327–337 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palumbi, S. R. Population genetics, demographic connectivity, and the desing of marine reserves. Ecol. Appl. 13, 146–158 (2003).
    Google Scholar 
    Ridgway, T., Riginos, C., Davis, J. & Hoegh-Guldberg, O. Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar. Ecol. Prog. Ser. 354, 161–168 (2008).ADS 

    Google Scholar 
    Hemond, E. M. & Vollmer, S. V. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida. PLoS One 5, 1140 (2010).
    Google Scholar 
    Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48 (2012).ADS 
    CAS 

    Google Scholar 
    Montoya-Maya, P. H., Macdonald, A. H. H. & Schleyer, M. H. Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean. Genet. Mol. Res. 13, 1244–1250 (2014).CAS 
    PubMed 

    Google Scholar 
    Le Goff-Vitry, M., Pybus, O. G. & Roger, N. Genetic structure of the deep-sea coral. Mol. Ecol. 13, 537–549 (2004).CAS 
    PubMed 

    Google Scholar 
    Zeng, C., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems. Evol. Appl. 10, 1040–1054 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M., García-Jiménez, R., Taviani, M. & Machordom, A. Development of microsatellite markers in the deep-sea cup coral desmophyllum dianthus by 454 sequencing and cross-species amplifications in scleractinia order. J. Hered. 106, 322–330 (2015).CAS 
    PubMed 

    Google Scholar 
    Morrison, C. L., Springmann, M. J., Shroades, K. M. & Stone, R. P. Development of twelve microsatellite loci in the red tree corals Primnoa resedaeformis and Primnoa pacifica. Conserv. Genet. Resour. 7, 763–765 (2015).
    Google Scholar 
    Baranets, V., Forsman, Z. H. & Karl, S. A. Microsatellite loci for the plate-and-pillar coral, Porities rus. Conserv. Genet. Resour. 3, 519–521 (2011).
    Google Scholar 
    Gang, H. et al. Evaluating the reliability of microsatellite genotyping from low-quality DNA templates with a polynomial distribution model. Chin. Sci. Bull. 56, 2523–2530 (2011).
    Google Scholar 
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Casado-Amezúa, P. et al. Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral cladocora caespitosa (Anthozoa, Scleractinia). J. Hered. 102, 622–626 (2011).PubMed 

    Google Scholar 
    Nakajima, Y. et al. Microsatellite markers for multiple Pocillopora genetic lineages offer new insights about coral populations. Sci. Rep. 7, 1–8 (2017).ADS 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173 (2018).
    Google Scholar 
    Flot, J. F., Magalon, H., Cruaud, C., Couloux, A. & Tillier, S. Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biol. 331, 239–247 (2008).
    Google Scholar 
    Benzoni, F. et al. Morphological and genetic divergence between Mediterranean and Caribbean populations of Madracis pharensis (Heller 1868) (Scleractinia, Pocilloporidae): Too much for one species? Zootaxa 4471, 473–492 (2018).PubMed 

    Google Scholar 
    Filatov, M. V., Frade, P. R., Bak, R. P. M., Vermeij, M. J. A. & Kaandorp, J. A. Comparison between colony morphology and molecular phylogeny in the Caribbean Scleractinian Coral Genus Madracis. PLoS One 8, 1104 (2013).
    Google Scholar 
    Althaus, F. et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294 (2009).ADS 

    Google Scholar 
    Alonso, D. et al. Caracterización de las comunidades coralinas del Parque Nacional Natural Corales de Profundidad en el Caribe colombiano: una aproximación a la conservación de su biodiversidad. (2014).Cairns, S. D., Jaap, W. C. & Lang, J. Scleractinia (Cnidaria) of the Gulf of Mexico. (2009).Werding, B. & Erhardt, H. Un encuentro de Madracis Myriaster (Milne-Edwards & Haime) (Scleractinia) en la Bahia de Santa Marta. Colombia. Bull. Mar. Coast. Res. 9, 415 (1977).
    Google Scholar 
    Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12, 456–463 (2012).CAS 
    PubMed 

    Google Scholar 
    Culley, T. M. et al. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl. Plant Sci. 1, 1300027 (2013).
    Google Scholar 
    Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).CAS 
    PubMed 

    Google Scholar 
    Covarrubias-pazaran, A. G., Diaz-Garcia, L., Schlautman, B., Salazar, W. & Zalapa, J. Fragman: An R package for fragment analysis. BMC Genet. 17, 1–8 (2016).
    Google Scholar 
    Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2013).
    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14 (2014).
    Google Scholar  More

  • in

    Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    IPBES. The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. in Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. eds.). 1–552. https://ipbes.net/sites/default/files/downloads/pdf/individual_chapters_pollination_20170305.pdf (2016).Ollerton, J. et al. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    Linder, H. P. Morphology and the Evolution of Wind Pollination. Reproductive Biology 123–135 (Royal Botanic Gardens, 1998).
    Google Scholar 
    Friedman, J. & Barrett, S. C. H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 103, 1515–1527 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallai, N. et al. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Srinivasan, M. R. et al. Impact of Pesticides on Honey Bees and Pollinators. Pesticide Application in Agro Ecosystem-Its Dynamics and Implications 243–248 (TNAU Publications, 2015).
    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Impacts of Pesticides on Honey Bees. Beekeeping and Bee Conservation—Advances in Research. https://doi.org/10.5772/62487. (InTech, 2016).Berry, I. Dead bees don’t pollinate. Orchardist. New Zealand, 60, 287 (1987). Rev. Appl. Entomol. Ser. A 76, 1087 (1998).
    Google Scholar 
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101(10), 1262 (2011).
    Google Scholar 
    Sandilyan, S. Decline in honey bee population in Southern India: Role of disposable paper cups. J. Zool. Biosci. Res. 1, 6–9 (2014).
    Google Scholar 
    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article 

    Google Scholar 
    FAO. Declining Bee Populations Pose Threat to Global Food Security and Nutrition. UN World Bee Day, 20 May, Rome. https://www.fao.org/news/story/en/item/1194910/icode/. (2019).Najaran, Z.T. et al. Dill (Anethum graveolens L.) Essential Oils in Food Preservation, Flavor and Safety. https://doi.org/10.1016/C2012-0-06581-7 (Academic Press, 2016). Khare, C.P. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany. 1st edn. 326–327. (Springer, 2004).Jana, S. & Shekhawat, G. S. Anethum graveolens: An indian traditional medicinal herb and spice. Pharmacogn. Rev. 4, 179–184 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biesiada, A. et al. Nutritional value of garden dill (Anethum graveolens L.), depending on genotype. Notulae Bot. Horti Agrobot. Cluj-Napoca 47, 784–791 (2019).CAS 

    Google Scholar 
    Pulliah, T. Medicinal Plants in India. Vol. 1. 55–56. (Regency Publications New Delhi, 2002).Hornok, L. Cultivation and Processing of Medicinal Plants. 338. (Academic Publications, 1992).Nair, R. & Chanda, S. Antibacterial activities of some medicinal plants of the western region of India. Turk. J. Biol. 31, 231–236 (2007).
    Google Scholar 
    DASD. State Agriculture/Horticulture Departments/DASD Kozhikode, Kerala. https://www.dasd.gov.in/index.php/content/index/statistics (2020).Nemeth, E. & Szekely, G. Floral biology of medicinal plants I. Apiaceae species. Int. J. Horticult. Sci. 6, 133–136 (2000).
    Google Scholar 
    Weiss, E. A. Spice Crops. 268–283 (CAB International, 2002).Book 

    Google Scholar 
    Peter, K.V. Dill in Handbook of Herbs and Spices (Gupta, R., Answer, M.M., Sharma, Y.K. Eds.). 275–285. (Woodhead Publishing Limited, 2012).Meena, N. K. et al. Role of insect pollinators in pollination of seed spices—A review. Int. J. Seed Spices 5, 1–17 (2015).
    Google Scholar 
    Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 3rd edn. (Pergamon, 1980).
    Google Scholar 
    Ali, M., Saeed, S., Sajjad, A. & Whittington, A. In search of the best pollinators for canola (Brassica napus L.) production in Pakistan. Appl. Entomol. Zool. 46, 353–361 (2011).Article 

    Google Scholar 
    Singh, H., Swaminathan, R. & Hussain, T. Influence of certain plant products on the insect pollinators of coriander. J. Biopest. 3, 208–211 (2010).
    Google Scholar 
    Kant, K. et al. Relative abundance and foraging behavior of honey bee species on minor seed spice crops. Int. J. Seed Spices 3, 51–54 (2013).
    Google Scholar 
    Willmer, P. G. et al. The superiority of bumblebees to honeybees as pollinators: Insect visits to raspberry flowers. Ecol. Entomol. 19, 271–284 (1994).Article 

    Google Scholar 
    Stone, J. L. Components of pollination effectiveness in Psychotria suerrensis, a tropical distylous shrub. Oecologia 107, 504–512 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, K. M. Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia 109, 114–121 (1997).ADS 

    Google Scholar 
    Ivey, C. T. et al. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnate (Apocynaceae). Am. J. Bot. 90, 214–225 (2003).PubMed 
    Article 

    Google Scholar 
    Korpela, S. The influence of honeybee pollination on turnip rape (Brassica campestris) yield and yield components. Ann. Agric. Fenniae 27, 295–303 (1988).
    Google Scholar 
    Sabbahi, R. et al. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Cruciferae: Brassicacae). J. Econ. Entomol. 98, 267–372 (2005).Article 

    Google Scholar 
    Warakomska, Z. et al. Biology of the bloom and pollination of the umbelliferous vegetables. Part 1: garden dill (Anethum graveolens L.). Acta Agrobot. 35, 69–78 (1982).Article 

    Google Scholar 
    Meena, N. K. et al. Pollinator’s diversity and abundance on cumin (Cuminum cyminum L.) and their impact on yield enhancement at semi-arid region. J. Entomol. Zool. Stud. 6, 1017–1021 (2018).
    Google Scholar 
    Malhotra, S.K. & Vashishtha, B.B. Package of practices for production of seed spices. in Book Published by the Director, ICAR-National Research Centre on Seed Spices, Ajmer. 71–79. (2008).Chaudhary, O. P. diversity, foraging behaviour of floral visitors and pollination ecology of fennel (Foeniculum vulgare Mill). J. Spices Aromatic Crops 15, 34–41 (2006).
    Google Scholar 
    Rianti, P. et al. Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). HAYATI J. Biosci. 17, 38–42 (2010).Article 

    Google Scholar 
    Choi, S. W. & Jung, C. Diversity of insect pollinators in different agricultural crops and wild flowering plants in korea: Literature review. J. Apicult. 30, 191–201 (2015).MathSciNet 
    Article 

    Google Scholar 
    Siregar, E. F. et al. Diversity and abundance of insect pollinators in different agricultural lands in Jambi, Sumatera. HAYATI J. Biosci. 23, 13–17 (2016).Article 

    Google Scholar 
    Devi, M. et al. Diversity of insect pollinators in reference to seed set of mustard (Brassica juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 2131–2144 (2017).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide. 2nd edn. (Cambridge University Press, 1993).Dafni, A. Pollination Ecology: A Practical Approach (Oxford University Press, 1992).
    Google Scholar 
    Chaudhary, O. P. & Singh, J. Diversity, temporal abundance, foraging behaviour of floral visitors and effect of different modes of pollination on coriander (Coriandrum sativum L.). J. Spices Aromatic Crops 16, 8–14 (2007).
    Google Scholar 
    Kulkarni, S. R., Gurve, S. S. & Chormule, A. J. Effect of different indigenous bee attractants in onion (Allium cepa L.) crop. Ann. Plant Protect. Sci. 25, 78–82 (2017).
    Google Scholar 
    Manhare, J. S. & Painkra, G. P. Impact of bee attractants on bee visitation on buckwheat (Fagopyrum esculentum L.) crop. J. Entomol. Zool. Stud. 6, 28–31 (2018).
    Google Scholar 
    Kapas, A. et al. The kinetic of essential oil separation from fennel by microwave assisted hydro-distillation (MWHD). UPB Sci. Bull. Ser. B 73, 113–120 (2011).CAS 

    Google Scholar 
    Warrier, P. K. et al. Indian Medicinal Plants. Vol. 1. 153–157. (Orient Longman Limited, 1994).Baswana, K. S. Role of insect pollination on seed production in coriander and fennel. South Indian Horticult. 32, 117–118 (1984).
    Google Scholar 
    Koul, A. K. Pollination mechanism in Coriandrum sativum L. (Apiaceae). Proc. Indian Acad. Sci. Plant Sci. 99, 509–515 (1989).Article 

    Google Scholar 
    Narayana, E. S., Sharma, P. L. & Phadke, K. G. Insect pollinators of saunf (Foenicuum vulgare) with particular reference to the honeybees at Pusa (Bihar). Indian Bee J. 22, 7–13 (1960).
    Google Scholar 
    Mukherjee, S. et al. Pollination events in Nigella sativa L. black cumin. Int. J. Res. Ayurveda Pharm. 4, 342–344 (2013).Article 

    Google Scholar 
    Abrar, M. et al. Insect pollinators and their relative abundance on black cumin Nigella sativa L. at Dera Ismail Khan. J. Entomol. Zool. Stud. 5, 1252–1258 (2017).
    Google Scholar 
    Ollerton, J. & Louise, C. Latitudinal trends in plant-pollinator interactions: Are tropical plants more specialized?. Oikos 98, 340–350 (2002).Article 

    Google Scholar 
    Meena, N. K. et al. Diversity of floral visitors and foraging behavior and abundance of major pollinators on fennel under semi-arid conditions of Rajasthan. Int. J. Trop. Agric. 34, 1891–1897 (2016).
    Google Scholar 
    Sikdar, S. et al. Diurnal foraging activity of flower visiting insects on some seed spices under terai agro-climatic zone of West Bengal. J. Entomol. Zool. Stud. 7, 299–303 (2019).
    Google Scholar 
    Kapil, R. P. et al. Integration of bee behaviour with aphid control for seed production of Brassica campestris var. toria. Indian J. Entomol. 33, 221–223 (1971).
    Google Scholar 
    Bhalla, O. P. et al. Insect visitors of mustard bloom Brassica campestris var sarson, their number and foraging behavior under mid-hill conditions. J. Entomol. Res. 1, 15–17 (1983).
    Google Scholar 
    Rao, G. M. & Suryanarayana, M. C. Studies on the foraging behaviour of honeybees and its effect in seed yield of niger. Indian Bee J. 52, 31–33 (1990).
    Google Scholar 
    Abrol, D. P. Foraging behavior of Apis mellifera L. and A. cerana F. as determined by the energetics of nectar production in different cultivars of Brassica campestris var toria. J. Apicult. Sci. 51, 19–24 (2007).
    Google Scholar 
    Inouye, D. W. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumble bees. Oecologia 45, 197–201 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vicens, N. & Bosch, J. Pollination efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 29, 235–240 (2000).Article 

    Google Scholar 
    Singh, J. et al. Foraging rates of different Apis species visiting parental lines of Brassica napus L. Zoos’ Print J. 21, 2226–2227 (2006).Article 

    Google Scholar 
    Engel, E. C. & Irwin, R. E. Linking pollinator visitation and rate of pollen receipt. Am. J. Bot. 90, 1612–1618 (2003).Article 

    Google Scholar 
    Sihag, R. C. Insect pollination increase seed production in cruciferous and umbelliferous crops. J. Apic. Res. 25, 121–126 (1986).Article 

    Google Scholar 
    Verma, S. & Dwivedi, S. N. Floral biology of Trachyspermum ammi (Linn.) Spr. Inventi rapid. Planta Activa 2, 1–6 (2018).
    Google Scholar 
    Singh, B. Effectiveness of different pollinators on yield and quality of greenhouse grown tomatoes and melons: A review. Haryana J. Horticult. Sci. 31, 245–250 (2002).ADS 

    Google Scholar 
    Biswanath, B. et al. Role of insect pollinators in seed yield of coriander (Coriandrum sativum L.) and their electroantennogram response to crop volatiles. Agric. Res. J. 54, 227–235 (2017).Article 

    Google Scholar 
    Giannini, T. C. et al. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Pimentel, D. Economic and environmental impacts of invasive species and their management. Pesticides 21, 10–11 (2001).
    Google Scholar 
    Beck, K. G. et al. Invasive species defined in a policy context: Recommendations from the Federal Invasive Species Advisory Committee. Invasive. Plant. Sci. Manag. 1, 414–421. https://doi.org/10.1614/IPSM-08-089.1 (2008).Article 

    Google Scholar 
    Arya, A. K., Joshi, K. K., Bachheti, A. & Rawat, R. Status and impact of invasive and alien species on environment, and human welfare: an overview. Uttar Pradesh J. Zool. 42, 49–58 (2021).
    Google Scholar 
    Boone, M. D., Little, E. E. & Semlitsch, R. D. Overwintered bullfrog tadpoles negatively affect salamanders and anurans in native amphibian communities. Copeia 2004, 683–690. https://doi.org/10.1643/CE-03-229R1 (2004).Article 

    Google Scholar 
    Borzée, A., Kosch, T. A., Kim, M. & Jang, Y. Introduced bullfrogs are associated with increased Batrachochytrium dendrobatidis prevalence and reduced occurrence of Korean treefrogs. PLoS ONE 12, e0177860. https://doi.org/10.1371/journal.pone.0177860 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yap, T. A., Koo, M. S., Ambrose, R. F. & Vredenburg, V. T. Introduced bullfrog facilitates pathogen invasion in the western United States. PLoS ONE 13, e0188384. https://doi.org/10.1371/journal.pone.0188384 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gobel, N., Laufer, G. & Cortizas, S. Changes in aquatic communities recently invaded by a top predator: Evidence of American bullfrogs in Aceguá, Uruguay. Aquat. Sci. 81, 1–11. https://doi.org/10.1007/s00027-018-0604-1 (2019).Article 

    Google Scholar 
    Li, Y., Ke, Z., Wang, Y. & Blackburn, T. M. Frog community responses to recent American bullfrog invasions. Curr. Zool. 57, 83–92. https://doi.org/10.1093/czoolo/57.1.83 (2011).Article 

    Google Scholar 
    Vitousek, P. M., D’antonio, C. M., Loope, L. L., Rejmanek, M. & Westbrooks, R. Introduced species: a significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).
    Google Scholar 
    Ficetola, G. F. et al. Pattern of distribution of the American bullfrog Rana catesbeiana in Europe. Biol. Invasions. 9, 767–772. https://doi.org/10.1007/s10530-006-9080-y (2007).Article 

    Google Scholar 
    Lorvelec, O., & Détaint, M. Lithobates catesbeianus (Shaw), American bullfrog (Ranidae, Amphibia). Handbook of alien species in Europe. DAISIE (ed.). (Springer, 2009).Koo, K. S., Park, H. R., Choi, J. H. & Sung, H. C. Present status of non-native amphibians and reptiles traded in Korean online pet shops. J. Ecol. Environ. 3, 106–114. https://doi.org/10.13047/KJEE.2020.34.2.106 (2020).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. 100 of the world’s worst invasive alien species: A selection from the global invasive species database (Vol. 12) (Auckland: Invasive Species Specialist Group, 2000).Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species—The American bullfrog. Divers. Distrib. 13, 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada Island invasives: Eradication and management. IUCN (Gland, Switzerland). 2011, 1–542 (2011).
    Google Scholar 
    Oh, H. S. & Hong, C. E. Current conditions of habitat for Rana catesbeiana and Trachemys scripta elegans imported to Jeju-do, including proposed management plans. J. Ecol. Environ. 21, 311–317 (2007).
    Google Scholar 
    Park, D. et al. Conservation of amphibians in South Korea. Das, M. Wilkinson, and H. Heatwole (eds.). (2014).Groffen, J., Kong, S., Jang, Y. & Borzee, A. The invasive American bullfrog (Lithobates catesbeianus) in the Republic of Korea: history and recommendations for population control. Manag. Biol. Invasions. 10, 517. https://doi.org/10.3391/mbi.2019.10.3.08 (2019).Article 

    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010).
    Google Scholar 
    Kim, J. B. Taxonomic list and distribution of Korean amphibians. Korean J. Herpetol. 1, 1–13. https://doi.org/10.5145/KJCM.2010.13.3.144 (2010).CAS 
    Article 

    Google Scholar 
    Liu, X., McGarrity, M. E. & Li, Y. The influence of traditional Buddhist wildlife release on biological invasions. Conserv. Lett. 5, 107–114. https://doi.org/10.1111/j.1755-263X.2011.00215.x (2012).Article 

    Google Scholar 
    Snow, N. P. & Witmer, G. American bullfrogs as invasive species: a review of the introduction, subsequent problems, management options, and future directions. Proc. Vertebrate Pest Conf. 24, 86–89. https://doi.org/10.5070/V424110490 (2010).Article 

    Google Scholar 
    Lee, J. H., & Park, D. The encyclopedia of Korean amphibians. (Nature and Ecology, 2016).Park, C. D., Lee, C. W., Lim, J. C., Yang, B. G. & Lee, J. H. A study on the diet items of American Bullfrog (Lithobates catesbeianus) in Ga-hang Wetland Korea. J. Ecol. Environ. 32, 55–65. https://doi.org/10.13047/KJEE.2018.32.1.55 (2018).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adhikari, P., Kim, B. J., Hong, S. H. & Lee, D. H. Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea. Sci. Rep. 12, 1–12. https://doi.org/10.1038/s41598-022-07347-5 (2022).CAS 
    Article 

    Google Scholar 
    Shim, J. H. et al. A study to determine factors affecting bullfrog decline in Korea. Gwacheon, Republic of Korea. 38. (2005).Ra, N. Y. et al. Habitat requirements of the Gold-spotted pond frog (Rana chosenica): Implications for conservation and management plans. In 63th Annual Meeting of the Korean Association of Biological Sciences. (2008).Ministry of Environment. Act on the conservation and use of biological diversity. (2020).Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B: Biol. Sci. 283, 20152454. https://doi.org/10.1098/rspb.2015.2454 (2016).Article 

    Google Scholar 
    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207. https://doi.org/10.1002/fee.2020 (2019).Article 

    Google Scholar 
    Marino, C., Leclerc, C. & Bellard, C. Profiling insular vertebrates prone to biological invasions: What makes them vulnerable?. Glob. Change Biol. 28, 1077–1090. https://doi.org/10.1111/gcb.15941 (2022).CAS 
    Article 

    Google Scholar 
    Pearl, C. A., Adams, M. J., Bury, R. B. & McCreary, B. Asymmetrical effects of introduced bullfrogs (Rana catesbeiana) on native ranid frogs in Oregon. Copeia 2004, 11–20. https://doi.org/10.1643/CE-03-010R2 (2004).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island, China. J. Herpetol. 39, 668–674. https://doi.org/10.1670/78-05N.1 (2005).Article 

    Google Scholar 
    Liu, X. et al. Diet and prey selection of the Invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetol. Res. 6, 34–44. https://doi.org/10.16373/j.cnki.ahr.140044 (2015).Article 

    Google Scholar 
    Wang, Y., Wang, Y., Lu, P., Zhang, F. & Li, Y. Diet composition of post-metamorphic bullfrogs (Rana catesbeiana) in the Zhoushan archipelago, Zhejiang Province, China. Front. Biol. China. 3, 219–226. https://doi.org/10.1007/s11515-008-0036-8 (2008).CAS 
    Article 

    Google Scholar 
    Da Silva, E. T., Dos Reis, E. P., Feio, R. N. & Ribeiro Filho, O. P. Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais State, Brazil. S. Am. J. Herpetol. 4, 286–294. https://doi.org/10.2994/057.004.031 (2009).Article 

    Google Scholar 
    Ortíz-Serrato, L., Ruiz-Campos, G. & Valdez-Villavicencio, J. H. Diet of the exotic American bullfrog, Lithobates catesbeianus, in a stream of northwestern Baja California, Mexico. West. N. Am. Nat. 74, 116–122. https://doi.org/10.3398/064.074.0112 (2014).Article 

    Google Scholar 
    Ryan, M. J. The reproductive behavior of the bullfrog (Rana catesbeiana). Copeia 1, 108–114 (1980).Article 

    Google Scholar 
    Gahl, M. K., Calhoun, A. J. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703. https://doi.org/10.1672/08-56.1 (2009).Article 

    Google Scholar 
    Louette, G., Devisscher, S. & Adriaens, T. Control of invasive American bullfrog Lithobates catesbeianus in small shallow water bodies. Eur. J. Wildl. Res. 59, 105–114 (2013).Article 

    Google Scholar 
    Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100. https://doi.org/10.26496/bjz.2016.44 (2016).Article 

    Google Scholar 
    Willis, Y. L., Moyle, D. L. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana in Missouri. Copeia 1956, 30–41 (1956).Article 

    Google Scholar 
    Cooper, M. C. Movement, Habitat, and Home Range of Introduced Bullfrogs (Lithobates Catesbeianus) on Mad River Gravel Ponds (Humboldt Co., CA, USA), With Implications for Hydro-Modification as a Method of Management. Dissertation, Humboldt State University. https://digitalcommons.humboldt.edu/etd/40 (2017).Updated guidelines for reporting animal research. Percie du Sert, N. et al. The ARRIVE guidelines 2.0. J. Cereb. Blood Flow Metab. 40, 1769–1777. https://doi.org/10.1177/0271678X20943823 (2020).Article 

    Google Scholar 
    Stebbins, R. C. A Field Guide to Western Reptiles and Amphibians (Houghton Mifflin, 2003).
    Google Scholar 
    Howard, R. D. Alternative mating behaviors of young male bullfrogs. Am. Zool. 24, 397–406. https://doi.org/10.1093/icb/24.2.397 (1984).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J., & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea. 56–142 (National Institute of Environmental Research, 2011).Schmidt, K. & Schwarzkopf, L. Visible implant elastomer tagging and toe-clipping: Effects of marking on locomotor performance of frogs and skinks. Herpetol. J. 20, 99–105 (2010).
    Google Scholar 
    Heyer, R., Donnelly, M. A., Foster, M., & Mcdiarmid, R. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. (Smithsonian Institution, 2014).Muths, E. A radio transmitter belt for small ranid frogs. Herpetol. Rev. 34, 345–347 (2003).
    Google Scholar 
    McGarrity, M. E. & Johnson, S. A. A radio telemetry study of invasive Cuban treefrogs. Florida Sci. 73, 225–235 (2010).
    Google Scholar 
    Stinner, J., Zarlinga, N. & Orcutt, S. Overwintering behavior of adult bullfrogs, Rana catesbeiana, in northeastern Ohio. Ohio. J. Sci. 94, 8–13 (1994).
    Google Scholar 
    Wassens, S., Watts, R. J., Jansen, A. & Roshier, D. Movement patterns of southern bell frogs (Litoria raniformis) in response to flooding. Wildl. Res. 35, 50–58. https://doi.org/10.1071/WR07095 (2008).Article 

    Google Scholar 
    Bury, R. B., & Whelan, J. A. Ecology and management of the bullfrog (Vol. 155) (US Department of the Interior, Fish and Wildlife Service, 1985).Sepulveda, A. J. & Layhee, M. Description of fall and winter movements of the introduced American Bullfrog (Lithobates catesbeianus) in a Montana, USA, pond. Herpetol. Conserv. Biol. 10, 978–984 (2015).
    Google Scholar 
    Ingram, W. M. & Raney, E. C. Additional studies on the movement of tagged bullfrogs, Rana catesbeiana Shaw. Am. Midl. Nat. 29, 239–241 (1943).Article 

    Google Scholar 
    Wang, Y. & Li, Y. Habitat selection by the introduced American bullfrog (Lithobates catesbeianus) on Daishan Island, China. J. Herpetol. 43, 205–211. https://doi.org/10.1670/0022-1511-43.2.205 (2009).Article 

    Google Scholar 
    Werner, E. E., Wellborn, G. A. & McPeek, M. A. Diet composition in postmetamorphic bullfrogs and green frogs: implications for interspecific predation and competition. J. Herpetol. 29, 600–607 (1995).Article 

    Google Scholar 
    Yoo, M. S., Ra, C. H., Kwon, H. B., Kim, J. Y. & Kang, S. G. Reproductive cycle and maturation induction of oocytes in Rana rugosa. Korean J. Zool. 38, 96–105 (1995).
    Google Scholar 
    Chung, H. H. A Study on the Ecological Characteristics, Capture and Use of Bullfrog. Dissertation, Chosun University. (2002).Hirai, T. Diet composition of introduced bullfrog, Rana catesbeiana, in the Mizorogaike Pond of Kyoto, Japan. Ecol. Res. 19, 375–380. https://doi.org/10.1111/j.1440-1703.2004.00647.x (2004).Article 

    Google Scholar 
    Quagliata, S., Delfino, G., Giachi, F. & Malentacchi, C. Chemical skin defence in the Eastern fire-bellied toad Bombina orientalis: an ultrastructural approach to the mechanism of poison gland rehabilitation after discharge. Acta. Herpetol. https://doi.org/10.1400/181560 (2008).Article 

    Google Scholar 
    Lee, J. H. & Park, D. Effects of body size, operational sex ratio, and age on pairing by the Asian toad, Bufo stejnegeri. Zool. Stud. 48, 334–332 (2009).
    Google Scholar 
    Kim, I. H., Ham, C. H., Jang, S. W., Kim, E. Y. & Kim, J. B. Determination of breeding season, and daily pattern of calling behavior of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 23–29 (2012).
    Google Scholar 
    Jancowski, K. & Orchard, S. Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota. 16, 17–37. https://doi.org/10.3897/neobiota.16.3806 (2013).Article 

    Google Scholar 
    An, D. & Waldman, B. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol. Lett. 12, 20160018. https://doi.org/10.1098/rsbl.2016.0018 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borzée, A. et al. Temporal and spatial differentiation in microhabitat use: Implications for reproductive isolation and ecological niche specification. Integr. Zool. 11, 375–387. https://doi.org/10.1111/1749-4877.12200 (2016).Article 
    PubMed 

    Google Scholar 
    Borzee, A. et al. Yellow sea mediated segregation between North East Asian Dryophytes species. PLoS ONE 15, e0234299. https://doi.org/10.1371/journal.pone.0234299 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J. K., Kim, J. B. & Do, Y. Examination of physiological and morphological differences between farm-bred and wild black-spotted pond frogs (Pelophylax nigromaculatus). Life. 11, 1089. https://doi.org/10.3390/life11101089 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, A. C., Richgels, K. L., Johnson, P. T. & McKenzie, V. J. Investigating the dispersal routes used by an invasive amphibian, Lithobates catesbeianus, in human-dominated landscapes. Biol. Invasions. 15, 2179–2191. https://doi.org/10.1007/s10530-013-0442-y (2013).Article 

    Google Scholar 
    Austin, J. D., Dávila, J. A., Lougheed, S. C. & Boag, P. T. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12, 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Doubledee, R. A., Muller, E. B. & Nisbet, R. M. Bullfrogs, disturbance regimes, and the persistence of California red-legged frogs. J. Wildl. Manage. 67, 424–438 (2003).Article 

    Google Scholar 
    Hanselmann, R. et al. Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol. Conserv. 120, 115–119. https://doi.org/10.1016/j.biocon.2004.02.013 (2004).Article 

    Google Scholar 
    Adams, M. J., & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: is there any hope? In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. 679–693 (Springer, 2007).Fisher, M. C. & Garner, T. W. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal. Biol. Rev. 21, 2–9. https://doi.org/10.1016/j.fbr.2007.02.002 (2007).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021–3. https://www.iucnredlist.org. Accessed on [10.02.2022].Ministry of Environment. Enforcement decree of the wildlife protection and management act. (2018). More