More stories

  • in

    Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.Article 
    CAS 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.Article 
    CAS 

    Google Scholar 
    Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.Article 
    CAS 

    Google Scholar 
    Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.CAS 
    Article 

    Google Scholar 
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.CAS 
    Article 

    Google Scholar 
    Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.PubMed 
    Article 

    Google Scholar 
    Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.CAS 
    Article 

    Google Scholar 
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.CAS 
    Article 

    Google Scholar 
    Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.Article 

    Google Scholar 
    Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.Article 

    Google Scholar 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.CAS 
    Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.Article 
    CAS 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.PubMed 
    Article 

    Google Scholar 
    Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.Article 

    Google Scholar 
    Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.Article 

    Google Scholar 
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.PubMed 
    Article 

    Google Scholar 
    Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
    Google Scholar 
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.CAS 
    Article 

    Google Scholar 
    Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.PubMed 
    Article 

    Google Scholar 
    Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.CAS 
    Article 

    Google Scholar 
    Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.Article 
    CAS 

    Google Scholar 
    Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.Article 

    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.Article 
    CAS 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.Article 

    Google Scholar 
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
    Google Scholar 
    Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.CAS 
    Article 

    Google Scholar 
    Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
    Google Scholar 
    Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.CAS 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.Article 
    CAS 

    Google Scholar 
    Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.CAS 
    Article 

    Google Scholar 
    Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.Article 

    Google Scholar 
    He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.CAS 
    Article 

    Google Scholar 
    Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.Article 

    Google Scholar 
    Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.Article 

    Google Scholar 
    Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.Article 
    CAS 

    Google Scholar 
    MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.Article 

    Google Scholar 
    Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.Article 

    Google Scholar 
    Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.CAS 
    Article 

    Google Scholar 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.Article 

    Google Scholar  More

  • in

    Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon

    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).Article 

    Google Scholar 
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 
    Article 

    Google Scholar 
    Sonter, L. J., Barrett, D. J., Soares-filho, B. S. & Moran, C. J. Global demand for steel drives extensive land-use change in Brazil’ s Iron Quadrangle. Glob. Environ. Change 26, 63–72 (2014).Article 

    Google Scholar 
    Siqueira-Gay, J., Soares-Filho, B., Sánchez, L. E., Oviedo, A. & Sonter, L. J. Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 3, 356–362 (2020).Article 

    Google Scholar 
    El Bizri, H. R., Macedo, J. C. B. M., Plaglia, A. P. & Morcatty, T. Q. Mining undermining Brazil’s environment. Science 353, 2–3 (2016).Article 

    Google Scholar 
    Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).CAS 
    Article 

    Google Scholar 
    Rudke, A. P. et al. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: a GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020).Article 

    Google Scholar 
    Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).CAS 
    Article 

    Google Scholar 
    Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).Article 

    Google Scholar 
    PADDDtracker.org Data Release Version 2.0 (Conservation International and World Wildlife Fund, 2019); https://doi.org/10.5281/zenodo.3371733Bebbington, A. J., Humphreys, D., Aileen, L., Rogan, J. & Agrawal, S. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).CAS 
    Article 

    Google Scholar 
    Paiva, P. F. P. R. et al. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38 (2020).Article 

    Google Scholar 
    Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.12.005 (2020).Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manage. 180, 409–420 (2016).Article 

    Google Scholar 
    Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).Article 

    Google Scholar 
    Craig, M. D., White, D. A., Stokes, V. L. & Prince, J. Can postmining revegetation create habitat for a threatened mammal? Ecol. Manage. Restor. 18, 149–155 (2017).Article 

    Google Scholar 
    Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).Article 
    CAS 

    Google Scholar 
    Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).Article 

    Google Scholar 
    Siqueira-Gay, J. & Sánchez, L. E. Keep the Amazon niobium in the ground. Environ. Sci. Policy 111, 1–6 (2020).CAS 
    Article 

    Google Scholar 
    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014).Article 

    Google Scholar 
    Whitehead, A. L., Kujala, H. & Wintle, B. A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: a new frontier for conservation planning. Conserv. Lett. 10, 195–204 (2017).Article 

    Google Scholar 
    Jenner, N. Making Mining ‘Forest-Smart’: Executive Summary Report (World Bank, 2019); http://documents.worldbank.org/curated/en/369711560319906622/Making-Mining-Forest-Smart-Executive-Summary-ReportRenca: Situação legal dos direitos minerários da reserva nacional do cobre (WWF, 2017).Soares-Filho, B. S., Cerqueira, G. C. & Pennachin, C. L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Modell. 154, 217–235 (2002).Article 

    Google Scholar 
    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).Article 

    Google Scholar 
    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).Article 

    Google Scholar 
    Rorato, A. C. et al. Brazilian Amazon Indigenous peoples threatened by mining bill. Environ. Res. Lett. 15, 1040a3 (2020).Article 

    Google Scholar 
    Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. M. Mining threatens isolated Indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, (2022).Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).Article 

    Google Scholar 
    Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).CAS 
    Article 

    Google Scholar 
    Tallis, H., Kennedy, C. M., Ruckelshaus, M., Goldstein, J. & Kiesecker, J. M. Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015).Article 

    Google Scholar 
    Bull, J. W. et al. Quantifying the “avoided” biodiversity impacts associated with economic development. Front. Ecol. Environ. https://doi.org/10.1002/fee.2496 (2022).Gastauer, M. et al. Mine land rehabilitation: modern ecological approaches for more sustainable mining. J. Clean. Prod. 172, 1409–1422 (2018).Article 

    Google Scholar 
    Souza, B. A., Rosa, J. C. S., Siqueira-Gay, J. & Sánchez, L. E. Mitigating impacts on ecosystem services requires more than biodiversity offsets. Land Use Policy 105, 105393 (2021).Article 

    Google Scholar 
    Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).Article 

    Google Scholar 
    Good Practice Handbook: Cumulative Impact Assessment and Management, Guidance for the Private Sector in Emerging Markets (IFC, 2013).Gunn, J. H. & Noble, B. F. Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. J. Environ. Assess. Policy Manage. 11, 267–290 (2009).Article 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. The Amazon’ s road to deforestation. Science 20, 20–22 (2020).
    Google Scholar 
    Runge, C. A., Tulloch, A. I. T., Gordon, A. & Rhodes, J. R. Quantifying the conservation gains from shared access to linear infrastructure. Conserv. Biol. 31, 1428–1438 (2017).Article 

    Google Scholar 
    Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Development by design: blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 8, 261–266 (2010).Article 

    Google Scholar 
    Heiner, M. et al. Moving from reactive to proactive development planning to conserve Indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13 (2019).Article 

    Google Scholar 
    Pfaff, A., Robalino, J., Herrera, D. & Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data. Acta Amazon. 46, 291–302 (2008).Article 

    Google Scholar 
    Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004 (2016).Article 

    Google Scholar 
    Boham-Carter, G. F. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).Soares-Filho, B., Rodrigues, H. & Follador, M. A hybrid analytical–heuristic method for calibrating land-use change models. Environ. Model. Softw. 43, 80–87 (2013).Article 

    Google Scholar 
    INPE. TerraClass https://www.terraclass.gov.br/geoportal-aml/ (2021).INPE. Slope http://www.dsr.inpe.br/topodata/acesso.php (2020).Ministério do Meio Ambiente (MMA). Conservation units http://mapas.mma.gov.br/i3geo/datadownload.htm (2022).Fundação Nacional do Índio (FUNAI). Indigenous lands http://www.funai.gov.br/index.php/shape (2021).Leite-Filho, A., Soares-filho, B. S., Davis, J. & Rodrigues, H. Dinamica EGO Guidebook (Centro de Sensoriamento Remoto, UFMG, 2020).Serviço Geológico do Brasil. Mineral deposits https://geosgb.cprm.gov.br/ (2020).Soares-Filho, B. et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém-Cuiabá corridor. Glob. Change Biol. 10, 745–764 (2004).Article 

    Google Scholar 
    Centro de Sensoriamento Remoto. Biodiversity https://csr.ufmg.br/amazones/biodiversity/ (2021).Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Pardini, R., de Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803 (2020).CAS 
    Article 

    Google Scholar 
    Cabral, A. I. R., Saito, C., Pereira, H. & Laques, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).Article 

    Google Scholar 
    Colson, F., Bogaert, J. & Ceulemans, R. Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol. Indic. 11, 1467–1471 (2011).Article 

    Google Scholar 
    Monmonier, M. S. Measures of pattern complexity for choroplethic maps. Am. Cartogr. 1, 159–169 (1974).Article 

    Google Scholar 
    Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).Article 

    Google Scholar 
    Soares-Filho, B. et al. Roads, http://maps.csr.ufmg.br/ (2016). More

  • in

    Warming response of peatland CO2 sink is sensitive to seasonality in warming trends

    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).CAS 
    Article 

    Google Scholar 
    Tang, R. et al. Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nat. Clim. Change 12, 380–385 (2022).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 
    Article 

    Google Scholar 
    Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).CAS 
    Article 

    Google Scholar 
    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).
    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23, 3231–3248 (2017).Article 

    Google Scholar 
    Koebsch, F. et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob. Change Biol. 26, 876–887 (2020).Article 

    Google Scholar 
    Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Helfter, C. et al. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12, 1799–1811 (2015).Article 

    Google Scholar 
    Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).Article 

    Google Scholar 
    Mäkiranta, P. et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Glob. Change Biol. 24, 944–956 (2018).Article 

    Google Scholar 
    Li, Q. et al. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biol. Biochem. 153, 108077 (2021).CAS 
    Article 

    Google Scholar 
    Moore, T. R. et al. Spring photosynthesis in a cool temperate bog. Glob. Change Biol. 12, 2323–2335 (2006).Article 

    Google Scholar 
    Korrensalo, A. et al. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences 14, 257–269 (2017).CAS 
    Article 

    Google Scholar 
    Weltzin, J. F. et al. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81, 3464–3478 (2000).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    CAS 

    Google Scholar 
    Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).Article 
    CAS 

    Google Scholar 
    Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 
    Article 

    Google Scholar 
    Nichols, D. S. Temperature of upland and peatland soils in a north central Minnesota forest. Can. J. Soil Sci. 78, 493–509 (1998).Article 

    Google Scholar 
    Bellisario, L. M., Moore, T. R. & Bubier, J. L. Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Écoscience 5, 534–541 (1998).Article 

    Google Scholar 
    Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).Article 

    Google Scholar 
    Hanson, P. J. et al. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Adv. 1, e2020AV000163 (2020).Article 

    Google Scholar 
    Vincent, L. A. et al. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 28, 4545–4560 (2015).Article 

    Google Scholar 
    Templer, P. H. et al. Climate Change Across Seasons Experiment (CCASE): a new method for simulating future climate in seasonally snow-covered ecosystems. PLoS ONE 12, e0171928 (2017).Article 
    CAS 

    Google Scholar 
    Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).Article 

    Google Scholar 
    Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).CAS 
    Article 

    Google Scholar 
    Griffis, T. J., Rouse, W. R. & Waddington, J. M. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Glob. Biogeochem. Cycles 14, 1109–1121 (2000).CAS 
    Article 

    Google Scholar 
    Bubier, J. L., Crill, P. M., Moore, T. R., Savage, K. & Varner, R. K. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob. Biogeochem. Cycles 12, 703–714 (1998).CAS 
    Article 

    Google Scholar 
    Park, S.-B. et al. Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia. Atmosphere 12, 984 (2021).CAS 
    Article 

    Google Scholar 
    Adkinson, A. C., Syed, K. H. & Flanagan, L. B. Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J. Geophys. Res. Biogeosci. 116, G01004 (2011).Article 
    CAS 

    Google Scholar 
    Heiskanen, L. et al. Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences 18, 873–896 (2021).CAS 
    Article 

    Google Scholar 
    Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. & Moore, T. R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 17, 1036 (2003).Article 
    CAS 

    Google Scholar 
    Joiner, D. W., Lafleur, P. M., McCaughey, J. H. & Bartlett, P. A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res. Atmos. 104, 27663–27672 (1999).CAS 
    Article 

    Google Scholar 
    McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. & Kiely, G. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. For. Meteorol. 194, 8–19 (2014).Article 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Change 10, 555–560 (2020).CAS 
    Article 

    Google Scholar 
    Bourgault, M.-A., Larocque, M. & Garneau, M. How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands? J. Hydrol. X 4, 100032 (2019).Article 

    Google Scholar 
    Yurova, A., Wolf, A., Sagerfors, J. & Nilsson, M. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: modeling mechanisms linked to water table position. J. Geophys. Res. Biogeosci. 112, G02025 (2007).Article 
    CAS 

    Google Scholar 
    Laine, A. M. et al. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Change Biol. 25, 1995–2008 (2019).Article 

    Google Scholar 
    Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W. & McGuire, A. D. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12, 1329–1342 (2009).CAS 
    Article 

    Google Scholar 
    Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).CAS 
    Article 

    Google Scholar 
    Hao, D. et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sens. Environ. 232, 111320 (2019).Article 

    Google Scholar 
    O’Donnell, J. A., Romanovsky, V. E., Harden, J. W. & McGuire, A. D. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci. 174, 646–651 (2009).Article 
    CAS 

    Google Scholar 
    Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).Article 

    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).CAS 
    Article 

    Google Scholar 
    Samson, M. et al. The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in northern Poland. Wetlands 38, 551–563 (2018).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).CAS 
    Article 

    Google Scholar 
    Hemes, K. S., Runkle, B. R. K., Novick, K. A., Baldocchi, D. D. & Field, C. B. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ. Sci. Technol. 55, 3494–3504 (2021).CAS 
    Article 

    Google Scholar 
    Walker, T. W. N. et al. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nat. Ecol. Evol. 4, 101–108 (2020).Article 

    Google Scholar 
    Xu, B. et al. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob. Change Biol. 26, 901–918 (2020).Article 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Joyce, P. et al. How robust Is the apparent break-down of northern high-latitude temperature control on spring carbon uptake? Geophys. Res. Lett. 48, e2020GL091601 (2021).Article 

    Google Scholar 
    Grant, R. F. et al. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiol. 29, 1–17 (2009).CAS 
    Article 

    Google Scholar 
    Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).CAS 
    Article 

    Google Scholar 
    Yu, Z., Griffis, T. J. & Baker, J. M. Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt. Commun. Earth Environ. 2, 53 (2021).Article 

    Google Scholar 
    Wang, S. et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295, 108195 (2020).Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).CAS 
    Article 

    Google Scholar 
    Lin, X. et al. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl Acad. Sci. USA 117, 21079–21087 (2020).CAS 
    Article 

    Google Scholar 
    Helbig, M. et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Zenodo https://doi.org/10.5281/zenodo.6685222 (2022).Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC (2015); https://doi.org/10.5067/MODIS/MOD13Q1.006Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Lees, K. J. et al. Using spectral indices to estimate water content and GPP in Sphagnum moss and other peatland vegetation. IEEE Trans. Geosci. Remote Sens. 58, 4547–4557 (2020).Article 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Juottonen, H. et al. Integrating decomposers, methane-cycling microbes and ecosystem carbon fluxes along a peatland successional gradient in a land uplift region. Ecosystems https://doi.org/10.1007/s10021-021-00713-w (2021). More

  • in

    Nepotistic colony fission in dense colony aggregations of an Australian paper wasp

    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ross, K. G. & Matthews, R. W. The Social Biology of Wasps (Cornell University Press, 1991).Book 

    Google Scholar 
    Itô, Y. & Higashi, S. Spring behaviour of Ropalidia plebeiana (Hymenoptera: Vespidae) within a huge aggregation of nests. Appl. Entomol. Zool. 22, 519–527 (1987).Article 

    Google Scholar 
    Saito, F. & Kojima, J.-I. Colony cycle in the south-eastern coastal populations of Ropalidia plebeiana, the only Ropalidia wasp occurring in temperate Australia. Entomol. Sci. 8, 263–275 (2005).Article 

    Google Scholar 
    Richards, O. W. The Australian social wasps (Hymenoptera: Vespidae). Aust. J. Zool. Suppl. Ser. 26, 1–132 (1978).Article 

    Google Scholar 
    Makino, S., Yamane, S., Itô, Y. & Spradbery, J. P. Process of comb division of reused nests in the Australian paper wasp Ropalidia plebeinana (Hymenoptera, Vespidae). Ins. Soc. 41, 411–422 (1994).Article 

    Google Scholar 
    Goodnight, K. F. & Queller, D. C. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8, 1231–1234 (1999).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crochet, P.-A. Genetic structure of avian populations—Allozymes revisited. Mol. Ecol. 9, 1463–1469 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Res. 11, 5–18 (2011).Article 

    Google Scholar 
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Itô, Y., Yamane, S. & Spradbery, J. P. Population consequences of huge nesting aggregations of Ropalidia plebeiana (Hymenoptera: Vespidae). Res. Popul. Ecol. 30, 279–295 (1988).Article 

    Google Scholar 
    Boomsma, J. J. & d’Ettorre, P. Nice to kin and nasty to non-kin: revisiting Hamilton’s early insights on eusociality. Biol. Lett. 9, 20130444 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parsons, P. J., Grinsted, L. & Field, J. Partner choice correlates with fine scale kin structuring in the paper wasp Polistes dominula. PLoS ONE 14, e0221701 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strassmann, J. E., Queller, D. C., Solis, C. R. & Hughes, C. R. Relatedness and queen number in the Neotropical wasp, Parachartergus colobopterus. Anim. Behav. 42, 461–470 (1991).Article 

    Google Scholar 
    Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S. & Field, J. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333, 874–876 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Field, J. & Leadbeater, E. Cooperation between non-relatives in a primitively eusocial paper wasp, Polistes dominula. Philos. Trans. R. Soc. B 371, 20150093 (2016).Article 

    Google Scholar 
    Bhadra, A. & Gadagkar, R. We know that the wasps “know”: cryptic successors to the queen in Ropalidia marginata. Biol. Lett. 4, 634–637 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, A. & Gadagkar, R. Reproductive queue without overt conflict in the primitively eusocial wasp Ropalidia marginata. Proc. Nat. Acad. Sci. USA 109, 14494–14499 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frank, S. A. Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39, 949–964 (1985).PubMed 
    Article 

    Google Scholar 
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. R. Soc. Lond. B. 275, 1761–1765 (2008).
    Google Scholar 
    Schwarz, M. P. Local resource enhancement and sex ratios in a primitively social bee. Nature 331, 346–348 (1988).ADS 
    Article 

    Google Scholar 
    Cronin, A. L. & Schwarz, M. P. Sex ratios, local fitness enhancement and eusociality in the allodapine bee Exoneura richardsoni. Evol. Ecol. 11, 567–577 (1997).Article 

    Google Scholar 
    Schwarz, M. P., Bull, N. J. & Hogendoorn, K. Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Ins. Soc. 45, 349–368 (1998).Article 

    Google Scholar 
    Gamboa, G. J., Wacker, T. L., Duffy, K. G., Dobson, S. W. & Fishwild, T. G. Defence against intraspecific usurpation by paper wasp cofoundresses (Polistes fuscatus, Hymenoptera: Vespidae). Can J. Zool. 70, 2369–2372 (1992).Article 

    Google Scholar 
    Katada, S. & Iwahashi, O. Characteristics of usurped colonies in the subtropical paper wasp, Ropalidia fasciata (Hymenoptera: Vespidae). Ins. Soc. 43, 247–253 (1996).Article 

    Google Scholar 
    Yamane, S. Ecological factors influencing the colony cycle of Polistes wasps. in Natural History and Evolution of Paper-Wasps (Turillazzi, S. & West-Eberhard, M. J. eds.). 75–97. (Oxford University Press, 1996).Clouse, R. Some effects of group size on the output of beginning nests of Mischocyttarus mexicanus (Hymenoptera: Vespidae). Flor. Entomol. 84, 418–425 (2001).Article 

    Google Scholar 
    Strassmann, J. E. Female-biased sex ratios in social insects lacking morphological castes. Evolution 38, 256–266 (1984).PubMed 

    Google Scholar 
    Suzuki, T. Production schedule of males and reproductive females, investment sex ratios, and worker-queen conflict in paper wasps. Am. Nat. 128, 366–378 (1986).Article 

    Google Scholar 
    Tsuchida, K. & Suzuki, T. Conflict over sex ratio and male production in paper wasps. Ann. Zool. Fenn. 43, 468–480 (2006).
    Google Scholar 
    Ohtsuki, H. & Tsuji, K. Adaptive reproduction schedule as a cause of worker policing in social Hymenoptera: A dynamic game analysis. Am. Nat. 173, 747–758 (2009).PubMed 
    Article 

    Google Scholar 
    Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS 
    PubMed 

    Google Scholar 
    Bassam, B. J., Caetano-Anolles, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECHER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Meirmans, P. G. GenoDive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Res. 20, 1126–1131 (2020).CAS 
    Article 

    Google Scholar 
    Michalakis, Y. & Excoffier, L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142, 1061–1064 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. & vonHoldt, B. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191 (2015).CAS 
    Article 

    Google Scholar 
    Goodnight, K. F. Relatedness 4.2c Release (Rice University, 1996).
    Google Scholar 
    Queller, D. C. A method for detecting kin discrimination within natural colonies of social insects. Anim. Behav. 47, 569–576 (1994).Article 

    Google Scholar  More

  • in

    Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

    Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).ADS 
    Article 

    Google Scholar 
    Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).
    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).Article 

    Google Scholar 
    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).Article 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).Article 

    Google Scholar 
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).Article 

    Google Scholar 
    Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS 
    Article 

    Google Scholar 
    Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).Article 

    Google Scholar 
    Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).Article 

    Google Scholar 
    Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).Article 

    Google Scholar 
    Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).ADS 
    Article 

    Google Scholar 
    Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).ADS 
    Article 

    Google Scholar 
    Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).ADS 
    Article 

    Google Scholar 
    Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).Article 

    Google Scholar 
    Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).Article 

    Google Scholar 
    Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).CAS 
    Article 

    Google Scholar 
    Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).ADS 
    Article 

    Google Scholar 
    Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species

    Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).Article 

    Google Scholar 
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).Article 

    Google Scholar 
    Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).PubMed 
    Article 

    Google Scholar 
    Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).Article 

    Google Scholar 
    Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).Article 

    Google Scholar 
    Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).Article 

    Google Scholar 
    Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).Article 

    Google Scholar 
    Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).Article 

    Google Scholar 
    Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).Article 

    Google Scholar 
    Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).PubMed 
    Article 

    Google Scholar 
    Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).Article 

    Google Scholar 
    Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).
    Google Scholar 
    Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).Article 

    Google Scholar 
    Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).
    Google Scholar 
    González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).
    Google Scholar 
    Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).PubMed 
    Article 
    ADS 

    Google Scholar 
    Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS 
    Article 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).Article 

    Google Scholar 
    Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).CAS 
    Article 

    Google Scholar 
    Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).Article 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).PubMed 
    Article 

    Google Scholar 
    Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).PubMed 
    Article 

    Google Scholar 
    Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).PubMed Central 
    Article 

    Google Scholar 
    Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).
    Google Scholar 
    Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).Article 

    Google Scholar 
    DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).CAS 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).Article 

    Google Scholar 
    Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).Article 

    Google Scholar 
    Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).Book 

    Google Scholar 
    Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).
    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).
    Google Scholar 
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).MATH 

    Google Scholar 
    Crawley, M. J. The R Book (Wiley, 2007).MATH 
    Book 

    Google Scholar 
    Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).PubMed 
    Article 

    Google Scholar 
    Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).CAS 
    Article 

    Google Scholar 
    Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).PubMed 
    Article 

    Google Scholar 
    Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).
    Google Scholar 
    Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).Article 

    Google Scholar 
    Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).CAS 
    PubMed 

    Google Scholar 
    Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).PubMed 
    Article 

    Google Scholar 
    Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).Article 

    Google Scholar 
    Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).PubMed 
    Article 

    Google Scholar 
    van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).Article 

    Google Scholar 
    Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).Article 

    Google Scholar 
    Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).
    Google Scholar 
    Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).Article 

    Google Scholar 
    Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Visser B et al. Why do
    many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
    https://doi.org/10.32942/osf.io/zpf4jArakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).Article 

    Google Scholar 
    Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
    wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).PubMed 
    Article 

    Google Scholar 
    Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).
    Google Scholar 
    Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).CAS 
    Article 

    Google Scholar 
    Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).Chapter 

    Google Scholar  More

  • in

    Understanding the spatial distribution and hot spots of collared Bornean elephants in a multi-use landscape

    By pooling the results of the entire known range analysis of 14 GPS-collared elephants living in the Kinabatangan, our study suggests that this populations range covers at least 628 km2 (Table 3). Nine different locations were identified as hot spots, representing 266.9 km2 or 43% of this range, suggesting that just under half is highly used and/or frequented (Fig. 1). We found that the size of individual’s hot spots was positively related to the size of the entire range, meaning the larger the entire range the larger the summed area of an elephants hot spots. On average, hot spots represented a relatively small percent of an animal’s entire range (ranging from 4 to 20%, averaging 12%, Table 3). However, time spent within these hot spots ranged from 10 to 60% (averaging 34% across elephants, Table 5), with time spent in hot spots being related to the overall size of the hot spots (the larger the hot spot the more time elephants spent in them).Identifying the location of these hot spots is essential in designing appropriate management practices in collaboration with land users and identifying the best location for elephant corridors. In the last 25 years, forest cover in the Lower Kinabatangan has been drastically reduced and fragmented46, eroding the biodiversity value of this landscape. Today, this region has little remaining forests, and what is left is insufficient for sustaining the local elephant population10. Moreover, forests are highly fragmented along the Kinabatangan River, with a number of bottlenecks constraining elephant movements9. The situation in this landscape is getting worse because of further land clearances for agriculture, namely oil palm; as well as for the highly controversial Sukau Bridge and new road/highway that is planned for the region.Our analyses revealed a highly significant difference between the average proportions of protected area, unprotected forest, and oil palm estate extents within the elephant’s entire range; and a substantive, but not significant, difference across these land use/land cover types within hot spots (Table SI 4). At the individual level, there was a highly significant negative relationship between the proportion of protected areas and oil palm estates both within the elephant’s entire range and within the hot spots.At the pooled level, we found that around 45% of the entire known range and hot spots were within forested environments (280.44 km2 and 120.29 km2 respectively). Our results showed strong fidelity of certain elephants to these forested habitats. Our k-means cluster analysis found that within elephant entire ranges and hot spots, two out of the three cluster groups had high or very high usage of forests. Both cluster 1, for the entire range, and cluster 1 for hot spots extents, had five females that on average used forest environments 90% of their time, with protected areas being used 64% and 59%, and unprotected forested being used on average 26% and 31%, respectively (Table 7).Individuals in cluster 2, for the entire range analysis, on average, spent 73% of their time in forests (57% of this in protected areas and 16% in unprotected forests; Table 7). For the hot spot analysis, the individuals in cluster 2 spent on average 65% of their time in forests (52% of this in the unprotected forests and 13% in protected forests; Table 7). Elephants within these clusters were all females. Our results suggest that forest may be of particular importance for females as they had forest as their dominant land cover type within their entire range, hot spot extents and time spent analyses (Fig. 3, Table 5). Several studies have shown that adult females influence and guide the movement patterns and habitat utilization for their family group and that females in family units tend to inhabit less risky areas, such as within natural forest habitat60,61,62.However, the unprotected forest is at risk. We identified about 8% (or 49 km2) of forest identified within the pooled entire known range were not protected, with half potentially being on state land, and the remaining half on land titles of various types (Table SI 4). For the pooled hot spot areas, unprotected forest was proportionally higher, comprising of 11% (or 29 km2) of the total extent, with 54% being potentially on State land and 46% on land titles (Table SI 4). Protecting these forests would be an essential and efficient way to secure key elephant habitat since all collared individuals were using these forest fragments in their entire range (averaging 11%, and ranging from 8 to 18%), and hot spot extents (averaging 20%, and ranging from 0 to 53%) (Table SI 4, Fig. 3). On average, 24% of time was spent in unprotected forests within hot spots, though this varied widely from 0% (for the male elephant known as Gading) to 61% (for the female matriarch named Jasmine) (Table 5). In fact, five females had large proportions of their hot spot extents (24–53%) in unprotected forests, spending substantial periods of their time (33–61%) within these threatened areas.Our findings show that unprotected forests around the villages of Bilit and Sukau, were of particular significance (Figs. 1, 2). These unprotected forests largely consist of lowland dry forest, seasonally flooded swamp forest, and swamp forest, which are considered important habitats for elephants for feeding, resting and moving47,63. Within these forests, and along the forest margins and river banks there are also natural open grasslands that consist of Phragmites karka and Dinochloa scabrida that provide essential forage, mainly in the riparian areas for elephants9,21,23. Forested environments are also considered to be important in providing natural refugee from human activities and disturbance. For example, elephants have been documented to form significantly larger group sizes, as well as engaging in significantly more social interactions, in natural forest habitat compared to, for example, oil palm landscapes63. Adult females, generally, avoid areas considered unsafe for their respective social units, are more selective in the resources they use, and require regular access to water because of the presence of young64,65,66. This may be why our results, strongly suggest that forest habitats seem to be most important for adult females.Another significant issue faced by these elephants is the threat from the controversial planned Sukau bridge and road/highway that is set out in the Sabah Structure Plan, an overarching policy document for the State58. Currently, a new road/highway is under construction on the northern bank of the village of Sukau, and this has already cleared areas of unprotected forest. This public road could link to a potential new bridge that would cross over the Kinabatangan River, cutting through unprotected forest and a protected area (Lower Kinabatangan Wildlife Sanctuary), before going through oil palm estates then through another protected area to the south and through the Tabin elephant population range. For the Kinabatangan, creating a public highway will cut the elephant population range into two parts (Figs. 2, 3). All collared elephants use this area, as it is a key bottleneck and the only alternative option to pass around Sukau village9. We found that nine elephants have hot spots that intersect or meet up with the current road (which will be up-graded and get considerably busier) and/or the planned road/highway alignment (Figs. SI 1 and 2). For these elephants, we calculated that they spent from 2 to 44% (average 14%) of their time within these hot spots (Table 4). Our statistical analyses suggest that if the road/highway goes ahead it will have a significant impact on the elephants’ behaviour with respect to time spent in the hot spots. Indeed, this infrastructure project could have dire consequences for these elephants and their family groups, by disrupting their ranging patterns and segmenting the entire elephant range into two (Figs. 2, 4). The existing road in Batu Putih has already proven to be an impassable barrier for this elephant population, as no elephants have been observed crossing this road since the early 2000s14. For elephants that do try and cross, vehicle collisions may become a significant threat to elephants and drivers alike67, and potentially increasing human–elephant conflict in the nearby villages, as well as in plantations14,68,69, exacerbating an already difficult situation for this small and fragmented population.Results from the pooled analysis show that about 53% of the entire known population range is within oil palm estates; and 51% for the pooled hot spots (Fig. 3, Table SI 4). Our k-means clustering analysis grouped 6 elephants into cluster 3 that on average spent 57% of time in oil palm estates; and 7 elephants into cluster 2 within the hot spot analysis that on average spent 73% of their time in oil palm estates (Table 6). All the males, were clustered within these groups (Table 5). In fact, the three collared males were amongst the highest users of oil palm estates (Fig. 3, Table SI4, and 5). This could be related to a ‘‘high risk, high gain’’ strategy, often adopted by males to increase body size and enhance reproductive success32,33,60. However, it is interesting to see that three females (Ita, Ratu and Koyah) and their respective social units, also seemed to have high levels of oil palm use, while other individuals had zero or very little use of oil palm (e.g. Aqeela, Jasmin, Sandi, Kasih; Table SI 4, Fig. 3). Differential choices may result from differences in individual knowledge and experience with people during past encounters, for example70,71.We identified that collared elephants were ranging in 11 known oil palm estates, with the five most regularly used being Melangking Oil Palm Plantation (with 12 elephants entire range overlapping with this estate and six hot spots), IOI Corporation (with 11 overlapping entire ranges, and eight hot spots), Genting Plantations (14 and seven, respectively), Sime Darby Plantation (five and two, respectively), and Karangan Agriculture (8 and 2, respectively) (Table 6; Fig. 4). Presence of bottlenecks and barriers (e.g. electric fences) may explain hot spot occurrences in these estates, as well as feeding opportunities, management strategies of specific estates, and historical and seasonal ranges.Linear features like major highways, electric fences and drainage ditches hamper elephant movements within the Lower Kinabatangan9. A previous study identified 20 bottlenecks in the Lower Kinabatangan with the two main ones (of 9 km and 6.5 km in length) found around the village of Sukau9. In addition, the unplanned and chaotic erection of electric fences by large estates and smallholdings has disrupted significantly elephant movement patterns and resulted in artificial hot spots for certain individuals (e.g. Liun, Ita, Gading and Sejati)35,72. Electric fences have widely been used to mitigate human–elephant conflicts. The establishment of fences rarely consider the traditional elephant routes nor the location of existing fences in neighbouring estates. If elephants manage to enter such areas, they often become trapped and experience difficulties in returning to nearby forests, exacerbating conflicts with people35.Certain estates such as Melangking Oil Palm Plantation have allowed elephants to roam freely in their estate (Muhammad Al-Shafieq, personal communication). Since 2017, this plantation has shown a drastic reduction in damages to their oil palms following the removal of their permanent electric fences surrounding their entire estate. Instead, this plantation is using a temporary electric fencing regime around newly planted palm areas. Concurrently, they now do not push elephants out of their estate, which can explain why Melangking Oil Palm Plantation is a significant hotspot in the region.Another reason why elephant ranges incorporate oil palm estates is to move between forest patches that are becoming completely isolated following forest conversion, as is the case close to Sukau (Fig. SI1 and SI2; Fig. 1). Unlike other elephant species that increase their speed of movement rates in highly disturbed areas27,30,66, the Bornean elephant has been observed doing the opposite, which may explain some of the hot spots within oil palm estates. This movement strategy may allow for better vigilance as seen on a few occasions when elephants spent 2–5 days in the Bukit Melapi-Yu Kwang Corridor, near the village of Sukau, before leaving the area (Othman, personal observation).Hot spots in the oil palm landscape can also be explained by feeding opportunities, since elephants feed on palm shoots, leaves and hearts73. Elephants are known to eat the shoots of newly planted oil palms, often killing the palms and causing significant economic damages35. Since 2010, many estates located in the Lower Kinabatangan have started a new palm rotation. Palms are replanted every 25 years. A new rotation includes land clearing, bole and root mass removal, and the shredding or chipping of felled palms. Elephants are attracted to the shredded palm hearts since it gives them easy access to one of their favourite food72. This particular behaviour does not cause economic damage, and some estate managers allow the elephants to stay and forage in the chipping areas. This was documented for several collared elephants, whose hot spots and time spent were particularly high within oil palm (e.g. Gading and Sandy, two males; and Ratu and Ita, two females). Once the shredded palms have dried, however, elephants will leave these areas and move elsewhere. Within oil palm estates, some elephants have been found to travel more directly and rapidly suggesting ‘exploratory’ behaviour, which could be associated with searching for young palms or areas of palm felling and chipping of palm hearts15.Lastly, elephants may still be using their historical range that used to be covered with forest before conversion to oil palm. Other factors potentially explaining the relatively high use of oil palm estates include seasonal variations of ranging patterns. Indeed events of drought or floods limit the access to various parts of the floodplain and will tend to confine the animals in some areas9,63.In Sabah the state authorities have recorded at least 200 elephant deaths from the year 2010 to 2021 and most of these have occurred on, or near, oil palm estates14,74,75,76. Deaths from non-natural causes are largely due to poisoning (both accidental and intentional), gunshot wounds, poaching for tusks and other body parts, and snares35. Stopping killing and enabling a safe coexistence between people and elephants within multiple-use landscapes that are dominated by oil palm is one of the key strategies developed in the Bornean Elephant Action Plan for Sabah (2020–2029), which was endorsed by the State14. Based on our results in Lower Kinabatangan, a series of recommendations are proposed.This study underscores the importance of remaining forested areas for the Lower Kinabatangan elephant population. Full protection of all forest fragments left in the Lower Kinabatangan is urgently needed. Several official mechanisms are available to fulfil this request that has been proposed for the past 20 years by various organizations46.The current network of forests available in the Lower Kinabatangan is too small and fragmented to sustain a viable elephant population. Forest corridors must be created across the landscape through reforestation exercises, whilst concurrently undertaking enrichment planting of native understory forage within forested areas as this may minimize the need for elephants to search for easily accessible food in high-risk oil palm landscapes21,22,23.Current governmental plans to build a road bridge and public road/highway linking the southern bank of the Kinabatangan River to Tabin Wildlife Reserve to the south will irreversibly impact the Lower Kinabatangan elephant population by cutting the current range into two isolated parts. This will impact the elephants ranging patterns, potentially even fragmenting the already small population into two groups, and potentially leading to elephant deaths by vehicle collisions (which is becoming increasingly common in Peninsular Malaysia), and increase the risk of poaching activities, all resulting in a decrease in the genetic diversity of the, already small and isolated, population14,67.Eventually, the future of the Kinabatangan elephant population resides in improving land use and management practices within oil palm estates currently used by elephants. We recommend that priority should be given at improving elephant movements in oil palm estates by removing unnecessary man-made barriers and only cautiously installing temporary electric fences to protect sensitive areas. For example, the use of electric fences around mature oil palm and areas whereby palms are being removed and chipped could be prohibited, and electric fences permitted solely for protecting oil palm nurseries, new plantings and young oil palms (e.g. up to 7–8 years old), and staff and office quarters. This would greatly allow for landscape permeability for elephants, and other species that need to cross the landscape for their ecological and biological needs14.A handful of guidelines exist to assist oil palm managers and staff in managing elephant populations in their respective estates72,77. However, there is a need for a more comprehensive set of guidelines, which delineate better practices with the aim to increase the protection of people and elephants outside protected areas. Guidelines should specify “do’s” and “don’ts” (based on best available data and knowledge) of actions needed before, during and after elephants visit oil palm estates and smallholdings.Sabah now is in an interesting transition within their palm oil sector. On the 21st October 2015, the Sabah State Cabinet committed to produce 100% certified sustainable palm oil, by 2025, under the Roundtable for Sustainable palm Oil (RSPO) Jurisdictional Certification approach. Under this approach, areas of High Conservation Value and areas identified within the High Carbon Stock Approach need specific management and monitoring, in order to comply with RSPO principles and criteria78,79,80. Sabah government can use this platform to build an integrated landscape level approach to better manage landscapes within known elephant ranges (which is considered a High Conservation Value species) to allow for a safe and permeable movement through the landscape.Eventually, long-term survival of the Bornean elephant will mainly depend on how people and elephants can co-exist. It is our hope that this study illustrates the importance of protecting all forested habitat and effectively managing areas outside of protected areas to allow for long-term elephant coexistence with humans in this landscape. More

  • in

    Limited acclimation of early life stages of the coral Seriatopora hystrix from mesophotic depth to shallow reefs

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    Hinderstein, L. M. et al. Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS ONE 12, e0177034 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).PubMed 
    Article 

    Google Scholar 
    Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Bio. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Bongaerts, P., Underwood, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: An assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen, I. & Dubinsky, Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: Photosynthesis and calcification. Front. Mar. Sci. 2, 45 (2015).Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).Article 

    Google Scholar 
    Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerget. 1767, 414–421 (2007).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Murata, N. How do environmental stresses accelerate photoinhibition?. Trends Plant Sci. 13, 178–182 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: Flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).ADS 
    Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinniger, F., Morita, R. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).ADS 
    Article 

    Google Scholar 
    Sinniger, F. et al. Overview of the mesophotic coral ecosystems around Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 69–76 (2022).Article 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    Sinniger, F., Prasetia, R., Yorifuji, M., Bongaerts, P. & Harii, S. Seriatopora diversity preserved in upper mesophotic coral ecosystems in Southern Japan. Front. Mar. Sci. 4, 155 (2017).Article 

    Google Scholar 
    Atoda, K. The larva and postlarval development of some reef-building corals. V. Seriatopora hystrix. Sci. Rep. Tohoku Univ. 19, 33–39 (1951).
    Google Scholar 
    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harii, S. & Kayanne, H. Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs 22, 188–196 (2003).Article 

    Google Scholar 
    Mulla, A. J., Lin, C. H., Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 40, 1297–1306 (2021).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Chang. 4, 498–502 (2014).ADS 
    Article 

    Google Scholar 
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).ADS 
    Article 

    Google Scholar 
    Singh, T. et al. Long-term trends and seasonal variations in environmental conditions in Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 121–133 (2022).Article 

    Google Scholar 
    Roth, M. S., Fan, T.-Y. & Deheyn, D. D. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8, e59476 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).ADS 
    Article 

    Google Scholar 
    Nakamura, T. Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. J. Jpn. Coral Reef Soc. 19, 29–40 (2017).Article 

    Google Scholar 
    Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Adaptive divergence in a scleractinian coral: Physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11, 303 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).Article 

    Google Scholar 
    Rogers, C. S., Fitz, H. C., Gilnack, M., Beets, J. & Hardin, J. Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3, 69–76 (1984).ADS 
    Article 

    Google Scholar 
    Maida, M., Collb, J. C. & Sammarco, P. W. Shedding new light on scleractinian coral recruitment. J. Exp. Mar. Biol. Ecol. 180, 189–202 (1994).Article 

    Google Scholar 
    Sato, M. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 4, 27–33 (1985).ADS 
    Article 

    Google Scholar 
    Nozawa, Y. Micro-crevice structure enhances coral spat survivorship. J. Exp. Mar. Biol. Ecol. 367, 127–130 (2008).Article 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).ADS 
    Article 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Groves, S. H. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018).ADS 
    Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & De Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 
    Article 

    Google Scholar 
    Jiang, L. et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs 37, 71–79 (2018).ADS 
    Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom, M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180546 (2019).CAS 
    Article 

    Google Scholar 
    Brown, B. E. et al. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105 (1999).Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: Experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2015).Article 

    Google Scholar 
    Roth, M. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nakamura, T., van Woesik, R. & Yamasaki, H. Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar. Ecol. Prog. Ser. 301, 109–118 (2005).ADS 
    Article 

    Google Scholar  More