More stories

  • in

    Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

    Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).ADS 
    Article 

    Google Scholar 
    Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).
    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).Article 

    Google Scholar 
    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).Article 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).Article 

    Google Scholar 
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).Article 

    Google Scholar 
    Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS 
    Article 

    Google Scholar 
    Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).Article 

    Google Scholar 
    Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).Article 

    Google Scholar 
    Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).Article 

    Google Scholar 
    Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).ADS 
    Article 

    Google Scholar 
    Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).ADS 
    Article 

    Google Scholar 
    Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).ADS 
    Article 

    Google Scholar 
    Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).Article 

    Google Scholar 
    Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).Article 

    Google Scholar 
    Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).CAS 
    Article 

    Google Scholar 
    Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).ADS 
    Article 

    Google Scholar 
    Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

    Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reissig, M., Trochine, C., Queimaliños, C., Balseiro, E. & Modenutti, B. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Conserv. 132, 437–447 (2006).Article 

    Google Scholar 
    Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biol. Invasions 12, 1533–1542 (2010).Article 

    Google Scholar 
    Beaulieu, M., Pick, F. & Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 58, 1736–1746 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (E & FN Spon, 1999).Sukenik, A., Quesada, A. & Salmaso, N. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers. Conserv. 24, 889–908 (2015).Article 

    Google Scholar 
    Ibelings, B. W., Bormans, M., Fastner, J. & Visser, P. M. CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation. Aquat. Ecol. 50, 595–605 (2016).CAS 
    Article 

    Google Scholar 
    Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4, 988–1012 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01254 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewing, H. A. et al. “New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere 11, e03170 (2020).Article 

    Google Scholar 
    McGlone, M. S. & Wilmshurst, J. M. Dating initial Maori environmental impact in New Zealand. Quat. Int. 59, 5–16 (1999).Article 

    Google Scholar 
    Brooking, A. P. D. of H. T. & Brooking, T. The History of New Zealand. (Greenwood Publishing Group, 2004).Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. PNAS 105, 7676–7680 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGlone, M. S. The Polynesian settlement of New Zealand in relation to environmental and biotic changes. N. Z. J. Ecol. 12, 115–129 (1989).
    Google Scholar 
    McGlone, M. S. Polynesian deforestation of New Zealand: a preliminary synthesis. Archaeol. Ocean. 18, 11–25 (1983).Article 

    Google Scholar 
    McWethy, D. B. et al. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. PNAS 107, 21343–21348 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. & McGlone, M. S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 9, e111328 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Star, P. New Zealand environmental history: a question of attitudes. Environ. Hist. Camb. 9, 463–475 (2003).Article 

    Google Scholar 
    Clark, A. H. The Invasion of New Zealand by Plants, People, and Animals (Rutgers University Press, 1949).
    Google Scholar 
    Wilmshurst, J. M. Human effects on the environment: European impact. Te Ara: The Encyclopedia of New Zealand https://teara.govt.nz/en/human-effects-on-the-environment/page-3 (2007).Smol, J. P. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123, 199–208 (1985).Article 

    Google Scholar 
    Rees, A. B. H., Cwynar, L. C. & Cranston, P. S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J. Paleolimnol. 40, 1159–1178 (2008).ADS 
    Article 

    Google Scholar 
    Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).ADS 
    Article 

    Google Scholar 
    Buchaca, T. et al. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14, 458–477 (2011).CAS 
    Article 

    Google Scholar 
    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).Article 

    Google Scholar 
    Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nelson-Chorney, H. T. et al. Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Front. Ecol. Environ. 17, 313–318 (2019).
    Google Scholar 
    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Ind. 85, 1044–1057 (2018).CAS 
    Article 

    Google Scholar 
    Monchamp, M.-E., Walser, J.-C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal, S., Gregory-Eaves, I. & Pick, F. R. Temporal trends in cyanobacteria revealed through DNA and pigment analyses of temperate lake sediment cores. J. Paleolimnol. 54, 87–101 (2015).ADS 
    Article 

    Google Scholar 
    Dodsworth, W. Temporal Trends in Cyanobacteria Through Paleo-Genetic Analyses. (Université d’Ottawa/University of Ottawa, 2020). https://doi.org/10.20381/ruor-24401.Rinta-Kanto, J. M. et al. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8, 385–394 (2009).CAS 
    Article 

    Google Scholar 
    Zastepa, A. et al. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci. Total Environ. 579, 893–901 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schallenberg, M. et al. Ecosystem services of lakes. In Ecosystem Services in New Zealand (ed. Dymond, J.) 23 (Manaaki Whenua Press, 2013).
    Google Scholar 
    Ministry for the Environment & Ausseil, A.-G. Our freshwater 2020. www.mfe.govt.nz (2020).Takiwa—Map Page. https://lernz.takiwa.co/map.Leathwick, J. et al. Freshwater ecosystems of New Zealand (FENZ) geodatabase. Users guide. (2010).Cochrane, L. Reconstructing Ecological Change, Catchment Disturbance, and Anthropogenic Impact over the last 3000 years at Lake Pounui, Wairarapa, New Zealand. (2017).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of phytoplankton in Lake Hayes and Lake Johnson, South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 8, 167–209 (1974).Article 

    Google Scholar 
    Lawa. Land, Air, Water Aotearoa (LAWA) https://www.lawa.org.nz/ (2018).Bunny, T., Perrie, A., Milne, J. & Keenan, L. Lake water quality in the Ruamāhanga Whaitua. 17 (2014).McKinnon, M. Volcanic Plateau region: The lure of trout. Te Ara—The Encyclopedia of New Zealand https://teara.govt.nz/en/volcanic-plateau-region/page-8 (2015).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. N. Z. J. Mar. Freshw. Res. 14, 189–204 (1980).Article 

    Google Scholar 
    Schallenberg, M. & Schallenberg, L. Lake Hayes restoration and monitoring plan. 55 https://a234f952-dbf2-444e-983e-ef311d984ee7.filesusr.com/ugd/c1b10b_d2993ed023cd4bdbac7eef71a89c2de7.pdf (2017).NIWA. NIWA https://niwa.co.nz/.Mackereth, F. J. H. A portable core sampler for lake deposits. Limnol. Oceanogr. 3, 181–191 (1958).ADS 
    Article 

    Google Scholar 
    Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 40, 1091–1094 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Trodahl, M. I., Rees, A. B. H., Newnham, R. M. & Vandergoes, M. J. Late Holocene geomorphic history of Lake Wairarapa, North Island, New Zealand. N. Z. J. Geol. Geophys. 59, 330–340 (2016).CAS 
    Article 

    Google Scholar 
    Khan, S., Puddick, J., Burns, C. W., Closs, G. & Schallenberg, M. Palaeolimnological evaluation of historical nutrient and food web contributions to the eutrophication of two monomictic lakes. Submitted for Journal Publication (2022).Rinta-Kanto, J. M. et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. (2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Sour. Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. 2019. (2019).Williams, P. A. & Cameron, E. K. Creating gardens: the diversity and progression of European plant introductions. In Biological Invasions in New Zealand Vol. 186 (eds Allen, R. B. & Lee, W. G.) 33–47 (Springer-Verlag, 2006).Chapter 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).Article 

    Google Scholar 
    Juggins, S. rioja: analysis of quaternary science data. (2020).de Vries, A. & Ripley, B. D. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. (2022).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Soo, R. M. et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6, 1031–1045 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacKeigan, P. W. et al. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae 113, 102187 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood, S. A. et al. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw234 (2017).Article 
    PubMed 

    Google Scholar 
    Becker, S., Richl, P. & Ernst, A. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol. Ecol. 62, 64–77 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Handley, B. A. & Hayes, P. K. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (Reading) 154, 3347–3357 (2008).Article 
    CAS 

    Google Scholar 
    Pilon, S. et al. Contrasting histories of microcystin-producing cyanobacteria in two temperate lakes as inferred from quantitative sediment DNA analyses. Lake Reserv. Manag. 35, 102–117 (2019).CAS 
    Article 

    Google Scholar 
    Queenstown’s Pioneering Beginnings. https://www.queenstownnz.co.nz/stories/post/queenstowns-pioneer-beginnings/ (2017).Fish, G. R. A limnological study of four lakes near Rotorua. N. Z. J. Mar. Freshw. Res. 4, 165–194 (1970).Article 

    Google Scholar 
    Lake Rotoehu—Lakes Water Quality Society. https://lakeswaterquality.co.nz/lake-rotoehu/.Bay of Plenty Regional Council, Rotorua District Council, & Te Arawa Lakes Trust. Lake Rotoehu Action Plan. 61 http://www.rotorualakes.co.nz/vdb/document/76 (2007).Hobbs, W. O. et al. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing Dolichospermum sp.. Harmful Algae 101, 101971 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    de la Escalera, G. M., Antoniades, D., Bonilla, S. & Piccini, C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol. Ecol. 23, 5791–5802 (2014).Article 
    CAS 

    Google Scholar 
    Retrolens—Historical Imagery Resource. https://retrolens.co.nz/.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174 (2010).Article 

    Google Scholar 
    Hall, S. R. & Mills, E. L. Exotic species in large lakes of the world. Aquat. Ecosyst. Health Manag. 3, 105–135 (2000).Article 

    Google Scholar 
    Gehrke, P. C. & Harris, J. H. The role of fish in cyanobacterial blooms in Australia. Mar. Freshw. Res. 45, 905–915 (1994).Article 

    Google Scholar 
    Burns, C. W. & Schallenberg, M. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J. Plankton Res. 20, 1501–1525 (1998).Article 

    Google Scholar 
    Rowe, D. K. & Schallenberg, M. Food webs in lakes. In Freshwaters of New Zealand (ed. Harding, J. S.) 23 (Wellington, N.Z.: New Zealand Hydrological Society, 2004).Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer, 1989).Chapter 

    Google Scholar 
    Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Trophic interactions promote dominance by cyanobacteria (Anabaena spp.) in the pelagic zone of lower Karori reservoir, Wellington, New Zealand. N. Z. J. Mar. Freshw. Res. 41, 143–155 (2007).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Cyanobacterial blooms appear to be driven by top-down rather than bottom-up effects in the Lower Karori Reservoir (Wellington, New Zealand). N. Z. J. Mar. Freshw. Res. 40, 53–63 (2006).CAS 
    Article 

    Google Scholar 
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).Article 

    Google Scholar 
    Pulina, S. et al. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuaries Coasts 40, 469–478 (2017).CAS 
    Article 

    Google Scholar 
    Callieri, C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw. Rev. 1, 1–28 (2008).Article 

    Google Scholar 
    Keefer, D. K. Investigating landslides caused by earthquakes: a historical review. Surv. Geophys. 23, 473–510 (2002).ADS 
    Article 

    Google Scholar 
    Fan, X. et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57, 421–503 (2019).ADS 
    Article 

    Google Scholar 
    Manighetti, I. et al. Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Sci. Rep. 10, 2124 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McSaveney, E. Historic earthquakes: the 1942 Wairarapa earthquakes. Te Ara Encyclopedia of New Zealand https://teara.govt.nz/en/historic-earthquakes/page-9 (2006).New Zealand’s environmental reporting series: our atmosphere and climate. (Ministry for the Environment & Stats NZ, 2020).Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).Article 

    Google Scholar 
    Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome https://doi.org/10.1139/gen-2016-0100 (2016).Article 
    PubMed 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA https://doi.org/10.1002/edn3.160 (2020).Article 

    Google Scholar 
    Corinaldesi, C., Beolchini, F. & Dell’anno, A. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol. Ecol. 17, 3939–3951 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. https://doi.org/10.1038/s42003-017-0005-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00218 (2020).Article 

    Google Scholar 
    Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).ADS 
    Article 

    Google Scholar 
    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Disentangling structural and functional responses of native versus alien communities by canonical ordination analyses and variation partitioning with multiple matrices

    Time dynamics of the mollusk communitiesIn this section, the presence-absence of the species recorded in the three periods (T1, T2, T3) are analyzed in relation to time, habitat, and human impact. The list of the 28 species of freshwater mollusks (17 gastropods and 11 bivalves) in T1–T3, their codes, and origins are given in Table 1.The number of mollusk species has increased in time as the river has shifted from lotic to a mixture of flowing and stagnant sectors due to the building of reservoirs. T1 was characterized mainly by rheophilic elements and prosobranchs. Some species became extinct during the hydro-technical works (before or during T2) and are unlikely to recover, such as the rheophilic Theodoxus transversalis and Lithoglyphus naticoides. Other rheophilic species disappeared between T1 and T2 but managed to survive in tributaries and repopulated some sectors during the last years. The most remarkable recovery is that of the thick-shelled river mussel Unio crassus, a species protected by EU legislation. T2 was characterized by some extinctions but also colonization by lentiphilic pulmonates and tolerant, resistant species such as some clams. A few lotic species also survived in the river sectors between the dams. In T3, we encountered a rich and diverse community, including some newly established populations of AIS and the discontinuous presence of both lentic and lotic communities. Overall, the present-day fauna is richer than in former periods, consisting of 15 species of gastropods and 8 bivalves. The AIS included the gastropods Physa acuta and Ferrissia californica, which arrived in the area most likely during the XXth century, Viviparus acerosus, which is native to the Danube, but unknown until after 2000 in the upper-middle Olt River basin, the bivalves Dreissena polymorpha, also native in the Danube but an invader in the middle Olt since 2008–2010, Sinanodonta woodiana, first found in 2015, and Corbicula fluminea, which was first discovered in the Olt (and also in Transylvania) during our survey in February 2020. The mean number of native species per river’s sector increases almost linearly (2.8 species per sector in T1, 3.3 in T2, and 4.6 in T3), while the corresponding values for AIS increase non-linearly (no AIS in T1, 0.6 species per sector in T2 and 3.2 in T3).In the CCA of freshwater mollusk community changes through time (Period as predictor), the adjusted explained variation was 23.6% (test on all axes, pseudo-F = 5.9, p = 0.001). The polygons delimiting the positions of the sites during the three periods of time show no overlap, and they were distinct and separated in the ordination space (Fig. 1a). T2 (the period with maximum human impact) is distinctly placed and separated from the period without impact (T1) along both ordination axes. Meantime, T3 is closer to T1, having an intermediate position between the other two periods, showing a trend of recovery, such as the return of some species. In the CCA of T1–T3 species presence-absence predicted by the selected environmental descriptors (Period, Habitat, and Impact) (Fig. 1b), the adjusted explained variation was 28.36% (test on all axes, pseudo-F = 4.2, p = 0.001). FD(Rao) computed on all FT was plotted as isolines by GAM on the ordination space (model AIC = -17.19, model test F = 5.1, p = 0.003; tests of non-linearity in predictor effects: F = 3.9, p = 0.03). The functional diversity decreased from T1 to T2, then increased sharply to T3; it also decreased from rivers (R) to lakes (L) and along the human impact gradient (Impact).Figure 1Canonical correspondence analysis (CCA) of mollusk communities: (a) classification diagram of sampling sites based on period (as predictors): T1—XIXth century, T2—1995–2000, T3—2020 (adjusted explained variation 23.6%; first axis accounts for 17.6% the second for 6.0%, both axes are significant, p = 0.001); (b) CCA diagram of species occurrence constrained by environmental predictors (period, habitat: L—lakes, lentic sector in reservoirs, R—river, lotic sectors, and Impact—human impact) with functional diversity expressed as Rao quadratic entropy index (FD (Rao)) isolines plotted by generalized additive models (GAM) on the ordination space (adjusted explained variation 28.36%; first axis accounts for 16.3%, the second for 6.0%, both axes are significant, p = 0.001) .Full size imageIn the dc-CA with the selected predictors on T1–T3 presence-absence data, the first two axes separate the communities by period, each positioned in a distinct quadrant (Fig. 2). After a decrease in diversity from T1 to T2, in T3, there were more species and higher functional diversity. In time, there was a reduction in body size, a switch from species with separate sexes to hermaphrodites, a transition of oviposition towards ovo-viviparity (in snails), and external fecundation (in bivalves), and a switch of the feeding type. The dc-CA adjusted explained variation was 16.47%; tests based on sectors and species showed significant relationships (combined test for all axes, pseudo-F = 2.6, p = 0.006), the dimensionality test based on case scores was significant for the first axis (pseudo-F = 4.2, p = 0.001) and marginally significant for the second one (pseudo-F = 1.1, p = 0.053). In contrast, the dimensionality test based on species scores was significant only for the first axis (pseudo-F = 1.6, p = 0.004). The adjusted variation explained by environmental predictors (Hab, Impact, and Period) was 28.36%, and by the selected functional traits (Sexes, FeedT, SizeM, and Ovipos) was 14.64%.Figure 2Double-constrained correspondence analysis (dc-CA) with selected predictors on presence-absence data in T1–T3. The selected functional traits (in blue) are Sexes (circles: H—hermaphrodite, S—separate sexes), Feeding type (squares: SCR—scraper, SS—scraper and sediment, SF—scraper and filter, F—filter, SEDF—suspension and deposit feeder), Oviposition (diamonds: OV—ovo-viviparity, CAP—capsule/eggmass, BE—parental care, juveniles in brood pouches of demibranchs, No—no oviposition, external fecundation), and mean body size (SizeM); the selected environmental predictors (in red) are time (Period, with levels T1—XIXth century, T2—1995–2000, T3—2020), habitat (R—river, lotic sector; L—lake, a lentic sector in reservoirs) and human impact (Impact). Species are coded by the first three letters of the genus and species names. The adjusted explained variation was 16.47%, the first axis accounts for 12.7% and the second for 2.2%. Native species have black labels, while aliens (AIS) are written in green.Full size imageWe have split the binary data describing communities into two parts: natives and AIS, using the latter as predictors. We partitioned the variation in native species composition explained by the three predictor groups (Period, Environment, and AIS) (Fig. 3), subjecting the explanatory variables to an interactive forward selection procedure. We used RDA with centered response variables (CCA can not be used because the empty rows in some tables hinder the use of a proper hierarchical permutation scheme). The adjusted explained variation was 39.6% (the simple effects: time accounted for 22.33%, habitat and impact 24.73%, and the selected AIS 20.82%). All simple and unique effects were significant (p  More

  • in

    Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems

    Brierley AS, Kingsford MJ. Impacts of climate change on marine organisms and ecosystems. Curr Biol. 2009;19:R602–R614.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ. 2021;755:142564.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carella F, Antuofermo E, Farina S, Salati F, Mandas D, Prado P, et al. In the wake of the ongoing mass mortality events: co-occurrence of Mycobacterium, Haplosporidium and other pathogens in Pinna nobilis collected in Italy and Spain (Mediterranean Sea). Front Mar Sci. 2020;7:48.Article 

    Google Scholar 
    Seuront L, Nicastro KR, Zardi GI, Goberville E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci Rep. 2019;9:17498.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fey SB, Siepielski AM, Nussle S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc Natl Acad Sci USA. 2015;112:1083–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scarpa F, Sanna D, Azzena I, Mugetti D, Cerruti F, Hosseini S, et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life. 2020;10:238.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley M, Kutz SJ, Jenkins E, O’Hara TM. The potential impact of climate change on infectious diseases of Arctic fauna. Int J Circumpolar Health. 2005;64:468–77.PubMed 
    Article 

    Google Scholar 
    Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar Environ Res. 2017;130:338–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mandel P, Metais P. Nuclear acids in human blood plasma. Comptes Rendus Séances Soc Biol Filiales. 1948;142:241–3.CAS 

    Google Scholar 
    Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.PubMed 
    Article 

    Google Scholar 
    Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moufarrej MN, Wong RJ, Shaw GM, Stevenson DK, Quake SR. Investigating pregnancy and its complications using circulating cell-free RNA in women’s blood during gestation. Front Pediatr. 2020;8:605219.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oellerich M, Sherwood K, Keown P, Schutz E, Beck J, Stegbauer J, et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol. 2021;17:591–603.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong FC, Lo YM. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu W, Deng X, Lee M, Sucu YD, Arevalo S, Stryke D, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med. 2021;27:115–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang YF, Chen YJ, Fan TC, Chang NC, Chen YJ, Midha MK, et al. Analysis of microbial sequences in plasma cell-free DNA for early-onset breast cancer patients and healthy females. BMC Med Genom. 2018;11:16.Article 
    CAS 

    Google Scholar 
    Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-extracellular traps, cell-free DNA, and immunothrombosis in companion animals: a review. Vet Pathol. 2020;57:6–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kowarsky M, De Vlaminck I, Okamoto J, Neff NF, LeBreton M, Nwobegabay J, et al. Cell-free DNA reveals potential zoonotic reservoirs in non-human primates. BioRxiv. 2018;481093.Caza F, Bernet E, Veyrier FJ, Betoulle S, St-Pierre Y. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci Rep. 2020;10:19696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrew S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. Comput Biol. 2006;13:1028–40.CAS 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics. 2014;30:1928–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385.Article 

    Google Scholar 
    Lüskow F, Riisgård H. In situ filtration rates of blue mussels (Mytilus edulis) measured by an open-top chamber method. OJMS. 2018;8:395–406.Article 

    Google Scholar 
    Szpechcinski A, Struniawska R, Zaleska J, Chabowski M, Orlowski T, Roszkowski K, et al. Evaluation of fluorescence-based methods for total vs. amplifiable DNA quantification in plasma of lung cancer patients. J Physiol Pharmacol. 2008;59:675–81.PubMed 

    Google Scholar 
    Tissot C, Toffart AC, Villar S, Souquet PJ, Merle P, Moro-Sibilot D, et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J. 2015;46:1773–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20:1057–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, et al. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep. 2021;11:877.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D. Presence and potential of cell free DNA in different types of forensic samples. For Sci Int Genet. 2013;7:316–20.CAS 
    Article 

    Google Scholar 
    Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci USA. 2017;114:9623–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019;9:5220.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li YF, Yang N, Liang X, Yoshida A, Osatomi K, Power D, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front Physiol. 2018;9:839.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musella M, Wathsala R, Tavella T, Rampelli S, Barone M, Palladino G, et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci Total Environ. 2020;717:137209.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF. Diversity and dynamics of a north atlantic coastal Vibrio community. Appl Environ Microbiol. 2004;70:4103–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pfister CA, Meyer F, Antonopoulos DA. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS One. 2010;5:e10518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 2009;3:860–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, et al. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome. 2019;7:11.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spain EA, Johnson SC, Hutton B, Whittaker JM, Lucieer V, Watson SJ, et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 2020;7:e2019EA000695.Article 

    Google Scholar 
    Farías L, Florez-Leiva L, Besoain V, Sarthou G, Fernández C. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean. Biogeosciences. 2015;12:1925–40.Article 

    Google Scholar 
    Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 2014;111:4274–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C, La Scola B, et al. Comparison of a modern and fossil pithovirus reveals its genetic conservation and evolution. Genome Biol Evol. 2016;8:2333–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17:523–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Colmer SF, Luethy D, Abraham M, Stefanovski D, Hurcombe SD. Utility of cell-free DNA concentrations and illness severity scores to predict survival in critically ill neonatal foals. PLoS One. 2021;16:e0242635.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton JG, Ertl R, Klein D, Tichy A, Nell B. Circulating cell-free DNA does not harbour a diagnostic benefit in cats with feline diffuse iris melanomas. J Feline Med Surg. 2019;21:124–32.PubMed 
    Article 

    Google Scholar 
    Tagawa M, Shimbo G, Inokuma H, Miyahara K. Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Investig. 2019;31:836–43.CAS 
    Article 

    Google Scholar 
    Shi J, Zhang R, Li J, Zhang R. Size profile of cell-free DNA: a beacon guiding the practice and innovation of clinical testing. Theranostics. 2020;10:4737–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays. Clin Chim Acta. 2018;483:39–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett. 2016;363:fnw103.PubMed 
    Article 
    CAS 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier J, Jannasch HW. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol. 2000;66:3125–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang X, Du Z, Zheng R, Luan Z, Qi F, Cheng K, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Res Part I Oceanogr Res Pap. 2017;123:1–12.Article 
    CAS 

    Google Scholar 
    Egger M, Riedinger N, Mogollón JM, Jørgensen BB. Global diffusive fluxes of methane in marine sediments. Nat Geosci. 2018;11:421–5.CAS 
    Article 

    Google Scholar 
    Ansorge R, Romano S, Sayavedra L, Kupczok A, Tegetmeyer HE, Dubilier N, et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol. 2019;4:2487–97.PubMed 
    Article 
    CAS 

    Google Scholar 
    Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, et al. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet. 2020;16:e1008935.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, et al. The marine viromes of four oceanic regions. PLoS Biol. 2006;4:e368.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thongsripong P, Chandler JA, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci Rep. 2021;11:8448.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koonin EV, Krupovic M, Agol VI. The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev. 2021;85:e0005321.PubMed 
    Article 

    Google Scholar 
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.PubMed 
    Article 

    Google Scholar 
    Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost. 2017;117:1272–82.PubMed 
    Article 

    Google Scholar 
    Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 2013;15:211.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murphy DJ. Freezing resistance in intertidal invertebrates. Annu Rev Physiol. 1983;45:289–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Robledo JAF, Yadavalli R, Allam B, Espinosa EP, Gerdol M, Greco S, et al. From the raw bar to the bench: bivalves as models for human health. Dev Comp Immunol. 2019;92:260–82.Article 

    Google Scholar 
    Cowart DA, Murphy KR, Cheng CC. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Mar Genom. 2018;37:148–60.Article 

    Google Scholar 
    Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, et al. Ancient plant DNA in lake sediments. New Phytol. 2017;214:924–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani S, Baillie C, Giuliano C, Riesgo A. Sponges as natural environmental DNA samplers. Curr Biol. 2019;29:R401–R402.CAS 
    PubMed 
    Article 

    Google Scholar 
    Weber S, Brink L, Wörner M, Künzel S, Veith M, Teubner D, et al. Molecular diet analysis in zebra and quagga mussels (Dreissena spp.) and an assessment of the utility of aquatic filter feeders as biological eDNA filters. BioRxiv. 2021; 432951.Caza F, Joly de Boissel PG, Villemur R, Betoulle S, St-Pierre Y. Liquid biopsies for omics-based analysis in sentinel mussels. Plos One. 2019;14:e0223525.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunter ME, Ferrante JA, Meigs-Friend G, Ulmer A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci Rep. 2019;9:5259.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burkhardt W III, Calci KR. Selective accumulation may account for shellfish-associated viral illness. Appl Environ Microbiol. 2000;66:1375–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Girolamo R, Liston J, Matches J. Ionic bonding, the mechanism of viral uptake by shellfish mucus. Appl Environ Microbiol. 1977;33:19–25.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Reinisch C, Sherry J, Goff SP. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell. 2015;161:255–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature. 2016;534:705–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canesi L, Gallo G, Gavioli M, Pruzzo C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech. 2002;57:469–76.PubMed 
    Article 

    Google Scholar 
    Andruszkiewicz EA, Koseff JR, Fringer OB, Ouellette NT, Lowe AB, Edwards CA, et al. Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front Mar Sci. 2019;6:477.Article 

    Google Scholar 
    Wood ZT, Lacoursière-Roussel A, LeBlanc F, Trudel M, Kinnison MT, Garry McBrine C, et al. Spatial heterogeneity of eDNA transport improves stream assessment of threatened salmon presence, abundance, and location. Front Ecol Evol. 2021;9:650717.Article 

    Google Scholar 
    Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14:411–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience. 2020;9:giaa080.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Nepotistic colony fission in dense colony aggregations of an Australian paper wasp

    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ross, K. G. & Matthews, R. W. The Social Biology of Wasps (Cornell University Press, 1991).Book 

    Google Scholar 
    Itô, Y. & Higashi, S. Spring behaviour of Ropalidia plebeiana (Hymenoptera: Vespidae) within a huge aggregation of nests. Appl. Entomol. Zool. 22, 519–527 (1987).Article 

    Google Scholar 
    Saito, F. & Kojima, J.-I. Colony cycle in the south-eastern coastal populations of Ropalidia plebeiana, the only Ropalidia wasp occurring in temperate Australia. Entomol. Sci. 8, 263–275 (2005).Article 

    Google Scholar 
    Richards, O. W. The Australian social wasps (Hymenoptera: Vespidae). Aust. J. Zool. Suppl. Ser. 26, 1–132 (1978).Article 

    Google Scholar 
    Makino, S., Yamane, S., Itô, Y. & Spradbery, J. P. Process of comb division of reused nests in the Australian paper wasp Ropalidia plebeinana (Hymenoptera, Vespidae). Ins. Soc. 41, 411–422 (1994).Article 

    Google Scholar 
    Goodnight, K. F. & Queller, D. C. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8, 1231–1234 (1999).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crochet, P.-A. Genetic structure of avian populations—Allozymes revisited. Mol. Ecol. 9, 1463–1469 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Res. 11, 5–18 (2011).Article 

    Google Scholar 
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Itô, Y., Yamane, S. & Spradbery, J. P. Population consequences of huge nesting aggregations of Ropalidia plebeiana (Hymenoptera: Vespidae). Res. Popul. Ecol. 30, 279–295 (1988).Article 

    Google Scholar 
    Boomsma, J. J. & d’Ettorre, P. Nice to kin and nasty to non-kin: revisiting Hamilton’s early insights on eusociality. Biol. Lett. 9, 20130444 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parsons, P. J., Grinsted, L. & Field, J. Partner choice correlates with fine scale kin structuring in the paper wasp Polistes dominula. PLoS ONE 14, e0221701 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strassmann, J. E., Queller, D. C., Solis, C. R. & Hughes, C. R. Relatedness and queen number in the Neotropical wasp, Parachartergus colobopterus. Anim. Behav. 42, 461–470 (1991).Article 

    Google Scholar 
    Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S. & Field, J. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333, 874–876 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Field, J. & Leadbeater, E. Cooperation between non-relatives in a primitively eusocial paper wasp, Polistes dominula. Philos. Trans. R. Soc. B 371, 20150093 (2016).Article 

    Google Scholar 
    Bhadra, A. & Gadagkar, R. We know that the wasps “know”: cryptic successors to the queen in Ropalidia marginata. Biol. Lett. 4, 634–637 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, A. & Gadagkar, R. Reproductive queue without overt conflict in the primitively eusocial wasp Ropalidia marginata. Proc. Nat. Acad. Sci. USA 109, 14494–14499 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frank, S. A. Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39, 949–964 (1985).PubMed 
    Article 

    Google Scholar 
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. R. Soc. Lond. B. 275, 1761–1765 (2008).
    Google Scholar 
    Schwarz, M. P. Local resource enhancement and sex ratios in a primitively social bee. Nature 331, 346–348 (1988).ADS 
    Article 

    Google Scholar 
    Cronin, A. L. & Schwarz, M. P. Sex ratios, local fitness enhancement and eusociality in the allodapine bee Exoneura richardsoni. Evol. Ecol. 11, 567–577 (1997).Article 

    Google Scholar 
    Schwarz, M. P., Bull, N. J. & Hogendoorn, K. Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Ins. Soc. 45, 349–368 (1998).Article 

    Google Scholar 
    Gamboa, G. J., Wacker, T. L., Duffy, K. G., Dobson, S. W. & Fishwild, T. G. Defence against intraspecific usurpation by paper wasp cofoundresses (Polistes fuscatus, Hymenoptera: Vespidae). Can J. Zool. 70, 2369–2372 (1992).Article 

    Google Scholar 
    Katada, S. & Iwahashi, O. Characteristics of usurped colonies in the subtropical paper wasp, Ropalidia fasciata (Hymenoptera: Vespidae). Ins. Soc. 43, 247–253 (1996).Article 

    Google Scholar 
    Yamane, S. Ecological factors influencing the colony cycle of Polistes wasps. in Natural History and Evolution of Paper-Wasps (Turillazzi, S. & West-Eberhard, M. J. eds.). 75–97. (Oxford University Press, 1996).Clouse, R. Some effects of group size on the output of beginning nests of Mischocyttarus mexicanus (Hymenoptera: Vespidae). Flor. Entomol. 84, 418–425 (2001).Article 

    Google Scholar 
    Strassmann, J. E. Female-biased sex ratios in social insects lacking morphological castes. Evolution 38, 256–266 (1984).PubMed 

    Google Scholar 
    Suzuki, T. Production schedule of males and reproductive females, investment sex ratios, and worker-queen conflict in paper wasps. Am. Nat. 128, 366–378 (1986).Article 

    Google Scholar 
    Tsuchida, K. & Suzuki, T. Conflict over sex ratio and male production in paper wasps. Ann. Zool. Fenn. 43, 468–480 (2006).
    Google Scholar 
    Ohtsuki, H. & Tsuji, K. Adaptive reproduction schedule as a cause of worker policing in social Hymenoptera: A dynamic game analysis. Am. Nat. 173, 747–758 (2009).PubMed 
    Article 

    Google Scholar 
    Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS 
    PubMed 

    Google Scholar 
    Bassam, B. J., Caetano-Anolles, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECHER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Meirmans, P. G. GenoDive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Res. 20, 1126–1131 (2020).CAS 
    Article 

    Google Scholar 
    Michalakis, Y. & Excoffier, L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142, 1061–1064 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. & vonHoldt, B. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191 (2015).CAS 
    Article 

    Google Scholar 
    Goodnight, K. F. Relatedness 4.2c Release (Rice University, 1996).
    Google Scholar 
    Queller, D. C. A method for detecting kin discrimination within natural colonies of social insects. Anim. Behav. 47, 569–576 (1994).Article 

    Google Scholar  More

  • in

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, et al. Editors. Cambridge, UK and New York, NY, USA: Cambridge University Press. 2021. https://doi.org/10.1017/9781009157896.Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839.Article 

    Google Scholar 
    FAO. Global agriculture towards 2050, high-level expert forum, how to feed the world 2050. Rome: Food and Agriculture Organization of United Nations FAO. 2009.Agoussar A, Yergeau E. Engineering the plant microbiota in the context of the theory of ecological communities. Curr Opin Biotechnol. 2021;70:220–5.CAS 
    Article 

    Google Scholar 
    Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:507.Article 

    Google Scholar 
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00011.Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.CAS 
    Article 

    Google Scholar 
    Nelson EB, Simoneau P, Barret M, Mitter B, Compant S. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Tremblay J, Yergeau E. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 2021;5:418–31.Article 

    Google Scholar 
    Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L, Shen J-P, et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.Article 

    Google Scholar 
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    Article 

    Google Scholar 
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry. 2012;109:101–16.Article 

    Google Scholar 
    Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, et al. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J. 2021;15:1207–21.CAS 
    Article 

    Google Scholar 
    Azarbad H, Constant P, Giard-Laliberté C, Bainard LD, Yergeau E. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem. 2018;126:228–36.CAS 
    Article 

    Google Scholar 
    Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.CAS 
    Article 

    Google Scholar 
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    Article 

    Google Scholar 
    Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A. Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot. 2018;121:61–9.CAS 
    Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Mendes L, Tremblay J, Tripathi B, Yergeau É. Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean Microbiome. Microb Ecol. 2021;82:416–28. https://doi.org/10.1007/s00248-021-01688-w.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    Article 

    Google Scholar 
    Azarbad H, Tremblay J, Giard-Laliberté C, Bainard LD, Yergeau E. Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture. FEMS Microbiol Ecol. 2020;96. https://doi.org/10.1093/femsec/fiaa098.Chen S, Cade-Menun BJ, Bainard LD, St. Luce M, Hu Y, Chen Q. The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma. 2021;404:115274.CAS 
    Article 

    Google Scholar 
    Smith EG, Zentner RP, Campbell CA, Lemke R, Brandt K. Long-term crop rotation effects on production, grain quality, profitability, and risk in the northern great plains. Agron J. 2017;109:957–67.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.Article 

    Google Scholar 
    Yang S. otuSummary: summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. 2018.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. 2019. Available online at: https://CRAN.R-project.org/package=vegan.Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    Article 

    Google Scholar 
    Hardoim PR, Hardoim CCP, Overbeek LS, van, Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE. 2012;7:e30438.CAS 
    Article 

    Google Scholar 
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.Article 

    Google Scholar 
    Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 2021;15:2748–62.Morales Moreira ZP, Helgason BL, Germida JJ Environment has a Stronger Effect than Host Plant Genotype in Shaping Spring Brassica napus Seed Microbiomes. Phytobiomes J. 2021:PBIOMES-08-20-0059-R.Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res. 2021;31:75–86.CAS 
    Article 

    Google Scholar 
    Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00457.Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01068.Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.CAS 
    Article 

    Google Scholar 
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.Article 

    Google Scholar 
    Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.Article 

    Google Scholar 
    Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Front Plant Sci. 2018;8:2223.Article 

    Google Scholar 
    Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, et al. Rhizobacterial Strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci. 2016;17:E976.Article 

    Google Scholar 
    Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep. 2019;9:18154.CAS 
    Article 

    Google Scholar 
    Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA. 2018;115:E4284–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na X, Cao X, Ma C, Ma S, Xu P, Liu S, et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00828. More

  • in

    Limited acclimation of early life stages of the coral Seriatopora hystrix from mesophotic depth to shallow reefs

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    Hinderstein, L. M. et al. Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS ONE 12, e0177034 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).PubMed 
    Article 

    Google Scholar 
    Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Bio. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Bongaerts, P., Underwood, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: An assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen, I. & Dubinsky, Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: Photosynthesis and calcification. Front. Mar. Sci. 2, 45 (2015).Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).Article 

    Google Scholar 
    Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerget. 1767, 414–421 (2007).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Murata, N. How do environmental stresses accelerate photoinhibition?. Trends Plant Sci. 13, 178–182 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: Flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).ADS 
    Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinniger, F., Morita, R. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).ADS 
    Article 

    Google Scholar 
    Sinniger, F. et al. Overview of the mesophotic coral ecosystems around Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 69–76 (2022).Article 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    Sinniger, F., Prasetia, R., Yorifuji, M., Bongaerts, P. & Harii, S. Seriatopora diversity preserved in upper mesophotic coral ecosystems in Southern Japan. Front. Mar. Sci. 4, 155 (2017).Article 

    Google Scholar 
    Atoda, K. The larva and postlarval development of some reef-building corals. V. Seriatopora hystrix. Sci. Rep. Tohoku Univ. 19, 33–39 (1951).
    Google Scholar 
    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harii, S. & Kayanne, H. Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs 22, 188–196 (2003).Article 

    Google Scholar 
    Mulla, A. J., Lin, C. H., Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 40, 1297–1306 (2021).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Chang. 4, 498–502 (2014).ADS 
    Article 

    Google Scholar 
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).ADS 
    Article 

    Google Scholar 
    Singh, T. et al. Long-term trends and seasonal variations in environmental conditions in Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 121–133 (2022).Article 

    Google Scholar 
    Roth, M. S., Fan, T.-Y. & Deheyn, D. D. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8, e59476 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).ADS 
    Article 

    Google Scholar 
    Nakamura, T. Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. J. Jpn. Coral Reef Soc. 19, 29–40 (2017).Article 

    Google Scholar 
    Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Adaptive divergence in a scleractinian coral: Physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11, 303 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).Article 

    Google Scholar 
    Rogers, C. S., Fitz, H. C., Gilnack, M., Beets, J. & Hardin, J. Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3, 69–76 (1984).ADS 
    Article 

    Google Scholar 
    Maida, M., Collb, J. C. & Sammarco, P. W. Shedding new light on scleractinian coral recruitment. J. Exp. Mar. Biol. Ecol. 180, 189–202 (1994).Article 

    Google Scholar 
    Sato, M. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 4, 27–33 (1985).ADS 
    Article 

    Google Scholar 
    Nozawa, Y. Micro-crevice structure enhances coral spat survivorship. J. Exp. Mar. Biol. Ecol. 367, 127–130 (2008).Article 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).ADS 
    Article 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Groves, S. H. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018).ADS 
    Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & De Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 
    Article 

    Google Scholar 
    Jiang, L. et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs 37, 71–79 (2018).ADS 
    Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom, M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180546 (2019).CAS 
    Article 

    Google Scholar 
    Brown, B. E. et al. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105 (1999).Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: Experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2015).Article 

    Google Scholar 
    Roth, M. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nakamura, T., van Woesik, R. & Yamasaki, H. Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar. Ecol. Prog. Ser. 301, 109–118 (2005).ADS 
    Article 

    Google Scholar  More

  • in

    Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species

    Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).Article 

    Google Scholar 
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).Article 

    Google Scholar 
    Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).PubMed 
    Article 

    Google Scholar 
    Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).Article 

    Google Scholar 
    Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).Article 

    Google Scholar 
    Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).Article 

    Google Scholar 
    Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).Article 

    Google Scholar 
    Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).Article 

    Google Scholar 
    Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).Article 

    Google Scholar 
    Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).PubMed 
    Article 

    Google Scholar 
    Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).Article 

    Google Scholar 
    Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).
    Google Scholar 
    Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).Article 

    Google Scholar 
    Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).
    Google Scholar 
    González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).
    Google Scholar 
    Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).PubMed 
    Article 
    ADS 

    Google Scholar 
    Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS 
    Article 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).Article 

    Google Scholar 
    Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).CAS 
    Article 

    Google Scholar 
    Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).Article 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).PubMed 
    Article 

    Google Scholar 
    Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).PubMed 
    Article 

    Google Scholar 
    Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).PubMed Central 
    Article 

    Google Scholar 
    Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).
    Google Scholar 
    Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).Article 

    Google Scholar 
    DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).CAS 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).Article 

    Google Scholar 
    Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).Article 

    Google Scholar 
    Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).Book 

    Google Scholar 
    Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).
    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).
    Google Scholar 
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).MATH 

    Google Scholar 
    Crawley, M. J. The R Book (Wiley, 2007).MATH 
    Book 

    Google Scholar 
    Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).PubMed 
    Article 

    Google Scholar 
    Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).CAS 
    Article 

    Google Scholar 
    Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).PubMed 
    Article 

    Google Scholar 
    Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).
    Google Scholar 
    Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).Article 

    Google Scholar 
    Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).CAS 
    PubMed 

    Google Scholar 
    Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).PubMed 
    Article 

    Google Scholar 
    Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).Article 

    Google Scholar 
    Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).PubMed 
    Article 

    Google Scholar 
    van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).Article 

    Google Scholar 
    Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).Article 

    Google Scholar 
    Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).
    Google Scholar 
    Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).Article 

    Google Scholar 
    Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Visser B et al. Why do
    many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
    https://doi.org/10.32942/osf.io/zpf4jArakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).Article 

    Google Scholar 
    Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
    wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).PubMed 
    Article 

    Google Scholar 
    Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).
    Google Scholar 
    Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).CAS 
    Article 

    Google Scholar 
    Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).Chapter 

    Google Scholar  More