Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).PubMed
PubMed Central
Article
Google Scholar
Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).Article
Google Scholar
Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
Google Scholar
Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article
Google Scholar
West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).Article
Google Scholar
Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS
PubMed
Article
Google Scholar
Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article
Google Scholar
Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).PubMed
Article
Google Scholar
Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).Article
Google Scholar
Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).Article
Google Scholar
Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).Article
Google Scholar
Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).CAS
Article
PubMed
Google Scholar
Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).Article
Google Scholar
Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).Article
Google Scholar
Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).CAS
PubMed
Article
Google Scholar
Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).PubMed
PubMed Central
Article
Google Scholar
Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).CAS
PubMed
Article
Google Scholar
Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).Article
Google Scholar
Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).Article
Google Scholar
Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).CAS
PubMed
Article
Google Scholar
Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).PubMed
Article
Google Scholar
Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).Article
Google Scholar
Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).
Google Scholar
Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).PubMed
PubMed Central
Article
Google Scholar
Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).Article
Google Scholar
Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).
Google Scholar
González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).
Google Scholar
Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).CAS
PubMed
Article
Google Scholar
Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).PubMed
Article
ADS
Google Scholar
Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS
Article
Google Scholar
Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).Article
Google Scholar
Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).CAS
PubMed
Article
Google Scholar
Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).CAS
Article
Google Scholar
Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).Article
Google Scholar
Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS
PubMed
Article
Google Scholar
Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).CAS
PubMed
Article
Google Scholar
Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS
PubMed
Article
Google Scholar
Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed
PubMed Central
Article
Google Scholar
Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).CAS
PubMed
Article
Google Scholar
Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).CAS
PubMed
Article
Google Scholar
Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).PubMed
Article
Google Scholar
Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).PubMed
Article
Google Scholar
Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).PubMed
Article
CAS
Google Scholar
Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).PubMed Central
Article
Google Scholar
Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).CAS
PubMed
Article
Google Scholar
Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).
Google Scholar
Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).PubMed
Article
Google Scholar
Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).Article
Google Scholar
DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).CAS
PubMed
Article
Google Scholar
Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).CAS
Article
Google Scholar
Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).CAS
PubMed
Article
Google Scholar
Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).Article
Google Scholar
Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).Article
Google Scholar
Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).Book
Google Scholar
Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).
Google Scholar
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS
PubMed
Article
Google Scholar
Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).PubMed
PubMed Central
Article
Google Scholar
Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).CAS
PubMed
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).
Google Scholar
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
Google Scholar
Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).MATH
Google Scholar
Crawley, M. J. The R Book (Wiley, 2007).MATH
Book
Google Scholar
Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).CAS
PubMed
Article
Google Scholar
Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).PubMed
Article
Google Scholar
Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).CAS
Article
Google Scholar
Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).PubMed
Article
Google Scholar
Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).
Google Scholar
Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).CAS
PubMed
Article
Google Scholar
Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).CAS
PubMed
Article
Google Scholar
Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).CAS
Article
PubMed
Google Scholar
Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).CAS
PubMed
Article
Google Scholar
Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).Article
Google Scholar
Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).CAS
PubMed
Google Scholar
Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).PubMed
PubMed Central
Article
Google Scholar
Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).CAS
PubMed
Article
Google Scholar
Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).PubMed
Article
Google Scholar
Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).Article
Google Scholar
Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).PubMed
Article
Google Scholar
Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).PubMed
Article
Google Scholar
van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).Article
Google Scholar
Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).Article
Google Scholar
Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).Article
Google Scholar
Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed
Article
Google Scholar
Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).
Google Scholar
Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).Article
Google Scholar
Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).CAS
PubMed
Article
Google Scholar
Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
Visser B et al. Why do
many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
https://doi.org/10.32942/osf.io/zpf4jArakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).Article
Google Scholar
Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).PubMed
Article
Google Scholar
Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).
Google Scholar
Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).CAS
Article
Google Scholar
Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).Chapter
Google Scholar More