More stories

  • in

    Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry

    Ethical statementEthics approval was obtained for this study from the ethics committee of the University of Goettingen (Chair: Prof. Dr. Peter-Tobias Stoll) under the reference number 17./04.22Wurz.Study areaAll plots were situated in northeastern Madagascar in the SAVA region (Supplementary Fig. 1). The natural vegetation is tropical lowland rainforest, but deforestation rates are high30,67.The region is globally and nationally one of the most biodiverse places with high levels of endemism17,68. Forest loss is mainly driven by slash-and-burn shifting hill rice cultivation58. The region is characterized by a warm and humid climate with an annual rainfall of 2255 mm and a mean annual temperature of 23,9 °C (mean value of 60 plots extracted from CHELSA climatology69). Vanilla is the main cash crop in the SAVA region, making Madagascar the main vanilla producer globally21,22. Vanilla prices have shown strong fluctuations over the past years, with a price boom between 2014 and 2019 triggering an expansion of vanilla agroforestry in the region22,23.Study designWe selected 10 villages based on the 60 villages selected within the Diversity Turn in Land Use Science project22 (Supplementary Fig. 1). We selected the villages based on the list of villages for our study region from official election lists which listed all villages within a fokontany individually22. Village boundaries, demographics, infrastructure were defined based on a rapid survey with the village chief. Among the 60 villages, we considered all villages without coconut plantations, with less than 40% water (river, sea, and lakes) to avoid a strong influence of water elements and with forest fragments and shifting cultivation present within a 2 km radius around the village. Two of these 17 villages overlapped within a 2 km radius of the villages, thus we randomly selected one of them, resulting in 14 villages. We visited these 14 villages in a randomized order and stopped after we found 10 villages which fulfilled the necessary criteria (all land-use types present, willing to participate). In each of the 10 villages, we selected three vanilla agroforests, one forest fragment, and two fallows. Overall, we studied 60 plots across 10 villages and 10 plots in one protected old-growth forest (Marojejy National Park). All plots had a minimum distance of 260 m and a mean minimum distance of 794 m (SD = 468 m) to each other. Plot elevation ranged between 10 and 819 m.a.s.l. (mean  = 205 m, SD = 213 m; Supplementary Table 20).Plot selectionIn each of the 10 villages, we selected three vanilla agroforests with low, medium, and high canopy closure, respectively, covering a within village canopy cover gradient. To refine our vanilla agroforest classification, we used interviews with the plot owners to categorize all vanilla agroforests based on land-use history into fallow- and forest-derived agroforests15. Forest-derived vanilla agroforests are established within forest fragments, which have been manually thinned of dense understory vegetation. Fallow-derived vanilla agroforests are established on formerly slashed and burned plots, where vegetation has been cleared for hill rice production (shifting cultivation system locally called tavy). Out of our 30 vanilla agroforests, 20 vanilla agroforests were fallow-derived and 10 vanilla agroforests were forest-derived, roughly matching the proportion of fallow- and forest-derived vanilla agroforests across the study region (70% are fallow-derived vanilla agroforests, 27% are forest-derived vanilla agroforests and 3% of unknown origin22.In addition to vanilla agroforests, we selected one forest fragment in each village. Forest fragments were located inside the agricultural landscape and were remnants of the once continuous forest; these fragments are frequently used for natural product extraction. Forest fragments have not been burned or clear cut in living memory, yet the ongoing resource extraction results in a much simplified stand structure and fewer large trees compared to old-growth forest12. Furthermore, we chose one herbaceous and one woody fallow in each of the 10 study villages. Both fallow types form part of the shifting hill rice production cycle and represent the fallow period at different stages after the crop production. Herbaceous fallows have been slashed and burned multiple times with the last cultivation cycle at the end of 2016, one year prior to the first species data collection in 2017, and thereafter left fallow11. The continuous succession of herbaceous fallows turns them into woody fallows with the domination of woody plants including shrubs, trees, and sometimes bamboo. Our 10 woody fallows have last burned 4–16 years before data collection. In this study, we combine both herbaceous and woody fallows into the category “fallow”. Generally, fallows occur in different forms in the study region. The characteristics of fallows depend on the frequency of past fires and the length of fallow periods in between crop cultivation11. Frequent burning results in a loss of native and woody species and a dominance of exotic species and grasses11. In later fallow cycles, fern species increasingly appear11.Due to the commonly repeated slashing and burning, secondary forests are very rare in the study region. Shifting cultivation prevails in Madagascar70, because it is an important option for people to grow food because means for agricultural intensification are scarce. According to our baseline survey (performed in 60 villages in our study region), 90% of the interviewed farmers grow rice for subsistence in addition to growing vanilla22. Out of this sample, 64% of farmers grow rice in irrigated paddies and 26% of farmers use shifting cultivation.We also studied 10 plots at two sites in Marojejy National Park, the only remaining, continuous old-growth forest at a low altitude in our study area71. We chose accessible old-growth forest plots with a minimum distance of 250 m from the forest edge. Five of the 10 old-growth forest plots were located in Manantenina Valley, the other five old-growth forest plots were situated in the eastern part of Marojejy National Park, called Bangoabe area. Illegal selective logging has occurred in some parts of the park. During our plot selection, we avoided sites with traces of selective logging.Land-use history classificationTo collect information on the land-use history or farm history, interviews with farmers are common72,73. We did interviews with the plot owner. Questions on land-use history were binary (forest-derived or fallow-derived) and did not include information on the detailed land-use history (e.g. frequency of burning, past crop systems). Thus, we consider this selfreported data very reliable. The land-use categorization derived by farmers was confirmed by our visual plot inspections (forest-derived vanilla agroforests do have a quite distinctive vegetation structure compared to fallow-derived vanilla agroforests). Additionally, data on tree species composition and soil characteristics show evident differences between the categories and back up the binary land-use history categorization. Analysis of tree species composition showed that fallow- and forest-derived vanilla agroforests differ significantly in tree species composition12. Soil analysis (see Fig. S9) showed that our fallow-derived vanilla agroforests are associated with fertility-related variables such as an increase in calcium, pH, nitrogen, and phosphorus, which is common after slas-and-burn agriculture74,75.Plot designWe collected species data on plots with a radius of 25 m (1964 m2, 0.1964 ha). We established our circular plots in a homogeneous area of the land-use type or forest. Adjacent land uses were usually different because farmers generally own small-scale land with a mean size of 0.66 ha (mean size of agroforests). We assessed vanilla plant data (yield, vine length, vine age, planting density) on 36 vanilla pieds on each of 30 circular vanilla plots (Supplementary Fig. 8). We defined one vanilla pied (foot in French) as the combination of a vanilla vine and a minimum of one support tree. The 36 vanilla pieds were evenly selected in each of the circular plots based on a sampling protocol to ensure comprehensive and unbiased sampling. We chose vanilla pieds independent of age, length or health condition. We marked the 36 selected vanilla pieds per plot with a unique barcode to assess vanilla yield (April 2018) and other plant health variables on the same plant (not used in this study). However, for 37 vanilla pieds (out of a total of 1080 marked vanilla pieds), the barcodes were lost or unreadable and we selected a new plant closest to the original position (independent of age, length, or condition) and marked it with a new unique barcode. We measured the size of the vanilla agroforest by walking with the agroforest owner and a hand-held GPS device at the perimeter of the plot.Vanilla planting densityWe counted each vanilla pied on each 25 m circular plot by dividing the plot in four-quarter segments. We calculated the area of each 25 m radius plot including slope correction and calculated vanilla planting density (vanilla pieds per hectare) by dividing the number of vanilla pieds by the slope-corrected plot area.Vanilla yieldWe measured yield on 30 vanilla plantations (10 forest-derived vanilla plantations and 20 fallow-derived vanilla plantations); three in each of our 10 study villages. We measured vanilla yield on a total of 36 vanilla pieds between March and April 2018. We assessed the vanilla yield before harvest to ensure an accurate yield assessment due to two reasons. Firstly, vanilla pods are commonly harvested successively due to their differing pollination date and maturity requiring multiple visits over several weeks. Secondly, theft of vanilla pods is commonplace around harvest time. We, therefore, estimated the weight of the on-plant-hanging vanilla pods by measuring pod volume and relating this to a prior established volume–weight correlation. This is possible because vanilla pods only grow in length and width in the first 8 weeks of their development76. Our yield assessment consisted of one interview part with the plot owner and one measurement part. The interview part included questions about the occurrence of theft and early harvest on the plantation. During the measurement part, we assessed the number, diameter, and length of all vanilla pods. We measured vanilla pod length with a ruler starting at the junction of stem and pod until the tip of the pod without considering the bending of the pod. We measured the diameter at the widest part of the pod using a caliper. We firstly calculated pod volume based on the standard volume cylinder formula using the measured diameter (cm) and length (cm): V = πr2h.Secondly, we calculated the weight (g) of each pod by using the linear regression equation (y = bx + a) of a weight–volume correlation of 114 vanilla pods from 114 different agroforests (weight, length, and diameter of these 114 green vanilla was assessed post-harvest in 2017). We calculated the weight of all measured pods of the harvest in 2018 based on the formula:$${{{{{rm{volume}}}}}}={{{{{rm{pi }}}}}}({{{{{rm{diameter}}}}}}({{{{{rm{mm}}}}}})/20)^wedge 2ast {{{{{rm{length}}}}}}({{{{{rm{cm}}}}}})$$Here, we divided the pod diameter (mm) by 20 to obtain the radius and to transform millimeters to centimeters. Weight was defined as volume*0.5662 + 0.9699. No vanilla pods were stolen or already harvested on our 36 vanilla pieds and hence we did not need to account for it in our vanilla yield calculation.Vanilla vine lengthWe assessed vanilla vine length for all 36 vanilla pieds (same vanilla pieds as used for the yield assessment) on each plot by measuring the total length of the vine from the lowest to the highest part with a measuring stick. If the vanilla vine was looped on the support tree (= vanilla vine is hanging in multiple loops on the support tree), we measured from the top height of the looping of the vanilla vine until the lowest height of the vine. At the medium height of the vanilla vine, we counted the number of times the vanilla vine passed through. We calculated the total length of the liana by multiplying the maximum height of the vanilla vine by the number of times the vine passed through the middle. In some cases, the vanilla vine looped at two different heights, we thus considered the middle between the two looping heights as the top height. If vanilla vines grew on two different support trees, we considered them as one vanilla pieds if support trees were More

  • in

    Impacts of urban expansion on natural habitats in global drylands

    Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, 2005).Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).Article 

    Google Scholar 
    Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).Article 

    Google Scholar 
    He, C. et al. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 14, 034008 (2019).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2019).Article 

    Google Scholar 
    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, 2013).van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).Article 

    Google Scholar 
    Sharp, R. et al. InVEST 3.2.0 User’s Guide (The Natural Capital Project, Stanford Univ., Univ. Minnesota, The Nature Conservancy and World Wildlife Fund, 2015).Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016).CAS 
    Article 

    Google Scholar 
    Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).Article 
    CAS 

    Google Scholar 
    McDonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).Article 

    Google Scholar 
    Mirzabaev, A. et al. in Climate Change and Land (eds Shukla, P. R. et al.) 249–343 (IPCC, 2019).Friis, C. & Nielsen, J. Telecoupling. Exploring Land-use Change in a Globalised World (Palgrave Macmillan, 2019).Maestre, F. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    Leh, M. D. K., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: a case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).Article 

    Google Scholar 
    Whitford, W. & Wade, E. L. Ecology of Desert Systems (Academic Press, 2002).Brito, J. C. et al. Conservation biogeography of the Sahara‐Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384 (2016).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Article 
    CAS 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Díaz, S. M. et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019).Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    Article 

    Google Scholar 
    Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).Article 

    Google Scholar 
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Phil. Soc. 82, 607–645 (2007).Article 

    Google Scholar 
    McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. C. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2017-3 (IUCN, 2017); https://www.iucnredlist.org/resources/spatial-data-downloadTucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).CAS 
    Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).CAS 
    Article 

    Google Scholar 
    Guidelines for Geoconservation in Protected and Conserved Areas (IUCN, 2020).Gao, J. How China will protect one-quarter of its land. Nature 569, 457 (2019).CAS 
    Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Gao, B., Huang, Q., He, C., Sun, Z. & Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 148, 89–98 (2016).Article 

    Google Scholar 
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Lambin, E. A. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).CAS 
    Article 

    Google Scholar 
    Arlidge, W. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).Article 

    Google Scholar 
    Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).Article 

    Google Scholar 
    Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).Article 

    Google Scholar 
    Ramaswami, A. et al. A social‐ecological‐infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16, 801–813 (2012).Article 

    Google Scholar 
    Boerema, A. et al. Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 11, e0155222 (2016).Article 
    CAS 

    Google Scholar 
    Garrett, R. D., Lambin, E. F. & Naylor, R. L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 31, 385–396 (2013).Article 

    Google Scholar 
    Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W. & Shi, S. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).Article 

    Google Scholar 
    Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manage. 125, 38–46 (2016).Article 

    Google Scholar 
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 201510272 (2016).
    Google Scholar 
    García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).Article 

    Google Scholar 
    Martínez-Valderrama, J., Guirado, E. & Maestre, F. Desertifying deserts. Nat. Sustain. 3, 572–575 (2020).Article 

    Google Scholar 
    Maestre, F. et al. Biogeography of global drylands. New Phytol. 231, 540–558 (2021).Article 

    Google Scholar 
    United Nations Environment World Conservation Monitoring Centre. World dryland areas according to UNCCD and CBD definitions. https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08 (2022).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).Article 

    Google Scholar 
    Revision of World Urbanization Prospects (United Nations, 2018); https://esa.un.org/unpd/wupLand Cover CCI—Product User Guide Version 2.0. (European Space Agency, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/index.phpGrekousis, G., Mountrakis, G. & Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335 (2015).Article 

    Google Scholar 
    Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Change Biol. 25, 2137–2151 (2019).Article 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).Article 

    Google Scholar 
    Huang, Q. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 084037 (2020).Article 

    Google Scholar 
    He, C., Liu, Z., Tian, J. & Ma, Q. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Change Biol. 20, 2886–2902 (2014).Article 

    Google Scholar 
    Di Febbraro, M. et al. Expert-based and correlative models to map habitat quality: which gives better support to conservation planning? Glob. Ecol. Conserv. 16, e00513 (2018).Article 

    Google Scholar 
    Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115 (2010).Article 

    Google Scholar  More

  • in

    Density estimates reveal that fragmented landscapes provide important habitat for conserving an endangered mesopredator, the spotted-tailed quoll

    Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993. https://doi.org/10.1111/jbi.12478 (2015).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502. https://doi.org/10.1046/j.1523-1739.2002.00386.x (2002).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178. https://doi.org/10.1111/1365-2664.12282 (2014).Article 

    Google Scholar 
    Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104. https://doi.org/10.1111/j.1523-1739.2007.00719.x (2007).Article 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Farris, Z. J. et al. Hunting, exotic carnivores, and habitat loss: Anthropogenic effects on a native carnivore community, Madagascar. PLOS ONE 10, e0136456. https://doi.org/10.1371/journal.pone.0136456 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farris, Z. J. et al. Threats to a rainforest carnivore community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biol. Cons. 210, 116–124. https://doi.org/10.1016/j.biocon.2017.04.010 (2017).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of “resistant” vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18. https://doi.org/10.1046/j.1472-4642.2003.00158.x (2003).Article 

    Google Scholar 
    Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: The importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-MAMM-A-149.1 (2012).Article 

    Google Scholar 
    Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    Fleschutz, M. M. et al. Response of a small felid of conservation concern to habitat fragmentation. Biodivers. Conserv. 25, 1447–1463. https://doi.org/10.1007/s10531-016-1118-6 (2016).Article 

    Google Scholar 
    Gálvez, N. et al. Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47, 251–258. https://doi.org/10.1017/S0030605312000099 (2013).Article 

    Google Scholar 
    Belcher, C. A. Demographics of tiger quoll (Dasyurus maculatus maculatus) populations in south-eastern Australia. Aust. J. Zool. 51, 611–626. https://doi.org/10.1071/ZO02051 (2003).Article 

    Google Scholar 
    Maxwell, S., Burbidge, A. & Morris, K. Spotted-tailed Quoll (SE mainland and Tas); recovery outline. (1996).Jones, M. E., Rose, R. K. & Burnett, S. Dasyurus maculatus. Mammalian Species 676, 1–9 (2001).Article 

    Google Scholar 
    Long, K. & Nelson, J. National recovery plan for the spotted-tailed Quoll Dasyurus maculatus. Victorian Department of Sustainability and Environment (2010).Claridge, A. W. et al. Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildl. Res. 32, 7–14. https://doi.org/10.1071/WR04031 (2005).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. J. Zool. 268, 347–354. https://doi.org/10.1111/j.1469-7998.2006.00064.x (2006).Article 

    Google Scholar 
    Körtner, G. et al. Population structure, turnover and movement of spotted-tailed quolls on the New England Tablelands. Wildl. Res. 31, 475–484. https://doi.org/10.1071/WR03041 (2004).Article 

    Google Scholar 
    Belcher, C. The Largest Surviving Marsupial Carnivore on Mainland Australia: The Tiger or Spotted-Tailed Quoll Dasyurus maculatus, A Nationally Threatened, Forest-Dependent Species 612–623 (Royal Zoological Society of New South Wales, Sydney, 2004).
    Google Scholar 
    Henderson, T., Fancourt, B. A., Rajaratnam, R., Vernes, K. & Ballard, G. Spatial and temporal interactions between endangered spotted-tailed quolls and introduced red foxes in a fragmented landscape. J. Zool. https://doi.org/10.1111/jzo.12919 (2021).Article 

    Google Scholar 
    Troy, S. N. Spatial Ecology of the Tasmanian Spotted-Tailed Quoll. Ph.D. Thesis, University of Tasmania, (2014).Jones, M. E. et al. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. Ecol. Manag. Restor. 22, 65–74. https://doi.org/10.1111/emr.12504 (2021).Article 

    Google Scholar 
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports 7, 1–11. https://doi.org/10.1038/s41598-017-11454-z (2017).CAS 
    Article 

    Google Scholar 
    Nichols, J. D. in Applied Ecology and Human Dimensions in Biological Conservation (eds L. M. Verdade, M.C. Lyra-Jorge, & C.I. Pina) 117–131 (Springer, 2014).Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. in Spatial Capture-Recapture (eds J. Andrew Royle, Richard B. Chandler, Rahel Sollmann, & Beth Gardner) 3–19 (Academic Press, 2014).Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriol. 56, 335–342. https://doi.org/10.1007/s13364-011-0038-9 (2011).Article 

    Google Scholar 
    Vissia, S., Wadhwa, R. & van Langevelde, F. Co-occurrence of high densities of brown hyena and spotted hyena in central Tuli, Botswana. J. Zool. 314, 143–150. https://doi.org/10.1111/jzo.12873 (2021).Article 

    Google Scholar 
    Henderson, T., Fancourt, B. A. & Ballard, G. The importance of species-specific survey designs: Prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Aust. Mammalogy https://doi.org/10.1071/AM21039 (2022).Gorta, S. B. Z., Alting, B., Claridge, A. & Henderson, T. Apparent piebald variants in quolls (Dasyurus): Examples of three recent cases in the spotted-tailed quoll Dasyurus maculatus. Aust. Mammalogy 43, 373–377. https://doi.org/10.1071/AM20058 (2021).Article 

    Google Scholar 
    Kowalksi, M. (https://exifpro.informer.com/2.1/, 2011).Efford, M. in R package version 4.5.3 (2022).R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, London, 2016).
    Google Scholar 
    Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610. https://doi.org/10.1111/j.0030-1299.2004.13043.x (2004).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462. https://doi.org/10.1111/2041-210X.12600 (2016).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 70–71 (2002).MATH 

    Google Scholar 
    Hamer, R. P. et al. Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Res. 49, 158–168. https://doi.org/10.1071/WR20134 (2021).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80, 387–401. https://doi.org/10.1017/s1464793105006718 (2005).Article 
    PubMed 

    Google Scholar 
    Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecol. 36, 290–296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Population viability analysis shows spotted-tailed quolls may be vulnerable to competition. Aust Mammalogy 35, 180–183. https://doi.org/10.1071/AM12045 (2013).Article 

    Google Scholar 
    Graham, C. A., Maron, M. & McAlpine, C. A. Influence of landscape structure on invasive predators: Feral cats and red foxes in the brigalow landscapes, Queensland Australia. Wildl. Res. 39, 661–676. https://doi.org/10.1071/WR12008 (2012).Article 

    Google Scholar 
    Glen, A. S. Population attributes of the spotted-tailed quoll (Dasyurus maculatus) in north-eastern New South Wales. Aust. J. Zool. 56, 137–142. https://doi.org/10.1071/ZO08025 (2008).Article 

    Google Scholar 
    Chua, M. A., Sivasothi, N. & Meier, R. Population density, spatiotemporal use and diet of the leopard cat (Prionailurus bengalensis) in a human-modified succession forest landscape of Singapore. Mammal Res. 61, 99–108 (2016).Article 

    Google Scholar 
    Lorica, M. & Heaney, L. Survival of a native mammalian carnivore, the leopard cat Prionailurus bengalensis Kerr, 1792 (Carnivora: Felidae), in an agricultural landscape on an oceanic Philippine island. J. Threatened Taxa, 4451–4460 (2013).Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).Article 

    Google Scholar 
    Belcher, C. A. & Darrant, J. P. Den use by the spotted-tailed quoll Dasyurus maculatus in south-eastern Australia. Aust Mammalogy 28, 59–64. https://doi.org/10.1071/AM06007 (2006).Article 

    Google Scholar 
    Glen, A. & Dickman, C. Why are there so many spotted-tailed Quolls Dasyurus maculatus in parts of north-eastern New South Wales?. Aust Zool 35, 711–718. https://doi.org/10.7882/az.2011.023 (2011).Article 

    Google Scholar 
    Hanski, I. Metapopulation ecology (Oxford University Press, Oxford, 1999).
    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Belcher, C. A. Susceptibility of the tiger quoll, Dasyurus maculatus, and the eastern quoll, D. viverrinus, to 1080-poisoned baits in control programmes for vertebrate pests in eastern Australia. Wildl. Res. 25, 33–40. https://doi.org/10.1071/WR95077 (1998).Article 

    Google Scholar 
    Schmidt, G. M., Graves, T. A., Pederson, J. C. & Carroll, S. L. Precision and bias of spatial capture–recapture estimates: A multi-site, multi-year Utah black bear case study. Ecological Applications 32, e2618. https://doi.org/10.1002/eap.2618 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. Capture-Recapture and Removal Methods for Sampling Closed Populations (Los Alamos National Laboratory, New Mexico, 1982).
    Google Scholar 
    Thornton, D. H. & Pekins, C. E. Spatially explicit capture–recapture analysis of bobcat (Lynx rufus) density: Implications for mesocarnivore monitoring. Wildl. Res. 42, 394–404. https://doi.org/10.1071/WR15092 (2015).Article 

    Google Scholar 
    Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Cons. 144, 1017–1024 (2011).Article 

    Google Scholar 
    Green, A. M., Chynoweth, M. W. & Şekercioğlu, Ç. H. Spatially explicit capture-recapture through camera trapping: A review of benchmark analyses for wildlife density estimation. Front. Ecol. Evol. 8, 473. https://doi.org/10.3389/fevo.2020.563477 (2020).Article 

    Google Scholar 
    du Preez, B. D., Loveridge, A. J. & Macdonald, D. W. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Cons. 176, 153–161 (2014).Article 

    Google Scholar 
    Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).Article 

    Google Scholar 
    Dupont, P., Milleret, C., Gimenez, O. & Bischof, R. Population closure and the bias-precision trade-off in spatial capture–recapture. Methods Ecol. Evol. 10, 661–672. https://doi.org/10.1111/2041-210X.13158 (2019).Article 

    Google Scholar 
    Mergey, M., Helder, R. & Roeder, J. J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335. https://doi.org/10.1644/09-MAMM-A-366.1 (2011).Article 

    Google Scholar 
    Silmi, M. et al. Activity and ranging behavior of leopard cats (Prionailurus bengalensis) in an oil palm landscape. Frontiers in Environmental Science 9, 651939. https://doi.org/10.3389/fenvs.2021.651939 (2021).Article 

    Google Scholar  More

  • in

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Basic information of intervieweesResults of the descriptive analysis summarized in Table 2 show that more than half of the respondents were males (69%) and were on average 41.3 years old while more than 32 years of farming experience. The study area is comprised of multiple ethnic groups (Han, Tibetan, Yugur, Mongolian, Hui, etc.). In most cases, the main livelihood activity of the Ethnic Minorities (Tibetan, Yugur, Mongolian, Hui, etc.) is livestock, while Han people main livelihood activity is farming. The majority of respondents (64%) were minority nationality. The vast majority of the agro-pastoralists (86%) have a primary school education or above, even though only 1% of them have Undergraduate education or Above. The results also reveal that 92% of respondents have access to weather information. The average cultivated land Per household is 10.23 Mu and Grassland is 156.21 Mu, respectively. The average per household income is RMB78000, and agricultural income is RMB52000.Table 2 Descriptive statistics of agro-pastoralist characteristics.Full size tableDue to their long-term farming experience, the agro-pastoralists were expected to have a high-level of understanding of local climate knowledge. Also contributing to this could be the information they receive about climate change and for some, the associated training through agro-pastoralists’ associations. Therefore, they also have a propensity to adapt to adverse conditions resulting from climate change impacts. In addition, the high-level of farming experience, the cultivated-land size, grassland size, Credit loan, Insurance, Village cadres all have a positive impact on the level of agro-pastoralists’ adaptation to new climate scenarios.However, the education level and cadres experience may be the major limiting factors for adopting specific long-term adaptation strategies. Ethnicity and gender are also expected to be key factors influencing awareness and adaptation to climate change. There are differences in relative perception intensity between Ethnic Minority and Han because of their cultural ecology (the main livelihood activity of minorities nationality is livestock, while Han main livelihood activity is farming.). In terms of gender, women in rural areas are less mobile and have less access to information and rights. They are also heavily involved in domestic work. However, men may have easier access to information (socializing, going out to work, etc.) Therefore, male headed households are expected to be more likely to adapt to the impact of climate change.Climate change trend in the study areaFigure 2 shows the trend of annual precipitation, annual rainfall and annual snow at different meteorological stations in the study area. As shown in the Fig. 2, precipitation, rainfall and snow show an increasing trend, but the increase range of snow (0.0325–0.375/a) is significantly lower than that of precipitation (1.22–3.1/a) and rainfall (1.04–2.81/a). Similarly, through the inspection, it is found that the multi-collinearity among precipitation, rainfall and snow at each meteorological station is obvious (most R2  > 0.5, and p  More

  • in

    Climate legacies drive the distribution and future restoration potential of dryland forests

    Middleton, N., Stringer, L., Goudie, A., & Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands (UNDP United Nations Convention to Combat Desertification, 2011).Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. 125, e2019JG005266 (2020).
    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlaepfer, D. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, H. in The End of Desertification? (eds Behnke, R. & Mortimore, M.) 513–536 (Springer, 2016).Gadzama, N. M. Attenuation of the effects of desertification through sustainable development of Great Green Wall in the Sahel of Africa. World J. Sci. Technol. Sustain. Dev. 14, 279–289 (2017).Article 

    Google Scholar 
    United Nations Decade on Restoration (accessed January 2021); https://www.decadeonrestoration.org/Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).Article 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 

    Google Scholar 
    Megdal, S. B. Transboundary groundwater resources: sustainable management and conflict resolution. Groundwater 55, 701–702 (2017).CAS 
    Article 

    Google Scholar 
    Jarvis, W.T. in Advances in Groundwater Governance (eds Villholth, K. G. et al.) 177–192 (CRC Press, 2017).Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mbow, C. The Great Green Wall in the Sahel. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.559 (2017).Petrie, M. D. et al. Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98, 1548–1559 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, S., Jiang, D. & Lang, X. Mid-Holocene drylands: a multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations. Holocene 29, 1425–1438 (2019).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Effects of climate legacies on above- and belowground community assembly. Glob. Change Biol. 24, 4330–4339 (2018).Article 

    Google Scholar 
    Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).CAS 
    Article 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Glob. Change Biol. 19, 2401–2412 (2013).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Schmidt, R. et al. GRACE observations of changes in continental water storage. Glob. Planet. Change 50, 112–126 (2006).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M. A. et al. ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000–2001 (ORNL DAAC, Oak Ridge, TN, USA, 2010); https://doi.org/10.3334/ORNLDAAC/968Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    National Centre for Earth Observation & Los, S.O. Global Vegetation Height Frequency Distributions from the ICESAT GLAS instrument produced as part of the National Centre for Earth Observation (NCEO) (NERC Earth Observation Data Centre, accessed 10 December 2020); http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management (Publications Office of the European Union, 2018).Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene. Science 280, 1916–1919 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. Tipping Points (Princeton Univ. Press, 2009).Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Runyan, C. W. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 2016).Herzschuh, U. et al. Global taxonomically harmonized pollen data set for Late Quaternary with revised chronologies (LegacyPollen 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.929773 (2021).Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belsky, A. J. et al. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26, 1005–1024 (1989).Article 

    Google Scholar 
    Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article 

    Google Scholar 
    Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).CAS 
    Article 

    Google Scholar 
    Trees, Forests and Land Use in Drylands: the First Global Assessment. Full Report (FAO, 2019).Diallo, H. A. in The Future of Drylands (eds Lee, C. & Schaaf, T.) 13–16 (Springer, 2008).A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands (UNEP-WCMC, 2014).Abatzoglou, J. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. IEEE Int. Geosci. Remote Sens. Symp. Proc. https://doi.org/10.1109/igarss.2011.6050017 (2011).Alibakhshi, S., Crowther, T. W. & Naimi, B. Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Data Brief. 31, 105720 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamazaki, T. Advanced land observation satellite (ALOS). 5 Outline of ALOS satellite system. J. Jpn Soc. Photogramm. Remote Sens. 38, 25–26 (1999).
    Google Scholar 
    Mu, Q., Zhao, M., & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).https://doi.org/10.1016/j.rse.2011.02.019Zlotnicki, V., Bettadpur, S., Landerer, F. W. & Watkins, M. M. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 4563–4584 (Springer, 2012).https://doi.org/10.1007/978-1-4419-0851-3_745Schepaschenko, D. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, 6362 (2017).Article 
    CAS 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017).Article 

    Google Scholar 
    Xia, X., Xu, C. & Nan, B. Inception-v3 for flower classification. In Proc. 2nd International Conference on Image, Vision and Computing (ICIVC) 783–787 (IEEE, 2017).Fei-Fei, L., Deng, J. & Li, K. ImageNet: constructing a large-scale image database. J. Vis. 9, 1037 (2010).Article 

    Google Scholar 
    Guirado, E. et al. Tree cover estimation in global drylands from space using deep learning. Remote Sens. 12, 343 (2020).Article 

    Google Scholar 
    Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).PubMed 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Lahouar, A. & Slama, J. B. H. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015).Article 

    Google Scholar 
    Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995).
    Google Scholar 
    Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–322 (2008).Article 

    Google Scholar 
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109.1, 213–241 (2011).Article 
    CAS 

    Google Scholar 
    Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).Article 

    Google Scholar 
    Cao, X. et al. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).Article 

    Google Scholar 
    Li, C. et al. Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.933132 (2021).GlobalTreeSearch Online Database (Botanic Gardens Conservation International, UK, accessed 20 January 2022); https://tools.bgci.org/global_tree_search.php More

  • in

    Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor

    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326, 123–125 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature. 586, 248–256 (2020).WMO. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019. Tech. Rep. (2020).Butterbach-Bahl, K., Stange, F., Papen, H. & Li, C. Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J. Geophys. Res. – Atmospheres 106, 34155–34166 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Kesik, M. et al. Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2, 353–375 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    World Bank. World Development Indicators: Fertiliser consumption (AG.CON.FERT.ZS), https://data.worldbank.org/indicator/AG.CON.FERT.ZS (2019).Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS 
    Article 

    Google Scholar 
    Hurtt, G. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G. & Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl Acad. Sci. USA 110, 18185–18189 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320, 889–892 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).
    Google Scholar 
    Roy, E. D., Hammond Wagner, C. R. & Niles, M. T. Hot spots of opportunity for improved cropland nitrogen management across the United States. Environ. Res. Lett. 16, (2021).Lett, S. & Michelsen, A. Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath. Plant Soil 379, 193–204 (2014).CAS 
    Article 

    Google Scholar 
    Wang, W. et al. Characteristics of Atmospheric Reactive Nitrogen Deposition in Nyingchi City. Sci. Rep. 9, 1–11 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Verma, P. & Sagar, R. Effect of nitrogen (N) deposition on soil-N processes: a holistic approach. Sci. Rep. 10, 1–16 (2020).Article 
    CAS 

    Google Scholar 
    Peng, J. et al. Global Carbon Sequestration Is Highly Sensitive to Model-Based Formulations of Nitrogen Fixation. Glob. Biogeochem. Cycles 34, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Leitner, S. et al. Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Curr. Opin. Environ. Sustain. 47, 95–105 (2020).Article 

    Google Scholar 
    Venterea, R. T. et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front. Ecol. Environ. 10, 562–570 (2012).Article 

    Google Scholar 
    Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K. & Petersen, S. O. Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments. Curr. Opin. Environ. Sustain. 47, 46–53 (2020).Article 

    Google Scholar 
    Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartmann, A. A., Barnard, R. L., Marhan, S. & Niklaus, P. A. Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia 171, 705–717 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Inatomi, M., Hajima, T. & Ito, A. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model. Plos One 14, e0219159 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Z. et al. Global patterns and controlling factors of soil nitrification rate. Glob. Change Biol. 26, 4147–4157 (2020).ADS 
    Article 

    Google Scholar 
    Reichenau, T. G., Klar, C. W. & Schneider, K. Effects of Climate Change on Nitrate Leaching. In Regional Assessment of Global Change Impacts: The Project GLOWA-Danube (eds Mauser, W. & Prasch, M.) 623–629 (Springer, 2016).He, W. et al. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Mas-Pla, J. & Menció, A. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environ. Sci. Pollut. Res. 26, 2184–2202 (2019).CAS 
    Article 

    Google Scholar 
    Stuart, M. E., Gooddy, D. C., Bloomfield, J. P. & Williams, A. T. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859–2873 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 
    Article 

    Google Scholar 
    Mitchell, R. A., Mitchell, V. J., Driscoll, S. P., Franklin, J. & Lawlor, D. W. Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell Environ. 16, 521–529 (1993).CAS 
    Article 

    Google Scholar 
    Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: Impacts of elevated CO 2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).ADS 
    Article 

    Google Scholar 
    Ri, X. & Prentice, I. C. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob. Change Biol. 14, 1745–1764 (2008).ADS 
    Article 

    Google Scholar 
    Ri, X., Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. N. Phytologist 196, 472–488 (2012).Article 
    CAS 

    Google Scholar 
    Giltrap, D. L. & Ausseil, A.-G. E. Upscaling NZ-DNDC using a regression based meta-model to estimate direct N2O emissions from New Zealand grazed pastures. Sci. Total Environ. 539, 221–230 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability. Atmos. Chem. Phys. 14, 4349–4368 (2014).ADS 
    Article 

    Google Scholar 
    Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 2: Atmospheric inversion estimates of N2O emissions. Atmos. Chem. Phys. 14, 6177–6194 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change, 8, (2019).Houlton, B. Z. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bai, E., Houlton, B. Z. & Wang, Y. P. Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9, 3287–3304 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 1–8 (2015).
    Google Scholar 
    Toyoda, S. et al. Decadal time series of tropospheric abundance of N2O isotopomers and isotopologues in the northern hemisphere obtained by the long-term observation at Hateruma Island, Japan. J. Geophys. Res. – Atmospheres 118, 1–13 (2013).
    Google Scholar 
    Harris, E. et al. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition. J. Geophys. Res. – Atmospheres 122, 1–21 (2017).CAS 

    Google Scholar 
    Harris, E. et al. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Sci. Adv. 7, eabb7118 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, L. et al. Atmospheric nitrous oxide isotopes observed at the high-altitude research station Jungfraujoch, Switzerland. Atmos. Chem. Phys. 20, 6495–6519 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Sowers, T., Rodebaugh, A., Yoshida, N. & Toyoda, S. Extending records of the isotopic composition of atmospheric N2O back to 1800 A.D. from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core. Glob. Biogeochem. Cycles 16, 1129 (2002).ADS 
    Article 
    CAS 

    Google Scholar 
    Scheer, C., Fuchs, K., Pelster, D. E. & Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Environ. Sustainability 47, 72–80 (2020).Article 

    Google Scholar 
    Pilegaard, K. Processes regulating nitric oxide emissions from soils. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–8, (2013).Thompson, R. Documentation of N2O flux service: Description of the N2O inversion production chain. Technical report, Copernicus Atmospheric Monitoring Service, CAMS73_2018SC2 -Documentation of N2O flux service (2021).Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, B., Lam, S. K., Wang, E., Mosier, A. & Chen, D. New approach for predicting nitrification and its fraction of N2O emissions in global terrestrial ecosystems. Environ. Res. Lett. 16, (2021).Corbeels, M., Hofman, G. & Van Cleemput, O. Fate of fertiliser N applied to winter wheat growing on a Vertisol in a Medditerranean environment. Nutrient Cycl. Agroecosystems 53, 249–258 (1999).Article 

    Google Scholar 
    Jenkinson, D. S., Poulton, P. R., Johnston, A. E. & Powlson, D. S. Turnover of Nitrogen-15-Labeled Fertilizer in Old Grassland. Soil Sci. Soc. Am. J. 68, 865–875 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).PubMed 
    Article 

    Google Scholar 
    Smith, W. et al. Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci. Total Environ. 728, 138845 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, Switzerland, 2014).Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).Congreves, K. A., Wagner-Riddle, C., Si, B. C. & Clough, T. J. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol. Biochem. 117(October 2017), 5–15 (2018).Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nat. Geosci. 10, 279–283 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Byers, E., Bleken, M. A. & Dörsch, P. Winter N2O accumulation and emission in sub-boreal grassland soil depend on clover proportion and soil ph. Environ. Res. Commun. 3, (2021).Doersch, P., Sturite, I. & Trier Kjaer, S. High off-season nitrous oxide emissions negate potential soil C-gain from cover crops in boreal cereal cropping (EGU22-3066). EGU General Assembly 2022, https://doi.org/10.5194/egusphere-egu22-3066 (2022).Prokopiou, M. et al. Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres. Atmos. Chem. Phys. 17, 4539–4564 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, L., Harris, E., Lewicka-Szczebak, D. & Mohn J. What can we learn from N2O isotope data? Analytics, processes and modelling. Rap. Commun. Mass Spectr. 34, 1–13 (2020).Smith, K., Thomson, P., Clayton, H., Mctaggart, I. & Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301–3309 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Yao, Z. et al. Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events. J. Geophys. Res. – Atmospheres 115, 1–17 (2010).
    Google Scholar 
    Cantarel, A. A. M. et al. Four years of experimental climate change modifies the microbial drivers of N 2O fluxes in an upland grassland ecosystem. Glob. Change Biol. 18, 2520–2531 (2012).ADS 
    Article 

    Google Scholar 
    Zhang, Y. et al. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 691, 1127–1136 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl Sci. Rev. 7, 441–452 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rütting, T., Cizungu Ntaboba, L., Roobroeck, D., Bauters, M., Huygens, D. & Boeckx, P. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. biogeochemical cycles 29, 1754–1762 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Brookshire, E. N., Gerber, S., Greene, W., Jones, R. T. & Thomas, S. A. Global bounds on nitrogen gas emissions from humid tropical forests. Geophys. Res. Lett. 44, 2502–2510 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Homyak, P. M. et al. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. PNAS 113, E2608–E2616 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (IGES, Japan, 2006).Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More Food, Low Pollution (Mo Fo Lo Po): A Grand Challenge for the 21st Century. J. Environ. Qual. 44, 305–311 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, X. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, In press, (2021).McDaniel, M. D., Mas-Pla, J. & Kaye, M. W. Do “hot moments” become hotter under climate change? Soil nitrogen dynamics from a climate manipulation experiment in a post-harvest forest. Biogeochemistry. https://doi.org/10.1007/s10533-014-0001-3 (2014).Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article 

    Google Scholar 
    FAO, IIASA, ISRIC, ISSCAS, and JRC. Harmonized World Soil Database (version 1.2). (Technical report, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012).Hiederer, R. & Köchy M. Global soil organic carbon estimates and the harmonized world soil database. EUR 25225EN (2012).Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2, https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zinke, P., Stangenberger, A., Post, W., Emanual, E. & Olson, J. WORLDWIDE ORGANIC SOIL CARBON AND NITROGEN DATA. Technical report, Oak Ridge National Laboratory, https://cdiac.ess-dive.lbl.gov/ndps/ndp018.html (2004).Kowalczyk, E. A., Wang, Y. P. & Law, R. M. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Mar. Atmos. Res. Pap. 13, 1–42 (2006).
    Google Scholar 
    Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, C. et al. Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: South slope versus north slope. Biogeosciences 15, 369–377 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Brenner, D., Amundson, R., Baisden, T., Kendall, C. & Harden, J. N variation with time in a California annual grassland ecosystem. Geochimica et. Cosmochimica Acta. 65, 4171–4186 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).Article 

    Google Scholar 
    Inglett, P. W., Reddy, K. R., Newman, S. & Lorenzen, B. Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia 153, 99–109 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 5, (2016).Bauters, M. et al. Functional Composition of Tree Communities Changed Topsoil Properties in an Old Experimental Tropical Plantation. Ecosystems 20, 861–871 (2017).CAS 
    Article 

    Google Scholar 
    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monograp. 89, 1–17 (2019).Bauters, M. et al. Long-term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica 51, 319–329 (2019).Article 

    Google Scholar 
    Gallarotti, N. et al. In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. (2021).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 1–8 (2022).Article 
    CAS 

    Google Scholar 
    Baumgartner, S. et al. Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin. Soil 7, 83–94 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Chollet, F. Keras, Keras package for Python https://keras.io (2015).IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”), online version created by S.J. Chalk. Blackwell Science Ltd, https://doi.org/10.1351/goldbook (2019).Yu, L. et al. Constraining global N2O budgets with decadal trends of multiple isotope signatures. In preparation, (2022).Machida, T., Nakazawa, T., Fujii, Y., Aoki, S. & Watanabe, O. Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett. 22, 2921–2924 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Rubino, M. et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11, 473–492 (2019).ADS 
    Article 

    Google Scholar 
    Dorich, C. et al. Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustainability 47, 13–20 (2020).Article 

    Google Scholar 
    Mariotti, A. et al. Experimental-determination of Nitrogen Kinetic Isotope Fractionation – Some Principles – Illustration For the Denitrification and Nitrification Processes. Plant Soil 62, 413–430 (1981).CAS 
    Article 

    Google Scholar 
    Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry. Geochimica et. Cosmochimica Acta. 105, 422–432 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Stern, L., Baisden, W. T. & Amundson, R. Processes controlling the oxygen isotope ratio of soil CO2: Analytic and numerical modeling. Geochimica Et. Cosmochimica Acta. 63, 799–814 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Denk, T. R. A. et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 105, 121–137 (2017).CAS 
    Article 

    Google Scholar 
    Rohe, L. et al. Comparing modified substrate induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021 (2021).Wei, J. et al. N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 132, 325–342 (2017).CAS 
    Article 

    Google Scholar 
    Clough, T. J. et al. Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    Bai, E. & Houlton, B. Z. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Glob. Biogeochemical Cycles 23, 1–10 (2009).
    Google Scholar 
    Wen, Y. et al. Disentangling gross N2O production and consumption in soil. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. & Zhang, F. S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 42, 1436–1448 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Unkovich, M. Isotope discrimination provides new insight into biological nitrogen fixation. N. Phytologist 198, 643–646 (2013).CAS 
    Article 

    Google Scholar 
    Beyn, F., Matthias, V., Aulinger, A. & Dähnke, K. Do N-isotopes in atmospheric nitrate deposition reflect air pollution levels? Atmos. Environ. 107, 281–288 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Vereecken, H. et al. Modeling Soil Processes: Review, Key challenges and New Perspectives. Vadose Zone J. 15, 1–57 (2016).CAS 

    Google Scholar 
    Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D. G., Hernandez-Ramirez, G. & Giltrap, D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosyst. Environ. 168, 53–65 (2013).CAS 
    Article 

    Google Scholar 
    Scheer, C. et al. Addressing nitrous oxide: An often ignored climate and ozone threat. Tech. Rep. (2019).Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaehle, S. Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–9 (2013).Jones, P. et al. Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).ADS 

    Google Scholar 
    Olivier, J. & Berdowski, J. EDGAR 3.x by RIVM/TNO. In The Climate System (eds Berdowski, R. G. J. & Heij, B.) 33–77. (Swets and Zeitlinger Publishers, 2001).Crippa, M. et al. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 7, 1–17 (2020).Article 

    Google Scholar 
    Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savard, M. M. et al. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J. Hydrol. 381, 134–141 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Bowman, K. P. & Cohen, P. J. Interhemispheric exchange by seasonal modulation of the Hadley circulation. J. Atmos. Sci. 54, 2045–2059 (1997).ADS 
    Article 

    Google Scholar 
    Moseman-Valtierra, S. et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 45, 4390–4397 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Brase, L., Bange, H. W., Lendt, R., Sanders, T. & Dähnke, K. High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Front. Mar. Sci. 4, 1–11 (2017).Article 

    Google Scholar 
    Wells, N. S. et al. Estuaries as Sources and Sinks of N2O Across a Land Use Gradient in Subtropical Australia. Glob. Biogeochemical Cycles 32, 877–894 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Rayner, P. Data Assimilation using an ensemble of models: A hierarchical approach. Atmos. Chem. Phys. 20, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Met Office. Cartopy: a cartographic python library with a Matplotlib interface (https://scitools.org.uk/cartopy), (2015). More

  • in

    Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species

    Effects of temperature on total daily locomotor activitiesTo understand the effect of temperature on the daily behavior of Drosophila species distributed in different temperature regions, we examined the daily locomotor activity at different temperatures in the following 11 sequenced Drosophila species: cosmopolitan (D. melanogaster and D. simulans), tropical (D. ananassae, D. erecta, D. yakuba, and D. sechellia), subtropical (D. willistoni and D. mojavensis), and temperate (D. persimilis, D. pseudoobscura, and D. virilis) species. Using the Drosophila Activity Monitor system25, we were able to analyze the amount of daily locomotor activity quantitatively at five experimental temperatures, i.e., 17 °C, 20 °C, 23 °C, 26 °C, and 29 °C. As the viability of the adults of D. persimilis and D. pseudoobscura was low at 29 °C, these two species were analyzed at only four experimental temperatures. First, we compared the amount of daily locomotor activities among these Drosophila species (Supplementary Fig. 1). The ranges of the total daily activity were quite diverse in these species (Kruskal–Wallis test: χ2 = 833.18, p  More

  • in

    Astronomically controlled aridity in the Sahara since at least 11 million years ago

    Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).Article 

    Google Scholar 
    Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).Article 

    Google Scholar 
    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).Article 

    Google Scholar 
    Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).Article 

    Google Scholar 
    McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).Article 

    Google Scholar 
    Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).Article 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).Article 

    Google Scholar 
    Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).Article 

    Google Scholar 
    Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).Article 

    Google Scholar 
    Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).Article 

    Google Scholar 
    McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).Article 

    Google Scholar 
    Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).Article 

    Google Scholar 
    Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).Article 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).Article 

    Google Scholar 
    Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).Article 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 

    Google Scholar 
    Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).Article 

    Google Scholar 
    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).Article 

    Google Scholar 
    Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).Article 

    Google Scholar 
    Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).Article 

    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).Article 

    Google Scholar 
    Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).Article 

    Google Scholar 
    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).Article 

    Google Scholar 
    Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).Article 

    Google Scholar 
    Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).Article 

    Google Scholar 
    Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).Article 

    Google Scholar 
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).Article 

    Google Scholar 
    Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).Article 

    Google Scholar 
    Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).Article 

    Google Scholar 
    Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).Article 

    Google Scholar 
    DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).Article 

    Google Scholar 
    Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).Article 

    Google Scholar 
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).Article 

    Google Scholar 
    Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).Article 

    Google Scholar 
    Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).Article 

    Google Scholar 
    Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).Article 

    Google Scholar 
    Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).Article 

    Google Scholar 
    Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).Article 

    Google Scholar 
    Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).Article 

    Google Scholar 
    Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).Article 

    Google Scholar 
    Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).Article 

    Google Scholar 
    Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).Article 

    Google Scholar 
    Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).Article 

    Google Scholar 
    McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).Article 

    Google Scholar 
    Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).Article 

    Google Scholar 
    Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).Article 

    Google Scholar 
    Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).Article 

    Google Scholar 
    Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).Article 

    Google Scholar 
    Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).Article 

    Google Scholar 
    Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).Article 

    Google Scholar 
    Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).Article 

    Google Scholar 
    Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).Article 

    Google Scholar 
    Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).
    Google Scholar 
    Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).Article 

    Google Scholar 
    Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).
    Google Scholar 
    Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).Article 

    Google Scholar 
    Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).Article 

    Google Scholar 
    Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).Article 

    Google Scholar 
    Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).Article 

    Google Scholar 
    Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).Article 

    Google Scholar 
    Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).Article 

    Google Scholar 
    Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).Article 

    Google Scholar 
    Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).Article 

    Google Scholar 
    Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).Article 

    Google Scholar 
    Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).Article 

    Google Scholar 
    Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).Article 

    Google Scholar 
    Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).Article 

    Google Scholar 
    Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).Article 

    Google Scholar  More