More stories

  • in

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJingjing Liang, Mo Zhou & Akane O. AbbasiForestry Division, Food and Agriculture Organization of the United Nations, Rome, ItalyJavier G. P. Gamarra & Antonello SalisGIP ECOFOR, Paris, FranceNicolas PicardDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USABryan Pijanowski, Douglass F. Jacobs & Minjee ParkInstitute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USAPeter B. ReichDepartment of Forest Resources, University of Minnesota, St. Paul, MN, USAPeter B. ReichHawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, AustraliaPeter B. ReichCrowther Lab, Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandThomas W. CrowtherWageningen Environmental Research, Wageningen University and Research, Wageningen, NetherlandsGert-Jan NabuursForest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, NetherlandsGert-Jan Nabuurs, Frans Bongers, Mathieu Decuyper, Marc Parren, Lourens Poorter & Douglas SheilDepartment of Crop and Forest Sciences, University of Lleida, Lleida, SpainSergio de-MiguelJoint Research Unit CTFC—Agrotecnio—CERCA, Solsona, SpainSergio de-Miguel & Albert MoreraInstitute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Evironmental Sciences, Peking University, Beijing, ChinaJingyun FangNorthern Research Station, USDA Forest Service, Durham, NH, USAChristopher W. WoodallCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSchool of Biological Sciences, University of Bristol, Bristol, UKTommaso JuckerTERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Gembloux, BelgiumJean-Francois BastinManaaki Whenua Landcare Research, Lincoln, New ZealandSusan K. WiserEnvironmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei DarussalamFerry SlikCentre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, FranceBruno HéraultINP-HB (Institut National Polytechnique Félix Houphouet-Boigny), University of Montpellier, Yamoussoukro, Ivory CoastBruno HéraultDepartment of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, ItalyGiorgio AlbertiFaculty of Science and Technology, Free University of Bolzano, Bolzano, ItalyGiorgio AlbertiInstitute of Bioeconomy, CNR, Sesto, ItalyGiorgio AlbertiNatural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia, AustraliaGunnar KeppelBiometris, Wageningen University and Research, Wageningen, NetherlandsGeerten M. HengeveldWageningen University & Research, Forest and Nature Conservation Policy Group, Wageningen, NetherlandsGeerten M. HengeveldCentre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Eberswalde, GermanyPierre L. IbischSchool of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USACarlos A. Silva, Eben N. Broadbent & Carine KlaubergNaturalis Biodiversity Center, Leiden, NetherlandsHans ter SteegeInstituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, ArgentinaPablo L. PeriDepartment of Plant Sciences, University of Cambridge, Cambridge, UKDavid A. CoomesFaculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, CanadaEric B. Searle & Han Y. H. ChenUniversity of Göttingen, Göttingen, GermanyKlaus von GadowBeijing Forestry University, Beijing, ChinaKlaus von GadowUniversity of Stellenbosch, Stellenbosch, South AfricaKlaus von GadowBiałowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, PolandBogdan JaroszewiczSwiss National Forest Inventory/Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, SwitzerlandMeinrad AbeggUFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Ivory CoastYves C. Adou Yao & Anny E. N’GuessanEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UKJesús Aguirre-GutiérrezBiodiversity Dynamics, Naturalis Biodiversity Center, Leiden, NetherlandsJesús Aguirre-GutiérrezCenter for Latin American Studies, University of Florida, Gainesville, FL, USAAngelica M. Almeyda ZambranoInstitute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czech RepublicJan Altman & Jiri DolezalFaculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Praha-Suchdol, Czech RepublicJan Altman & Miroslav SvobodaEscuela ECAPMA, National Open University and Distance (Colombia) | UNAD, Bogotá, ColombiaEsteban Alvarez-DávilaDepartamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, SpainJuan Gabriel Álvarez-GonzálezCenter for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USALuciana F. AlvesUniversité Jean Lorougnon Guédé, Daloa, Ivory CoastBienvenu H. K. AmaniUniversité Officielle de Bukavu, Bukavu, Democratic Republic of CongoChristian A. AmaniSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Goettingen, GermanyChristian Ammer & Peter SchallInstitut National pour l’Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of CongoBhely Angoboy IlondeaNorwegian Institute of Bioeconomy Research (NIBIO), Division of Forestry and Forest Resources, Ås, NorwayClara Antón-FernándezEuropean Commission, Joint Research Centre, Ispra, ItalyValerio AvitabileCompensation International Progress S.A., Bogotá, ColombiaGerardo A. AymardLaboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, BeninAkomian F. AzihouScientific Services, South African National Parks, Knysna, South AfricaJohan A. Baard & Graham P. DurrheimSchool of Geography, University of Leeds, Leeds, UKTimothy R. Baker, Simon L. Lewis & Oliver L. PhillipsDepartment of Geomatics, Forest Research Institute, Sekocin Stary, Raszyn, PolandRadomir Balazy & Krzysztof J. StereńczakProceedings of the National Academy of Sciences, Washington, DC, USAMeredith L. BastianDepartment of Evolutionary Anthropology, Duke University, Durham, NC, USAMeredith L. BastianDepartment of Environment, Universtité du Cinquantenaire de Lwiro, Bukavu, Democratic Republic of CongoRodrigue BatumikeDepartment of Environment, Ghent University, Ghent, BelgiumMarijn BautersDepartment of Green Chemistry and Technology, Ghent University, Ghent, BelgiumMarijn Bauters & Pascal BoeckxService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Thales de Haulleville & Wannes HubauBalai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan, Manokwari, IndonesiaNithanel Mikael Hendrik Benu & Relawan KuswandiInstitute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, UgandaRobert BitarihoUniversité de Liège, Gembloux Agro-Bio Tech, Gembloux, BelgiumJan Bogaert & Thales de HaullevilleIntegrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), University Stefan cel Mare of Suceava, Suceava, RomaniaOlivier BouriaudDepartment of Forestry Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro H. S. Brancalion, Ricardo G. César & Vanessa S. MorenoBavarian State Institute of Forestry, Freising, GermanySusanne BrandlDepartment of Natural Sciences, Manchester Metropolitan University, Manchester, UKFrancis Q. Brearley, Giacomo Sellan & Martin J. P. SullivanFacultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, MexicoJaime Briseno-Reyes, José Javier Corral-Rivas & Daniel José Vega-NievaInstitute of Biology and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyHelge BruelheideGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyHelge BruelheideDevelopment Economics Group, Wageningen University, Wageningen, NetherlandsErwin BulteRosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USAAnn Christine Catlin, Lev Gorenstein, Geoffrey Lentner & Xiao ZhuDepartment of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, ItalyRoberto Cazzolla GattiInstitute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandChelsea ChisholmIFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech RepublicEmil CiencialaGlobal Change Research Institute of the CAS, Brno, Czech RepublicEmil CiencialaPrograma de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas CEP, Biologia, BrazilGabriel D. CollettaDirección Nacional de Bosques (DNB), Ministerio de Ambiente y Desarrollo Sostenible (MAyDS), Ciudad Autónoma de Buenos Aires, Buenos Aires, ArgentinaAnibal CuchiettiDepartment of International Environment and Development Studies (Noragric), Faculty of Landscape and Society, Norwegian University of Life Sciences (NMBU), Ås, NorwayAida Cuni-SanchezDepartment of Environment and Geography, University of York, York, UKAida Cuni-SanchezDepartment of Environmental Science, School of Engineering and Sciences, SRM University-AP, Guntur, IndiaJavid A. DarDepartment of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, IndiaJavid A. Dar & Subashree KothandaramanDepartment of Ecology and Environmental Sciences, Pondicherry University, Puducherry, IndiaJavid A. Dar, Subashree Kothandaraman, Narayanaswamy Parthasarathy & Somaiah SundarapandianCentre for Structural and Functional Genomics & Quebec Centre for Biodiversity Science, Biology Department, Concordia University, Montreal, Quebec, CanadaSelvadurai DayanandanDepartment of Ecology, Faculty of Science, Charles University, Prague, Czech RepublicSylvain Delabye, Stepan Janecek, Yannick Klomberg, Vincent Maicher & Robert TropekBiology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech RepublicSylvain Delabye, Tom M. Fayle, Vincent Maicher & Robert TropekCirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French GuianaGéraldine Derroire, Aurélie Dourdain & Eric MarconDepartment of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, CanadaBen DeVriesNational Forest Authority, Kampala, UgandaJohn DiisiDepartment of Silviculture Foundation, Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, VietnamTran Van DoDepartment of Botany, Faculty of Science, University of South Bohemia, Bohemia, Czech RepublicJiri DolezalIPHAMETRA, IRET, CENAREST, Libreville, GabonNestor Laurier Engone ObiangFaculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of CongoCorneille E. N. Ewango, Faustin M. Mbayu & Eric Katembo WasingyaQueensland Herbarium, Department of Environment and Science, Toowong, Queensland, AustraliaTeresa J. Eyre, Victor J. Neldner & Michael R. NgugiSchool of Biological and Behavioural Sciences, Queen Mary University of London, London, UKTom M. FayleDepartment of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, CameroonLethicia Flavine N. Feunang, Banoho L. P. R. Kabelong, Moses B. Libalah, Louis N. Nforbelie, Emile Narcisse N. Njila & Melanie C. NyakoNatural Resources Institute Finland, Joensuu, FinlandLeena FinérInstitute of Plant Sciences, University of Bern, Bern, SwitzerlandMarkus FischerDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, SwedenJonas Fridman & Bertil WesterlundResearch and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, ItalyLorenzo Frizzera, Damiano Gianelle & Mirco RodeghieroHerbário Dr. Roberto Miguel Klein, Universidade Regional de Blumenau, Blumenau, BrazilAndré L. de GasperGlick Designs, LLC, Hadley, MA, USAHenry B. GlickCIIDIR Durango, Instituto Politécnico Nacional, Durango, MexicoMaria Socorro Gonzalez-ElizondoDépartement des Sciences et Technologies de l’Environnement, Université du Burundi, Bujumbura, BurundiRichard HabonayoFaculté des Sciences, Evolutionary Biology and Ecology Unit, Université Libre de Bruxelles, Brussels, BelgiumOlivier J. HardyRoyal Botanic Garden Edinburgh, Edinburgh, UKDavid J. Harris & Axel Dalberg PoulsenDepartment of Plant Sciences, University of Oxford, Oxford, UKAndrew HectorDepartment of Plant Systematics, Bayreuth University, Bayreuth, GermanyAndreas HempHelmholtz GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Potsdam, GermanyMartin HeroldWild Chimpanzee Foundation, Liberia Representation, Monrovia, LiberiaAnnika HillersCentre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UKAnnika HillersDepartment of Environment, Laboratory for Wood Technology (UGent-Woodlab), Ghent University, Ghent, BelgiumWannes HubauAMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceThomas IbanezDepartment of Forest Science, Tokyo University of Agriculture, Tokyo, JapanNobuo ImaiBiology Department, Université Officielle de Bukavu, Bukavu, Democratic Republic of CongoGerard ImaniInstitute of Dendrology, Polish Academy of Sciences, Kórnik, PolandAndrzej M. Jagodzinski & Jacek OleksynPoznan University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Game Management and Forest Protection, Poznan, PolandAndrzej M. JagodzinskiDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkVivian Kvist Johannsen & Sebastian Kepfer-RojasPlant Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, BrazilCarlos A. JolyDepartment of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USABlaise JumbamInstitute of Agricultural Research for Development (IRAD), Nkolbisson, Ministry of Scientific Research and Innovation, Yaounde, CameroonBlaise JumbamDepartment of Food and Resource Economics, University of Copenhagen, Copenhagen, DenmarkGoytom Abraha KahsayForestry Faculty, Bauman Moscow State Technical University, Mytischi, RussiaViktor Karminov & Olga MartynenkoIntegrative Research Center, The Field Museum, Chicago, IL, USAKuswata KartawinataLabo Botanique, Université Félix Houphouët-Boigny, Abidjan, Ivory CoastJustin N. KassiComputational and Applied Vegetation Ecology Lab, Ghent University, Ghent, BelgiumElizabeth Kearsley & Hans VerbeeckDepartment of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USADeborah K. KennardDepartment of Botany, Dr. Harisingh Gour Vishwavidalaya (A Central University), Sagar, IndiaMohammed Latif KhanKenya Forestry Research Institute, Department of Forest Resource Assessment, Nairobi, KenyaJohn N. KigomoDepartment of Forest Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInterdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of KoreaHyun Seok KimNational Center for Agro Meteorology, Seoul, Republic of KoreaHyun Seok KimResearch Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInstitute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, EstoniaHenn Korjus & Mait LangInternational Institute for Applied Systems Analysis, Laxenburg, AustriaFlorian Kraxner, Dmitry Schepaschenko & Anatoly Z. ShvidenkoDepartment of Geoinformatics, Central University of Jharkhand, Ranchi, IndiaAmit KumarTartu Observatory, University of Tartu, Tõravere, EstoniaMait LangSchool of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South AfricaMichael J. LawesDepartment of Forest Engineering, Federal University of Viçosa (UFV), Viçosa, BrazilRodrigo V. LeiteDepartment of Geography, University College London, London, UKSimon L. LewisPlant Systematics and Ecology Laboratory (LaBosystE), Higher Teacher’s Training College, University of Yaoundé I, Yaoundé, CameroonMoses B. LibalahLaboratoire d’Écologie et Aménagement Forestier, Département d’Ecologie et de Gestion des Ressources Végétales, Université de Kisangani, Kisangani, Democratic Republic of CongoJanvier LisingoInstituto de Silvicultura e Industria de la Madera, Universidad Juarez del Estado de Durango, Durango, MexicoPablito Marcelo López-Serrano & Maria Guadalupe Nava-MirandaFaculty of Forestry, Qingdao Agricultural University, Qingdao, ChinaHuicui LuCenter for Forest Ecology and Productivity RAS (CEPF RAS), Moscow, RussiaNatalia V. LukinaDepartment of Ecoscience, Aarhus University, Silkeborg, DenmarkAnne Mette LykkeNicholas School of the Environment, Duke University, Durham, NC, USAVincent Maicher & John R. PoulsenDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian S. MaitnerAgroParisTech, UMR AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceEric MarconUniversity of the Sunshine Coast, Sippy Downs, Queensland, AustraliaAndrew R. MarshallUniversity of York, York, UKAndrew R. MarshallFlamingo Land Ltd., North Yorkshire, UKAndrew R. MarshallDepartment of Wildlife Management, College of African Wildlife Management, Mweka, TanzaniaEmanuel H. MartinKenya Forestry Research Institute, Headquarters, Nairobi, KenyaMusingo T. E. MbuviDepartamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, MexicoJorge A. MeaveEcology and Evolutionary Biology, University of Connecticut, Storrs, CT, USACory MerowDepartment of Forest Management and Forest Economics, Warsaw University of Life Sciences, Warsaw, PolandStanislaw MiscickiTropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, AustraliaSharif A. Mukul & Alain S. K. NguteFieldstation Fabrikschleichach, Julius-Maximilians University Würzburg, Würzburg, GermanyJörg C. MüllerBavarian Forest Nationalpark, Grafenau, GermanyJörg C. MüllerFakultas Kehutanan, Universitas Papua, Jalan Gunung Salju Amban, Manokwari Papua Barat, IndonesiaAgustinus MurdjokoLimbe Botanic Garden, Limbe, CameroonLitonga Elias NdiveInstitute of Forestry, Belgrade, SerbiaRadovan V. NevenicTropical Plant Exploration Group (TroPEG), Buea, CameroonMichael L. Ngoh & Moses Nsanyi SaingeDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USAMichael L. NgohApplied Biology and Ecology Research Unit, University of Dschang, Dschang, CameroonAlain S. K. NguteDepartment of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USAThomas O. OchuodhoUQAM, Centre for Forest Research, Montreal, Quebec, CanadaAlain PaquetteV.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, RussiaElena I. Parfenova, Dmitry Schepaschenko & Nadja TchebakovaUrban Management and Planning, School of Social Sciences, Western Sydney University, Penrith, New South Wales, AustraliaSebastian PfautschInstituto Nacional de Pesquisas da Amazônia—INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, BrazilMaria T. F. Piedade, Jochen Schöngart & Natalia TarghettaCentro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, BrazilDaniel Piotto & Samir G. RolimDepartment of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, ItalyMartina Pollastrini & Federico SelviTechnical University of Munich, School of Life Sciences Weihenstephan, Chair of Forest Growth and Yield Science, Munich, GermanyHans PretzschCentro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all’Adige, ItalyMirco RodeghieroDepartment of Biology, University of Florence, Sesto Fiorentino, ItalyFrancesco RoveroMUSE—Museo delle Scienze, Trento, ItalyFrancesco RoveroInfoflora c/o Botanical Garden of Geneva, Geneva, SwitzerlandErvan RutishauserAgricultural Research, Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands (RIFR), Tehran, IranKhosro Sagheb-TalebiDepartment of Environmental Sciences, Central University of Jharkhand, Ranchi, IndiaPurabi SaikiaInstitute of International Education Scholar Rescue Fund (IIE-SRF), One World Trade Center, New York, NY, USAMoses Nsanyi SaingeCentro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, ChileChristian Salas-EljatibVicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, ChileChristian Salas-EljatibDepartamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, ChileChristian Salas-EljatibРeoples Friendship University of Russia (RUDN University), Moscow, RussiaDmitry SchepaschenkoUniversity of Freiburg, Faculty of Biology, Freiburg, GermanyMichael Scherer-LorenzenInstitution with City, Department of Geography, University of Zurich, Zurich, SwitzerlandBernhard SchmidNational Forest Centre, Zvolen, Slovak RepublicVladimír ŠebeňCNRS-UMR LEEISA, Campus Agronomique, Kourou, French GuianaGiacomo SellanUniversite de Lorraine, AgroParisTech, INRA, Nancy, FranceJosep M. Serra-DiazCenter for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, IndonesiaDouglas SheilCirad, University of Montpellier, Montpellier, FrancePlinio SistUniversidade Federal do Rio Grande do Norte, Departamento de Ecologia, Natal, BrazilAlexandre F. SouzaSchool of Biological Sciences, University of Aberdeen, Aberdeen, UKMike D. SwaineHerbarium Kew, Royal Botanic Gardens Kew, London, UKLiam A. TrethowanFaculté des Sciences Appliquées, Université de Mbujimayi, Mbujimayi, Democratic Republic of CongoJohn Tshibamba MukendiYale School of Forestry and Environmental Studies, New Haven, CT, USAPeter Mbanda UmunayUral State Forest Engineering University, Botanical Garden, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, RussiaVladimir A. UsoltsevDIBAF Department, Tuscia University, Viterbo, ItalyGaia Vaglio Laurin & Riccardo ValentiniLINCGlobal, MNCN, CSIC, Madrid, SpainFernando ValladaresPlant Ecology and Nature Conservation Group, Wageningen University, AA Wageningen, NetherlandsFons van der PlasAgricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, PortugalHelder VianaCentre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, PortugalHelder VianaDepartment of Forest Engineering, Universidade Regional de Blumenau, Blumenau, BrazilAlexander C. VibransNucleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas (UNICAMP), SP, Campinas, BrazilSimone A. VieiraInternational Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USAJason VleminckxForest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaCatherine E. WaiteSanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, ChinaHua-Feng Wang & Zhi-Xin ZhuKenya Forestry Research Institute, Taita Taveta Research Centre, Wundanyi, KenyaChemuku WekesaDepartment of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Rastatt, GermanyFlorian WittmannDepartment of Forest Management, Centre for Agricultural Research in Suriname, Paramaribo, SurinameVerginia WortelPolish State Forests-Coordination Centre for Environmental Projects, Warsaw, PolandTomasz Zawiła-NiedźwieckiResearch Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, ChinaChunyu Zhang & Xiuhai ZhaoDepartment of Statistics, University of Wisconsin–Madison, Madison, WI, USAJun ZhuInstitut National Polytechnique Félix Houphouët-Boigny, DFR Eaux, Forêts et Environnement, BP, Yamoussoukro, Ivory CoastIrie C. Zo-BiCentre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, South AfricaCang HuiAfrican Institute for Mathematical Sciences, Muizenberg, South AfricaCang HuiConceptualization: J. Liang and C.H. Methodology: J. Liang, C.H., J.G.P.G. and N. Picard. Data coordination: J. Liang, M.Z., S.d.-M., T.W.C., G.-J.N., P.B.R., F. Slik, K.v.G., J.G.P.G. and N. Picard. Writing, revision and editing: all. More

  • in

    Over half of known human pathogenic diseases can be aggravated by climate change

    Pörtner, H. O. et al. Climate Change 2022: Impacts, Adaptation and Vulnerability (IPCC, 2022).Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).CAS 
    Article 

    Google Scholar 
    Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (Cambridge Univ. Press, 2014).Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).CAS 
    Article 

    Google Scholar 
    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).CAS 
    Article 

    Google Scholar 
    Epstein, P. The ecology of climate change and infectious diseases: comment. Ecology 91, 925–928 (2010).Article 

    Google Scholar 
    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).Jaenisch, T. & Patz, J. Assessment of associations between climate and infectious diseases: a comparison of the reports of the Intergovernmental Panel on Climate Change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Glob. Change Hum. Health 3, 67–72 (2002).Article 

    Google Scholar 
    Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit. Rev. Microbiol. 42, 548–572 (2016).Article 

    Google Scholar 
    Tabachnick, W. J. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Ann. Rev. Virol 29, 125–145 (2016).Article 
    CAS 

    Google Scholar 
    Khasnis, A. A. & Nettleman, M. D. Global warming and infectious disease. Arch. Med. Res. 36, 689–696 (2005).Article 

    Google Scholar 
    McMichael, A. J. Extreme weather events and infectious disease outbreaks. Virulence 6, 543–547 (2015).Article 

    Google Scholar 
    Ahern, M., Kovats, R. S., Wilkinson, P., Few, R. & Matthies, F. Global health impacts of floods: epidemiologic evidence. Epidemiol. Rev. 27, 36–46 (2005).Article 

    Google Scholar 
    Hunter, P. R. Climate change and waterborne and vector‐borne disease. J. Appl. Microbiol. 94, 37–46 (2003).Article 

    Google Scholar 
    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vector borne diseases. Am. J. Prev. Med. 35, 436–450 (2008).Article 

    Google Scholar 
    Semenza, J. C. et al. Climate change impact assessment of food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).Article 

    Google Scholar 
    Nichols, G., Lake, I. & Heaviside, C. Climate change and water-related infectious diseases. Atmosphere 9, 385 (2018).Article 

    Google Scholar 
    Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol. 68, 120–128 (2008).CAS 
    Article 

    Google Scholar 
    Cecchi, L. et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65, 1073–1081 (2010).CAS 

    Google Scholar 
    Demain, J. G. Climate change and the impact on respiratory and allergic disease: 2018. Curr. Allergy Asthma Rep. 18, 22 (2018).Article 

    Google Scholar 
    Andersen, L. K. & Davis, M. D. The effects of the El Niño Southern Oscillation on skin and skin-related diseases: a message from the International Society of Dermatology Climate Change Task Force. Int. J. Dermatol. 54, 1343–1351 (2015).Article 

    Google Scholar 
    Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos 98, 12609–12617 (1993).Article 

    Google Scholar 
    Metcalf, C. J. E. & Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149–152 (2017).CAS 
    Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).CAS 
    Article 

    Google Scholar 
    Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    Article 

    Google Scholar 
    Ngongeh, L. A., Idika, I. K. & Ibrahim Shehu, A. R. warming and its impacts on parasitology/entomology. Open Parasitol. J 5, 1–11 (2014).Article 

    Google Scholar 
    LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909–916 (2011).Article 

    Google Scholar 
    Gale, P., Drew, T., Phipps, L. P., David, G. & Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J. Appl. Microbiol. 106, 1409–1423 (2009).CAS 
    Article 

    Google Scholar 
    Lancien, J., Muguwa, J., Lannes, C. & Bouvier, J. B. Tsetse and human trypanosomiasis challenge in south eastern Uganda. Int. J. Trop. Insect Sci. 11, 411–416 (1990).Article 

    Google Scholar 
    Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).Article 

    Google Scholar 
    Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).Article 

    Google Scholar 
    Arriaza, B. T., Reinhard, K. J., Araújo, A. G., Orellana, N. C. & Standen, V. G. Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations. Mem. Inst. Oswaldo Cruz 105, 66–72 (2010).Article 

    Google Scholar 
    Kaffenberger, B. H., Shetlar, D., Norton, S. A. & Rosenbach, M. The effect of climate change on skin disease in North America. J. Am. Acad. Dermatol. 76, 140–147 (2017).Article 

    Google Scholar 
    Coates, S. J., Enbiale, W., Davis, M. D. & Andersen, L. K. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 59, 265–278 (2020).Article 

    Google Scholar 
    Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).Article 

    Google Scholar 
    Nagy, G. J. et al. in Climate Change and Health (ed Leal, W) 475–514 (Springer, 2016).Kontra, J. M. Zombie infections and other infectious disease complications of global warming. J. Lancaster Gen. Hosp. 12, 12–16 (2017).
    Google Scholar 
    Charron, D., Fleury, M., Lindsay, L. R., Ogden, N. & Schuster, C. J. in Human Health in a Changing Climate (ed Séguin, J) 173–210 (Health Canada, 2008).Butler, C. D. & Harley, D. Primary, secondary and tertiary effects of eco-climatic change: the medical response. Postgrad. Med. J. 86, 230–234 (2010).Article 

    Google Scholar 
    Quarles, W. Global warming means more pathogens. IPM Pract. 35, 1–8 (2017).
    Google Scholar 
    Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Ann. Rev. Public Health 21, 271–307 (2000).CAS 
    Article 

    Google Scholar 
    Yavarian, J., Shafiei-Jandaghi, N. Z. & Mokhtari-Azad, T. Possible viral infections in flood disasters: a review considering 2019 spring floods in Iran. Iran. J. Microbiol. 11, 85–89 (2019).
    Google Scholar 
    Boxall, A. B. A. et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 117, 508–514 (2009).CAS 
    Article 

    Google Scholar 
    Wu, R., Trubl, G., Taş, N. & Jansson, J. K. Permafrost as a potential pathogen reservoir. One Earth 5, 351–360 (2022).Article 

    Google Scholar 
    Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).CAS 
    Article 

    Google Scholar 
    Baker-Austin, C. et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 22, 1216 (2016).CAS 
    Article 

    Google Scholar 
    Ghanchi, N. K. et al. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. Am. J. Trop. Med. Hyg. 97, 1600–1602 (2017).Article 

    Google Scholar 
    Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).Article 

    Google Scholar 
    Oskorouchi, H. R., Nie, P. & Sousa-Poza, A. The effect of floods on anemia among reproductive age women in Afghanistan. PLoS ONE 13, e0191726 (2018).Article 
    CAS 

    Google Scholar 
    Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector‐borne diseases. Ann. N. Y. Acad. Sci. 1436, 157 (2019).Article 

    Google Scholar 
    Clegg, J. Influence of climate change on the incidence and impact of arenavirus diseases: a speculative assessment. Clin. Microbiol. Infect. 15, 504–509 (2009).CAS 
    Article 

    Google Scholar 
    Nguyen, H. Q., Huynh, T. T. N., Pathirana, A. & Van der Steen, P. Microbial risk assessment of tidal-induced urban flooding in Can Tho City (Mekong Delta, Vietnam). Int. J. Environ. Res. Public. Health 14, 1485 (2017).Article 
    CAS 

    Google Scholar 
    Ivers, L. C. & Ryan, E. T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 19, 408–414 (2006).Article 

    Google Scholar 
    Cornell, K. Climate change and infectious disease patterns in the United States: public health preparation and ecological restoration as a matter of justice. MSc thesis, Goucher College (2016).Mishra, V. et al. Climate change and its impacts on global health: a review. Pharma Innov. 8, 316–326 (2019).
    Google Scholar 
    Lemonick, D. M. Epidemics after natural disasters. Am. J. Clin. Med. 8, 144–152 (2011).
    Google Scholar 
    Khan, A. E., Xun, W. W., Ahsan, H. & Vineis, P. Climate change, sea-level rise, and health impacts in Bangladesh. Environ. Sci. Policy Sustain. Dev. 53, 18–33 (2011).Article 

    Google Scholar 
    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).CAS 
    Article 

    Google Scholar 
    Zell, R., Krumbholz, A. & Wutzler, P. Impact of global warming on viral diseases: what is the evidence? Curr. Opin. Biotechnol. 19, 652–660 (2008).CAS 
    Article 

    Google Scholar 
    McFarlane, R. A., Sleigh, A. C. & McMichael, A. J. Land-use change and emerging infectious disease on an island continent. Int. J. Environ. Res. Public. Health 10, 2699–2719 (2013).Article 

    Google Scholar 
    White, R. J. & Razgour, O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land‐use change. Mammal. Rev. 50, 336–352 (2020).Article 

    Google Scholar 
    Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).CAS 
    Article 

    Google Scholar 
    Munang’andu, H. M. et al. The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J. Vet. Sci. 13, 293–298 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 15, 044004 (2020).Article 

    Google Scholar 
    Kapoor, R. et al. God is in the rain: the impact of rainfall-induced early social distancing on COVID-19 outbreaks. J. Health Econ. 81, 102575 (2020).
    Google Scholar 
    Raza, A., Khan, M. T. I., Ali, Q., Hussain, T. & Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 28, 40378–40393 (2021).CAS 
    Article 

    Google Scholar 
    Nichols, G. L. et al. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 21, 1101 (2021).El-Sayed, A. & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 27, 22336–22352 (2020).CAS 
    Article 

    Google Scholar 
    Ruszkiewicz, J. A. et al. Brain diseases in changing climate. Environ. Res. 177, 108637 (2019).CAS 
    Article 

    Google Scholar 
    Herrador, B. R. G. et al. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ. Health 14, 29 (2015).Article 

    Google Scholar 
    Burge, C. A. et al. Climate Change influences on marine infectious diseases: implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).Article 

    Google Scholar 
    Mills, J. N., Gage, K. L. & Khan, A. S. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect. 118, 1507–1514 (2010).Article 

    Google Scholar 
    Gubler, D. J. et al. Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001).
    Google Scholar 
    Dayrit, J. F., Bintanjoyo, L., Andersen, L. K. & Davis, M. D. P. Impact of climate change on dermatological conditions related to flooding: update from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 57, 901–910 (2018).Article 

    Google Scholar 
    Myaing, T. T. Climate change and emerging zoonotic diseases. KKU Vet. J. 21, 172–182 (2011).
    Google Scholar 
    Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).CAS 
    Article 

    Google Scholar 
    Oh, M. H., Lee, S. M., Lee, D. H. & Choi, S. H. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect. Immun. 77, 1208–1215 (2009).CAS 
    Article 

    Google Scholar 
    Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Invest. 130, 553–555 (2020).CAS 
    Article 

    Google Scholar 
    Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 767, 145413 (2021).CAS 
    Article 

    Google Scholar 
    Warburton, E. M., Pearl, C. A. & Vonhof, M. J. Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat–helminth system. Parasitol. Res. 115, 2155–2164 (2016).Article 

    Google Scholar 
    Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B 275, 861–869 (2008).Article 

    Google Scholar 
    Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).Article 

    Google Scholar 
    Mora, C. et al. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol. 13, e1002167 (2015).Article 
    CAS 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).CAS 
    Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    Article 

    Google Scholar 
    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).CAS 
    Article 

    Google Scholar 
    Tirado, M. C., Clarke, R., Jaykus, L., McQuatters-Gollop, A. & Frank, J. Climate change and food safety: a review. Food Res. Int. 43, 1745–1765 (2010).Article 

    Google Scholar 
    Greene, M. Impact of the Sahelian drought in Mauritania, West Africa. Lancet 303, 1093–1097 (1974).Article 

    Google Scholar 
    Cabrol, J.-C. War, drought, malnutrition, measles—a report from Somalia. N. Engl. J. Med. 365, 1856–1858 (2011).CAS 
    Article 

    Google Scholar 
    Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).CAS 
    Article 

    Google Scholar 
    Calow, R. C., MacDonald, A. M., Nicol, A. L. & Robins, N. S. Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48, 246–256 (2010).CAS 
    Article 

    Google Scholar 
    Salvador, C., Nieto, R., Linares, C., Díaz, J. & Gimeno, L. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Sci. Total Environ. 703, 134912 (2020).CAS 
    Article 

    Google Scholar 
    Alhoot, M. A., Tong, W. T., Low, W. Y. & Sekaran, S. D. in Climate Change and Human Health Scenario in South and Southeast Asia (ed Akhtar, R) 243–268 (Springer, 2016).Yusa, A. et al. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 12, 8359–8412 (2015).CAS 
    Article 

    Google Scholar 
    Ligon, B. L. Infectious Diseases that Pose Specific Challenges After Natural Disasters: A Review. Semin. Pediatr. Infect. Dis. 17, 36–45 (2006).Article 

    Google Scholar 
    Nsuami, M. J., Taylor, S. N., Smith, B. S. & Martin, D. H. Increases in gonorrhea among high school students following hurricane Katrina. Sex. Transm. Infect. 85, 194–198 (2009).CAS 
    Article 

    Google Scholar 
    Jochelson, K. HIV and syphilis in the Republic of South Africa: the creation of an epidemic. Afr. Urban Q. 6, 20–34 (1991).
    Google Scholar 
    Sobral, M. F. F., Duarte, G. B., da Penha Sobral, A. I. G., Marinho, M. L. M. & de Souza Melo, A. Association between climate variables and global transmission of SARS-CoV-2. Sci. Total Environ. 729, 138997 (2020).CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020).CAS 
    Article 

    Google Scholar 
    Chua, P. L. et al. Global projections of temperature-attributable mortality due to enteric infections: a modelling study. Lancet Planet. Health 5, e436–e445 (2021).Article 

    Google Scholar 
    McCreesh, N. & Booth, M. Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends Parasitol. 29, 548–555 (2013).Article 

    Google Scholar 
    Wu, X., Tian, H., Zhou, S., Chen, L. & Xu, B. Impact of global change on transmission of human infectious diseases. Sci. China Earth Sci. 57, 189–203 (2014).Article 

    Google Scholar 
    Moreno, A. R. Climate change and human health in Latin America: drivers, effects, and policies. Reg. Environ. Change 6, 157–164 (2006).Article 

    Google Scholar 
    McCann, D. G., Moore, A. & Walker, M.-E. The water/health nexus in disaster medicine: I. drought versus flood. Curr. Opin. Environ. Sustain. 3, 480–485 (2011).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    Article 

    Google Scholar 
    Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).Article 

    Google Scholar 
    Hsiao, M.-H. et al. Environmental factors associated with the prevalence of animal bites or stings in patients admitted to an emergency department. J. Acute Med. 2, 95–102 (2012).Article 

    Google Scholar 
    Jones, N. E. & Baker, M. D. Toxicologic exposures associated with natural disasters: gases, kerosene, ash, and bites. Clin. Pediatr. Emerg. Med. 13, 317–323 (2012).Article 

    Google Scholar  More

  • in

    Ancient DNA reveals phenological diversity of Coast Salish herring harvests over multiple centuries

    Luck, G. W., Daily, G. C. & Ehrlich, P. R. Population diversity and ecosystem services. Trends Ecol. Evol. 18, 331–336. https://doi.org/10.1016/S0169-5347(03)00100-9 (2003).Article 

    Google Scholar 
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612. https://doi.org/10.1038/nature09060 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: Steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046. https://doi.org/10.1111/1365-2656.12212 (2014).Article 
    PubMed 

    Google Scholar 
    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499. https://doi.org/10.1126/science.aav3824 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55. https://doi.org/10.1038/nature10944 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Savage, A. E. & Zamudio, K. R. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl. Acad. Sci. 108, 16705. https://doi.org/10.1073/pnas.1106893108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hofinger, B. J. et al. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20, 3653–3668. https://doi.org/10.1111/j.1365-294X.2011.05201.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089. https://doi.org/10.1073/pnas.1704949114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689. https://doi.org/10.1126/science.278.5338.689 (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fernández-Llamazares, Á. et al. Scientists’ warning to humanity on threats to indigenous and local knowledge systems. J. Ethnobiol. 41(144–169), 126 (2021).
    Google Scholar 
    Womble, J. N., Willson, M. F., Sigler, M. F., Kelly, B. P. & VanBlaricom, G. R. Distribution of Steller sea lions (Eumetopias jubatus) in relation to spring-spawning fish in SE Alaska. Mar. Ecol. Prog. Ser. 294, 271–282 (2005).ADS 
    Article 

    Google Scholar 
    Thomas, G. L. & Thorne, R. E. Night-time predation by Steller sea lions. Nature 411, 1013–1013. https://doi.org/10.1038/35082745 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Chamberlin, J. W., Beckman, B. R., Greene, C. M., Rice, C. A. & Hall, J. E. How relative size and abundance structures the relationship between size and individual growth in an ontogenetically piscivorous fish. Ecol. Evol. 7, 6981–6995. https://doi.org/10.1002/ece3.3218 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284 (2013).ADS 
    Article 

    Google Scholar 
    Schrimpf, M. B., Parrish, J. K. & Pearson, S. F. Trade-offs in prey quality and quantity revealed through the behavioral compensation of breeding seabirds. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps09750 (2012).Article 

    Google Scholar 
    Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fisheries 16, 183–200. https://doi.org/10.1007/s11160-006-9009-7 (2006).Article 

    Google Scholar 
    Sandell, T., Lindquist, A., Dionne, P. & Lowry, D. 2016 Washington State herring stock status report (Washington Department of Fish and Wildlife, 2019).Petrou, E. L. et al. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc. R. Soc. B Biol. Sci. 288, 20202398. https://doi.org/10.1098/rspb.2020.2398 (2021).CAS 
    Article 

    Google Scholar 
    Chamberlin, J. et al. Phenological diversity of a prey species supports life-stage specific foraging opportunity for a mobile consumer. ICES J. Mar. Sci. 78, 3089–3100. https://doi.org/10.1093/icesjms/fsab176 (2021).Article 

    Google Scholar 
    Lok, E. K. et al. Spatiotemporal associations between Pacific herring spawn and surf scoter spring migration: Evaluating a silver wave hypothesis. Mar. Ecol. Prog. Ser. 457, 139–150 (2012).ADS 
    Article 

    Google Scholar 
    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112. https://doi.org/10.1890/15-0554.1 (2016).Article 
    PubMed 

    Google Scholar 
    McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1316072111 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moss, M. L., Rodrigues, A. T., Speller, C. F. & Yang, D. Y. The historical ecology of Pacific herring: Tracing Alaska Native use of a forage fish. J. Archaeol. Sci. Rep. https://doi.org/10.1016/j.jasrep.2015.10.005 (2016).Article 

    Google Scholar 
    Kopperl, R. E. Herring use in southern Puget Sound: Analysis of fish remains at 45-KI-437. Northwest Anthropol. Res. Notes 35, 1–20 (2001).
    Google Scholar 
    McKechnie, I. & Moss, M. L. Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J. Archaeol. Sci. Rep. 8, 470–485. https://doi.org/10.1016/j.jasrep.2016.04.006 (2016).Article 

    Google Scholar 
    Caldwell, M. E. et al. A bird’s eye view of northern Coast Salish intertidal resource management features, southern British Columbia, Canada. J. Isl. Coast. Archaeol. 7, 219–233. https://doi.org/10.1080/15564894.2011.586089 (2012).Article 

    Google Scholar 
    Eells, M. & Castile, G. P. The Indians of Puget Sound: The Notebooks of Myron Eells (University of Washington Press, 1985).
    Google Scholar 
    Smith, M. W. The Puyallup-Nisqually (Columbia University Press, 1940).Book 

    Google Scholar 
    Thornton, T. F. & Moss, M. L. Herring and People in the North Pacific: Sustaining a Keystone Species (University of Washington Press, 2021).
    Google Scholar 
    Powell, M. Divided waters: Heiltsuk spatial management of herring fisheries and the politics of native sovereignty. West. Hist. Q. 43, 463–484. https://doi.org/10.2307/westhistquar.43.4.0463 (2012).Article 

    Google Scholar 
    Gauvreau, A. M., Lepofsky, D., Rutherford, M. & Reid, M. “Everything revolves around the herring”: The Heiltsuk–herring relationship through time. Ecol. Soc. https://doi.org/10.5751/ES-09201-220210 (2017).Article 

    Google Scholar 
    von der Porten, S., Lepofsky, D., McGregor, D. & Silver, J. Recommendations for marine herring policy change in Canada: Aligning with Indigenous legal and inherent rights. Mar. Policy 74, 68–76. https://doi.org/10.1016/j.marpol.2016.09.007 (2016).Article 

    Google Scholar 
    Hammond, J. Fish in puget sound. Am. Angler 25, 392–393 (1886).
    Google Scholar 
    Bargmann, G. Forage fish management plan (Washington Department of Fish and Wildlife, 1998).Stick, K. C. & Lindquist, A. 2008 Washington State herring stock status report (Washington Department of Fish and Wildlife, 2009).Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251. https://doi.org/10.1146/annurev.marine.010908.163749 (2009).Article 

    Google Scholar 
    Hadly, E. A. & Barnosky, A. D. in Conservation Paleobiology: Using the Past to Manage for the Future Vol. 15 (eds Dietl, G. P. & Flessa, K. W.) 39–59 (Paleontological Society Papers, 2009).Wolverton, S. & Lyman, R. L. in Conservation Biology and Applied Zooarchaeology (eds Wolverton, S. & Lyman, R. L.) 1–22 (University of Arizona Press, 2012).Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl. Acad. Sci. 110, 1750. https://doi.org/10.1073/pnas.1212858110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, C. A., Dallimore, A., Thomson, R. E., Patterson, R. T. & Ware, D. M. Late Holocene paleofish populations in Effingham Inlet, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 367–384. https://doi.org/10.1016/j.palaeo.2005.03.041 (2005).Article 

    Google Scholar 
    Thompson, T. Q. et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc. Natl. Acad. Sci. 116, 177. https://doi.org/10.1073/pnas.1811559115 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Halffman, C. M. et al. Early human use of anadromous salmon in North America at 11,500 y ago. Proc. Natl. Acad. Sci. 112, 12344–12348. https://doi.org/10.1073/pnas.1509747112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. An environmental and historical overview of the Puget Sound ecosystem (U.S. Geological Survey, 2010).Kopperl, R. E., Taylor, A. K., Miss, C. J., Ames, K. M. & Hodges, C. M. The Bear Creek Site (45KI839), a Late Pleistocene-Holocene transition occupation in the Puget Sound lowland, King County, Washington. PaleoAmerica 1, 116–120. https://doi.org/10.1179/2055556314Z.0000000004 (2015).Article 

    Google Scholar 
    Gunther, E. Klallam Ethnography (University of Washington Press, 1927).
    Google Scholar 
    Elmendorf, W. W. & Kroeber, A. L. The Structure of Twana Culture (Washington State University Press, 1992).
    Google Scholar 
    The Suquamish Tribe. Fish consumption survey of the Suquamish Indian tribe of the Port Madison Indian Reservation, Puget Sound Region (Suquamish, WA, 2000).Suttles, W. P. The Economic Life of the Coast Salish of Haro and Rosario Straits (Garland Publishing, 1974).
    Google Scholar 
    Lane, B. The Indian herring fishery from the earliest times to the mid-nineteenth century (United States Depatment of the Interior, 1974).Stein, J. K. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 5–16 (Burke Musseum, 2002).Lewarch, D. E. et al. Data recovery excavations at the Bay Street Shell Midden (45KP115), Kitsap County, Washington (Larson Anthropological Archaeological Services Limited, 2002).De Danaan, L. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 17–31 (Burke Museum, 2002).Stein, J. K. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 47–64 (Burke Musseum, 2002).Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32, 331–336. https://doi.org/10.1016/j.jas.2004.09.008 (2005).Article 

    Google Scholar 
    Yang, D. Y., Liu, L., Chen, X. & Speller, C. F. Wild or domesticated: DNA analysis of ancient water buffalo remains from north China. J. Archaeol. Sci. 35, 2778–2785. https://doi.org/10.1016/j.jas.2008.05.010 (2008).Article 

    Google Scholar 
    Maddox, D. M. et al. A mutation in Syne2 causes early retinal defects in photoreceptors, secondary neurons, and Müller Glia. Invest. Ophthalmol. Vis. Sci. 56, 3776–3787. https://doi.org/10.1167/iovs.14-16047 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, F. et al. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. Elife 9, e61076. https://doi.org/10.7554/eLife.61076 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, M. J. et al. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol. Ecol. Resour. 11, 268–277. https://doi.org/10.1111/j.1755-0998.2010.02965.x (2011).Article 
    PubMed 

    Google Scholar 
    Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122. https://doi.org/10.1371/journal.pone.0051122 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. & Cockerham, C. Estimating F-Statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An r package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11. https://doi.org/10.1111/1755-0998.12559 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Moran, B. M. & Anderson, E. C. Bayesian inference from the conditional genetic stock identification model. Can. J. Fish. Aquat. Sci. 76, 551–560. https://doi.org/10.1139/cjfas-2018-0016 (2018).Article 

    Google Scholar 
    Moss, M. L. Understanding variability in Northwest Coast faunal assemblages: Beyond economic intensification and cultural complexity. J. Isl. Coast. Archaeol. 7, 1–22. https://doi.org/10.1080/15564894.2011.586090 (2012).Article 

    Google Scholar 
    Greene, C., Kuehne, L., Rice, C., Fresh, K. & Penttila, D. Forty years of change in forage fish and jellyfish abundance across greater Puget Sound, Washington (USA): Anthropogenic and climate associations. Mar. Ecol. Prog. Ser. 525, 153–170 (2015).ADS 
    Article 

    Google Scholar 
    Rice, C. A., Duda, J. J., Greene, C. M. & Karr, J. R. Geographic patterns of fishes and jellyfish in Puget Sound surface waters. Mar. Coast. Fish. 4, 117–128. https://doi.org/10.1080/19425120.2012.680403 (2012).Article 

    Google Scholar 
    Haegele, C. W. & Schweigert, J. F. Distribution and characteristics of herring spawning grounds and description of spawning behavior. Can. J. Fish. Aquat. Sci. 42, s39–s55. https://doi.org/10.1139/f85-261 (1985).Article 

    Google Scholar 
    Gao, Y. W., Joner, S. H. & Bargmann, G. G. Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound. Can. J. Fish. Aquat. Sci. 58, 2113–2120. https://doi.org/10.1139/f01-146 (2001).Article 

    Google Scholar 
    West, J. E., O’Neill, S. M. & Ylitalo, G. M. Spatial extent, magnitude, and patterns of persistent organochlorine pollutants in Pacific herring (Clupea pallasi) populations in the Puget Sound (USA) and Strait of Georgia (Canada). Sci. Total Environ. 394, 369–378. https://doi.org/10.1016/j.scitotenv.2007.12.027 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Moss, M. L. The nutritional value of Pacific herring: An ancient cultural keystone species on the Northwest Coast of North America. J. Archaeol. Sci. Rep. 5, 649–655. https://doi.org/10.1016/j.jasrep.2015.08.041 (2016).Article 

    Google Scholar 
    Brown, F. & Brown, Y. K. Staying the course, staying alive- Coastal First Nations fundamental truths: Biodiversity, stewardship and sustainability 82 (2009).Dugmore, A. J. et al. Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland. Proc. Natl. Acad. Sci. 109, 3658. https://doi.org/10.1073/pnas.1115292109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nunn, P. D. et al. Times of plenty, times of less: Last-millennium societal disruption in the Pacific Basin. Hum. Ecol. 35, 385–401. https://doi.org/10.1007/s10745-006-9090-5 (2007).Article 

    Google Scholar 
    Rose, K. A., Megrey, B. A., Hay, D., Werner, F. & Schweigert, J. Climate regime effects on Pacific herring growth using coupled nutrient-phytoplankton-zooplankton and bioenergetics models. Trans. Am. Fish. Soc. 137, 278–297. https://doi.org/10.1577/T05-152.1 (2008).Article 

    Google Scholar 
    Rosenthal, Y., Linsley, B. K. & Oppo, D. W. Pacific ocean heat content during the past 10,000 years. Science 342, 617. https://doi.org/10.1126/science.1240837 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hopt, J. & Grier, C. Continuity amidst change: Village organization and fishing subsistence at the Dionisio Point locality in coastal southern British Columbia. J. Isl. Coast. Archaeol. 13, 21–42. https://doi.org/10.1080/15564894.2016.1257526 (2018).Article 

    Google Scholar 
    Butler, V. L., Campbell, S. K., Bovy, K. M. & Etnier, M. A. Exploring ecodynamics of coastal foragers using integrated faunal records from Čḯxwicən village (Strait of Juan de Fuca, Washington, U.S.A.). J. Archaeol. Sci. Rep. 23, 1143–1167. https://doi.org/10.1016/j.jasrep.2018.09.031 (2019).Article 

    Google Scholar 
    Lamichhaney, S. et al. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc. Natl. Acad. Sci. 114, E3452–E3461 (2017).CAS 
    Article 

    Google Scholar 
    Carpenter, M. L. et al. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864. https://doi.org/10.1016/j.ajhg.2013.10.002 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oosting, T. et al. Unlocking the potential of ancient fish DNA in the genomic era. Evol. Appl. 12, 1513–1522. https://doi.org/10.1111/eva.12811 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320. https://doi.org/10.1016/j.tree.2020.10.018 (2021).Article 
    PubMed 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).CAS 
    Article 

    Google Scholar 
    Deo, J. N., Stone, J. O. & Stein, J. K. Building confidence in shell: Variations in the marine radiocarbon reservoir correction for the Northwest Coast over the past 3,000 years. Am. Antiq. 69, 771–786. https://doi.org/10.2307/4128449 (2004).Article 

    Google Scholar  More

  • in

    A global dataset of seaweed net primary productivity

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science. 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).Article 

    Google Scholar 
    Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 1–34 (2015).Article 

    Google Scholar 
    Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Sayers, M. J., Fahnenstiel, G. L., Shuchman, R. A. & Bosse, K. R. A new method to estimate global freshwater phytoplankton carbon fixation using satellite remote sensing: initial results. Int. J. Remote Sens. 42, 3708–3730 (2021).Article 

    Google Scholar 
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cycles 24, GB3016 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 939–951 (2009).ADS 
    MATH 
    Article 

    Google Scholar 
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, V. S. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, 1–8 (2010).Article 
    CAS 

    Google Scholar 
    Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).
    Google Scholar 
    Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography. 31(7), 1422–1439, https://doi.org/10.1111/geb.13515 (2022).Duggins, D. O. & Estes, J. A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science. 245, 170–173 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunton, K. H. & Schell, D. M. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: 13C evidence. Mar. Biol. 625, 615–625 (1987).Article 

    Google Scholar 
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).ADS 
    Article 

    Google Scholar 
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum belt. Nat. Commun. 12, 2556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci. 4 (2017).Kanwisher, J. W. Photosynthesis and respiration in some seaweeds. in Some contemporary studies in marine science:: a collection of original scientific papers presented to Dr. S.M. Marshall, O.B.E., F.R.S. in recognition of her contribution with the late Dr. A.P. Orr to marine biological progress (eds. Barnes, H. & Marshall, S. M.) 407 (Allen & Unwin, 1966).Blinks, L. R. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14, 363–373 (1955).
    Google Scholar 
    Printz, H. Seasonal growth and production of dry matter in Ascophyllum nodosum. Avh. Utg. Av Det Nor. Videnskaps-akademi i Oslo. I. Mat. Klasse 4, 1–15 (1950).
    Google Scholar 
    Rassweiler, A., Reed, D. C., Harrer, S. L. & Nelson, J. C. Improved estimates of net primary production, growth and standing crop of Macrosystis pryifera in Southern California. Ecology 99, 2132 (2018).PubMed 
    Article 

    Google Scholar 
    Littler, M. M. & Arnold, K. E. Primary Productivity of Marine Macroalgal Functional-Form Groups From Southwestern North America. Journal of Phycology 18, 307–311 (1982).Article 

    Google Scholar 
    Krause-Jensen, D. et al. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob. Chang. Biol. 18, 2981–2994 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smale, D. A. et al. Environmental factors influencing primary productivity of the forest – forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. Global seaweed productivity. Science Advances https://doi.org/10.1126/sciadv.abn2465 (2022) (in press).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).Article 

    Google Scholar 
    Tebbett, S. B. & Bellwood, D. R. Algal turf productivity on coral reefs: A meta-analysis. Mar. Environ. Res. 168, 105311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s kelp forests. in World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) 57–78, https://doi.org/10.1016/B978-0-12-805052-1.00003-6 (Academic Press, 2019).Gómez, I. et al. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 52, 593–608 (2009).Article 

    Google Scholar 
    Kindig, A. C. & Littler, M. M. Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Mar. Environ. Res. 3, 81–100 (1980).Article 

    Google Scholar 
    Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: The significance of grazing. Aquat. Bot. 3, 357–390 (1977).Article 

    Google Scholar 
    Hatcher, B. G. Reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Odum, H. T. & Odum, E. P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).Article 

    Google Scholar 
    Owen, D. P., Long, M. H., Fitt, W. K. & Hopkinson, B. M. Taxon-specific primary production rates on coral reefs in the Florida Keys. Limnol. Oceanogr. 1–14, https://doi.org/10.1002/lno.11627 (2020).Attard, K. M. et al. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: An eddy covariance study. Mar. Ecol. Prog. Ser. 535, 99–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Attard, K. M. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).ADS 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. (2019).Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).ADS 
    Article 

    Google Scholar 
    Thom, R. M. Spatial and Temporal Patterns of Fucus distichus ssp. edentatus (de la Pyl.) Pow. (Phaeophyceae: Fucales) in Central Puget Sound. Bot. Mar. 26, 471–486 (1983).Article 

    Google Scholar 
    Johnston, C. S., Jones, R. G. & Hunter, D. R. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 527–545 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Chang. Biol. 1–17, https://doi.org/10.1111/gcb.15837 (2021).Randall, J., Wotherspoon, S., Ross, J., Hermand, J. & Johnson, C. An in situ study of production from diel oxygen modelling, oxygen exchange, and electron transport rate in the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 615, 51–65 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rodgers, K. L., Rees, T. A. V. & Shears, N. T. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528, 101–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanderson, J. C. Subtidal Macroalgal Studies in East and South Eastern Tasmanian Coastal Waters. (University of Tasmania, 1990).Miller, R. J., Reed, D. C. & Brzezinski, M. A. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388, 1–11 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. A global dataset of seaweed net primary productivity, Figshare, https://doi.org/10.6084/m9.figshare.14882322 (2021).Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).PubMed 
    Article 

    Google Scholar 
    Lees, D. C., Houghton, J. P., Erickson, D. E., Driskell, W. B. & Boettcher, D. E. Ecological studies of intertidal and shallow subtidal habitats in lower Cook Inlet, Alaska. (1980).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. C. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60 (2012).ADS 
    Article 

    Google Scholar 
    Kain, J. M. The biology of Laminaria hyperborea X. The effect of depth on some populations. J. Mar. Biol. Assoc. United Kingdom 57, 587–607 (1977).Article 

    Google Scholar 
    Yatsuya, K., Nishigaki, T., Douke, A., Itani, M. & Wada, Y. Annual net productions of sargassacean species in coastal areas with different environmental characteristics in Kyoto Prefecture, the Sea of Japan. Nippon Suisan Gakkaishi 73, 880–890 (2007).Article 

    Google Scholar 
    Carter, A. R. & Simons, R. H. Regrowth and Production Capacity of Gelidium pristoides (Gelidiales, Rhodophyta) under Various Harvesting Regimes at Port Alfred, South Africa. Bot. Mar. 30, 227–232 (1987).Article 

    Google Scholar 
    Santelices, B., Vásquez, J., Ohme, U. & Fonck, E. Managing wild crops of Gracilaria in central Chile. in Eleventh International Seaweed Symposium (eds. Bird, C. J. & Ragan, M. A.) 77–89 (Springer Netherlands, 1984).Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 10, 91–104 (2018).
    Google Scholar 
    Dunton, K. H. An annual carbon budget for an arctic kelp community. in The Alaskan Beaufort Sea: ecosystems and environments. (eds. Barnes, P. W., Schell, D. & Reimnitz, E.) 311–326 (Academic press, 1984).Klumpp, D. W. & McKinnon, A. D. Commmunity structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef; dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 86, 77–89 (1992).ADS 
    Article 

    Google Scholar 
    Westphalen, G. & Cheshire, A. C. Quantum efficiency and photosynthetic production of a temperate turf algal community. Aust. J. Bot. 45, 343–349 (1997).Article 

    Google Scholar 
    Morrissey, J. Primary productivity of coral reef benthic macroalgae. Proceedings of the 5th International Coral Reef Congress 77–82 (1985).Howard, K. L. & Menzies, R. J. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Bot. Mar. 12, 244–254 (1969).Article 

    Google Scholar 
    Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, 1–17 (2020).
    Google Scholar 
    Tait, L. W., South, P. M., Lilley, S. A., Thomsen, M. S. & Schiel, D. R. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J. Exp. Mar. Bio. Ecol. 469, 10–17 (2015).CAS 
    Article 

    Google Scholar 
    Rodgers, K. & Shears, N. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar. Ecol. Prog. Ser. 553, 67–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Alpine shrub growth follows bimodal seasonal patterns across biomes – unexpected environmental controls

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).Article 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life (Springer International Publishing, 2021).Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).CAS 
    Article 

    Google Scholar 
    AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (2021).Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).Article 

    Google Scholar 
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Self‐amplifying feedbacks accelerate greening and warming of the arctic. Geophys. Res. Lett. 45, 7102–7111 (2018).Article 

    Google Scholar 
    Körner, C. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41, 197–206 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pellizzari, E. et al. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Glob. Change Biol. 23, 3169–3180 (2017).Article 

    Google Scholar 
    Dobbert, S., Pape, R. & Löffler, J. How does spatial heterogeneity affect inter‐ and intraspecific growth patterns in tundra shrubs. J. Ecol. 7, 1 (2021).
    Google Scholar 
    Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Change Biol. 23, 4294–4302 (2017).Article 

    Google Scholar 
    Stendel, M., Christensen, J. H. & Petersen, D. in High-Arctic Ecosystem Dynamics in a Changing Climate (eds. Meltofte, H.) 13–43 (Elsevier, 2008).Prislan, P. et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 7, 1923 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).Article 

    Google Scholar 
    Olano, J. M., Almería, I., Eugenio, M. & Arx, G. V. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 27, 1295–1303 (2013).Article 

    Google Scholar 
    Voltas, J. et al. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell Environ. 36, 1435–1448 (2013).CAS 
    Article 

    Google Scholar 
    Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).Article 

    Google Scholar 
    Castagneri, D., Battipaglia, G., Arx, G. V., Pacheco, A. & Carrer, M. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 38, 1098–1109 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabon, A., Peters, R. L., Fonti, P., Martínez-Vilalta, J. & Cáceres, M. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. N. Phytologist 226, 1325–1340 (2020).CAS 
    Article 

    Google Scholar 
    Camarero, J. J., Valeriano, C., Gazol, A., Colangelo, M. & Sánchez-Salguero, R. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid mediterranean conditions. Forests 12, 381 (2021).Article 

    Google Scholar 
    García-Cervigón Morales, A. I., Olano Mendoza, J. M., Eugenio Gozalbo, M. & Camarero Martínez, J. J. Arboreal and prostrate conifers coexisting in Mediterranean high mountains differ in their climatic responses. Dendrochronologia 30, 279–286 (2012).Article 

    Google Scholar 
    Oladi, R., Emaminasab, M. & Eckstein, D. The dendroecological potential of shrubs in north Iranian semi-deserts. Dendrochronologia 44, 94–102 (2017).Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evolution 5, 243–254 (2015).Article 

    Google Scholar 
    Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).PubMed 
    Article 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist 210, 459–470 (2016).CAS 
    Article 

    Google Scholar 
    Rathgeber, C. B. K., Cuny, H. E. & Fonti, P. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7, 734 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Carbon limitation in trees. J. Ecol. 91, 4–17 (2003).Article 

    Google Scholar 
    Thompson, J. D. Plant Evolution in the Mediterranean (Oxford University Press, 2005).Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22, 3804–3813 (2016).Article 

    Google Scholar 
    Löffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. N. Phytologist 231, 2174–2185 (2021).Article 

    Google Scholar 
    González-Rodríguez, Á. M. et al. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 127, 97–108 (2017).Article 

    Google Scholar 
    Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage. N. Phytologist 211, 839–849 (2016).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).Article 

    Google Scholar 
    Mitrakos, K. A Theory for Mediterranean Plant Life (Acta oecologica, 1980).Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist 185, 471–480 (2010).Article 

    Google Scholar 
    Alday, J. G., Camarero, J. J., Revilla, J. & Resco de Dios, V. Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. Tree Physiol. 40, 956–968 (2020).PubMed 
    Article 

    Google Scholar 
    Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).CAS 
    PubMed 
    Article 

    Google Scholar 
    Descals, A. et al. Soil thawing regulates the spring growth onset in tundra and alpine biomes. Sci. total Environ. 742, 140637 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgner, E., Elberling, B., Strebel, D. & Cooper, E. J. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29, 58–74 (2010).CAS 
    Article 

    Google Scholar 
    Weijers, S., Beckers, N. & Löffler, J. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9, e02328 (2018).Article 

    Google Scholar 
    Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).Article 

    Google Scholar 
    Wang, Y. et al. Warming‐induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 44, 1631–1641 (2021).Article 

    Google Scholar 
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).CAS 
    Article 

    Google Scholar 
    Francon, L., Corona, C., Till-Bottraud, I., Carlson, B. Z. & Stoffel, M. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. Am. J. Bot. 107, 607–617 (2020).PubMed 
    Article 

    Google Scholar 
    Lu, X., Liang, E., Babst, F., Camarero, J. J. & Büntgen, U. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proc. Natl Acad. Sci. USA 119, e2118120119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sabater, A. M. et al. Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13, e2190 (2019).
    Google Scholar 
    Larson, P. R. The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Am. J. Bot. 49, 132–137 (1962).Article 

    Google Scholar 
    Jackson, S. D. Plant responses to photoperiod. N. Phytologist 181, 517–531 (2009).CAS 
    Article 

    Google Scholar 
    Waisel, Y. & Fahn, A. The effects of environment on wood formation and cambial activity in Robina Pseudacacia L. N. Phytologist 64, 436 (1965).Article 

    Google Scholar 
    Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).Article 

    Google Scholar 
    Gričar, J. et al. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 6, 730 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oberhuber, W., Sehrt, M. & Kitz, F. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol. 290, 108026 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonntag, D. Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrometer formulae. Z. f.ür. Meteorologie 70, 340–344 (1990).
    Google Scholar 
    Löffler, J., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of arctic-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in central Norway. Erdkunde 75, DP311201 (2021).
    Google Scholar 
    Löffler, J., Albrecht, E. C., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of Mediterranean-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in the Sierra Nevada, Spain (LTAER-ES). Erdkunde 76, DP311202 (2022).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).Wood, S. N. Generalized Additive Models. An introduction with R (2nd edition) (Chapman & Hall/CRC, 2017).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73, 3–36 (2011).Article 

    Google Scholar 
    Byun, J. G. et al. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6, 380–392 (2013).Article 

    Google Scholar 
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Vegetation Sci. 2, 587–602 (1991).Article 

    Google Scholar 
    Gasparrini, A., Scheipl, F., Armstrong, B. & Kenward, M. G. A penalized framework for distributed lag non-linear models. Biometrics 73, 938–948 (2017).PubMed 
    Article 

    Google Scholar 
    Scott, E. R., Uriarte, M. & Bruna, E. M. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. https://doi.org/10.1101/2021.06.28.450186 (2021).Almon, S. The distributed lag between capital appropriations and expenditures. Econometrica 33, 178 (1965).Article 

    Google Scholar 
    Vanoni, M., Bugmann, H., Nötzli, M. & Bigler, C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For. Ecol. Manag. 382, 51–63 (2016).Article 

    Google Scholar 
    Pukienė, R., Vitas, A., Kažys, J. & Rimkus, E. Four-decadal series of dendrometer measurements reveals trends in Pinus sylvestris L. inter- and intra-annual growth response to climatic conditions. Can. J. For. Res. 51, 445–454 (2020).Article 

    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw. 43, https://doi.org/10.18637/jss.v043.i08 (2011).Kartverket. Terrain Map. https://www.norgeskart.no/ (Norwegian Mapping Authority, 2008).Autonomous body National Center for Geographic Information (CNIG). Digital Terrain Model – DTM25. http://centrodedescargas.cnig.es/ (2009). More

  • in

    Staphylococcus aureus lineages associated with a free-ranging population of the fruit bat Pteropus livingstonii retained over 25 years in captivity

    Fischer, C. P. & Romero, L. M. Chronic captivity stress in wild animals is highly species-specific. Conserv. Physiol. 7, coz093 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGill, I. et al. Isosporoid coccidiosis in translocated cirl buntings (Emberiza cirlus). Vet. Rec. 167, 656–660 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mohajeri, M. H. et al. The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57, 1–14 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, S. J. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).Article 
    CAS 

    Google Scholar 
    Peters, A., Meredith, A., Skerratt, L., Carver, S. & Raidal, S. Infectious disease and emergency conservation interventions. Conserv. Biol. 34, 784–785 (2020).PubMed 
    Article 

    Google Scholar 
    Northover, A. S. et al. Altered parasite community structure in an endangered marsupial following translocation. Int. J. Parasitol. Parasites Wildl. 10, 13–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daniel, B. M. et al. A bat on the brink? A range-wide survey of the Critically Endangered Livingstone’s fruit bat Pteropus livingstonii. Oryx 51, 742–751 (2017).Article 

    Google Scholar 
    IUCN. Pteropus livingstonii: Sewall, B.J., Young, R., Trewhella, W.J. & Rodríguez-Clark, K.M. and Granek, E.F. IUCN Red List of Threatened Species (2016) https://doi.org/10.2305/iucn.uk.2016-2.rlts.t18732a22081502.en.IUCN Species Survival Commission. Species action plan for Livingstone’s fruit bat ‘Pteropus livingstonii’. https://portals.iucn.org/library/node/7368 (1995).Haag, A. F., Ross Fitzgerald, J. & Penadés, J. R. Staphylococcus aureus in animals. Gram-Positive Pathog. https://doi.org/10.1128/9781683670131.ch46 (2019).Article 

    Google Scholar 
    Pirolo, M. et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control 8, 1–10 (2019).Article 

    Google Scholar 
    Young, B. C. et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 6, e30637 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heaton, C. J., Gerbig, G. R., Sensius, L. D., Patel, V. & Smith, T. C. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics 9, 89 (2020).PubMed Central 
    Article 

    Google Scholar 
    Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bacigalupe, R., Tormo-Mas, M. Á., Penadés, J. R. & Ross Fitzgerald, J. A multihost bacterial pathogen overcomes continuous population bottlenecks to adapt to new host species. Sci. Adv. 5, eaax0063 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spoor, L. E. et al. Recombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation. Microb. Genomics 1(4), e000036. https://doi.org/10.1099/mgen.0.000036 (2015).Article 

    Google Scholar 
    Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fountain, K. et al. Diversity of staphylococcal species cultured from captive Livingstone’s fruit bats (Pteropus livingstonii) and their environment. J. Zoo Wildl. Med. 50, 266–269 (2019).PubMed 
    Article 

    Google Scholar 
    Fountain, K. et al. Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent clone (ST49) from reservoir hosts. Microb. Genom. 7(5), 000565. https://doi.org/10.1099/mgen.0.000565 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Rohmer, C. & Wolz, C. The role of hlb-converting bacteriophages in Staphylococcus aureus host adaption. Microb. Physiol. 31 109–122. https://doi.org/10.1159/000516645 (2021).
    PubMed 
    Article 

    Google Scholar 
    Senghore, M. et al. Transmission of Staphylococcus aureus from humans to green monkeys in The Gambia as revealed by whole-genome sequencing. Appl. Environ. Microbiol. 82, 5910–5917 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xue, H., Lu, H. & Zhao, X. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer. PLoS ONE 6, e20332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paharik, A. E. et al. The Spl serine proteases modulate protein production and virulence in a rabbit model of pneumonia. mSphere 1, e00208-16 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 2595 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cheng, A. G., Missiakas, D. & Schneewind, O. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J. Bacteriol. 196, 971–981 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lin, Y.-C. et al. Staphylococcal phosphatidylinositol-specific phospholipase C potentiates lung injury via complement sensitisation. Cell. Microbiol. 21, e13085 (2019).PubMed 

    Google Scholar 
    Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273–2280 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakamura, Y. et al. Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci. Rep. 10, 17845 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, X. et al. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol. Evol. 7, 8804–8811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pence, M. A. et al. Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS ONE 10, e0136605 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Raafat, D. et al. Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the nasal S. aureus population. Toxins 12, 80 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    National Library of Medicine (US), National Center for Biotechnology Information. Genbank. (1982).PubMLST—Public databases for molecular typing and microbial genome diversity. https://pubmlst.org/.Wick, R. R., Judd, L. M. & Holt, K. E. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 14, e1006583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seeman, T. MLST. Github https://github.com/tseemann/mlst.Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Snippy: Fast Bacterial Variant Calling from NGS Reads (2015).Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Abricate; Mass screening of contigs for antimicrobial resistance or virulence genes. Github https://github.com/tseemann/abricate.Feldgarden, M. et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, e00483-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694–D697 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Arndt, D., Marcu, A., Liang, Y. & Wishart, D. S. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief. Bioinform. 20, 1560–1567 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Antipov, D. et al. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btw493 (2016).Article 
    PubMed 

    Google Scholar 
    Robertson, J. & Nash, J. H. E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4(8), e000206. https://doi.org/10.1099/mgen.0.000206 (2018).CAS 
    Article 

    Google Scholar 
    Jaillard, M. et al. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS Genet. 14, e1007758 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Fungal findings excite truffle researchers and gastronomes

    A white truffle (Tuber magnatum Pico) in the laboratory of Robin Pépinières, a nursery in Saint Laurent-du-Cros, France.Philippe Desmazes/AFP via Getty Images

    On 10 October 2019, a dog began pawing excitedly at the ground beneath a young oak tree in western France. Its owner eased it out of the way and pulled an Italian white truffle (Tuber magnatum Pico) from the earth. Knobbly, covered in soil and about the size of a hen’s egg, it was not much to look at, but the fungal discovery nonetheless generated ripples of excitement among researchers, chefs and truffle growers worldwide.That’s not just because T. magnatum is the most expensive truffle species, for which wealthy gastronomes are willing to pay up to US$11,000 per kilogram. Although more than 90% of the also highly sought-after black Périgord truffles (Tuber melanosporum) served in restaurants today are farmed, previous attempts to cultivate their more elusive white counterparts had failed.That changed three years ago, when the Lagotto Romagnolo, the Italian dog breed commonly used as a truffle hunter, unearthed the first Italian white truffle confirmed to have been cultivated outside its natural range. The dog made the find at its owner’s plantation in the Nouvelle Aquitaine region of France, but the precise location is being kept secret to deter thieves.Scientists at a laboratory run jointly by France’s National Research Institute for Agriculture, Food and the Environment (INRAE) and the University of Lorraine in Nancy reported1 that since that first T. magnatum truffle was unearthed, two more were found at the site in 2019 and four in 2020. In an article published last month in Le Trufficulteur, the magazine of the French Federation of Truffle Growers, the researchers report the cultivation of 26 truffles last year2.“I was very happy to hear these results,” says Alessandra Zambonelli, a mycologist at the University of Bologna, Italy, who has studied Italian white truffles for more than 40 years, and whose own attempts to cultivate them in the 1980s failed. “I was sure it was possible to cultivate T. magnatum, but only now do we have the scientific proof.”The INRAE project is helping growers to better understand the optimal conditions for cultivating Italian white truffles. Some scientists think the breakthrough could help to reverse falls in harvests of wild truffles that have been linked to climate change. Researchers also hope the work will help them to answer outstanding questions about the life cycle of the species and understand why it is so much harder to farm than are other truffles.Farming failureTuber magnatum’s natural range is more limited than those of other sought-after truffles, growing as it does in parts of Italy, southeastern France, the Balkans and Switzerland. It is highly prized for its intense, some say intoxicating, aroma and flavour, variously described as reminiscent of garlic, fermented cheese and methanethiol — the additive that gives domestic gas its smell. Prices fluctuate in line with supply, which varies according to climatic conditions. These hit an all-time high in 2021, when US prices were more than triple what they were in 2019.Most land plants form symbiotic relationships with fungi to access extra water and mineral nutrients. In return, the plants provide their fungal partners, which grow around and into their root tips, with carbon-rich nutrients. These associations are known as mycorrhizae. What most people call truffles are, in fact, just the spore-containing fruiting bodies of the fungus.In the 1970s, French scientists successfully induced Périgord truffles to form mycorrhizal associations with tree seedlings by inoculating the seedlings with their spores. The same technique was used at the time to produce trees with T. magnatum mycorrhizae. More than 500,000 of these were planted in Italy. But when researchers later began using the polymerase chain reaction (PCR) technique to accurately identify truffle mycorrhizae, fruiting bodies and the root-like mycelia, it became clear that this species’ physical characteristics had been poorly described, and that, as a result, many of the trees had in fact partnered with less sought-after truffle species.Some sites in Italy did produce T. magnatum truffles 15–20 years after planting, but only in areas where the species occurs naturally. “It is likely that those found so long after being planted came from chance colonization of host plants by native T. magnatum strains in the environment,” says Claudia Riccioni, a plant and fungal biologist at Italy’s Institute of Biosciences and BioResources in Perugia.After the Italian white and Périgord truffles, the next most sought-after species is the summer truffle (Tuber aestivum), which grows in many European countries and sells for much less than its more highly regarded cousins. Plantations of T. aestivum have been established in France, Italy, Scandinavia, Germany and elsewhere.Buried treasuresIn 1999, INRAE researchers joined forces with Robin Pépinières, a nursery based in Saint-Laurent-du-Cros, southern France. Genetic analysis confirmed that the nursery had produced trees that partnered with T. magnatum, leading, from 2008, to the establishment of plantations in France1. In 2018, the INRAE group selected five of these, all outside the part of southeastern France where T. magnatum grows naturally, to see whether it had become established and to record the conditions under which any truffle fruiting bodies were produced.PCR tests confirmed the fungus’s mycelia were present in soil samples taken from near the trees at four of the locations. The first three truffles, found in Nouvelle Aquitaine, were discovered four-and-a-half years after the inoculated trees had been planted. Further PCR tests confirmed they were T. magnatum. The 26 truffles found in 2021 were unearthed beneath 11 different trees, with 5 under one of them. The largest weighed 150g.Mycologists Claude Murat and Cyrille Bach, both members of the INRAE–University of Lorraine lab, were present when one of the four fruiting bodies produced in 2020 was discovered. Asked how sure he was that the truffle grew in the plantation and hadn’t originated elsewhere, Murat said: “I’m 100% sure. We could see the soil had not been disturbed and that grasses were growing there.”Mycorrhizal mysteryPrevious attempts to cultivate Italian white truffles failed in part because their life cycle remains poorly understood. Twenty years ago, it was widely assumed that truffles, including T. magnatum, were self-fertile. However, research then showed they have one of two ‘mating type’ genes, and that the mycelia of individuals of different mating types must meet for reproduction to occur3.A remaining unresolved puzzle is why researchers have found T. magnatum mycorrhizae much harder to locate than those of other truffles. Mycologist Paul Thomas works to establish joint ventures with truffle growers through Mycorrhizal Systems, his UK-based company. He inoculated host trees with T. magnatum, and generated mycorrhizae at the company’s greenhouses in Preston, but these did not last long, so the trials were abandoned.“When you find fruiting bodies, you quite often can’t find mycorrhizae,” says Thomas, “and sometimes you get mycorrhizae but no fruiting bodies. Perhaps, in the case of T. magnatum we’ve become too focused on linking truffle production to mycorrhizae.”When Zambonelli’s group analysed soil from four Italian white-truffle sites over three years, they found a correlation between production of fruiting bodies and a location’s concentration of DNA from T. magnatum mycelia4. Some researchers began to suspect that the host–fungus relationship might not be as important as previously thought, and that T. magnatum might be saprotrophic, meaning that it digests dead or decaying organic matter.However, a 2018 comparison5 of the genomes of truffle species with those of several saprotrophic fungi showed this to be unlikely. “T. magnatum has very few plant-wall-degrading enzymes, which does not support the saprotrophic hypothesis,” says Riccioni, one of the study’s authors. Other researchers have tried to explain the elusiveness of T. magnatum mycorrhizae by pointing out that other truffles can form endophytic relationships with plants in which they which live throughout them, not just at their roots.Murat wonders whether he and others have just been looking in the wrong place. “We look on the roots down to 20 centimetres, never looked at 50 centimetres, even though we know other mycorrhizae can be found at those depths,” he says. “Or perhaps they produce mycorrhizae just for a very short time; we just don’t know.”A growing body of research shows that microorganisms have important roles in truffle life cycles. A 2015 review found that bacteria in T. magnatum fruiting bodies help to create the truffles’ odours6. Zambonelli and her colleagues found that bacteria in T. magnatum fruiting bodies can fix nitrogen for nutritional purposes7. Another Italian team found that microbes commonly associated with white truffles are involved in fruiting-body maturation8. “Some bacteria could also help T. magnatum become established at tree roots and fruiting-body formation,” says Zambonelli.A changing climateGathering accurate statistics on truffle yields before cultivation is difficult, although it is widely accepted that these fell significantly during the twentieth century. One study reports that Périgord truffle harvests in France collapsed from 500–1,000 tonnes annually in the 1900s to 10–50 tonnes by the 2000s. Yields in Italy declined, too, but not by as much, and mostly in the first half of the twentieth century9.The reasons for falls in truffle harvests are complex and vary by location, but researchers have blamed depopulation, loss of knowledge about truffle hunting and deforestation. Some of the older men who featured in the highly rated 2020 documentary The Truffle Hunters, set in Piedmont, northern Italy, say they will take what they know about truffles to the grave rather than pass it on to younger generations because of the greed they see in the industry.

    A canine forager and his owner who feature in the 2020 documentary The Truffle Hunters, set in northern Italy.BFA/Alamy

    More recently, some researchers have highlighted climate change as another cause of declining yields. Truffle gastronomy and tourism are economically and culturally important in places where truffles occur naturally. That’s certainly true in parts of Croatia, where, from 2003 to 2013, reported annual harvests were 1–3 tonnes for Italian white truffles and 1–6 tonnes for Périgords, except for the years 2009, 2010 and 2013, when they fell to 0.1–0.5 tonnes.Field mycologist Željko Žgrablić at the Ruđer Bošković Institute in Zagreb says truffles have become harder to find on the Istria peninsula, where he grew up, in part because of increasingly frequent and severe droughts. Yields have also been affected by big increases in wild-boar populations as a result of warmer winters. The animals forage for the truffles and reduce human harvests, and, according to Žgrablić, also damage the fungus’s mycelia. “The climate has become unpredictable, with more extremes,” says Žgrablić. “It’s hard to prove it, but I think we have fewer white truffles as a result.”In a 2019 study, Thomas analysed annual Périgord truffle yields in the Mediterranean region over a 36-year period10. He concluded that decreased summer rain and increased summer temperatures significantly reduced subsequent winter harvests. He forecast declines of 78–100% in harvests between 2071 and 2100 as a result of further predicted warming. “White truffles need relatively moist soil, so in its natural range it might be okay in mountainous areas but particularly vulnerable in areas where falls in rainfall are predicted,” says Thomas.Future farmingBeyond producing the first confirmed cultivated white truffles, the INRAE project is also generating data on the optimal conditions for production. The soil temperature at the site that yielded the truffles was around 20 °C in the summer, and Murat says that the team’s tests suggest white truffles need more water than do Périgords.So could the increasing knowledge of how best to get Italian white truffles to grow be adopted more widely to help reverse declining yields? Fruiting bodies have been confirmed at only one site, so other growers are waiting to see whether this success will be repeated elsewhere. Murat is in the process of trying to confirm recent claims from two other owners that they, too, have cultivated T. magnatum truffles.Thomas is downbeat about the future of Italian white-truffle cultivation. “In parts of Spain, more and more orchards can no longer irrigate because of water shortages. Already, in France, it is hard to get permission to extract water from rivers for irrigation, and that’s only going to get worse.”Oak trees inoculated with Périgord- and summer-truffle spores are due to be planted later this year in Croatia as part of a collaboration run by the state-owned Croatian Forests. If successful, the group could try white truffles. Žgrablić, who is part of the project, is also advising an enthusiast who planted 650 seedlings inoculated with T. magnatum, also in Croatia, earlier this year. “We’re seeing increasing interest from private investors in cultivating Italian white truffles,” he says. “There is certainly a lot of potential, but what the results will be, I can’t tell.”Alongside his research work, Murat acts as a scientific consultant for WeTruf, a company he co-founded in Nancy that provides advice and monitoring services for truffle farmers. He is cautious about the potential for white-truffle cultivation, if optimistically so. “We are careful when people tell us they want to start big white-truffle plantations,” says Murat. “I tell them ‘we are only at the beginning, we don’t know if it will succeed or not’. But I think there will be more and more plantations, and, if they apply good management practices, I hope, more and more truffles.” More

  • in

    Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L.

    Effects of aqueous plant extracts on germination and early growth of B. bipinnata by in vitro bioassaysSeed germination and seedling growth of B. bipinnata were investigated after treatment with DT, RC, PT, and JG aqueous extracts to explore the allelopathic effects of these plant species. The pH of the aqueous extracts corresponded to 6.62 for DL, 5.59 for RC, 7.20 for PT, and 7.42 for JG, with no significant difference in pH values between DL and RC extracts or between PT and JG extracts; however, the pH of DL and RC extracts differed significantly (p  1000 cm−1 were attributed to the C − H out-of-plane bending vibration of aliphatic alkenes and aromatic benzene rings49,50.The range between 1800 and 600 cm−1 of the infrared spectra was selected for the PCA, as it is the most representative region of the differences present in the spectra. In the PC1 versus PC2 score plot (Fig. 6), representing 85.78% of the total variance, it is possible to observe the separation of the samples into three distinct groups. The samples of DL and RC extracts formed two distinct groups, since they showed a significant separation in the PC1 axis, with positive and negative scores for PC1, respectively. The samples of JG and PT extracts formed a single group, remaining superimposed and located close to the zero value of PC1, indicating intermediate spectral characteristics in relation to the DL and RC extracts. These results may be correlated with the allelopathic activity of these extracts, since the RC extract showed better performance, followed by the JG and PT extracts, with intermediate performance, and the DL extract showed lower activity compared to the others.Figure 6PCA score plot (PC1 × PC2) of D. lacunifera (DL), R. communis (RC), P. tuberculatum (PT), and J. gossypiifolia (JG) extracts.Full size imageThe PC1 loading plot (Fig. S1) has as main contributors the negative bands associated with signals at approximately 1732, 1595, 1404, 1200–1025, 1049, and 780–600 cm−1, which significantly contributed to the separation of RC extract samples that presented greater intensity than in DL extract samples. On the other hand, the positive bands in PC1 in the region of 780–970 cm−1 were more intense in DL extracts. When evaluating the negative region of the PC1 loading plot, it is possible to observe that the functional groups responsible for the discrimination are probably those present in flavonoids and phenolic acids, corroborating the data in the literature that demonstrate the identification of these compound classes in RC leaves, such as gallic acid, quercetin, gentisic acid, rutin, epicatechin, ellagic acid, etc.51,52,53.The presence of flavonoids can be observed due to the stretching of C=O at approximately 1732 cm−1, C=C of aromatics at 1600 cm−1, C–O at 1200–1000 cm−1, and O–H at 3284–3174 cm−1. Phenolic acids can be verified due to stretching of the O–H of carboxylic acid, C=O and aromatic ring, as well as the C − H out-of-plane bending vibration of aromatic benzene ring at  More