More stories

  • in

    Sexual selection for males with beneficial mutations

    Charlesworth, D., Barton, N. H. & Charlesworth, B. The sources of adaptive variation. Proc. R. Soc. B Biol. Sci. 284(1855), 20162864 (1855).Article 
    CAS 

    Google Scholar 
    Whitlock, M. C. Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54(6), 1855–1861 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 218(4570), 384 (1982).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadany, L. & Beker, T. Sexual selection and the evolution of obligatory sex. BMC Evol. Biol. 7(1), 245 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. B Biol. Sci. 372(1729), 20160310 (2017).Article 

    Google Scholar 
    Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387(6634), 700–702 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: Evidence for condition-dependent DNA repair. PLoS Biol. 6(2), e30 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98(4), 198–205 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dugand, R. J., Kennington, W. J. & Tomkins, J. L. Evolutionary divergence in competitive mating success through female mating bias for good genes. Sci. Adv. 4(5), eaaq0369 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Siller, S. Sexual selection and the maintenance of sex. Nature 411(6838), 689–692 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411(6838), 692–695 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehtonen, J., Jennions, M. D. & Kokko, H. The many costs of sex. Trends Ecol. Evol. 27(3), 172–178 (2012).PubMed 
    Article 

    Google Scholar 
    Maynard Smith, J. What use is sex?. J. Theor. Biol. 30(2), 319–335 (1971).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldone, 1972).
    Google Scholar 
    Petrie, M. & Lipsitch, M. Avian polygyny is most likely in populations with high variability in heritable male fitness. Proc. R. Soc. Lond. Ser. B Biol. Sci. 256(1347), 275–280 (1994).ADS 
    Article 

    Google Scholar 
    Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371(6498), 598–599 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1414), 85–91 (1999).Article 

    Google Scholar 
    David, P. et al. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406(6792), 186–188 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hale, M. L. et al. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex?. J. Evol. Biol. 22(6), 1284–1294 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prokop, Z. M. et al. Meta-analysis suggests choosy females get sexy sons more than “good genes”. Evolution 66(9), 2665–2673 (2012).PubMed 
    Article 

    Google Scholar 
    Kokko, H. et al. The sexual selection continuum. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1498), 1331–1340 (2002).Article 

    Google Scholar 
    Drake, J. W. et al. Rates of Spontaneous Mutation. Genetics 148(4), 1667 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190(2), 295–304 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445(7123), 82–85 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101(6), 581–584 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janetos, A. C. Strategies of female mate choice: A theoretical analysis. Behav. Ecol. Sociobiol. 7(2), 107–112 (1980).Article 

    Google Scholar 
    Johnstone, R. A. & Earn, D. J. D. Imperfect female choice and male mating skew on leks of different sizes. Behav. Ecol. Sociobiol. 45(3), 277–281 (1999).Article 

    Google Scholar 
    Petrie, M., Halliday, T. & Sanders, C. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41(2), 323–331 (1991).Article 

    Google Scholar 
    Cally, J. G., Stuart-Fox, D. & Holman, L. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10(1), 2017 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kotiaho, J. S. et al. On the resolution of the lek paradox. Trends Ecol. Evol. 23(1), 1–3 (2008).PubMed 
    Article 

    Google Scholar 
    Parker, G. A., Baker, R. R. & Smith, V. G. F. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36(3), 529–553 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Perspect. Biol. 6(10), a017509–a017509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263(1375), 1415–1421 (1996).ADS 
    Article 

    Google Scholar 
    Petrie, M. Evolution by sexual selection. Front. Ecol. Evol. 9, 950 (2021).Article 

    Google Scholar 
    Petrie, M. & Kempenaers, B. Extra-pair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13(2), 52–58 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller, A. P. & Cuervo, J. J. Minisatellite mutation rates increase with extra-pair paternity among birds. BMC Evol. Biol. 9(1), 100 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anmarkrud, J. A. et al. Factors affecting germline mutations in a hypervariable microsatellite: A comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat. Res. Fundam. Mol. Mech. Mutagen. 708(1), 37–43 (2011).CAS 
    Article 

    Google Scholar 
    Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B Biol. Sci. 274(1606), 1–10 (2007).CAS 
    Article 

    Google Scholar 
    Baur, J. & Berger, D. Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nat. Ecol. Evol. 4, 737–744 (2020).PubMed 
    Article 

    Google Scholar 
    Vrijenhoek, R. C. & Parker, E. D. Geographical parthenogenesis: General purpose genotypes and frozen niche variation. In Lost Sex (eds Schön, I. et al.) (Springer, Dordrecht, 2009).
    Google Scholar 
    Reudink, M. W. et al. Evolution of song and color in island birds. Wilson J. Ornithol. 133(1), 1–10 (2021).Article 

    Google Scholar 
    Iglesias-Carrasco, M. et al. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc. R. Soc. B Biol. Sci. 2019(286), 20190172 (1899).
    Google Scholar 
    Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. U. S. A. 101(32), 11531 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms

    Experimental designThis experiment was set up containing two levels of soil biodiversity (high and low soil biodiversity) and seven treatments considering the number of global change factors (GCFs) (0, 1, 2, 4, 6, 8, 10) (Table 1, Supplementary Fig. 1 and Supplementary Data 1). We used the dilution-to-extinction approach to create the high and low soil biodiversity treatments (Supplementary Methods). Soil dilution can lead to a gradual loss of rare soil microbes, which can simulate a realistic loss of soil biodiversity, because rare soil microbes are more sensitive to anthropogenic pressures, e.g., warming, nitrogen addition and drought15. We note that the low soil biodiversity treatment is a subset of the high biodiversity, as many rare species have been eliminated through the dilution; this approach will likely lead to relatively more tolerant microbes in the resulting communities.An increasing number of GCFs was created inspired by the experimental design of the studies on biodiversity-ecosystem function relationships, based on random sampling from a species pool5,6,14. The combination of multiple GCFs was replicated 15 times at each level by randomly selecting GCFs from a pool with 10 GCFs for each replicate (Table 1 and Supplementary Data 1). For each replicate of combined GCFs, there were identical GCF combinations between the high and low soil biodiversity treatments to avoid a confounding effect of GCF combination and soil biodiversity treatments. The pool of 10 GCFs included: warming, nitrogen deposition, drought, heavy metal pollution, plastic mulching film residues, salinity, agricultural fungicide, bactericide application, surfactant contaminant and soil compaction (Supplementary Methods). These GCFs frequently occur in intensively managed agroecosystems and are treated as anthropogenic pressures10,13,14,15.MicrocosmsThis experiment was conducted using 50 ml conical Mini Bioreactors (Product Number 431720, Corning Inc., NY) as experimental units (Supplementary Fig. 2). Each Mini Bioreactor has four vents in the cap, where a hydrophobic membrane avoids microbial contamination but allows gas exchange. We filled each Mini Bioreactor with 40.0 g (dry weight, d.w.) of soil in total, which received the appropriate treatments.Soil sterilization and inoculum preparationWe collected the field soil from the top 10 cm of an intensive farming system in Berlin (52.466°N, 13.303°E). Field soil was passed through a 2 mm mesh to remove large roots and stones. We sterilized 20 kg of soil for 90 min at 121 °C, and stored 2 kg of fresh soil at 4 °C. The dilution-to-extinction approach38,39,40,41,42 was used to create high and low soil biodiversity (Supplementary Fig. 1). A parent inoculum suspension was prepared by mixing 100 g of fresh soil with 200 ml of sterilized VE water. The sediment settled for 1 min. The upper 200 ml of soil suspension was treated as parent inoculum suspension. 50 ml of parent inoculum suspension was added to 500 g of sterilized soil in a plastic bag, and homogenized by turning the bag up and down 30 times to obtain the inoculum of high soil biodiversity. Another 5 ml of parent inoculum suspension was mixed with 45 ml of sterilized parent inoculum suspension to create the 10-1 dilution. This procedure was repeated five times to reach the 10-6 dilution. 50 ml of the 10-6 dilution was mixed and homogenized with 500 g of sterilized soil in a plastic bag to obtain the inoculum of low soil biodiversity. This whole dilution procedure was repeated five times to obtain 10 bags of soil inoculum (five bags for each soil biodiversity inoculum).Sterile water was added to each plastic bag to reach the water content of the fresh soil in the field. All bags were closed with a sterilized cotton plug and a rubber band to avoid microbial contamination but allow gas exchange42. All bags were incubated in a dark room at 20 °C until similar microbial abundance was observed between the high and low soil biodiversity inoculum. Soil inoculum was homogenized by shaking and turning the bags once a week. After incubation, 2.0 g of soil in each bag was collected and stored at −80 °C for DNA extraction. Quantitative real-time PCR (qPCR) was used to determine fungal and bacterial abundance. In the present study, it took two months to recover soil microbial biomass (Supplementary Fig. 3).The implementation of GCFs and harvestAgroecosystems, some of the most intensively managed ecosystems, are affected by the co-occurrence of multiple GCFs13,14,15. This study focused on GCFs that frequently occur in agroecosystems, including warming, nitrogen deposition, drought, heavy metal pollution, plastic film residues, salinity, agricultural fungicide and bactericide application, surfactant contaminant and soil compaction. We present the rationale for the 10 tested GCFs in the Supplementary Methods.Loading soils were used to achieve an effective mixing of chemical agents into 40.0 g soil in each Mini Bioreactor. We created separate ‘loading soil’ for each GCF with chemical addition by mixing an appropriate dose of a chemical agent with sterilized soil through careful homogenization. This was done to avoid exaggerated effects of more concentrated chemicals when mixed with soil. For each chemical, 1.0 g (d.w.) of loading soil contained an appropriate dose for 40.0 g soil in a Mini Bioreactor. For instance, 1 634 mg of NH4NO3 was mixed with 100 g (d.w.) of sterilized soil, to ensure that there was about 16.34 mg of NH4NO3 in 1.0 g of sterilized loading soil. We weighed 40.0 g (d.w.) of soils, including 1.0 g (d.w.) of each loading soil, 5.0 g (d.w.) of soil inoculum (high or low soil biodiversity), an appropriate amount of film (0 or 0.16 g plastic film) and sterilized soil, according to GCF combination for each experimental unit. We put 40.0 g of mixed soils into a clean and sterilized cup (200 ml) with a cap, and then homogenized it by turning the cup up and down for 5 min using a shaking machine (Heidolph Reax 2, Heidolph Instruments GmbH & CO. KG, Schwabach, Germany). After homogenization, 40.0 g of mixed soils was transferred to a Mini Bioreactor, and a mesh bag containing about 100 mg of dry Medicago lupulina leaves (65 °C for 72 h) was buried 1 cm below the soil surface. We used a stick to press soils in each Mini Bioreactor to simulate an ambient condition (1.3 g cm−3) or mechanical compaction (1.7 g cm−3) in farmland.For the warming treatment with an increment of 5.0 °C over the ambient temperature (20 °C), we wrapped heating cables (Exo Terra PT-2012; Hagen Deutschland GmbH & Co. KG, Holm, Germany) around the outside of the bioreactors. A set temperature was maintained by temperature controllers (Voltcraft ETC-902; Conrad Electronic SE, Hirschau, Germany), which can switch off and on heating cables depending on the real-time temperature of the outside surface of Mini Bioreactors. Mini Bioreactors were placed in beakers filled with sand to reduce thermal radiation from neighboring units. At the start of the experiment, we added suitable amounts of sterilized water to each experimental unit to reach 60% of water holding capacity for the non-drought treatment and 30% water holding capacity for the drought treatment.All Mini Bioreactors were incubated at 20.0 °C in the dark for six weeks before the final harvest. Because there was 2.0 g of weight loss on average in each Mini Bioreactor in the first three weeks, we added 2 ml of sterilized water to each Mini Bioreactor on the first day of the fourth week. During the final harvest, soil in each Mini Bioreactor was gently homogenized using a spoon, and then 2.0 g of fresh soil was collected and stored at −80 °C for DNA extraction; 5.0 g was stored at 4 °C for the determination of soil enzyme activity; the leftover was oven-dried at 40 °C for other measurements. DNA of each soil sample was extracted from 250 mg soil, using DNeasy PowerSoil Pro Kit (QIAGEN GmbH, Hilden, Germany), following manufacturer’s instructions. Soil DNA extraction was stored at −80 °C for further analysis.The measurement of response variablesWe measured the following response variables: microbial activity (soil respiration), microbial abundance (bacterial and fungal abundance), nutrient cycling (litter decomposition rate and soil enzyme activity), physical properties (water-stable soil aggregates and soil water repellency), bacterial and fungal biodiversity (richness and microbial network features) (See details in the Supplementary Methods). We measured soil respiration as CO2 concentration (ppm h−1 g−1 soil) in the third and sixth week as an indicator for soil microbial activity. Bacterial and fungal abundance was estimated by qPCR. The proportional loss of litter (Medicago lupulina leaves) dry weight during soil incubation was used as an indication of decomposition rate. We measured the activity of β-glucosidase (cellulose degradation), β-D-celluliosidase (cellulose degradation), N-acetyl-β-glucosaminidase (chitin degradation) and phosphatase (organic phosphorus mineralization) using high throughput microplate assay43,44. A modified protocol by Kemper and Rosenau was used to measure water-stable soil aggregates45. Soil water repellency was measured using the water drop penetration time method46. High throughput sequencing (Illumina MiSeq) was used to measure the taxonomic composition of soil fungal and bacterial communities with the primers fITS7 and ITS4 for fungi and 515F-Y and 806 R for bacteria47,48 (Supplementary Methods).Statistical analysesFor diversity and community composition analysis, we excluded the samples with less than 1% of the observations of the largest sample in the ASV table. For network analysis, we then removed ASVs with low prevalence, which presented less than 20% of samples across all experimental units to reduce the high percentage of zero counts. A co-occurrence network was constructed based on both fungal and bacterial ASV tables. The PLNnetwork function in the R package PLNmodels was employed to infer the network, using a sparse multivariate Poisson log-normal (PLN) model49. According to the Extended Bayesian Information Criterion (EBIC), the best model was extracted with the function getBestModel. The network was compartmentalized into different modules using the cluster_fast_greedy function in the igraph package and visualized with partial correlations with |ρ| > 0.05. We focused on the response of the relative abundance of modules, also known as clusters, which represent the closely associated microbes, e.g., groups of coexisting or co-evolving microbes27. The relative abundance of modules was calculated by summing relative abundances for individual ASVs in modules. We used the package FUNGuildR50 to taxonomically parse fungal trait information, using the FUNGuild database51.For each single GCF treatment, we took the average response from the 10 replicates before analysis. To confirm how the effect of soil biodiversity treatment can change along with the increasing number of GCFs, we quantified the effect size of soil biodiversity treatment for each response variable using Hedges’ g (mean and 95% CIs) at each level of the number of GCFs, using the R package effsize52. Hedges’ g is calculated as the mean difference between the high and low soil biodiversity treatments in units of the pooled standard deviation as a paired-samples because there were identical GCFs and GCF combinations for both high and low biodiversity conditions, with the exception of the zero and 10 GCF treatments.To evaluate how each of the response variables changes along with the number of GCFs, we applied a generalized additive model (GAM)53. GAM is a penalized generalized linear model that fits a nonparametric, nonlinear smooth curve54. The degree of smoothness of model terms is estimated as part of fitting, using the generalized cross validation. We reasonably assume that the curve shapes are different between high and low soil biodiversity treatments. Therefore, we included biodiversity conditions (low/high) as the model intercept and as the “factor smooth” smoothing class, where a smooth function is created for each factor level independently55. For GAM modeling, we used the mgcv package55. The dimension of the basis used to represent the smooth term was set as k = 5 so that the model does not overfit to the data. For this, we compared some other values (from 3 to 8) and confirmed that the results are essentially the same within the tested range. The other parameters were set as default.The relationships between soil microbial indices and other soil indices were tested using Spearman correlation in the package microbiome, and the adjustment method “fdr” was employed to control the false discovery rate for multiple testing correction56. For the further multivariate integration of soil functions/properties and composition of modules, the DIABLO (Data Integration Analysis for Biomarker discovery using a Latent component method for Omics studies) was employed to detect correlation (Pearson’s correlation |r| > 0.5) among variables using the package mixOmics57.The Z-scores for each of the eight soil functions (as shown in Fig. 1, with the exception of soil water repellency) were evaluated, and then we computed an improved weighted multifunctionality metric to represent soil multifunctionality (Supplementary Methods)58. Structural equation models (SEMs) were used to reveal the direct and indirect effects of an increasing number of GCFs on soil multifunctionality within each soil biodiversity treatment using the package lavaan59. We assumed that an increasing number of GCFs influences soil multifunctionality by regulating the bacterial and fungal abundance and the relative abundance of modules. All response variables were standardized to the same comparison scale using the z-score transformation before constructing SEMs. Models with optimal fitting indices were reported (Supplementary Fig. 11).The permutational multivariate analysis (ADONIS) and non-metric multidimensional scaling (NMDS) ordination based on the Bray-Curtis distance were conducted to test the effect of soil biodiversity and GCF treatments on the community composition of bacteria and fungi using the R package vegan60. For the data handling, processing, and visualization, we used the packages tidyverse61, reshaping62, cowplot63, RColorBrewer64, qgraph65, igraph66, factoextra67, phyloseq68 and itsadug69. These data manipulation and analyses were conducted using R version 4.1.370. The R script and data are available in a publicly accessible database71.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Influence of the intertropical convergence zone on early cretaceous plant distribution in the South Atlantic

    The pre-evaporitic, evaporitic, and post-evaporitic phases are recognized for the late Aptian. These phases are recorded within the K40–K50 sequences (Fig. 2A), and show an average maximum thickness of approximately 650 m in the studied basins. The pre-evaporitic phase is represented by carbonate and siliciclastic deposits formed in fluvial and lacustrine deltaic environments within a large proto-oceanic gulf28 (Fig. 2A). The peak of the evaporitic deposition is recorded in the K50 sequence, with widespread occurrences in the Brazilian equatorial margin. The origin of these deposits is the heat intensification associated with the widening of the Atlantic Ocean. These conditions caused strong evaporation leading to a wide distribution of evaporites (mainly halite and anhydrite gypsum) in the South Atlantic basins. The eastern continental margin of Brazil contains a restricted marine section characterized by evaporites, which are particularly prominent in thickness and occurrence in the Espírito Santo Basin (Itaúnas Member of the Mariricu Formation) and the Sergipe Basin (the Ibura Member of the Muribeca Formation)28. Evaporites form the most prominent evidence of dry climates in the South Atlantic basins11, with evaporation exceeding precipitation. The post-evaporitic phase is characterized by fully marine conditions evidenced by rich assemblages of marine fossils. During this phase, carbonates were deposited, followed by muddy and sandy sediments in shallow-marine and slope environments.Figure 2Paleoclimatic phases scheme and principal component analysis for paleoclimatic phases. (A) Paleoclimatic phases scheme for the late Aptian and the main depositional environments. (B) Principal component plot of bioclimatic groups. (C) Principal component for the pre-evaporitic phase (N = 92), evaporitic phase (N = 78), and post-evaporitic phase (N = 385); see Supplementary Fig. 9 for individual basins.Full size imagePaleovegetationWe identified a rich plant community with 139 spore and pollen genera/morphotypes representing all plant groups: bryophytes (five genera), ferns (58 genera), lycophytes (18 genera), pteridosperms (one genus), gymnosperms (27 genera), and angiosperms (30 genera) (Supplementary Table 2). The inferred systematic affinities at the family level reached 100% in bryophytes, 56.9% in ferns, 100% in lycophytes, 100% in pteridosperms, 92.6% in gymnosperms, and 40.0% in angiosperms, totaling 67.6% of the recorded genera (Supplementary Table 2). Marine elements (e.g., dinoflagellate cysts and microforaminiferal linings) were identified, in particular from the Sergipe and Araripe basins (Fig. 1). Pollen grains from gymnosperms were most abundant, represented mainly by the conifer families Cheirolepidiaceae, Araucariaceae, and Podocarpaceae, although representing different climatic settings. Classopollis (Cheirolepidiaceae) is the most abundant genus in all sections studied, followed by Araucariacites (Araucariaceae). Gymnosperms showed low diversity. Spore-producing plants are the most diverse in the assemblages of all basins (82 genera) and represented by several families of bryophytes, ferns, and lycophytes (e.g., Sphagnaceae, Anemiaceae, Cyatheaceae, Marsileaceae, Selaginellaceae, and Lycopodiaceae). These plant groups depend on water to reproduce and are therefore associated with humid settings.Cicatricosisporites (Anemiaceae) is the third most abundant palynomorph in all the basins, but especially in the northeastern basins (e.g., Sergipe Basin). Angiosperms are among the least abundant; however, they are diverse and include the most abundant and controversial genus Afropollis, herein attributed to angiosperms. In the most recent publication that addressed this question, ref.29 suggest that Afropollis should be treated as an angiosperm genus, although without more precise systematic assignment. The 30 genera/morphotypes of angiosperms are assigned to 8 families, viz., Arecaceae, Chloranthaceae, Euphorbiaceae, Flacourtiaceae, Illiciaceae, Liliaceae, Solanaceae and Trimeniaceae. The second most abundant genus is Stellatopollis also without precise systematic assignment.Spatio-temporal distribution of bioclimatic groupsOn the basis of their botanical affinities, most taxa were classified into five bioclimatic groups [see “Methods” section and Supplementary information], viz., hydrophytes, hygrophytes, tropical lowland flora, upland flora, and xerophytes (Supplementary Table 2) (Fig. 3).Figure 3Relevant palynomorphs of bioclimatic groups: (1) Aequitriradites sp.; (2) Crybelosporites sp.; (3) Perotriletes sp.; (4) Cicatricosisporites sp.; (5) Echinatisporis sp.; (6) Verrucosisporites sp.; (7) Bennettitaepollenites sp.; (8) Stellatopollis sp.; (9) Afropollis sp.; (10) Dejaxpollenites microfoveolatus; (11) Classopollis classoides; (12) Equisetosporites ovatus; (13) Gnetaceaepollenites jansonii; (14) Regalipollenites sp.; (15) Araucariacites sp.; (16) Callialasporites dampieri; (17) Complicatissacus cearensis; (18) Cyathidites sp.. Scale bar 20 µm.Full size imageOverall, the vegetation is dominated by the xerophytic bioclimatic group on account of the very high abundance of Classopollis (Cheirolepidiaceae) (general mean of 60.5%). However, the stratigraphic distribution of the bioclimatic groups in the sections studied (Supplementary Figs. 1–6) indicates wet phases confirmed by the curves of the other bioclimatic groups (hygrophytes, hydrophytes, tropical lowland flora, and upland flora). We used Pearson correlation analysis (Supplementary Fig. 7) to assess the correlation between the bioclimatic groups. The analysis revealed positive correlations between the bioclimatic groups of hygrophytes, hydrophytes, tropical lowland flora, and upland flora, and a negative correlation between these groups and the xerophyte group (Supplementary Fig. 7). The positive correlation between upland flora and hygrophytes confirms previous studies for the Sergipe Basin6,7, suggesting a relation between these groups and the hot and humid climate. The weak negative correlation between tropical lowland flora and upland flora is presumably related to elevation.The upland flora forms the second most abundant bioclimatic group, with an average of 18.9%. The large number of specimens of Araucariacites (Araucariaceae) in this group is notable. The hydrophytes are the least abundant group, with an average of only 1.4%. In this group, the highest values are attributed to the genus Crybelosporites (Marsileaceae).Principal component analyses (PCA) were used to reduce the multidimensional dataset, based on the percent abundance of the bioclimatic groups to a smaller number of dimensions for interpretive analysis. For all sections, two components or axes explain 97.6% of the observed variability (Fig. 2B). Hygrophytes, hydrophytes, tropical lowland flora, and upland flora show positive correlation (positive loading, 0.320, 0.029, 0.006, and 0.468, respectively), whereas xerophytes show a negative relationship (negative loading, − 0.823) on the first axis, which alone explains 83.0% of the variability. In summary, the first axis of the PCA reveals a separation of two major climatic conditions (wet and dry) along the axis (Fig. 2B). The wet conditions include the associations of hygrophytes, hydrophytes, tropical lowland flora, and upland flora, with dry conditions associated with taxa from the xerophyte group. The second axis explains 14.6%, in which hygrophytes, hydrophytes, and tropical lowland flora show a positive correlation relationship (positive loading, 0.719, 0.037, 0.036, respectively), whereas upland flora and xerophytes show a negative relationship (negative loading, − 0.684 and − 0.108, respectively). With respect to the second axis, a polarization between the hygrophytes (positive loading, 0.719) and the upland flora (negative loading, − 0.684) can be interpreted as a lowland–upland trend. The same pattern was recorded for all paleoclimatic phases (Fig. 2C) and sections (Supplementary Fig. 8), that is, the first axis is related to humidity vs. aridity, and the second axis to elevation (lowland vs. upland). This suggests that these two factors, particularly the first one, controlled the vegetation distribution in the late Aptian of the region. As all bioclimatic groups occurred in the three evaporitic phases, these trends in abundance reflect expansion and contraction of the recorded vegetation.Parallel increasing trends of bioclimatic groups mark the pre-evaporitic phase: hygrophytes and upland flora in the Bragança-Viseu, São Luís, Parnaíba, Ceará, Potiguar, and Araripe basins (Supplementary Figs. 1–3 and 5), suggesting that there was a certain amount of moisture in these areas. The xerophytes show the lowest average of this phase (44.1%) (Table 1), whereas hygrophytes show the highest average (27.0%). These humid conditions are confirmed by the highest mean of the Fs/X ratio (Fs/X = 0.4), representing the predominance of spore-producing plants [see Methods section and Supplementary information]. Despite the low abundance of hydrophytes in the sections, a prominent feature is the highest average (2.5%) of this group (Table 1), which is assigned to aquatic environments, confirming relatively wet conditions in this phase. There are no pre-evaporitic samples available from the Sergipe and Espírito Santo basins.Table 1 Average abundance of bioclimatic groups, diversity, Fs/X and marine elements for the paleoclimatic phases.Full size tableThe evaporitic phase is characterized by the highest abundance of the xerophyte bioclimatic group (76.4%) (Table 1), represented mainly by Classopollis (Supplementary Figs. 1–6). A high abundance of xerophytes occurred widely distributed in all basins studied. In this phase, tropical lowland flora is notable, showing an average higher than the overall average (3.3%), particularly in the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins (Supplementary Figs. 1 and 2). This result is related to the moderate to high abundance of the genus Afropollis in these basins. The evaporitic phase is also characterized by the lowest average Fs/X ratio (Fs/X = 0.1) (Table 1), confirming the dominance of xerophytes.The post-evaporitic phase is characterized by the upland flora bioclimatic group (mean = 24.4%) (Table 1). The moderate to high abundance of upland flora in this phase is represented, in particular, by pollen grains of Araucariacites, which represent the high-relief family Araucariaceae. This bioclimatic group is associated with more humid conditions, as confirmed by an Fs/X ratio higher than the overall average (Fs/X = 0.2). The upland flora is significant in all basins, except the Espírito Santo Basin, where xerophytes predominate in both studied phases in this basin.Latitudinal biome distributionsBiome change is a fundamental biological response to climate change. In the study area, the predominance of a specific biome is mainly related to humidity, since all five recorded bioclimatic groups are related to a warm climate (Supplementary Table 2) representing two biomes: tropical xerophytic shrubland and tropical rainforest. In the rainforest biome two phytophysiognomies are recognized: lowland and montane rainforest. The tropical xerophytic shrubland biome predominates in the three paleoclimatic phases, with a wide latitudinal range from the Bragança-Viseu, São Luís, and Parnaíba basins (1° S) to the Espírito Santo Basin (20° S). This wide distribution is compatible with a predominantly arid climate in South America in the late Aptian, as indicated by paleoclimatic maps8,9,15 (Fig. 4A). Most arid and semi-arid ecosystems are mainly controlled by precipitation. Other climate parameters are less important, a condition that simplifies cause-effect interpretations. The PCA (Fig. 2B) demonstrated that the wet–dry trend, which reflects high–low precipitation, was the main determinant in the distribution of the biomes. However, considering all phases, an increasing trend in humidity was observed from the southeast (Espírito Santo Basin) to the northeast (e.g., Potiguar Basin) (Fig. 4B), coinciding with the hot and wet belt attributed to the ITCZ (Fig. 4A)15. The latitudinal distribution of diversity also follows this trend. Diversity increased significantly towards in the basins near the equator. Diversity indices (Shannon – H’) peaked in the Sergipe Basin (H’ = 3.5, CL-47 section) at 11° S. Conversely, the lowest average diversity is recorded in the Espírito Santo Basin (H’ = 1.1) at 20° S. Additionally, there is a clear correlation between high diversity (H’) and humidity (Fs/X ratio) (r = 0.691), regardless of paleoclimatic phase, as evidenced by the synchronicity of the H’ and Fs/X curves (Fig. 5). After data normalization between humidity (Fs/X) and marine elements (dinoflagellate cysts and microforaminifer linings), we performed linear correlation analyses, which showed a weak but positive correlation (r = 0.137). This is due to the fact that pre- evaporitic deposits contain only 19 occurrences of dinoflagellate cysts in 90 samples. Despite this, the curves of Fs/X, marine elements and diversity are synchronous (Fig. 5), suggesting a relation between humidity, diversity, and marine incursions.Figure 4Latitudinal changes in late Aptian biomes from southeast to center-north. (A) Paleoclimatic belts of the late Aptian in South America (climatic belts modified from refer.14). Reconstruction map at 116 Ma modified from ODSN Plate Tectonic Reconstruction Service. The Reconstruction map at 116 Ma was generated by ODSN Plate Tectonic Reconstruction Service (https://www.odsn.de/odsn/services/paleomap/paleomap.html). (B) Late Aptian latitudinal distribution of the tropical xerophytic biome in Brazil. (C) Stratigraphic distribution of biomes for individual basins. (D) Relative Importance of biomes for paleoclimatic phases.Full size imageFigure 5Biome trends in relation to paleoclimatic phases. Change in biomes, diversity, Fs/X ratio and marine elements shown by changepoint analysis plotted against paleoclimatic phases.Full size imageThe pre-evaporitic phase is marked by a certain balance between the biomes (Fig. 4C,D). In the lowlands, the tropical xerophytic shrubland biome predominated in the Bragança- Viseu, São Luís, Parnaíba, and Ceará basins, but in the Potiguar Basin it is co-dominant with the lowland rainforest. The montane rainforest was relatively extensive in this phase, although with several areal changes, and reached its widest extent in the Araripe (7° S) and Potiguar (5° S) basins in response to the deterioration of the tropical xerophytic shrubland biome. These conditions demonstrate that humidity was relatively high at this stage. The pre-evaporitic deposits were characterized by the highest diversity average (H’ = 1.8).The method of indicator species analysis (IndVal) was used to identify the key species of each paleoclimatic phase (Supplementary Table 15). The species identified for the pre-evaporitic phase, Deltoidospora spp. (Cyatheaceae-Dicksoniaceae) related to the montane rainforest, are indicator species for the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins. The Gnetaceaepollenites spp. (Gnetaceae) of the Potiguar Basin and Equisetosporites spp. (Ephedraceae) of the Araripe Basin are related to the tropical xerophytic shrubland biome (Supplementary Table 15). Even for the pre-evaporitic phase, a progressive increase in the tropical xerophytic shrubland biome was observed and interpreted as the start of a climatic deterioration stage (Fig. 4C), which culminated in the evaporitic phase. Shifts in vegetation types may occur when precipitation reaches a threshold value, which means that a regionally synchronous gradual climate change can cause abrupt vegetation shifts. The change from humid to warm and arid conditions (evaporitic phase) is directly related to a decrease in precipitation. This aridization process coincides with the appearance of marine elements (e.g., dinoflagellate cysts). The threshold effect (intense evaporation) is reflected in an abrupt decrease in the abundance of lowland and montane rainforest and a sharp increase to a very high abundance of the tropical xerophytic shrubland biome (Supplementary Figs. 4C and 5). The threshold effect was not detected in the Espírito Santo Basin, where the arid conditions remained stable with minimal shift (expansion and contraction) of the biome. The main representatives of this biome are conifers of the family Cheirolepidiaceae (Classopollis), which were most abundant in lagoons and coastal environments and are often associated with evaporates30,31,32,33,34,35. Even under xeric or water-stressed conditions there was a slight increase in biomes related to a humid climate (lowland and montane rainforest phytophysiognomies) towards the equatorial region, suggesting influence of the ITCZ (Fig. 4A,B).The evaporitic phase was characterized by the lowest diversity average (H’ = 1.2). With modest rainfall, arid regions are generally characterized by fewer species than moister biomes36. However, diversity indices peaked in the Bragança-Viseu, São Luís, and Parnaíba basins (H’ = 2.6, RL-01 section) and along the equatorial margin (2° S) (Supplementary Fig. 1).IndVal emphasizes the xeric conditions in the evaporitic phase by association with the species from the tropical xerophytic shrubland biome: Classopollis spp. (Ceará and Potiguar basins), Classopollis classoides (Sergipe Basin), Classopollis intrareticulatus (Araripe Basin), and Gnetaceaepollenites spp. (Espírito Santo Basin). For the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins, where xeric restrictions are milder, the indicator taxon is Afropollis spp. from the lowland rainforest. This genus shows the weakest negative correlation with xerophytes.After the end of evaporite deposition, all sections indicate climatic stability, which kept the climate hot and arid even in the post-evaporitic phase, although the response was not linear.The shift in the biomes, especially the tropical xerophytic shrubland in the Bragança-Viseu, São Luís, Parnaíba, Ceará, and Araripe basins, occurred in the transition between the evaporitic and post-evaporitic phases, whereas in the Potiguar and Sergipe basins it occurred within the post-evaporitic phase. As indicated in the dendrograms of each section (Supplementary Figs. 1–6), the shift occurred abruptly in all basins, except the Espírito Santo Basin. The tropical rainforest biome (lowland and montane rainforests) replaced the tropical xerophytic shrubland in almost all basins (Fig. 4C). Even the Espírito Santo Basin, far from the influence of the ITCZ, shows a slight increase in lowland rainforest. The changes in the biomes are attributable to threshold effects caused by gradual climate change related to the ITCZ intensification shift and progressive increase in marine influence, indicated by an increase in marine microplankton from an average of 3.9% in the evaporitic phase to 44.1%. The increase in marine influence is reflected in the first major flooding surface observed in the Cretaceous succession27. Thus, a climate amelioration stage was established in the post- evaporitic phase (Fig. 5). In combination with published paleotopographic information25, the bioclimatic groups associated to the humid conditions (hygrophytes, hydrophytes, tropical lowland flora, and upland flora) were combined and visualized to create Fig. 6.Figure 6Reconstruction of the transitional gradient between marine to terrestrial environment (uplands) under ITCZ influence. The illustration is based on paleoflora and environmental information from palynological data from studied sections. Original size illustration: 18 × 24 cm, by Julio Lacerda.Full size imageAccording to refs.7,37, arid conditions are characterized by sea-level lowstands, whereas warm and humid conditions are correlated with sea levels rise, which explains the increase in the tropical rainforest biome (lowland and montane rainforests). The more intense humidity is supported by the results of IndVal for the post-evaporitic phase, with all species related to humid climate: Deltoidospora spp. (Bragança-Viseu, São Luís and Parnaíba basins), Araucariacites limbatus (Ceará Basin), Cicatricosisporites spp. (Potiguar Basin), Cicatricosisporites spp. and Araucariacites australis (Sergipe Basin), Inaperturopollenites spp. (Araripe Basin) and Inaperturopollenites simplex (Espírito Santo Basin).Our results show that the ITCZ combined with the opening of the South Atlantic Ocean during the late Aptian altered vegetation dynamics. As today, the ITCZ influence is stronger in the northeastern and north-central regions of South America. It is notable that the late Aptian climate evolution in the South Atlantic, culminating in higher humidity, was accompanied by an intrinsic relation between plant diversity, humidity, and marine influence. More

  • in

    Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?

    Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ. 2001;84:1–20.Article 

    Google Scholar 
    Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–6.Article 
    CAS 

    Google Scholar 
    Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.Article 

    Google Scholar 
    Pearson DE, Ortega YK, Eren Ö, Hierro JL. Community assembly theory as a framework for biological invasions. Trends Ecol Evol. 2018;33:313–25.PubMed 
    Article 

    Google Scholar 
    Inderjit, van der Putten WH. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol. 2010;25:512–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.Article 

    Google Scholar 
    Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 2006;4:e140.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hierro JL, Callaway RM. Allelopathy and exotic plant invasion. Plant Soil. 2003;256:29–39.Article 
    CAS 

    Google Scholar 
    Reinhart KO, Callaway RM. Soil biota and invasive plants. N Phytol. 2006;170:445–57.Article 

    Google Scholar 
    Waller LP, Allen WJ, Barratt BIP, Condron LM, França FM, Hunt JE, et al. Biotic interactions drive ecosystem responses to exotic plant invaders. Science. 2020;368:967–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol. 2016;104:994–1002.Article 
    CAS 

    Google Scholar 
    Saul WC, Jeschke JM. Eco-evolutionary experience in novel species interactions. Ecol Lett. 2015;18:236–45.PubMed 
    Article 

    Google Scholar 
    Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, et al. The fungal dimension of biological invasions. Trends Ecol Evol. 2007;22:472–80.PubMed 
    Article 

    Google Scholar 
    Hierro JL, Maron JL, Callaway RM. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol. 2005;93:5–15.Article 

    Google Scholar 
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Maron JL, Klironomos J, Waller L, Callaway RM. Invasive plants escape from suppressive soil biota at regional scales. J Ecol. 2014;102:19–27.Article 

    Google Scholar 
    Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77.Article 
    CAS 

    Google Scholar 
    Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 2008.O’Neill EG, O’Neill RV, Norby RJ. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut. 1991;73:271–84.PubMed 
    Article 

    Google Scholar 
    Johnson NC, Wilson GWTT, Wilson JA, Miller RM, Bowker MA. Mycorrhizal phenotypes and the Law of the Minimum. N Phytol. 2015;205:1473–84.Article 
    CAS 

    Google Scholar 
    Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun. 2021;12:3484.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Richardson DM, Allsopp N, D’Antonio CM, Milton S, Rejmanek M. Plant invasions – the role of mutualisms. Biol Rev. 2000;75:65–93.PubMed 
    Article 
    CAS 

    Google Scholar 
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.Article 

    Google Scholar 
    Soti PG, Jayachandran K, Purcell M, Volin JC, Kitajima K. Mycorrhizal symbiosis and Lygodium microphyllum invasion in South Florida—a biogeographic comparison. Symbiosis. 2014;62:81–90.Article 

    Google Scholar 
    Fumanal B, Plenchette C, Chauvel B, Bretagnolle F. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza. 2006;17:25–35.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. N Phytol. 2002;153:335–44.Article 

    Google Scholar 
    Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science. 2007;316:1746–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kivlin SN, Hawkes CV, Treseder KK. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem. 2011;43:2294–303.Article 
    CAS 

    Google Scholar 
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.PubMed 
    Article 

    Google Scholar 
    Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.Article 
    CAS 

    Google Scholar 
    Rout ME, Chrzanowski TH. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil. 2009;315:163–72.Article 
    CAS 

    Google Scholar 
    Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol. 2017;23:1282–91.Article 

    Google Scholar 
    Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia. 2005;144:1–11.PubMed 
    Article 

    Google Scholar 
    Lankau RA. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. N Phytol. 2011;189:536–48.Article 

    Google Scholar 
    Blossey B, Nötzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.Article 

    Google Scholar 
    van Kleunen M, Bossdorf O, Dawson W. The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst. 2018;49:25–47.Article 

    Google Scholar 
    Rosche C, Hensen I, Schaar A, Zehra U, Jasieniuk M, Callaway RM, et al. Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. Ecol Monogr. 2019;89:e01386.Article 

    Google Scholar 
    Weaver SE. The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci. 2001;81:867–75.Article 

    Google Scholar 
    Gange AC, Ayres RL. On the relation between arbuscular mycorrhizal colonization and plant ’ benefit. Oikos. 1999;87:615–21.Article 

    Google Scholar 
    Řezáčová V, Konvalinková T, Řezáč M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia. 2020;75:693–9.Article 

    Google Scholar 
    Zhang Q, Sun Q, Koide RT, Peng Z, Zhou J, Gu X, et al. Arbuscular mycorrhizal fungal mediation of plant-plant onteractions in a marshland plant community. Sci World J. 2014;2014:1–10.
    Google Scholar 
    Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC, Li GL, et al. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol Biochem. 2020;143:107739.Article 
    CAS 

    Google Scholar 
    Shah MA, Callaway RM, Shah T, Houseman GR, Pal RW, Xiao S, et al. Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. N Phytol. 2014;202:1286–96.Article 

    Google Scholar 
    Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol. 2015;24:1999–2017.PubMed 
    Article 

    Google Scholar 
    Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol. 2018;20:75–84.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart SC, Start JM, Davidson EA, Firestone MK. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle J., Bottomley P., editors. Methods of soil analysis, part 2 microbiological and biochemical properties. Madison, WI: Soil Science Society of America; 1994. p. 985–1018.Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR Monogr. 1996;32:1–374.
    Google Scholar 
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. N Phytol. 1990;115:495–501.Article 
    CAS 

    Google Scholar 
    Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;4315:4302–15.Article 

    Google Scholar 
    Hijmans RJ. raster: Geographic data analysis and modeling. R package version 3.3-13. 2020. https://cran.r-project.org/package=raster.R Core Team. R: A language and environment for statistical computing [https://www.r-project.org/]. Vienna, Austria: R Foundation for Statistical Computing; 2019.Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package. 2019. https://cran.r-project.org/package=vegan.Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. N Phytol. 2011;190:794–804.Article 
    CAS 

    Google Scholar 
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339–49.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep. 2021;11:3645.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.Article 
    CAS 

    Google Scholar 
    Chen J. GUniFrac: generalized UniFrac distances. R package version 1.1. 2018. https://cran.r-project.org/package=GUniFrac.Webb CO. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat. 2000;156:145–55.PubMed 
    Article 

    Google Scholar 
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014;67.Borcard D, Gillet F, Legendre P. Numerical ecology with R. New York: Springer; 2011.Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Felker-Quinn E, Schweitzer JA, Bailey JK. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol. 2013;3:739–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal RW, Maron JL, Nagy DU, Waller LP, Tosto A, Liao H, et al. What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology 2020;101:e03072.PubMed 
    Article 

    Google Scholar 
    Matesanz S, Sultan SE. High-performance genotypes in an introduced plant: insights to future invasiveness. Ecology. 2013;94:2464–74.PubMed 
    Article 

    Google Scholar 
    Hart M, Reader R. Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils. 2002;36:357–66.Article 

    Google Scholar 
    Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, et al. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol. 2017;105:219–28.Article 
    CAS 

    Google Scholar 
    Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, et al. Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr. 2011;38:1305–17.Article 

    Google Scholar 
    Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. N Phytol. 2019;222:714–25.Article 

    Google Scholar 
    Jia Y, Heijden MGA, Wagg C, Feng G, Walder F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J Ecol. 2021;109:3171–81.Article 
    CAS 

    Google Scholar 
    Van Der Heijden MGAA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72.Article 
    CAS 

    Google Scholar 
    Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE. 2010;5:e12380.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shah MA, Reshi ZA, Khasa DP. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot Rev. 2009;75:397–417.Article 

    Google Scholar 
    Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil. 2016;404:1–12.Article 
    CAS 

    Google Scholar 
    Wilson GWT, Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot. 1998;85:1732–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Seifert EK, Bever JD, Maron JL. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 2009;90:1055–62.PubMed 
    Article 

    Google Scholar 
    Deveautour C, Donn S, Power SA, Bennett AE, Powell JR. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol Ecol. 2018;27:2152–63.PubMed 
    Article 

    Google Scholar 
    Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. N Phytol. 2018;217:1254–66.Article 
    CAS 

    Google Scholar 
    Tian B, Pei Y, Huang W, Ding J, Siemann E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 2021;15:1919–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pimprikar P, Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018;59:673–90.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wendlandt CE, Helliwell E, Roberts M, Nguyen KT, Friesen ML, Wettberg E, et al. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume‐rhizobium mutualism. Evolution. 2021;75:731–47.PubMed 
    Article 

    Google Scholar 
    Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology. 2011;92:1027–35.PubMed 
    Article 

    Google Scholar 
    Shelby N, Duncan RP, Putten WH, McGinn KJ, Weser C, Hulme PE. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. J Ecol. 2016;104:1259–70.Article 
    CAS 

    Google Scholar 
    Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem. 2013;65:78–85.Article 
    CAS 

    Google Scholar 
    Bronstein JL. The exploitation of mutualisms. Ecol Lett. 2001;4:277–87.Article 

    Google Scholar 
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.PubMed 
    Article 
    CAS 

    Google Scholar 
    Koziol L, Bever JD. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J Ecol. 2019;107:622–32.Article 

    Google Scholar 
    Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena. 2011;87:70–7.Article 
    CAS 

    Google Scholar 
    Zhang J, Wang F, Che R, Wang P, Liu H, Ji B, et al. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Sci Rep. 2016;6:23488.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Read DJ. Mycorrhizas in ecosystems. Experientia. 1991;47:376–91.Article 

    Google Scholar 
    Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology. 2017;98:2111–9.PubMed 
    Article 

    Google Scholar  More

  • in

    Comparing dormancy in two distantly related tunicates reveals morphological, molecular, and ecological convergences and repeated co-option

    Hand, S.C. Metabolic dormancy in aquatic invertebrates. In Advances in Comparative and Environmental Physiology, Vol. 8 (ed. Gilles, R.) 1–50. https://doi.org/10.1007/978-3-642-75900-0_1 (1991).Cáceres, C. E. Dormancy in Invertebrates. Invertebr. Biol. 116(4), 371–383. https://doi.org/10.2307/3226870 (1997).Article 

    Google Scholar 
    Wilsterman, K., Ballinger, M. A. & Williams, C. M. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11–31. https://doi.org/10.1111/1365-2435.13718 (2021).Article 

    Google Scholar 
    Bertolani, R., Guidetti, R., Altiero, T., Nelson, D. R. & Rebecchi, L. Dormancy in Freshwater Tardigrades. In Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae Vol. 92 (eds Alekseev, V. & Pinel-Alloul, B.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-21213-1_3.Chapter 

    Google Scholar 
    Guidetti, R., Altiero, T. & Rebecchi, L. On dormancy strategies in tardigrades. J. Insect Physiol. 57(5), 567–576. https://doi.org/10.1016/j.jinsphys.2011.03.003 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42(3), 246–256. https://doi.org/10.1111/phen.12193 (2017).CAS 
    Article 

    Google Scholar 
    Wang, Y., Ezemaduka, A. N., Tang, Y. & Chang, Z. Understanding the mechanism of the dormant dauer formation of C. elegans: From genetics to biochemistry. IUBMB Life 61(6), 607–12. https://doi.org/10.1002/iub.211 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dias, I. B., Bouma, H. R. & Henning, R. H. Unraveling the big sleep: Molecular aspects of stem cell dormancy and hibernation. Front. Physiol. 12, 624950. https://doi.org/10.3389/fphys.2021.624950 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic regulation and gene expression during aestivation. Prog. Mol. Subcell. Biol. 49, 25–45. https://doi.org/10.1007/978-3-642-02421-4_2 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(11), R1193–R1211. https://doi.org/10.1152/ajpregu.00250.2015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ikeda, H., Ohtsu, K. & Uye, S. I. Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). Biol. Bull. 221(3), 248–260 (2011).PubMed 
    Article 

    Google Scholar 
    Bushnell, J. H. & Rao, K. S. Dormant or quiescent stages and structures among the Ectoprocta: Physical and chemical factors affecting viability and germination of statoblasts. Trans. Am. Microsc. Soc. 93, 524–543. https://doi.org/10.2307/3225156 (1974).Article 

    Google Scholar 
    Hyman, L. H. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta Vol. III (McGraw-Hill, 1951).
    Google Scholar 
    Mukai, H. & Toshiki, M. Studies on the regeneration of an entoproct, Barentsia discreta. J. Exp. Zool. 205(2), 261–276. https://doi.org/10.1002/jez.1402050210 (1978).Article 

    Google Scholar 
    Nakauchi, M. Asexual development of ascidians: Its biological significance, diversity, and morphogenesis. Am. Zool. 22(4), 753–763. https://doi.org/10.1093/icb/22.4.753 (1982).Article 

    Google Scholar 
    Hyams, Y., Paz, G., Rabinowitz, C. & Rinkevich, B. Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev. Biol. 428(1), 101–117. https://doi.org/10.1016/j.ydbio.2017.05.020 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown, C. J. D. A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Microsc. Soc. 52, 271–313 (1933).CAS 
    Article 

    Google Scholar 
    Mukai, H. Development of freshwater bryozoans (Phylactolaemata). In Developmental Biology of Freshwater Invertebrates (eds Harrison, R. W. & Cowden, R. R.) 535–576 (Alan R. Liss Inc., 1982).
    Google Scholar 
    Wood, T. S. Phyla ectoprocta and entoprocta (Bryozoans). In Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 327–345 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00016-4.Chapter 

    Google Scholar 
    Simpson, T. L. The Cell Biology of Sponges (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5214-6.Book 

    Google Scholar 
    Alié, A., Hiebert, L. S., Scelzo, M. & Tiozzo, S. The eventful history of nonembryonic development in tunicates. J. Exp. Zool. Part B Mol. Dev. Evol. 33(3), 181–217. https://doi.org/10.1002/jez.b.22940 (2020).Article 

    Google Scholar 
    Brown, F. D. & Swalla, B. J. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev. Biol. 3692, 151–162 (2012).Article 
    CAS 

    Google Scholar 
    Kawamura, K. & Fujiwara, S. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates. Semin. Cell Biol. 6, 117–126 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kassmer, S. H., Langenbacher, A. D. & De Tomaso, A. W. Integrin-alpha-6+ candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat. Commun. 11(1), 4435–4511. https://doi.org/10.1038/s41467-020-18288-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman, G. The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J. Exp. Zool. 156, 157–183 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kürn, U., Rendulic, S., Tiozzo, S. & Lauzon, R. J. Asexual propagation and regeneration in colonial ascidians. Biol. Bull. 221(1), 43–61. https://doi.org/10.1086/BBLv221n1p43 (2011).Article 
    PubMed 

    Google Scholar 
    Sköld, H. N., Obst, M., Sköld, M. & Åkesson, B. Stem cells in asexual reproduction of marine invertebrates. In Stem Cells in Marine Organisms (eds Rinkevich, B. & Matranga, V.) 105–137 (Springer, Dordrecht, 2009).Chapter 

    Google Scholar 
    Tiozzo, S., Brown, F. D. & De Tomaso, A. W. Regeneration and stem cells in ascidians. In Stem Cells (ed. Bosch, T. C. G.) (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8274-0_6.Chapter 

    Google Scholar 
    Mukai, H., Koyama, H. & Watanabe, H. Studies on the reproduction of three species of Perophora (Ascidiacea). Biol. Bull. 164(2), 251–266 (1983).Article 

    Google Scholar 
    Huxley, J. Memoirs: studies in dedifferentiation: II. Dedifferentiation and resorption in Perophora. Q. J. Microsc. Sci. s2-65(260), 643–697 (1921).
    Google Scholar 
    Huxley, J. Studies in dedifferentiation. VI. Reduction phenomena in Clavelina lepadiformis. Pubb. Staz. Zool. Napoli. 7, 1–34 (1926).
    Google Scholar 
    Turon, X. Periods of nonfeeding in Polysyncraton-lacazei (Ascidiacea, Didemnidae)—A process. Mar. Biol. 112, 647–655 (1992).Article 

    Google Scholar 
    Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Giard, M. A. & Caullery, M. On the hibernation of Clavelina lepadiformis, Müller. Ann. Mag. Nat. Hist. 18(108), 485–486. https://doi.org/10.1080/00222939608680499 (1896).Article 

    Google Scholar 
    Orton, J. H. The production of living Clavellina Zooids in winter by experiment. Nature 107, 75. https://doi.org/10.1038/107075a0 (1921).ADS 
    Article 

    Google Scholar 
    Della, Valle P. Studii sui rapporti fra differenziazione e rigenerazione. 4. Bollettino Della Società Dei Naturalisti in Napoli 7, 1–37 (1915).
    Google Scholar 
    Scelzo, M. et al. Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. EvoDevo https://doi.org/10.1186/s13227-019-0121-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berrill, N. J. Regeneration and budding in tunicates. Biol. Rev. 26, 456–475. https://doi.org/10.1111/j.1469-185X.1951.tb01207.x/full (1951).Article 

    Google Scholar 
    Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197. https://doi.org/10.1029/1999JC000065 (2001).ADS 
    Article 

    Google Scholar 
    Berrill, N. J. & Cohen, A. Regeneration in Clavelina lepadiformis. J. Exp. Biol. 13(3), 352–362. https://doi.org/10.1242/jeb.13.3.352 (1936).Article 

    Google Scholar 
    Jiménez-Merino, J. et al. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo https://doi.org/10.1186/s13227-019-0144-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics UK 7, 1051–1073 (2015).CAS 
    Article 

    Google Scholar 
    Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. In DNA Methylation: Development, Genetic Disease and Cancer: Current Topics in Microbiology and Immunology Vol. 310 (eds Doerfler, W. & Böhm, P.) (Springer, 2006). https://doi.org/10.1007/3-540-31181-5_7.Chapter 

    Google Scholar 
    Orton, J. H. Preliminary account of a contribution to an evaluation of the sea. J. Mar. Biol. Assoc. UK 10(2), 312–326. https://doi.org/10.1017/S0025315400007815 (1914).Article 

    Google Scholar 
    Mukai, H. Histological and histochemical studies of two compound ascidians, Clavelina lepadiformis and Diazona violacea, with special reference to the trophocytes, ovary and pyloric gland. Sci. Rep. Fac. Educ. Gunma Univ. 26, 37–77 (1977).
    Google Scholar 
    de Caralt, S., López-Legentil, S., Tarjuelo, I., Uriz, M. J. & Turon, X. Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Mar. Ecol. Prog. Ser. 244, 125–137 (2002).ADS 
    Article 

    Google Scholar 
    Turon, X. A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebr. Biol. 124(3), 273–283. https://doi.org/10.1111/j.1744-7410.2005.00025.x (2005).Article 

    Google Scholar 
    Pyo, J. & Shin, S. A new record of invasive alien colonial tunicate Clavelina lepadiformis (Ascidiacea: Aplousobranchia: Clavelinidae) in Korea. Anim. Syst. Evol. Divers. 27, 197–200 (2011).Article 

    Google Scholar 
    Reinhardt, J. et al. First record of the non-native light bulb tunicate Clavelina lepadiformis (Müller, 1776) in the northwest Atlantic. Aquat. Invasions 5(2), 185–190. https://doi.org/10.3391/ai.2010.5.2.09 (2010).Article 

    Google Scholar 
    Turon, X., Tarjuelo, I., Duran, S. & Pascual, M. Characterising invasion processes with genetic data: An Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503(1–3), 29–35. https://doi.org/10.1023/b:hydr.0000008481.10705.c2 (2003).Article 

    Google Scholar 
    Van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945).
    Google Scholar 
    Carman, M. et al. Ascidians at the Pacific and Atlantic entrances to the Panama Canal. Aquat. Invasions 6(4), 371–380. https://doi.org/10.3391/ai.2011.6.4.02 (2011).Article 

    Google Scholar 
    Holman, L. E. et al. Managing human-mediated range shifts: Understanding spatial, temporal and genetic variation in marine non-native species. Philos. Trans. R. Soc. B 377, 20210025 (2022).CAS 
    Article 

    Google Scholar 
    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Marine Ecology Progress Series 259, 145–161. https://doi.org/10.3354/meps259145 (2003).ADS 
    Article 

    Google Scholar 
    Brunetti, R. Polyandrocarpa zorritensis (Van Name, 1931). A colonial ascidian new to the Mediterranean record. Vie et Milieu 28–29, 647–652 (1978).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. The non-indigenous stolidobranch ascidian Polyandrocarpa zorritensis in the Mediterranean: Description, larval morphology and pattern of vascular budding. Zootaxa 528, 1–8 (2004).Article 

    Google Scholar 
    Mastrototaro, F., D’Onghia, G. & Tursi, A. Spatial and seasonal distribution of ascidians in a semi-enclosed basin of the Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1053–1061 (2008).Article 

    Google Scholar 
    Stabili, L., Licciano, M., Longo, C., Lezzi, M. & Giangrande, A. The Mediterranean non- indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications. Mar. Pollut. Bull. 101, 146–152 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turon, X. & Becerro, M. A. Growth and survival of several ascidian species from the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 82, 235–247 (1992).ADS 
    Article 

    Google Scholar 
    Sumida, P. Y. G. et al. Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: Potential for deep-sea invasion. Braz. J. Oceanogr. 63, 515–520 (2015).Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Responses of compound ascidian larvae to haloclines. Mar. Ecol. Prog. Ser. 133, 179–190 (1996).ADS 
    Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Ontogenetic changes in phototaxis during larval life of the Ascidian Polyandrocarpa zorritensis (Van Name, 1931). J. Exp. Mar. Biol. Ecol. 231, 267–277 (1998).Article 

    Google Scholar 
    Brien, P. & Brien-Gavage, E. Contribution à l’étude de la Blastogénèse des Tuniciers: III: Bourgeonnement de Clavelina Lepadiformis Müller. Recueil de L’Institut Zoologique Torley-Rousseau 1–56 (1927).Fujimoto, H. & Watanabe, H. The characterization of granular amoebocytes and their possible roles in the asexual reproduction of the polystyelid ascidian, Polyzoa vesiculiphora. J. Morphol. 150(3), 623–637. https://doi.org/10.1002/jmor.1051500303 (1976).Article 
    PubMed 

    Google Scholar 
    Cima, F., Franchi, N. & Ballarin, L. Origin and functions of tunicate hemocytes. In The Evolution of the Immune System (ed. Malagoli, D.) 29–49 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801975-7/00002-5.Chapter 

    Google Scholar 
    Kerb, H. Biologische Beiträge zur Frage der Überwinterung der Ascidien. Arch. Mikrosk. Anat. 72(1), 386–414 (1908).Article 

    Google Scholar 
    Driesch, H. Studien über das Regulationsvermögen de Organismen. 6. Die Restitutionen der Clavellina lepadiformis. Arch. F. Entw.-Mech. 14, 247–287 (1902).Article 

    Google Scholar 
    Schultz, E. Über Reductionen. III. Die Reduction und Regeneration des abgeschnitten Kiemenkorbes von Clavellina lepadiformis. Arch. Entw. Mech. Org. 24, 503–523 (1907).
    Google Scholar 
    Spek, J. Über die Winterknospenentwicklung, Regeneration und Reduktion bei Clavellina lepadiformis und die Bedeutung besonderer “omnipotenter” Zellelemente für diese Vorgänge. Wilhelm Roux’Archiv Entwicklungsmechanik der Org 111(119), 172 (1927).
    Google Scholar 
    Brien, P. Contribution à l’étude de la régéneration naturelle et expérimentale chez les Clavelinidae. Soc. R. Zool. Belg. Ann LXI, 19–112 (1930).
    Google Scholar 
    Ries, E. Die Tropfenzellen und ihre Bedeutung für die Tunicabildung bei Clavelina. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 363–371. https://doi.org/10.1007/BF00593066 (1937).Article 
    PubMed 

    Google Scholar 
    Fischer, I. Über das Verhalten des stolonialen Gewebes der Ascidie Clavelina lepadiformis in vitro. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 383–403. https://doi.org/10.1007/BF00593068 (1937).Article 
    PubMed 

    Google Scholar 
    Seelinger, O. Eibildung und Knospung von Clavelina lepadiformis. Sitzungsber. d. Kais. Kgl. Acad. d. Wiss 1–56 (1882).Van Beneden, E. & Julin, C. Recherches sur la morphologie des tuniciers. Arch. Biol. 6, 237–476 (1886).
    Google Scholar 
    Garstang, W. Memoirs: The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. J. Cell Sci. 1928(2), 51–187 (1928).Article 

    Google Scholar 
    Kimura, K. D., Tissenbaum, H. A., Liu, Y. X. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogawa, A. & Brown, F. Dauer formation and dauer-specific behaviours in Pristionchus pacificus. In Pristionchus pacificus—A nematode model for comparative and evolutionary biology (ed. Sommer, R. J.) (Brill, 2015). https://doi.org/10.1163/9789004260306_011.Chapter 

    Google Scholar 
    Wisdom, R. AP-1: One switch for many signals. Exp. Cell Res. 253(1), 180–185. https://doi.org/10.1006/excr.1999.4685 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M. Beyond casual resemblances: rigorous frameworks for comparing regeneration across species. Annu. Rev. Cell Dev. Biol. 37, 1–26 (2021).Article 
    CAS 

    Google Scholar 
    Alié, A. et al. Convergent acquisition of nonembryonic development in styelid ascidians. Mol. Biol. Evol. 35, 1728–1743. https://doi.org/10.1093/molbev/msy068 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, 1. https://doi.org/10.1371/journal.pbio.1001725 (2013).CAS 
    Article 

    Google Scholar 
    Prünster, M. M., Ricci, L., Brown, F. D. & Tiozzo, S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo https://doi.org/10.1186/s13227-019-0116-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawamura, K., Shiohara, M., Kanda, M. & Fujiwara, S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev. Biol. 384, 343–355 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol. 5, e71. https://doi.org/10.1371/journal.pbio.0050071 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 4(1), 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krueger, F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. https://doi.org/10.1038/nbt.1883 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Research 6, 1287. https://doi.org/10.12688/f1000research.12232.1 (2017).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene prediction (ed. Kollmar, M.) 227–245 (Humana, New York, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14.Chapter 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-021-01101-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100 (2021).CAS 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15(2), 1–17. https://doi.org/10.1186/gb-2014-15-2-r29 (2014).CAS 
    Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12(1), 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).CAS 
    Article 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009).Article 
    CAS 

    Google Scholar  More

  • in

    A complex story of groundwater abstraction and ecological threats to the Doñana National Park World Heritage Site

    To the Editor — It is widely appreciated that the world’s wetlands provide important ecosystem services including critical biodiversity, stores of carbon and strong cultural links to people. Yet wetlands are disappearing at an alarming rate due to diversion and abstraction of water, to conversion to agricultural land and to pollution. In response, there has been a major commitment to conserve and restore wetlands worldwide, including more than 2,400 sites on the territories of 172 Contracting Parties of the Convention on Wetlands (Ramsar Sites), covering more than 2.5 million square kilometres. Some wetlands, such as Doñana in southern Spain, are also World Heritage sites to protect their natural and cultural values. The Ramsar Convention and UNESCO World Heritage Convention strongly support the rights of non-governmental organizations to appraise the status and management of designated sites and welcome reports of threats to site integrity. However, such claims should be substantiated by all the available scientific evidence. More

  • in

    Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goericke, R. & Welschmeyer, N. A. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Res. 40, 2283–2294 (1993).Article 

    Google Scholar 
    Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).Article 

    Google Scholar 
    Huang, S. et al. Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J. 6, 285–297 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barlow, A. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. Arctic 22, 63–74 (1985).
    Google Scholar 
    Yeh, S. W. et al. Role of phycoerythrin in marine picoplankton synechococcus spp. Science 234, 1422–1424 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Res. Part I Oceanogr. Res. Pap. 84, 1–17 (2014).Article 

    Google Scholar 
    Larkum, A. W. D. & Barrett, J. Light-harvesting processes in algae. Adv. Bot. Res. 10, 1–219 (1983).CAS 
    Article 

    Google Scholar 
    Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051–1054 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bibby, T. S., Nield, J., Chen, M., Larkum, A. W. D. & Barber, J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl Acad. Sci. USA 100, 9050–9054 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kana, T. M. & Glibert, P. M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 479–495 (1987).CAS 
    Article 

    Google Scholar 
    Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Perry, M. J., Talbot, M. C. & Alberte, R. S. Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62, 91–101 (1981).Mauzerall, D. & Greenbaum, N. L. The absolute size of a photosynthetic unit. BBA Bioenerg. 974, 119–140 (1989).CAS 
    Article 

    Google Scholar 
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keren, N. & Paltiel, Y. Photosynthetic energy transfer at the quantum/classical border. Trends Plant Sci. 23, 497–506 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodny, Y. et al. Marine cyanobacteria tune energy transfer efficiency in their light‐harvesting antennae by modifying pigment coupling. FEBS J. https://doi.org/10.1111/febs.15371 (2020).Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation the migration of LHCII from PSII to PSI has. J. Phys. Chem. B 117, 51 (2013).Article 
    CAS 

    Google Scholar 
    Chenu, A. et al. Light adaptation in phycobilisome antennas: influence on the rod length and structural arrangement. J. Phys. Chem. B 121, 9196–9202 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B Biol. Sci. 372, 2–8 (2017).Article 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 14, 367–393 (2021).
    Google Scholar 
    Govindjee, Hammond, J. H. & Merkelo, H. Primary events, energy transfer, and reactions in photosynthetic events: lifetime of the excited state in vivo: II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12, 809 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roach, T. & Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351–362 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Govindjee, U. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria (Springer Netherlands, 2014).
    Google Scholar 
    Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7–16 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).Croce, R. & Van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 104, 142–153 (2011).CAS 
    Article 

    Google Scholar 
    Rahav, E. et al. Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77 (2015).CAS 
    Article 

    Google Scholar 
    Reiss, Z. & Hottinger, L. The Gulf of Aqaba (Springer-Verlag, 1984).Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the red sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).CAS 
    Article 

    Google Scholar 
    Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).Article 

    Google Scholar 
    Zarubin, M., Lindemann, Y. & Genin, A. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).Article 

    Google Scholar 
    Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).Article 

    Google Scholar 
    Suggett, D. J. et al. Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba. Aquat. Microb. Ecol. 56, 227–239 (2009).Article 

    Google Scholar 
    Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherman, J., Gorbunov, M. Y., Schofield, O. & Falkowski, P. G. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnol. Oceanogr. 65, 2912–2925 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoo, Y. D. et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68, 105–117 (2017).PubMed 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brody, S. S. & Rabinowitch, E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1979).Article 

    Google Scholar 
    Six, C., Thomas, J. C., Brahamsha, B., Lemoine, Y. & Partensky, F. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat. Microb. Ecol. 35, 17–29 (2004).Article 

    Google Scholar 
    Krumova, S. B. et al. Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. Biophys. J. 99, 2006–2015 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhatti, A. F., Kirilovsky, D., van Amerongen, H. & Wientjes, E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol. 186, 569–580 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020).Anderson, J. M. & Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13, 351–355 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackey, K. R. M., Post, A. F., McIlvin, M. R. & Saito, M. A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13744 (2017).Article 
    PubMed 

    Google Scholar 
    Mendoza-Arenas, J. J. et al. Transport enhancement from incoherent coupling between one-dimensional quantum conductors. New J. Phys. 16, 053016 (2014).Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. & Quist, G. O. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth. Res. 133, 63–73 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolber, Z. S., Prášil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106 (1998).CAS 
    Article 

    Google Scholar 
    Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).CAS 
    Article 

    Google Scholar 
    Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).Article 

    Google Scholar 
    Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998-2015). Environ. Res. Lett. 14, 124011 (2019).Kulk, G. et al. Primary production, an index of climate change in the ocean: satellite-based estimates over two decades. Remote Sens. 12, 826 (2020).Van De Poll, W. H. et al. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240 (2013).Article 
    CAS 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 1–16 (2019).Article 

    Google Scholar 
    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, 1–23 (2012).Article 

    Google Scholar 
    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).Article 

    Google Scholar 
    Kolodny, Y. et al. Tuning quantum dots coupling using organic linkers with different vibrational modes. J. Phys. Chem. C 124, 16159–16165 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More