More stories

  • in

    Comparison of entomological impacts of two methods of intervention designed to control Anopheles gambiae s.l. via swarm killing in Western Burkina Faso

    Study sites and swarm characterizationThe survey was conducted in 10 villages in south-western Burkina Faso especially around the district of Bobo-Dioulasso, Santitougou (N11° 17′ 16″, W4° 13′ 04″), Kimidougou (N11° 17′ 53″; W4° 14′ 11″), Nastenga (N10.96871; W003.23477), Zeyama (N10.87638; W 003.26145), Mogobasso (N11° 25′ 31″, W4° 06′ 08″), Synbekuy (N11° 53′ 28″, W3° 44′ 02″), Ramatoulaye (N11° 33′ 39″, W3° 57′ 05″) Syndombokuy (N11° 53′ 06″, W3° 43′ 19″), Lampa (N11.16464; W 003.6374) et Syndounkuy (N11.14541; W 003.05141) (Fig. 1). All villages are located north of Bobo-Dioulasso, on the national road 10 (N10), ranged from 20 and 90 km. The region is characterised by wooded savannah located in south-western Burkina Faso, and the mean annual rainfall is about 1200 mm. The rainy season extends from May to October and the dry season from November to April. Malaria transmission in the area extends from June to November. However, residual transmission may occur beyond this period in specific locations. An. gambiae is the major malaria vector following by An. coluzzii and An. Arabiensis. Villages were chosen to represent similar ecological and entomological settings, they are middle sized and relatively isolated from one another.Figure 1Localization of the study sites in south-western Burkina Faso. This map was created under QGIS version 2.18 Las Palmas. link: https://changelog.qgis.org/en/qgis/version/2.18.0/Full size imageSpray Application Against Mosquito Swarms (SAMS) consisted of spraying diluted insecticide (Actellic 50: tap water with 1:20 concentration) at dusk by trained volunteer teams. They used the innovative technology of targeted swarm spraying with handheld sprayers and conventional broadcast space spray with backpack sprayers to achieve maximum effect. The spraying activities were conducted in eight of the ten villages. The target swarm spray was used in the four villages Kimidougou, Nastenga, Ramatoulaye and Syndombokuy. The broadcast space spray was applied in four other villages, Zeyama, Mogobasso, Lampa and Syndounkuy. The two remaining villages, Santidougou and Synbekuy were chosen as controls (Fig. 1). In each village, the potential swarm markers and the positive swarm sites were identified and geo-referenced using GPS. All concessions also were geo-referenced and labelled using paint.Procedure of the interventionTargeted swam spraying using handheld sprayersTargeted swarm spraying was carried out in four villages. Members of each team and volunteers from the selected villages were trained to target the swarms and apply an appropriate amount of spray each time. After the pre-intervention phase, all swarm sites scattered through the villages were repaired and swarm characteristics recorded. At 30 min before dusk (the estimated swarming time), a volunteer was placed in each compound with a sprayer. The objective of each volunteer was to destroy any swarm in the compound by applying insecticide with the handheld sprayer (Fig. 2A,B). Screening of the compound was continued for about 30 min until it was dark and no mosquitoes were visible. A single operator was able to effectively target 5 to 10 swarms per spray evening, depending on the distribution of swarms across the village. Spraying was carried out for 10 successive days throughout each village. The period of spraying approximately covered the period of pre-imaginal mosquito stages and was renewed after 45 days. The quantity of insecticide used was measured daily, in order to determine with precision the total quantity of insecticide used during targeted spraying.Figure 2Volunteer spraying swarms using handheld sprayers (A,B). Backpack spraying activities (C,D).Full size imageConventional broadcast spraying using Backpack sprayersThe broadcast spraying was also carried out in 4 villages but, unlike the targeted spraying, there was no direct targeting of swarms. At swarming time (estimated around 30 min at dusk) two volunteers with backpack sprayers ran through the entire village along paths between the compounds while spraying insecticide (Fig. 2C,D). As with the targeted spraying procedure, the broadcast spraying was carried out for 10 successive days in all 4 villages simultaneously, and spraying recommenced after 45 days. The quantity of insecticide used was measured daily, in order to determine with precision the total quantity of insecticide used during targeted spraying.Evaluation of the interventionA year prior to the intervention, baseline entomological data was collected in both villages to estimate mosquito density, human biting rate, female insemination rate, age structure of females and entomological inoculation rate29. The same parameters were evaluated immediately before and after intervention. The pre- and post-intervention evaluation of the abovementioned parameters were carried in both control and intervention villages at the same time. In both pre-intervention and post-intervention phases, two methods of mosquito collection were performed in each village, the human landing catch (HLC), indoor and outdoor in 4 houses for 4 successive nights, the pyrethroid spray catch (PSC) in the same10 houses and 10 randomly selected houses. To identify these, all houses in each village were coded and these codes were used to randomly select those to be sampled. All sampled sites were mapped using a global positioning system (GPS). Collected anopheline mosquitoes were sorted by taxonomic status, physiological status, and sex. Approximately, the ovaries of 200 females/month/village (100 females indoor and 100 females outdoor) were dissected to determine the physiological age, and parous females were subsequently subjected to ELISA assays to determine Plasmodium sporozoite rates. Data produced from indoor and outdoor mosquito collections were then used to estimate mosquito densities, their spatial distribution, produce a map identifying hotspots where the highest mosquito densities and biting occurred within the village, female age structure and quantify the intensity of malaria transmission. The impact of the spray was measured to see how it affected each of these parameters in the intervention villages compared to the controls.Statistical analysisThe resting mosquito abundance was assessed as the number of mosquitoes per house, the human biting rate assessed as the number of bites per person per night, the parity rate assessed as the percentage of parous females, and the insemination rate assessed as the percentage of the inseminated females. The list above defined the key entomological parameters to determine the dynamic of An. gambie s.l. populations and malaria transmission. The generalized estimating equation (GEE) method was used to estimate population averaged effect of intervention on various outcome measurements. As the GEE models do not require distributional assumptions but only specification of the mean and variance structure, they are more robust against misspecification of higher-order features of the data, and are useful when the main interest is in population averaged effects of an intervention or treatment. However, because they do not use a full likelihood model, they cannot be used for individual-specific inference30,31. Despite this shortcoming, their robustness to different types of correlation structures in the data (due to temporal ordering of measurements, or other hierarchical structure in data) makes them attractive for analyses of this type. GEE models were run in R version 3.6.232, using the package “geepack”33 for three datasets on insemination and parity rate, number of bites per person per night (NBPN), and density of adult male and female mosquitoes. To clean and plot the data the “tidyverse” family of R packages34 were used.Ethical considerationsThis study did not involve human patients. The full protocol of the study was submitted to the Institutional Ethics Committee of the “Institut de Recherche en Sciences de la Sante” for review and approval (A17-2016/CEIRES). In accordance with the approval, presentations of the project were given to the study site villagers and requests for their participation were made. During these visits the objectives, protocol and expected results were explained and discussed, as well as the implications for the households willing to take part in this study. A written consent form was signed or marked with fingerprint by the head of the households before any activity could take place in his compound. Insecticides used in this study are approved for use by the Burkina Faso insecticide regulation authority. More

  • in

    A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

    Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104, 18866–18870 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beer, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global. Change. Biol. 25, 2382–2395 (2019).ADS 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 

    Google Scholar 
    Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global. Biogeochem. Cy 26, GB1019 (2012).ADS 

    Google Scholar 
    De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).
    Google Scholar 
    Zhang, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agr. Forest. Meteorol. 223, 116–131 (2016).ADS 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 281, 277–294 (1977).ADS 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience. 54, 547–560 (2004).
    Google Scholar 
    Yuan, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114, 1416–1431 (2010).ADS 

    Google Scholar 
    Ruimy, A., Dedieu, G. & Saugier, B. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global. Biogeochem. Cy 10, 269–285 (1996).ADS 
    CAS 

    Google Scholar 
    Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 190076 (2019).
    Google Scholar 
    Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. & Reichstein, M. Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data 10, 1327–1365 (2018).ADS 

    Google Scholar 
    Joiner, J. et al. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 10, 1346 (2018).ADS 

    Google Scholar 
    Xiao, J. et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agr. Forest. Meteorol. 197, 142–157 (2014).ADS 

    Google Scholar 
    Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).CAS 

    Google Scholar 
    Cai, W. et al. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 119, 110–123 (2014).
    Google Scholar 
    Ma, J., Yan, X., Dong, W. & Chou, J. Gross primary production of global forest ecosystems has been overestimated. Sci. Rep. 5, 10820 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, W. et al. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. Remote Sens. 6, 8945–8965 (2014).ADS 

    Google Scholar 
    Jung, M. et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global. Biogeochem. Cy 21, GB4021 (2007).ADS 

    Google Scholar 
    Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agr. Forest. Meteorol. 192-193, 108–120 (2014).ADS 

    Google Scholar 
    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).ADS 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6, 2803–2823 (2013).
    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).ADS 

    Google Scholar 
    Joiner, J. et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT. Atmos Meas Tech 5, 809–829 (2012).CAS 

    Google Scholar 
    Köhler, P. et al. Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO‐2. Geophys. Res. Lett. 45, 10,456–410,463 (2018).
    Google Scholar 
    Joiner, J. et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).ADS 
    CAS 

    Google Scholar 
    Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).ADS 

    Google Scholar 
    Du, S. et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 63, 1502–1512 (2018).
    Google Scholar 
    Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Drusch, M. et al. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. Ieee. T. Geosci. Remote 55, 1273–1284 (2017).ADS 

    Google Scholar 
    Guanter, L. et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data, 13, 5423–5440 (2021).Roesch, A. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res. 109 (2004).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).ADS 

    Google Scholar 
    Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 222, 183–194 (2019).ADS 

    Google Scholar 
    Su, W., Charlock, T. P., Rose, F. G. & Rutan, D. Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J. Geophys. Res. 112 (2007).Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. Global distribution of C3and C4vegetation: Carbon cycle implications. Global. Biogeochem. Cy 17, 6-1-6-14 (2003).Zhang, Y. et al. Spatio‐temporal convergence of maximum daily light‐use efficiency based on radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519 (2018).ADS 

    Google Scholar 
    Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).ADS 

    Google Scholar 
    Baker, N. R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant. Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Du, S., Liu, L., Liu, X. & Hu, J. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens. 9, 911 (2017).ADS 

    Google Scholar 
    Rossini, M. et al. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data. Remote Sens. 8, 412 (2016).ADS 

    Google Scholar 
    Verrelst, J. et al. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 166, 8–21 (2015).ADS 

    Google Scholar 
    Zhang, Q. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).ADS 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).ADS 
    CAS 

    Google Scholar 
    Li, X. & Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 11, 517 (2019).ADS 

    Google Scholar 
    Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High‐Resolution Global Contiguous SIF of OCO‐2. Geophys. Res. Lett. 46, 1449–1458 (2019).ADS 

    Google Scholar 
    Ma, Y., Liu, L., Chen, R., Du, S. & Liu, X. Generation of a Global Spatially Continuous TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity. Remote Sens. 12, 2167 (2020).ADS 

    Google Scholar 
    Gentine, P. & Alemohammad, S. H. Reconstructed Solar‐Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME‐2 Solar‐Induced Fluorescence. Geophys. Res. Lett. 45, 3136–3146 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wen, J. et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 239, 111644 (2020).ADS 

    Google Scholar 
    Yang, X. et al. Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).ADS 
    CAS 

    Google Scholar 
    Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C. & Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 116, D15107 (2011).ADS 

    Google Scholar 
    Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A. & Kustas, W. P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. 112, D11112 (2007).ADS 

    Google Scholar 
    Scherrer, D., Bader, M. K.-F. & Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agr. Forest. Meteorol. 151, 1632–1640 (2011).ADS 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).ADS 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794 (Association for Computing Machinery).Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Li, M., Li, C. & Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, W., Wei, C., Lu, Y. & Xue, D. Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach. Remote Sens. 13, 4723 (2021).ADS 

    Google Scholar 
    Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, X. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. figshare https://doi.org/10.6084/m9.figshare.19336346.v2 (2022).Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierrat, Z. et al. Diurnal and seasonal dynamics of solar‐induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. J. Geophys. Res. Biogeosci., e2021JG006588 (2022).Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 116, 11640–11645 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossmann, K. et al. PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 216, 311–327 (2018).ADS 

    Google Scholar 
    Li, Z. et al. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 236, 111420 (2020).ADS 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 201900278 (2019).Wei, X., Wang, X., Wei, W. & Wan, W. Use of Sun-Induced Chlorophyll Fluorescence Obtained by OCO-2 and GOME-2 for GPP Estimates of the Heihe River Basin, China. Remote Sens. 10, 2039 (2018).ADS 

    Google Scholar 
    Walther, S. et al. Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global. Change. Biol. 22, 2979–2996 (2016).ADS 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).
    Google Scholar 
    Parazoo, N. C. et al. Towards a Harmonized Long‐Term Spaceborne Record of Far‐Red Solar‐Induced Fluorescence. J. Geophys. Res. Biogeosci. 124, 2518–2539 (2019).
    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7 (2020).Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global. Change. Biol. 11, 1424–1439 (2005).ADS 

    Google Scholar 
    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global. Change. Biol. 16, 187–208 (2010).ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global. Change. Biol. 17, 2261–2270 (2011).ADS 

    Google Scholar 
    De, S. V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).ADS 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).ADS 

    Google Scholar 
    Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. ISLSCP II C4 Vegetation Percentage, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/932 (2009).Pierrat, Z. & Stutz, J. Tower-based solar-induced fluorescence and vegetation index data for Southern Old Black Spruce forest, Zenodo, https://doi.org/10.5281/ZENODO.5884643 (2022).Magney, T. et al. Canopy and needle scale fluorescence data from Niwot Ridge, Colorado 2017-2018, CaltechDATA, https://doi.org/10.22002/D1.1231 (2019).Wan, Z., Hook, S. & Hulley, G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD11C1.006 (2015).Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006 (2015).Schaaf, C. & Wang, Z. MCD43C4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C4.006 (2015).Doelling, D. CERES Level 3 SYN1DEG-DAYTerra+Aqua HDF4 file – Edition 4A, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGDAY_L3.004A (2017). More

  • in

    Assessment of Eurasian lynx reintroduction success and mortality risk in north-west Poland

    Sunquist, M. E. & Sunquist, F. C. Family Felidae. In Handbook of the Mammals of the World Vol. 1 (eds Wilson, D. E. & Mittermeier, R. A.) 54–170 (Lynx Editions, 2009).
    Google Scholar 
    Breitenmoser, U. et al. Action plan for the conservation of the Eurasian Lynx (Lynx lynx) in Europe. Nat. Environ. 112, 1–70 (2000).
    Google Scholar 
    Linnell, J. D. C., Breitenmoser, U., Breitenmoser-Würsten, C., Odden, J. & von Arx, M. Recovery of Eurasian lynx in Europe: What part has reintroduction played? In Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 72–91 (Blackwell Publishing, 2009).Chapter 

    Google Scholar 
    Schmidt, K., Ratkiewicz, M. & Konopiński, M. K. The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change. Mammal Rev. 41, 112–124 (2011).Article 

    Google Scholar 
    von Arx, M. et al. Status and conservation of the Eurasian lynx (Lynx lynx) in Europe in 2001. KORA Bericht 19, 1–330 (2004).
    Google Scholar 
    Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe. Part 1 – Europe summaries. Report: 1–72. A Large Carnivore Initiative for Europe Report prepared for the European Commission (2013).Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franz, K. W. & Romanowski, J. Revisiting the reintroduced Eurasian lynx population in Kampinos National Park Poland. Eur. Zool. J. 88, 966–979. https://doi.org/10.1080/24750263.2021.1968046 (2021).Article 

    Google Scholar 
    Bieniek, M., Wolsan, M. & Okarma, H. Historical biogeography of the lynx in Poland. Acta Zool. Cracov. 41, 143–167 (1998).
    Google Scholar 
    Jędrzejewski, W., Nowak, S., Schmidt, K. & Jędrzejewska, B. Wilk i ryś w Polsce: Wyniki inwentaryzacji w 2001 roku. Kosmos 51, 491–499 (2002).
    Google Scholar 
    Mysłajek, R., Kwiatkowska, I., Diserens, T., Haidt, A. & Nowak, S. Occurrence of Eurasian lynx in western Poland after two decades of strict protection. CATnews 69, 12–13 (2019).
    Google Scholar 
    Schmidt, K. Program ochrony rysia Lynx lynx w Polsce – Project. Strategia ochrony Rysia Warunkująca Trwałość Populacji Gatunku w Polsce (Warsaw University of Life Sciences, 2011).
    Google Scholar 
    Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe. Part 2: Country Species Summaries. Report: 1–200. A Large Carnivore Initiative for Europe Report prepared for the European Commission (2013).Breitenmoser, U. et al. Lynx lynx (errata version published in 2017). The IUCN Red List of Threatened Species 2015: e.T12519A121707666. Accessed 30 Oct 2021 (2015).Vandel, J.-M., Stahl, P., Herrenschmidt, V. & Marboutin, E. Reintroduction of the lynx into the Vosges mountain massif: From animal survival and movements to population development. Biol. Conserv. 131, 370–385. https://doi.org/10.1016/j.biocon.2006.02.012 (2006).Article 

    Google Scholar 
    Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Importance of dispersal for the expansion of a Eurasian lynx Lynx lynx population in a fragmented landscape. Oryx 41, 358–368. https://doi.org/10.1017/s0030605307000712 (2007).Article 

    Google Scholar 
    Schmidt, K., Kowalczyk, R., Ozolins, J., Mannil, P. & Fickel, J. Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv. Genet. 10, 497–501. https://doi.org/10.1007/s10592-008-9795-7 (2009).Article 

    Google Scholar 
    Ratkiewicz, M. et al. Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: The Eurasian Lynx. PLoS ONE 9, e115160. https://doi.org/10.1371/journal.pone.0115160 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Port, M. et al. Rise and fall of a Eurasian lynx (Lynx lynx) stepping-stone population in central Germany. Mammal Res. https://doi.org/10.1007/s13364-020-00527-6 (2020).Article 

    Google Scholar 
    Drouilly, M. & O’Riain, J. M. Rewilding the world’s large carnivores without neglecting the human dimension: A response to reintroducing the Eurasian lynx to southern Scotland, England and Wales. Biodivers. Conserv. 30, 917–923. https://doi.org/10.1007/s10531-021-02112-y (2021).Article 

    Google Scholar 
    Böer, M., Smielowski, J. & Tyrala, P. Reintroduction of the European lynx (Lynx lynx) to the Kampinoski National Park/Poland field experiment with zooborn individuals. Part I: Selection, adaptation and training. Der Zool. Garten 70, 304–312 (1994).
    Google Scholar 
    Jakimiuk, S. (ed.). Aktywna ochrona populacji nizinnej rysia w Polsce. 1–144 (WWF, Poland, 2015).Huck, M. et al. Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriol. 55, 177–192 (2010).Article 

    Google Scholar 
    Niedziałkowska, M. et al. Environmental correlates of Eurasian lynx occurrence in Poland: Large scale census and GIS mapping. Biol. Conserv. 133, 63–69. https://doi.org/10.1016/j.biocon.2006.05.022 (2006).Article 

    Google Scholar 
    Schmidt, K., Kowalczyk, R., Ozolins, J., Männil, P. & Fickel, J. Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv. Genet. 10, 497–501. https://doi.org/10.1007/s10592-008-9795-7 (2009).Article 

    Google Scholar 
    Tracz, M. et al. The return of lynx to northwestern Poland. CATnews 14, 43–44 (2021).
    Google Scholar 
    The Return of Lynx to north-west Poland. http://www.rysie.org/en/rysie-strona-glowna. Accessed on 31 Oct 2021.IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. 1–57 (IUCN Species Survival Commission, 2013).Rueda, C., Jiménez, J., Palacios, M. J. & Margalida, A. Exploratory and territorial behavior in a reintroduced population of Iberian lynx. Sci. Rep. 11, 14148. https://doi.org/10.1038/s41598-021-93673-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gusset, M. A framework for evaluating reintroduction success in carnivores: Lessons from African wild dogs. In Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 307–320 (Blackwell Publishing, 2009).Chapter 

    Google Scholar 
    Breitenmoser, U. & Haller, H. Patterns of predation by reintroduced European Lynx in the Swiss Alps. J. Wildl. Manage. 57, 135–144 (1993).Article 

    Google Scholar 
    Drouilly, M. & O’Riain, M. J. Rewilding the world’s large carnivores without neglecting the human dimension. Biodivers. Conserv. 30, 917–923 (2021).Article 

    Google Scholar 
    Jędrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the Lynx in Białowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article 

    Google Scholar 
    Palmero, S. et al. Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe. Sci. Rep. 11, 19868. https://doi.org/10.1038/s41598-021-99337-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maran, T., Põdra, M., Põlma, M. & Macdonald, D. The survival of captive-born animals in restoration programmes: Case study of the endangered European mink Mustela lutreola. Biol. Conserv. 142, 1685–1692 (2009).Article 

    Google Scholar 
    Moehrenschlager, A. & Macdonald, D. W. Movement and survival parameters of translocated and resident swift foxes Vulpes velox. Anim. Conserv. 6, 199–206 (2003).Article 

    Google Scholar 
    Böer, M., Reklewski, J., Śmiełowski, J. & Tyrała, P. Reintroduction of the European Lynx to the Kampinoski Nationalpark/Poland: A field experiment with zooborn individuals. Part III: Demographic development of the population from December 1993 until January 2000. Der Zool. Garten 70, 304–312 (2000).
    Google Scholar 
    Jule, K. R., Leaver, L. A. & Lea, E. G. L. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 141, 355–363 (2008).Article 

    Google Scholar 
    Hellstedt, P. & Kallio, E. R. Survival and behaviour of captive-born weasels (Mustela nivalis nivalis) released in nature. J. Zool. 266, 37–44 (2005).Article 

    Google Scholar 
    Devineau, O. et al. Evaluating the Canada lynx reintroduction programme in Colorado: Patterns in mortality. J. Appl. Ecol. 47, 524–531 (2010).Article 

    Google Scholar 
    Lengger, J., Breitenmoser, U. & Sliwa, A. EAZA breeding programmes as sources for lynx reintroductions. CATnews 14, 76–77 (2021).
    Google Scholar 
    Reading, P. R. & Clark, T. W. Carnivore introductions: An interdisciplinary Examination. In Carnivore Behavior, Ecology and Evolution (ed. Gittleman, J. L.) 296–336 (Cornell University Press, 1996).
    Google Scholar 
    McCarthy, M. A., Armstrong, D. P. & Runge, M. C. Adaptive management of reintroduction. In Reintroduction Biology: Integrating Science and Management (eds Ewen, J. G. et al.) 256–289 (Wiley-Blackwell, 2012).Chapter 

    Google Scholar 
    Bremner-Harrison, S., Prodohl, P. A. & Elwood, R. W. Behavioural trait assessment as a release criterion: Boldness predicts early death in a reintroduction programme of captive-bred swift fox (Vulpes velox). Anim. Conserv. 7, 313–320 (2004).Article 

    Google Scholar 
    Harrington, L., Põdra, M., Macdonald, D. & Maran, T. Post-release movements of captive-born European mink Mustela lutreola. Endanger. Species Res. 24, 137–148 (2014).Article 

    Google Scholar 
    Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    Schmidt-Posthaus, H., Breitenmoser, Ch., Posthaus, H., Bacciarini, L. & Breitenmoser, U. Causes of mortality in reintroduced Eurasian lynx in Switzerland. J. Wildl. Dis. 38, 84–92 (2002).PubMed 
    Article 

    Google Scholar 
    Kołodziej-Sobocińska, M., Zalewski, A. & Kowalczyk, R. Sarcoptic mange vulnerability in carnivores of the Białowieża Primeval Forest, Poland: underlying determinant factors. Ecol. Res. 29, 237–244 (2014).Article 

    Google Scholar 
    Holt, G. & Berg, C. Sarcoptic mange in red fox and other wild carnivores in Norway. Nor Veterinaertidsskr 102, 427–432 (1990).
    Google Scholar 
    Mörner, T. Sarcoptic mange in Swedish wildlife. Rev. Sci. Tech. Off. Int. Epiz. 11, 1115–1121 (1992).Article 

    Google Scholar 
    Ryser-Degiorgis, M. P. et al. Notoedric and sarcoptic mange in free-ranging lynx from Switzerland. J. Wildl. Dis. 38, 228–232 (2002).PubMed 
    Article 

    Google Scholar 
    Soulsbury, C. D. et al. The impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. Mam. Rev. 37, 278–296 (2007).
    Google Scholar 
    Garrote, G., Fernández-López, J., López, G., Ruiz, G. & Simón, M. A. Prediction of Iberian lynx road–mortality in southern Spain: A new approach using the MaxEnt algorithm. Anim. Biodivers. Conserv. 41, 217–225 (2018).Article 

    Google Scholar 
    Bencin, H., Prange, S., Rose, Ch. & Popescu, V. Roadkill and space use data predict vehicle-strike hotspots and mortality rates in a recovering bobcat (Lynx rufus) population. Sci. Rep. 9, 15391 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bouyer, Y. et al. Tolerance to anthropogenic disturbance by a large carnivore: The case of Eurasian lynx in south-eastern Norway. Anim. Conserv. https://doi.org/10.1111/acv.12168 (2014).Article 

    Google Scholar 
    López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Wegner, M. (ed.). Statistical Yearbook of Zachodniopomorskie Voivodship. 1–213 (Statistical Office in Szczecin, 2020).Górny, M., Schmidt, K. & Kowalczyk, R. Analiza przydatności środowiska dla reintrodukcji rysia w północno-zachodniej Polsce oraz prognoza i perspektywy funkcjonowania populacji. Expert study under the project POIS.02.04.00–0143/16 “Return of the lynx to northwestern Poland”. 1–25.Woodford, M. H., Keet, D. F. & Bengis, R. G. Post-mortem Procedures for Wildlife Veterinarians and Field Biologists. 1–55 (IUCN Species Survival Commission (SSC) & Veterinary Specialist Group, Care for the Wild International, World Organisation for Animal Health (OIE), 2000).Fain, A. Ѐtude de la variabilitѐ de Sarcoptes scabiei avec une rѐvision des Sarcoptidae. Acta Zool. Pathol. Antverp 47, 1–196 (1968).
    Google Scholar 
    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Therneau, M., Lumley, T., Atkinson, E. & Crowson, C. Survival Analysis. R Package Version 3.2-13. http://CRAN.R-project.org/package=survival (2021).Kassambara, A., Kosinski, M., Biecek, P. & Scheipl, F. survminer. Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9. http://CRAN.R-project.org/package=survminer (2021).Dardis, C. survMisc. Miscellaneous Functions for Survival Data. R package version 0.5.5. http://CRAN.R-project.org/package=survMisc (2018).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org (2021).Snedecor, G. W. & Cochran, W. G. Statistical Methods 7th edn. (Iowa State University Press, 1980).MATH 

    Google Scholar 
    Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. B. 34, 187–220 (1972).MATH 

    Google Scholar 
    Bradburn, M. J., Clark, T. G., Love, S. B. & Altman, D. G. Survival Analysis Part II: Multivariate data analysis: An introduction to concepts and methods. Br. J. Cancer. 89, 431–436 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wald, A. Tests of statistical hypothesis concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).MATH 
    Article 

    Google Scholar 
    Aitchison, J. & Silvey, S. D. Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Stat. 29, 813–828 (1958).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170 (1966).CAS 
    PubMed 

    Google Scholar  More

  • in

    Drivers and trends of global soil microbial carbon over two decades

    Predictors of microbial carbon stocksWe used a machine learning modeling approach to predict soil microbial carbon from a set of environmental covariates. To account for stochastic variability, we ran a set of models to assess the importance of environmental factors, which showed that the contribution of each variable to the model fit differed between runs, with some overlap between a number of them (Fig. 2b). Mean annual temperature was always the most important variable, with soil organic carbon and soil pH following. Clay content, precipitation, land-cover type, nitrogen content, and sand content contributed roughly equally to explaining variations in microbial carbon. Finally, NDVI and elevation had the lowest variable importance. Coniferous forests had the highest and most variable predicted values of microbial carbon (Supplementary Figs. 1, 2), which can be explained by high soil organic matter and a thick litter layer26. Tropical forests also had fairly high values of microbial carbon, while shrublands and croplands had the lowest values26. We used partial prediction response curves to evaluate the direction and range of effect of the predictor variables (Supplementary Figs. 1, 2). In agreement with the variable importance measure, variables that scored high often showed strong effects on the predicted microbial carbon values, while variables with a low variable importance score (e.g., elevation, NDVI, and sand content) only showed smaller responses. The only exception was for precipitation, which had a relatively high variable importance, although the response curves only showed a weak effect of precipitation for forests and grasslands, with limited effect on other land-cover types (Supplementary Fig. 2). The importance of precipitation might also indicate that this relationship involves interactions with other variables7,28. Overall, the differences in microbial carbon between land-cover types showed mostly similar patterns across the range of variables. Soil organic carbon and nitrogen content had a positive and mostly linear effect on microbial carbon (Supplementary Fig. 1). In contrast, clay content, soil pH, and mean temperature had non-linear relationships, with high microbial carbon in the low range of these variables and a rapid decrease that reached an asymptote at low microbial carbon values for the higher portion of the range. Soil pH patterns showed a decrease in microbial carbon for values between 4.1 and 5.8, and a constant pattern between 5.8 and 8.6. Contrary to our expectations, we did not find a parabolic effect of soil pH on microbial carbon26. Instead, our model predicted higher values in very acidic soils with a pH below 5.2, which are rare globally and almost only found in central Amazonia. Similarly, locations with a clay content lower than 16.9% had higher values in microbial carbon, and then stabilized until 51.0%.Fig. 2: Microbial carbon stock spatial predictions and temporal trends.a Microbial carbon stock predictions for 2013. b Variable importance from 100 random forest model runs, calculated by the mean decrease in accuracy after variable permutation. Variables were ordered by the median variable importance. SOC soil organic carbon, NDVI normalized difference vegetation index. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. c Relative microbial carbon stocks rate of change in percentage per year.Full size imageMean temperature showed an interesting shift with much higher microbial carbon values with a mean annual temperature below zero, but had otherwise a limited effect on microbial carbon values in the rest of the range above zero up to 28.9 °C. Based on partial predictions (Supplementary Figs. 1–2), microbial carbon decreased monotonically with an increase in temperature (with all other variables fixed to their median), with the relationship being mostly stable for parts of the range. We observed an especially sharp decrease at around 0°C, which is in agreement with the patterns observed in the data. The reason for sites with a mean annual temperature below the freezing point to have higher microbial carbon stocks is not fully understood. This could be due to a regime shift in which microbial communities are in a semi-dormant state for a major part of the year35. Moreover, it could also be in part explained by the soil organic carbon content that follows a similar trend and accumulates in higher latitude soils9, thus promoting higher microbial carbon stocks. Within these cold, high organic carbon soils, large microbial populations can be maintained, due to the low temperature that reduces metabolic requirements35. In contrast, at higher temperatures, metabolic activity increases and requires more resources and nutrients to maintain microorganisms alive. Experimental evidence is divided about the effects of warming on microbial carbon18,36, highlighting the strong context-dependency of this relationship, although global observations show a clear pattern, where low-temperature sites have higher soil microbial carbon stocks. Despite this uncertainty, there is a strong indication that a warming soil would tend to lose organic carbon17,37, and subsequent patterns in microbial carbon can also be expected, because of the dependency on organic substrate9,26,38. These dynamics were observed in Melillo et al.39, where the warming of sites in a mid-latitude forest ecosystem led to a decrease in soil carbon, followed by a decrease in microbial carbon12.Even with predictions being made for each grid location separately, microbial carbon values showed distinctive patterns and transitions over the globe (Fig. 2a). While temporal changes took place, broad spatial patterns were relatively constant over the range of years studied (Supplementary Movie 1). The highest microbial carbon stock values ranging from 1.50 to 7.00 t ha−1 were found at high latitudes in the Northern Hemisphere in areas of coniferous forest. Tropical humid regions also showed high microbial carbon values between 0.50 and 1.50 t ha−1 in the Amazon Rainforest and Central Africa. The main regions with low microbial carbon below 0.30 t ha−1 were in Eastern South America, areas directly south of the Sahara Desert, East Africa, and most of Australia, all of which mostly correspond to shrublands. Cropland areas as seen in India were also predicted with low microbial carbon values ranging from 0.06 to 0.38 t ha−1. A strong latitudinal gradient was visible for North America and Eurasia, with the highest microbial carbon stocks at high latitude, medium values in temperate ecosystems, and decreasing values towards the Equator. Positive coastal effects can also be observed, mostly on the Eastern South American and Australian coasts. In total, we estimated that there is 4.34 Gt of microbial carbon in the 5 to 15 cm layer for the predicted areas. Using the coefficient of variation calculated from the variability assessment set of models, we found that predictions made for the Amazon Basin, Northern Canada, and South-East Russia were more variable than for other regions (Supplementary Fig. 3a). Especially Western Europe, Central North America, and South-East Asia, however, showed high stability in the predictions between model runs.Drivers of changeThe analysis of the rate of change of microbial carbon stocks over time revealed that large regions of the globe experienced important changes in soil microbial carbon stocks between 1992 and 2013, with contrasting patterns across areas, and overall larger regions showed a decrease rather than an increase in microbial carbon stocks (Fig. 2c and Supplementary Fig. 3b). To account for spatial differences in microbial carbon stocks, we calculated the relative rate of change in percentage for each location (Fig. 2c). When considering all predictable regions together, microbial carbon stocks in the 5–15 cm layer showed a decrease of 7.09 Mt per year, summing to 148.80 Mt between 1992 and 2013, or 3.4% of the global microbial carbon pool predicted (Supplementary Fig. 4a; p = 0.038). The main regions with a microbial carbon loss higher than 0.7 kg ha−1 y−1 were in Northern Canada and a large continuous region in North-Eastern Europe. These northern regions accounted for an important part of the global loss in microbial carbon stocks, with large areas that had both a high soil microbial carbon stock and a fast decrease (Figs. 3 and 4). Other areas of high loss were in the Amazon basin, Western Argentina, the USA East Coast, Southern South Africa, and South-East Russia. The main continuous region of microbial carbon increase above 0.7 kg ha−1 y−1 was in central Russia, with smaller regions present in India, Europe, Central North America, and parts of Africa. Besides these general patterns, predictions vary at the local scale, and they consider the effects of parameters including soil properties, elevation, and land-cover type, which change between neighbor locations and affect the observed patterns. This is especially visible in the Americas, where both increases and decreases happen side-by-side.Fig. 3: Status of microbial carbon stocks between 1992 and 2013.Bivariate plot comparing the relative microbial carbon stock rate of change (% per year) with the amount of microbial carbon stock. The status groups were allocated using quantile distributions.Full size imageFig. 4: Distribution and classification of point values from the locations in Fig. 3.The assignment of points into the 9 groups was performed using quantile distributions. Areas in dark red are especially vulnerable to climate and land-cover change.Full size imagePatterns in the relative rate of change have a lot in common with that of absolute change, with a few notable differences (Fig. 2c and Supplementary Fig. 3b). Both positive and negative stock changes in tropical and subtropical regions are more prominent in relative terms, as these regions typically have low microbial carbon stocks. Similarly, regions in Central Russia with high microbial carbon stocks show less decrease in relative terms. To assess how stable these trends are over time, we show the p values of the rate of change for the 22 years (Supplementary Fig. 3c). The largest region with low p values is associated with more significant trends in Western Russia, and corresponds to an area with a fast loss of microbial carbon. India and Central Russia show high p values, and are informative of high variability compared to the strength of the signal. Considering that only up to 22 data points are available for each grid location and that especially climatic conditions vary considerably from year to year, p values are only provided as a complementary assessment. We can summarize the global situation by combining the two maps of microbial carbon stocks and relative rate of change to categorize and define vulnerable locations that experienced a high loss of microbial carbon (Figs. 3 and 4), and where the provision of soil functions is potentially at risk.It is informative to look at regional trends, by grouping grid locations using the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) sub-regions, and assessing regional-scale changes in microbial carbon stocks (Fig. 5, Supplementary Table 1). The main regions that contributed to microbial carbon loss were North America with a decrease of 62.49 Mt of microbial carbon and Eastern Europe with 60.88 Mt over the studied period, although both trends had high yearly variability and were non-significant. The region with the highest increase was North-East Asia with a gain of 4.49 Mt, but this change was also non-significant. The Caribbean was the only region to show a significant increase in soil microbial carbon stocks over time (+2.1% over 22 y, p = 0.017), while significant decreases in stocks were found in North Africa (−4.1%, p  More

  • in

    Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species

    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.PubMed 
    Article 

    Google Scholar 
    Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.CAS 
    Article 

    Google Scholar 
    O’Neil J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance. 2014. https://amr-review.org/sites/default/files/AMRReviewPaper-Tacklingacrisisforthehealthandwealthofnations_1.pdf.Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vandeplassche E, Tavernier S, Coenye T, Crabbé A. Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens. Eur Respir Rev. 2019;28:190041.PubMed 
    Article 

    Google Scholar 
    Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, Quinn A, et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat Commun. 2021;12:2460.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allison DG, Matthews MJ. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 1992;73:484–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. Npj Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, Friman V-P. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 2022;16:812–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffman LR, Deziel E, D’Argenio DA, Lepine F, Emerson J, McNamara S, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2006;103:19890–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos J-L. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance: Antibiotic resistance. Environ Microbiol. 2014;16:1267–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17. https://doi.org/10.1128/mBio.00873-17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B Biol Sci. 2009;276:3759–68.CAS 
    Article 

    Google Scholar 
    Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol. 2008;68:75–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherrard LJ, McGrath SJ, McIlreavey L, Hatch J, Wolfgang MC, Muhlebach MS, et al. Production of extended-spectrum β -lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. Int J Antimicrob Agents. 2016;47:140–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, et al. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. 2017;11:2233–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Muza M, Chacón JM, Harcombe WR. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLOS Pathog. 2020;16:e1008700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Klümper U, Recker M, Zhang L, Yin X, Zhang T, Buckling A, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019;13:2927–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sorg RA, Lin L, van Doorn GS, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kulczycki LL, Kostuch M, Bellanti JA. A clinical perspective of cystic fibrosis and new genetic findings: relationship of CFTR mutations to genotype-phenotype manifestations. Am J Med Genet. 2003;116A:262–7.PubMed 
    Article 

    Google Scholar 
    Flume PA, Mogayzel PJ, Robinson KA, Rosenblatt RL, Quittell L, Marshall BC. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182:298–306.PubMed 
    Article 

    Google Scholar 
    Belkin RA, Henig NR, Singer LG, Chaparro C, Rubenstein RC, Xie SX, et al. Risk factors for death of patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med. 2006;173:659–66.PubMed 
    Article 

    Google Scholar 
    Martin C, Hamard C, Kanaan R, Boussaud V, Grenet D, Abély M, et al. Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies! J Cyst Fibros. 2016;15:204–12.PubMed 
    Article 

    Google Scholar 
    Döring G, Conway SP, Heijerman HGM, Hodson ME, Høiby N, Smyth A, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16:749.PubMed 
    Article 

    Google Scholar 
    Marshall B, Faro A, Brown W, Elbert A, Fink A, Cromwell E, et al. Patient registry, annual data report. Bethesda, Maryland: Cystic Fibrosis Foundation; 2020. https://www.cff.org/sites/default/files/2021-11/Patient-Registry-Annual-Data-Report.pdf.Vongthilath R, Richaud Thiriez B, Dehillotte C, Lemonnier L, Guillien A, Degano B, et al. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: analysis of the French CF registry. PLOS ONE. 2019;14:e0210201.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zolin A, Orenti A, Jung A, van Rens J. ECFSPR annual report 2019. Denmark: European Cystic Fibrosis Society Patient Registry; 2021. https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2019_v1_16Feb2022.pdf.Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a community ecology perspective. Am J Respir Cell Mol Biol. 2013;48:150–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol. 2015;197:2252–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ballestero S, Vírseda I, Escobar H, Suárez L, Baquero F. Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1995;14:728–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gladman G, Connor PJ, Williams RF, David TJ. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child. 1992;67:192–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goss CH. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14:293–304.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goss CH, Otto K, Aitken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med. 2002;166:356–61.PubMed 
    Article 

    Google Scholar 
    Alonso A, Martínez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1997;41:1140–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother. 2000;44:287–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abda EM, Krysciak D, Krohn-Molt I, Mamat U, Schmeisser C, Förstner KU, et al. Phenotypic heterogeneity affects Stenotrophomonas maltophilia K279a colony morphotypes and β-lactamase expression. Front Microbiol. 2015;6:1373.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP, et al. Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta. 1994;1218:199–201.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang Z, Liu W, Cui Q, Niu W, Li H, Zhao X, et al. Prevalence and detection of Stenotrophomonas maltophilia carrying metallo-I2-lactamase blaL1 in Beijing, China. Front Microbiol. 2014;5:692.Kataoka D, Fujiwara H, Kawakami T, Tanaka Y, Tanimoto A, Ikawa S, et al. The indirect pathogenicity of Stenotrophomonas maltophilia. Int J Antimicrob Agents. 2003;22:601–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24:327–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol. 2015;17:16–28.PubMed 
    Article 

    Google Scholar 
    Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, et al. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol. 2021;5:1233–1242.Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, et al. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol. 2021;35:2138–55.Article 

    Google Scholar 
    Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souza Barbosa F, Capra Pezzi L, Tsao M, Oliveira TF, Manoela Dias Macedo S, Schapoval EES, et al. Stability and degradation products of imipenem applying High‐Resolution Mass Spectrometry: an analytical study focused on solutions for infusion. Biomed Chromatogr. 2018;33:4471.Verpooten G, Verbist L, Buntinx A, Entwistle L, Jones K, Broe M. The pharmacokinetics of imipenem (thienamycin-formamidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. Br J Clin Pharmacol. 1984;18:183–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Luo Y-F, Williams BJ, Blackwell TS, Xie C-M. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302:63–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kousser C, Clark C, Sherrington S, Voelz K, Hall RA. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep. 2019;9:5714.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis: pyoverdine biosynthesis. Environ Microbiol. 2013;15:1661–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan X, Pan Y, Cai Z, Liu Y, Zhang Y, Liu M, et al. rpoS-mutation variants are selected in Pseudomonas aeruginosa biofilms under imipenem pressure. Cell Biosci. 2021;11:138.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu K, Chen S, Sysoeva TA, You L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLOS Biol. 2019;17:e3000573.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Fouly MZ, Sharaf AM, Shahin AAM, El-Bialy HA, Omara AMA. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci. 2015;8:36–48.CAS 
    Article 

    Google Scholar 
    Baron SS, Rowe JJ. Antibiotic action of pyocyanin. Antimicrob Agents Chemother. 1981;20:814–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kimura M, Ohta T. The average number of generations until fixation of a mutant gene in a finite population. Genetics. 1969;61:763–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meirelles LA, Perry EK, Bergkessel M, Newman DK. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLOS Biol. 2021;19:e3001093.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abiotic adaptation in a bacterial soil community. Evol Lett. 2018;2:580–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlan PD, Hall AR, Blackshields G, Friman V-P, Davis MR, Goldberg JB, et al. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol. 2015;32:1425–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol. 2006;4:113–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gefen O, Fridman O, Ronin I, Balaban NQ. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc Natl Acad Sci. 2014;111:556–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang Z, Zhang L, Huang Y, Qing Y, Cao K, Tian G, et al. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol. 2014;21:124–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, et al. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol. 2017;66:1562–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang H, Jeanteur D, Pattus F, Hancock REW. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol. 1995;16:931–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C, Plésiat P, et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68:1772–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kao C-Y, Chen S-S, Hung K-H, Wu H-M, Hsueh P-R, Yan J-J, et al. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol. 2016;16:107.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012;56:1703–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu J-C, Kuo A-J, Su L-H, Liu T-P, Lee M-H, Su I-N, et al. Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. J Antimicrob Chemother. 2017;72:2489–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pernet E, Guillemot L, Burgel P-R, Martin C, Lambeau G, Sermet-Gaudelus I, et al. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun. 2014;5:5105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F, Moreau K. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep. 2019;9:16564.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khare A, Tavazoie S. Multifactorial competition and resistance in a two-species bacterial system. PLOS Genet. 2015;11:e1005715.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mashburn LM, Jett AM, Akins DR, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol. 2005;187:554–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. 2006;188:7101–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J. 2015;9:115–25.PubMed 
    Article 
    CAS 

    Google Scholar 
    Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017;7:39.Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, et al. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect Immun. 2011;79:4094–104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol. 1989;18:223–30.CAS 
    Article 

    Google Scholar 
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora MÁ, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1348.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontoura R, Spada JC, Silveira ST, Tsai SM, Brandelli A. Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J Microbiol Biotechnol. 2009;25:205–13.CAS 
    Article 

    Google Scholar 
    Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980;141:156–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, et al. Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an antistaphylococcal substance. J Med Microbiol. 1991;34:213–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raji El Feghali PA, Nawas T. Pyocyanin: a powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud. 2018;3:101–7.Article 

    Google Scholar 
    Saha S, Thavasi R, Jayalakshmi S. Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol. 2008;3:122–8.CAS 
    Article 

    Google Scholar 
    Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun. 2019;10:762.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jagmann N, Brachvogel H-P, Philipp B. Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila: parasitic growth of Pseudomonas aeruginosa. Environ Microbiol. 2010;12:1787–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noto MJ, Burns WJ, Beavers WN, Skaar EP. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J Bacteriol. 2017;199:00221–17.Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci. 2011;4:4550.CAS 
    Article 

    Google Scholar 
    Waite RD, Qureshi MR, Whiley RA. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLOS ONE. 2017;12:e0173741.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Whooley MA, McLoughlin AJ. The regulation of pyocyanin production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol. 1982;15:161–6.CAS 
    Article 

    Google Scholar 
    Elbargisy RM. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. Saudi J Biol Sci. 2021;28:993–1000.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta S, Laskar N, Kadouri DE. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights. 2016;9. https://doi.org/10.4137/MBI.S40767.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Investig. 2002;109:317–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Skurnik D, Roux D, Cattoir V, Danilchanka O, Lu X, Yoder-Himes DR, et al. Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc Natl Acad Sci USA. 2013;110:20747–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P, Cámara M. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol. 2018;8:252.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dragoš A, Martin M, Falcón García C, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8:45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol. 2004;42:5176–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, et al. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS ONE. 2013;8:e60225.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valdezate S. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-8. Emerg Infect Dis. 2001;7:113–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    Jeon YD, Jeong WY, Kim MH, Jung IY, Ahn MY, Ann HW, et al. Risk factors for mortality in patients with Stenotrophomonas maltophilia bacteremia. Medicine. 2016;95:e4375.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet Lond Engl. 2014;384:703–13.CAS 
    Article 

    Google Scholar 
    Choi K-H, Schweizer HP. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jelsbak L, Johansen HK, Frost A-L, Thøgersen R, Thomsen LE, Ciofu O, et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;75:2214–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeung ATY, Parayno A, Hancock REW. Mucin promotes rapid surface motility in Pseudomonas aeruginosa. mBio. 2012;3:300073–12.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:3857.Hill DB, Long RF, Kissner WJ, Atieh E, Garbarine IC, Markovetz MR, et al. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH. Eur Respir J. 2018;52:1801297.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benoni G, Cuzzolin L, Bertrand C, Puchetti V, Velo G. Imipenem kinetics in serum, lung tissue and pericardial fluid in patients undergoing thoracotomy. J Antimicrob Chemother. 1987;20:725–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Radhakrishnan M, Jaganath A, Rao GSU, Kumari HBV. Nebulized imipenem to control nosocomial pneumonia caused by Pseudomonas aeruginosa. J Crit Care. 2008;23:148–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29:581–632.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 12.0, 2022. http://www.eucast.org.Kang D, Revtovich AV, Chen Q, Shah KN, Cannon CL, Kirienko NV. Pyoverdine-dependent virulence of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Front Microbiol. 2019;10:2048.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin LW, Reid DW, Sharples KJ, Lamont IL. Pseudomonas siderophores in the sputum of patients with cystic fibrosis. BioMetals. 2011;24:1059–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol. 2009;175:2473–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA. 2013;110:17981–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200:00345–17.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. In: Sun L, Shou W, editors. Engineering and Analyzing Multicellular Systems. New York, NY: Springer New York; 2014. p. 165–88.Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 

    Google Scholar 
    Bridge, T. C. L. et al. Incongruence between life-history traits and conservation status in reef corals. Coral Reefs 39, 271–279 (2020).
    Google Scholar 
    Raja, N. B. et al. Morphological traits of reef corals predict extinction risk but not conservation status. Glob. Ecol. Biogeogr. 30, 1597–1608 (2021).
    Google Scholar 
    Orzechowski, E. A. et al. Marine extinction risk shaped by trait–environment interactions over 500 million years. Glob. Change Biol. 21, 3595–3607 (2015).ADS 

    Google Scholar 
    Pietsch, C., Mata, S. A. & Bottjer, D. J. High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 98–113 (2014).
    Google Scholar 
    Wagner, P. J. & Estabrook, G. F. Trait-based diversification shifts reflect differential extinction among fossil taxa. Proc. Natl. Acad. Sci. 111, 16419–16424 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiessling, W. Geologic and Biologic Controls on the Evolution of Reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173–192 (2009).
    Google Scholar 
    Kiessling, W. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 11–19 (2010).
    Google Scholar 
    Foden, W. B. et al. Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals. PLOS ONE 8, e65427 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic Compensation: A Possible Mechanism for Resilience of Coral Reefs to Global Warming or a Sign of Prolonged Stress? PLOS ONE 8, e81172 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. Jr & Helmle, K. P. Middle Triassic Coral Growth Bands and Their Implication for Photosymbiosis. PALAIOS 25, 754–763 (2010).ADS 

    Google Scholar 
    van Woesik, R. et al. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc. R. Soc. B Biol. Sci. 279, 2448–2456 (2012).
    Google Scholar 
    Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Madin, J. S. et al. A Trait-Based Approach to Advance Coral Reef Science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 

    Google Scholar 
    Riedel, P. Korallen in der Trias der Tethys:. Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen. Mitteilungen Ges. Geol.- Bergbaustud. Österr. 37, 97–118 (1991).
    Google Scholar 
    Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) Database: Integrating Data from the Dominican Republic Project. in Evolutionary Stasis and Change in the Dominican Republic Neogene (eds. Nehm, R. H. & Budd, A. F.) 301–310, https://doi.org/10.1007/978-1-4020-8215-3_13 (Springer Netherlands, 2008).Budd, A. F., Foster, C. T., Dawson, J. P. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) database: Accounting for biodiversity in paleontology. J. Paleontol. 75, 743–751 (2001).
    Google Scholar 
    Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (2016).Johnson, K. G., Budd, A. F. & Stemann, T. A. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21, 52–73 (1995).
    Google Scholar 
    Pinzón, J. H. et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 40, 1595–1608 (2013).
    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France: 2ème partie. Geobios 33, 153–181 (2000).
    Google Scholar 
    Kiessling, W. & Kocsis, Á. T. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41, 402–414 (2015).
    Google Scholar 
    Raja, N. B., Dimitrijević, D., Krause, M. C. & Kiessling, W. Ancient Reef Traits Database. Zenodo https://doi.org/10.5281/zenodo.5717611 (2022).Mannani, M. Late Triassic scleractinian corals from Nayband Formation, southwest Ardestan, Central Iran. Bol. Soc. Geológica Mex. 72, A090619 (2020).
    Google Scholar 
    Löser, H., Stemann, T. A. & Mitchell, S. Oldest scleractinian fauna from Jamaica (Hauterivian, Benbow Inlier). J. Paleontol. 83, 333–349 (2009).
    Google Scholar 
    Löser, H. Morphology, Taxonomy and Distribution of the Cretaceous coral genus Aulastraeopora (Late Barremian-Early Cenomanian; Scleractinia). Riv. Ital. Paleontol. E Stratigr. 114, (2008).Löser, H. Revision of Actinastrea, the most common Cretaceous coral genus. Paläontol. Z. 86, 15–22 (2012).
    Google Scholar 
    Löser, H., Werner, W. & Darga, R. A Middle Cenomanian coral fauna from the Northern Calcareous Alps (Bavaria, Southern Germany) – new insights into the evolution of Mid-Cretaceous corals. Zitteliana 53, 37–76 (2013).
    Google Scholar 
    Löser, H. & Bilotte, M. Taxonomy of a platy coral association from the Late Cenomanian of the southern Corbières (Aude, France). Ann. Paléontol. 103, 3–17 (2017).
    Google Scholar 
    Löser, H., Steuber, T. & Löser, C. Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous). Carnets Géologie Noteb. Geol. 18, 23–121 (2018).
    Google Scholar 
    Löser, H. Early evolution of the family Siderastraeidae (Scleractinia; Cretaceous-extant). Paläontol. Z. 90, 1–17 (2016).
    Google Scholar 
    Kiessling, W. et al. Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina). Facies 51, 233–241 (2005).
    Google Scholar 
    Stolarski, J. & Vertino, A. First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53, 67–78 (2007).
    Google Scholar 
    Yabe, H. & Sugiyama, T. 5. Younger Cenozoic Reef-corals from the Nabire Beds of Nabire, Dutch New Guinea. Proc. Imp. Acad. 18, 16–23 (1942).
    Google Scholar 
    Wilson, M. A., Vinn, O. & Palmer, T. J. Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 243–245 (2014).
    Google Scholar 
    Tomás, S., Löser, H. & Salas, R. Low-light and nutrient-rich coral assemblages in an Upper Aptian carbonate platform of the southern Maestrat Basin (Iberian Chain, eastern Spain). Cretac. Res. 29, 509–534 (2008).
    Google Scholar 
    Baron-Szabo, R. C. Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages. Zootaxa 4383, 1 (2018).Kiessling, W., Roniewicz, E., Villier, L., Leonide, P. & Struck, U. An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. PALAIOS 24, 657–671 (2009).ADS 

    Google Scholar 
    Stanley, G. D. & Beauvais, L. Middle Jurassic corals from the Wallowa terrane, west-central Idaho. J. Paleontol. 64, 352–362 (1990).
    Google Scholar 
    Gretz, M., Lathuilière, B., Martini, R. & Bartolini, A. The Hettangian corals of the Isle of Skye (Scotland): An opportunity to better understand the palaeoenvironmental conditions during the aftermath of the Triassic–Jurassic boundary crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 132–148 (2013).
    Google Scholar 
    Reolid, M., Molina, J. M., Löser, H., Navarro, V. & Ruiz-Ortiz, P. A. Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy, and palaeoecology. Facies 55, 575–593 (2009).
    Google Scholar 
    Pandey, D. K., Lathuilière, B., Fürsich, F. T. & Kuldeep, S. The oldest Jurassic cyathophorid coral (Scleractinia) from siliciclastic environments of the Kachchh Basin, western India. Paläontol. Z. 76, 347–356 (2002).
    Google Scholar 
    Löser, H. & Heinrich, M. New coral genera and species from the Rußbach and Gosau area (Upper Cretaceous; Austria). Palaeodiversity 11, 127–149 (2018).
    Google Scholar 
    Stanley, G. D. & Whalen, M. T. Triassic corals and spongiomorphs from Hells Canyon, Wallowa terrane, Oregon. J. Paleontol. 63, 800–819 (1989).
    Google Scholar 
    Gill, G. A., Santantonio, M. & Lathuilière, B. The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sediment. Geol. 166, 311–334 (2004).ADS 

    Google Scholar 
    Baron-Szabo, R. C., Hamedani, A. & Senowbari-Daryan, B. Scleractinian corals from lower cretaceous deposits north of Esfahan (central Iran). Facies 48, 199–215 (2003).
    Google Scholar 
    Lathuilière, B., Baron-Szabo, R. C., Charbonnier, S. & Pacaud, J.-M. The Mesozoic scleractinian genus Adelocoenia (Stylinidae) and its Jurassic species. Carnets Géologie Noteb. Geol. 20, 367–406 (2020).
    Google Scholar 
    Roniewicz, E. & Stanley, G. D. Middle Triassic cnidarians from the New Pass Range, Central Nevada. J. Paleontol. 72, 246–256 (1998).
    Google Scholar 
    Shepherd, H. M. E., Stanley, G. D. & Amirhassankhani, F. Norian to Rhaetian scleractinian corals in the Ferdows Patch Reef (Nayband Formation, east central Iran). J. Paleontol. 86, 801–812 (2012).
    Google Scholar 
    Budd, A. F. & Wallace, C. C. First record of the Indo-Pacific reef coral genus Isopora in the Caribbean Region: two new species from the Neogene of Curaçao, Netherlands Antilles. Palaeontology 51, 1387–1401 (2008).
    Google Scholar 
    Pandolfi, J. M. A new, extinct pleistocene reef coral from the Montastraea “annularis” species complex. J. Paleontol. 81, 472–482 (2007).
    Google Scholar 
    El-Asa’ad, G. M. A. Oxfordian hermatypic corals from Central Saudi Arabia. Geobios 24, 267–287 (1991).
    Google Scholar 
    Masse, J.-P., Morycowa, E. & Fenerci-Masse, M. Valanginian-Hauterivian scleractinian coral communities from the Marseille region (SE France). Cretac. Res. 30, 178–192 (2009).
    Google Scholar 
    El-Sorogy, A. S. & Al-Kahtany, K. M. Contribution to the scleractinian corals of Hanifa Formation, Upper Jurassic, Jabal Al-Abakkayn, central Saudi Arabia. Hist. Biol. 27, 90–102 (2015).
    Google Scholar 
    Beauvais, L. & Stump, T. E. Corals, molluscs, and paleogeography of late Jurassic strata of the Cerro Pozo Serna, Sonora, Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19, 275–301 (1976).
    Google Scholar 
    Roniewicz, E., Stanley, G. D., da Costa Monteiro, F. & Grant-Mackie, J. A. Late Triassic (Carnian) corals from Timor-Leste (East Timor): their identity, setting, and biogeography. Alcheringa Australas. J. Palaeontol. 29, 287–303 (2005).
    Google Scholar 
    Stanley, G. D. & Onoue, T. Upper Triassic reef corals from the Sambosan Accretionary Complex, Kyushu, Japan. Facies 61, 1 (2015).
    Google Scholar 
    Melnikova, G. K. & Roniewicz, E. Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia. Palaeoworld 26, 124–148 (2017).
    Google Scholar 
    Stanley, G. D. & Beauvais, L. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia 27, 35–47 (1994).
    Google Scholar 
    Caruthers, A. H. & Stanley, G. D. Systematic analysis of Upper Triassic silicified scleractinian corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. J. Paleontol. 82, 470–491 (2008).
    Google Scholar 
    Roniewicz, E. & Stanley, G. D. Upper Triassic corals from Nevada, western North America, and the implications for paleoecology and paleogeography. J. Paleontol. 87, 934–964 (2013).
    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France. 1ere partie. Geobios 33, 51–72 (2000).
    Google Scholar 
    Morycowa, E. Supplemental data on Triassic (Anisian) corals from Upper Silesia (Poland). Ann. Soc. Geol. Pol. https://doi.org/10.14241/asgp.2018.001 (2018).Budd, A. F. & Bosellini, F. R. Revision of Oligocene Mediterranean meandroid corals in the scleractinian families Mussidae, Merulinidae and Lobophylliidae. J. Syst. Palaeontol. 14, 771–798 (2016).
    Google Scholar 
    Roniewicz, E. Early Norian (Triassic) Corals from the Northern Calcareous Alps, Austria, and the Intra-Norian Faunal Turnover. Acta Palaeontol. Pol. 56, 401–428 (2011).
    Google Scholar 
    Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) Database: Integrating Data from the Dominican Republic Project. in Evolutionary Stasis and Change in the Dominican Republic Neogene (eds. Nehm, R. H. & Budd, A. F.) vol. 30 301–310 (Springer Netherlands, 2008).Mielnikova, G. Monstroseris, a new Upper Triassic scleractinian coral from Iran. Acta Palaeontol. Pol. 34, 71–74 (1989).
    Google Scholar 
    Löser, H. Taxonomy, stratigraphic distribution and palaeobiogeography of the Early Cretaceous coral genus Holocystis. Rev. Mex. Cienc. Geológicas 23, 288–301 (2006).
    Google Scholar 
    Löser, H. Corals from the Maastrichtian Ocozocoautla Formation (Chiapas, Mexico)-a closer look. Rev. Mex. Cienc. Geológicas 29, 534–550 (2012).
    Google Scholar 
    Löser, H. The Barremian coral fauna of the Serre de Bleyton mountain range (Drôme, SE France). Ann. Naturhistorischen Mus. Wien Ser. Für Mineral. Petrogr. Geol. Paläontol. Anthropol. Prähistorie 112, 575–612 (2010).
    Google Scholar 
    Löser, H., García-Barrera, P., Mendoza-Rosales, C. C. & Ortega-Hernández, J. Corals from the Early Cretaceous (Barremian – Early Albian) of Puebla (Mexico) – Introduction and Family Stylinidae. Rev. Mex. Cienc. Geológicas 30, 385–403 (2013).
    Google Scholar 
    Morycowa, E., Masse, J.-P., Arias, C. & Minondo, L. V. Montlivaltia multiformis Toula (Scleractinia) from the Aptian of the Prebetic domain (SE Spain). Span. J. Palaeontol. 16, 131–144 (2001).
    Google Scholar 
    Morycowa, E. & Masse, J.-P. Actinaraeopsis ventosiana, a new scleractinian species from the Lower Cretaceous of Provence (SE France). Ann. Soc. Geol. Pol. 77, 141–145 (2007).
    Google Scholar 
    Stolarski, J. & Taviani, M. Oligocene scleractinian corals from CRP- 3 drillhole, McMurdo Sound (Victoria Land Basin, Antarctica). Terra Antarct. 8, 1–4 (2001).
    Google Scholar 
    Morycowa, E. & Marcopoulou-Diacantoni, A. Albian corals from the Subpelagonian zone of Central Greece (Agrostylia, Parnassos region). Ann. Soc. Geol. Pol. 72, 1–65 (2002).
    Google Scholar 
    Morycowa, E. & Roniewicz, E. Revision of the genus Cladophyllia and description of Apocladophyllia gen. n.(Cladophylliidae fam. n., Scleractinia). Acta Palaeontol. Pol. 35, 165–190 (1990).
    Google Scholar 
    Morycowa, E. & Masse, J.-P. Lower Cretaceous Microsolenina (Scleractinia) from Provence (southern France). Ann. Soc. Geol. Pol. 79, 97–140 (2009).
    Google Scholar 
    Squires, R. L. & Demetrion, R. A. Paleontology of the Eocene Bateque Formation, Baja California Sur, Mexico. Contrib. Sci. 434, 1–55 (1992).
    Google Scholar 
    Wells, J. W. Cretaceous, Tertiary, and Recent Corals, a Sponge, and an Alga from Venezuela. J. Paleontol. 18, 429–447 (1944).
    Google Scholar 
    Morycowa, E. & Decrouez, D. Early Aptian scleractinian corals from the Upper Schrattenkalk of Hergiswil (Lucerne region, Helvetic Zone of central Switzerland). Rev. Paléobiol. 25, 791 (2006).
    Google Scholar 
    Stolarski, J. Paleogene corals from Seymour Island, Antarctic Peninsula. Palaeontol. Pol. 55, 1–63 (1996).
    Google Scholar 
    Vaughan, T. W. New Corals: One Recent, Alaska; Three Eocene, Alabama and Louisiana. J. Paleontol. 15, 280–284 (1941).
    Google Scholar 
    Stolarski, J. & Russo, A. Microstructural diversity of the stylophyllid [Scleractinia] skeleton. Acta Palaeontol. Pol. 47, (2002).Roniewicz, E. Jurassic scleractinian coral Thamnoseris Etallon, 1864 (Scleractinia), and its homeomorphs. Acta Palaeontol. Pol. 24, 51–70 (1979).
    Google Scholar 
    Lathuilière, B., Charbonnier, S. & Pacaud, J.-M. Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals. Zitteliana 89, 133–150 (2017).
    Google Scholar 
    Roniewicz, E. Upper Kimmeridgian Scleractinia of Pomerania (Poland). Ann. Soc. Geol. Pol. 47, 613–622 (1977).
    Google Scholar 
    Roniewicz, E. Scleractinia from the Upper Portlandian of Tisbury, Wiltshire, England. Acta Palaeontol. Pol. 15, 519–541 (1970).
    Google Scholar 
    Roniewicz, E. Kimmeridgian-Valanginian reef corals from the Moesian platform from Bulgaria. Ann. Soc. Geol. Pol. 78, 91–134 (2008).
    Google Scholar 
    Ricci, C., Lathuiliere, B. & Rusciadelli, G. Coral communities, zonation and paleoecology of an Upper Jurassic reef complex (Ellipsactinia Limestones, Central Apennines, Italy). Riv. Ital. Paleontol. E Stratigr. 124, 433–508 (2018).
    Google Scholar 
    Pandey, D. K. et al. Jurassic corals from southern Tunisia. Zitteliana A45, 3–34 (2005).
    Google Scholar 
    Pandey, D. K. et al. Jurassic corals from the Shemshak Formation of the Alborz Mountains, Iran. Zitteliana A46, 41–74 (2006).
    Google Scholar 
    Pandey, D. K. & Fürsich, F. T. Contributions to the Jurassic of Kachchh, Western India I. The coral fauna. Beringeria 8, 3–69.Morycowa, E. & Mišík, M. Upper Jurassic shallow-water scleractinian corals from the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geol. Carpathica 56, (2005).Pandey, D. K. et al. Lower Cretaceous corals from the Koppeh Dagh, NE-Iran. Zitteliana A47, 3–52 (2007).
    Google Scholar 
    Morycowa, E. Corals from the Tithonian carbonate complex in the Dąbrowa Tarnowska–Szczucin area (Polish Carpathian Foreland). Ann. Soc. Geol. Pol. 82, 1–38 (2012).
    Google Scholar 
    Baron-Szabo, R. Corals of the Theresienstein reef (Upper Turonian-Coniacian, Salzburg, Austria). Proc. Biol. Soc. Wash. 10, 257–268 (2001).
    Google Scholar 
    Morycova, E. Middle Triassic Scleractinia from the Cracow-Silesia region, Poland. Acta Palaeontol. Pol. 33, 91–121 (1988).
    Google Scholar 
    El-Asa’ad, G. M. A. Callovian colonial corals from the Tuwaiq Mountain Limestone of Saudi Arabia. Paleontology 32, 675–684 (1989).
    Google Scholar 
    Roniewicz, E. & Michalik, J. Rhaetian scleractinian corals in the Western Carpathians. Geol. Carpathica 49, 391–399 (1998).
    Google Scholar 
    Roniewicz, E. & Michalik, J. Carnian corals from the Male Karpaty Mountains, Western Carpathians, Slovakia. Geol. Carpathica 53, 149–157 (2002).
    Google Scholar 
    Roniewicz, E. Rhaetian corals of the Tatra Mts. Acta Geol. Pol. 24, 97–116 (1974).
    Google Scholar 
    Turnšek, D. et al. Contributions to the fauna (corals, brachiopods) and stable isotopes of the Late Triassic Steinplatte reef/basin-complex, Northern Calcareous Alps, Austria. Abh. Geol. Bundensanstalt 56, 121–142 (1999).
    Google Scholar 
    Roniewicz, E. Upper Triassic Solitary Corals from the Gosaukamm and other North Alpine Regions. Sitzungsberichte Biol. Wiss. Erdwissenschaften 3–41 (1995).Wells, J. W. & Jenks, W. F. Mesozoic invertebrate faunas of Peru. Part 3, Lower Jurassic corals from the Arequipa region. Am. Mus. Novit. 1631 (1953).Turnšek, D. & Senowbari-Daryan, B. Upper Triassic (Carnian-Lowermost Norian) Corals from the Pantokrator Limestone of Hydra (Greece). AbhGeolB-A 50, (1994).Wells, J. W. Jurassic Corals from the Smackover Limestone, Arkansas. J. Paleontol. 16, 126–129 (1942).
    Google Scholar 
    Turnšek, D., Buser, S. & Debeljak, I. Liassic coral patch reef above the” Lithiotid limestone” on Trnovski gozd plateau, west Slovenia: Liasni koralni kopasti greben na” litiotidnem apnencu” v Trnovskem gozdu, zahodna Slovenija. Razpr. IV Razreda SAZU XLIV–1, 285–331 (2003).
    Google Scholar 
    Turnšek, D. & Košir, A. Early Jurassic corals from Krim Mountain, Slovenia. Razpr. IV Razreda SAZU XLI–1, 81–113 (2000).
    Google Scholar 
    Roniewicz, E. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Denkschr Osterr Akad Wiss Math Nat K1 126, 1–152 (1989).
    Google Scholar 
    Roniewicz, E. Les scléractiniaires du Jurassique supérieur de la Dobrogea centrale, Roumanie. Palaeontol. Pol. 34, 17–121 (1976).
    Google Scholar 
    Kiessling, W., Kumar Pandey, D., Schemm-Gregory, M., Mewis, H. & Aberhan, M. Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. J. Afr. Earth Sci. 59, 195–214 (2011).ADS 

    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France: 2ème partie. Geobios 33, 153–181 (2000).
    Google Scholar 
    Baron‐Szabo, R. C. Corals of the K/T‐boundary: Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastraeina. J. Syst. Palaeontol. 4, 1–108 (2006).
    Google Scholar 
    Filkorn, H. F. & Pantoja-Alor, J. NOMENCLATURAL NOTES Mexican Cretaceous coral species (Cnidaria, Anthozoa, Scleractinia) described as new by Filkorn & Pantoja-Alor (2009), but deemed ‘unpublished’ under the International Code of Zoological Nomenclature: republication of data necessary for nomenclatural availability. Bull. Zool. Nomencl. 72, 93–101 (2015).
    Google Scholar 
    Olden, J. D., Poff, N. L. & Bestgen, K. R. Trait Synergisms and the Rarity, Extirpation, and Extinction Risk of Desert Fishes. Ecology 89, 847–856 (2008).PubMed 

    Google Scholar 
    Schleuning, M. et al. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends Ecol. Evol. 35, 319–328 (2020).PubMed 

    Google Scholar 
    Solan, M., Aspden, R. J. & Paterson, D. M. Marine Biodiversity and Ecosystem Functioning: Frameworks, Methodologies, and Integration. (OUP Oxford, 2012).Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS 

    Google Scholar 
    Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science https://doi.org/10.1126/science.aaa6635 (2015).Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science https://doi.org/10.1126/science.abn2384 (2022).Cooley, S. et al. Ocean and coastal ecosystems and their services. in Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC) (eds. Pörtner, H.-O. et al.) (Cambridge University Press, 2022). More

  • in

    STEM learning communities promote friendships but risk academic segmentation

    Xie, Y., Fang, M. & Shauman, K. STEM education. Annu. Rev. Sociol. 41, 331–357 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X. STEM attrition: College students’ paths into and out of STEM fields. National Center for Education Statistics. Retrieved from http://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=2014001rev. Accessed 22 September 2021.Huang G, Taddese N, Walter E (2000) Entry and persistence of women and minorities in college science and engineering education. National Center for Education Statistics. Retrieved from https://eric.ed.gov/?id=ED566411. Accessed 22 September 2021.Hurtado, S., Eagan, K., & Chang, M. Degrees of Success: Bachelor’s Degree Completion Rates among Initial STEM Majors (Higher Education Research Institute, Los Angeles, CA) (2010).National Science Foundation, Broadening Participation Working Group (2014) Pathways to broadening participation in response to the CEOSE 2011–2012 recommendation. National Science Foundation. Retrieved from https://www.nsf.gov/pubs/2015/nsf15037/nsf15037.pdf. Accessed 22 Sep 2021.James, S. M. & Singer, S. R. From the NSF: The National Science Foundation’s investments in broadening participation in science, technology, engineering, and mathematics education through research and capacity building. CBE Life Sci. Educ. 15(3), 1–8 (2016).Article 

    Google Scholar 
    Smith, B. L., MacGregor, J., Matthews, R. & Gabelnick, F. Learning communities: Reforming undergraduate education (Jossey-Bass, 2004).
    Google Scholar 
    Andrade, M. S. Learning communities: Examining positive outcomes. J. Coll. Stud. Ret. 9(1), 1–20 (2007).Article 

    Google Scholar 
    Maton, K. I., Pollard, S. A., McDougall Weise, T. V. & Hrabowski, F. A. Meyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics. Mt Sinai J. Med. 79(5), 610–623 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dagley, M., Georgiopoulos, M., Reece, A. & Young, C. Increasing retention and graduation rates through a STEM learning community. J. Coll. Stud. Ret. 18(2), 167–182 (2016).Article 

    Google Scholar 
    National Survey of Student Engagement (2015) Engagement Insights: Survey Findings on the Quality of Undergraduate Education—Annual Results 2015 (Bloomington, IN).Tinto, V. Leaving college: Rethinking the causes and cures of student attrition (University of Chicago Press, 1987).
    Google Scholar 
    Tinto, V. Learning better together: The impact of learning communities on student success. Higher Educ. Monogr. Ser. 1(8), 1–8 (2003).
    Google Scholar 
    Otto, S., Evins, M. A., Boyer-Pennington, M. & Brinthaupt, T. M. Learning communities in higher education: Best practices. Journal of Student Success and Retention 2(1), 1–20 (2015).
    Google Scholar 
    Boda, Z., Elmer, T., Vörös, A. & Stadtfeld, C. Short-term and long-term effects of a social network intervention on friendships among university students. Sci. Rep. 10(1), 1–2 (2020).Article 
    CAS 

    Google Scholar 
    Hotchkiss, J. L., Moore, R. E. & Pitts, M. M. Freshman learning communities, college performance, and retention. Educ. Econ. 14(2), 197–210 (2006).Article 

    Google Scholar 
    Whalen, D. F. & Shelley, M. C. Academic success for STEM and non-STEM majors. J. STEM Educ. 11(1), 45–60 (2010).
    Google Scholar 
    Xu, D., Solanki, S., McPartlan, P. & Sato, B. EASEing students into college: The impact of multidimensional support for underprepared students. Educ. Res. 47(7), 435–450 (2018).Article 

    Google Scholar 
    Jaffee, D., Carle, A., Phillips, R. & Paltoo, L. Intended and unintended consequences of first-year learning communities: An initial investigation. J. First-Year Exp. Stud. Trans. 20(1), 53–70 (2008).
    Google Scholar 
    Tinto, V. & Goodsell, A. Freshman interest groups and the first-year experience: Constructing student communities in a large university. J. First Year Exp. Stud. Trans. 6(1), 7–28 (1994).
    Google Scholar 
    Domizi, D. Student perceptions about their informal learning experiences in a first-year residential learning community. J. First Year Exp. Stud. Transit. 20(1), 97–110 (2008).
    Google Scholar 
    Lee, D. S. & Lemieux, T. Regression discontinuity designs in economics. J. Econ. Lit. 2, 281–355 (2010).Article 

    Google Scholar 
    Jacob, R., Zhu, P., Somers, M.A., & Bloom, H. A Practical Guide to Regression Discontinuity (MDRC, New York, NY, 2012).Hays, R. B. & Oxley, D. Social network development and functioning during a life transition. J. Pers. Soc. Psychol. 50(2), 305–313 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, T. M., Anderman, L. H. & Jensen, J. M. Sense of belonging in college freshmen at the classroom and campus levels. J. Exp. Educ. 75(3), 203–220 (2007).Article 

    Google Scholar 
    Zumbrunn, S., McKim, C., Buhs, E. & Hawley, L. R. Support, belonging, motivation, and engagement in the college classroom: A mixed method study. Instr. Sci. 42(5), 661–684 (2014).Article 

    Google Scholar 
    Hasan, S. & Bagde, S. The mechanics of social capital and academic performance in an Indian college. Am. Sociol. Rev. 78(6), 1009–1032 (2013).Article 

    Google Scholar 
    Stadtfeld, C., Vörös, A., Elmer, T., Boda, Z. & Raabe, I. J. Integration in emerging social networks explains academic failure and success. Proc. Natl. Acad. Sci. USA 116(3), 792–797 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer, B. A. The academic and social integration of Hispanic students into college. Rev. High Educ. 20(2), 163–179 (1997).Article 

    Google Scholar 
    Nora, A. Two-year colleges and minority students’ educational aspirations: Help or hindrance. Higher Educ. Handb. Theory Res. 9(3), 212–247 (1993).
    Google Scholar 
    McCabe, J.M. Connecting in College: How Friendship Networks Matter for Academic and Social Success (University of Chicago Press, Chicago, IL, 2016).Felten, P., & Lambert, L. M. Relationship-rich Education: How Human Connections Drive Success in College (Johns Hopkins University Press, Baltimore, MD, 2020).Hallinan, M. T. The peer influence process. Stud. Educ. Eval. 7(3), 285–306 (1981).Article 

    Google Scholar 
    Thomas, S. L. Ties that bind: A social network approach to understanding student integration and persistence. J. Higher Educ. 71(5), 591–615 (2000).
    Google Scholar 
    Turetsky, K. M., Purdie-Greenaway, V., Cook, J. E., Curley, J. P. & Cohen, G. L. A psychological intervention strengthens students’ peer social networks and promotes persistence in STEM. Sci. Adv. 6(45), 1–10 (2020).Article 

    Google Scholar 
    Dokuka, S., Valeeva, D. & Yudkevich, M. How academic achievement spreads: The role of distinct social networks in academic performance diffusion. PLoS ONE 15(7), 1–16 (2020).Article 
    CAS 

    Google Scholar 
    Epstein, J. L. & Karweit, N. (eds) Friends in school: Patterns of selection and influence in secondary schools (Academic Press, 1983).
    Google Scholar 
    Feld, S. L. The focused organization of social ties. AJS 86(5), 1015–1035 (1981).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).Article 

    Google Scholar 
    Mollenhorst, G., Volker, B. & Flap, H. Changes in personal relationships: How social contexts affect the emergence and discontinuation of relationships. Soc. Netw. 37, 65–80 (2014).Article 

    Google Scholar 
    Thomas, R. J. Sources of friendship and structurally induced homophily across the life course. Sociol Perspect 62(6), 822–843 (2019).Article 

    Google Scholar 
    Kubitschek, W. N. & Hallinan, M. T. Tracking and students’ friendships. Soc. Psychol. Q 46, 1–5 (1998).Article 

    Google Scholar 
    Frank, K. A., Muller, C. & Mueller, A. S. The embeddedness of adolescent friendship nominations: The formation of social capital in emergent network structures. AJS 119(1), 216–253 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social network. AJS 115(2), 405–450 (2009).
    Google Scholar 
    Wimmer, A. & Lewis, K. Beyond and below racial homophily: ERG models of a friendship network documented on Facebook. AJS 116(2), 583–642 (2010).PubMed 

    Google Scholar 
    Hallinan, M. T. & Sørensen, A. B. Ability grouping and student friendships. Am. Educ. Res. J. 51, 485–499 (1985).Article 

    Google Scholar 
    Leszczensky, L. & Pink, S. Ethnic segregation of friendship networks in school: Testing a rational-choice argument of differences in ethnic homophily between classroom-and grade-level networks. Soc. Netw. 42, 18–26 (2015).Article 

    Google Scholar 
    DiMaggio, P. & Garip, F. Network effects and social inequality. Annu. Rev. Sociol. 54, 93–118 (2012).Article 

    Google Scholar 
    Johnson, A. M. ‘“I can turn it on when i need to”’: Pre-college Integration, culture, and peer academic engagement among black and Latino/a engineering Students. Sociol. Educ. 56, 1–20 (2019).Article 

    Google Scholar 
    Perry, B. L., Pescosolido, B. A. & Borgatti, S. P. Egocentric network analysis: Foundations, methods, and models (Cambridge University Press, 2018).Book 

    Google Scholar 
    Wasserman, S. & Faust, K. Social network analysis: Methods and applications (Cambridge University Press, 1994).MATH 
    Book 

    Google Scholar 
    Hartup, W. W. & Stevens, N. Friendships and adaptation in the life course. Psychol. Bull. 121(3), 355 (1997).Article 

    Google Scholar 
    Vaquera, E. & Kao, G. Do you like me as much as I like you? Friendship reciprocity and its effects on school outcomes among adolescents. Soc. Sci. Res. 37(1), 55–72 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imbens, G. W. & Lemieux, T. Regression discontinuity designs: A guide to practice. J. Econom. 142(2), 615–635 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Imbens, G. W. & Angrist, J. D. Identification and estimation of local average treatment effects. Econometrica 62(2), 467–475 (1994).MATH 
    Article 

    Google Scholar 
    Robins, G., Pattison, P., Kalish, Y. & Lusher, D. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007).Article 

    Google Scholar 
    Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: Software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24(1), 1548–7660 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calonico, S., Cattaneo, M. D. & Titiunik, R. Optimal data-driven regression discontinuity plots. J. Am. Stat. Assoc. 110(512), 1753–1769 (2015).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Duxbury, S. W. The problem of scaling in exponential random graph models. Sociol. Methods Res. https://doi.org/10.1177/0049124120986178:1-39 (2021).MathSciNet 
    Article 

    Google Scholar 
    McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001).Article 

    Google Scholar 
    Kadushin, C. Understanding social networks: Theories, concepts, and findings (Oxford University Press, 2012).
    Google Scholar 
    Flashman, J. Academic achievement and its impact on friend dynamics. Sociol. Educ. 85(1), 61–80 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrell, S. E., Sacerdote, B. I. & West, J. E. From natural variation to optimal policy? The importance of endogenous peer group formation. Econometrica 81(3), 855–882 (2013).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Cox, A. B. Cohorts, ‘“siblings”,’ and mentors: Organizational structures and the creation of social capital. Sociol. Educ. 90(1), 47–63 (2017).Article 

    Google Scholar 
    Valente, T. W. Network interventions. Science 337(6090), 49–53 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunn, L. M. College belonging: How first-year and first-generation students navigate campus life (Rutgers University Press, 2021).Book 

    Google Scholar 
    Garlick, R. Academic peer effects with different group assignment policies: Residential tracking versus random assignment. Am. Econ. J. Appl. Econ. 10(3), 345–369 (2018).Article 

    Google Scholar 
    Carrell, S. E., Fullerton, R. L. & West, J. E. Does your cohort matter? Measuring peer effects in college achievement. J. Labor. Econ. 27(3), 439–464 (2009).Article 

    Google Scholar 
    Lomi, A., Snijders, T. A., Steglich, C. E. & Torló, V. J. Why are some more peer than others? Evidence from a longitudinal study of social networks and individual academic performance. Soc. Sci. Res. 40(6), 1506–1520 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poldin, O., Valeeva, D. & Yudkevich, M. Which peers matter: How social ties affect peer-group effects. Res. High Educ. 57(4), 448–468 (2016).Article 

    Google Scholar 
    Raabe, I. J., Boda, Z. & Stadtfeld, C. The social pipeline: How friend influence and peer exposure widen the STEM gender gap. Sociol. Educ. 92(2), 105–123 (2019).Article 

    Google Scholar 
    Burt, R. S. Structural holes and good ideas. AJS 110(2), 349–399 (2004).
    Google Scholar 
    Oakes, J. Keeping track: How schools structure inequality (Yale University Press, 2005).
    Google Scholar 
    Park JJ et al. (2021) Who are you studying with? The role of diverse friendships in STEM and corresponding inequality. Res. High Educ. https://doi.org/10.1007/s11162-021-09638-8.Marsden, P. V. & Campbell, K. E. Measuring tie strength. Soc. Forces 63(2), 482–501 (1984).Article 

    Google Scholar 
    Mattie, H., Engø-Monsen, K., Ling, R. & Onnela, J. P. Understanding tie strength in social networks using a local “bow tie” framework. Sci. Rep. 8(1), 1–9 (2018).CAS 
    Article 

    Google Scholar 
    Sørensen, A. B. Organizational differentiation of students and educational opportunity. Sociol. Educ. 43(4), 355–376 (1970).Article 

    Google Scholar  More

  • in

    Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia

    Berthold, P. Bird Migration: A General Survey. (Oxford University Press, 2001).Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18 (2011).PubMed 
    Article 

    Google Scholar 
    Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: Unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).Article 

    Google Scholar 
    Saurola, P., Valkama, J. & Velmala, W. Suomen rengastusatlas Osa I/The Finnish Bird Ringing Atlas Vol. I. (Finnish Museum of Natural History and Ministry of Environment, 2013).Bergman, G. Allin ja mustalinnun muuttokannat keväällä 1960 (in Finnish). Suomen Riista 14, 69–74 (1961).
    Google Scholar 
    Skov, H. et al. Waterbird Populations and Pressures in the Baltic Sea. (TemaNord 550, 2011).Grenquist, P. Öljytuhoista Suomen aluevesillä v. 1948–1955. Suomen Riista 10, 105–116 (1956).Hario, M., Rintala, J. & Nordenswan, G. Dynamics of wintering long-tailed ducks in the Baltic Sea–the connection with lemming cycles, oil disasters, and hunting. Suomen Riista 55, 83–96 (2009).
    Google Scholar 
    Ellermaa, M. & Pettay, T. Põõsaspean niemen arktinen muutto syksyllä 2004. Linnut Vuosik. 2005, 99–112 (2005).
    Google Scholar 
    Delany, S. & Scott, D. Waterbird Population Estimates. (Wetlands International, 2006).Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sokolov, V., Vardeh, S. & Quillfeldt, P. Long-tailed Duck (Clangula hyemalis) ecology: Insights from the Russian literature. Part 1: Asian part of the Russian breeding range. Polar Biol. 42, 2259–2276 (2019).Article 

    Google Scholar 
    Summers, R. W. & Underhill, L. G. Factors related to breeding production of Brent Geese Branta b. bernicla and waders (Charadrii) on the Taimyr Peninsula. Bird Study 34(161), 171 (1987).
    Google Scholar 
    Summers, R. W., Underhill, L. G. & Syroechkovski, J. The breeding productivity of dark-bellied brent geese and curlew sandpipers in relation to changes in the numbers of arctic foxes and lemmings on the Taimyr Peninsula Siberia. Ecography 21, 573–580 (1998).Article 

    Google Scholar 
    Underhill, L. G. et al. Breeding of waders (Charadrii) and Brent Geese Branta bernicla bernicla at Pronchishcheva Lake, northeastern Taimyr, Russia, in a peak and a decreasing lemming year. Ibis 135, 277–292 (1993).Article 

    Google Scholar 
    Gauthier, G., Bëty, J., Giroux, J.-F. & Rochefort, L. Trophic interactions in a High Arctic snow goose colony. Integr. Comp. Biol. 44, 119–129 (2004).PubMed 
    Article 

    Google Scholar 
    Elton, C. Voles, Mice and Lemmings: Problems in Population Dynamics. (Clarendon Press, 1942).Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kokorev, Y. I. & Kuksov, V. A. Population dynamics of lemmings, Lemmus sibirica and Dicrostonyx torquatus, and Arctic Fox Alopex lagopus on the Taimyr peninsula, Siberia, 1960–2001. Ornis Svecica 12, 139–145 (2002).
    Google Scholar 
    Angerbjörn, A., Tannerfeldt, M. & Erlinge, S. Predator-prey relationships: Arctic foxes and lemmings. J. Anim. Ecol. 68, 34–49 (1999).Article 

    Google Scholar 
    Fauteux, D., Gauthier, G. & Berteaux, D. Seasonal demography of a cyclic lemming population in the Canadian Arctic. J. Anim. Ecol. 84, 1412–1422 (2015).PubMed 
    Article 

    Google Scholar 
    Gilg, O., Sittler, B. & Hanski, I. Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob. Chang. Biol. 15, 2634–2652 (2009).ADS 
    Article 

    Google Scholar 
    Berryman, A. A. The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992).Article 

    Google Scholar 
    Framstad, E., Stenseth, N. C., Bjørnstad, O. N. & Falck, W. Limit cycles in Norwegian lemmings: Tensions between phase-dependence and density-dependence. Proc. R Soc. London. Ser. B Biol. Sci. 264, 31–38 (1997).ADS 
    Article 

    Google Scholar 
    Hanski, I. & Korpimaki, E. Microtine rodent dynamics in northern Europe: Parameterized models for the predator-prey interaction. Ecology 76, 840–850 (1995).Article 

    Google Scholar 
    May, R. M. Limit cycles in predator-prey communities. Science 177, 900–902 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilg, O., Hanski, I. & Sittler, B. Cyclic dynamics in a simple vertebrate predator-prey community. Science 302, 866–868 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juhasz, C. C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715 (2020).PubMed 
    Article 

    Google Scholar 
    McKinnon, L., Berteaux, D., Gauthier, G. & Bêty, J. Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra. Oikos 122, 1042–1048 (2013).Article 

    Google Scholar 
    Angelstam, P., Lindström, E. & Widén, P. Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia. Oecologia 62, 199–208 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ehrich, D. et al. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal Russia. BMC Ecol. 17, 1–13 (2017).Article 

    Google Scholar 
    Brook, R. W., Duncan, D. C., Hines, J. E., Carrière, S. & Clark, R. G. Effects of small mammal cycles on productivity of boreal ducks. Wildlife Biol. 11, 3–11 (2005).Article 

    Google Scholar 
    Guillemain, M. et al. Effects of climate change on European ducks: what do we know and what do we need to know?. Wildlife Biol. 19, 404–419 (2013).Article 

    Google Scholar 
    Pehrsson, O. Duckling production of the Oldsquaw in relation to spring weather and small-rodent fluctuations. Can. J. Zool. 64, 1835–1841 (1986).Article 

    Google Scholar 
    ACIA. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. (Cambridge University Press, 2004).Høye, T. T., Post, E., Meltofte, H., Schmidt, N. M. & Forchhammer, M. C. Rapid advancement of spring in the High Arctic. Curr. Biol. 17, R449–R451 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 3, 65–90 (2017).Article 

    Google Scholar 
    Bilodeau, F., Gauthier, G. & Berteaux, D. The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia 172, 1007–1016 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Madsen, F. J. On the food habits of the diving ducks in Denmark. Danish Rev. Game Biol. 3, 2–83 (1954).
    Google Scholar 
    Nilsson, L. Habitat selection, food choice, and feeding habits of diving ducks in coastal waters of South Sweden during the non-breeding season. Ornis Scand. 3, 55–78 (1972).Article 

    Google Scholar 
    Žydelis, R. & Ruškytė, D. Winter foraging of long-tailed ducks (Clangula hyemalis) exploiting different benthic communities in the Baltic Sea. Wilson Bull. 117, 133–141 (2005).Article 

    Google Scholar 
    Skabeikis, A. et al. Effect of round goby (Neogobius melanostomus) invasion on blue mussel (Mytilus edulis trossulus) population and winter diet of the long-tailed duck (Clangula hyemalis). Biol. Invasions 21, 911–923 (2019).Article 

    Google Scholar 
    Laursen, K. & Møller, A. P. Long-Term changes in nutrients and mussel stocks are related to numbers of breeding eiders Somateria mollissima at a large Baltic colony. PLoS ONE 9, e95851 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the baltic sea during the last century. Proc. Natl. Acad. Sci. USA 111, 5628–5633 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savchuk, O. P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5, 95 (2018).Article 

    Google Scholar 
    Møller, A. P., Flensted-Jensen, E. & Mardal, W. Agriculture, fertilizers and life history of a coastal seabird. J. Anim. Ecol. 76, 515–525 (2007).PubMed 
    Article 

    Google Scholar 
    Møller, A. P., Thorup, O. & Laursen, K. Predation and nutrients drive population declines in breeding waders. Ecol. Appl. 28, 1292–1301 (2018).PubMed 
    Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis. (Chapman & Hall/CRC, 2004).Lebreton, J.-D. & Gimenez, O. Detecting and estimating density dependence in wildlife populations. J. Wildl. Manage. 77, 12–23 (2013).Article 

    Google Scholar 
    Bergman, G. The spring migration of the Long-tailed Duck and the Common Scoter in western Finland. Ornis Fenn. 51, 129–145 (1974).
    Google Scholar 
    Richardson, W. J. Timing and amount of bird migration in relation to weather: A Review. Oikos 30, 224–272 (1978).Article 

    Google Scholar 
    Alerstam, T. Bird flight and optimal migration. Trends Ecol. Evol. 6, 210–215 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, W. J. Wind and Orientation of Migrating Birds: A Review. in Orientation in Birds (ed. Berthold, P.) 226–249 (Birkhäuser, 1991). https://doi.org/10.1007/978-3-0348-7208-9_11.Christensen, T. K. & Fox, A. D. Changes in age and sex ratios amongst samples of hunter-shot wings from common duck species in Denmark 1982–2010. Eur. J. Wildl. Res. 60, 303–312 (2014).Article 

    Google Scholar 
    Fox, A. D., Clausen, K. K., Dalby, L., Christensen, T. K. & Sunde, P. Age-ratio bias among hunter-based surveys of Eurasian Wigeon Anas penelope based on wing vs. field samples. Ibis 157, 391–395 (2015).Article 

    Google Scholar 
    Møller, A. P., Flensted-Jensen, E., Laursen, K. & Mardal, W. Fertilizer leakage to the marine environment, ecosystem effects and population trends of waterbirds in Denmark. Ecosystems 18, 30–44 (2015).Article 
    CAS 

    Google Scholar 
    Scott, D. A. & Rose, P. M. Atlas of Anatidae Populations in Africa and Western Eurasia. Wetlands International Publication 41 (Wetlands International, 1996).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Hijmans, R. J. Introduction to the ’raster’ package (version 3.0–12). https://rspatial.org/raster/pkg/index.html (2020).National Center for Atmospheric Research Staff. The climate data guide: Hurrell North Atlantic Oscillation (NAO) index (PC-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (2019).Hurrell, J. W. Decadal trends in the north atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Büttger, H., Nehls, G. & Stoddard, P. The history of intertidal blue mussel beds in the North Frisian Wadden Sea in the 20th century: Can we define reference conditions for conservation targets by analysing aerial photographs?. J. Sea Res. 87, 91–102 (2014).ADS 
    Article 

    Google Scholar 
    Kristensen, P. S. & Borgstrøm, R. The Danish Wadden Sea: Fishery of mussels (Mytilus edulis L.) in a wildlife reserve? in Proceedings from the 11. Scientific Wadden Sea Symposium, Esbjerg, Denmark, 4.-8. April 2005. NERI technical report (ed. Laursen, K.) vol. 573 107–111 (National Environmental Research Institute. Department of Wildlife Ecology and Biodiversity, 2006).Baird, R. H. Measurement of condition in mussels and oysters. ICES J. Mar. Sci. 23, 249–257 (1958).Article 

    Google Scholar 
    Waldeck, P. & Larsson, K. Effects of winter water temperature on mass loss in Baltic blue mussels: Implications for foraging sea ducks. J. Exp. Mar. Bio. Ecol. 444, 24–30 (2013).Article 

    Google Scholar 
    Nehls, G. et al. Beds of blue mussels and Pacific oysters. Quality Status Report, Thematic Report; No. 11. Wadden Sea Ecosystem; No. 25 (2009).Laursen, K., Møller, A. P., Haugaard, L., Öst, M. & Vainio, J. Allocation of body reserves during winter in eider Somateria mollissima as preparation for spring migration and reproduction. J. Sea Res. 144, 49–56 (2019).ADS 
    Article 

    Google Scholar 
    Morelli, F., Laursen, K., Svitok, M., Benedetti, Y. & Møller, A. P. Eiders, nutrients and eagles: Bottom-up and top-down population dynamics in a marine bird. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13498 (2021).Article 
    PubMed 

    Google Scholar 
    Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).Article 

    Google Scholar 
    Kery, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective. (Elsevier, 2012).Kerman, J. Neutral noninformative and informative conjugate beta and gamma prior distributions. Electron. J. Stat. 5, 1450–1470 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Crainiceanu, C. M., Ruppert, D. & Wand, M. P. Bayesian analysis for penalized spline regression using WinBUGS. J. Stat. Softw. 14, (2005).Saha, K. & Paul, S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185 (2005).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 80, 101–107 (2011).PubMed 
    Article 

    Google Scholar 
    Pöysä, H. et al. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?. Ecol. Evol. 6, 7004–7014 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Almaraz, P., Green, A. J., Aguilera, E., Rendón, M. A. & Bustamante, J. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol. https://doi.org/10.1111/j.1365-2656.2012.01972.x (2012).Article 
    PubMed 

    Google Scholar 
    Schmidt, N. M. et al. Response of an arctic predator guild to collapsing lemming cycles. Proc. R. Soc. B Biol. Sci. 279, 4417–4422 (2012).Article 

    Google Scholar 
    Ebbinge, B. S., Heesterbeek, H. J. A. P., Ens, B. J. & Goedhart, P. W. Density dependent population limitation in dark-bellied brent geese Branta b. bernicla. Avian Sci. 2, 63–75 (2002).
    Google Scholar 
    Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).Article 

    Google Scholar 
    Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).PubMed 
    Article 

    Google Scholar 
    Korslund, L. & Steen, H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 75, 156–166 (2006).PubMed 
    Article 

    Google Scholar 
    Callaghan, T. V. et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio 40, 17–31 (2011).Article 

    Google Scholar 
    Machín, P. et al. The role of ecological and environmental conditions on the nesting success of waders in sub-Arctic Sweden. Polar Biol. 42, 1571–1579 (2019).Article 

    Google Scholar 
    Koneff, M. D. et al. Evaluation of harvest and information needs for North American sea ducks. PLoS ONE 12, e0175411 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81, 654–665 (2000).Article 

    Google Scholar 
    Sæther, B.-E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).Article 

    Google Scholar 
    Öst, M., Ramula, S., Lindén, A., Karell, P. & Kilpi, M. Small-scale spatial and temporal variation in the demographic processes underlying the large-scale decline of eiders in the Baltic Sea. Popul. Ecol. 58, 121–133 (2016).Article 

    Google Scholar 
    Holopainen, S. & Fox, A. D. Associations between duck harvest, hunting wing ratios and measures of reproductive output in Northern Europe. Eur. J. Wildl. Res. 64, (2018).Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 36, 5315–5320 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carstensen, J. et al. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43, 26–36 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conley, D. J. et al. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412–3420 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Conley, D. J. et al. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17, 165–184 (2007).Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox, A. D. et al. Current and potential threats to Nordic duck populations–a horizon scanning exercise. Ann. Zool. Fennici 52, 193–220 (2015).Article 

    Google Scholar 
    Møller, A. P. Biological consequences of global change for birds. Integr. Zool. 8, 136–144 (2013).PubMed 
    Article 

    Google Scholar  More