More stories

  • in

    Biogeographic implication of temperature-induced plant cell wall lignification

    Körner, C. The cold range limit of trees. Trends Ecol. Evo. 36, 979–989 (2021).Article 

    Google Scholar 
    Körner, C. Alpine Treelines (Springer, 2012).Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Hoch, G. & Körner, C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 19, 941–951 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).Körner, C. Climatic treelines: conventions, global patterns, causes. Erdkunde 61, 315–324 (2007).Article 

    Google Scholar 
    Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 29, 613–620 (2015).CAS 
    Article 

    Google Scholar 
    Körner, C. et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 129, 63–80 (2019).Article 

    Google Scholar 
    Crivellaro, A. & Büntgen, U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 24, 322–324 (2020).Article 
    CAS 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Biosci 47, 235–242 (1997).Article 

    Google Scholar 
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613 (2010).
    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta 147, 46–54 (2013).CAS 
    Article 

    Google Scholar 
    Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. N. Phytol. 187, 273–285 (2010).CAS 
    Article 

    Google Scholar 
    Niklas, K. J., Cobb, E. D. & Matas, A. J. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 68, 5261–5269 (2017).CAS 

    Google Scholar 
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piquemal, J. et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83 (1998).CAS 
    Article 

    Google Scholar 
    Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenk, H. J., Espino, S., Rich-Cavazos, S. M. & Jansen, S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105, 172–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polo, C. C. et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 10, 6023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meents, M. J., Watanabe, Y. & Samuels, A. L. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107–1125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, M. M. & Sederoff, R. R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 110, 3–13 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweingruber, F. H. & Büntgen, U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia 31, 187–191 (2013).Article 

    Google Scholar 
    Ellenberg, H. & Mueller-Dombois, D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 37, 56–73 (1967).
    Google Scholar 
    Kim, W. J., Campbell, A. G. & Koch, P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class. Prod. J. 39, 7–12 (1989).CAS 

    Google Scholar 
    Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 14, 409–414 (2000).Article 

    Google Scholar 
    Schenker, G., Lens, A., Körner, C. & Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 34, 302–313 (2014).PubMed 
    Article 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, H. et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 11, e1005471 (2015).Article 
    CAS 

    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).Article 

    Google Scholar 
    Piermattei, A. et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016 (2020).Article 

    Google Scholar 
    Montwé, D., Isaac-Rentin, M., Hamman, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 9, 1574 (2018).Article 
    CAS 

    Google Scholar 
    Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Z. & Mohnen, D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 49, 212–241 (2014).CAS 
    Article 

    Google Scholar 
    Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kumar, M., Campbell, L. & Turner, S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 67, 515–531 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239–274 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 189, 241–252 (2010).Article 

    Google Scholar 
    Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100, 4939–4944 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 102, 1074–1089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014).Article 

    Google Scholar 
    Körner, C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).Article 

    Google Scholar 
    GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.ms4hjt (2018).Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).Gärtner, H. et al. A technical perspective in modern tree-ring research – How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97, e52337 (2015).
    Google Scholar 
    Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).Ghislan, B., Engel, J. & Clair, B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 40, 1–20 (2019).Article 

    Google Scholar 
    Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014). More

  • in

    Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures

    Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B-Biol. Sci. 372, 15. https://doi.org/10.1098/rstb.2016.0117 (2017).Article 

    Google Scholar 
    Adenubi, O. T. et al. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crop. Prod. 123, 779–806. https://doi.org/10.1016/j.indcrop.2018.06.075 (2018).CAS 
    Article 

    Google Scholar 
    Jordan, R. A. & Schulze, T. L. Availability and nature of commercial tick control services in three Lyme disease endemic states. J. Med. Entomol. 57, 807–814. https://doi.org/10.1093/jme/tjz215 (2019).CAS 
    Article 

    Google Scholar 
    Isman, M. B. Botanical insecticides in the twenty-first century – Fulfilling their promise?. Ann. Rev. Entomol. 65, 233–249 (2020).CAS 
    Article 

    Google Scholar 
    Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick-Borne Dis. https://doi.org/10.1016/j.ttbdis.2021.101649 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, A. C. C. et al. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicol. Environ. Safe. 163, 28–36. https://doi.org/10.1016/j.ecoenv.2018.07.048 (2018).CAS 
    Article 

    Google Scholar 
    Matos, W. B. et al. Potential source of ecofriendly insecticides: Essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Safe. 209, 111764. https://doi.org/10.1016/j.ecoenv.2020.111764 (2021).CAS 
    Article 

    Google Scholar 
    Gashout, H. A., Guzman-Novoa, E., Goodwin, P. H. & Correa-Benítez, A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. J. Insect Physiol. 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eisen, L. & Dolan, M. C. Evidence for personal protective measures to reduce human contact with Blacklegged ticks and for environmentally based control methods to suppress host-seeking Blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53, 1063–1092. https://doi.org/10.1093/jme/tjw103 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, M. C., Requintina, M. D., Berger, K. A., Puggioni, G. & Mather, T. N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 58, 390–397. https://doi.org/10.1093/jme/tjaa188 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schulze, T. L. & Jordan, R. A. Synthetic pyrethroid, natural product, and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 58, 814–820. https://doi.org/10.1093/jme/tjaa248 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bharadwaj, A., Stafford, K. C. & Behle, R. W. Efficacy and environmental persistence of nootkatone for the control of the Blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 49, 1035–1044. https://doi.org/10.1603/me11251 (2012).Article 
    PubMed 

    Google Scholar 
    Pavela, R. & Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of the essential oil from Thymus vulgaris. Ind. Crop. Prod. 113, 46–49 (2018).CAS 
    Article 

    Google Scholar 
    Brunner, J. L., Killilea, M. & Ostfeld, R. S. Overwintering survival of nymphal Ixodes scapularis (Acari: Ixodidae) under natural conditions. J. Med. Entomol. 49, 981–987. https://doi.org/10.1603/me12060 (2012).Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Nicolson, S. W. Insect Physiol. Ecol. (Oxford University Press, 2004).Ogden, N. H., Beard, C. B., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2021).Article 

    Google Scholar 
    Ballard, K. & Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geo. 127, 102383 (2021).Article 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. https://doi.org/10.1172/jci42868 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamo, S. A. Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 190, 381–390. https://doi.org/10.1007/s00360-020-01282-5 (2020).Article 

    Google Scholar 
    Adamo, S. A. How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. https://doi.org/10.1016/j.cbpb.2021.110564 (2021).Article 

    Google Scholar 
    Linske, M. A. et al. Impacts of deciduous leaf litter and snow presence on nymphal Ixodes scapularis (Acari: Ixodidae) overwintering survival in coastal New England, USA. Insects https://doi.org/10.3390/insects10080227 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burtis, J. C., Fahey, T. J. & Yavitt, J. B. Survival and energy use of Ixodes scapularis nymphs throughout their overwintering period. Parasitol. 146, 781–790. https://doi.org/10.1017/s0031182018002147 (2019).Article 

    Google Scholar 
    Boehnke, D., Gebhardt, R., Petney, T. & Norra, S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: the example of Ixodes ricinus ticks. Parasit. Vectors 10, 549. https://doi.org/10.1186/s13071-017-2498-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of Ixodes scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J. Med. Entomol. 32, 143–152. https://doi.org/10.1093/jmedent/32.2.143 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J. Med. Entomol. 35, 189–199. https://doi.org/10.1093/jmedent/35.3.189 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environ. Entomol. 33, 1266–1273. https://doi.org/10.1603/0046-225x-33.5.1266 (2004).Article 

    Google Scholar 
    Clow, K. M. et al. The influence of abiotic and biotic factors on the invasion of Ixodes scapularis in Ontario, Canada. Ticks Tick-Borne Dis. 8, 554–563. https://doi.org/10.1016/j.ttbdis.2017.03.003 (2017).Article 
    PubMed 

    Google Scholar 
    Natural Resources Canada. Balsam fir, (2015).Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689. https://doi.org/10.1111/evo.12690 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichette, A., Larouche, P. L., Lebrun, M. & Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytotherapy Res. 20, 371–373 (2006).CAS 
    Article 

    Google Scholar 
    Poaty, B., Lahlah, J., Porqueres, F. & Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 31, 907–919. https://doi.org/10.1007/s11274-015-1845-y (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Ed. 64, 79–93. https://doi.org/10.1080/00220973.1995.9943797 (1995).Article 

    Google Scholar 
    Canon, L., Deslauriers, A., Mshvildadze, V. & Pichette, A. Volatile compounds in the foliage of balsam fir analyzed by static headspace gas chromotography (HS-GS): An example of the spruce budworm defoliation effect in the boreal forest of Quebec, Canada. Microchem. J. 110, 587–590 (2013).Article 

    Google Scholar 
    Faraone, N., MacPherson, S. & Hillier, N. K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp. Appl. Acarol. 79, 195–207. https://doi.org/10.1007/s10493-019-00421-0 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    McMillan, L. E., Miller, D. W. & Adamo, S. A. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. J. Exp. Biol. 221, 173336 (2018).
    Google Scholar 
    Gazave, E., Chevillon, C., Lenormand, T., Marquine, M. & Raymond, M. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 87, 441–448 (2001).CAS 
    Article 

    Google Scholar 
    Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. & Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011).CAS 
    Article 

    Google Scholar 
    Clark, D. D. Lower temperature limits for activity of several Ixodid ticks: Effects of body size and rate of temperature change. J. Med. Entomol. 32, 449–452 (1995).CAS 
    Article 

    Google Scholar 
    Carroll, J. F. & Kramer, M. Winter activity of Ixodes scapularis (Acari : Ixodidae) and the operation of deer-targeted tick control devices in Maryland. J. Med. Entomol. 40, 238–244. https://doi.org/10.1603/0022-2585-40.2.238 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLoS ONE 12, e0168723. https://doi.org/10.1371/journal.pone.0168723 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D. & Chavez, A. S. O. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or utopia?. Insects https://doi.org/10.3390/insects11080490 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ogendo, J. et al. Biocontrol potential of selected plant essential oil constituents as fumigants of insect pests attacking stored food commodities. Health 10, 287–318 (2011).
    Google Scholar 
    Panella, N. A., Karchesy, J., Maupin, G. O., Malan, J. C. & Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 34, 340–345 (1997).CAS 
    Article 

    Google Scholar 
    Rosado-Aguilar, J. A. et al. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 238, 66–76. https://doi.org/10.1016/j.vetpar.2017.03.023 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jaenson, T. G. T., Carboui, S. & Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari : Ixodidae) in the laboratory and field. J. Med. Entomol. 43, 731–736. https://doi.org/10.1603/0022-2585(2006)43[731:Rooole]2.0.Co;2 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eigbrett, C. Natural Sourcing Organic Essential Oils Oxford, Connecticut, USA, .praannaturals.com/downloads/msds/SDS_Organic_Essential_Oil_Fir_Balsam_Canada.pdf (2016).Schulze, T. L. et al. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 38, 344–346. https://doi.org/10.1603/0022-2585-38.2.344 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, S. P. et al. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 50, 126–136. https://doi.org/10.1603/me12124 (2013).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Yavitt, J. B., Fahey, T. J. & Ostfeld, R. S. Ticks as soil-dwelling arthropods: an intersection between disease and soil ecology. J. Med. Entomol. 56, 1555–1564. https://doi.org/10.1093/jme/tjz116 (2019).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Ostfeld, R. S., Yavitt, J. B. & Fahey, T. J. The relationship between soil arthropods and the overwinter survival of Ixodes scapularis (Acari: Ixodidae) under manipulated snow cover. J. Med. Entomol. 53, 225–229. https://doi.org/10.1093/jme/tjv151 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guerra, M. et al. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297. https://doi.org/10.3201/eid0803.010166 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bunnell, J. E., Price, S. D., Das, A., Shields, T. M. & Glass, G. E. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the USA. J. Med. Entomol. 40, 570–576. https://doi.org/10.1603/0022-2585-40.4.570 (2003).Article 
    PubMed 

    Google Scholar 
    Lubelczyk, C. B. et al. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ. Entomol. 33, 900–906. https://doi.org/10.1603/0046-225x-33.4.900 (2004).Article 

    Google Scholar 
    Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme disease: A review. EcoHealth 5, 167–195. https://doi.org/10.1007/s10393-008-0171-3 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).Article 

    Google Scholar 
    Bertrand, M. R. & Wilson, M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in Nature: Life cycle and study design implications. J. Med. Entomol. 33, 619–627 (1996).CAS 
    Article 

    Google Scholar 
    Lindsay, L. R. et al. Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J. Med. Entomol. 36, 255–262. https://doi.org/10.1093/jmedent/36.3.255 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, C., Spielman, A. & Krause, P. J. Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin. Infect. Dis. 33, 676–685 (2001).CAS 
    Article 

    Google Scholar 
    Hinckley, A. F. et al. effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 214, 182–188. https://doi.org/10.1093/infdis/jiv775 (2016).Article 
    PubMed 

    Google Scholar 
    Keesing, F. et al. Effects of Ttck-control interventions on tick abundance, human encounters with Ttcks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 28, 957–966. https://doi.org/10.3201/eid2805.211146 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, L. E., Scott, J. A. & Stafford, K. C. Influences of weather on Ixodes scapularis nymphal densities at long-term study sites in Connecticut. Ticks Tick-Borne Dis. 6, 258–266. https://doi.org/10.1016/j.ttbdiS.2015.01.006 (2015).Article 
    PubMed 

    Google Scholar 
    Rand, P. W. et al. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J. Med. Entomol. 47, 695–698 (2010).CAS 
    Article 

    Google Scholar 
    United Nations. Convention on Biological Diversity. (1992).Convention on International Trade in Endangered Species of Wild Fauna and Flora. (1973).Burtis, J. C. Method for the efficient deployment and recovery of Ixodes scapularis (Acari: Ixodidae) nymphs and engorged larvae from field microcosms. J. Med. Entomol. 54, 1778–1782. https://doi.org/10.1093/jme/tjx157 (2017).Article 
    PubMed 

    Google Scholar 
    Nova Scotia Department of Natural Resources and Renewables Trees of the Acadian Forest (2021). More

  • in

    Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations

    Pienta, K. J., Hammarlund, E. U., Austin, R. H., Axelrod, R., Brown, J. S. & Amend, S. R. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. In Seminars in Cancer Biology, 1–15 (2020).Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 70(1), 7–30 (2020).Article 

    Google Scholar 
    Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskelet. 47(2), 81–107 (2000).CAS 
    Article 

    Google Scholar 
    Hanahan, D. & Weinberg, R. A. Leading edge review hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J. et al. Convergent evolution, evolving evolvability, and the origins of lethal cancer. Mol. Cancer Res. 18(6), 801–810 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci. Transl. Med. 3(111), 1–12 (2011).Article 
    CAS 

    Google Scholar 
    Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 165, 3–7 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 

    Brown, R. L. What evolvability really is. Br. J. Philos. Sci.65(3), 549–572 (2014).MathSciNet 
    Article 

    Google Scholar 
    Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9(7), 3784–3793 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. Is evolvability evolvable?. Genetics 9, 75–82 (2008).CAS 
    PubMed 

    Google Scholar 
    Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).Article 

    Google Scholar 
    Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis–a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis–A parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).CAS 
    Article 

    Google Scholar 
    Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5(1), 1–9 (2014).Article 

    Google Scholar 
    Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).MathSciNet 
    MATH 

    Google Scholar 
    Lopez-Sánchez, L. M. et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE 9(6), e99143 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116(9), 1186–1194 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36(34), 4887–4900 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogden, A., Rida, P. C. G., Knudsen, B. S., Kucuk, O. & Aneja, R. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89–92 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metastasis 36(2), 97–108 (2019).PubMed 
    Article 

    Google Scholar 
    Lin, K.-C. et al. Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Converg. Sci. Phys. Oncol. 3(4), 045001 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 4(4), 597–601 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cairns, J. Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148(4), 1433–1440 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, B. G. Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109 (1998).PubMed 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7(2), 118–126 (1953).Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonka, E. V. A. & Raz, G. A. L. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84(2), 131–176 (2009).PubMed 
    Article 

    Google Scholar 
    Steele, E. J. & Pollard, J. W. Hypothesis: Somatic hypermutation by gene conversion via the error prone DNA(longrightarrow )RNA(longrightarrow )DNA information loop. Mol. Immunol. 24(6), 667–673 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair 45, 1–24 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic Selection and Adaptive Evolution (Springer, US, 1979).
    Google Scholar 
    Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck’s Signature (Perseus Books, 1998).
    Google Scholar 
    Foster, P. L. Adaptive mutation: Implications for evolution. Bioessays 22, 1067–1074 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10(1), 13–26 (2012).CAS 
    Article 

    Google Scholar 
    Badyaev, A. V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B Biol. Sci. 272, 877–886 (2005).Article 

    Google Scholar 
    Bateman, K. G. The genetic assimilation of four venation phenocopies. J. Genet. 56(3), 443–474 (1959).Article 

    Google Scholar 
    Milkman, R. D. The genetic basis of natural variation. VI. Selection of a crossveinless strain of Drosophila by phenocopying at high temperature. Genetics 51(1), 87 (1965).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of the bithorax phenotype. Evolution 10(1), 1–13 (1956).Article 

    Google Scholar 
    Godoy, O., Saldaña, A., Fuentes, N., Valladares, F. & Gianoli, E. Forests are not immune to plant invasions: Phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol. Invasions 13(7), 1615–1625 (2011).Article 

    Google Scholar 
    Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68(3), 656–672 (2014).PubMed 
    Article 

    Google Scholar 
    Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10(1), 1–13 (2010).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19(22), 1932–1936 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos, J. B., Irschick, D. J. & Schoener, T. W. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution 48(6), 1786–1798 (1994).PubMed 
    Article 

    Google Scholar 
    Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54(1), 301–305 (2000).CAS 
    PubMed 

    Google Scholar 
    Sword, G. A. Density-dependent warning coloration. Nature 397(6716), 217 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Sword, G. A. A role for phenotypic plasticity in the evolution of aposematism. Proc. R. Soc. B Biol. Sci. 269(1501), 1639–1644 (2002).Article 

    Google Scholar 
    Clausen, J. & Hiesey, W. M. The balance between coherence and variation in evolution. Proc. Natl. Acad. Sci. 46(4), 494–506 (1960).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevitch, J. Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Am. J. Bot. 75(9), 1298–1306 (1988).Article 

    Google Scholar 
    Gurevitch, J. & Schuepp, P. H. Boundary layer properties of highly dissected leaves: An investigation using an electrochemical fluid tunnel. Plant Cell Environ. 13(8), 783–792 (1990).Article 

    Google Scholar 
    Gurevitch, J. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130(2), 385–394 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42(5), 373–397 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soppa, J. Polyploidy in archaea and bacteria: About desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. Microb. Physiol. 24, 409–419 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastide, A. & David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 7(4), 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Foster, P. L. Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467–504. https://doi.org/10.1146/annurev.mi.47.100193.002343 (2003).Article 

    Google Scholar 
    Lenski, R. E. & Mittler, J. E. The directed mutation controversy and neo-Darwinism. Science 259(5092), 188–194 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. & Sniegowski, P. D. “Adaptive mutation’’: The debate goes on. Science 269, 285–288 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256(5062), 1416–1419 (1992).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pribis, J. P. et al. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74(4), 785–800 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254–266 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shcherbakov, D. et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun. Biol. 2(1), 1–16 (2019).CAS 
    Article 

    Google Scholar 
    Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16(5), 288–304 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alphey, L. S., Crisanti, A., Randazzo, F. & Akbari, O. S. Opinion: Standardizing the definition of gene drive. Proc. Natl. Acad. Sci. USA 117(49), 30864 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Champer, S. E. et al. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLOS Comput. Biol. 17(12), e1009660 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4), 2013–2026 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heffel, M. G. & Finnigan, G. C. Mathematical modeling of self-contained CRISPR gene drive reversal systems. Sci. Rep. 9(1), 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nijhout, H. F., Kudla, A. M. & Hazelwood, C. C. Genetic assimilation and accommodation: Models and mechanisms. Curr. Top. Dev. Biol. 141, 337–369 (2021).PubMed 
    Article 

    Google Scholar 
    Noble, C., Adlam, B., Church, G. M., Esvelt, K. M. & Nowak, M. A. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22(8), 1721–1732 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. & Murren, C. J. Perspective: Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by?. Evolution 57, 1455–1464 (2003).PubMed 
    Article 

    Google Scholar 
    Hammerstein, P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34(5–6), 511–532 (1996).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Dieckmann, U. Coevolutionary Dynamics of Stochastic Replicator Systems (Central Library of the Research Center Jülich, 1994).
    Google Scholar 
    Dieckmann, U., Marrow, P. & Law, R. Evolutionary cycling in predator-prey interactions: population dynamics and the red queen. J. Theor. Biol. 176(1), 91–102 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define ‘fitness’ for general ecological scenarios?. Trends Ecol. Evol. 7(6), 198–202 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldschmidt, R. Some aspects of evolution. Science 78(2033), 539–547 (1933).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, T. L., Cohen, Y. & Brown, J. S. Evolution via strategy dynamics. Theor. Popul. Biol. 44(2), 149–176 (1993).MATH 
    Article 

    Google Scholar 
    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar  More

  • in

    Acoustic characteristics of sound produced by males of Bactrocera oleae change in the presence of conspecifics

    Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 87, 385–405 (2014).Article 

    Google Scholar 
    Kuba, H. & Sokei, Y. The production of pheromone clouds by spraying in the melon fly, Dacus cucurbitae coquillett (Diptera: Tephritidae). J. Ethol. 6, 105–110 (1988).Article 

    Google Scholar 
    Fletcher, B. S. The structure and function of the sex pheromone glands of the male Queensland fruit fly, Dacus tryoni.. J. Insect Physiol. 15, 1309–1322 (1969).Article 

    Google Scholar 
    Nation, J. L. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, Anastrepha suspensa. Ann. Entomol. Soc. Am. 65, 1364–1367 (1972).Article 

    Google Scholar 
    Arita, L. H. & Kaneshiro, K. Y. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. (EUA) 43, 135–143 (1989).
    Google Scholar 
    Briceño, R.D. & Eberhard, W.G. Male wing positions during courtship by Mediterranean fruit flies (Ceratitis capitata) (Diptera: Tephritidae). J. Kansas Entomol. Soc. 143–47 (2000).Benelli, G. et al. Male wing vibration in the mating behavior of the Olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). J. Insect Behav. 25, 590–603 (2012).Article 

    Google Scholar 
    Feron, M. L’appel sonore du mâle dans le comportement sexuel de Dacus oleae Gmel [Dipt Trypetidae]. Bull. Soc. Entomol. Fr. 65, 139–143 (1960).Article 

    Google Scholar 
    Feron, M. & Andrieu, A. J. Etude des signaux acoustiques du male dans le comportement sexuel de Dacus Oleae Gmel (Dipt. Trypetidae). Ann. Epiphyt. 13, 269–276 (1962).
    Google Scholar 
    Rolli, K. Die akustischen Sexualsignale von Ceratitis capitata Wied. Und Dacus oleae Gmel. Z. Angew. Entomol. 81, 219–223 (1976).Article 

    Google Scholar 
    Webb, J. C., Calkins, C. O., Chambers, D. L., Schwienbacher, W. & Russ, K. Acoustical aspects of behavior of Mediterranean fruit fly, Ceratitis capitata: Analysis and identification of courtship sounds. Entomol. Exp. Appl. 33, 1–8 (1983).Article 

    Google Scholar 
    Mankin, R. W., Lemon, M., Harmer, A. M. T., Evans, C. S. & Taylor, P. W. Time pattern and frequency analyses of sounds produced by irradiated and untreated male Bactrocera tryoni (Diptera: Tephritidae) during mating behavior. Ann. Entomol. Soc. Am. 101, 664–674 (2008).Article 

    Google Scholar 
    Miyatake, T. & Kanmiya, K. Male courtship song in circadian rhythm mutants of Bactrocera cucurbitae (Tephritidae: Diptera). J. Insect Physiol. 50, 85–91 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sivinski, J., Burk, T. & Webb, J. Acoustic courtship signals in the Caribbean fruit fly, Anastrepha suspensa (Loew). Anim. Behav. 32, 1011–1016 (1984).Article 

    Google Scholar 
    Mankin, R. W. et al. Broadcasts of wing-fanning vibrations recorded from calling male Ceratitis capitata (Diptera: Tephritidae) increase captures of females in traps. J. Econ. Entomol. 97, 1299–1309 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankin, R. W., Petersson, E., Epsky, N. D., Heath, R. R. & Sivinski, J. Exposure to male pheromones enhances Anastrepha suspensa (Diptera: Tephritidae) female response to male calling song. Fla. Entomol. 83, 411 (2000).CAS 
    Article 

    Google Scholar 
    Sivinski, J. & Webb, J. C. Changes in a Caribbean fruit fly acoustic signal with social situation (Diptera: Tephritidae)1. Ann. Entomol. Soc. Am. 79, 146–149 (1986).Article 

    Google Scholar 
    Canale, A. et al. The courtship song of fanning males in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae). Bull. Entomol. Res. 103, 303–309 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wicker-Thomas, C. Pheromonal communication involved in courtship behavior in Diptera. J. Insect. Physiol. 53, 1089–1100 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tan, K.H., Nishida, R., Jang, E.B. & Shelly, T.E. Pheromones, male lures, and trapping of tephritid fruit flies. In: Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, And Trade Implications 15–74 (Springer, 2014).Poramarcom, R. Sexual communication in the Oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Doctoral dissertation. (University of Hawaii at Manoa, 1988).Ekanayake, D. The mating system and courtship behaviour of the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Doctoral dissertation. (Queensland University of Technology, 2017).Suzuki, Y. & Koyama, J. Courtship behavior of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl. Entomol. Zool. 16, 164–166 (1981).Article 

    Google Scholar 
    Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nieri, R., Anfora, G., Mazzoni, V. & Rossi Stacconi, M. V. Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomol. Gen. 42, 167–183 (2022).Article 

    Google Scholar 
    Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 151–169 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rice, R. E., Phillips, P. A., Stewart-Leslie, J. & Sibbett, G. S. Olive fruit fly populations measured in Central and Southern California. Calif. Agric. 57, 122–127 (2003).Article 

    Google Scholar 
    Wang, X. et al. Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids. Sci. Rep. 11, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    Loher, W. & Zervas, G. The mating rhythm of the olive fruitfly, Dacus oleae Gmelin. Z. Angew. Entomol. 88, 425–435 (1979).Article 

    Google Scholar 
    Benelli, G. Aggression in Tephritidae flies: Where, when, why? Future directions for research in integrated pest management. Insects 6, 38–53 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benelli, G. Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): Role of residence and time of day. J. Insect. Behav. 27, 145–161 (2014).Article 

    Google Scholar 
    Shelly, T. E. Aggression between wild and laboratory-reared sterile males of the mediterranean fruit fly in a natural habitat (Diptera: Tephritidae). Fla. Entomol. 83, 105–108 (2000).Article 

    Google Scholar 
    Ekanayake, W. M., Clarke, A. R. & Schutze, M. K. Close-distance courtship of laboratory reared Bactrocera tryoni (Diptera: Tephritidae). Austral. Entomol. 58, 578–588 (2019).Article 

    Google Scholar 
    Ant, T. et al. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 10, 1–8 (2012).Article 

    Google Scholar 
    Estes, A. M. et al. A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J. Appl. Entomol. 136, 1–16 (2012).Article 

    Google Scholar 
    Zanini, D., Geurten, B., Spalthoff, C. & Göpfert, M. C. Sound communication in Drosophila. In Insect Hearing and Acoustic Communication Animal Signals and Communication, Vol. 1 (ed. Hedwig, B.) (Springer, 2014).
    Google Scholar 
    Windmill, J. F. C. & Jackson, J. C. Mechanical specializations of insect ears. In Insect Hearing. Springer Handbook of Auditory Research, Vol. 55 (eds Pollack, G. et al.) (Springer, 2016).
    Google Scholar 
    Talyn, B. C. & Dowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    Kanmiya, K. Acoustic studies on the mechanism of sound production in the mating songs of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). J. Ethol. 6, 143–151 (1988).Article 

    Google Scholar 
    Benelli, G. et al. Wing-fanning frequency as a releaser boosting male mating success—High-speed video analysis of courtship behavior in Campoplex capitator, a parasitoid of Lobesia botrana. Insect Sci. 27, 1298–1310 (2020).PubMed 
    Article 

    Google Scholar 
    Ge, J. et al. Pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. Insect Sci. 26, 510–522 (2019).PubMed 
    Article 

    Google Scholar 
    Mazzoni, V., Anfora, G. & Virant-Doberlet, M. Substrate vibrations during courtship in three drosophila species. PLoS ONE 8, e80708 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKelvey, E. G. Z. et al. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 31, 3894–3904 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strauß, J., Stritih-Peljhan, N., Nieri, R., Virant-Doberlet, M., & Mazzoni, V. Communication by substrate-borne mechanical waves in insects: From basic to applied biotremology. In: Advances in Insect Physiology, vol. 61, 189–307 (Academic Press, 2021).Mazomenos, B. E. Effect of age and mating on pheromone production in the female olive fruit fly, Dacus oleae (Gmel.). J. Insect Physiol. 30, 765–769 (1984).CAS 
    Article 

    Google Scholar 
    Carpita, A. et al. (Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: First evidence of a male-produced female attractant in in olive fruit fly. Naturwissenschaften 99, 77–81 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canale, A. et al. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants. Chemoecology 23, 155–164 (2013).CAS 
    Article 

    Google Scholar 
    Mcdonald, P. T. Intragroup stimulation of pheromone release by male mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 80, 17–20 (1987).CAS 
    Article 

    Google Scholar 
    Iwahashi, O. & Majima, T. Lek formation and male–male competition in the melon fly, Dacus cucurbitae Coquillett: Diptera: Tephritidae. Appl. Entomol. Zool. 21, 70–75 (1986).Article 

    Google Scholar 
    Keiser, I., Kobayashi, R. M., Chambers, D. L. & Schneider, E. L. Relation of sexual dimorphism in the wings, potential stridulation, and illumination to mating of oriental fruit flies, melon flies, and Mediterranean fruit flies in Hawaii. Ann. Ent. Soc. Am. 66, 937–941 (1973).Article 

    Google Scholar 
    Benelli, G. & Canale, A. Aggressive behavior in olive fruit fly females: Oviposition site guarding against parasitic wasps. J. Insect Behav. 29, 680–688 (2016).Article 

    Google Scholar 
    Rohde, B. B. et al. An acoustic trap to survey and capture two neoscapteriscus species. Fla. Entomol. 102, 654–657 (2019).Article 

    Google Scholar 
    Shelly, T. E. Lek size and female visitation in two species of tephritid fruit flies. Anim. Behav. 62, 33–40 (2001).Article 

    Google Scholar 
    Niyazi, N., Shuker, D. M. & Wood, R. J. Male position and calling effort together influence male attractiveness in leks of the medfly, Ceratitis capitata (Diptera: Tephritidae): Male attractiveness in leks of Ceratitis capitata. Biol. J. Linn. Soc. Lond. 95, 479–487 (2008).Article 

    Google Scholar 
    Greenfield, M. D. Signal interactions and interference in insect choruses: Singing and listening in the social environment. J. Comp. Physiol. A 201, 143–154 (2015).Article 

    Google Scholar 
    Kouloussis, N. A. et al. Age related assessment of sugar and protein intake of Ceratitis capitata in ad libitum conditions and modeling its relation to reproduction. Front. Physiol. 8, 1–13 (2017).Article 

    Google Scholar 
    Boersma, P. & Van Heuven, V. Speak and unSpeak with PRAAT. Glot Int. 5, 341–347 (2001).
    Google Scholar 
    Joyce, A. L. et al. Effect of continuous rearing on courtship acoustics of five braconid parasitoids, candidates for augmentative biological control of Anastrepha species. Biocontrol 55, 573–582 (2010).Article 

    Google Scholar 
    Sall, J. et al. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP (Sas Institute, 2017).
    Google Scholar  More

  • in

    Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf

    Lombard, F. et al. Consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. https://doi.org/10.3389/fmars.2019.00196 (2019).Article 

    Google Scholar 
    Sieracki, M. E., et al. Optical plankton imaging and analysis systems for ocean observation. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, 878–885 (2010). https://doi.org/10.5270/OceanObs09.cwp.81.Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Ann. Rev. Mar. Sci. 14(1), 277. https://doi.org/10.1146/annurev-marine-041921-013023 (2022).Article 
    PubMed 

    Google Scholar 
    Mars Brisbin, M., Brunner, O. D., Grossmann, M. M. & Mitarai, S. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65(12), 2953–2965. https://doi.org/10.1002/lno.11567 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Benfield, M. et al. RAPID: Research on automated plankton identification. Oceanography 20(2), 172–187. https://doi.org/10.5670/oceanog.2007.63 (2007).Article 

    Google Scholar 
    Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066. https://doi.org/10.7554/eLife.26066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, M. K. Principles and techniques of digital holographic microscopy. J. Photonics Energy. 1, 018005. https://doi.org/10.1117/6.0000006 (2010).Article 

    Google Scholar 
    Tahara, T., Quan, X., Otani, R., Takaki, Y. & Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 67(2), 55–67. https://doi.org/10.1093/jmicro/dfy007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jericho, S. K., Garcia-Sucerquia, J. F. W., Jericho, M. H. & Kreuzer, H. J. Submersible digital in-line holographic microscope. Rev. Sci. Instrum. 77(4), 043706. https://doi.org/10.1063/1.2193827 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bochdansky, A. B., Jericho, M. H. & Herndl, G. J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particlesto a depth of 6000 m. Limnol. Oceanogr: Methods 11, 28–40 (2013).Article 

    Google Scholar 
    Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22(6), 6661. https://doi.org/10.1364/OE.22.006661 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H. & Kreuzer, H. J. Point source digital in-line holographic microscopy. In Coherent Light Microscopy (eds Ferraro, P. et al.) 3–30 (Springer, 2011).Chapter 

    Google Scholar 
    Kanka, M., Riesenberg, R. & Kreuzer, H. J. Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34(8), 1162. https://doi.org/10.1364/OL.34.001162 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H., Kreuzer, H. J., Kanka, M. & Riesenberg, R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl. Opt. 51(10), 1503. https://doi.org/10.1364/AO.51.001503 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018).CAS 
    Article 

    Google Scholar 
    Sun, H. et al. digital holography for studies of marine plankton. Philos. Trans. R. Soc. A. 366, 1789–1806 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Bianco, V. et al. microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2(2), 1900153. https://doi.org/10.1002/aisy.201900153 (2020).Article 

    Google Scholar 
    Guo, B. et al. Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. Oceanogr. 19(1), 21–36. https://doi.org/10.1002/lom3.10402 (2021).Article 

    Google Scholar 
    Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147. https://doi.org/10.3389/fmars.2020.572147 (2021).Article 

    Google Scholar 
    Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95(3), 401–414. https://doi.org/10.1016/j.mimet.2013.08.011 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237), 1261605–1261605. https://doi.org/10.1126/science.1261605 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348(6237), 1262073–1262073. https://doi.org/10.1126/science.1262073 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 67(5), 612–622. https://doi.org/10.1111/jeu.12813 (2020).Article 
    PubMed 

    Google Scholar 
    Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirkham, A. R. et al. Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect: Marine photosynthetic picoeukaryote community structure. Environ. Microbiol. 13(4), 975–990. https://doi.org/10.1111/j.1462-2920.2010.02403.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15(6), 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Phil. Trans. R. Soc. B. 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanni, S. et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 8(1), 12085. https://doi.org/10.1038/s41598-018-30157-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pappalardo, P. et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab082 (2021).Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52(1), 79–92. https://doi.org/10.1016/j.femsec.2004.10.006 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sargent, E. C. et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol. Lett. 363(21), 244. https://doi.org/10.1093/femsle/fnw244 (2016).CAS 
    Article 

    Google Scholar 
    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219. https://doi.org/10.3389/fmars.2019.00219 (2019).Article 

    Google Scholar 
    Biard, T. et al. Biogeography and diversity of collodaria (radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6, 122. https://doi.org/10.3389/fmars.2019.00122 (2019).Article 

    Google Scholar 
    Bolaños, L. M. et al. Seasonality of the microbial community composition in the North Atlantic. Front. Mar. Sci. 8, 624164. https://doi.org/10.3389/fmars.2021.624164 (2021).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x (1982).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Decelle, J. & Not, F. Acantharia. ELS, 1–10 (2015). https://doi.org/10.1002/9780470015902.a0002102.pub2.Yu, L., An, Y. & Cai, L. Numerical reconstruction of digital holograms with variable viewing angles. Opt. Express 10(22), 1250. https://doi.org/10.1364/OE.10.001250 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Della Penna, A. & Gaube, P. Overview of (sub)mesoscale Ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 384. https://doi.org/10.3389/fmars.2019.00384 (2019).Article 

    Google Scholar 
    Sverdrup, H. U. Oceanography for Meteorologists (Prentice Hall, 1942).Book 

    Google Scholar 
    Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8(1), 161–184. https://doi.org/10.1146/annurev-marine-010814-015912 (2016).ADS 
    Article 

    Google Scholar 
    Fratantoni, P. S. & Pickart, R. S. The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37(10), 2509–2533. https://doi.org/10.1175/JPO3123.1 (2007).ADS 
    Article 

    Google Scholar 
    Bolaños, L. M. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 14(7), 1663–1674. https://doi.org/10.1038/s41396-020-0636-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, S. J., Siegel, D. A. & Graff, J. R. Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign. Front. Mar. Sci. 7, 215. https://doi.org/10.3389/fmars.2020.00215 (2020).Article 

    Google Scholar 
    Faure, E. et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 13(4), 1072–1083. https://doi.org/10.1038/s41396-018-0340-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fratantoni, P. S. & McCartney, M. S. Freshwater export from the labrador current to the North Atlantic Current at the tail of the grand banks of Newfoundland. Deep Sea Res. I. 57(2), 258–283. https://doi.org/10.1016/j.dsr.2009.11.006 (2010).Article 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007 (2015).Article 

    Google Scholar 
    Jian, C., Salonen, A. & Korpela, K. Commentary: How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 11, 627910. https://doi.org/10.3389/fcimb.2021.627910 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA. Limnol. Oceanogr. Methods 16(4), 209–221. https://doi.org/10.1002/lom3.10237 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotech. 36(2), 190–195. https://doi.org/10.1038/nbt.4045 (2018).CAS 
    Article 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47(18), e103–e103. https://doi.org/10.1093/nar/gkz569 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85(5), 18. https://doi.org/10.1128/AEM.02634-18 (2019).Article 

    Google Scholar 
    Vogt, M. et al. Global marine plankton functional type biomass distributions: Phaeocystis spp. Earth Syst. Sci. Data 5, 405–443. https://doi.org/10.5194/essdd-5-405-2012 (2012).ADS 
    Article 

    Google Scholar 
    MacNeil, L., Missan, S., Luo, J., Trappenberg, T. & LaRoche, J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol. Evol. 21(1), 123. https://doi.org/10.1186/s12862-021-01839-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pan, J., del Campo, J. & Keeling, P. J. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukary. Microbiol. 64(1), 88–96. https://doi.org/10.1111/jeu.12342 (2017).Article 

    Google Scholar 
    Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11(2), 362–373. https://doi.org/10.1038/ismej.2016.113 (2017).Article 
    PubMed 

    Google Scholar 
    Xie, N., Hunt, D. E., Johnson, Z. I., He, Y. & Wang, G. Annual partitioning patterns of Labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01652-20 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walcutt, N. L. et al. Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 3, 10379. https://doi.org/10.1002/lom3.10379 (2020).Article 

    Google Scholar 
    Axler, K. et al. Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem. Mar. Ecol. Prog. Ser. 650, 37–61. https://doi.org/10.3354/meps13397 (2020).ADS 
    Article 

    Google Scholar 
    Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12(1), 2816. https://doi.org/10.1038/s41467-021-22994-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, P. et al. Automatic plankton quantification using deep features. J. Plankton Res. 41(4), 449–463. https://doi.org/10.1093/plankt/fbz023 (2019).Article 

    Google Scholar 
    Briseño-Avena, C. et al. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions. Prog. Oceanogr. 188, 102436. https://doi.org/10.1016/j.pocean.2020.102436 (2020).Article 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Orenstein, E. C. et al. The scripps plankton camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18(11), 681–695. https://doi.org/10.1002/lom3.10394 (2020).Article 

    Google Scholar 
    Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. PNAS 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ryabov, A. et al. Shape matters: The relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4), 847–861. https://doi.org/10.1111/ele.13680 (2021).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Keeling, P. J. & del Campo, J. marine protists are not just big bacteria. Curr. Biol. 27(11), R541–R549. https://doi.org/10.1016/j.cub.2017.03.075 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8(1), 14375. https://doi.org/10.1038/ncomms14375 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2(1), 48. https://doi.org/10.1038/s43247-021-00120-y (2021).ADS 
    Article 

    Google Scholar 
    Mitchell, M. R. et al. Atlantic zone monitoring program protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223, 1–23 (2002).
    Google Scholar 
    Li, W. K. W., Glen Harrison, W. & Head, E. J. H. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc. B. 273(1596), 1953–1960. https://doi.org/10.1098/rspb.2006.3529 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, P. L. Florida current, gulf stream, and labrador current. In Encyclopedia of Ocean Sciences (ed. Steele, J. H.) 1054–1064 (Academic Press, 2001). https://doi.org/10.1006/rwos.2001.0357.Chapter 

    Google Scholar 
    Henson, S. A., Dunne, J. P. & Sarmiento, J. L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. 114(C4), C04013. https://doi.org/10.1029/2008JC005139 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, G., Lu, Z., Wang, Z., Helbig, J. & Chen, N. Seasonal variability of the labrador current and shelf circulation off Newfoundland. J. Geophys. Res. 113, 10. https://doi.org/10.1029/2007JC004376 (2008).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelley, D. “The Oce Package” In Oceanographic Analysis with R 91–101 (Springer, 2018).Book 

    Google Scholar 
    Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.Tomas, C. R. Identifying Marine Phytoplankton (Academic Press Inc, 1997).
    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6(11), e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems https://doi.org/10.1128/mSystems.00009-15 (2016).Article 
    PubMed 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2(2), e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohsen, A., Park, J., Chen, Y.-A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinform. 20(1), 581. https://doi.org/10.1186/s12859-019-3187-5 (2019).Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willis, A. & Bunge, J. Estimating diversity via frequency ratios: estimating diversity via ratios. Biometrics 71(4), 1042–1049. https://doi.org/10.1111/biom.12332 (2015).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407. https://doi.org/10.3389/fmicb.2019.02407 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8(9), 107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS 
    Article 

    Google Scholar 
    Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are the same. Comput. Struct. Biotech. J. 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014 (2020).CAS 
    Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Post-foraging in-colony behaviour of a central-place foraging seabird

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotler, B. P., Brown, J. S. & Bouskila, A. Apprehension and time allocation in gerbils: The effects of predatory risk and energetic state. Ecology 85, 917–922 (2004).Article 

    Google Scholar 
    Wajnberg, E., Bernhard, P., Hamelin, F. & Boivin, G. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60, 1–10 (2006).Article 

    Google Scholar 
    Embar, K., Kotler, B. P. & Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 120, 1657–1666 (2011).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Beauchamp, G. & Ruxton, G. D. A reassessment of the predation risk allocation hypothesis: A comment on Lima and Bednekoff. Am. Nat. 177, 143–146 (2011).PubMed 
    Article 

    Google Scholar 
    Ferrari, M. C. O., Sih, A. & Chivers, D. P. The paradox of risk allocation: A review and prospectus. Anim. Behav. 78, 579–585 (2009).Article 

    Google Scholar 
    Wolf, L. L. & Hainsworth, F. R. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128 (1975).Article 

    Google Scholar 
    Litzow, M. A. & Piatt, J. F. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba. J. Avian Biol. 34, 54–64 (2003).Article 

    Google Scholar 
    Rishworth, G. M., Tremblay, Y. & Green, D. B. Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9, e116544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology. (The University of Chicago Press, 2007).Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Systems (eds. Horn, D., Mitchell, R. & Stairs, G.) 154–177 (The Ohio State University Press, 1979).Chaurand, T. & Weimerskirch, H. The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: A previously undescribed strategy of food provisioning in a pelagic seabird. J. Anim. Ecol. 63, 275–282 (1994).Article 

    Google Scholar 
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. 23, 1372–1378 (2012).Article 

    Google Scholar 
    Welcker, J. et al. Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J. Avian Biol. 40, 388–399 (2009).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M. & Kidawa, D. Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci. Rep. https://doi.org/10.1038/s41598-020-65210-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shoji, A. et al. Dual foraging and pair coordination during chick provisioning by Manx shearwaters: Empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, R. A., Wakefield, E. D., Croxall, J. P., Fukuda, A. & Higuchi, H. Albatross foraging behaviour: No evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar. Ecol. Prog. Ser. 391, 279–292 (2009).ADS 
    Article 

    Google Scholar 
    Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W. & Karnovsky, N. J. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. J. Avian Biol. 43, 215–226 (2012).Article 

    Google Scholar 
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: Does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 
    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ochi, D., Oka, N. & Watanuki, Y. Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J. Ethol. 28, 313–321 (2010).Article 

    Google Scholar 
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).ADS 
    Article 

    Google Scholar 
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).ADS 
    Article 

    Google Scholar 
    Weimerskirch, H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J. Anim. Ecol. 67, 99–109 (1998).Article 

    Google Scholar 
    Stempniewicz, L. BWP update. Little Auk (Alle alle). J. Birds West. Palearct. 3, 175–201 (2001).
    Google Scholar 
    Wojczulanis-Jakubas, K. & Jakubas, D. When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle Alle). Auk 129, 632–637 (2012).Article 

    Google Scholar 
    Harding, A. M. A., Van Pelt, T. I., Lifjeld, J. T. & Mehlum, F. Sex differences in little auk Alle alle parental care: Transition from biparental to paternal-only care. Ibis (Lond. 1859). 146, 642–651 (2004).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K. et al. Duration of female parental care and their survival in the little auk Alle alle—Are these two traits linked ?. Behav. Ecol. Sociobiol. 74, 1–11 (2020).Article 

    Google Scholar 
    Wojczulanis, K., Dariusz, J. & Lech, S. The Little Auk Alle alle: An ecological indicator of a changing Arctic and a model organism. Polar Biol. https://doi.org/10.1007/s00300-021-02981-7 (2021).Article 

    Google Scholar 
    Steen, H., Vogedes, D., Broms, F., Falk-Petersen, S. & Berge, J. Little auks (Alle alle) breeding in a High Arctic fjord system: Bimodal foraging strategies as a response to poor food quality?. Polar Res. 26, 118–125 (2007).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D., Karnovsky, N. J. & Walkusz, W. Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res. 29, 22–29 (2010).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L., Darecki, M. & Stempniewicz, L. Foraging strategy of the little auk Alle alle throughout breeding season—switch from unimodal to bimodal pattern. J. Avian Biol. 45, 551–560 (2014).Article 

    Google Scholar 
    Jakubas, D., Iliszko, L., Wojczulanis-Jakubas, K. & Stempniewicz, L. Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol. 35, 73–81 (2012).Article 

    Google Scholar 
    Jakubas, D. et al. Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol. 391, 1547–1561 (2016).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 
    Article 

    Google Scholar 
    Stempniewicz, L. Predator-prey interactions between Glaucous Gull Larus hyperboreus and Little Auk Alle alle in Spitsbergen. Acta Ornithol. 29, 155–170 (1995).
    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Changes in the glaucous gull predatory pressure on little auks in Southwest Spitsbergen. Waterbirds 28, 430–435 (2005).Article 

    Google Scholar 
    Kharitonov, S. Methods and Theoretical Aspects of Seabird Studies. (Proc 5 All-Russian Mar Biol School, Marine Biological Institute, 2007).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Avifauna of Hornsund area, SW Spitsbergen: Present state and recent changes. Polish Polar Res. 29, 187–197 (2008).
    Google Scholar 
    Keslinka, K. L., Wojczulanis-Jakubas, K., Jakubas, D. & Neubauer, G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 14, 1–20 (2019).
    Google Scholar 
    Kidawa, D., Barcikowski, M. & Palme, R. Parent-offspring interactions in a long-lived seabird, the Little Auk (Alle alle): Begging and provisioning under simulated stress. J. Ornithol. 158, 145–157 (2017).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. https://doi.org/10.1093/beheco/ars131 (2012).Article 

    Google Scholar 
    Jakubas, D. & Wojczulanis, K. Predicting the sex of Dovekies by discriminant analysis. Waterbirds 30, 92–96 (2007).Article 

    Google Scholar 
    Grissot, A. et al. Parental coordination of chick provisioning in a planktivorous arctic seabird under divergent conditions on foraging grounds. Front. Ecol. Evol. 7, 349 (2019).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R. (2019).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Sex-specific parental care by incubating Little Auks (Alle alle). Ornis Fenn. 86, 140–148 (2009).
    Google Scholar 
    Welcker, J., Steen, H., Harding, A. M. A. & Gabrielsen, G. W. Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis (Lond. 1859). 151, 502–513 (2009).Article 

    Google Scholar 
    Kidawa, D. et al. Parental efforts of an Arctic seabird, the little auk Alle alle under variable foraging conditions. Mar. Biol. Res. 11, 349–360 (2015).Article 

    Google Scholar 
    Wickham, H. Hadley Wickham. Media 35, 211 (2009).
    Google Scholar 
    Karnovsky, N. J. et al. Inter-colony comparison of diving behavior of an Arctic top predator: Implications for warming in the Greenland Sea. Mar. Ecol. Prog. Ser. 440, 229–240 (2011).ADS 
    Article 

    Google Scholar 
    Karnovsky, N. et al. Foraging distributions of little auks Alle alle across the Greenland Sea: Implications of present and future Arctic climate change. Mar. Ecol. Prog. Ser. 415, 283–293 (2010).ADS 
    Article 

    Google Scholar 
    Gremillet, D. et al. Little auks buffer the impact of current Arctic climate change. Mar. Ecol. Prog. Ser. 454, 197–206 (2012).ADS 
    Article 

    Google Scholar 
    Harding, A. M. A. et al. Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23, 348–358 (2009).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging effort does not influence body condition and stress level in little auks. Mar. Ecol. Prog. Ser. 432, 277–290 (2011).ADS 
    Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M., Strøm, H. & Stempniewicz, L. Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia

    Sylvan, J. How to protect a coral reef: the public trust doctrine and the law of the sea recommended citation. Sustain. Dev. Law Policy 7, 12 (2006).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4, e00052–13 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reef. 25, 75–87 (1990).
    Google Scholar 
    Dubinsky, Z. & Stambler, N. Coral reefs: an ecosystem in transition. (Springer, 2011).Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. https://doi.org/10.1038/NCLIMATE1661 (2012).Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evolution 32, 735–745 (2017).Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehnert, E. M. et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda) 4, 277–95 (2014).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Berman-Frank, I. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. in. Aquat. Sci. 63, 4–17 (2001).CAS 
    Article 

    Google Scholar 
    Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–61 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15, e1008189 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2022653118 (2021).Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences Discuss. 9, 8111–8139 (2012).
    Google Scholar 
    Cziesielski, M. J., Schmidt‐Roach, S. & Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. https://doi.org/10.1002/ece3.5576 (2019).Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).PubMed 
    Article 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. Biol. Sci./R. Soc. 273, 2305–12 (2006).
    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change https://doi.org/10.1038/nclimate1330 (2011).Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. Biol. Sci. 285, 20172654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to environmental stress,making its relative ability to acclimate or adapt extremely important to the to future climate change. Science 344, 895–898 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrera, M. et al. Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J. 15, 141–153 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 1–19 https://doi.org/10.1007/s00338-020-01917-7 (2020).Perez, S. F., Cook, C. B. & Brooks, W. R. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 256, 1–14 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4, e6364 (2009).Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405–414 (2009).Article 

    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).Article 

    Google Scholar 
    LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).Article 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. 112, 201513318 (2015).
    Google Scholar 
    Matthews, J. L. et al. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J. Exp. Biol. jeb.128934 https://doi.org/10.1242/JEB.128934 (2015).Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeSalvo, M., Sunagawa, S., Voolstra, C. R. & Medina, M. Transcriptomic resonses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97–113 (2010).CAS 
    Article 

    Google Scholar 
    Maor-Landaw, K. & Levy, O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4, e1814 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).PubMed 
    Article 

    Google Scholar 
    Meyer, E. & Weis, V. M. Study of cnidarian-algal symbiosis in the “omics” age. Biol. Bull. 223, 44–65 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oakley, C. A. et al. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. J. Proteome Res. 16, 2121–2134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robbart, M. L., Peckol, P., Scordilis, S. P., Curran, H. A. & Brown-Saracino, J. Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A-tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283, 151–160 (2004).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H. & Palumbi, S. R. The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol. 220, 1837–1845 (2017).PubMed 

    Google Scholar 
    Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: The diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 62 (2016).Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).Article 

    Google Scholar 
    Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. N. Phytologist 212, 472–484 (2016).CAS 
    Article 

    Google Scholar 
    Lesser, K. B. & Garcia, F. A. Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern. Fetal Med. 6, 303–307 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunn, S. R., Schnitzler, C. E. & Weis, V. M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B: Biol. Sci. 274, 3079–3085 (2007).
    Google Scholar 
    DeSalvo, M. K. et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174–1186 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01220 (2017).Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 16802 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sproles, A. E. et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ. Microbiol. 22, 3741–3753 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rädecker, N. et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front. Physiol. 9, 214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. BioScience 43, 606–611 (1993).Article 

    Google Scholar 
    Wang & Douglas. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J. Exp. Biol. 201, 2445–53 (1998).Loram, J. E., Trapido-Rosenthal, H. G. & Douglas, A. E. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol. Ecol. 16, 4849–4857 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karako-Lampert, S. et al. Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS One 9, e88615 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hillyer, K. E., Tumanov, S., Villas-Bôas, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 219, 516–27 (2016).PubMed 

    Google Scholar 
    Bertucci, A., Forêt, S., Ball, E. E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl Acad. Sci. 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, M.-F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol. Open 8, bio038281 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medrano, E., Merselis, D. G., Bellantuono, A. J. & Rodriguez-Lanetty, M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Front. Microbiol. 10, 1153 (2019).Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J. Phycol. 49, 447–458 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Warming response of peatland CO2 sink is sensitive to seasonality in warming trends

    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).CAS 
    Article 

    Google Scholar 
    Tang, R. et al. Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nat. Clim. Change 12, 380–385 (2022).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 
    Article 

    Google Scholar 
    Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).CAS 
    Article 

    Google Scholar 
    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).
    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23, 3231–3248 (2017).Article 

    Google Scholar 
    Koebsch, F. et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob. Change Biol. 26, 876–887 (2020).Article 

    Google Scholar 
    Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Helfter, C. et al. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12, 1799–1811 (2015).Article 

    Google Scholar 
    Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).Article 

    Google Scholar 
    Mäkiranta, P. et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Glob. Change Biol. 24, 944–956 (2018).Article 

    Google Scholar 
    Li, Q. et al. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biol. Biochem. 153, 108077 (2021).CAS 
    Article 

    Google Scholar 
    Moore, T. R. et al. Spring photosynthesis in a cool temperate bog. Glob. Change Biol. 12, 2323–2335 (2006).Article 

    Google Scholar 
    Korrensalo, A. et al. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences 14, 257–269 (2017).CAS 
    Article 

    Google Scholar 
    Weltzin, J. F. et al. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81, 3464–3478 (2000).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    CAS 

    Google Scholar 
    Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).Article 
    CAS 

    Google Scholar 
    Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 
    Article 

    Google Scholar 
    Nichols, D. S. Temperature of upland and peatland soils in a north central Minnesota forest. Can. J. Soil Sci. 78, 493–509 (1998).Article 

    Google Scholar 
    Bellisario, L. M., Moore, T. R. & Bubier, J. L. Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Écoscience 5, 534–541 (1998).Article 

    Google Scholar 
    Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).Article 

    Google Scholar 
    Hanson, P. J. et al. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Adv. 1, e2020AV000163 (2020).Article 

    Google Scholar 
    Vincent, L. A. et al. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 28, 4545–4560 (2015).Article 

    Google Scholar 
    Templer, P. H. et al. Climate Change Across Seasons Experiment (CCASE): a new method for simulating future climate in seasonally snow-covered ecosystems. PLoS ONE 12, e0171928 (2017).Article 
    CAS 

    Google Scholar 
    Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).Article 

    Google Scholar 
    Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).CAS 
    Article 

    Google Scholar 
    Griffis, T. J., Rouse, W. R. & Waddington, J. M. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Glob. Biogeochem. Cycles 14, 1109–1121 (2000).CAS 
    Article 

    Google Scholar 
    Bubier, J. L., Crill, P. M., Moore, T. R., Savage, K. & Varner, R. K. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob. Biogeochem. Cycles 12, 703–714 (1998).CAS 
    Article 

    Google Scholar 
    Park, S.-B. et al. Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia. Atmosphere 12, 984 (2021).CAS 
    Article 

    Google Scholar 
    Adkinson, A. C., Syed, K. H. & Flanagan, L. B. Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J. Geophys. Res. Biogeosci. 116, G01004 (2011).Article 
    CAS 

    Google Scholar 
    Heiskanen, L. et al. Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences 18, 873–896 (2021).CAS 
    Article 

    Google Scholar 
    Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. & Moore, T. R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 17, 1036 (2003).Article 
    CAS 

    Google Scholar 
    Joiner, D. W., Lafleur, P. M., McCaughey, J. H. & Bartlett, P. A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res. Atmos. 104, 27663–27672 (1999).CAS 
    Article 

    Google Scholar 
    McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. & Kiely, G. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. For. Meteorol. 194, 8–19 (2014).Article 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Change 10, 555–560 (2020).CAS 
    Article 

    Google Scholar 
    Bourgault, M.-A., Larocque, M. & Garneau, M. How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands? J. Hydrol. X 4, 100032 (2019).Article 

    Google Scholar 
    Yurova, A., Wolf, A., Sagerfors, J. & Nilsson, M. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: modeling mechanisms linked to water table position. J. Geophys. Res. Biogeosci. 112, G02025 (2007).Article 
    CAS 

    Google Scholar 
    Laine, A. M. et al. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Change Biol. 25, 1995–2008 (2019).Article 

    Google Scholar 
    Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W. & McGuire, A. D. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12, 1329–1342 (2009).CAS 
    Article 

    Google Scholar 
    Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).CAS 
    Article 

    Google Scholar 
    Hao, D. et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sens. Environ. 232, 111320 (2019).Article 

    Google Scholar 
    O’Donnell, J. A., Romanovsky, V. E., Harden, J. W. & McGuire, A. D. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci. 174, 646–651 (2009).Article 
    CAS 

    Google Scholar 
    Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).Article 

    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).CAS 
    Article 

    Google Scholar 
    Samson, M. et al. The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in northern Poland. Wetlands 38, 551–563 (2018).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).CAS 
    Article 

    Google Scholar 
    Hemes, K. S., Runkle, B. R. K., Novick, K. A., Baldocchi, D. D. & Field, C. B. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ. Sci. Technol. 55, 3494–3504 (2021).CAS 
    Article 

    Google Scholar 
    Walker, T. W. N. et al. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nat. Ecol. Evol. 4, 101–108 (2020).Article 

    Google Scholar 
    Xu, B. et al. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob. Change Biol. 26, 901–918 (2020).Article 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Joyce, P. et al. How robust Is the apparent break-down of northern high-latitude temperature control on spring carbon uptake? Geophys. Res. Lett. 48, e2020GL091601 (2021).Article 

    Google Scholar 
    Grant, R. F. et al. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiol. 29, 1–17 (2009).CAS 
    Article 

    Google Scholar 
    Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).CAS 
    Article 

    Google Scholar 
    Yu, Z., Griffis, T. J. & Baker, J. M. Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt. Commun. Earth Environ. 2, 53 (2021).Article 

    Google Scholar 
    Wang, S. et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295, 108195 (2020).Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).CAS 
    Article 

    Google Scholar 
    Lin, X. et al. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl Acad. Sci. USA 117, 21079–21087 (2020).CAS 
    Article 

    Google Scholar 
    Helbig, M. et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Zenodo https://doi.org/10.5281/zenodo.6685222 (2022).Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC (2015); https://doi.org/10.5067/MODIS/MOD13Q1.006Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Lees, K. J. et al. Using spectral indices to estimate water content and GPP in Sphagnum moss and other peatland vegetation. IEEE Trans. Geosci. Remote Sens. 58, 4547–4557 (2020).Article 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Juottonen, H. et al. Integrating decomposers, methane-cycling microbes and ecosystem carbon fluxes along a peatland successional gradient in a land uplift region. Ecosystems https://doi.org/10.1007/s10021-021-00713-w (2021). More