Hand, S.C. Metabolic dormancy in aquatic invertebrates. In Advances in Comparative and Environmental Physiology, Vol. 8 (ed. Gilles, R.) 1–50. https://doi.org/10.1007/978-3-642-75900-0_1 (1991).Cáceres, C. E. Dormancy in Invertebrates. Invertebr. Biol. 116(4), 371–383. https://doi.org/10.2307/3226870 (1997).Article
Google Scholar
Wilsterman, K., Ballinger, M. A. & Williams, C. M. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11–31. https://doi.org/10.1111/1365-2435.13718 (2021).Article
Google Scholar
Bertolani, R., Guidetti, R., Altiero, T., Nelson, D. R. & Rebecchi, L. Dormancy in Freshwater Tardigrades. In Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae Vol. 92 (eds Alekseev, V. & Pinel-Alloul, B.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-21213-1_3.Chapter
Google Scholar
Guidetti, R., Altiero, T. & Rebecchi, L. On dormancy strategies in tardigrades. J. Insect Physiol. 57(5), 567–576. https://doi.org/10.1016/j.jinsphys.2011.03.003 (2011).CAS
Article
PubMed
Google Scholar
Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436 (2011).CAS
Article
PubMed
Google Scholar
Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42(3), 246–256. https://doi.org/10.1111/phen.12193 (2017).CAS
Article
Google Scholar
Wang, Y., Ezemaduka, A. N., Tang, Y. & Chang, Z. Understanding the mechanism of the dormant dauer formation of C. elegans: From genetics to biochemistry. IUBMB Life 61(6), 607–12. https://doi.org/10.1002/iub.211 (2009).CAS
Article
PubMed
Google Scholar
Dias, I. B., Bouma, H. R. & Henning, R. H. Unraveling the big sleep: Molecular aspects of stem cell dormancy and hibernation. Front. Physiol. 12, 624950. https://doi.org/10.3389/fphys.2021.624950 (2021).Article
PubMed
PubMed Central
Google Scholar
Storey, K. B. & Storey, J. M. Metabolic regulation and gene expression during aestivation. Prog. Mol. Subcell. Biol. 49, 25–45. https://doi.org/10.1007/978-3-642-02421-4_2 (2010).CAS
Article
PubMed
Google Scholar
Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(11), R1193–R1211. https://doi.org/10.1152/ajpregu.00250.2015 (2016).Article
PubMed
PubMed Central
Google Scholar
Ikeda, H., Ohtsu, K. & Uye, S. I. Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). Biol. Bull. 221(3), 248–260 (2011).PubMed
Article
Google Scholar
Bushnell, J. H. & Rao, K. S. Dormant or quiescent stages and structures among the Ectoprocta: Physical and chemical factors affecting viability and germination of statoblasts. Trans. Am. Microsc. Soc. 93, 524–543. https://doi.org/10.2307/3225156 (1974).Article
Google Scholar
Hyman, L. H. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta Vol. III (McGraw-Hill, 1951).
Google Scholar
Mukai, H. & Toshiki, M. Studies on the regeneration of an entoproct, Barentsia discreta. J. Exp. Zool. 205(2), 261–276. https://doi.org/10.1002/jez.1402050210 (1978).Article
Google Scholar
Nakauchi, M. Asexual development of ascidians: Its biological significance, diversity, and morphogenesis. Am. Zool. 22(4), 753–763. https://doi.org/10.1093/icb/22.4.753 (1982).Article
Google Scholar
Hyams, Y., Paz, G., Rabinowitz, C. & Rinkevich, B. Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev. Biol. 428(1), 101–117. https://doi.org/10.1016/j.ydbio.2017.05.020 (2017).CAS
Article
PubMed
Google Scholar
Brown, C. J. D. A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Microsc. Soc. 52, 271–313 (1933).CAS
Article
Google Scholar
Mukai, H. Development of freshwater bryozoans (Phylactolaemata). In Developmental Biology of Freshwater Invertebrates (eds Harrison, R. W. & Cowden, R. R.) 535–576 (Alan R. Liss Inc., 1982).
Google Scholar
Wood, T. S. Phyla ectoprocta and entoprocta (Bryozoans). In Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 327–345 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00016-4.Chapter
Google Scholar
Simpson, T. L. The Cell Biology of Sponges (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5214-6.Book
Google Scholar
Alié, A., Hiebert, L. S., Scelzo, M. & Tiozzo, S. The eventful history of nonembryonic development in tunicates. J. Exp. Zool. Part B Mol. Dev. Evol. 33(3), 181–217. https://doi.org/10.1002/jez.b.22940 (2020).Article
Google Scholar
Brown, F. D. & Swalla, B. J. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev. Biol. 3692, 151–162 (2012).Article
CAS
Google Scholar
Kawamura, K. & Fujiwara, S. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates. Semin. Cell Biol. 6, 117–126 (1995).CAS
PubMed
Article
Google Scholar
Kassmer, S. H., Langenbacher, A. D. & De Tomaso, A. W. Integrin-alpha-6+ candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat. Commun. 11(1), 4435–4511. https://doi.org/10.1038/s41467-020-18288-w (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Freeman, G. The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J. Exp. Zool. 156, 157–183 (1964).CAS
PubMed
Article
Google Scholar
Kürn, U., Rendulic, S., Tiozzo, S. & Lauzon, R. J. Asexual propagation and regeneration in colonial ascidians. Biol. Bull. 221(1), 43–61. https://doi.org/10.1086/BBLv221n1p43 (2011).Article
PubMed
Google Scholar
Sköld, H. N., Obst, M., Sköld, M. & Åkesson, B. Stem cells in asexual reproduction of marine invertebrates. In Stem Cells in Marine Organisms (eds Rinkevich, B. & Matranga, V.) 105–137 (Springer, Dordrecht, 2009).Chapter
Google Scholar
Tiozzo, S., Brown, F. D. & De Tomaso, A. W. Regeneration and stem cells in ascidians. In Stem Cells (ed. Bosch, T. C. G.) (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8274-0_6.Chapter
Google Scholar
Mukai, H., Koyama, H. & Watanabe, H. Studies on the reproduction of three species of Perophora (Ascidiacea). Biol. Bull. 164(2), 251–266 (1983).Article
Google Scholar
Huxley, J. Memoirs: studies in dedifferentiation: II. Dedifferentiation and resorption in Perophora. Q. J. Microsc. Sci. s2-65(260), 643–697 (1921).
Google Scholar
Huxley, J. Studies in dedifferentiation. VI. Reduction phenomena in Clavelina lepadiformis. Pubb. Staz. Zool. Napoli. 7, 1–34 (1926).
Google Scholar
Turon, X. Periods of nonfeeding in Polysyncraton-lacazei (Ascidiacea, Didemnidae)—A process. Mar. Biol. 112, 647–655 (1992).Article
Google Scholar
Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
Giard, M. A. & Caullery, M. On the hibernation of Clavelina lepadiformis, Müller. Ann. Mag. Nat. Hist. 18(108), 485–486. https://doi.org/10.1080/00222939608680499 (1896).Article
Google Scholar
Orton, J. H. The production of living Clavellina Zooids in winter by experiment. Nature 107, 75. https://doi.org/10.1038/107075a0 (1921).ADS
Article
Google Scholar
Della, Valle P. Studii sui rapporti fra differenziazione e rigenerazione. 4. Bollettino Della Società Dei Naturalisti in Napoli 7, 1–37 (1915).
Google Scholar
Scelzo, M. et al. Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. EvoDevo https://doi.org/10.1186/s13227-019-0121-x (2019).Article
PubMed
PubMed Central
Google Scholar
Berrill, N. J. Regeneration and budding in tunicates. Biol. Rev. 26, 456–475. https://doi.org/10.1111/j.1469-185X.1951.tb01207.x/full (1951).Article
Google Scholar
Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197. https://doi.org/10.1029/1999JC000065 (2001).ADS
Article
Google Scholar
Berrill, N. J. & Cohen, A. Regeneration in Clavelina lepadiformis. J. Exp. Biol. 13(3), 352–362. https://doi.org/10.1242/jeb.13.3.352 (1936).Article
Google Scholar
Jiménez-Merino, J. et al. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo https://doi.org/10.1186/s13227-019-0144-3 (2019).Article
PubMed
PubMed Central
Google Scholar
Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics UK 7, 1051–1073 (2015).CAS
Article
Google Scholar
Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. In DNA Methylation: Development, Genetic Disease and Cancer: Current Topics in Microbiology and Immunology Vol. 310 (eds Doerfler, W. & Böhm, P.) (Springer, 2006). https://doi.org/10.1007/3-540-31181-5_7.Chapter
Google Scholar
Orton, J. H. Preliminary account of a contribution to an evaluation of the sea. J. Mar. Biol. Assoc. UK 10(2), 312–326. https://doi.org/10.1017/S0025315400007815 (1914).Article
Google Scholar
Mukai, H. Histological and histochemical studies of two compound ascidians, Clavelina lepadiformis and Diazona violacea, with special reference to the trophocytes, ovary and pyloric gland. Sci. Rep. Fac. Educ. Gunma Univ. 26, 37–77 (1977).
Google Scholar
de Caralt, S., López-Legentil, S., Tarjuelo, I., Uriz, M. J. & Turon, X. Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Mar. Ecol. Prog. Ser. 244, 125–137 (2002).ADS
Article
Google Scholar
Turon, X. A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebr. Biol. 124(3), 273–283. https://doi.org/10.1111/j.1744-7410.2005.00025.x (2005).Article
Google Scholar
Pyo, J. & Shin, S. A new record of invasive alien colonial tunicate Clavelina lepadiformis (Ascidiacea: Aplousobranchia: Clavelinidae) in Korea. Anim. Syst. Evol. Divers. 27, 197–200 (2011).Article
Google Scholar
Reinhardt, J. et al. First record of the non-native light bulb tunicate Clavelina lepadiformis (Müller, 1776) in the northwest Atlantic. Aquat. Invasions 5(2), 185–190. https://doi.org/10.3391/ai.2010.5.2.09 (2010).Article
Google Scholar
Turon, X., Tarjuelo, I., Duran, S. & Pascual, M. Characterising invasion processes with genetic data: An Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503(1–3), 29–35. https://doi.org/10.1023/b:hydr.0000008481.10705.c2 (2003).Article
Google Scholar
Van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945).
Google Scholar
Carman, M. et al. Ascidians at the Pacific and Atlantic entrances to the Panama Canal. Aquat. Invasions 6(4), 371–380. https://doi.org/10.3391/ai.2011.6.4.02 (2011).Article
Google Scholar
Holman, L. E. et al. Managing human-mediated range shifts: Understanding spatial, temporal and genetic variation in marine non-native species. Philos. Trans. R. Soc. B 377, 20210025 (2022).CAS
Article
Google Scholar
Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Marine Ecology Progress Series 259, 145–161. https://doi.org/10.3354/meps259145 (2003).ADS
Article
Google Scholar
Brunetti, R. Polyandrocarpa zorritensis (Van Name, 1931). A colonial ascidian new to the Mediterranean record. Vie et Milieu 28–29, 647–652 (1978).
Google Scholar
Brunetti, R. & Mastrototaro, F. The non-indigenous stolidobranch ascidian Polyandrocarpa zorritensis in the Mediterranean: Description, larval morphology and pattern of vascular budding. Zootaxa 528, 1–8 (2004).Article
Google Scholar
Mastrototaro, F., D’Onghia, G. & Tursi, A. Spatial and seasonal distribution of ascidians in a semi-enclosed basin of the Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1053–1061 (2008).Article
Google Scholar
Stabili, L., Licciano, M., Longo, C., Lezzi, M. & Giangrande, A. The Mediterranean non- indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications. Mar. Pollut. Bull. 101, 146–152 (2015).CAS
PubMed
Article
Google Scholar
Turon, X. & Becerro, M. A. Growth and survival of several ascidian species from the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 82, 235–247 (1992).ADS
Article
Google Scholar
Sumida, P. Y. G. et al. Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: Potential for deep-sea invasion. Braz. J. Oceanogr. 63, 515–520 (2015).Article
Google Scholar
Vázquez, E. & Young, C. M. Responses of compound ascidian larvae to haloclines. Mar. Ecol. Prog. Ser. 133, 179–190 (1996).ADS
Article
Google Scholar
Vázquez, E. & Young, C. M. Ontogenetic changes in phototaxis during larval life of the Ascidian Polyandrocarpa zorritensis (Van Name, 1931). J. Exp. Mar. Biol. Ecol. 231, 267–277 (1998).Article
Google Scholar
Brien, P. & Brien-Gavage, E. Contribution à l’étude de la Blastogénèse des Tuniciers: III: Bourgeonnement de Clavelina Lepadiformis Müller. Recueil de L’Institut Zoologique Torley-Rousseau 1–56 (1927).Fujimoto, H. & Watanabe, H. The characterization of granular amoebocytes and their possible roles in the asexual reproduction of the polystyelid ascidian, Polyzoa vesiculiphora. J. Morphol. 150(3), 623–637. https://doi.org/10.1002/jmor.1051500303 (1976).Article
PubMed
Google Scholar
Cima, F., Franchi, N. & Ballarin, L. Origin and functions of tunicate hemocytes. In The Evolution of the Immune System (ed. Malagoli, D.) 29–49 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801975-7/00002-5.Chapter
Google Scholar
Kerb, H. Biologische Beiträge zur Frage der Überwinterung der Ascidien. Arch. Mikrosk. Anat. 72(1), 386–414 (1908).Article
Google Scholar
Driesch, H. Studien über das Regulationsvermögen de Organismen. 6. Die Restitutionen der Clavellina lepadiformis. Arch. F. Entw.-Mech. 14, 247–287 (1902).Article
Google Scholar
Schultz, E. Über Reductionen. III. Die Reduction und Regeneration des abgeschnitten Kiemenkorbes von Clavellina lepadiformis. Arch. Entw. Mech. Org. 24, 503–523 (1907).
Google Scholar
Spek, J. Über die Winterknospenentwicklung, Regeneration und Reduktion bei Clavellina lepadiformis und die Bedeutung besonderer “omnipotenter” Zellelemente für diese Vorgänge. Wilhelm Roux’Archiv Entwicklungsmechanik der Org 111(119), 172 (1927).
Google Scholar
Brien, P. Contribution à l’étude de la régéneration naturelle et expérimentale chez les Clavelinidae. Soc. R. Zool. Belg. Ann LXI, 19–112 (1930).
Google Scholar
Ries, E. Die Tropfenzellen und ihre Bedeutung für die Tunicabildung bei Clavelina. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 363–371. https://doi.org/10.1007/BF00593066 (1937).Article
PubMed
Google Scholar
Fischer, I. Über das Verhalten des stolonialen Gewebes der Ascidie Clavelina lepadiformis in vitro. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 383–403. https://doi.org/10.1007/BF00593068 (1937).Article
PubMed
Google Scholar
Seelinger, O. Eibildung und Knospung von Clavelina lepadiformis. Sitzungsber. d. Kais. Kgl. Acad. d. Wiss 1–56 (1882).Van Beneden, E. & Julin, C. Recherches sur la morphologie des tuniciers. Arch. Biol. 6, 237–476 (1886).
Google Scholar
Garstang, W. Memoirs: The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. J. Cell Sci. 1928(2), 51–187 (1928).Article
Google Scholar
Kimura, K. D., Tissenbaum, H. A., Liu, Y. X. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).CAS
PubMed
Article
Google Scholar
Ogawa, A. & Brown, F. Dauer formation and dauer-specific behaviours in Pristionchus pacificus. In Pristionchus pacificus—A nematode model for comparative and evolutionary biology (ed. Sommer, R. J.) (Brill, 2015). https://doi.org/10.1163/9789004260306_011.Chapter
Google Scholar
Wisdom, R. AP-1: One switch for many signals. Exp. Cell Res. 253(1), 180–185. https://doi.org/10.1006/excr.1999.4685 (1999).CAS
Article
PubMed
Google Scholar
Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).CAS
PubMed
Article
Google Scholar
Srivastava, M. Beyond casual resemblances: rigorous frameworks for comparing regeneration across species. Annu. Rev. Cell Dev. Biol. 37, 1–26 (2021).Article
CAS
Google Scholar
Alié, A. et al. Convergent acquisition of nonembryonic development in styelid ascidians. Mol. Biol. Evol. 35, 1728–1743. https://doi.org/10.1093/molbev/msy068 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, 1. https://doi.org/10.1371/journal.pbio.1001725 (2013).CAS
Article
Google Scholar
Prünster, M. M., Ricci, L., Brown, F. D. & Tiozzo, S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo https://doi.org/10.1186/s13227-019-0116-7 (2019).Article
PubMed
PubMed Central
Google Scholar
Kawamura, K., Shiohara, M., Kanda, M. & Fujiwara, S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev. Biol. 384, 343–355 (2013).CAS
PubMed
Article
Google Scholar
Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol. 5, e71. https://doi.org/10.1371/journal.pbio.0050071 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 4(1), 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Krueger, F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. https://doi.org/10.1038/nbt.1883 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Research 6, 1287. https://doi.org/10.12688/f1000research.12232.1 (2017).Article
Google Scholar
Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 (2006).CAS
Article
PubMed
Google Scholar
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene prediction (ed. Kollmar, M.) 227–245 (Humana, New York, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14.Chapter
Google Scholar
Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-021-01101-x (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100 (2021).CAS
Article
Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519 (2016).CAS
Article
PubMed
Google Scholar
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15(2), 1–17. https://doi.org/10.1186/gb-2014-15-2-r29 (2014).CAS
Article
Google Scholar
Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12(1), 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article
Google Scholar
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS
Article
PubMed
PubMed Central
Google Scholar
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).CAS
Article
PubMed
Google Scholar
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).CAS
Article
Google Scholar
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009).Article
CAS
Google Scholar More