More stories

  • in

    Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    IPBES. The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. in Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. eds.). 1–552. https://ipbes.net/sites/default/files/downloads/pdf/individual_chapters_pollination_20170305.pdf (2016).Ollerton, J. et al. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    Linder, H. P. Morphology and the Evolution of Wind Pollination. Reproductive Biology 123–135 (Royal Botanic Gardens, 1998).
    Google Scholar 
    Friedman, J. & Barrett, S. C. H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 103, 1515–1527 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallai, N. et al. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Srinivasan, M. R. et al. Impact of Pesticides on Honey Bees and Pollinators. Pesticide Application in Agro Ecosystem-Its Dynamics and Implications 243–248 (TNAU Publications, 2015).
    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Impacts of Pesticides on Honey Bees. Beekeeping and Bee Conservation—Advances in Research. https://doi.org/10.5772/62487. (InTech, 2016).Berry, I. Dead bees don’t pollinate. Orchardist. New Zealand, 60, 287 (1987). Rev. Appl. Entomol. Ser. A 76, 1087 (1998).
    Google Scholar 
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101(10), 1262 (2011).
    Google Scholar 
    Sandilyan, S. Decline in honey bee population in Southern India: Role of disposable paper cups. J. Zool. Biosci. Res. 1, 6–9 (2014).
    Google Scholar 
    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article 

    Google Scholar 
    FAO. Declining Bee Populations Pose Threat to Global Food Security and Nutrition. UN World Bee Day, 20 May, Rome. https://www.fao.org/news/story/en/item/1194910/icode/. (2019).Najaran, Z.T. et al. Dill (Anethum graveolens L.) Essential Oils in Food Preservation, Flavor and Safety. https://doi.org/10.1016/C2012-0-06581-7 (Academic Press, 2016). Khare, C.P. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany. 1st edn. 326–327. (Springer, 2004).Jana, S. & Shekhawat, G. S. Anethum graveolens: An indian traditional medicinal herb and spice. Pharmacogn. Rev. 4, 179–184 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biesiada, A. et al. Nutritional value of garden dill (Anethum graveolens L.), depending on genotype. Notulae Bot. Horti Agrobot. Cluj-Napoca 47, 784–791 (2019).CAS 

    Google Scholar 
    Pulliah, T. Medicinal Plants in India. Vol. 1. 55–56. (Regency Publications New Delhi, 2002).Hornok, L. Cultivation and Processing of Medicinal Plants. 338. (Academic Publications, 1992).Nair, R. & Chanda, S. Antibacterial activities of some medicinal plants of the western region of India. Turk. J. Biol. 31, 231–236 (2007).
    Google Scholar 
    DASD. State Agriculture/Horticulture Departments/DASD Kozhikode, Kerala. https://www.dasd.gov.in/index.php/content/index/statistics (2020).Nemeth, E. & Szekely, G. Floral biology of medicinal plants I. Apiaceae species. Int. J. Horticult. Sci. 6, 133–136 (2000).
    Google Scholar 
    Weiss, E. A. Spice Crops. 268–283 (CAB International, 2002).Book 

    Google Scholar 
    Peter, K.V. Dill in Handbook of Herbs and Spices (Gupta, R., Answer, M.M., Sharma, Y.K. Eds.). 275–285. (Woodhead Publishing Limited, 2012).Meena, N. K. et al. Role of insect pollinators in pollination of seed spices—A review. Int. J. Seed Spices 5, 1–17 (2015).
    Google Scholar 
    Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 3rd edn. (Pergamon, 1980).
    Google Scholar 
    Ali, M., Saeed, S., Sajjad, A. & Whittington, A. In search of the best pollinators for canola (Brassica napus L.) production in Pakistan. Appl. Entomol. Zool. 46, 353–361 (2011).Article 

    Google Scholar 
    Singh, H., Swaminathan, R. & Hussain, T. Influence of certain plant products on the insect pollinators of coriander. J. Biopest. 3, 208–211 (2010).
    Google Scholar 
    Kant, K. et al. Relative abundance and foraging behavior of honey bee species on minor seed spice crops. Int. J. Seed Spices 3, 51–54 (2013).
    Google Scholar 
    Willmer, P. G. et al. The superiority of bumblebees to honeybees as pollinators: Insect visits to raspberry flowers. Ecol. Entomol. 19, 271–284 (1994).Article 

    Google Scholar 
    Stone, J. L. Components of pollination effectiveness in Psychotria suerrensis, a tropical distylous shrub. Oecologia 107, 504–512 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, K. M. Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia 109, 114–121 (1997).ADS 

    Google Scholar 
    Ivey, C. T. et al. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnate (Apocynaceae). Am. J. Bot. 90, 214–225 (2003).PubMed 
    Article 

    Google Scholar 
    Korpela, S. The influence of honeybee pollination on turnip rape (Brassica campestris) yield and yield components. Ann. Agric. Fenniae 27, 295–303 (1988).
    Google Scholar 
    Sabbahi, R. et al. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Cruciferae: Brassicacae). J. Econ. Entomol. 98, 267–372 (2005).Article 

    Google Scholar 
    Warakomska, Z. et al. Biology of the bloom and pollination of the umbelliferous vegetables. Part 1: garden dill (Anethum graveolens L.). Acta Agrobot. 35, 69–78 (1982).Article 

    Google Scholar 
    Meena, N. K. et al. Pollinator’s diversity and abundance on cumin (Cuminum cyminum L.) and their impact on yield enhancement at semi-arid region. J. Entomol. Zool. Stud. 6, 1017–1021 (2018).
    Google Scholar 
    Malhotra, S.K. & Vashishtha, B.B. Package of practices for production of seed spices. in Book Published by the Director, ICAR-National Research Centre on Seed Spices, Ajmer. 71–79. (2008).Chaudhary, O. P. diversity, foraging behaviour of floral visitors and pollination ecology of fennel (Foeniculum vulgare Mill). J. Spices Aromatic Crops 15, 34–41 (2006).
    Google Scholar 
    Rianti, P. et al. Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). HAYATI J. Biosci. 17, 38–42 (2010).Article 

    Google Scholar 
    Choi, S. W. & Jung, C. Diversity of insect pollinators in different agricultural crops and wild flowering plants in korea: Literature review. J. Apicult. 30, 191–201 (2015).MathSciNet 
    Article 

    Google Scholar 
    Siregar, E. F. et al. Diversity and abundance of insect pollinators in different agricultural lands in Jambi, Sumatera. HAYATI J. Biosci. 23, 13–17 (2016).Article 

    Google Scholar 
    Devi, M. et al. Diversity of insect pollinators in reference to seed set of mustard (Brassica juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 2131–2144 (2017).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide. 2nd edn. (Cambridge University Press, 1993).Dafni, A. Pollination Ecology: A Practical Approach (Oxford University Press, 1992).
    Google Scholar 
    Chaudhary, O. P. & Singh, J. Diversity, temporal abundance, foraging behaviour of floral visitors and effect of different modes of pollination on coriander (Coriandrum sativum L.). J. Spices Aromatic Crops 16, 8–14 (2007).
    Google Scholar 
    Kulkarni, S. R., Gurve, S. S. & Chormule, A. J. Effect of different indigenous bee attractants in onion (Allium cepa L.) crop. Ann. Plant Protect. Sci. 25, 78–82 (2017).
    Google Scholar 
    Manhare, J. S. & Painkra, G. P. Impact of bee attractants on bee visitation on buckwheat (Fagopyrum esculentum L.) crop. J. Entomol. Zool. Stud. 6, 28–31 (2018).
    Google Scholar 
    Kapas, A. et al. The kinetic of essential oil separation from fennel by microwave assisted hydro-distillation (MWHD). UPB Sci. Bull. Ser. B 73, 113–120 (2011).CAS 

    Google Scholar 
    Warrier, P. K. et al. Indian Medicinal Plants. Vol. 1. 153–157. (Orient Longman Limited, 1994).Baswana, K. S. Role of insect pollination on seed production in coriander and fennel. South Indian Horticult. 32, 117–118 (1984).
    Google Scholar 
    Koul, A. K. Pollination mechanism in Coriandrum sativum L. (Apiaceae). Proc. Indian Acad. Sci. Plant Sci. 99, 509–515 (1989).Article 

    Google Scholar 
    Narayana, E. S., Sharma, P. L. & Phadke, K. G. Insect pollinators of saunf (Foenicuum vulgare) with particular reference to the honeybees at Pusa (Bihar). Indian Bee J. 22, 7–13 (1960).
    Google Scholar 
    Mukherjee, S. et al. Pollination events in Nigella sativa L. black cumin. Int. J. Res. Ayurveda Pharm. 4, 342–344 (2013).Article 

    Google Scholar 
    Abrar, M. et al. Insect pollinators and their relative abundance on black cumin Nigella sativa L. at Dera Ismail Khan. J. Entomol. Zool. Stud. 5, 1252–1258 (2017).
    Google Scholar 
    Ollerton, J. & Louise, C. Latitudinal trends in plant-pollinator interactions: Are tropical plants more specialized?. Oikos 98, 340–350 (2002).Article 

    Google Scholar 
    Meena, N. K. et al. Diversity of floral visitors and foraging behavior and abundance of major pollinators on fennel under semi-arid conditions of Rajasthan. Int. J. Trop. Agric. 34, 1891–1897 (2016).
    Google Scholar 
    Sikdar, S. et al. Diurnal foraging activity of flower visiting insects on some seed spices under terai agro-climatic zone of West Bengal. J. Entomol. Zool. Stud. 7, 299–303 (2019).
    Google Scholar 
    Kapil, R. P. et al. Integration of bee behaviour with aphid control for seed production of Brassica campestris var. toria. Indian J. Entomol. 33, 221–223 (1971).
    Google Scholar 
    Bhalla, O. P. et al. Insect visitors of mustard bloom Brassica campestris var sarson, their number and foraging behavior under mid-hill conditions. J. Entomol. Res. 1, 15–17 (1983).
    Google Scholar 
    Rao, G. M. & Suryanarayana, M. C. Studies on the foraging behaviour of honeybees and its effect in seed yield of niger. Indian Bee J. 52, 31–33 (1990).
    Google Scholar 
    Abrol, D. P. Foraging behavior of Apis mellifera L. and A. cerana F. as determined by the energetics of nectar production in different cultivars of Brassica campestris var toria. J. Apicult. Sci. 51, 19–24 (2007).
    Google Scholar 
    Inouye, D. W. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumble bees. Oecologia 45, 197–201 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vicens, N. & Bosch, J. Pollination efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 29, 235–240 (2000).Article 

    Google Scholar 
    Singh, J. et al. Foraging rates of different Apis species visiting parental lines of Brassica napus L. Zoos’ Print J. 21, 2226–2227 (2006).Article 

    Google Scholar 
    Engel, E. C. & Irwin, R. E. Linking pollinator visitation and rate of pollen receipt. Am. J. Bot. 90, 1612–1618 (2003).Article 

    Google Scholar 
    Sihag, R. C. Insect pollination increase seed production in cruciferous and umbelliferous crops. J. Apic. Res. 25, 121–126 (1986).Article 

    Google Scholar 
    Verma, S. & Dwivedi, S. N. Floral biology of Trachyspermum ammi (Linn.) Spr. Inventi rapid. Planta Activa 2, 1–6 (2018).
    Google Scholar 
    Singh, B. Effectiveness of different pollinators on yield and quality of greenhouse grown tomatoes and melons: A review. Haryana J. Horticult. Sci. 31, 245–250 (2002).ADS 

    Google Scholar 
    Biswanath, B. et al. Role of insect pollinators in seed yield of coriander (Coriandrum sativum L.) and their electroantennogram response to crop volatiles. Agric. Res. J. 54, 227–235 (2017).Article 

    Google Scholar 
    Giannini, T. C. et al. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Trawling the ocean virome

    Microbial biodiversity surveys have often been done in a number of generally better-studied regions3, as with the San Pedro Time Series from the San Pedro Channel off the coast of Southern California. Global surveys have also been emerging, such as the Sorcerer II Global Ocean Sampling Expedition from 2004 to 2006 launched by J. Craig Venter. There are also data and samples from the Malaspina circumnavigation, an expedition devoted to data collection on ocean biodiversity and climate change that was led by the Spanish Ministry of Science and Innovation.As microbiome researcher Shinichi Sunagawa of the ETH Zurich and colleagues point out4, sequencing technologies have advanced such that they now enable systematic and quantitative global ocean surveys. These advances, in turn, made it possible to find and assess marine double-stranded DNA virus populations. This latest work on marine RNA viruses, says Sunagawa, in which he was also involved, embeds new phylum-level findings into a “robust taxonomic framework.” In his view, this research ranks in importance with the reconstruction a few years ago of a group of bacterial genomes representing more than 35 phyla that the researchers call “the candidate phyla radiation”5. If one counts viruses in with other taxonomic groups, the finding might be the largest single expansion of established microbial taxonomy, he says. And he especially likes the definition of a new basal Orthornavirae megataxon, the proposed phylum ‘Taraviricota’. This proposed phylum is one of several findings from recently published analyses of sampling data from Tara Oceans1,2, a global expedition supported by the Tara Ocean Foundation, or Fondation Tara Océan, based in France and with many partner organizations and supporters. The foundation is a major source of global data about the ocean and ocean microbes and, as its president Étienne Bourgois says, it’s a “family project.” The family business is the French fashion house agnès b., founded by his mother Agnès Troublé.Because the family cares about the sea, they bought a 36-meter schooner from Lady Pippa Blake, widow of yachtsman and explorer Sir Peter Blake, after pirates killed him during an environmental expedition in the Amazon delta, and turned it into the expedition vessel and floating science laboratory Tara, devoted to understanding and protecting the world’s marine environment. It’s a way to continue what Peter Blake started, to continue the conversation about the ocean and do research as well, says sailor-scientist Romain Troublé, executive director of the foundation and nephew of Agnès Troublé. The boat had been previously owned by explorer Jean-Louis Étienne. The foundation has supported several expeditions with Tara including the Tara Oceans and Tara Oceans Polar Circle expeditions, as well as Tara Mission Microbiomes, which is currently underway. The equilibrium of the planet “depends on the microbiome of the ocean in the same way we depend on our own microbiome,” says Romain Troublé. Viruses are part of the larger picture of how life is supported on the planet. It’s “a great mystery of the century” to decipher the roles, behaviors and functions of the ocean microbiome, including its beneficial effects. Over the last decade, he says, the expeditions have, for example, collected plankton samples from coastal waters, coral reefs and the high seas around the world for scientists to ask questions of. Microplastics in the ocean concentrate chemical pollutants such as pesticides, and microplastics appear to be substrates for distinct microbiomes. Polystyrene and polypropylene, for example, harbor different microbial communities. “We call it the plastisphere,” he says. All sample collection, not just of microplastics, happens with a view to scientific rigor to assure data quality, says Troublé. Many institutes are part of and support the expeditions through the Tara Ocean Foundation, including AtlantECO, the French Ministry of Research, the Swiss National Science Foundation, the US National Science Foundation, the European Molecular Biology Laboratory and the French National Centre for Scientific Research.Tara Oceans was an expedition initiated by EMBL researcher Eric Karsenti, here in the foreground. He is checking a rosette of Niskin bottles that collect water, and ocean microbe samples, at various depths. Sensors capture parameters such as temperature.
    Credit: Fondation Tara OcéanIts expedition Tara Oceans was initiated by cell and marine biologist Eric Karsenti of the European Molecular Biology Laboratory. The expedition ran from 2009 to 2013 and covered 125,000 kilometers of ocean, taking ocean water and samples. It collected nearly 35,000 samples of viruses, algae and plankton and delivered more than 60 terabases of DNA and RNA sequences.The research community strives to follow FAIR data principles, the principles of findability, accessibility, interoperability and reusability, says Sunagawa. Tara Ocean’s data troves can be found, for instance, in the European Nucleotide Archive (ENA), Pangeaea, Cyverse, iVIRUS and on Genoscope. Other data-collection efforts target users with less programming experience and offer various types of data relevant to marine microbial research, he says: for example, the Ocean Gene Atlas, a portal to search for a gene or protein sequence to see, for instance, its abundance on an ocean map. The Ocean Barcode Atlas lets users explore, for example, operational taxonomic units (OTU) data and plankton communities from Tara Oceans and OTUs from Malaspina prokaryote data. Sunagawa also points to the Ocean Microbiomics Database and its high-quality genome-resolved information about the global microbiome, which has sequencing data from 2003 onwards and which includes Tara Oceans data as well as datasets such as the Hawaii Ocean Time-Series (HOT), the Bermuda Atlantic Time-series Study (BATS), with its collection of ocean data dating back to 1988, and BioGeotraces, with hydrographic and marine geochemical data from various expeditions.The recent publications on RNA viruses1,2, in which Sunagawa was also involved, have expanded the known diversity of these viruses, he says. They build on efforts by, for example, the research team that created and applied a cloud-based infrastructure called Serratus6, with which researchers can perform sequence alignment using bowtie2 for nucleotide sequences and DIAMOND2 for protein sequences in ‘ultra-high throughput’ on a petabase scale. Using Serratus, the team identified more than 130,000 previously unknown RNA viruses, both on land and in the oceans. The wealth of resources for microbial and viral data about the oceans is helpful to the research community, but “we could still improve the connectivity between various datasets though,” says Sunagawa. That would help, for example, with searching and finding data products that are derived from primary data, such as identifiers of individual genome assemblies, genes and metagenome assembled genomes, which are all presented in different online locations. But connecting data resources is a project that itself takes resources, and such projects are hard to get funding for.Going forward, it will be challenging, says Sunagawa, to update and keep up to date both past projects and ongoing projects such as the Global Ocean Ship-based Hydrographic Investigations program (GO-SHIP), which is focused on physical oceanography; the Antarctic Circumnavigation Expedition (ACE), on carbon-cycle marine biogeochemistry; Mission Microbiomes; and many more. “And ultimately, we will need to cross boundaries that currently separate biome-focused research to better understand processes at the sea–land–atmosphere interfaces.”Tara Mission Microbiomes has been underway for nearly two years and wraps up in October 2022. At press time, the schooner Tara was off the Angolan Coast. At the end of the expedition, it will have traveled a total of 70,000 km of ocean area around South America, Africa, Europe and Antarctica. Mission Microbiomes is part of the EU-funded AtlantECO and also includes 42 research organizations from 13 countries. The microbiome mission is collecting data on how climate change is affecting the marine microbiome, on how pollution, microplastics pollution in particular, affects the marine environments and on the beneficial impact of the ocean microbiome.Krill are small ocean crustaceans that mainly eat phytoplankton and are a food source for animals such as whales and seals. Krill play a crucial role in biogeochemical cycles.
    Credit: F. Aurat, Fondation Tara OcéanChris Bowler, from the Institut de Biologie de l’École Normale Supérieure, is scientific director of the Tara Oceans consortium, was scientific coordinator of the Tara Oceans expedition and was onboard in Antarctica during the Tara Mission Microbiomes expedition to collect data on the impact of icebergs on the Weddell Sea ecosystem. The project’s scientists in Tara Mission Microbiomes, he says, are studying specific processes, including the Amazon plume, the Malvinas confluence, the impact of tabular icebergs in the Weddell Sea, the Benguela upwelling and more. The data from this expedition will be similar to those from Tara Oceans but, he says, “we will have much more contextual data related to the specific processes we have been studying.” The applied techniques are all ones that have undergone much advancement since Tara Oceans, he says. They include long-read sequencing, Hi-C sequencing to capture chromatin organization on a genome-wide basis and various types of microscopy.Data and results from previous and ongoing expeditions are impressive, says Sunagawa but “we are still data-limited in our field of research.” Geographically, sampling stations are usually still separated by hundreds of kilometers, and often they are even further apart than that. This means that what is missing is both temporal and seasonal resolution, “and we keep detecting new organisms,” he says. Tara Mission Microbiomes will help to fill in some of these gaps. The mission is unlike Tara Oceans, with its focus more on coastal areas and environmental pollutants such as microplastics. Sunagawa and his group are not currently involved with Tara Mission Microbiomes, “but we look forward to seeing the first results coming out soon.”Through photosynthesis, phytoplankton deliver oxygen to the planet. They are food for zooplankton, which are food for other marine organisms. This food web and its associated decomposition are part of the ocean’s carbon pump, in which marine viruses play an important role that scientists have only begun exploring.
    Credit: M. Bardy, Fondation Tara Océan More

  • in

    Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures

    Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B-Biol. Sci. 372, 15. https://doi.org/10.1098/rstb.2016.0117 (2017).Article 

    Google Scholar 
    Adenubi, O. T. et al. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crop. Prod. 123, 779–806. https://doi.org/10.1016/j.indcrop.2018.06.075 (2018).CAS 
    Article 

    Google Scholar 
    Jordan, R. A. & Schulze, T. L. Availability and nature of commercial tick control services in three Lyme disease endemic states. J. Med. Entomol. 57, 807–814. https://doi.org/10.1093/jme/tjz215 (2019).CAS 
    Article 

    Google Scholar 
    Isman, M. B. Botanical insecticides in the twenty-first century – Fulfilling their promise?. Ann. Rev. Entomol. 65, 233–249 (2020).CAS 
    Article 

    Google Scholar 
    Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick-Borne Dis. https://doi.org/10.1016/j.ttbdis.2021.101649 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, A. C. C. et al. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicol. Environ. Safe. 163, 28–36. https://doi.org/10.1016/j.ecoenv.2018.07.048 (2018).CAS 
    Article 

    Google Scholar 
    Matos, W. B. et al. Potential source of ecofriendly insecticides: Essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Safe. 209, 111764. https://doi.org/10.1016/j.ecoenv.2020.111764 (2021).CAS 
    Article 

    Google Scholar 
    Gashout, H. A., Guzman-Novoa, E., Goodwin, P. H. & Correa-Benítez, A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. J. Insect Physiol. 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eisen, L. & Dolan, M. C. Evidence for personal protective measures to reduce human contact with Blacklegged ticks and for environmentally based control methods to suppress host-seeking Blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53, 1063–1092. https://doi.org/10.1093/jme/tjw103 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, M. C., Requintina, M. D., Berger, K. A., Puggioni, G. & Mather, T. N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 58, 390–397. https://doi.org/10.1093/jme/tjaa188 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schulze, T. L. & Jordan, R. A. Synthetic pyrethroid, natural product, and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 58, 814–820. https://doi.org/10.1093/jme/tjaa248 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bharadwaj, A., Stafford, K. C. & Behle, R. W. Efficacy and environmental persistence of nootkatone for the control of the Blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 49, 1035–1044. https://doi.org/10.1603/me11251 (2012).Article 
    PubMed 

    Google Scholar 
    Pavela, R. & Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of the essential oil from Thymus vulgaris. Ind. Crop. Prod. 113, 46–49 (2018).CAS 
    Article 

    Google Scholar 
    Brunner, J. L., Killilea, M. & Ostfeld, R. S. Overwintering survival of nymphal Ixodes scapularis (Acari: Ixodidae) under natural conditions. J. Med. Entomol. 49, 981–987. https://doi.org/10.1603/me12060 (2012).Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Nicolson, S. W. Insect Physiol. Ecol. (Oxford University Press, 2004).Ogden, N. H., Beard, C. B., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2021).Article 

    Google Scholar 
    Ballard, K. & Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geo. 127, 102383 (2021).Article 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. https://doi.org/10.1172/jci42868 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamo, S. A. Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 190, 381–390. https://doi.org/10.1007/s00360-020-01282-5 (2020).Article 

    Google Scholar 
    Adamo, S. A. How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. https://doi.org/10.1016/j.cbpb.2021.110564 (2021).Article 

    Google Scholar 
    Linske, M. A. et al. Impacts of deciduous leaf litter and snow presence on nymphal Ixodes scapularis (Acari: Ixodidae) overwintering survival in coastal New England, USA. Insects https://doi.org/10.3390/insects10080227 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burtis, J. C., Fahey, T. J. & Yavitt, J. B. Survival and energy use of Ixodes scapularis nymphs throughout their overwintering period. Parasitol. 146, 781–790. https://doi.org/10.1017/s0031182018002147 (2019).Article 

    Google Scholar 
    Boehnke, D., Gebhardt, R., Petney, T. & Norra, S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: the example of Ixodes ricinus ticks. Parasit. Vectors 10, 549. https://doi.org/10.1186/s13071-017-2498-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of Ixodes scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J. Med. Entomol. 32, 143–152. https://doi.org/10.1093/jmedent/32.2.143 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J. Med. Entomol. 35, 189–199. https://doi.org/10.1093/jmedent/35.3.189 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environ. Entomol. 33, 1266–1273. https://doi.org/10.1603/0046-225x-33.5.1266 (2004).Article 

    Google Scholar 
    Clow, K. M. et al. The influence of abiotic and biotic factors on the invasion of Ixodes scapularis in Ontario, Canada. Ticks Tick-Borne Dis. 8, 554–563. https://doi.org/10.1016/j.ttbdis.2017.03.003 (2017).Article 
    PubMed 

    Google Scholar 
    Natural Resources Canada. Balsam fir, (2015).Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689. https://doi.org/10.1111/evo.12690 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichette, A., Larouche, P. L., Lebrun, M. & Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytotherapy Res. 20, 371–373 (2006).CAS 
    Article 

    Google Scholar 
    Poaty, B., Lahlah, J., Porqueres, F. & Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 31, 907–919. https://doi.org/10.1007/s11274-015-1845-y (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Ed. 64, 79–93. https://doi.org/10.1080/00220973.1995.9943797 (1995).Article 

    Google Scholar 
    Canon, L., Deslauriers, A., Mshvildadze, V. & Pichette, A. Volatile compounds in the foliage of balsam fir analyzed by static headspace gas chromotography (HS-GS): An example of the spruce budworm defoliation effect in the boreal forest of Quebec, Canada. Microchem. J. 110, 587–590 (2013).Article 

    Google Scholar 
    Faraone, N., MacPherson, S. & Hillier, N. K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp. Appl. Acarol. 79, 195–207. https://doi.org/10.1007/s10493-019-00421-0 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    McMillan, L. E., Miller, D. W. & Adamo, S. A. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. J. Exp. Biol. 221, 173336 (2018).
    Google Scholar 
    Gazave, E., Chevillon, C., Lenormand, T., Marquine, M. & Raymond, M. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 87, 441–448 (2001).CAS 
    Article 

    Google Scholar 
    Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. & Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011).CAS 
    Article 

    Google Scholar 
    Clark, D. D. Lower temperature limits for activity of several Ixodid ticks: Effects of body size and rate of temperature change. J. Med. Entomol. 32, 449–452 (1995).CAS 
    Article 

    Google Scholar 
    Carroll, J. F. & Kramer, M. Winter activity of Ixodes scapularis (Acari : Ixodidae) and the operation of deer-targeted tick control devices in Maryland. J. Med. Entomol. 40, 238–244. https://doi.org/10.1603/0022-2585-40.2.238 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLoS ONE 12, e0168723. https://doi.org/10.1371/journal.pone.0168723 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D. & Chavez, A. S. O. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or utopia?. Insects https://doi.org/10.3390/insects11080490 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ogendo, J. et al. Biocontrol potential of selected plant essential oil constituents as fumigants of insect pests attacking stored food commodities. Health 10, 287–318 (2011).
    Google Scholar 
    Panella, N. A., Karchesy, J., Maupin, G. O., Malan, J. C. & Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 34, 340–345 (1997).CAS 
    Article 

    Google Scholar 
    Rosado-Aguilar, J. A. et al. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 238, 66–76. https://doi.org/10.1016/j.vetpar.2017.03.023 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jaenson, T. G. T., Carboui, S. & Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari : Ixodidae) in the laboratory and field. J. Med. Entomol. 43, 731–736. https://doi.org/10.1603/0022-2585(2006)43[731:Rooole]2.0.Co;2 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eigbrett, C. Natural Sourcing Organic Essential Oils Oxford, Connecticut, USA, .praannaturals.com/downloads/msds/SDS_Organic_Essential_Oil_Fir_Balsam_Canada.pdf (2016).Schulze, T. L. et al. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 38, 344–346. https://doi.org/10.1603/0022-2585-38.2.344 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, S. P. et al. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 50, 126–136. https://doi.org/10.1603/me12124 (2013).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Yavitt, J. B., Fahey, T. J. & Ostfeld, R. S. Ticks as soil-dwelling arthropods: an intersection between disease and soil ecology. J. Med. Entomol. 56, 1555–1564. https://doi.org/10.1093/jme/tjz116 (2019).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Ostfeld, R. S., Yavitt, J. B. & Fahey, T. J. The relationship between soil arthropods and the overwinter survival of Ixodes scapularis (Acari: Ixodidae) under manipulated snow cover. J. Med. Entomol. 53, 225–229. https://doi.org/10.1093/jme/tjv151 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guerra, M. et al. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297. https://doi.org/10.3201/eid0803.010166 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bunnell, J. E., Price, S. D., Das, A., Shields, T. M. & Glass, G. E. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the USA. J. Med. Entomol. 40, 570–576. https://doi.org/10.1603/0022-2585-40.4.570 (2003).Article 
    PubMed 

    Google Scholar 
    Lubelczyk, C. B. et al. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ. Entomol. 33, 900–906. https://doi.org/10.1603/0046-225x-33.4.900 (2004).Article 

    Google Scholar 
    Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme disease: A review. EcoHealth 5, 167–195. https://doi.org/10.1007/s10393-008-0171-3 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).Article 

    Google Scholar 
    Bertrand, M. R. & Wilson, M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in Nature: Life cycle and study design implications. J. Med. Entomol. 33, 619–627 (1996).CAS 
    Article 

    Google Scholar 
    Lindsay, L. R. et al. Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J. Med. Entomol. 36, 255–262. https://doi.org/10.1093/jmedent/36.3.255 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, C., Spielman, A. & Krause, P. J. Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin. Infect. Dis. 33, 676–685 (2001).CAS 
    Article 

    Google Scholar 
    Hinckley, A. F. et al. effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 214, 182–188. https://doi.org/10.1093/infdis/jiv775 (2016).Article 
    PubMed 

    Google Scholar 
    Keesing, F. et al. Effects of Ttck-control interventions on tick abundance, human encounters with Ttcks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 28, 957–966. https://doi.org/10.3201/eid2805.211146 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, L. E., Scott, J. A. & Stafford, K. C. Influences of weather on Ixodes scapularis nymphal densities at long-term study sites in Connecticut. Ticks Tick-Borne Dis. 6, 258–266. https://doi.org/10.1016/j.ttbdiS.2015.01.006 (2015).Article 
    PubMed 

    Google Scholar 
    Rand, P. W. et al. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J. Med. Entomol. 47, 695–698 (2010).CAS 
    Article 

    Google Scholar 
    United Nations. Convention on Biological Diversity. (1992).Convention on International Trade in Endangered Species of Wild Fauna and Flora. (1973).Burtis, J. C. Method for the efficient deployment and recovery of Ixodes scapularis (Acari: Ixodidae) nymphs and engorged larvae from field microcosms. J. Med. Entomol. 54, 1778–1782. https://doi.org/10.1093/jme/tjx157 (2017).Article 
    PubMed 

    Google Scholar 
    Nova Scotia Department of Natural Resources and Renewables Trees of the Acadian Forest (2021). More

  • in

    Why the ocean virome matters

    Kyoto University microbiome researcher Hiroyuki Ogata says that the recent work2,3 further connects RNA viruses and the carbon pump, which affects the Earth’s biogeochemical cycles and thus its climate. And it sheds light on the diversity, evolution and ecology of RNA viruses, which has not previously been possible through applying the techniques of traditional DNA-based metagenomics. The team found many new lineages at the phylum-level by using “highly sensitive” computational approaches.It’s possible to assess the ecosystem impact of viruses by inferring auxiliary metabolic genes (AMGs). AMGs hint at the ways RNA viruses manipulate the physiology of their hosts as they seek to maximize production of more virus through the host. As Jian explains, labs have identified a variety of AMGs that are encoded by DNA viruses and, he says, it’s “well-recognized” that AMGs probably play a role in marine ecosystems. It was unknown if AMGs could be found in RNA viruses, which the recent Science paper2 has now established, he says. Jian sees this work as providing “a very important foundational dataset” for exploring questions connected to AMGs. “In my opinion, if more long-sequence or complete marine RNA virus genomes can be obtained in the future, and they can be further connected with specific hosts, it will greatly promote the understanding of the ecological impact of RNA viruses in the oceans.”To tease out AMGs, the scientists used a variety of tools, such as viral identification software for both DNA and RNA viruses, says Wainaina. The ones for DNA viruses are available on Cyverse, and the protocols for the tools from the Sullivan lab are on protocols.io. One method for RNA viruses is in progress and will be soon available on Cyverse, he says. DNA viral identification tools include VirSorter2, a pipeline for identifying viral sequence from metagenomics data, and the protocol for using this and other tools are also on protocols.io. To identify AMGs from viral sequence that had been identified through VirSorter, the team used use DRAM-v, a software tool from the lab of microbiome researcher Kelly Wrighton at Colorado State University. Her group had created Distilled and Refined Annotation of Metabolism (DRAM), a framework to resolve metabolic information from microbial data. The companion tool DRAM-v is for viruses and can be applied to metagenomic data sets for annotating metagenomics-based assembled genomes, for example through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and to contiguous viral sequences identified by VirSorter.The hunt for AMGs is one instance in which the team needed to determine in each case whether a sequence was likely ‘stolen’ from host cells, says Dominguez-Huerta. RNA viral genomes are less than 40 kilobases long and usually have complicated genomic organization, both in a structural genomics sense related to the physical arrangement of genes along the viral genome and in a functional sense in terms of transcription and translation: there are overlapping genes, frameshifts and more, all of which makes this kind of annotation difficult. And sometimes information in the annotation databases is wrong and indicates that a match is cellular when it is in fact viral. Thus, to find AMGs, “we don’t have a defined clean methodology automated in a pipeline yet,” he says. It remains a time-consuming task. Assigning putative function to the protein sequences encoded by AMGs also involves checking the literature and comparing different annotation sources.Dominguez-Huerta says he and the team were glad they could assemble AMG functionalities to suggest the range of ways in which RNA viruses manipulate the metabolisms of their hosts—from photosynthesis to central carbon metabolism to vacuolar digestion and RNA repair. This overview let them see how some AMGs are repeated across different viruses across the oceans. Finding AMGs in long-read sequence is what he calls a “fire test” for the lab. To avoid ‘false AMGs’ from unreliable matches, they use BLASTP, the Basic Alignment Search Tool that compares a protein query sequence to a protein database.“I am fascinated by the ability of viruses to metabolic reprogram not only their hosts but more importantly at the ecosystem level,” says Wainaina. It is probable that the AMGs the team identified “are a central cog in microbial metabolism networks.” Current and future modeling efforts will hopefully provide insights into the ecosystem roles of viruses—both DNA viruses and RNA viruses—and on a global scale both within the ocean ecosystem and beyond.Host inference is challenging, says Dominguez-Huerta, because, for example, viruses with RNA genomes do not share genetic information with their host genomic DNA the way dsDNA viruses do when they infect bacteria. That means there is no clear signal to be derived from the host genome to help one guess the possible host. But sometimes RNA viruses do integrate into host genomes, and those, likely more accidental, events were sufficient for the scientists to capture some signal to infer hosts. “We also performed statistical co-occurrence analytics using abundances to infer the hosts with certain success,” he says.Unlike dsDNA viruses, RNA viruses infect mostly eukaryotes, from protists and fungi to invertebrates and fish larvae; only a minority infect bacteria. Overall, the team has been able to capture “a picture of dsDNA viruses infecting prokaryotes and RNA viruses infecting eukaryotes in the oceans, complementing each other in their marine hosts,” says Dominguez-Huerta. The fact that the scientists can infer “that RNA viruses can steal genes from the host,” in the form of AMGs, to then reprogram host metabolism matters not only as scientists complete the picture of how viruses directly tune the activity of hosts during infection, but also in regard to how this influences biogeochemical cycles, he says. “We think that these AMGs are incorporated into the RNA virus genomes from cellular mRNA transcripts by non-homologous recombination,” he says. This gives, in his view, a new picture of RNA viruses, which, despite their small genome sizes, can squeeze in protein-coding genes. Such proteins could be sufficient to boost the production of virus particles per infected cell, perhaps increasing viral fitness in the difficult conditions of the oligotrophic open ocean and letting the viruses better propagate in the environment.More generally, says Dominguez-Huerta, capturing RNA from ocean samples is difficult, because RNA is physically fragile and degrades rapidly. When digging into metatranscriptomic data, which include the RNA from plankton and RNA from other organisms, less than 1% of this RNA is likely to be viral RNA, he says. Previously, some labs have first purified RNA from samples, enriched it for replicating RNA viruses and then applied a method called dsRNA-seq to recover dsRNA virus sequence and replicate sequences from single-stranded RNA viruses. For future ocean RNA virus projects, he says that the lab is currently working on a wet-lab method to purify RNA virus particles from seawater to solve the challenges of obtaining viral RNA for analysis. More

  • in

    Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf

    Lombard, F. et al. Consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. https://doi.org/10.3389/fmars.2019.00196 (2019).Article 

    Google Scholar 
    Sieracki, M. E., et al. Optical plankton imaging and analysis systems for ocean observation. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, 878–885 (2010). https://doi.org/10.5270/OceanObs09.cwp.81.Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Ann. Rev. Mar. Sci. 14(1), 277. https://doi.org/10.1146/annurev-marine-041921-013023 (2022).Article 
    PubMed 

    Google Scholar 
    Mars Brisbin, M., Brunner, O. D., Grossmann, M. M. & Mitarai, S. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65(12), 2953–2965. https://doi.org/10.1002/lno.11567 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Benfield, M. et al. RAPID: Research on automated plankton identification. Oceanography 20(2), 172–187. https://doi.org/10.5670/oceanog.2007.63 (2007).Article 

    Google Scholar 
    Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066. https://doi.org/10.7554/eLife.26066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, M. K. Principles and techniques of digital holographic microscopy. J. Photonics Energy. 1, 018005. https://doi.org/10.1117/6.0000006 (2010).Article 

    Google Scholar 
    Tahara, T., Quan, X., Otani, R., Takaki, Y. & Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 67(2), 55–67. https://doi.org/10.1093/jmicro/dfy007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jericho, S. K., Garcia-Sucerquia, J. F. W., Jericho, M. H. & Kreuzer, H. J. Submersible digital in-line holographic microscope. Rev. Sci. Instrum. 77(4), 043706. https://doi.org/10.1063/1.2193827 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bochdansky, A. B., Jericho, M. H. & Herndl, G. J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particlesto a depth of 6000 m. Limnol. Oceanogr: Methods 11, 28–40 (2013).Article 

    Google Scholar 
    Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22(6), 6661. https://doi.org/10.1364/OE.22.006661 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H. & Kreuzer, H. J. Point source digital in-line holographic microscopy. In Coherent Light Microscopy (eds Ferraro, P. et al.) 3–30 (Springer, 2011).Chapter 

    Google Scholar 
    Kanka, M., Riesenberg, R. & Kreuzer, H. J. Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34(8), 1162. https://doi.org/10.1364/OL.34.001162 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H., Kreuzer, H. J., Kanka, M. & Riesenberg, R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl. Opt. 51(10), 1503. https://doi.org/10.1364/AO.51.001503 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018).CAS 
    Article 

    Google Scholar 
    Sun, H. et al. digital holography for studies of marine plankton. Philos. Trans. R. Soc. A. 366, 1789–1806 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Bianco, V. et al. microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2(2), 1900153. https://doi.org/10.1002/aisy.201900153 (2020).Article 

    Google Scholar 
    Guo, B. et al. Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. Oceanogr. 19(1), 21–36. https://doi.org/10.1002/lom3.10402 (2021).Article 

    Google Scholar 
    Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147. https://doi.org/10.3389/fmars.2020.572147 (2021).Article 

    Google Scholar 
    Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95(3), 401–414. https://doi.org/10.1016/j.mimet.2013.08.011 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237), 1261605–1261605. https://doi.org/10.1126/science.1261605 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348(6237), 1262073–1262073. https://doi.org/10.1126/science.1262073 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 67(5), 612–622. https://doi.org/10.1111/jeu.12813 (2020).Article 
    PubMed 

    Google Scholar 
    Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirkham, A. R. et al. Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect: Marine photosynthetic picoeukaryote community structure. Environ. Microbiol. 13(4), 975–990. https://doi.org/10.1111/j.1462-2920.2010.02403.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15(6), 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Phil. Trans. R. Soc. B. 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanni, S. et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 8(1), 12085. https://doi.org/10.1038/s41598-018-30157-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pappalardo, P. et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab082 (2021).Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52(1), 79–92. https://doi.org/10.1016/j.femsec.2004.10.006 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sargent, E. C. et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol. Lett. 363(21), 244. https://doi.org/10.1093/femsle/fnw244 (2016).CAS 
    Article 

    Google Scholar 
    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219. https://doi.org/10.3389/fmars.2019.00219 (2019).Article 

    Google Scholar 
    Biard, T. et al. Biogeography and diversity of collodaria (radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6, 122. https://doi.org/10.3389/fmars.2019.00122 (2019).Article 

    Google Scholar 
    Bolaños, L. M. et al. Seasonality of the microbial community composition in the North Atlantic. Front. Mar. Sci. 8, 624164. https://doi.org/10.3389/fmars.2021.624164 (2021).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x (1982).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Decelle, J. & Not, F. Acantharia. ELS, 1–10 (2015). https://doi.org/10.1002/9780470015902.a0002102.pub2.Yu, L., An, Y. & Cai, L. Numerical reconstruction of digital holograms with variable viewing angles. Opt. Express 10(22), 1250. https://doi.org/10.1364/OE.10.001250 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Della Penna, A. & Gaube, P. Overview of (sub)mesoscale Ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 384. https://doi.org/10.3389/fmars.2019.00384 (2019).Article 

    Google Scholar 
    Sverdrup, H. U. Oceanography for Meteorologists (Prentice Hall, 1942).Book 

    Google Scholar 
    Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8(1), 161–184. https://doi.org/10.1146/annurev-marine-010814-015912 (2016).ADS 
    Article 

    Google Scholar 
    Fratantoni, P. S. & Pickart, R. S. The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37(10), 2509–2533. https://doi.org/10.1175/JPO3123.1 (2007).ADS 
    Article 

    Google Scholar 
    Bolaños, L. M. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 14(7), 1663–1674. https://doi.org/10.1038/s41396-020-0636-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, S. J., Siegel, D. A. & Graff, J. R. Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign. Front. Mar. Sci. 7, 215. https://doi.org/10.3389/fmars.2020.00215 (2020).Article 

    Google Scholar 
    Faure, E. et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 13(4), 1072–1083. https://doi.org/10.1038/s41396-018-0340-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fratantoni, P. S. & McCartney, M. S. Freshwater export from the labrador current to the North Atlantic Current at the tail of the grand banks of Newfoundland. Deep Sea Res. I. 57(2), 258–283. https://doi.org/10.1016/j.dsr.2009.11.006 (2010).Article 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007 (2015).Article 

    Google Scholar 
    Jian, C., Salonen, A. & Korpela, K. Commentary: How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 11, 627910. https://doi.org/10.3389/fcimb.2021.627910 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA. Limnol. Oceanogr. Methods 16(4), 209–221. https://doi.org/10.1002/lom3.10237 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotech. 36(2), 190–195. https://doi.org/10.1038/nbt.4045 (2018).CAS 
    Article 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47(18), e103–e103. https://doi.org/10.1093/nar/gkz569 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85(5), 18. https://doi.org/10.1128/AEM.02634-18 (2019).Article 

    Google Scholar 
    Vogt, M. et al. Global marine plankton functional type biomass distributions: Phaeocystis spp. Earth Syst. Sci. Data 5, 405–443. https://doi.org/10.5194/essdd-5-405-2012 (2012).ADS 
    Article 

    Google Scholar 
    MacNeil, L., Missan, S., Luo, J., Trappenberg, T. & LaRoche, J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol. Evol. 21(1), 123. https://doi.org/10.1186/s12862-021-01839-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pan, J., del Campo, J. & Keeling, P. J. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukary. Microbiol. 64(1), 88–96. https://doi.org/10.1111/jeu.12342 (2017).Article 

    Google Scholar 
    Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11(2), 362–373. https://doi.org/10.1038/ismej.2016.113 (2017).Article 
    PubMed 

    Google Scholar 
    Xie, N., Hunt, D. E., Johnson, Z. I., He, Y. & Wang, G. Annual partitioning patterns of Labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01652-20 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walcutt, N. L. et al. Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 3, 10379. https://doi.org/10.1002/lom3.10379 (2020).Article 

    Google Scholar 
    Axler, K. et al. Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem. Mar. Ecol. Prog. Ser. 650, 37–61. https://doi.org/10.3354/meps13397 (2020).ADS 
    Article 

    Google Scholar 
    Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12(1), 2816. https://doi.org/10.1038/s41467-021-22994-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, P. et al. Automatic plankton quantification using deep features. J. Plankton Res. 41(4), 449–463. https://doi.org/10.1093/plankt/fbz023 (2019).Article 

    Google Scholar 
    Briseño-Avena, C. et al. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions. Prog. Oceanogr. 188, 102436. https://doi.org/10.1016/j.pocean.2020.102436 (2020).Article 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Orenstein, E. C. et al. The scripps plankton camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18(11), 681–695. https://doi.org/10.1002/lom3.10394 (2020).Article 

    Google Scholar 
    Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. PNAS 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ryabov, A. et al. Shape matters: The relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4), 847–861. https://doi.org/10.1111/ele.13680 (2021).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Keeling, P. J. & del Campo, J. marine protists are not just big bacteria. Curr. Biol. 27(11), R541–R549. https://doi.org/10.1016/j.cub.2017.03.075 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8(1), 14375. https://doi.org/10.1038/ncomms14375 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2(1), 48. https://doi.org/10.1038/s43247-021-00120-y (2021).ADS 
    Article 

    Google Scholar 
    Mitchell, M. R. et al. Atlantic zone monitoring program protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223, 1–23 (2002).
    Google Scholar 
    Li, W. K. W., Glen Harrison, W. & Head, E. J. H. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc. B. 273(1596), 1953–1960. https://doi.org/10.1098/rspb.2006.3529 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, P. L. Florida current, gulf stream, and labrador current. In Encyclopedia of Ocean Sciences (ed. Steele, J. H.) 1054–1064 (Academic Press, 2001). https://doi.org/10.1006/rwos.2001.0357.Chapter 

    Google Scholar 
    Henson, S. A., Dunne, J. P. & Sarmiento, J. L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. 114(C4), C04013. https://doi.org/10.1029/2008JC005139 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, G., Lu, Z., Wang, Z., Helbig, J. & Chen, N. Seasonal variability of the labrador current and shelf circulation off Newfoundland. J. Geophys. Res. 113, 10. https://doi.org/10.1029/2007JC004376 (2008).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelley, D. “The Oce Package” In Oceanographic Analysis with R 91–101 (Springer, 2018).Book 

    Google Scholar 
    Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.Tomas, C. R. Identifying Marine Phytoplankton (Academic Press Inc, 1997).
    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6(11), e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems https://doi.org/10.1128/mSystems.00009-15 (2016).Article 
    PubMed 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2(2), e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohsen, A., Park, J., Chen, Y.-A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinform. 20(1), 581. https://doi.org/10.1186/s12859-019-3187-5 (2019).Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willis, A. & Bunge, J. Estimating diversity via frequency ratios: estimating diversity via ratios. Biometrics 71(4), 1042–1049. https://doi.org/10.1111/biom.12332 (2015).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407. https://doi.org/10.3389/fmicb.2019.02407 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8(9), 107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS 
    Article 

    Google Scholar 
    Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are the same. Comput. Struct. Biotech. J. 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014 (2020).CAS 
    Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Socio-psychological determinants of Iranian rural households' adoption of water consumption curtailment behaviors

    Sun, C., Zhang, J., Ma, Q., Chen, Y. & Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 39, 63–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. Factors influencing farmers’ adaptation strategies in confronting the drought in Iran. Environ. Dev. Sustain. 2020 234 23, 4949–4972 (2020).Article 

    Google Scholar 
    Kumar Singh, P., Dey, P., Kumar Jain, S. & Mujumdar, P. P. Hydrology and water resources management in ancient India. Hydrol. Earth Syst. Sci. 24, 4691–4707 (2020).ADS 
    Article 

    Google Scholar 
    Warner, L. A. & Diaz, J. M. Amplifying the Theory of Planned behavior with connectedness to water to inform impactful water conservation program planning and evaluation. J. Agric. Educ. Ext. 27, 229–253 (2021).Article 

    Google Scholar 
    Warner, L. A. Who conserves and who approves? Predicting water conservation intentions in urban landscapes with referent groups beyond the traditional ‘important others’. Urban For. Urban Green. 60, 127070 (2021).Article 

    Google Scholar 
    Savari, M., Eskandari Damaneh, H. & Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 67, 102654 (2022).Article 

    Google Scholar 
    Eskandari Damaneh, H. et al. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air Soil Water Res. https://doi.org/10.1177/1178622121101333214 (2021).Article 

    Google Scholar 
    Eskandari Damaneh, H., Khosravi, H., Habashi, K., Eskandari Damaneh, H. & Tiefenbacher, J. P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 110, 2185–2205 (2022).Article 

    Google Scholar 
    Savari, M., Abdeshahi, A., Gharechaee, H. & Nasrollahian, O. Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. Int. J. Disaster Risk Reduct. 60, 102284 (2021).Article 

    Google Scholar 
    Liu, J., Scanlon, B. R., Zhuang, J. & Varis, O. Food-energy-water nexus for multi-scale sustainable development. Resour. Conserv. Recycl. 154, 104565 (2020).Article 

    Google Scholar 
    Araya, F., Osman, K. & Faust, K. M. Perceptions versus reality: Assessing residential water conservation efforts in the household. Resour. Conserv. Recycl. 162, 105020 (2020).Article 

    Google Scholar 
    Omer, A., Elagib, N. A., Zhuguo, M., Saleem, F. & Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 749, 141446 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Aslam, S. et al. Sustainable model: Recommendations for water conservation strategies in a developing country through a psychosocial wellness program. Water (Switzerland) 13, 1–20 (2021).
    Google Scholar 
    Diaz, J., Odera, E. & Warner, L. Delving deeper: Exploring the influence of psycho-social wellness on water conservation behavior. J. Environ. Manag. 264, 110404 (2020).Article 

    Google Scholar 
    Fader, M., Shi, S., Von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Brown, T. C., Mahat, V. & Ramirez, J. A. Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 7, 219–234 (2019).ADS 
    Article 

    Google Scholar 
    Lall, U., Josset, L. & Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 45, 171–194 (2020).Article 

    Google Scholar 
    Jin, J. et al. Impacts of climate change on hydrology in the Yellow River Source Region, China. J. Water Clim. Change 11, 916–930 (2020).Article 

    Google Scholar 
    Cochand, F., Brunner, P., Hunkeler, D., Rössler, O. & Holzkämper, A. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Sci. Total Environ. 798, 148759 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Waha, K. et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Change 17, 1623–1638 (2017).Article 

    Google Scholar 
    Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 1–6 (2019).Article 

    Google Scholar 
    Fragaszy, S. R. et al. Drought monitoring in the Middle East and North Africa (MENA) region. Bull. Am. Meteorol. Soc. 101, 1148–1173 (2020).Article 

    Google Scholar 
    Tajeri moghadam, M., Raheli, H., Zarifian, S. & Yazdanpanah, M. The power of the health belief model (HBM) to predict water demand management: A case study of farmers’ water conservation in Iran. J. Environ. Manag. 263, 110388 (2020).Article 

    Google Scholar 
    Marston, L., Ao, Y., Konar, M., Mekonnen, M. M. & Hoekstra, A. Y. High-resolution water footprints of production of the United States. Water Resour. Res. 54, 2288–2316 (2018).ADS 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 67, 102695 (2022).Article 

    Google Scholar 
    Savari, M. & Moradi, M. The effectiveness of drought adaptation strategies in explaining the livability of Iranian rural households. Habitat Int. 124, 102560 (2022).Article 

    Google Scholar 
    Warner, L., Chaudhary, A. K., Rumble, J., Lamm, A. & Momol, E. Using audience segmentation to tailor residential irrigation water conservation programs. J. Agric. Educ. 58, 313–333 (2017).Article 

    Google Scholar 
    Tapsuwan, S., Cook, S. & Moglia, M. Willingness to pay for rainwater tank features: A post-drought analysis of Sydney water users. Water (Switzerland) 10, 1199 (2018).
    Google Scholar 
    Chubaka, C. E., Whiley, H., Edwards, J. W. & Ross, K. E. A review of roof harvested rainwater in Australia. J. Environ. Public Health 2018, 6471324 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Smith, H. M., Brouwer, S., Jeffrey, P. & Frijns, J. Public responses to water reuse—Understanding the evidence. J. Environ. Manag. 207, 43–50 (2018).CAS 
    Article 

    Google Scholar 
    Addo, I. B., Thoms, M. C. & Parsons, M. Barriers and drivers of household water-conservation behavior: A profiling approach. Water (Switzerland) 10, 1794 (2018).
    Google Scholar 
    Jarrett, W. B. A survey of the influences on water conservation behavior in Pickens and Oconee counties (2015).Yazdanpanah, M., Forouzani, M., Abdeshahi, A. & Jafari, A. Investigating the effect of moral norm and self-identity on the intention toward water conservation among Iranian young adults. Water Policy 18, 73–90 (2016).Article 

    Google Scholar 
    Sabzali Parikhani, R., Sadighi, H. & Bijani, M. Ecological consequences of nanotechnology in agriculture: Researchers’ perspective. J. Agric. Sci. Technol. 20, 205–219 (2018).
    Google Scholar 
    Moglia, M., Cook, S. & Tapsuwan, S. Promoting water conservation: Where to from here?. Water (Switzerland) 10, 1510 (2018).
    Google Scholar 
    Savari, M. & Zhoolideh, M. The role of climate change adaptation of small-scale farmers on the households food security level in the west of Iran. Dev. Pract. 31, 650–664 (2021).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Kumar Chaudhary, A., Lamm, A. & Warner, L. Using cognitive dissonance to theoretically explain water conservation intentions. J. Agric. Educ. 59, 194–210 (2018).Article 

    Google Scholar 
    Russell, S. V. & Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention. Int. J. Water Resour. Dev. 36, 940–955 (2020).Article 

    Google Scholar 
    Savari, M., Yazdanpanah, M. & Rouzaneh, D. Factors affecting the implementation of soil conservation practices among Iranian farmers. Sci. Rep. 12, 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. https://doi.org/10.1007/S12144-021-02093-9 (2021).Article 

    Google Scholar 
    Lee, M. & Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 128, 683–689 (2013).Article 

    Google Scholar 
    Yazdanpanah, M., Klein, K., Zobeidi, T., Sieber, S. & Löhr, K. Why have economic incentives failed to convince farmers to adopt drip irrigation in southwestern Iran?. Sustainability 14, 1–15 (2022).Article 

    Google Scholar 
    Zobeidi, T., Yaghoubi, J. & Yazdanpanah, M. Developing a paradigm model for the analysis of farmers’ adaptation to water scarcity. Environ. Dev. Sustain. 24, 5400–5425 (2022).Article 

    Google Scholar 
    Russell, S. & Fielding, K. Water demand management research: A psychological perspective. Water Resour. Res. 46, 1–12 (2010).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M., Yazdanpanah, M., Zobeidi, T. & Raoof, M. A. Promoting the adoption of residential water conservation behaviors as a preventive policy to sustainable urban water management. J. Environ. Manag. 313, 115005 (2022).Article 

    Google Scholar 
    Onwezen, M. C., Antonides, G. & Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 39, 141–153 (2013).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M. & Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 39, 100935 (2021).Article 

    Google Scholar 
    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. & Burton, R. J. F. Predicting farmers’ water conservation goals and behavior in Iran: A test of social cognitive theory. Land Use Policy 47, 401–407 (2015).Article 

    Google Scholar 
    Valizadeh, N., Bijani, M., Hayati, D. & Fallah Haghighi, N. Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol. J. 27, 1131–1142 (2019).ADS 
    Article 

    Google Scholar 
    Greaves, M., Zibarras, L. D. & Stride, C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J. Environ. Psychol. 34, 109–120 (2013).Article 

    Google Scholar 
    Wang, Y. et al. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 237, 15–23 (2019).Article 

    Google Scholar 
    Savari, M. & Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 263, 121512 (2020).CAS 
    Article 

    Google Scholar 
    Strydom, W. F. Applying the theory of planned behavior to recycling behavior in South Africa. Recycling 3, 43 (2018).Article 

    Google Scholar 
    Lam, S. P. Predicting intention to save water: Theory of planned behavior, response efficacy, vulnerability, and perceived efficiency of alternative solutions. J. Appl. Soc. Psychol. 36, 2803–2824 (2006).Article 

    Google Scholar 
    Abdulkarim, B., Yacob, M. R., Abdullahi, A. M. & Radam, A. Farmers’ perceptions and attitudes toward forest watershed conservation of the North Selangor Peat Swamp Forest. J. Sustain. For. 36, 309–323 (2017).
    Google Scholar 
    Yuriev, A., Dahmen, M., Paillé, P., Boiral, O. & Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 155, 104660 (2020).Article 

    Google Scholar 
    Bosnjak, M., Ajzen, I. & Schmidt, P. Editorial the theory of planned behavior: Selected recent advances and applications (1841).Ajzen, I. Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 70(2), 121–138. https://doi.org/10.13128/REA-18003 (2015).Article 

    Google Scholar 
    Soorani, F. & Ahmadvand, M. Determinants of consumers’ food management behavior: Applying and extending the theory of planned behavior. Waste Manag. 98, 151–159 (2019).PubMed 
    Article 

    Google Scholar 
    Popa, B., Niță, M. D. & Hălălișan, A. F. Intentions to engage in forest law enforcement in Romania: An application of the theory of planned behavior. For. Policy Econ. 100, 33–43 (2019).Article 

    Google Scholar 
    Tam, K. P. Understanding the psychology X politics interaction behind environmental activism: The roles of governmental trust, density of environmental NGOs, and democracy. J. Environ. Psychol. 71, 101330 (2020).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).Article 

    Google Scholar 
    Icek, A. From intentions to actions: A theory of planned behavior. in Action Control 11–39 (1985).Empidi, A. V. A. & Emang, D. Understanding public intentions to participate in protection initiatives for forested watershed areas using the theory of planned behavior: A case study of Cameron highlands in Pahang, Malaysia. Sustainability 13, 4399 (2021).Article 

    Google Scholar 
    Holt, J. R. et al. Using the theory of planned behavior to understand family forest owners’ intended responses to invasive forest insects. Soc. Nat. Resour. 34, 1001–1018 (2021).Article 

    Google Scholar 
    Marcos, K. J., Moersidik, S. S. & Soesilo, T. E. B. Extended theory of planned behavior on utilizing domestic rainwater harvesting in Bekasi, West Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 716, 012054 (2021).Article 

    Google Scholar 
    Sánchez, M., López-Mosquera, N., Lera-López, F. & Faulin, J. An extended planned behavior model to explain the willingness to pay to reduce noise pollution in road transportation. J. Clean. Prod. 177, 144–154 (2018).Article 

    Google Scholar 
    Fernandez, M. E., Ruiter, R. A. C., Markham, C. M. & Kok, G. Intervention mapping: Theory-and evidence-based health promotion program planning: Perspective and examples. Front. Public Health 7, 209 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, F. et al. Quantifying the influence path of water conservation awareness on water-saving irrigation behavior based on the theory of planned behavior and structural equation modeling: A case study from Northwest China. Sustainability 11, 1–16 (2019).
    Google Scholar 
    Ullah, S. et al. Predicting behavioral intention of rural inhabitants toward economic incentive for deforestation in Gilgit-Baltistan, Pakistan. Sustainability 13, 1–17 (2021).
    Google Scholar 
    Koop, S. H. A., Van Dorssen, A. J. & Brouwer, S. Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics. J. Environ. Manag. 247, 867–876 (2019).CAS 
    Article 

    Google Scholar 
    Goh, E., Ritchie, B. & Wang, J. Non-compliance in national parks: An extension of the theory of planned behaviour model with pro-environmental values. Tour. Manag. 59, 123–127 (2017).Article 

    Google Scholar 
    Liang, Y., Kee, K. F. & Henderson, L. K. Towards an integrated model of strategic environmental communication: Advancing theories of reactance and planned behavior in a water conservation context. J. Appl. Commun. Res. 46, 135–154 (2018).CAS 
    Article 

    Google Scholar 
    Gkargkavouzi, A., Halkos, G. & Matsiori, S. Environmental behavior in a private-sphere context: Integrating theories of planned behavior and value belief norm, self-identity and habit. Resour. Conserv. Recycl. 148, 145–156 (2019).Article 

    Google Scholar 
    Vaske, J. J., Landon, A. C. & Miller, C. A. Normative influences on farmers’ intentions to practice conservation without compensation. Environ. Manag. 66, 191–201 (2020).Article 

    Google Scholar 
    Nguru, W. M., Gachene, C. K., Onyango, C. M., Ng’ang’a, S. K. & Girvetz, E. H. Factors constraining the adoption of soil organic carbon enhancing technologies among small-scale farmers in Ethiopia. Heliyon 7, e08497 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Møller, M., Haustein, S. & Bohlbro, M. S. Adolescents’ associations between travel behaviour and environmental impact: A qualitative study based on the Norm-Activation Model. Travel Behav. Soc. 11, 69–77 (2018).Article 

    Google Scholar 
    Savari, M., Naghibeiranvand, F. & Asadi, Z. Modeling environmentally responsible behaviors among rural women in the forested regions in Iran. Glob. Ecol. Conserv. 35, e02102 (2022).Article 

    Google Scholar 
    van Valkengoed, A. M. & Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nat. Clim. Chang. 9, 158–163 (2019).ADS 
    Article 

    Google Scholar 
    Maduku, D. K. Water conservation campaigns in an emerging economy: How effective are they?. Int. J. Advert. 40, 452–472 (2021).Article 

    Google Scholar 
    Thøgersen, J. & Grønhøj, A. Electricity saving in households—A social cognitive approach. Energy Policy 38, 7732–7743 (2010).Article 

    Google Scholar 
    Ouellette, J. A. & Wood, W. Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychol. Bull. 124, 54–74 (1998).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2, 314–324 (2020).Article 

    Google Scholar 
    Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W. & Schmitt, M. Working memory capacity and self-regulatory behavior: toward an individual differences perspective on behavior determination by automatic versus controlled processes. J. Pers. Soc. Psychol. 95, 962–977 (2008).PubMed 
    Article 

    Google Scholar 
    Jorgensen, B. S., Martin, J. F., Pearce, M. W. & Willis, E. M. Aligning theory and measurement in behavioral models of water conservation. Water Policy 17, 762–776 (2015).Article 

    Google Scholar 
    Barr, S. & Gilg, A. W. A conceptual framework for understanding and analyzing attitudes towards environmental behaviour. Geogr. Ann. Ser. B Hum. Geogr. 89 B, 361–379 (2007).Article 

    Google Scholar 
    Hansmann, R., Bernasconi, P., Smieszek, T., Loukopoulos, P. & Scholz, R. W. Justifications and self-organization as determinants of recycling behavior: The case of used batteries. Resour. Conserv. Recycl. 47, 133–159 (2006).Article 

    Google Scholar 
    Tang, Z., Chen, X. & Luo, J. Determining socio-psychological drivers for rural household recycling behavior in developing countries: A case study from Wugan, Hunan, China. Environ. Behav. 43, 848–877 (2011).Article 

    Google Scholar 
    Krejcie, R. V. & Morgan, W. D. (1970) “Determining sample size for research activities”, educational and psychological measurement. Int. J. Employ. Stud. 18, 89–123 (1996).
    Google Scholar 
    Gregory, G. D. & Di Leo, M. Repeated behavior and environmental psychology: The role of personal involvement and habit formation in explaining water consumption. J. Appl. Soc. Psychol. 33, 1261–1296 (2003).Article 

    Google Scholar 
    Keramitsoglou, K. M. & Tsagarakis, K. P. Raising effective awareness for domestic water saving: Evidence from an environmental educational programme in Greece. Water Policy 13, 828–844 (2011).Article 

    Google Scholar 
    Chaudhary, A. K. et al. Using the theory of planned behavior to encourage water conservation among extension clients. J. Agric. Educ. 58, 185–202 (2017).Article 

    Google Scholar 
    Pradhananga, A. K., Davenport, M. A., Fulton, D. C., Maruyama, G. M. & Current, D. An integrated moral obligation model for landowner conservation norms. Soc. Nat. Resour. 30, 212–227 (2017).Article 

    Google Scholar 
    Heath, Y. & Gifford, R. Extending the theory of planned behavior: Predicting the use of public transportation. J. Appl. Soc. Psychol. 32, 2154–2189 (2002).Article 

    Google Scholar 
    Bodimeade, H. et al. Testing the direct, indirect, and interactive roles of referent group injunctive and descriptive norms for sun protection in relation to the theory of planned behavior. J. Appl. Soc. Psychol. 44, 739–750 (2014).Article 

    Google Scholar 
    Veisi, K., Bijani, M. & Abbasi, E. A human ecological analysis of water conflict in rural areas: Evidence from Iran. Glob. Ecol. Conserv. 23, e01050 (2020).Article 

    Google Scholar 
    Botetzagias, I., Dima, A. F. & Malesios, C. Extending the Theory of Planned Behavior in the context of recycling: The role of moral norms and of demographic predictors. Resour. Conserv. Recycl. 95, 58–67 (2015).Article 

    Google Scholar 
    Martínez-Espiñeira, R., García-Valiñas, M. A. & Nauges, C. Households’ pro-environmental habits and investments in water and energy consumption: Determinants and relationships. J. Environ. Manag. 133, 174–183 (2014).Article 

    Google Scholar 
    Dolnicar, S., Hurlimann, A. & Grün, B. Water conservation behavior in Australia. J. Environ. Manag. 105, 44–52 (2012).Article 

    Google Scholar 
    Untaru, E. N., Ispas, A., Candrea, A. N., Luca, M. & Epuran, G. Predictors of individuals’ intention to conserve water in a lodging context: The application of an extended Theory of Reasoned Action. Int. J. Hosp. Manag. 59, 50–59 (2016).Article 

    Google Scholar 
    Khoshmaram, M., Shiri, N., Shinnar, R. S. & Savari, M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. J. Small Bus. Manag. https://doi.org/10.1111/jsbm.1250158,1064-1088 (2020).Article 

    Google Scholar 
    Benitez, J., Henseler, J., Castillo, A. & Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag. 57, 103168 (2020).Article 

    Google Scholar 
    Sarstedt, M., Ringle, C. M. & Hair, J. F. Partial least squares structural equation modeling. in Handbook of Market Research 1–47. https://doi.org/10.1007/978-3-319-05542-8_15-2 (2021).Clark, W. A. & Finley, J. C. Determinants of water conservation intention in Blagoevgrad, Bulgaria. Soc. Nat. Resour. 20, 613–627 (2007).Article 

    Google Scholar 
    De Dominicis, S., Sokoloski, R., Jaeger, C. M. & Schultz, P. W. Making the smart meter social promotes long-term energy conservation. Palgrave Commun. 5, 1–8 (2019).Article 

    Google Scholar 
    Wang, S., Hung, K. & Huang, W.-J. Motivations for entrepreneurship in the tourism and hospitality sector: A social cognitive theory perspective. Int. J. Hosp. Manag. https://doi.org/10.1016/j.ijhm.2018.11.018 (2018).Article 

    Google Scholar 
    Ramirez, E., Kulinna, P. H. & Cothran, D. Constructs of physical activity behaviour in children: The usefulness of Social Cognitive Theory. Psychol. Sport Exerc. 13, 303–310 (2012).Article 

    Google Scholar 
    Glanz, K., Rimer, B. K. & Viswanath, K. Health and Health (2002). More

  • in

    Biogeographic implication of temperature-induced plant cell wall lignification

    Körner, C. The cold range limit of trees. Trends Ecol. Evo. 36, 979–989 (2021).Article 

    Google Scholar 
    Körner, C. Alpine Treelines (Springer, 2012).Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Hoch, G. & Körner, C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 19, 941–951 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).Körner, C. Climatic treelines: conventions, global patterns, causes. Erdkunde 61, 315–324 (2007).Article 

    Google Scholar 
    Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 29, 613–620 (2015).CAS 
    Article 

    Google Scholar 
    Körner, C. et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 129, 63–80 (2019).Article 

    Google Scholar 
    Crivellaro, A. & Büntgen, U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 24, 322–324 (2020).Article 
    CAS 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Biosci 47, 235–242 (1997).Article 

    Google Scholar 
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613 (2010).
    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta 147, 46–54 (2013).CAS 
    Article 

    Google Scholar 
    Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. N. Phytol. 187, 273–285 (2010).CAS 
    Article 

    Google Scholar 
    Niklas, K. J., Cobb, E. D. & Matas, A. J. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 68, 5261–5269 (2017).CAS 

    Google Scholar 
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piquemal, J. et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83 (1998).CAS 
    Article 

    Google Scholar 
    Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenk, H. J., Espino, S., Rich-Cavazos, S. M. & Jansen, S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105, 172–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polo, C. C. et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 10, 6023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meents, M. J., Watanabe, Y. & Samuels, A. L. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107–1125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, M. M. & Sederoff, R. R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 110, 3–13 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweingruber, F. H. & Büntgen, U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia 31, 187–191 (2013).Article 

    Google Scholar 
    Ellenberg, H. & Mueller-Dombois, D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 37, 56–73 (1967).
    Google Scholar 
    Kim, W. J., Campbell, A. G. & Koch, P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class. Prod. J. 39, 7–12 (1989).CAS 

    Google Scholar 
    Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 14, 409–414 (2000).Article 

    Google Scholar 
    Schenker, G., Lens, A., Körner, C. & Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 34, 302–313 (2014).PubMed 
    Article 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, H. et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 11, e1005471 (2015).Article 
    CAS 

    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).Article 

    Google Scholar 
    Piermattei, A. et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016 (2020).Article 

    Google Scholar 
    Montwé, D., Isaac-Rentin, M., Hamman, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 9, 1574 (2018).Article 
    CAS 

    Google Scholar 
    Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Z. & Mohnen, D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 49, 212–241 (2014).CAS 
    Article 

    Google Scholar 
    Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kumar, M., Campbell, L. & Turner, S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 67, 515–531 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239–274 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 189, 241–252 (2010).Article 

    Google Scholar 
    Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100, 4939–4944 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 102, 1074–1089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014).Article 

    Google Scholar 
    Körner, C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).Article 

    Google Scholar 
    GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.ms4hjt (2018).Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).Gärtner, H. et al. A technical perspective in modern tree-ring research – How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97, e52337 (2015).
    Google Scholar 
    Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).Ghislan, B., Engel, J. & Clair, B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 40, 1–20 (2019).Article 

    Google Scholar 
    Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014). More

  • in

    Microbiota succession throughout life from the cradle to the grave

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, e00140–17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms – how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. Changes in microbiome during and after travellers’ diarrhea: what we know and what we do not. J. Travel. Med. 24, S52–S56 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693–15 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed 
    Article 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lynn, M. A. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 23, 653–660.e5 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jamalkandi, S. A. et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 34, 1–16 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 68, 218–225 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS ONE 10, e0142536 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milliken, S., Allen, R. M. & Lamont, R. F. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert. Opin. Drug. Saf. 18, 173–185 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevisanuto, D. et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J. Matern. Fetal Neonatal Med. 26, 1484–1490 (2013).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951–964.e5 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 11, 575197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, L. A. et al. The transfer of immunity from mother to child. Ann. NY. Acad. Sci. 987, 199–206 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016). This study demonstrates that ‘seeding’ infants born by caesarean delivery with the vaginal microbiota of the mother at birth partially naturalizes development of the microbial community.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68 (2019).PubMed Central 
    Article 

    Google Scholar 
    Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study shows that severe acute malnutrition leads to immature microbial development and introduces a metric for the measure of microbiota maturity.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Groer, M. W. et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021). This report describes the immune development driven by microbial interactions and the negative impact of lack of HMO-utilizing microorganisms on the immune system.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantis, V., Bode, L. & van Neerven, R. J. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59, 102950 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, H. F. et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly Danes. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044693 (2020).Article 

    Google Scholar 
    Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020). This study describes the assembly of the human virome during development.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns. Colitis 14, 1600–1610 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koren, O. & Rautava, S. The Human Microbiome in Early Life: Implications to Health and Disease (Academic, 2020).Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B 367, 2864–2871 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).CAS 
    Article 

    Google Scholar 
    Gomez, A. & Nelson, K. E. The oral microbiome of children: development, disease, and implications beyond oral health. Microb. Ecol. 73, 492–503 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cephas, K. D. et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6, e23503 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darwazeh, A. M. & al-Bashir, A. Oral candidal flora in healthy infants. J. Oral. Pathol. Med. 24, 361–364 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stecksén-Blicks, C., Granström, E., Silfverdal, S. A. & West, C. E. Prevalence of oral Candida in the first year of life. Mycoses 58, 550–556 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brusa, T., Conca, R., Ferrara, A., Ferrari, A. & Pecchioni, A. The presence of methanobacteria in human subgingival plaque. J. Clin. Periodontol. 14, 470–471 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrari, A., Brusa, T., Rutili, A., Canzi, E. & Biavati, B. Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr. Microbiol. 29, 7–12 (1994).CAS 
    Article 

    Google Scholar 
    Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).PubMed 
    Article 

    Google Scholar 
    Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dye, B. A., Li, X. & Thornton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009–2010. NCHS Data Brief. 104, 1–8 (2012).
    Google Scholar 
    Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).PubMed 

    Google Scholar 
    Lee, Y. W., Yim, S. M., Lim, S. H., Choe, Y. B. & Ahn, K. J. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 49, 405–410 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sugita, T. et al. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med. Mycol. 48, 229–233 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulcr, J. et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS ONE 7, e47712 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya, A. & Brocal, V. P. The Human Virome: Methods and Protocols (Springer, 2018).Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA 107, 7503–7508 (2010). This study shows that cohabitating identical twins result in different microbial communities, highlighting the many unknown processes that lead to the unique human microbiota.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Lu, Y., Chen, T. & Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wells, J. S., Chandler, R., Dunn, A. & Brewster, G. The vaginal microbiome in U.S. black women: a systematic review. J. Womens Health 29, 362–375 (2020).Article 

    Google Scholar 
    Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henderickx, J. G. E., Zwittink, R. D., van Lingen, R. A., Knol, J. & Belzer, C. The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 9, 85 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malamitsi-Puchner, A. et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 81, 387–392 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Andersen, V., Möller, S., Jensen, P. B., Møller, F. T. & Green, A. Caesarean delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population based registry study of 2,699,479 births in Denmark during 1973–2016. Clin. Epidemiol. 12, 287–293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blustein, J. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37, 900–906 (2013).CAS 
    Article 

    Google Scholar 
    Ardic, C., Usta, O., Omar, E., Yıldız, C. & Memis, E. Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. J. Obstet. Gynaecol. 41, 374–379 (2021).PubMed 
    Article 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martinez, K. A. 2nd et al. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3, eaao1874 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya-Pérez, A. et al. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev. 75, 225–240 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forbes, J. D. et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 172, e181161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shenhav, L. & Azad, M. B. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems 7, e01132–21 (2022).PubMed Central 
    Article 

    Google Scholar 
    Kaetzel, C. S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol. Lett. 162, 10–21 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munblit, D., Verhasselt, V. & Warner, J. O. Human Milk Composition and Health Outcomes in Children (Frontiers Media, 2019).Mastromarino, P. et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27, 1077–1086 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coats, S. R., Pham, T.-T. T., Bainbridge, B. W., Reife, R. A. & Darveau, R. P. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J. Immunol. 175, 4490–4498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denou, E. et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral. Sci. 12, 12 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allaband, C. et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6, e00116–e00121 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Marotz, C. et al. Quantifying live microbial load in human saliva samples over time reveals stable composition and dynamic load. mSystems 6, e01182–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouslimani, A. et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 17, 47 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This study demonstrates the important variability between body habitats and between individuals across the same body habitat.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. 89, e00648–20 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). This study shows that autologous faecal microbiota transplantation helps to restore the microbiota of patients who underwent antibiotic treatment.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Nood, E., Dijkgraaf, M. G. W. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Panigrahi, P. et al. Corrigendum: a randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 553, 238 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mu, A. et al. Effects on the microbiome during treatment of a staphylococcal device infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-969336/v1 (2021).Article 

    Google Scholar 
    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). This study reports microbial community alterations between older individuals (aged 65 years and older) dependent on whether they live in the company of others or alone, the latter of which was correlated to worse outcomes (that is, frailty and co-morbidity).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 7, 10567 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, S., Wang, Y., Zhao, L., Sun, X. & Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 12, 7874–7907 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartz, J. L. et al. Old age and other factors associated with salivary microbiome variation. BMC Oral. Health 21, 490 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 01227 (2016).Article 

    Google Scholar 
    Wu, L. et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5, e00558–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). This study finds that centenarians often had high abundances of microorganisms that produced unique secondary bile acids, namely various isoforms of lithocholic acid.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: the Postmortem Fate of Human Remains 93–108 (CRC, 1997).Janaway, R. C., Percival, S. L. & Wilson, A. S. in Microbiology and Aging (ed. Percival, S. L) 313–334 (Humana, 2009).Forbes, S. L., Perrault, K. A. & Comstock, J. L. in Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment (eds Schotsmans, E. M. J., Márquez-Grant, N. & Forbes, S. L.) 26–38 (Wiley, 2017).Heimesaat, M. M. et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS ONE 7, e40758 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkinson, R. A. et al. in Criminal and Environmental Soil Forensics (eds Ritz, K., Dawson, L. & Miller, D.) 379–394 (Springer, 2009).Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016). This study finds that the time since death was predictable through the microbial community composition independent of the soil type and season.CAS 
    PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M. & Hauther, K. A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5, e3437 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kodama, W. A. et al. Trace evidence potential in postmortem skin microbiomes: from death scene to morgue. J. Forensic Sci. 64, 791–798 (2019).PubMed 
    Article 

    Google Scholar 
    Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E. & DeBruyn, J. M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 60, 1234–1240 (2015).PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci. Int. 264, 63–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front. Microbiol. 10, 745 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B. & Cecconello, I. Bacterial translocation: overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 22, 464–471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2, e01104 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M. & Bucheli, S. R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 129, 661–671 (2015).Article 

    Google Scholar 
    Javan, G. T., Finley, S. J., Smith, T., Miller, J. & Wilkinson, J. E. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front. Microbiol. 8, 2096 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, H. R. et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 11, e0167370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Belk, A. et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9, 104 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Metcalf, J. L. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet. 38, 211–218 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deel, H. et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6, e0045521 (2021).PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. Microbiome tools for forensic science. Trends Biotechnol. 35, 814–823 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).PubMed 
    Article 

    Google Scholar 
    Jeste, D. V., Koh, S. & Pender, V. B. Perspective: social determinants of mental health for the new decade of healthy aging. Am. J. Geriatr. Psychiatry 30, 733–736 (2022).PubMed 
    Article 

    Google Scholar 
    Matijašić, M. et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci. 21, 2668 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vázquez-Baeza, Y. et al. Guiding longitudinal sampling in IBD cohorts. Gut 67, 1743–1745 (2018).PubMed 
    Article 

    Google Scholar 
    Kane, P. B., Bittlinger, M. & Kimmelman, J. Individualized therapy trials: navigating patient care, research goals and ethics. Nat. Med. 27, 1679–1686 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Nat. Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vangay, P. et al. Microbiome metadata standards: report of the national microbiome data collaborative’s workshop and follow-on activities. mSystems 6, e01194–20 (2021).PubMed 
    PubMed Central 

    Google Scholar  More