More stories

  • in

    Ecological memory of prior nutrient exposure in the human gut microbiome

    Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, et al. Quantifying ecological memory in plant and ecosystem processes. Ecol Lett. 2015;18:221–35.PubMed 
    Article 

    Google Scholar 
    Schweiger AH, Boulangeat I, Conradi T, Davis M, Svenning JC. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach. Biol Rev. 2019;94:1–15.Article 

    Google Scholar 
    Webster CR, Dickinson YL, Burton JI, Frelich LE, Jenkins MA, Kern CC, et al. Promoting and maintaining diversity in contemporary hardwood forests: confronting contemporary drivers of change and the loss of ecological memory. Ecol Manag. 2018;421:98–108.Article 

    Google Scholar 
    Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM, Heron SF, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Change. 2019;9:40–43.Article 

    Google Scholar 
    Stockwell SR, Landry CR, Rifkin SA. The yeast galactose network as a quantitative model for cellular memory. Mol Biosyst. 2015;11:28–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE. 2008;3:e1700.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lyon P. The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 2015;6:264.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith MB, Rocha AM, Smillie CS, Olesen SW, Paradis C, Wu L, et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio. 2015;6:e00326–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cordeiro MC, Garcia GD, Rocha AM, Tschoeke DA, Campeão ME, Appolinario LR, et al. Insights on the freshwater microbiomes metabolic changes associated with the world’s largest mining disaster. Sci Total Environ. 2019;654:1209–17.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kuster SP, Rudnick W, Shigayeva A, Green K, Baqi M, Gold WL, et al. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin Infect Dis. 2014;59:944–52.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.PubMed 
    Article 
    CAS 

    Google Scholar 
    David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial succession follows acute secretory diarrhea in humans. mBio. 2015;6:e00381–15.PubMed 
    PubMed Central 

    Google Scholar 
    Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184:615–27.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540:544–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Coyte KZ, Rakoff-Nahoum S. Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol. 2019;29:R538–R544.Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25:789–802.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tarini J, Wolever TMS. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab. 2010;35:9–16.PubMed 
    Article 
    CAS 

    Google Scholar 
    van Loo J, Coussement P, de Leenheer L, Hoebreg H, Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35:525–52.PubMed 
    Article 

    Google Scholar 
    Holmes ZC, Silverman JD, Dressman HK, Wei Z, Dallow EP, Armstrong SC, et al. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. mBio. 2020;11:e00914–20.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22:261–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silverman JD, Durand HK, Bloom RJ, Mukherjee S, David LA. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome. 2018;6:1–20.Article 

    Google Scholar 
    Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, et al. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe. 2008;14:280–86.den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.Article 
    CAS 

    Google Scholar 
    Reichardt N, Vollmer M, Holtrop G, Farquharson FM, Wefers D, Bunzel M, et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2018;12:610–22.PubMed 
    Article 
    CAS 

    Google Scholar 
    Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–52.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533:255–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.PubMed 
    Article 
    CAS 

    Google Scholar 
    van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007;102:452–60.PubMed 

    Google Scholar 
    Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 2016;167:114–25.PubMed 
    Article 
    CAS 

    Google Scholar 
    Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA 2014;111:7427–32.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, et al. The Virtual Metabolic Human database: Integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 2019;47:D614–D624.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li H, Liu F, Lu J, Shi J, Guan J, Yan F, et al. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front Microbiol. 2020;11:512.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2018;46:D677–D683.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bolam DN, van den Berg B. TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Curr Opin Struct Biol. 2018;51:35–43.PubMed 
    Article 
    CAS 

    Google Scholar 
    Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr. 2004;91:915–23.PubMed 
    Article 
    CAS 

    Google Scholar 
    Holmes ZC, Villa MM, Durand HK, Jiang S, Dallow EP, Petrone BL, et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. bioRxiv. 2021. https://doi.org/10.1101/2021.06.26.450023.Holscher HD, Gregory Caporaso J, Hooda S, Brulc JM, Fahey GC, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;101:55–64.Liu H, Liao C, Wu L, Tang J, Chen J, Lei C, et al. Ecological dynamics of the gut microbiome in response to dietary fiber. ISME J. 2022;16:2040–55.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaczmarek JL, Musaad SMA, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 2017;106:1220–31.Basan M, Honda T, Christodoulou D, Hörl M, Chang YF, Leoncini E, et al. A universal trade-off between growth and lag in fluctuating environments. Nature. 2020;584:470–4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340.PubMed 
    Article 

    Google Scholar 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMed 
    Article 

    Google Scholar 
    Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11:1–11.Article 
    CAS 

    Google Scholar 
    Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22.PubMed 
    Article 
    CAS 

    Google Scholar 
    Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wissel EF, Smith LK. Inter-individual variation shapes the human microbiome. Behav Brain Sci. 2019;42:E79.Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, et al. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep. 2021;37:110113.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kerimi A, Kraut NU, da Encarnacao JA, Williamson G. The gut microbiome drives inter- and intra-individual differences in metabolism of bioactive small molecules. Sci Rep. 2020;10:1–12.Article 
    CAS 

    Google Scholar 
    di Bartolomeo F, van den Ende W. Fructose and fructans: opposite effects on health? Plant Foods Hum Nutr. 2015;70:227–37.Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun. 2014;5:1–9.Article 
    CAS 

    Google Scholar 
    Oliphant K, Parreira VR, Cochrane K, Allen-Vercoe E. Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity. ISME J. 2019;13:3080–92.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2004;49:495–507.PubMed 
    Article 
    CAS 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(supplement_1):4516–22.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–D122.Bioinformatics B, Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.Webb EC. Enzyme nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of Enzymes. Cambridge, MA, USA: Academic Press; 1992.Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, et al. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem. 2021;296:100125.Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE. 2013;8:e67019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sakamoto M, Ohkuma M. Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology. 2011;157:3388–97.PubMed 
    Article 

    Google Scholar 
    Silverman JD, Roche K, Holmes ZC, David LA, Mukherjee S. Bayesian multinomial logistic normal models through marginally latent matrix-T processes. J Mach Learn Res. 2022;23:1–42.
    Google Scholar  More

  • in

    Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?

    Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ. 2001;84:1–20.Article 

    Google Scholar 
    Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–6.Article 
    CAS 

    Google Scholar 
    Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.Article 

    Google Scholar 
    Pearson DE, Ortega YK, Eren Ö, Hierro JL. Community assembly theory as a framework for biological invasions. Trends Ecol Evol. 2018;33:313–25.PubMed 
    Article 

    Google Scholar 
    Inderjit, van der Putten WH. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol. 2010;25:512–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.Article 

    Google Scholar 
    Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 2006;4:e140.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hierro JL, Callaway RM. Allelopathy and exotic plant invasion. Plant Soil. 2003;256:29–39.Article 
    CAS 

    Google Scholar 
    Reinhart KO, Callaway RM. Soil biota and invasive plants. N Phytol. 2006;170:445–57.Article 

    Google Scholar 
    Waller LP, Allen WJ, Barratt BIP, Condron LM, França FM, Hunt JE, et al. Biotic interactions drive ecosystem responses to exotic plant invaders. Science. 2020;368:967–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol. 2016;104:994–1002.Article 
    CAS 

    Google Scholar 
    Saul WC, Jeschke JM. Eco-evolutionary experience in novel species interactions. Ecol Lett. 2015;18:236–45.PubMed 
    Article 

    Google Scholar 
    Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, et al. The fungal dimension of biological invasions. Trends Ecol Evol. 2007;22:472–80.PubMed 
    Article 

    Google Scholar 
    Hierro JL, Maron JL, Callaway RM. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol. 2005;93:5–15.Article 

    Google Scholar 
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Maron JL, Klironomos J, Waller L, Callaway RM. Invasive plants escape from suppressive soil biota at regional scales. J Ecol. 2014;102:19–27.Article 

    Google Scholar 
    Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77.Article 
    CAS 

    Google Scholar 
    Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 2008.O’Neill EG, O’Neill RV, Norby RJ. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut. 1991;73:271–84.PubMed 
    Article 

    Google Scholar 
    Johnson NC, Wilson GWTT, Wilson JA, Miller RM, Bowker MA. Mycorrhizal phenotypes and the Law of the Minimum. N Phytol. 2015;205:1473–84.Article 
    CAS 

    Google Scholar 
    Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun. 2021;12:3484.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Richardson DM, Allsopp N, D’Antonio CM, Milton S, Rejmanek M. Plant invasions – the role of mutualisms. Biol Rev. 2000;75:65–93.PubMed 
    Article 
    CAS 

    Google Scholar 
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.Article 

    Google Scholar 
    Soti PG, Jayachandran K, Purcell M, Volin JC, Kitajima K. Mycorrhizal symbiosis and Lygodium microphyllum invasion in South Florida—a biogeographic comparison. Symbiosis. 2014;62:81–90.Article 

    Google Scholar 
    Fumanal B, Plenchette C, Chauvel B, Bretagnolle F. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza. 2006;17:25–35.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. N Phytol. 2002;153:335–44.Article 

    Google Scholar 
    Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science. 2007;316:1746–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kivlin SN, Hawkes CV, Treseder KK. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem. 2011;43:2294–303.Article 
    CAS 

    Google Scholar 
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.PubMed 
    Article 

    Google Scholar 
    Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.Article 
    CAS 

    Google Scholar 
    Rout ME, Chrzanowski TH. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil. 2009;315:163–72.Article 
    CAS 

    Google Scholar 
    Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol. 2017;23:1282–91.Article 

    Google Scholar 
    Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia. 2005;144:1–11.PubMed 
    Article 

    Google Scholar 
    Lankau RA. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. N Phytol. 2011;189:536–48.Article 

    Google Scholar 
    Blossey B, Nötzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.Article 

    Google Scholar 
    van Kleunen M, Bossdorf O, Dawson W. The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst. 2018;49:25–47.Article 

    Google Scholar 
    Rosche C, Hensen I, Schaar A, Zehra U, Jasieniuk M, Callaway RM, et al. Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. Ecol Monogr. 2019;89:e01386.Article 

    Google Scholar 
    Weaver SE. The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci. 2001;81:867–75.Article 

    Google Scholar 
    Gange AC, Ayres RL. On the relation between arbuscular mycorrhizal colonization and plant ’ benefit. Oikos. 1999;87:615–21.Article 

    Google Scholar 
    Řezáčová V, Konvalinková T, Řezáč M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia. 2020;75:693–9.Article 

    Google Scholar 
    Zhang Q, Sun Q, Koide RT, Peng Z, Zhou J, Gu X, et al. Arbuscular mycorrhizal fungal mediation of plant-plant onteractions in a marshland plant community. Sci World J. 2014;2014:1–10.
    Google Scholar 
    Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC, Li GL, et al. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol Biochem. 2020;143:107739.Article 
    CAS 

    Google Scholar 
    Shah MA, Callaway RM, Shah T, Houseman GR, Pal RW, Xiao S, et al. Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. N Phytol. 2014;202:1286–96.Article 

    Google Scholar 
    Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol. 2015;24:1999–2017.PubMed 
    Article 

    Google Scholar 
    Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol. 2018;20:75–84.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart SC, Start JM, Davidson EA, Firestone MK. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle J., Bottomley P., editors. Methods of soil analysis, part 2 microbiological and biochemical properties. Madison, WI: Soil Science Society of America; 1994. p. 985–1018.Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR Monogr. 1996;32:1–374.
    Google Scholar 
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. N Phytol. 1990;115:495–501.Article 
    CAS 

    Google Scholar 
    Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;4315:4302–15.Article 

    Google Scholar 
    Hijmans RJ. raster: Geographic data analysis and modeling. R package version 3.3-13. 2020. https://cran.r-project.org/package=raster.R Core Team. R: A language and environment for statistical computing [https://www.r-project.org/]. Vienna, Austria: R Foundation for Statistical Computing; 2019.Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package. 2019. https://cran.r-project.org/package=vegan.Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. N Phytol. 2011;190:794–804.Article 
    CAS 

    Google Scholar 
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339–49.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep. 2021;11:3645.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.Article 
    CAS 

    Google Scholar 
    Chen J. GUniFrac: generalized UniFrac distances. R package version 1.1. 2018. https://cran.r-project.org/package=GUniFrac.Webb CO. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat. 2000;156:145–55.PubMed 
    Article 

    Google Scholar 
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014;67.Borcard D, Gillet F, Legendre P. Numerical ecology with R. New York: Springer; 2011.Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Felker-Quinn E, Schweitzer JA, Bailey JK. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol. 2013;3:739–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal RW, Maron JL, Nagy DU, Waller LP, Tosto A, Liao H, et al. What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology 2020;101:e03072.PubMed 
    Article 

    Google Scholar 
    Matesanz S, Sultan SE. High-performance genotypes in an introduced plant: insights to future invasiveness. Ecology. 2013;94:2464–74.PubMed 
    Article 

    Google Scholar 
    Hart M, Reader R. Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils. 2002;36:357–66.Article 

    Google Scholar 
    Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, et al. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol. 2017;105:219–28.Article 
    CAS 

    Google Scholar 
    Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, et al. Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr. 2011;38:1305–17.Article 

    Google Scholar 
    Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. N Phytol. 2019;222:714–25.Article 

    Google Scholar 
    Jia Y, Heijden MGA, Wagg C, Feng G, Walder F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J Ecol. 2021;109:3171–81.Article 
    CAS 

    Google Scholar 
    Van Der Heijden MGAA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72.Article 
    CAS 

    Google Scholar 
    Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE. 2010;5:e12380.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shah MA, Reshi ZA, Khasa DP. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot Rev. 2009;75:397–417.Article 

    Google Scholar 
    Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil. 2016;404:1–12.Article 
    CAS 

    Google Scholar 
    Wilson GWT, Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot. 1998;85:1732–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Seifert EK, Bever JD, Maron JL. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 2009;90:1055–62.PubMed 
    Article 

    Google Scholar 
    Deveautour C, Donn S, Power SA, Bennett AE, Powell JR. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol Ecol. 2018;27:2152–63.PubMed 
    Article 

    Google Scholar 
    Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. N Phytol. 2018;217:1254–66.Article 
    CAS 

    Google Scholar 
    Tian B, Pei Y, Huang W, Ding J, Siemann E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 2021;15:1919–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pimprikar P, Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018;59:673–90.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wendlandt CE, Helliwell E, Roberts M, Nguyen KT, Friesen ML, Wettberg E, et al. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume‐rhizobium mutualism. Evolution. 2021;75:731–47.PubMed 
    Article 

    Google Scholar 
    Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology. 2011;92:1027–35.PubMed 
    Article 

    Google Scholar 
    Shelby N, Duncan RP, Putten WH, McGinn KJ, Weser C, Hulme PE. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. J Ecol. 2016;104:1259–70.Article 
    CAS 

    Google Scholar 
    Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem. 2013;65:78–85.Article 
    CAS 

    Google Scholar 
    Bronstein JL. The exploitation of mutualisms. Ecol Lett. 2001;4:277–87.Article 

    Google Scholar 
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.PubMed 
    Article 
    CAS 

    Google Scholar 
    Koziol L, Bever JD. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J Ecol. 2019;107:622–32.Article 

    Google Scholar 
    Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena. 2011;87:70–7.Article 
    CAS 

    Google Scholar 
    Zhang J, Wang F, Che R, Wang P, Liu H, Ji B, et al. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Sci Rep. 2016;6:23488.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Read DJ. Mycorrhizas in ecosystems. Experientia. 1991;47:376–91.Article 

    Google Scholar 
    Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology. 2017;98:2111–9.PubMed 
    Article 

    Google Scholar  More

  • in

    Thermodynamic basis for the demarcation of Arctic and alpine treelines

    Explaining the heterogeneous organization of vegetation across landscapes has proved both a puzzling and an inspiring concept as patterns have formed naturally across the world. One such pattern is the existence of treelines, i.e., the demarcation zone between forestland and vegetation without trees1,2. There is a large body of work with developed and competing theories for understanding the specific limits and drivers for the non-existence of trees beyond a treeline. Yet after decades of study, there is still debate among ecologists and biologists over the mechanisms that limit the presence of trees beyond treelines. Current explanations are rooted in, but not limited to, consideration of factors such as excessive light and wind, limited CO(_2), and low temperatures1,3,4,5,6,7.
    With this in mind, we ask: Is there another perspective that could provide insights complementary to and beyond what has been developed through the prevailing mechanistic approach? While the existing explanations are based on ideas of structural stability (e.g., high winds above the treeline) and limited resources pertaining to water, energy, and nutrients1,3,4,5,6,7, we instead examine the question of what determines the existence of a treeline from the perspective of thermodynamic feasibility. Our premise is that the existence or non-existence of certain vegetation first and foremost has to be ascertained through thermodynamic feasibility or infeasibility, respectively. Therefore, we approach the question of the existence of treelines by asking: If certain vegetation does not exist at a given location, is there a role that the thermodynamic perspective can play in telling us that its existence is infeasible? By approaching the topic from the thermodynamic perspective, we seek to provide important complementary insight to the broad base of scientific understanding ecologists and biologists have developed to explain the existence of treelines. Further, this work lays out additional context for the discussion around the advance of treelines (e.g., why some treelines advance and others do not).For example, several theories assert that the stature of vegetation is limited by CO(_2) balance and photosynthetic requirements under harsh winter conditions1,6. Other hypotheses argue that plant life is instead limited by the atmospheric temperature and the local environments that the plants experience7,8. Is there a perspective that could unify both of these findings? Through this work, we demonstrate how thermodynamic infeasibility inferred from model simulations pertaining to counterfactual scenarios manifests through both of these physiological limits. This means that either of these limits, individually or together, could lead to the nonexistence of trees—which limiting factor is expressed first varies by location. Thus, the commonality among locations that have different limiting mechanisms can be found in the unifying concept of thermodynamic infeasibility. While CO(_2) limitation may prevail in one location and temperature-related constraints may be limiting in another, both lead to thermodynamic infeasibility, meaning that the thermal environment results in a mechanistic infeasibility, such as net CO(_2) loss. In the examples presented in this paper, thermodynamic infeasibility manifests through negative work associated with constraints arising from temperature gradients and net CO(_2) loss, demonstrating that both limitations can be encapsulated using the thermodynamic perspective.Ecosystem thermodynamicsIt is now generally accepted that observed patterns of vegetation composition and its organization are a result of self-organization, or the spontaneous emergence of pattern without external predetermination9,10. By framing ecosystems as open thermodynamic systems, we explore further the concept of thermodynamic feasibility and its role in the self-organization of vegetation structure. Vegetation structure consists of composition (i.e., the number and type of functional groups11) and organizational patterns on the landscape12. We focus on composition rather than the spatial pattern of vegetation organization. We utilize a one-dimensional ecohydrological model that incorporates representative functional groups with no lateral transport of energy or matter under the assumption that the vegetation composition and pattern remain spatially uniform at a given site. Thus, we are able to compare the vertical thermodynamic regimes of proximal ecosystems with varying vegetation composition. We present the case that observed organization reflected in the demarcation of differing vegetation structures on either side of a treeline is established in tandem with vertical thermodynamic gradients at a given location, driven by the incoming solar energy into an ecosystem. In other words, we hypothesize that beyond a treeline, the existence of trees is prevented by conditions of thermodynamic infeasibility.The application of thermodynamic theory to ecology has been studied for the better part of the last century through the introduction of theoretical thermodynamic properties, such as entropy and exergy, into environmental systems. This work asserts that open thermodynamic systems will evolve based on the strength of applied concentration gradients on the system and will undergo irreversible processes to dissipate energy and destroy these gradients through all means available13,14. In the context of ecosystems, fluxes of mass or energy from the external environment (i.e., above the canopy) result in concentration gradients within the system itself. State variables will transition along these gradients according to the second law of thermodynamics. When the magnitude of incoming energy and consequent spatial imbalance of energy becomes great enough, dissipative structures spontaneously emerge, or self-organize, and establish temperature gradients consistent with the dissipative need of the ecosystem13,15. In this paper we conceptualize the work performed by an ecosystem as its ability to dissipate these applied concentration gradients. Consequently, work is highly dependent upon the existence and composition of self-organized vegetation.In classical thermodynamics, work is performed due to a transfer, or physical movement, of heat15. In the context of ecosystems, work performed by an ecosystem is represented by the exchange of heat with the external environment outside the ecosystem control volume12. Work performed by an ecosystem is, therefore, estimated as the vertical transport of heat in the form of latent and sensible heat, driven by the vertical gradient in temperature within the control volume structured by both the incoming downward shortwave and longwave radiation and the vegetation structure. The bottom boundary of the ecosystem control volumes studied are significantly deep such that heat exchanges due to water infiltration at this interface are insignificant in magnitude relative to latent and sensible heat flux out of the top of the control volume above the canopy. Further, we ignore the substantially slower thermodynamic processes associated with geochemistry in the soil.The vertical temperature gradient creates a directionality of dissipation of incident radiation as heat leaves out of the ecosystem from higher surface temperatures to lower air temperatures. Throughout this paper, we measure work through the net sum of heat leaving the ecosystem as latent and sensible heat—which can either be positive or negative depending on the direction of the resultant temperature gradient (see “Thermodynamic Calculations” in the “Methods” section). This temperature gradient (Eq. 1) emerges as a result of self-organization through feedback between the incoming shortwave and longwave radiation, local environmental conditions, and the heat dissipation and work performed by the vegetation. The presence of ground cover, such as snow, is impacted by aboveground vegetation structure, which provides a physical buffer between the atmosphere and the ground, further influencing the thermal environment and temperature gradient.Although significant research has been conducted by studying plant response to snowpack7,16,17, including the physiological requirements for life under prolonged snowpack and alpine climatic conditions, the thermodynamic perspective provides further insight. In addition to the physiological/mechanistic response of plants to snowpack and other environmental conditions, the thermal regime of a column of land experiencing snowpack is fundamentally different when an ecosystem does or does not have plants with stature taller than the height of snowpack (e.g., trees). Presence of trees results in shading from solar radiation and a physical buffer between the earth/snow surface and the atmosphere. Thus, the thermal profile of an ecosystem reveals valuable information about ecosystem behavior, and there is a need to explore the thermodynamic relationship between solar radiation and vegetation composition under varying environmental conditions. Thus, through this paper we define the circumstances under which multiple functional groups that include trees are no longer feasible for the available solar radiation leading to demarcated zones identifiable as treelines.Work by Körner argues that the “climate [that] plants experience” is different than the ambient temperature7. By modeling the layers within the canopy of plants with differing stand heights and leaf distributions, we are able to characterize the thermal regime and the “climate [that] plants experience” throughout the course of a given year. This characterization helps us understand the fundamental changes in behavior under varying environmental conditions with and without trees.An ecosystem’s ability to perform work manifests into four distinct cases depending on the sign of the resultant temperature gradient and the net loss or gain of heat driven by the thermal environment derived from present ground cover, such as vegetation or snow: (1) First and most common during the day when photosynthesis is occurring, the temperature of the earth surface, which receives the solar radiation, is typically warmer than the air above the canopy, and heat leaves the ecosystem upward along the negative temperature gradient, corresponding to a positive work (Fig. 1a). (2) Even when the temperature of the earth surface is warmer than the air above the canopy, there can be situations when there is a net heat gain within the ecosystem, meaning that heat moves into the ecosystem against the direction of the temperature gradient. This case is rare and counterproductive to heat dissipation, corresponding to negative work. (3) Common during the night, temperature inversion emerges. In this case, the temperature gradient from the earth surface to the atmosphere can become positive, meaning that the temperature of the air above the canopy is greater than the temperature of the earth surface. As heat enters the ecosystem to warm the surface, positive work is performed since the heat is still moving along a negative temperature gradient into the ecosystem (Fig. 1b). (4) During snowmelt conditions during the day, particularly for Arctic and alpine ecosystems, temperature inversions also emerge18,19. When this occurs and the ecosystem experiences a net heat loss through latent and sensible heat from the canopy, the heat leaving the ecosystem travels opposite of the direction dictated by the temperature gradient. Thus, in this case, ecosystems perform negative work. Our findings demonstrate how extended periods of time in this last case of work lead to thermodynamic infeasibility for the alpine/Arctic ecosystem counterfactual vegetation scenarios; i.e., ecosystems with vegetation properties from below the treelines cannot be sustained under the environmental conditions above the treelines, and, hence, they do not occur in nature.A recent study concluded that at sites where multiple functional groups exist (e.g., forests), the vegetation structure in which all groups co-exist and interact is thermodynamically more advantageous and, thus, more likely to occur than any one of the individual functional groups that the forest comprises12. Thermodynamic advantage is defined by the production of larger fluxes of entropy, more work performed, and higher work efficiency – a quantity that captures how much of the incoming energy is converted into forms useful for actively dissipating heat. It is possible to envision that under certain environmental conditions, the thermodynamic advantage offered by the existence of multiple functional groups is not tenable, indicating a thermodynamic infeasibility. Thermodynamic infeasibility occurs when a particular vegetation structure is not supported by the thermal environment at a given location. The demarcation exhibited by treelines presents an ideal case to explore this scenario, in that there is a distinct transition from multiple functional groups below the treeline to a single functional group above.Research questionIn this paper, we examine vegetation above and below Arctic and alpine treelines to determine whether the absence of trees in ecosystems above treelines are a result of thermodynamic infeasibility. Simply speaking, we seek to answer the following research question: Is the non-existence of trees beyond the transition zone demarcated as a treeline a reflection of thermodynamic infeasibility associated with the presence of trees, and if so, how is this infeasibility exhibited?Figure 1Conceptual diagram of temperature gradients. The W+ arrow indicates the positive direction of work performed through heat transport. Although in different directions, in both cases (a) and (b), the work performed is positive because heat moves from high to low temperatures. (a) Typical summertime temperature gradients from the earth surface to the air above the canopy are negative for the two real scenarios: subalpine/sub-Arctic forest (left) and alpine tundra/Arctic meadow (right). (b) A conceptual temperature inversion, or positive temperature gradient, which arise when alpine/Arctic forest are simulated as counterfactuals.Full size imageTo address this question, we use an extensively validated multi-layer 1-D physics-based ecohydrological model, MLCan12,20,21,22,23,24,25,26, consisting of 20 above-ground layers, 1 ground surface layer, and 12 below-ground layers (see Supplementary Material). This model is chosen because of its ability to capture interactions among functional groups, such as the impact of shading on understory vegetation and the resulting thermal environment within the canopy23. To balance model performance and accuracy, standing plant species are aggregated into functional groups (i.e., evergreen needleleaf trees, shrubs, grasses; see Table 1) based on literature27,28,29,30. The model output is used to compare the thermodynamic work performed at paired sites above and below the respective treelines for three different locations: the Italian Alps (IT), the United States Rocky Mountains (US), and the Western Canadian Taiga-Tundra (CA) (Fig. 2; see Site Descriptions). For each site pair, four scenarios are performed (Table 1): (1) The subalpine/sub-Arctic forest ecosystems are modeled as they exist with multiple functional groups (Fig. 1a, left). (2) The alpine/Arctic ecosystems are modeled as they exist with one functional group (i.e., shrubs or grasses; Fig. 1a, right). (3) We construct counterfactual scenarios above the treeline in which the vegetation of the subalpine or sub-Arctic forest is simulated with the environmental conditions and parameters of the alpine meadow or Arctic tundra (i.e., adding hypothetical trees where none exist; Fig. 1b). (4) As a control, a final counterfactual scenario is constructed below the treeline in which we model the understory of the subalpine/sub-Arctic forest individually (i.e., removing trees from the existing ecosystem).Table 1 Simulation scenarios with observed and hypothetical vegetation.Full size tableThe simulation of these four scenarios facilitates comparison of the existing vegetation structure of each site with the corresponding counterfactual scenarios. By varying the model inputs of vegetation present at each site while holding the environmental conditions and site-specific parameters consistent, we are able to directly compare thermodynamic outcomes as a result of varying vegetation structure and determine whether the counterfactual scenario with the simulated forest is thermodynamically feasible. Model performance was judged based on comparison to observed heat fluxes, such as latent and sensible heat (see Supplementary Material, Figs. S1–S3). As detailed below, the analysis supports the conclusion that thermodynamic feasibility is an important and complementary condition to the usual considerations of resource availability, such as water and nutrients, which determines the organizing form and function of ecosystems. More

  • in

    Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa

    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. https://doi.org/10.1111/jeu.12691 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A. Amoebas, Lobose. In Encyclopedia of Microbiology (ed. Schaechter, M.) 191–212 (Elsevier, 2012).
    Google Scholar 
    Schaeffer, A. A. Taxonomy of the Amoebas: With Descriptions of Thirty-Nine New Marine and Freshwater Species (Carnegie Inst, 1926).
    Google Scholar 
    Page, F. C. The classification of “naked” amoebae (Phylum Rhizopoda). Arch. Protistenkd. 133, 199–217. https://doi.org/10.1016/S0003-9365(87)80053-2 (1987).Article 

    Google Scholar 
    Page, F. C. A New Key to Freshwater and Soil Gymnamoebae (Freshwater Biological Association, 1988).
    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. An illustrated list of basic morphotypes of Gymnamoebia (Rhizopoda, Lobosea). Protistology 1, 20–29 (1999).
    Google Scholar 
    Smirnov, A. V. & Brown, S. Guide to the methods of study and identification of soil gymnamoebae. Protistology 3, 148–190 (2004).
    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy of Sarcodina. II. The organization of subclasses and orders in relationship to the classes Autotractea and Hydraulea. Am. Midland Nat. 73, 293–298. https://doi.org/10.2307/2423456 (1965).Article 

    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy or sarcodina. III. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst. Zool. 15, 229–240. https://doi.org/10.2307/sysbio/15.3.229 (1966).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bovee, E.C. & Sawyer, T.K. Marine Flora and Fauna of the Northeastern United States. Protozoa: Sarcodina: Amoebae. (NOAA Technical Report, 1979). https://doi.org/10.5962/bhl.title.63225.Jahn, T. L. & Bovee, E. C. Mechanisms of movement in taxonomy of Sarcodina. I. As a basis for a new major dichotomy into two classes, Autotractea and Hydraulea. Am. Midl. Nat. 73, 30–40. https://doi.org/10.2307/2423319 (1965).Article 

    Google Scholar 
    Jahn, T. L., Bovee, E. C. & Griffith, D. L. Taxonomy and evolution of the Sarcodina: A reclassification. Taxon 23, 483–496. https://doi.org/10.2307/1218771 (1974).Article 

    Google Scholar 
    Cavalier-Smith, T., Chao, E.E.-Y. & Oates, B. Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur. J. Protistol. 40, 21–48. https://doi.org/10.1016/j.ejop.2003.10.001 (2004).Article 

    Google Scholar 
    Smirnov, A. et al. Molecular phylogeny and classification of the lobose amoebae. Protist 156, 129–142. https://doi.org/10.1016/j.protis.2005.06.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amaral Zettler, L. A. et al. A molecular reassessment of the leptomyxid amoebae. Protist 151, 275–282. https://doi.org/10.1078/1434-4610-00025 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolivar, I., Fahrni, J. F., Smirnov, A. & Pawlowski, J. SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): The origin of gymnamoebae revisited. Mol. Biol. Evol. 18, 2306–2314. https://doi.org/10.1093/oxfordjournals.molbev.a003777 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fahrni, J. F. et al. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol. Biol. Evol. 20, 1881–1886. https://doi.org/10.1093/molbev/msg201 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T. et al. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83, 293–304. https://doi.org/10.1016/j.ympev.2014.08.011 (2015).Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T., Chao, E. E. & Lewis, R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99, 275–296. https://doi.org/10.1016/j.ympev.2016.03.023 (2016).Article 
    PubMed 

    Google Scholar 
    Kang, S. et al. Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34, 2258–2270. https://doi.org/10.1093/molbev/msx162 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tekle, Y. I. & Wood, F. C. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol. Phylogenet. Evol. 114, 249–260. https://doi.org/10.1016/j.ympev.2017.06.019 (2017).Article 
    PubMed 

    Google Scholar 
    Tekle, Y. I., Wang, F., Wood, F. C., Anderson, O. R. & Smirnov, A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. bioRxiv https://doi.org/10.1101/2022.02.28.482369 (2022).Article 

    Google Scholar 
    Van Wichelen, J. et al. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium microcystis. Acta Protozool. 55, 61–87. https://doi.org/10.4467/16890027AP.16.007.4942 (2016).Article 

    Google Scholar 
    Janicki, C. Paramoebenstudien (P. pigmentifera Grassi und P. chaetognathi Grassi). Z. Wiss. Zool. 103, 449–518 (1912).
    Google Scholar 
    Volkova, E. & Kudryavtsev, A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953—an amoebozoan parasite of arrow-worms (Chaetognatha). Int. J. Syst. Evol. Microbiol. 71, 005094. https://doi.org/10.1099/ijsem.0.005094 (2021).CAS 
    Article 

    Google Scholar 
    Page, F. C. Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J. Protozool. 14, 499–521 (1967).CAS 
    Article 

    Google Scholar 
    Page, F. C. & Blanton, R. L. The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21, 121–132 (1985).
    Google Scholar 
    Laurin, V., Labbé, N., Parent, S., Juteau, P. & Villemur, R. Microeukaryote diversity in a marine methanol-fed fluidized denitrification system. Microb. Ecol. 56, 637–648. https://doi.org/10.1007/s00248-008-9383-x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Page, F. C. A further study of taxonomic criteria for limax amoebae, with descriptions of new species and a key to genera. Arch. Protistenkd. 116, 149–184 (1974).
    Google Scholar 
    Page, F. C. Marine Gymnamoebae (Institute of Terrestrial Ecology, 1983).
    Google Scholar 
    Page, F. C. A light- and electron-microscopical comparison of limax and flabellate marine amoebae belonging to four genera. Protistologica 16, 57–78 (1980).
    Google Scholar 
    Kuiper, M. W. et al. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Environ. Microbiol. 72, 5750–5756. https://doi.org/10.1128/AEM.00085-06 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A., Chao, E., Nassonova, E. & Cavalier-Smith, T. A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162, 545–570. https://doi.org/10.1016/j.protis.2011.04.004 (2011).Article 
    PubMed 

    Google Scholar 
    Page, F. C. & Blakey, S. M. Cell surface structure as a taxonomic character in the Thecamoebidae (Protozoa: Gymnamoebia). Zool. J. Linn. Soc. 66, 113–135. https://doi.org/10.1111/j.1096-3642.1979.tb01905.x (1979).Article 

    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. Paradermamoeba valamo gen. n., sp. n. (Gymnamoebia, Thecamoebidae)—a freshwater amoeba from bottom sediments. Zool. Zhurn. 72, 5–11 (1993) (In Russian with English summary).
    Google Scholar 
    Smirnov, A. & Goodkov, A. Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae). Eur. J. Protistol. 40, 113–118. https://doi.org/10.1016/j.ejop.2003.12.001 (2004).Article 

    Google Scholar 
    Smirnov, A. V., Bedjagina, O. M. & Goodkov, A. V. Dermamoeba algensis n sp (Amoebozoa, Dermamoebidae)—an algivorous lobose amoeba with complex cell coat and unusual feeding mode. Eur. J. Protistol. 47, 67–78. https://doi.org/10.1016/j.ejop.2010.12.002 (2011).Article 
    PubMed 

    Google Scholar 
    Bailey, G. B., Day, D. B. & McCoomer, N. E. Entamoeba motility: Dynamics of cytoplasmic streaming, locomotion and translocation of surface-bound particles, and organization of the actin cytoskeleton in Entamoeba invadens. J. Protozool. 39, 267–272. https://doi.org/10.1111/j.1550-7408.1992.tb01313.x (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shiratori, T. & Ishida, K. I. Entamoeba marina n. sp.; a new species of Entamoeba isolated from tidal flat sediment of Iriomote Island, Okinawa, Japan. J. Eukaryot. Microbiol. 63, 280–286. https://doi.org/10.1111/jeu.12276 (2016).Article 
    PubMed 

    Google Scholar 
    Lahr, D. J., Laughinghouse, H. D. IV., Oliverio, A. M., Gao, F. & Katz, L. A. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. BioEssays 36, 950–959. https://doi.org/10.1002/bies.201400056 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pomorski, P. et al. Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41. https://doi.org/10.1007/s00709-007-0243-1 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rogerson, A., Anderson, O. R. & Vogel, C. Are planktonic naked amoebae predominately floc associated or free in the water column?. J. Plankton Res. 25, 1359–1365. https://doi.org/10.1093/plankt/fbg102 (2003).Article 

    Google Scholar 
    Kudryavtsev, A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur. J. Protistol. 50, 258–269. https://doi.org/10.1016/j.ejop.2013.12.004 (2014).Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A., Völcker, E., Clauß, S. & Pawlowski, J. Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa). Int. J. Sys. Evol. Microbiol. 71, 004737. https://doi.org/10.1099/ijsem.0.004737 (2021).CAS 
    Article 

    Google Scholar 
    Blandenier, Q. et al. Mycamoeba gemmipara nov. gen., nov. sp., the first cultured member of the environmental Dermamoebidae clade LKM74 and its unusual life cycle. J. Eukaryot. Microbiol. 64, 257–265. https://doi.org/10.1111/jeu.12357 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A. & Volkova, E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur. J. Protistol. 73, 125685. https://doi.org/10.1016/j.ejop.2020.125685 (2020).Article 
    PubMed 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, 1982).
    Google Scholar 
    Kudryavtsev, A. & Pawlowski, J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur. J. Protistol. 51, 197–209. https://doi.org/10.1016/j.ejop.2015.04.002 (2015).Article 
    PubMed 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71, 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yoon, H. S. et al. Broadly sampled multigene trees of eukaryotes. BMC Evol. Biol. 8, 14. https://doi.org/10.1186/1471-2148-8-14 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In Multiple Sequence Alignment. Methods in Molecular Biology (ed. Katoh, K.) 241–260 (Humana, 2021). https://doi.org/10.1007/978-1-0716-1036-7_15.Chapter 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ronquist, F. et al. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320. https://doi.org/10.1093/molbev/msn067 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations

    Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–30.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell CL, Noe JP. The spatial analysis of soilborne pathogens and root diseases. Annu Rev Phytopathol. 1985;23:129–48.Article 

    Google Scholar 
    Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol. 2012;50:67–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 
    Article 

    Google Scholar 
    Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J 2021;15:330–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu J, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ Microbiol. 2020;22:5005–18.PubMed 
    Article 

    Google Scholar 
    Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 2015;25:56–66.PubMed 
    Article 

    Google Scholar 
    Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, et al. The microbiome meets nanotechnology: opportunities and challenges in developing new diagnostic devices. Adv Mater. 2021;33:e2006104.PubMed 
    Article 
    CAS 

    Google Scholar 
    Schlaberg R. Microbiome diagnostics. Clin Chem. 2020;66:68–76.PubMed 
    Article 

    Google Scholar 
    Xiao Y, Yang C, Yu L, Tian F, Wu Y, Zhao J, et al. Human gut-derived B. longum subsp. longum strains protect against aging in a D-galactose-induced aging mouse model. Microbiome. 2021;9:180.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol. 2015;6:81.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Hu J, Gu Y, Yin S, Xu Y, Jousset A, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem. 2018;118:8–17.CAS 
    Article 

    Google Scholar 
    Gu S, Wei Z, Shao Z, Friman V-P, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li M, Pommier T, Yin Y, Wang J, Gu S, Jousset A, et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J 2022;16:868–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubinkina V, Fridman Y, Pandey PP, Maslov S. Multistability and regime shifts in microbial communities explained by competition for essential nutrients. Elife 2019;8:e49720.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 2015;21:1590–600.PubMed 
    Article 

    Google Scholar 
    Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15:848–64.PubMed 
    Article 

    Google Scholar 
    Elphinstone J, Hennessy J, Wilson J, Stead D. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 1996;26:663–78.Article 

    Google Scholar 
    Schonfeld J, Heuer H, van Elsas JD, Smalla K. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl Environ Microbiol. 2003;69:7248–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol. 2011;48:152–9.Article 

    Google Scholar 
    Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, et al. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol. 2010;76:6778–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu Y, Wei Z, Wang X, Friman V-P, Huang J, Wang X, et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils. 2016;52:997–1005.CAS 
    Article 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194–2200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv. 2016. https://doi.org/10.1101/081257.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olsen SR, Cole CV, Watanabe FS, Dean L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ no. 939. Washington, DC: United States Department of Agriculture; 1954.Heuer H, Krsek M, Baker P, Smalla K, Wellington E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol. 1997;63:3233–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol package. 2007;10:719.
    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18.Article 

    Google Scholar 
    Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, et al. Bacterial seed endophyte shapes disease resistance in rice. Nat Plants. 2021;7:60–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bardgett RD, Caruso T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Proc R Soc Lond Ser B. 2020;375:20190112.CAS 

    Google Scholar 
    Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raaijmakers JM, Mazzola M. Soil immune responses. Science. 2016;352:1392–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu Y, Wang X, Yang T, Friman VP, Geisen S, Wei Z, et al. Chemical structure predicts the effect of plant-derived low molecular weight compounds on soil microbiome structure and pathogen suppression. Funct Ecol. 2020;34:2158–69.Article 

    Google Scholar 
    Burdon J, Chilvers G. Host density as a factor in plant disease ecology. Annu Rev Phytopathol. 1982;20:143–66.Article 

    Google Scholar 
    Rosenfeld M, Gibson RL, McNamara S, Emerson J, Burns JL, Castile R, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol. 2001;32:356–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li J-G, Ren G-D, Jia Z-J, Dong Y-H. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil. 2014;380:337–47.CAS 
    Article 

    Google Scholar 
    Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, et al. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep. 2016;6:36773.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Filion M, Hamelin RC, Bernier L, St-Arnaud M. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol. 2004;70:3541–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu Y, Dong K, Geisen S, Yang W, Yan Y, Gu D, et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil. 2020;452:105–17.CAS 
    Article 

    Google Scholar 
    Jiang G, Wang N, Zhang Y, Wang Z, Zhang Y, Yu J, et al. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol Lett. 2021;3:356–66.Article 

    Google Scholar 
    Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J 2015;9:1905–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhaouadi S, Rouissi W, Mougou-Hamdane A, Nasraoui B. Evaluation of biocontrol potential of Achromobacter xylosoxidans against Fusarium wilt of melon. Eur J Plant Pathol. 2018;154:179–88.Article 

    Google Scholar 
    Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, et al. Poly-beta-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol. 2007;60:363–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fujiwara K, Iida Y, Someya N, Takano M, Ohnishi J, Terami F, et al. Emergence of antagonism against the pathogenic fungus Fusarium oxysporum by interplay among non-antagonistic bacteria in a hydroponics using multiple parallel mineralization. J Phytopathol. 2016;164:853–62.CAS 
    Article 

    Google Scholar 
    Garbeva P, Silby MW, Raaijmakers JM, Levy SB, de Boer W. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 2011;5:973–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sato Y, Willis BL, Bourne DG. Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J. 2010;4:203–14.PubMed 
    Article 

    Google Scholar 
    Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem. 2013;288:4502–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    Swanson JK, Montes L, Mejia L, Allen C. Detection of Latent Infections of Ralstonia solanacearum Race 3 Biovar 2 in geranium. Plant Dis. 2007;91:828–34.PubMed 
    Article 

    Google Scholar  More

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More

  • in

    Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goericke, R. & Welschmeyer, N. A. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Res. 40, 2283–2294 (1993).Article 

    Google Scholar 
    Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).Article 

    Google Scholar 
    Huang, S. et al. Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J. 6, 285–297 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barlow, A. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. Arctic 22, 63–74 (1985).
    Google Scholar 
    Yeh, S. W. et al. Role of phycoerythrin in marine picoplankton synechococcus spp. Science 234, 1422–1424 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Res. Part I Oceanogr. Res. Pap. 84, 1–17 (2014).Article 

    Google Scholar 
    Larkum, A. W. D. & Barrett, J. Light-harvesting processes in algae. Adv. Bot. Res. 10, 1–219 (1983).CAS 
    Article 

    Google Scholar 
    Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051–1054 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bibby, T. S., Nield, J., Chen, M., Larkum, A. W. D. & Barber, J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl Acad. Sci. USA 100, 9050–9054 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kana, T. M. & Glibert, P. M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 479–495 (1987).CAS 
    Article 

    Google Scholar 
    Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Perry, M. J., Talbot, M. C. & Alberte, R. S. Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62, 91–101 (1981).Mauzerall, D. & Greenbaum, N. L. The absolute size of a photosynthetic unit. BBA Bioenerg. 974, 119–140 (1989).CAS 
    Article 

    Google Scholar 
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keren, N. & Paltiel, Y. Photosynthetic energy transfer at the quantum/classical border. Trends Plant Sci. 23, 497–506 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodny, Y. et al. Marine cyanobacteria tune energy transfer efficiency in their light‐harvesting antennae by modifying pigment coupling. FEBS J. https://doi.org/10.1111/febs.15371 (2020).Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation the migration of LHCII from PSII to PSI has. J. Phys. Chem. B 117, 51 (2013).Article 
    CAS 

    Google Scholar 
    Chenu, A. et al. Light adaptation in phycobilisome antennas: influence on the rod length and structural arrangement. J. Phys. Chem. B 121, 9196–9202 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B Biol. Sci. 372, 2–8 (2017).Article 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 14, 367–393 (2021).
    Google Scholar 
    Govindjee, Hammond, J. H. & Merkelo, H. Primary events, energy transfer, and reactions in photosynthetic events: lifetime of the excited state in vivo: II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12, 809 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roach, T. & Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351–362 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Govindjee, U. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria (Springer Netherlands, 2014).
    Google Scholar 
    Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7–16 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).Croce, R. & Van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 104, 142–153 (2011).CAS 
    Article 

    Google Scholar 
    Rahav, E. et al. Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77 (2015).CAS 
    Article 

    Google Scholar 
    Reiss, Z. & Hottinger, L. The Gulf of Aqaba (Springer-Verlag, 1984).Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the red sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).CAS 
    Article 

    Google Scholar 
    Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).Article 

    Google Scholar 
    Zarubin, M., Lindemann, Y. & Genin, A. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).Article 

    Google Scholar 
    Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).Article 

    Google Scholar 
    Suggett, D. J. et al. Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba. Aquat. Microb. Ecol. 56, 227–239 (2009).Article 

    Google Scholar 
    Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherman, J., Gorbunov, M. Y., Schofield, O. & Falkowski, P. G. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnol. Oceanogr. 65, 2912–2925 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoo, Y. D. et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68, 105–117 (2017).PubMed 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brody, S. S. & Rabinowitch, E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1979).Article 

    Google Scholar 
    Six, C., Thomas, J. C., Brahamsha, B., Lemoine, Y. & Partensky, F. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat. Microb. Ecol. 35, 17–29 (2004).Article 

    Google Scholar 
    Krumova, S. B. et al. Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. Biophys. J. 99, 2006–2015 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhatti, A. F., Kirilovsky, D., van Amerongen, H. & Wientjes, E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol. 186, 569–580 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020).Anderson, J. M. & Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13, 351–355 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackey, K. R. M., Post, A. F., McIlvin, M. R. & Saito, M. A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13744 (2017).Article 
    PubMed 

    Google Scholar 
    Mendoza-Arenas, J. J. et al. Transport enhancement from incoherent coupling between one-dimensional quantum conductors. New J. Phys. 16, 053016 (2014).Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. & Quist, G. O. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth. Res. 133, 63–73 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolber, Z. S., Prášil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106 (1998).CAS 
    Article 

    Google Scholar 
    Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).CAS 
    Article 

    Google Scholar 
    Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).Article 

    Google Scholar 
    Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998-2015). Environ. Res. Lett. 14, 124011 (2019).Kulk, G. et al. Primary production, an index of climate change in the ocean: satellite-based estimates over two decades. Remote Sens. 12, 826 (2020).Van De Poll, W. H. et al. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240 (2013).Article 
    CAS 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 1–16 (2019).Article 

    Google Scholar 
    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, 1–23 (2012).Article 

    Google Scholar 
    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).Article 

    Google Scholar 
    Kolodny, Y. et al. Tuning quantum dots coupling using organic linkers with different vibrational modes. J. Phys. Chem. C 124, 16159–16165 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Development of microbial communities in biofilm and activated sludge in a hybrid reactor

    Bacterial community compositionIn order to study the microbial structure of the biofilm and activated sludge that were developing in the IFAS-MBSBBR reactor, a total of 15 samples were taken at intervals during an experiment lasting 573 days. The microbiome of both environments was described at the phylum and genus levels. A total of 26 bacterial phyla and 783 bacterial genera were identified. The most numerous phyla and genera in the biofim and activated sludge samples are presented in in Figs. 1 and 2. Both in the biofilm and the activated sludge, the most numerous phyla were Proteobacteria, with respective mean abundances of 39.3% ± 9.0 and 40.8% ± 8.2, and Bacteroidota, with respective mean abundances of 14.2% ± 4.9 and 26.1% ± 13.7. Additionally, the phylum Chloroflexi was rather abundant in the biofilm (with a mean abundance of 13.9 ± 8.1), while Actinobacteriota and Patescibacteria were relatively abundant in the activated sludge (with mean abundances of 9.0% ± 9.6 and 7.5% ± 8.1, respectively). STAMP analysis identified significant overrepresentations of Chloroflexi, Acidobacteriota, and Nitrospirota in biofilm and of Firmicutes in activated sludge.Figure 1Relative abundance (%) of the most prevalent phyla in the biofilm and activated sludge samples in general, as the mean values of relative abundance from all biofilm and activated sludge samples (A), and in each individual sample (B). The graph shows only phyla which contributed more than 0.5% to the total bacterial community in at least one sample. The abundance of the remaining phyla was summed and labelled as “other”.Full size imageFigure 2Relative abundance (%) of the most prevalent genera in the biofilm and activated sludge samples in general, as the mean values of relative abundance from all biofilm and activated sludge samples (A), and in each individual sample (B). The graph shows only genera which contributed more than 1.5% to the total bacterial community in at least one sample. The abundance of the remaining genera was summed and labelled as “other”.Full size imageIn both environments, the abundances of various groups of bacteria changed over time. In the biofilm, the abundance of Proteobacteria and Actinobacteria gradually decreased, while that of Chloroflexi increased. In the activated sludge, the changes in abundance were larger and more rapid, and the abundance of Bacteroidota changed to the largest extent, ranging from 12.7% after 42 days of reactor operation to 52.3% after 110 days, when it was the predominant phylum. The abundance of Patescibacteria also changed substantially: its abundance was highest on the 78th, 205th and 447th days of the process, reaching values of 20.1%, 11.0%, and 7.2%, respectively. Similar changes took place in the abundance of Armatimonadota, which reached 11.4% and 7.6% on the 547th and 573th day, but did not exceed 0.1% in the samples taken at other times.At the genus level, the less abundant genera (each  More