More stories

  • in

    Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations

    Pienta, K. J., Hammarlund, E. U., Austin, R. H., Axelrod, R., Brown, J. S. & Amend, S. R. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. In Seminars in Cancer Biology, 1–15 (2020).Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 70(1), 7–30 (2020).Article 

    Google Scholar 
    Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskelet. 47(2), 81–107 (2000).CAS 
    Article 

    Google Scholar 
    Hanahan, D. & Weinberg, R. A. Leading edge review hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J. et al. Convergent evolution, evolving evolvability, and the origins of lethal cancer. Mol. Cancer Res. 18(6), 801–810 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci. Transl. Med. 3(111), 1–12 (2011).Article 
    CAS 

    Google Scholar 
    Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 165, 3–7 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 

    Brown, R. L. What evolvability really is. Br. J. Philos. Sci.65(3), 549–572 (2014).MathSciNet 
    Article 

    Google Scholar 
    Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9(7), 3784–3793 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. Is evolvability evolvable?. Genetics 9, 75–82 (2008).CAS 
    PubMed 

    Google Scholar 
    Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).Article 

    Google Scholar 
    Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis–a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis–A parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).CAS 
    Article 

    Google Scholar 
    Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5(1), 1–9 (2014).Article 

    Google Scholar 
    Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).MathSciNet 
    MATH 

    Google Scholar 
    Lopez-Sánchez, L. M. et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE 9(6), e99143 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116(9), 1186–1194 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36(34), 4887–4900 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogden, A., Rida, P. C. G., Knudsen, B. S., Kucuk, O. & Aneja, R. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89–92 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metastasis 36(2), 97–108 (2019).PubMed 
    Article 

    Google Scholar 
    Lin, K.-C. et al. Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Converg. Sci. Phys. Oncol. 3(4), 045001 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 4(4), 597–601 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cairns, J. Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148(4), 1433–1440 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, B. G. Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109 (1998).PubMed 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7(2), 118–126 (1953).Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonka, E. V. A. & Raz, G. A. L. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84(2), 131–176 (2009).PubMed 
    Article 

    Google Scholar 
    Steele, E. J. & Pollard, J. W. Hypothesis: Somatic hypermutation by gene conversion via the error prone DNA(longrightarrow )RNA(longrightarrow )DNA information loop. Mol. Immunol. 24(6), 667–673 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair 45, 1–24 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic Selection and Adaptive Evolution (Springer, US, 1979).
    Google Scholar 
    Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck’s Signature (Perseus Books, 1998).
    Google Scholar 
    Foster, P. L. Adaptive mutation: Implications for evolution. Bioessays 22, 1067–1074 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10(1), 13–26 (2012).CAS 
    Article 

    Google Scholar 
    Badyaev, A. V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B Biol. Sci. 272, 877–886 (2005).Article 

    Google Scholar 
    Bateman, K. G. The genetic assimilation of four venation phenocopies. J. Genet. 56(3), 443–474 (1959).Article 

    Google Scholar 
    Milkman, R. D. The genetic basis of natural variation. VI. Selection of a crossveinless strain of Drosophila by phenocopying at high temperature. Genetics 51(1), 87 (1965).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of the bithorax phenotype. Evolution 10(1), 1–13 (1956).Article 

    Google Scholar 
    Godoy, O., Saldaña, A., Fuentes, N., Valladares, F. & Gianoli, E. Forests are not immune to plant invasions: Phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol. Invasions 13(7), 1615–1625 (2011).Article 

    Google Scholar 
    Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68(3), 656–672 (2014).PubMed 
    Article 

    Google Scholar 
    Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10(1), 1–13 (2010).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19(22), 1932–1936 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos, J. B., Irschick, D. J. & Schoener, T. W. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution 48(6), 1786–1798 (1994).PubMed 
    Article 

    Google Scholar 
    Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54(1), 301–305 (2000).CAS 
    PubMed 

    Google Scholar 
    Sword, G. A. Density-dependent warning coloration. Nature 397(6716), 217 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Sword, G. A. A role for phenotypic plasticity in the evolution of aposematism. Proc. R. Soc. B Biol. Sci. 269(1501), 1639–1644 (2002).Article 

    Google Scholar 
    Clausen, J. & Hiesey, W. M. The balance between coherence and variation in evolution. Proc. Natl. Acad. Sci. 46(4), 494–506 (1960).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevitch, J. Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Am. J. Bot. 75(9), 1298–1306 (1988).Article 

    Google Scholar 
    Gurevitch, J. & Schuepp, P. H. Boundary layer properties of highly dissected leaves: An investigation using an electrochemical fluid tunnel. Plant Cell Environ. 13(8), 783–792 (1990).Article 

    Google Scholar 
    Gurevitch, J. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130(2), 385–394 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42(5), 373–397 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soppa, J. Polyploidy in archaea and bacteria: About desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. Microb. Physiol. 24, 409–419 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastide, A. & David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 7(4), 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Foster, P. L. Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467–504. https://doi.org/10.1146/annurev.mi.47.100193.002343 (2003).Article 

    Google Scholar 
    Lenski, R. E. & Mittler, J. E. The directed mutation controversy and neo-Darwinism. Science 259(5092), 188–194 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. & Sniegowski, P. D. “Adaptive mutation’’: The debate goes on. Science 269, 285–288 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256(5062), 1416–1419 (1992).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pribis, J. P. et al. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74(4), 785–800 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254–266 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shcherbakov, D. et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun. Biol. 2(1), 1–16 (2019).CAS 
    Article 

    Google Scholar 
    Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16(5), 288–304 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alphey, L. S., Crisanti, A., Randazzo, F. & Akbari, O. S. Opinion: Standardizing the definition of gene drive. Proc. Natl. Acad. Sci. USA 117(49), 30864 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Champer, S. E. et al. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLOS Comput. Biol. 17(12), e1009660 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4), 2013–2026 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heffel, M. G. & Finnigan, G. C. Mathematical modeling of self-contained CRISPR gene drive reversal systems. Sci. Rep. 9(1), 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nijhout, H. F., Kudla, A. M. & Hazelwood, C. C. Genetic assimilation and accommodation: Models and mechanisms. Curr. Top. Dev. Biol. 141, 337–369 (2021).PubMed 
    Article 

    Google Scholar 
    Noble, C., Adlam, B., Church, G. M., Esvelt, K. M. & Nowak, M. A. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22(8), 1721–1732 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. & Murren, C. J. Perspective: Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by?. Evolution 57, 1455–1464 (2003).PubMed 
    Article 

    Google Scholar 
    Hammerstein, P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34(5–6), 511–532 (1996).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Dieckmann, U. Coevolutionary Dynamics of Stochastic Replicator Systems (Central Library of the Research Center Jülich, 1994).
    Google Scholar 
    Dieckmann, U., Marrow, P. & Law, R. Evolutionary cycling in predator-prey interactions: population dynamics and the red queen. J. Theor. Biol. 176(1), 91–102 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define ‘fitness’ for general ecological scenarios?. Trends Ecol. Evol. 7(6), 198–202 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldschmidt, R. Some aspects of evolution. Science 78(2033), 539–547 (1933).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, T. L., Cohen, Y. & Brown, J. S. Evolution via strategy dynamics. Theor. Popul. Biol. 44(2), 149–176 (1993).MATH 
    Article 

    Google Scholar 
    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar  More

  • in

    Why the ocean virome matters

    Kyoto University microbiome researcher Hiroyuki Ogata says that the recent work2,3 further connects RNA viruses and the carbon pump, which affects the Earth’s biogeochemical cycles and thus its climate. And it sheds light on the diversity, evolution and ecology of RNA viruses, which has not previously been possible through applying the techniques of traditional DNA-based metagenomics. The team found many new lineages at the phylum-level by using “highly sensitive” computational approaches.It’s possible to assess the ecosystem impact of viruses by inferring auxiliary metabolic genes (AMGs). AMGs hint at the ways RNA viruses manipulate the physiology of their hosts as they seek to maximize production of more virus through the host. As Jian explains, labs have identified a variety of AMGs that are encoded by DNA viruses and, he says, it’s “well-recognized” that AMGs probably play a role in marine ecosystems. It was unknown if AMGs could be found in RNA viruses, which the recent Science paper2 has now established, he says. Jian sees this work as providing “a very important foundational dataset” for exploring questions connected to AMGs. “In my opinion, if more long-sequence or complete marine RNA virus genomes can be obtained in the future, and they can be further connected with specific hosts, it will greatly promote the understanding of the ecological impact of RNA viruses in the oceans.”To tease out AMGs, the scientists used a variety of tools, such as viral identification software for both DNA and RNA viruses, says Wainaina. The ones for DNA viruses are available on Cyverse, and the protocols for the tools from the Sullivan lab are on protocols.io. One method for RNA viruses is in progress and will be soon available on Cyverse, he says. DNA viral identification tools include VirSorter2, a pipeline for identifying viral sequence from metagenomics data, and the protocol for using this and other tools are also on protocols.io. To identify AMGs from viral sequence that had been identified through VirSorter, the team used use DRAM-v, a software tool from the lab of microbiome researcher Kelly Wrighton at Colorado State University. Her group had created Distilled and Refined Annotation of Metabolism (DRAM), a framework to resolve metabolic information from microbial data. The companion tool DRAM-v is for viruses and can be applied to metagenomic data sets for annotating metagenomics-based assembled genomes, for example through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and to contiguous viral sequences identified by VirSorter.The hunt for AMGs is one instance in which the team needed to determine in each case whether a sequence was likely ‘stolen’ from host cells, says Dominguez-Huerta. RNA viral genomes are less than 40 kilobases long and usually have complicated genomic organization, both in a structural genomics sense related to the physical arrangement of genes along the viral genome and in a functional sense in terms of transcription and translation: there are overlapping genes, frameshifts and more, all of which makes this kind of annotation difficult. And sometimes information in the annotation databases is wrong and indicates that a match is cellular when it is in fact viral. Thus, to find AMGs, “we don’t have a defined clean methodology automated in a pipeline yet,” he says. It remains a time-consuming task. Assigning putative function to the protein sequences encoded by AMGs also involves checking the literature and comparing different annotation sources.Dominguez-Huerta says he and the team were glad they could assemble AMG functionalities to suggest the range of ways in which RNA viruses manipulate the metabolisms of their hosts—from photosynthesis to central carbon metabolism to vacuolar digestion and RNA repair. This overview let them see how some AMGs are repeated across different viruses across the oceans. Finding AMGs in long-read sequence is what he calls a “fire test” for the lab. To avoid ‘false AMGs’ from unreliable matches, they use BLASTP, the Basic Alignment Search Tool that compares a protein query sequence to a protein database.“I am fascinated by the ability of viruses to metabolic reprogram not only their hosts but more importantly at the ecosystem level,” says Wainaina. It is probable that the AMGs the team identified “are a central cog in microbial metabolism networks.” Current and future modeling efforts will hopefully provide insights into the ecosystem roles of viruses—both DNA viruses and RNA viruses—and on a global scale both within the ocean ecosystem and beyond.Host inference is challenging, says Dominguez-Huerta, because, for example, viruses with RNA genomes do not share genetic information with their host genomic DNA the way dsDNA viruses do when they infect bacteria. That means there is no clear signal to be derived from the host genome to help one guess the possible host. But sometimes RNA viruses do integrate into host genomes, and those, likely more accidental, events were sufficient for the scientists to capture some signal to infer hosts. “We also performed statistical co-occurrence analytics using abundances to infer the hosts with certain success,” he says.Unlike dsDNA viruses, RNA viruses infect mostly eukaryotes, from protists and fungi to invertebrates and fish larvae; only a minority infect bacteria. Overall, the team has been able to capture “a picture of dsDNA viruses infecting prokaryotes and RNA viruses infecting eukaryotes in the oceans, complementing each other in their marine hosts,” says Dominguez-Huerta. The fact that the scientists can infer “that RNA viruses can steal genes from the host,” in the form of AMGs, to then reprogram host metabolism matters not only as scientists complete the picture of how viruses directly tune the activity of hosts during infection, but also in regard to how this influences biogeochemical cycles, he says. “We think that these AMGs are incorporated into the RNA virus genomes from cellular mRNA transcripts by non-homologous recombination,” he says. This gives, in his view, a new picture of RNA viruses, which, despite their small genome sizes, can squeeze in protein-coding genes. Such proteins could be sufficient to boost the production of virus particles per infected cell, perhaps increasing viral fitness in the difficult conditions of the oligotrophic open ocean and letting the viruses better propagate in the environment.More generally, says Dominguez-Huerta, capturing RNA from ocean samples is difficult, because RNA is physically fragile and degrades rapidly. When digging into metatranscriptomic data, which include the RNA from plankton and RNA from other organisms, less than 1% of this RNA is likely to be viral RNA, he says. Previously, some labs have first purified RNA from samples, enriched it for replicating RNA viruses and then applied a method called dsRNA-seq to recover dsRNA virus sequence and replicate sequences from single-stranded RNA viruses. For future ocean RNA virus projects, he says that the lab is currently working on a wet-lab method to purify RNA virus particles from seawater to solve the challenges of obtaining viral RNA for analysis. More

  • in

    Microbiota succession throughout life from the cradle to the grave

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, e00140–17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms – how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. Changes in microbiome during and after travellers’ diarrhea: what we know and what we do not. J. Travel. Med. 24, S52–S56 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693–15 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed 
    Article 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lynn, M. A. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 23, 653–660.e5 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jamalkandi, S. A. et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 34, 1–16 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 68, 218–225 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS ONE 10, e0142536 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milliken, S., Allen, R. M. & Lamont, R. F. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert. Opin. Drug. Saf. 18, 173–185 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevisanuto, D. et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J. Matern. Fetal Neonatal Med. 26, 1484–1490 (2013).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951–964.e5 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 11, 575197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, L. A. et al. The transfer of immunity from mother to child. Ann. NY. Acad. Sci. 987, 199–206 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016). This study demonstrates that ‘seeding’ infants born by caesarean delivery with the vaginal microbiota of the mother at birth partially naturalizes development of the microbial community.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68 (2019).PubMed Central 
    Article 

    Google Scholar 
    Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study shows that severe acute malnutrition leads to immature microbial development and introduces a metric for the measure of microbiota maturity.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Groer, M. W. et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021). This report describes the immune development driven by microbial interactions and the negative impact of lack of HMO-utilizing microorganisms on the immune system.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantis, V., Bode, L. & van Neerven, R. J. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59, 102950 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, H. F. et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly Danes. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044693 (2020).Article 

    Google Scholar 
    Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020). This study describes the assembly of the human virome during development.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns. Colitis 14, 1600–1610 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koren, O. & Rautava, S. The Human Microbiome in Early Life: Implications to Health and Disease (Academic, 2020).Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B 367, 2864–2871 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).CAS 
    Article 

    Google Scholar 
    Gomez, A. & Nelson, K. E. The oral microbiome of children: development, disease, and implications beyond oral health. Microb. Ecol. 73, 492–503 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cephas, K. D. et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6, e23503 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darwazeh, A. M. & al-Bashir, A. Oral candidal flora in healthy infants. J. Oral. Pathol. Med. 24, 361–364 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stecksén-Blicks, C., Granström, E., Silfverdal, S. A. & West, C. E. Prevalence of oral Candida in the first year of life. Mycoses 58, 550–556 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brusa, T., Conca, R., Ferrara, A., Ferrari, A. & Pecchioni, A. The presence of methanobacteria in human subgingival plaque. J. Clin. Periodontol. 14, 470–471 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrari, A., Brusa, T., Rutili, A., Canzi, E. & Biavati, B. Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr. Microbiol. 29, 7–12 (1994).CAS 
    Article 

    Google Scholar 
    Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).PubMed 
    Article 

    Google Scholar 
    Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dye, B. A., Li, X. & Thornton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009–2010. NCHS Data Brief. 104, 1–8 (2012).
    Google Scholar 
    Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).PubMed 

    Google Scholar 
    Lee, Y. W., Yim, S. M., Lim, S. H., Choe, Y. B. & Ahn, K. J. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 49, 405–410 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sugita, T. et al. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med. Mycol. 48, 229–233 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulcr, J. et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS ONE 7, e47712 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya, A. & Brocal, V. P. The Human Virome: Methods and Protocols (Springer, 2018).Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA 107, 7503–7508 (2010). This study shows that cohabitating identical twins result in different microbial communities, highlighting the many unknown processes that lead to the unique human microbiota.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Lu, Y., Chen, T. & Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wells, J. S., Chandler, R., Dunn, A. & Brewster, G. The vaginal microbiome in U.S. black women: a systematic review. J. Womens Health 29, 362–375 (2020).Article 

    Google Scholar 
    Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henderickx, J. G. E., Zwittink, R. D., van Lingen, R. A., Knol, J. & Belzer, C. The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 9, 85 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malamitsi-Puchner, A. et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 81, 387–392 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Andersen, V., Möller, S., Jensen, P. B., Møller, F. T. & Green, A. Caesarean delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population based registry study of 2,699,479 births in Denmark during 1973–2016. Clin. Epidemiol. 12, 287–293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blustein, J. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37, 900–906 (2013).CAS 
    Article 

    Google Scholar 
    Ardic, C., Usta, O., Omar, E., Yıldız, C. & Memis, E. Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. J. Obstet. Gynaecol. 41, 374–379 (2021).PubMed 
    Article 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martinez, K. A. 2nd et al. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3, eaao1874 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya-Pérez, A. et al. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev. 75, 225–240 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forbes, J. D. et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 172, e181161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shenhav, L. & Azad, M. B. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems 7, e01132–21 (2022).PubMed Central 
    Article 

    Google Scholar 
    Kaetzel, C. S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol. Lett. 162, 10–21 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munblit, D., Verhasselt, V. & Warner, J. O. Human Milk Composition and Health Outcomes in Children (Frontiers Media, 2019).Mastromarino, P. et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27, 1077–1086 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coats, S. R., Pham, T.-T. T., Bainbridge, B. W., Reife, R. A. & Darveau, R. P. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J. Immunol. 175, 4490–4498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denou, E. et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral. Sci. 12, 12 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allaband, C. et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6, e00116–e00121 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Marotz, C. et al. Quantifying live microbial load in human saliva samples over time reveals stable composition and dynamic load. mSystems 6, e01182–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouslimani, A. et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 17, 47 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This study demonstrates the important variability between body habitats and between individuals across the same body habitat.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. 89, e00648–20 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). This study shows that autologous faecal microbiota transplantation helps to restore the microbiota of patients who underwent antibiotic treatment.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Nood, E., Dijkgraaf, M. G. W. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Panigrahi, P. et al. Corrigendum: a randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 553, 238 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mu, A. et al. Effects on the microbiome during treatment of a staphylococcal device infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-969336/v1 (2021).Article 

    Google Scholar 
    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). This study reports microbial community alterations between older individuals (aged 65 years and older) dependent on whether they live in the company of others or alone, the latter of which was correlated to worse outcomes (that is, frailty and co-morbidity).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 7, 10567 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, S., Wang, Y., Zhao, L., Sun, X. & Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 12, 7874–7907 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartz, J. L. et al. Old age and other factors associated with salivary microbiome variation. BMC Oral. Health 21, 490 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 01227 (2016).Article 

    Google Scholar 
    Wu, L. et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5, e00558–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). This study finds that centenarians often had high abundances of microorganisms that produced unique secondary bile acids, namely various isoforms of lithocholic acid.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: the Postmortem Fate of Human Remains 93–108 (CRC, 1997).Janaway, R. C., Percival, S. L. & Wilson, A. S. in Microbiology and Aging (ed. Percival, S. L) 313–334 (Humana, 2009).Forbes, S. L., Perrault, K. A. & Comstock, J. L. in Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment (eds Schotsmans, E. M. J., Márquez-Grant, N. & Forbes, S. L.) 26–38 (Wiley, 2017).Heimesaat, M. M. et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS ONE 7, e40758 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkinson, R. A. et al. in Criminal and Environmental Soil Forensics (eds Ritz, K., Dawson, L. & Miller, D.) 379–394 (Springer, 2009).Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016). This study finds that the time since death was predictable through the microbial community composition independent of the soil type and season.CAS 
    PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M. & Hauther, K. A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5, e3437 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kodama, W. A. et al. Trace evidence potential in postmortem skin microbiomes: from death scene to morgue. J. Forensic Sci. 64, 791–798 (2019).PubMed 
    Article 

    Google Scholar 
    Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E. & DeBruyn, J. M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 60, 1234–1240 (2015).PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci. Int. 264, 63–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front. Microbiol. 10, 745 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B. & Cecconello, I. Bacterial translocation: overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 22, 464–471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2, e01104 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M. & Bucheli, S. R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 129, 661–671 (2015).Article 

    Google Scholar 
    Javan, G. T., Finley, S. J., Smith, T., Miller, J. & Wilkinson, J. E. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front. Microbiol. 8, 2096 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, H. R. et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 11, e0167370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Belk, A. et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9, 104 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Metcalf, J. L. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet. 38, 211–218 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deel, H. et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6, e0045521 (2021).PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. Microbiome tools for forensic science. Trends Biotechnol. 35, 814–823 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).PubMed 
    Article 

    Google Scholar 
    Jeste, D. V., Koh, S. & Pender, V. B. Perspective: social determinants of mental health for the new decade of healthy aging. Am. J. Geriatr. Psychiatry 30, 733–736 (2022).PubMed 
    Article 

    Google Scholar 
    Matijašić, M. et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci. 21, 2668 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vázquez-Baeza, Y. et al. Guiding longitudinal sampling in IBD cohorts. Gut 67, 1743–1745 (2018).PubMed 
    Article 

    Google Scholar 
    Kane, P. B., Bittlinger, M. & Kimmelman, J. Individualized therapy trials: navigating patient care, research goals and ethics. Nat. Med. 27, 1679–1686 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Nat. Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vangay, P. et al. Microbiome metadata standards: report of the national microbiome data collaborative’s workshop and follow-on activities. mSystems 6, e01194–20 (2021).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Socio-psychological determinants of Iranian rural households' adoption of water consumption curtailment behaviors

    Sun, C., Zhang, J., Ma, Q., Chen, Y. & Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 39, 63–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. Factors influencing farmers’ adaptation strategies in confronting the drought in Iran. Environ. Dev. Sustain. 2020 234 23, 4949–4972 (2020).Article 

    Google Scholar 
    Kumar Singh, P., Dey, P., Kumar Jain, S. & Mujumdar, P. P. Hydrology and water resources management in ancient India. Hydrol. Earth Syst. Sci. 24, 4691–4707 (2020).ADS 
    Article 

    Google Scholar 
    Warner, L. A. & Diaz, J. M. Amplifying the Theory of Planned behavior with connectedness to water to inform impactful water conservation program planning and evaluation. J. Agric. Educ. Ext. 27, 229–253 (2021).Article 

    Google Scholar 
    Warner, L. A. Who conserves and who approves? Predicting water conservation intentions in urban landscapes with referent groups beyond the traditional ‘important others’. Urban For. Urban Green. 60, 127070 (2021).Article 

    Google Scholar 
    Savari, M., Eskandari Damaneh, H. & Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 67, 102654 (2022).Article 

    Google Scholar 
    Eskandari Damaneh, H. et al. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air Soil Water Res. https://doi.org/10.1177/1178622121101333214 (2021).Article 

    Google Scholar 
    Eskandari Damaneh, H., Khosravi, H., Habashi, K., Eskandari Damaneh, H. & Tiefenbacher, J. P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 110, 2185–2205 (2022).Article 

    Google Scholar 
    Savari, M., Abdeshahi, A., Gharechaee, H. & Nasrollahian, O. Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. Int. J. Disaster Risk Reduct. 60, 102284 (2021).Article 

    Google Scholar 
    Liu, J., Scanlon, B. R., Zhuang, J. & Varis, O. Food-energy-water nexus for multi-scale sustainable development. Resour. Conserv. Recycl. 154, 104565 (2020).Article 

    Google Scholar 
    Araya, F., Osman, K. & Faust, K. M. Perceptions versus reality: Assessing residential water conservation efforts in the household. Resour. Conserv. Recycl. 162, 105020 (2020).Article 

    Google Scholar 
    Omer, A., Elagib, N. A., Zhuguo, M., Saleem, F. & Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 749, 141446 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Aslam, S. et al. Sustainable model: Recommendations for water conservation strategies in a developing country through a psychosocial wellness program. Water (Switzerland) 13, 1–20 (2021).
    Google Scholar 
    Diaz, J., Odera, E. & Warner, L. Delving deeper: Exploring the influence of psycho-social wellness on water conservation behavior. J. Environ. Manag. 264, 110404 (2020).Article 

    Google Scholar 
    Fader, M., Shi, S., Von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Brown, T. C., Mahat, V. & Ramirez, J. A. Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 7, 219–234 (2019).ADS 
    Article 

    Google Scholar 
    Lall, U., Josset, L. & Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 45, 171–194 (2020).Article 

    Google Scholar 
    Jin, J. et al. Impacts of climate change on hydrology in the Yellow River Source Region, China. J. Water Clim. Change 11, 916–930 (2020).Article 

    Google Scholar 
    Cochand, F., Brunner, P., Hunkeler, D., Rössler, O. & Holzkämper, A. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Sci. Total Environ. 798, 148759 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Waha, K. et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Change 17, 1623–1638 (2017).Article 

    Google Scholar 
    Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 1–6 (2019).Article 

    Google Scholar 
    Fragaszy, S. R. et al. Drought monitoring in the Middle East and North Africa (MENA) region. Bull. Am. Meteorol. Soc. 101, 1148–1173 (2020).Article 

    Google Scholar 
    Tajeri moghadam, M., Raheli, H., Zarifian, S. & Yazdanpanah, M. The power of the health belief model (HBM) to predict water demand management: A case study of farmers’ water conservation in Iran. J. Environ. Manag. 263, 110388 (2020).Article 

    Google Scholar 
    Marston, L., Ao, Y., Konar, M., Mekonnen, M. M. & Hoekstra, A. Y. High-resolution water footprints of production of the United States. Water Resour. Res. 54, 2288–2316 (2018).ADS 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 67, 102695 (2022).Article 

    Google Scholar 
    Savari, M. & Moradi, M. The effectiveness of drought adaptation strategies in explaining the livability of Iranian rural households. Habitat Int. 124, 102560 (2022).Article 

    Google Scholar 
    Warner, L., Chaudhary, A. K., Rumble, J., Lamm, A. & Momol, E. Using audience segmentation to tailor residential irrigation water conservation programs. J. Agric. Educ. 58, 313–333 (2017).Article 

    Google Scholar 
    Tapsuwan, S., Cook, S. & Moglia, M. Willingness to pay for rainwater tank features: A post-drought analysis of Sydney water users. Water (Switzerland) 10, 1199 (2018).
    Google Scholar 
    Chubaka, C. E., Whiley, H., Edwards, J. W. & Ross, K. E. A review of roof harvested rainwater in Australia. J. Environ. Public Health 2018, 6471324 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Smith, H. M., Brouwer, S., Jeffrey, P. & Frijns, J. Public responses to water reuse—Understanding the evidence. J. Environ. Manag. 207, 43–50 (2018).CAS 
    Article 

    Google Scholar 
    Addo, I. B., Thoms, M. C. & Parsons, M. Barriers and drivers of household water-conservation behavior: A profiling approach. Water (Switzerland) 10, 1794 (2018).
    Google Scholar 
    Jarrett, W. B. A survey of the influences on water conservation behavior in Pickens and Oconee counties (2015).Yazdanpanah, M., Forouzani, M., Abdeshahi, A. & Jafari, A. Investigating the effect of moral norm and self-identity on the intention toward water conservation among Iranian young adults. Water Policy 18, 73–90 (2016).Article 

    Google Scholar 
    Sabzali Parikhani, R., Sadighi, H. & Bijani, M. Ecological consequences of nanotechnology in agriculture: Researchers’ perspective. J. Agric. Sci. Technol. 20, 205–219 (2018).
    Google Scholar 
    Moglia, M., Cook, S. & Tapsuwan, S. Promoting water conservation: Where to from here?. Water (Switzerland) 10, 1510 (2018).
    Google Scholar 
    Savari, M. & Zhoolideh, M. The role of climate change adaptation of small-scale farmers on the households food security level in the west of Iran. Dev. Pract. 31, 650–664 (2021).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Kumar Chaudhary, A., Lamm, A. & Warner, L. Using cognitive dissonance to theoretically explain water conservation intentions. J. Agric. Educ. 59, 194–210 (2018).Article 

    Google Scholar 
    Russell, S. V. & Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention. Int. J. Water Resour. Dev. 36, 940–955 (2020).Article 

    Google Scholar 
    Savari, M., Yazdanpanah, M. & Rouzaneh, D. Factors affecting the implementation of soil conservation practices among Iranian farmers. Sci. Rep. 12, 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. https://doi.org/10.1007/S12144-021-02093-9 (2021).Article 

    Google Scholar 
    Lee, M. & Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 128, 683–689 (2013).Article 

    Google Scholar 
    Yazdanpanah, M., Klein, K., Zobeidi, T., Sieber, S. & Löhr, K. Why have economic incentives failed to convince farmers to adopt drip irrigation in southwestern Iran?. Sustainability 14, 1–15 (2022).Article 

    Google Scholar 
    Zobeidi, T., Yaghoubi, J. & Yazdanpanah, M. Developing a paradigm model for the analysis of farmers’ adaptation to water scarcity. Environ. Dev. Sustain. 24, 5400–5425 (2022).Article 

    Google Scholar 
    Russell, S. & Fielding, K. Water demand management research: A psychological perspective. Water Resour. Res. 46, 1–12 (2010).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M., Yazdanpanah, M., Zobeidi, T. & Raoof, M. A. Promoting the adoption of residential water conservation behaviors as a preventive policy to sustainable urban water management. J. Environ. Manag. 313, 115005 (2022).Article 

    Google Scholar 
    Onwezen, M. C., Antonides, G. & Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 39, 141–153 (2013).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M. & Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 39, 100935 (2021).Article 

    Google Scholar 
    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. & Burton, R. J. F. Predicting farmers’ water conservation goals and behavior in Iran: A test of social cognitive theory. Land Use Policy 47, 401–407 (2015).Article 

    Google Scholar 
    Valizadeh, N., Bijani, M., Hayati, D. & Fallah Haghighi, N. Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol. J. 27, 1131–1142 (2019).ADS 
    Article 

    Google Scholar 
    Greaves, M., Zibarras, L. D. & Stride, C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J. Environ. Psychol. 34, 109–120 (2013).Article 

    Google Scholar 
    Wang, Y. et al. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 237, 15–23 (2019).Article 

    Google Scholar 
    Savari, M. & Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 263, 121512 (2020).CAS 
    Article 

    Google Scholar 
    Strydom, W. F. Applying the theory of planned behavior to recycling behavior in South Africa. Recycling 3, 43 (2018).Article 

    Google Scholar 
    Lam, S. P. Predicting intention to save water: Theory of planned behavior, response efficacy, vulnerability, and perceived efficiency of alternative solutions. J. Appl. Soc. Psychol. 36, 2803–2824 (2006).Article 

    Google Scholar 
    Abdulkarim, B., Yacob, M. R., Abdullahi, A. M. & Radam, A. Farmers’ perceptions and attitudes toward forest watershed conservation of the North Selangor Peat Swamp Forest. J. Sustain. For. 36, 309–323 (2017).
    Google Scholar 
    Yuriev, A., Dahmen, M., Paillé, P., Boiral, O. & Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 155, 104660 (2020).Article 

    Google Scholar 
    Bosnjak, M., Ajzen, I. & Schmidt, P. Editorial the theory of planned behavior: Selected recent advances and applications (1841).Ajzen, I. Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 70(2), 121–138. https://doi.org/10.13128/REA-18003 (2015).Article 

    Google Scholar 
    Soorani, F. & Ahmadvand, M. Determinants of consumers’ food management behavior: Applying and extending the theory of planned behavior. Waste Manag. 98, 151–159 (2019).PubMed 
    Article 

    Google Scholar 
    Popa, B., Niță, M. D. & Hălălișan, A. F. Intentions to engage in forest law enforcement in Romania: An application of the theory of planned behavior. For. Policy Econ. 100, 33–43 (2019).Article 

    Google Scholar 
    Tam, K. P. Understanding the psychology X politics interaction behind environmental activism: The roles of governmental trust, density of environmental NGOs, and democracy. J. Environ. Psychol. 71, 101330 (2020).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).Article 

    Google Scholar 
    Icek, A. From intentions to actions: A theory of planned behavior. in Action Control 11–39 (1985).Empidi, A. V. A. & Emang, D. Understanding public intentions to participate in protection initiatives for forested watershed areas using the theory of planned behavior: A case study of Cameron highlands in Pahang, Malaysia. Sustainability 13, 4399 (2021).Article 

    Google Scholar 
    Holt, J. R. et al. Using the theory of planned behavior to understand family forest owners’ intended responses to invasive forest insects. Soc. Nat. Resour. 34, 1001–1018 (2021).Article 

    Google Scholar 
    Marcos, K. J., Moersidik, S. S. & Soesilo, T. E. B. Extended theory of planned behavior on utilizing domestic rainwater harvesting in Bekasi, West Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 716, 012054 (2021).Article 

    Google Scholar 
    Sánchez, M., López-Mosquera, N., Lera-López, F. & Faulin, J. An extended planned behavior model to explain the willingness to pay to reduce noise pollution in road transportation. J. Clean. Prod. 177, 144–154 (2018).Article 

    Google Scholar 
    Fernandez, M. E., Ruiter, R. A. C., Markham, C. M. & Kok, G. Intervention mapping: Theory-and evidence-based health promotion program planning: Perspective and examples. Front. Public Health 7, 209 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, F. et al. Quantifying the influence path of water conservation awareness on water-saving irrigation behavior based on the theory of planned behavior and structural equation modeling: A case study from Northwest China. Sustainability 11, 1–16 (2019).
    Google Scholar 
    Ullah, S. et al. Predicting behavioral intention of rural inhabitants toward economic incentive for deforestation in Gilgit-Baltistan, Pakistan. Sustainability 13, 1–17 (2021).
    Google Scholar 
    Koop, S. H. A., Van Dorssen, A. J. & Brouwer, S. Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics. J. Environ. Manag. 247, 867–876 (2019).CAS 
    Article 

    Google Scholar 
    Goh, E., Ritchie, B. & Wang, J. Non-compliance in national parks: An extension of the theory of planned behaviour model with pro-environmental values. Tour. Manag. 59, 123–127 (2017).Article 

    Google Scholar 
    Liang, Y., Kee, K. F. & Henderson, L. K. Towards an integrated model of strategic environmental communication: Advancing theories of reactance and planned behavior in a water conservation context. J. Appl. Commun. Res. 46, 135–154 (2018).CAS 
    Article 

    Google Scholar 
    Gkargkavouzi, A., Halkos, G. & Matsiori, S. Environmental behavior in a private-sphere context: Integrating theories of planned behavior and value belief norm, self-identity and habit. Resour. Conserv. Recycl. 148, 145–156 (2019).Article 

    Google Scholar 
    Vaske, J. J., Landon, A. C. & Miller, C. A. Normative influences on farmers’ intentions to practice conservation without compensation. Environ. Manag. 66, 191–201 (2020).Article 

    Google Scholar 
    Nguru, W. M., Gachene, C. K., Onyango, C. M., Ng’ang’a, S. K. & Girvetz, E. H. Factors constraining the adoption of soil organic carbon enhancing technologies among small-scale farmers in Ethiopia. Heliyon 7, e08497 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Møller, M., Haustein, S. & Bohlbro, M. S. Adolescents’ associations between travel behaviour and environmental impact: A qualitative study based on the Norm-Activation Model. Travel Behav. Soc. 11, 69–77 (2018).Article 

    Google Scholar 
    Savari, M., Naghibeiranvand, F. & Asadi, Z. Modeling environmentally responsible behaviors among rural women in the forested regions in Iran. Glob. Ecol. Conserv. 35, e02102 (2022).Article 

    Google Scholar 
    van Valkengoed, A. M. & Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nat. Clim. Chang. 9, 158–163 (2019).ADS 
    Article 

    Google Scholar 
    Maduku, D. K. Water conservation campaigns in an emerging economy: How effective are they?. Int. J. Advert. 40, 452–472 (2021).Article 

    Google Scholar 
    Thøgersen, J. & Grønhøj, A. Electricity saving in households—A social cognitive approach. Energy Policy 38, 7732–7743 (2010).Article 

    Google Scholar 
    Ouellette, J. A. & Wood, W. Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychol. Bull. 124, 54–74 (1998).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2, 314–324 (2020).Article 

    Google Scholar 
    Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W. & Schmitt, M. Working memory capacity and self-regulatory behavior: toward an individual differences perspective on behavior determination by automatic versus controlled processes. J. Pers. Soc. Psychol. 95, 962–977 (2008).PubMed 
    Article 

    Google Scholar 
    Jorgensen, B. S., Martin, J. F., Pearce, M. W. & Willis, E. M. Aligning theory and measurement in behavioral models of water conservation. Water Policy 17, 762–776 (2015).Article 

    Google Scholar 
    Barr, S. & Gilg, A. W. A conceptual framework for understanding and analyzing attitudes towards environmental behaviour. Geogr. Ann. Ser. B Hum. Geogr. 89 B, 361–379 (2007).Article 

    Google Scholar 
    Hansmann, R., Bernasconi, P., Smieszek, T., Loukopoulos, P. & Scholz, R. W. Justifications and self-organization as determinants of recycling behavior: The case of used batteries. Resour. Conserv. Recycl. 47, 133–159 (2006).Article 

    Google Scholar 
    Tang, Z., Chen, X. & Luo, J. Determining socio-psychological drivers for rural household recycling behavior in developing countries: A case study from Wugan, Hunan, China. Environ. Behav. 43, 848–877 (2011).Article 

    Google Scholar 
    Krejcie, R. V. & Morgan, W. D. (1970) “Determining sample size for research activities”, educational and psychological measurement. Int. J. Employ. Stud. 18, 89–123 (1996).
    Google Scholar 
    Gregory, G. D. & Di Leo, M. Repeated behavior and environmental psychology: The role of personal involvement and habit formation in explaining water consumption. J. Appl. Soc. Psychol. 33, 1261–1296 (2003).Article 

    Google Scholar 
    Keramitsoglou, K. M. & Tsagarakis, K. P. Raising effective awareness for domestic water saving: Evidence from an environmental educational programme in Greece. Water Policy 13, 828–844 (2011).Article 

    Google Scholar 
    Chaudhary, A. K. et al. Using the theory of planned behavior to encourage water conservation among extension clients. J. Agric. Educ. 58, 185–202 (2017).Article 

    Google Scholar 
    Pradhananga, A. K., Davenport, M. A., Fulton, D. C., Maruyama, G. M. & Current, D. An integrated moral obligation model for landowner conservation norms. Soc. Nat. Resour. 30, 212–227 (2017).Article 

    Google Scholar 
    Heath, Y. & Gifford, R. Extending the theory of planned behavior: Predicting the use of public transportation. J. Appl. Soc. Psychol. 32, 2154–2189 (2002).Article 

    Google Scholar 
    Bodimeade, H. et al. Testing the direct, indirect, and interactive roles of referent group injunctive and descriptive norms for sun protection in relation to the theory of planned behavior. J. Appl. Soc. Psychol. 44, 739–750 (2014).Article 

    Google Scholar 
    Veisi, K., Bijani, M. & Abbasi, E. A human ecological analysis of water conflict in rural areas: Evidence from Iran. Glob. Ecol. Conserv. 23, e01050 (2020).Article 

    Google Scholar 
    Botetzagias, I., Dima, A. F. & Malesios, C. Extending the Theory of Planned Behavior in the context of recycling: The role of moral norms and of demographic predictors. Resour. Conserv. Recycl. 95, 58–67 (2015).Article 

    Google Scholar 
    Martínez-Espiñeira, R., García-Valiñas, M. A. & Nauges, C. Households’ pro-environmental habits and investments in water and energy consumption: Determinants and relationships. J. Environ. Manag. 133, 174–183 (2014).Article 

    Google Scholar 
    Dolnicar, S., Hurlimann, A. & Grün, B. Water conservation behavior in Australia. J. Environ. Manag. 105, 44–52 (2012).Article 

    Google Scholar 
    Untaru, E. N., Ispas, A., Candrea, A. N., Luca, M. & Epuran, G. Predictors of individuals’ intention to conserve water in a lodging context: The application of an extended Theory of Reasoned Action. Int. J. Hosp. Manag. 59, 50–59 (2016).Article 

    Google Scholar 
    Khoshmaram, M., Shiri, N., Shinnar, R. S. & Savari, M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. J. Small Bus. Manag. https://doi.org/10.1111/jsbm.1250158,1064-1088 (2020).Article 

    Google Scholar 
    Benitez, J., Henseler, J., Castillo, A. & Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag. 57, 103168 (2020).Article 

    Google Scholar 
    Sarstedt, M., Ringle, C. M. & Hair, J. F. Partial least squares structural equation modeling. in Handbook of Market Research 1–47. https://doi.org/10.1007/978-3-319-05542-8_15-2 (2021).Clark, W. A. & Finley, J. C. Determinants of water conservation intention in Blagoevgrad, Bulgaria. Soc. Nat. Resour. 20, 613–627 (2007).Article 

    Google Scholar 
    De Dominicis, S., Sokoloski, R., Jaeger, C. M. & Schultz, P. W. Making the smart meter social promotes long-term energy conservation. Palgrave Commun. 5, 1–8 (2019).Article 

    Google Scholar 
    Wang, S., Hung, K. & Huang, W.-J. Motivations for entrepreneurship in the tourism and hospitality sector: A social cognitive theory perspective. Int. J. Hosp. Manag. https://doi.org/10.1016/j.ijhm.2018.11.018 (2018).Article 

    Google Scholar 
    Ramirez, E., Kulinna, P. H. & Cothran, D. Constructs of physical activity behaviour in children: The usefulness of Social Cognitive Theory. Psychol. Sport Exerc. 13, 303–310 (2012).Article 

    Google Scholar 
    Glanz, K., Rimer, B. K. & Viswanath, K. Health and Health (2002). More

  • in

    Acoustic characteristics of sound produced by males of Bactrocera oleae change in the presence of conspecifics

    Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 87, 385–405 (2014).Article 

    Google Scholar 
    Kuba, H. & Sokei, Y. The production of pheromone clouds by spraying in the melon fly, Dacus cucurbitae coquillett (Diptera: Tephritidae). J. Ethol. 6, 105–110 (1988).Article 

    Google Scholar 
    Fletcher, B. S. The structure and function of the sex pheromone glands of the male Queensland fruit fly, Dacus tryoni.. J. Insect Physiol. 15, 1309–1322 (1969).Article 

    Google Scholar 
    Nation, J. L. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, Anastrepha suspensa. Ann. Entomol. Soc. Am. 65, 1364–1367 (1972).Article 

    Google Scholar 
    Arita, L. H. & Kaneshiro, K. Y. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. (EUA) 43, 135–143 (1989).
    Google Scholar 
    Briceño, R.D. & Eberhard, W.G. Male wing positions during courtship by Mediterranean fruit flies (Ceratitis capitata) (Diptera: Tephritidae). J. Kansas Entomol. Soc. 143–47 (2000).Benelli, G. et al. Male wing vibration in the mating behavior of the Olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). J. Insect Behav. 25, 590–603 (2012).Article 

    Google Scholar 
    Feron, M. L’appel sonore du mâle dans le comportement sexuel de Dacus oleae Gmel [Dipt Trypetidae]. Bull. Soc. Entomol. Fr. 65, 139–143 (1960).Article 

    Google Scholar 
    Feron, M. & Andrieu, A. J. Etude des signaux acoustiques du male dans le comportement sexuel de Dacus Oleae Gmel (Dipt. Trypetidae). Ann. Epiphyt. 13, 269–276 (1962).
    Google Scholar 
    Rolli, K. Die akustischen Sexualsignale von Ceratitis capitata Wied. Und Dacus oleae Gmel. Z. Angew. Entomol. 81, 219–223 (1976).Article 

    Google Scholar 
    Webb, J. C., Calkins, C. O., Chambers, D. L., Schwienbacher, W. & Russ, K. Acoustical aspects of behavior of Mediterranean fruit fly, Ceratitis capitata: Analysis and identification of courtship sounds. Entomol. Exp. Appl. 33, 1–8 (1983).Article 

    Google Scholar 
    Mankin, R. W., Lemon, M., Harmer, A. M. T., Evans, C. S. & Taylor, P. W. Time pattern and frequency analyses of sounds produced by irradiated and untreated male Bactrocera tryoni (Diptera: Tephritidae) during mating behavior. Ann. Entomol. Soc. Am. 101, 664–674 (2008).Article 

    Google Scholar 
    Miyatake, T. & Kanmiya, K. Male courtship song in circadian rhythm mutants of Bactrocera cucurbitae (Tephritidae: Diptera). J. Insect Physiol. 50, 85–91 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sivinski, J., Burk, T. & Webb, J. Acoustic courtship signals in the Caribbean fruit fly, Anastrepha suspensa (Loew). Anim. Behav. 32, 1011–1016 (1984).Article 

    Google Scholar 
    Mankin, R. W. et al. Broadcasts of wing-fanning vibrations recorded from calling male Ceratitis capitata (Diptera: Tephritidae) increase captures of females in traps. J. Econ. Entomol. 97, 1299–1309 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankin, R. W., Petersson, E., Epsky, N. D., Heath, R. R. & Sivinski, J. Exposure to male pheromones enhances Anastrepha suspensa (Diptera: Tephritidae) female response to male calling song. Fla. Entomol. 83, 411 (2000).CAS 
    Article 

    Google Scholar 
    Sivinski, J. & Webb, J. C. Changes in a Caribbean fruit fly acoustic signal with social situation (Diptera: Tephritidae)1. Ann. Entomol. Soc. Am. 79, 146–149 (1986).Article 

    Google Scholar 
    Canale, A. et al. The courtship song of fanning males in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae). Bull. Entomol. Res. 103, 303–309 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wicker-Thomas, C. Pheromonal communication involved in courtship behavior in Diptera. J. Insect. Physiol. 53, 1089–1100 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tan, K.H., Nishida, R., Jang, E.B. & Shelly, T.E. Pheromones, male lures, and trapping of tephritid fruit flies. In: Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, And Trade Implications 15–74 (Springer, 2014).Poramarcom, R. Sexual communication in the Oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Doctoral dissertation. (University of Hawaii at Manoa, 1988).Ekanayake, D. The mating system and courtship behaviour of the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Doctoral dissertation. (Queensland University of Technology, 2017).Suzuki, Y. & Koyama, J. Courtship behavior of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl. Entomol. Zool. 16, 164–166 (1981).Article 

    Google Scholar 
    Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nieri, R., Anfora, G., Mazzoni, V. & Rossi Stacconi, M. V. Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomol. Gen. 42, 167–183 (2022).Article 

    Google Scholar 
    Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 151–169 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rice, R. E., Phillips, P. A., Stewart-Leslie, J. & Sibbett, G. S. Olive fruit fly populations measured in Central and Southern California. Calif. Agric. 57, 122–127 (2003).Article 

    Google Scholar 
    Wang, X. et al. Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids. Sci. Rep. 11, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    Loher, W. & Zervas, G. The mating rhythm of the olive fruitfly, Dacus oleae Gmelin. Z. Angew. Entomol. 88, 425–435 (1979).Article 

    Google Scholar 
    Benelli, G. Aggression in Tephritidae flies: Where, when, why? Future directions for research in integrated pest management. Insects 6, 38–53 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benelli, G. Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): Role of residence and time of day. J. Insect. Behav. 27, 145–161 (2014).Article 

    Google Scholar 
    Shelly, T. E. Aggression between wild and laboratory-reared sterile males of the mediterranean fruit fly in a natural habitat (Diptera: Tephritidae). Fla. Entomol. 83, 105–108 (2000).Article 

    Google Scholar 
    Ekanayake, W. M., Clarke, A. R. & Schutze, M. K. Close-distance courtship of laboratory reared Bactrocera tryoni (Diptera: Tephritidae). Austral. Entomol. 58, 578–588 (2019).Article 

    Google Scholar 
    Ant, T. et al. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 10, 1–8 (2012).Article 

    Google Scholar 
    Estes, A. M. et al. A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J. Appl. Entomol. 136, 1–16 (2012).Article 

    Google Scholar 
    Zanini, D., Geurten, B., Spalthoff, C. & Göpfert, M. C. Sound communication in Drosophila. In Insect Hearing and Acoustic Communication Animal Signals and Communication, Vol. 1 (ed. Hedwig, B.) (Springer, 2014).
    Google Scholar 
    Windmill, J. F. C. & Jackson, J. C. Mechanical specializations of insect ears. In Insect Hearing. Springer Handbook of Auditory Research, Vol. 55 (eds Pollack, G. et al.) (Springer, 2016).
    Google Scholar 
    Talyn, B. C. & Dowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    Kanmiya, K. Acoustic studies on the mechanism of sound production in the mating songs of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). J. Ethol. 6, 143–151 (1988).Article 

    Google Scholar 
    Benelli, G. et al. Wing-fanning frequency as a releaser boosting male mating success—High-speed video analysis of courtship behavior in Campoplex capitator, a parasitoid of Lobesia botrana. Insect Sci. 27, 1298–1310 (2020).PubMed 
    Article 

    Google Scholar 
    Ge, J. et al. Pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. Insect Sci. 26, 510–522 (2019).PubMed 
    Article 

    Google Scholar 
    Mazzoni, V., Anfora, G. & Virant-Doberlet, M. Substrate vibrations during courtship in three drosophila species. PLoS ONE 8, e80708 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKelvey, E. G. Z. et al. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 31, 3894–3904 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strauß, J., Stritih-Peljhan, N., Nieri, R., Virant-Doberlet, M., & Mazzoni, V. Communication by substrate-borne mechanical waves in insects: From basic to applied biotremology. In: Advances in Insect Physiology, vol. 61, 189–307 (Academic Press, 2021).Mazomenos, B. E. Effect of age and mating on pheromone production in the female olive fruit fly, Dacus oleae (Gmel.). J. Insect Physiol. 30, 765–769 (1984).CAS 
    Article 

    Google Scholar 
    Carpita, A. et al. (Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: First evidence of a male-produced female attractant in in olive fruit fly. Naturwissenschaften 99, 77–81 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canale, A. et al. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants. Chemoecology 23, 155–164 (2013).CAS 
    Article 

    Google Scholar 
    Mcdonald, P. T. Intragroup stimulation of pheromone release by male mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 80, 17–20 (1987).CAS 
    Article 

    Google Scholar 
    Iwahashi, O. & Majima, T. Lek formation and male–male competition in the melon fly, Dacus cucurbitae Coquillett: Diptera: Tephritidae. Appl. Entomol. Zool. 21, 70–75 (1986).Article 

    Google Scholar 
    Keiser, I., Kobayashi, R. M., Chambers, D. L. & Schneider, E. L. Relation of sexual dimorphism in the wings, potential stridulation, and illumination to mating of oriental fruit flies, melon flies, and Mediterranean fruit flies in Hawaii. Ann. Ent. Soc. Am. 66, 937–941 (1973).Article 

    Google Scholar 
    Benelli, G. & Canale, A. Aggressive behavior in olive fruit fly females: Oviposition site guarding against parasitic wasps. J. Insect Behav. 29, 680–688 (2016).Article 

    Google Scholar 
    Rohde, B. B. et al. An acoustic trap to survey and capture two neoscapteriscus species. Fla. Entomol. 102, 654–657 (2019).Article 

    Google Scholar 
    Shelly, T. E. Lek size and female visitation in two species of tephritid fruit flies. Anim. Behav. 62, 33–40 (2001).Article 

    Google Scholar 
    Niyazi, N., Shuker, D. M. & Wood, R. J. Male position and calling effort together influence male attractiveness in leks of the medfly, Ceratitis capitata (Diptera: Tephritidae): Male attractiveness in leks of Ceratitis capitata. Biol. J. Linn. Soc. Lond. 95, 479–487 (2008).Article 

    Google Scholar 
    Greenfield, M. D. Signal interactions and interference in insect choruses: Singing and listening in the social environment. J. Comp. Physiol. A 201, 143–154 (2015).Article 

    Google Scholar 
    Kouloussis, N. A. et al. Age related assessment of sugar and protein intake of Ceratitis capitata in ad libitum conditions and modeling its relation to reproduction. Front. Physiol. 8, 1–13 (2017).Article 

    Google Scholar 
    Boersma, P. & Van Heuven, V. Speak and unSpeak with PRAAT. Glot Int. 5, 341–347 (2001).
    Google Scholar 
    Joyce, A. L. et al. Effect of continuous rearing on courtship acoustics of five braconid parasitoids, candidates for augmentative biological control of Anastrepha species. Biocontrol 55, 573–582 (2010).Article 

    Google Scholar 
    Sall, J. et al. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP (Sas Institute, 2017).
    Google Scholar  More

  • in

    Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia

    MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. M. et al. Bluetongue, Schmallenberg—What is next? Culicoides-borne viral diseases in the 21st Century. BMC Res. Notes 10, 77 (2014).
    Google Scholar 
    Dennis, S. J., Meyers, A. E., Hitzeroth, I. I. & Rybicki, E. P. African horse sickness: A review of current understanding and vaccine development in the. Viruses 11, 844 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, Á. B., Doherty, M. L., Barrett, D. J. & Mee, J. F. Schmallenberg virus: A systematic international literature review (2011–2019) from an Irish perspective. Ir. Vet. J. 72, 1–22 (2019).Article 

    Google Scholar 
    Tkuwet, G. & Firesbhat, A. A review on African horse sickness. Eur. J. Appl. Sci. 7, 213–219 (2015).CAS 

    Google Scholar 
    Mellor, P. S. & Hamblin, C. African horse sickness. Vet. Res. 35, 445–466 (2004).PubMed 
    Article 

    Google Scholar 
    Coetzee, P., Stokstad, M., Venter, E. H., Myrmel, M. & Van Vuuren, M. Bluetongue: A historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9, 198 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagienard, A., Griot, C., Mellor, P. S., Denison, E. & Stärk, K. D. Bluetongue vector species of Culicoides in Switzerland. Med. Vet. Entomol. 20, 239–247 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oluwayelu, D., Adebiyi, A. & Tomori, O. Endemic and emerging arboviral diseases of livestock in Nigeria: A review. Parasit. Vectors 11, 1–12 (2018).Article 

    Google Scholar 
    Sibhat, B., Ayelet, G., Gebremedhin, E. Z., Skjerve, E. & Asmare, K. Seroprevalence of Schmallenberg virus in dairy cattle in Ethiopia. Acta Trop. 178, 61–67 (2018).PubMed 
    Article 

    Google Scholar 
    Aklilu, N. et al. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound. Emerg. Dis. 61, 185–192 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rojas, J. M., Rodríguez-Martín, D., Martín, V. & Sevilla, N. Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Vet. Med. Res. Rep. 10, 17 (2019).
    Google Scholar 
    Gizaw, D., Sibhat, D., Ayalew, B. & Sehal, M. Sero-prevalence study of bluetongue infection in sheep and goats in selected areas of Ethiopia. Ethiop. Vet. J. 20, 105 (2016).Article 

    Google Scholar 
    Abera, T. et al. Bluetongue disease in small ruminants in south western Ethiopia: Cross-sectional sero-epidemiological study. BMC Res. Notes 11, 112 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antivir. Res. 100, 102–113 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sick, F., Beer, M., Kampen, H. & Wernike, K. Culicoides biting midges—Underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11, 376 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Blanda, V. et al. Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy. Parasit. Vectors 11, 78 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vasić, A. et al. Species diversity, host preference and arbovirus detection of Culicoides (Diptera: Ceratopogonidae) in south-eastern Serbia. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Martin, E. et al. Culicoides species community composition and infection status with parasites in an urban environment of east central Texas, USA. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Gusmão, G. M. C., Brito, G. A., Moraes, L. S., Bandeira, M. D. C. A. & Rebêlo, J. M. M. Temporal variation in species abundance and richness of Culicoides (Diptera: Ceratopogonidae) in a tropical equatorial area. J. Med. Entomol. https://doi.org/10.1093/jme/tjz015 (2019).Article 
    PubMed 

    Google Scholar 
    Sghaier, S. et al. New species of the genus Culicoides (Diptera Ceratopogonidae) for Tunisia, with detection of Bluetongue viruses in vectors. Vet. Ital. 53, 357–366 (2017).PubMed 

    Google Scholar 
    Gordon, S. J. G. et al. The occurrence of Culicoides species, the vectors of arboviruses, at selected trap sites in Zimbabwe. Onderstepoort J. Vet. Res. 82, e1–e8 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Villard, P. et al. Modeling Culicoides abundance in mainland France: Implications for surveillance. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 341 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calvete, C. et al. Spatial distribution of Culicoides imicola, the main vector of bluetongue virus, Spain. Vet. Rec. 158, 130–131 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Med. Vet. Entomol. 18, 90–101 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Med. Vet. Entomol. 20, 335–344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Modeling the global distribution of Culicoides imicola: An ensemble approach. Sci. Rep. 9, 1–9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mulatu, T. & Hailu, A. The occurrence and identification of Culicoides species in the Western Ethiopia. Acad. J. Entomol. 12, 40–43 (2019).
    Google Scholar 
    Khamala, C. P. M. & Kettle, D. S. The Culicoides Latreille (Diptera: Ceratopogonidae) of East Africa. Trans. R. Entomol. Soc. Lond. 123, 1–95 (1971).Article 

    Google Scholar 
    Venter, G. J. Specie di Culicoides (Diptera: Ceratopogonidae) vettori del virus della Bluetongue in Sud Africa. Vet. Ital. 51, 325–333 (2015).PubMed 

    Google Scholar 
    Mathieu, B. et al. Development and validation of IIKC: An interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit. Vectors 5, 137 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).Article 

    Google Scholar 
    Baylis, M., Bouayoune, H., Touti, J. & El Hasnaoui, H. Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med. Vet. Entomol. 12, 255–266 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diarra, M. et al. Modelling the abundances of two major culicoides (Diptera: Ceratopogonidae) species in the Niayes area of Senegal. PLoS One 10, e0131021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ramilo, D. W., Nunes, T., Madeira, S., Boinas, F. & da Fonseca, I. P. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species. PLoS One 12, e0180606 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Chang. Biol. 16, 3233–3245 (2010).ADS 
    Article 

    Google Scholar 
    Tiffin, P. & Ross-Ibarra, J. Goal-oriented evaluation of species distribution models accuracy and precision: True Skill Statistic profile and uncertainty maps. PeerJ PrePints https://doi.org/10.7287/peerj.preprints.488v1 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Demissie, G. H. Seroepidemiological study of African horse sickness in southern Ethiopia. Open Sci. Repos. Vet. Med. 10, e70081919 (2013).
    Google Scholar 
    Zeleke, A., Sori, T., Powel, K., Gebre-Ab, F. & Endebu, B. Isolation and identification of circulating serotypes of African horse sickness virus in Ethiopia. J. Appl. Res. Vet. Med. 3, 40–43 (2005).
    Google Scholar 
    Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).PubMed 
    Article 

    Google Scholar 
    Gulima, D. Seroepidemiological study of bluetongue in indigenous sheep in selected districts of Amhara National Regional State, north western Ethiopia. Ethiop. Vet. J. 13, 1–15 (2009).
    Google Scholar 
    Borkent, A. & Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787, 1–377 (2020).Article 

    Google Scholar 
    Borkent, A. & Wirth, W. W. World species of biting midges (Diptera: Ceratopogonidae). Bull. Am. Museum Nat. Hist. 233, 5–195 (1997).
    Google Scholar 
    Guichard, S. et al. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One 9, e112491 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Becker, E. E. E., Venter, G. J., Labuschagne, K., Greyling, T. & van Hamburg, H. Occurrence of Culicoides species Diptera: Ceratopogonidae) in the Khomas region of Namibia during the winter months. Vet. Ital. 48, 45–54 (2012).PubMed 

    Google Scholar 
    Capela, R. et al. Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Med. Vet. Entomol. 17, 165–177 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvete, C. et al. Modelling the distributions and spatial coincidence of bluetongue vectors Culicoides imicola and the Culicoides obsoletus group throughout the Iberian peninsula. Med. Vet. Entomol. 22, 124–134 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 498–511 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foxi, C. et al. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering in Sardinia (Italy). Parasit. Vectors 9, 440 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musuka, G. N., Mellor, P. S., Meiswinkel, R., Baylis, M. & Kelly, P. J. Prevalence of Culicoides imicola and other species (Diptera: Ceratopogonidae) ateight sites in Zimbabwe: To the editor. J. S. Afr. Vet. Assoc. 72, 62–63 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiswinkel, R. The 1996 outbreak of African horse sickness in South Africa—the entomological perspective. Arch. Virol. Suppl. 14, 69–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Jean Pierre, T. et al. Characteristics, classification and genesis of vertisols under seasonally contrasted climate in the Lake Chad Basin, Central Africa. J. Afr. Earth Sci. 150, 176–193 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 6, 1–15 (2017).Article 

    Google Scholar 
    Nachtergaele, F. The classification of leptosols in the world reference base for soil resources.Veronesi, E., Venter, G. J., Labuschagne, K., Mellor, P. S. & Carpenter, S. Life-history parameters of Culicoides (Avaritia) imicola Kieffer in the laboratory at different rearing temperatures. Vet. Parasitol. 163, 370–373 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verhoef, F. A. A., Venter, G. J. & Weldon, C. W. Thermal limits of two biting midges, Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae). Parasites Vectors 7, 384 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conte, A., Goffredo, M., Ippoliti, C. & Meiswinkel, R. Influence of biotic and abiotic factors on the distribution and abundance of Culicoides imicola and the Obsoletus Complex in Italy. Vet. Parasitol. 150, 333–344 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinez-de la Puente, J., Navarro, J., Ferraguti, M., Soriguer, R. & Figuerola, J. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: Implications for the transmission of bluetongue disease and African horse sickness. Med. Vet. Entomol. 31, 333–339 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Updating the global occurrence of Culicoides imicola, a vector for emerging viral diseases. Sci. Data 6, 1–8 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Post-foraging in-colony behaviour of a central-place foraging seabird

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotler, B. P., Brown, J. S. & Bouskila, A. Apprehension and time allocation in gerbils: The effects of predatory risk and energetic state. Ecology 85, 917–922 (2004).Article 

    Google Scholar 
    Wajnberg, E., Bernhard, P., Hamelin, F. & Boivin, G. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60, 1–10 (2006).Article 

    Google Scholar 
    Embar, K., Kotler, B. P. & Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 120, 1657–1666 (2011).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Beauchamp, G. & Ruxton, G. D. A reassessment of the predation risk allocation hypothesis: A comment on Lima and Bednekoff. Am. Nat. 177, 143–146 (2011).PubMed 
    Article 

    Google Scholar 
    Ferrari, M. C. O., Sih, A. & Chivers, D. P. The paradox of risk allocation: A review and prospectus. Anim. Behav. 78, 579–585 (2009).Article 

    Google Scholar 
    Wolf, L. L. & Hainsworth, F. R. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128 (1975).Article 

    Google Scholar 
    Litzow, M. A. & Piatt, J. F. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba. J. Avian Biol. 34, 54–64 (2003).Article 

    Google Scholar 
    Rishworth, G. M., Tremblay, Y. & Green, D. B. Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9, e116544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology. (The University of Chicago Press, 2007).Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Systems (eds. Horn, D., Mitchell, R. & Stairs, G.) 154–177 (The Ohio State University Press, 1979).Chaurand, T. & Weimerskirch, H. The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: A previously undescribed strategy of food provisioning in a pelagic seabird. J. Anim. Ecol. 63, 275–282 (1994).Article 

    Google Scholar 
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. 23, 1372–1378 (2012).Article 

    Google Scholar 
    Welcker, J. et al. Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J. Avian Biol. 40, 388–399 (2009).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M. & Kidawa, D. Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci. Rep. https://doi.org/10.1038/s41598-020-65210-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shoji, A. et al. Dual foraging and pair coordination during chick provisioning by Manx shearwaters: Empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, R. A., Wakefield, E. D., Croxall, J. P., Fukuda, A. & Higuchi, H. Albatross foraging behaviour: No evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar. Ecol. Prog. Ser. 391, 279–292 (2009).ADS 
    Article 

    Google Scholar 
    Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W. & Karnovsky, N. J. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. J. Avian Biol. 43, 215–226 (2012).Article 

    Google Scholar 
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: Does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 
    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ochi, D., Oka, N. & Watanuki, Y. Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J. Ethol. 28, 313–321 (2010).Article 

    Google Scholar 
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).ADS 
    Article 

    Google Scholar 
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).ADS 
    Article 

    Google Scholar 
    Weimerskirch, H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J. Anim. Ecol. 67, 99–109 (1998).Article 

    Google Scholar 
    Stempniewicz, L. BWP update. Little Auk (Alle alle). J. Birds West. Palearct. 3, 175–201 (2001).
    Google Scholar 
    Wojczulanis-Jakubas, K. & Jakubas, D. When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle Alle). Auk 129, 632–637 (2012).Article 

    Google Scholar 
    Harding, A. M. A., Van Pelt, T. I., Lifjeld, J. T. & Mehlum, F. Sex differences in little auk Alle alle parental care: Transition from biparental to paternal-only care. Ibis (Lond. 1859). 146, 642–651 (2004).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K. et al. Duration of female parental care and their survival in the little auk Alle alle—Are these two traits linked ?. Behav. Ecol. Sociobiol. 74, 1–11 (2020).Article 

    Google Scholar 
    Wojczulanis, K., Dariusz, J. & Lech, S. The Little Auk Alle alle: An ecological indicator of a changing Arctic and a model organism. Polar Biol. https://doi.org/10.1007/s00300-021-02981-7 (2021).Article 

    Google Scholar 
    Steen, H., Vogedes, D., Broms, F., Falk-Petersen, S. & Berge, J. Little auks (Alle alle) breeding in a High Arctic fjord system: Bimodal foraging strategies as a response to poor food quality?. Polar Res. 26, 118–125 (2007).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D., Karnovsky, N. J. & Walkusz, W. Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res. 29, 22–29 (2010).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L., Darecki, M. & Stempniewicz, L. Foraging strategy of the little auk Alle alle throughout breeding season—switch from unimodal to bimodal pattern. J. Avian Biol. 45, 551–560 (2014).Article 

    Google Scholar 
    Jakubas, D., Iliszko, L., Wojczulanis-Jakubas, K. & Stempniewicz, L. Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol. 35, 73–81 (2012).Article 

    Google Scholar 
    Jakubas, D. et al. Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol. 391, 1547–1561 (2016).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 
    Article 

    Google Scholar 
    Stempniewicz, L. Predator-prey interactions between Glaucous Gull Larus hyperboreus and Little Auk Alle alle in Spitsbergen. Acta Ornithol. 29, 155–170 (1995).
    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Changes in the glaucous gull predatory pressure on little auks in Southwest Spitsbergen. Waterbirds 28, 430–435 (2005).Article 

    Google Scholar 
    Kharitonov, S. Methods and Theoretical Aspects of Seabird Studies. (Proc 5 All-Russian Mar Biol School, Marine Biological Institute, 2007).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Avifauna of Hornsund area, SW Spitsbergen: Present state and recent changes. Polish Polar Res. 29, 187–197 (2008).
    Google Scholar 
    Keslinka, K. L., Wojczulanis-Jakubas, K., Jakubas, D. & Neubauer, G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 14, 1–20 (2019).
    Google Scholar 
    Kidawa, D., Barcikowski, M. & Palme, R. Parent-offspring interactions in a long-lived seabird, the Little Auk (Alle alle): Begging and provisioning under simulated stress. J. Ornithol. 158, 145–157 (2017).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. https://doi.org/10.1093/beheco/ars131 (2012).Article 

    Google Scholar 
    Jakubas, D. & Wojczulanis, K. Predicting the sex of Dovekies by discriminant analysis. Waterbirds 30, 92–96 (2007).Article 

    Google Scholar 
    Grissot, A. et al. Parental coordination of chick provisioning in a planktivorous arctic seabird under divergent conditions on foraging grounds. Front. Ecol. Evol. 7, 349 (2019).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R. (2019).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Sex-specific parental care by incubating Little Auks (Alle alle). Ornis Fenn. 86, 140–148 (2009).
    Google Scholar 
    Welcker, J., Steen, H., Harding, A. M. A. & Gabrielsen, G. W. Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis (Lond. 1859). 151, 502–513 (2009).Article 

    Google Scholar 
    Kidawa, D. et al. Parental efforts of an Arctic seabird, the little auk Alle alle under variable foraging conditions. Mar. Biol. Res. 11, 349–360 (2015).Article 

    Google Scholar 
    Wickham, H. Hadley Wickham. Media 35, 211 (2009).
    Google Scholar 
    Karnovsky, N. J. et al. Inter-colony comparison of diving behavior of an Arctic top predator: Implications for warming in the Greenland Sea. Mar. Ecol. Prog. Ser. 440, 229–240 (2011).ADS 
    Article 

    Google Scholar 
    Karnovsky, N. et al. Foraging distributions of little auks Alle alle across the Greenland Sea: Implications of present and future Arctic climate change. Mar. Ecol. Prog. Ser. 415, 283–293 (2010).ADS 
    Article 

    Google Scholar 
    Gremillet, D. et al. Little auks buffer the impact of current Arctic climate change. Mar. Ecol. Prog. Ser. 454, 197–206 (2012).ADS 
    Article 

    Google Scholar 
    Harding, A. M. A. et al. Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23, 348–358 (2009).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging effort does not influence body condition and stress level in little auks. Mar. Ecol. Prog. Ser. 432, 277–290 (2011).ADS 
    Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M., Strøm, H. & Stempniewicz, L. Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia

    Sylvan, J. How to protect a coral reef: the public trust doctrine and the law of the sea recommended citation. Sustain. Dev. Law Policy 7, 12 (2006).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4, e00052–13 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reef. 25, 75–87 (1990).
    Google Scholar 
    Dubinsky, Z. & Stambler, N. Coral reefs: an ecosystem in transition. (Springer, 2011).Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. https://doi.org/10.1038/NCLIMATE1661 (2012).Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evolution 32, 735–745 (2017).Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehnert, E. M. et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda) 4, 277–95 (2014).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Berman-Frank, I. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. in. Aquat. Sci. 63, 4–17 (2001).CAS 
    Article 

    Google Scholar 
    Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–61 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15, e1008189 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2022653118 (2021).Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences Discuss. 9, 8111–8139 (2012).
    Google Scholar 
    Cziesielski, M. J., Schmidt‐Roach, S. & Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. https://doi.org/10.1002/ece3.5576 (2019).Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).PubMed 
    Article 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. Biol. Sci./R. Soc. 273, 2305–12 (2006).
    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change https://doi.org/10.1038/nclimate1330 (2011).Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. Biol. Sci. 285, 20172654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to environmental stress,making its relative ability to acclimate or adapt extremely important to the to future climate change. Science 344, 895–898 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrera, M. et al. Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J. 15, 141–153 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 1–19 https://doi.org/10.1007/s00338-020-01917-7 (2020).Perez, S. F., Cook, C. B. & Brooks, W. R. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 256, 1–14 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4, e6364 (2009).Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405–414 (2009).Article 

    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).Article 

    Google Scholar 
    LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).Article 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. 112, 201513318 (2015).
    Google Scholar 
    Matthews, J. L. et al. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J. Exp. Biol. jeb.128934 https://doi.org/10.1242/JEB.128934 (2015).Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeSalvo, M., Sunagawa, S., Voolstra, C. R. & Medina, M. Transcriptomic resonses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97–113 (2010).CAS 
    Article 

    Google Scholar 
    Maor-Landaw, K. & Levy, O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4, e1814 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).PubMed 
    Article 

    Google Scholar 
    Meyer, E. & Weis, V. M. Study of cnidarian-algal symbiosis in the “omics” age. Biol. Bull. 223, 44–65 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oakley, C. A. et al. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. J. Proteome Res. 16, 2121–2134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robbart, M. L., Peckol, P., Scordilis, S. P., Curran, H. A. & Brown-Saracino, J. Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A-tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283, 151–160 (2004).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H. & Palumbi, S. R. The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol. 220, 1837–1845 (2017).PubMed 

    Google Scholar 
    Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: The diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 62 (2016).Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).Article 

    Google Scholar 
    Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. N. Phytologist 212, 472–484 (2016).CAS 
    Article 

    Google Scholar 
    Lesser, K. B. & Garcia, F. A. Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern. Fetal Med. 6, 303–307 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunn, S. R., Schnitzler, C. E. & Weis, V. M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B: Biol. Sci. 274, 3079–3085 (2007).
    Google Scholar 
    DeSalvo, M. K. et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174–1186 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01220 (2017).Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 16802 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sproles, A. E. et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ. Microbiol. 22, 3741–3753 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rädecker, N. et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front. Physiol. 9, 214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. BioScience 43, 606–611 (1993).Article 

    Google Scholar 
    Wang & Douglas. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J. Exp. Biol. 201, 2445–53 (1998).Loram, J. E., Trapido-Rosenthal, H. G. & Douglas, A. E. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol. Ecol. 16, 4849–4857 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karako-Lampert, S. et al. Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS One 9, e88615 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hillyer, K. E., Tumanov, S., Villas-Bôas, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 219, 516–27 (2016).PubMed 

    Google Scholar 
    Bertucci, A., Forêt, S., Ball, E. E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl Acad. Sci. 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, M.-F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol. Open 8, bio038281 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medrano, E., Merselis, D. G., Bellantuono, A. J. & Rodriguez-Lanetty, M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Front. Microbiol. 10, 1153 (2019).Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J. Phycol. 49, 447–458 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More