More stories

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More

  • in

    Bushmeat in Brazil

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Social senescence in red deer

    Snyder-Mackler, N. et al. Science 368, eaax9553 (2020).CAS 
    Article 

    Google Scholar 
    Wrzus, C., Hänel, M., Wagner, J. & Neyer, F. J. Psychol. Bull. 139, 53–80 (2013).Article 

    Google Scholar 
    Steptoe, A., Shankar, A., Demakakos, P. & Wardle, J. Proc. Natl Acad. Sci. USA 110, 5797–5801 (2013).CAS 
    Article 

    Google Scholar 
    Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M. & Fischer, J. Curr. Biol. 26, 1744–1749 (2016).CAS 
    Article 

    Google Scholar 
    Rosati, A. G. et al. Science 370, 473–476 (2020).CAS 
    Article 

    Google Scholar 
    Schino, G. & Pinzaglia, M. Am. J. Primatol. 80, e22746–e22747 (2018).Article 

    Google Scholar 
    Machanda, Z. P. & Rosati, A. G. Phil. Trans. R. Soc. Lond. B 375, 20190620 (2020).Article 

    Google Scholar 
    Kroeger, S. B., Blumstein, D. T. & Martin, J. G. A. Phil. Trans. R. Soc. Lond. B 376, 20190745 (2021).Article 

    Google Scholar 
    Weiss, M. N. et al. Proc. R. Soc. Lond. B 288, 20210617 (2021).
    Google Scholar 
    Albery, G. F. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01817-9 (2022).Article 
    PubMed 

    Google Scholar 
    Siracusa, E. R., Higham, J. P., Snyder-Mackler, N. & Brent, L. J. N. Biol. Lett. 18, 20210643 (2022).Article 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J. M. Funct. Ecol. 22, 393–406 (2008).Article 

    Google Scholar 
    Nussey, D. H., Froy, H., Lemaître, J.-F., Gaillard, J.-M. & Austad, S. N. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar  More

  • in

    Farm size affects the use of agroecological practices on organic farms in the United States

    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).PubMed 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krebs, A. V. The Corporate Reapers: The Book of Agribusiness (Essential Books, 1992).Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).Article 

    Google Scholar 
    2017 Census of Agriculture – 2019 Organic Survey (USDA NASS, 2020); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpFarms and Land in Farms 2019 Summary (USDA NASS, 2020); https://usda.library.cornell.edu/concern/publications/5712m6524Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).PubMed 
    Article 

    Google Scholar 
    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    USDA AMS. National Organic Program; Final Rule, 7 CFR Part 205. Fed. Regist. 65, 80547–80684 (2000).
    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29, 503–515 (2009).Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).PubMed 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 

    Google Scholar 
    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).
    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed 
    Article 

    Google Scholar 
    Faucon, M.-P., Houben, D. & Lambers, H. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385–394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Hose, T. et al. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189–198 (2014).Article 

    Google Scholar 
    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).CAS 
    Article 

    Google Scholar 
    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).Article 

    Google Scholar 
    Willekens, K., Vandecasteele, B., Buchan, D. & De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 82, 61–71 (2014).Article 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212 (2013).Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A. & Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 39, 76–84 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).Article 

    Google Scholar 
    Buck, D., Getz, C. & Guthman, J. From farm to table: the organic vegetable commodity chain of northern California. Sociol. Rural. 37, 3–20 (1997).Article 

    Google Scholar 
    Guthman, J. Raising organic: an agro-ecological assessment of grower practices in California. Agric. Hum. Values 17, 257–266 (2000).Article 

    Google Scholar 
    Guthman, J. The trouble with ‘organic lite’ in California: a rejoinder to the ‘conventionalisation’ debate. Sociol. Rural. 44, 301–316 (2004).Article 

    Google Scholar 
    Darnhofer, I., Lindenthal, T., Bartel-Kratochvil, R. & Zollitsch, W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 30, 67–81 (2010).Article 

    Google Scholar 
    Constance, D. H., Choi, J. Y. & Lyke-Ho-Gland, H. Conventionalization, bifurcation, and quality of life: certified and non-certified organic farmers in Texas. J. Rural Soc. Sci. 23, 208–234 (2008).
    Google Scholar 
    2017 Census of Agriculture – United States Summary and State Data (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php2017 Census of Agriculture: Characteristics of All Farms and Farms with Organic Sales (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpPonisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).Article 

    Google Scholar 
    Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).Article 

    Google Scholar 
    Tittonell, P. et al. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4, 584605 (2020).Article 

    Google Scholar 
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).PubMed 
    Article 

    Google Scholar 
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).PubMed 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 

    Google Scholar 
    Olimpi, E. M. et al. Evolving food safety pressures in California’s central coast region. Front. Sustain. Food Syst. 3, 102 (2019).Article 

    Google Scholar 
    Karp, D. S. et al. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 65, 1173–1183 (2015).Article 

    Google Scholar 
    Bovay, J., Ferrier, P. & Zhen, C. Estimated Costs for Fruit and Vegetable Producers To Comply With the Food Safety Modernization Act’s Produce Rule, EIB-195 (U.S. Department of Agriculture, Economic Research Service, 2018).Coombes, B. & Campbell, H. Dependent reproduction of alternative modes of agriculture: organic farming in New Zealand. Sociol. Rural. 38, 127–145 (1998).Article 

    Google Scholar 
    Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).Article 

    Google Scholar 
    Smith, E. & Marsden, T. Exploring the ‘limits to growth’ in UK organics: beyond the statistical image. J. Rural Stud. 20, 345–357 (2004).Article 

    Google Scholar 
    Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? (Bloomsbury, 2016).Arcuri, A. The transformation of organic regulation: the ambiguous effects of publicization. Regul. Gov. 9, 144–159 (2015).Article 

    Google Scholar 
    Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).Article 

    Google Scholar 
    Guthman, J. in Alternative Food Politics: From the Margins to the Mainstream (eds. Phillipov, M. & Kirkwood, K.) 23–36 (Routledge, 2019).Jaffee, D. & Howard, P. H. Corporate cooptation of organic and fair trade standards. Agric. Hum. Values 27, 387–399 (2010).Article 

    Google Scholar 
    Campbell, H. & Rosin, C. After the ‘organic industrial complex’: an ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 27, 350–361 (2011).Article 

    Google Scholar 
    Lockie, S. & Halpin, D. The ‘conventionalisation’ thesis reconsidered: structural and ideological transformation of Australian organic agriculture. Sociol. Rural. 45, 284–307 (2005).Article 

    Google Scholar 
    Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).Article 

    Google Scholar 
    Hill, S. B. Redesigning the food system for sustainability. Alternatives 12, 32–36 (1985).
    Google Scholar 
    Padel, S., Levidow, L. & Pearce, B. UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecol. Sustain. Food Syst. 44, 139–163 (2020).Article 

    Google Scholar 
    Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. 5, 734088 (2021).Article 

    Google Scholar 
    Brislen, L. Meeting in the middle: scaling-up and scaling-over in alternative food networks. Cult. Agric. Food Environ. 40, 105–113 (2018).Article 

    Google Scholar 
    De Master, K. New inquiries into the agri-cultures of the middle. Cult. Agric. Food Environ. 40, 130–135 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.4-1 https://CRAN.R-project.org/package=emmeans (2021).Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).Article 

    Google Scholar 
    Krueger, J. I. & Heck, P. R. Putting the P-value in its place. Am. Stat. 73, 122–128 (2019).Article 

    Google Scholar 
    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73(Suppl. 1), 1–19 (2019).Article  Google Scholar  Agresti, A. Categorical Data Analysis (Wiley, 2013). More

  • in

    Wastewater is a robust proxy for monitoring circulating SARS-CoV-2 variants

    Our long-term surveillance of SARS-CoV-2 in Austria demonstrated that WBE alone yields a time-resolved map of the genetic dynamics during a pandemic. Yet one task of pathogenomic surveillance is to link genetic pathogen information with clinical manifestation and the immunological status of patients. WBE is limited in that regard since the available data are anonymized to start with. Nonetheless, WBE provides invaluable population-level guidance on epidemiological developments, which complements case-based surveillance and provides information for optimal resource allocation. This notion can also be transferred to a global perspective. WBE provides a tool to shed light on blind spots of pathogen surveillance in places and communities with poor healthcare accessibility. If carefully set up and used in respectful and coequal terms, WBE of infectious diseases could make an important contribution to global safety.To this end, several challenges must be overcome. Current WBE methods need to be expanded to other pathogens beyond SARS-CoV-2 and validated with case-based epidemiological data. Furthermore, current methods must be adapted and optimized to be applicable in locations without a centralized sewer infrastructure5. Finally, international sharing of wastewater-based pathogen sequencing data will be needed to unleash the full potential of WBE for global pathogen surveillance.We are confident that our study will support initiatives already working in these directions, as well as encouraging intensified efforts to exploit such population-level surveillance approaches in the global fight against infectious diseases.
    Fabian Amman
    1
    & Andreas Bergthaler
    2

    1
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

    2
    Medical University Vienna, Vienna, Austria More

  • in

    Mapping peat thickness and carbon stocks of the central Congo Basin using field data

    Field-data collectionFieldwork was conducted in DRC between January 2018 and March 2020. Ten transects (4–11 km long) were installed, identical to the approach in ref. 9, in locations that were highly likely to be peatland. These were selected to help test hypotheses about the role of vegetation, surface wetness, nutrient status and topography in peat accumulation (Fig. 1a and Supplementary Table 1). A further eight transects (0.5–3 km long) were installed to assess our peat mapping capabilities (Fig. 1a and Supplementary Table 1).Every 250 m along each transect, land cover was classified as one of six classes: water, savannah, terra firme forest, non-peat-forming seasonally inundated forest, hardwood-dominated peat swamp forest or palm-dominated peat swamp forest. Peat swamp forest was classified as palm dominated when >50% of the canopy, estimated by eye, was palms (commonly Raphia laurentii or Raphia sese). In addition, several ground-truth points were collected at locations in the vicinity of each transect from the clearly identifiable land-cover classes water, savannah and terra firme forest.Peat presence/absence was recorded every 250 m along all transects, and peat thickness (if present) was measured by inserting metal poles into the ground until the poles were prevented from going any further by the underlying mineral layer, identical to the pole method of ref. 9. In addition, a core of the full peat profile was extracted every kilometre along the ten hypothesis-testing transects, if peat was present, with a Russian-type corer (52 mm stainless steel Eijkelkamp model); these 63 cores were sealed in plastic for laboratory analysis.Peat-thickness laboratory measurementsPeat was defined as having an organic matter (OM) content of ≥65% and a thickness of ≥0.3 m (sensu ref. 9). Therefore, down-core OM content of all 63 cores was analysed to measure peat thickness. The organic matter content of each 0.1-m-thick peat sample was estimated via loss on ignition (LOI), whereby samples were heated at 550 °C for 4 h. The mass fraction lost after heating was used as an estimate of total OM content (% of mass). Peat thickness was defined as the deepest 0.1 m with OM ≥ 65%, after which there is a transition to mineral soil. Samples below this depth were excluded from further analysis. Rare mineral intrusions into the peat layer above this depth, where OM 4× the mean Cook’s distance were excluded as influential outliers. Mean pole-method offset was significantly higher along the DRC transects (0.94 m) than along those in ROC (0.48 m; P  More

  • in

    Quantifying research waste in ecology

    Ioannidis, J. P. A., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hampton, S. E. et al. The Tao of open science for ecology. Ecosphere 6, art120 (2015).Article 

    Google Scholar 
    Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2005).Sutton, A. J. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) 435–452 (Russell Sage Foundation, 2009).Nakagawa, S., Koricheva, J., Macleod, M. & Viechtbauer, W. Introducing our series: research synthesis and meta-research in biology. BMC Biol. 18, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakagawa, S. et al. A new ecosystem for evidence synthesis. Nat. Ecol. Evol. 4, 498–501 (2020).PubMed 
    Article 

    Google Scholar 
    Coolidge, H. J. & Lord, R. H. in Archibald Cary Coolidge: Life and Letters 308 (Houghton Mifflin Harcourt, 1932).Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).Article 

    Google Scholar 
    Touchon, J. C. & McCoy, M. W. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere 7, e01394 (2016).Article 

    Google Scholar 
    Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aarts, A. A. et al. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).Article 
    CAS 

    Google Scholar 
    Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).PubMed 
    Article 

    Google Scholar 
    Fraser, H., Parker, T., Nakagawa, S., Barnett, A. & Fidler, F. Questionable research practices in ecology and evolution. PLoS ONE 13, e0200303 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. Camb. Philos. Soc. 77, 211–222 (2002).PubMed 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Cassey, P., Ewen, J. G., Blackburn, T. M. & Møller, A. P. A survey of publication bias within evolutionary ecology. Proc. Biol. Sci. 271, S451–S454 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kardish, M. R. et al. Blind trust in unblinded observation in ecology, evolution, and behavior. Front. Ecol. Evol. 3, 51 (2015).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proc. Biol. Sci. 269, 43–48 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalmers, I. & Glasziou, P. Avoidable waste in the production and reporting of research evidence. Lancet 374, 86–89 (2009).PubMed 
    Article 

    Google Scholar 
    Altman, D. G. The scandal of poor medical research. BMJ 308, 283–284 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glasziou, P. & Chalmers, I. Is 85% of health research really ‘wasted’? BMJ Opinion (14 January 2016).Glasziou, P. & Chalmers, I. Research waste is still a scandal. BMJ 363, k4645 (2018).Article 

    Google Scholar 
    Chalmers, I. et al. How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165 (2014).PubMed 
    Article 

    Google Scholar 
    Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, H. A. et al. Finding our way: on the sharing and reuse of animal telemetry data in Australasia. Sci. Total Environ. 534, 79–84 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koricheva, J. Non-significant results in ecology: a burden or a blessing in disguise? Oikos 102, 397–401 (2003).Article 

    Google Scholar 
    Bennett, L. T. & Adams, M. A. Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41, 585–598 (2004).Article 

    Google Scholar 
    Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2012).
    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behaviour. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Culina, A., Purgar, M. & Klanjscek, T. Datasets and codes for Purgar et al. 2022: quantifying research waste in ecology. Zenodo https://zenodo.org/record/6566100#.YrLWB-zMIqs (2022).Ferguson, C. et al. Europe PMC in 2020. Nucleic Acids Res. 49, D1507–D1514 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, C.-K. et al. Meta-Research: Evaluating the impact of open access policies on research institutions. eLife 9, e57067 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Hellauer, T. Open science, done wrong, will compound inequities. Nature 603, 363 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, A. C. et al. Assessing the effect of article processing charges on the geographic diversity of authors using Elsevier’s ‘Mirror journal’ system. Quant. Sci. Stud. 2, 1123–1143 (2021).Article 

    Google Scholar 
    Christie, A. P. et al. Reducing publication delay to improve the efficiency and impact of conservation science. PeerJ 9, e12245 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desjardins-Proulx, P. et al. The case for open preprints in biology. PLoS Biol. 11, e1001563 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Dea, R. E. et al. Towards open, reliable, and transparent ecology and evolutionary biology. BMC Biol. 19, 68 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A. et al. Navigating the unfolding open data landscape in ecology and evolution. Nat. Ecol. Evol. 2, 420–426 (2018).PubMed 
    Article 

    Google Scholar 
    Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P. & Visser, M. E. How to do meta-analysis of open datasets. Nat. Ecol. Evol. 2, 1053–1056 (2018).PubMed 
    Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Grainger, M. J., Bolam, F. C., Stewart, G. B. & Nilsen, E. B. Evidence synthesis for tackling research waste. Nat. Ecol. Evol. 4, 495–497 (2020).PubMed 
    Article 

    Google Scholar 
    Nørgaard, B. et al. Systematic reviews are rarely used to inform study design—a systematic review and meta-analysis. J. Clin. Epidemiol. 145, 1–13 (2022).PubMed 
    Article 

    Google Scholar 
    Webb, J. A. et al. Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis. Freshw. Sci. 36, 250–256 (2017).Article 

    Google Scholar 
    Collins, A., Coughlin, D., Miller, J. & Kirk, S. The Production of Quick Scoping Reviews and Rapid Evidence Assessments: A How to Guide (Joint Water Evidence Group, 2015).Carrick, J. et al. Is planting trees the solution to reducing flood risks? J. Flood Risk Manag. 12, e12484 (2019).Article 

    Google Scholar 
    Nuñez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol. 5, 264 (2021).PubMed 
    Article 

    Google Scholar 
    Morrison, A. et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28, 138–144 (2012).PubMed 
    Article 

    Google Scholar 
    Wu, T., Li, Y., Bian, Z., Liu, G. & Moher, D. Randomized trials published in some Chinese journals: how many are randomized? Trials 10, 46 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorobeichik, E. L. & Kozlov, M. V. Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors. Russ. J. Ecol. 43, 89–96 (2012).Article 

    Google Scholar 
    Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).PubMed 
    Article 

    Google Scholar 
    Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).MacCoun, R. & Perlmutter, S. Blind analysis: hide results to seek the truth. Nature 526, 187–189 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).PubMed 
    Article 

    Google Scholar 
    Announcement: reducing our irreproducibility. Nature 496, 398 (2013).Moher, D. et al. Increasing value and reducing waste in biomedical research: who’s listening? Lancet 387, 1573–1586 (2016).PubMed 
    Article 

    Google Scholar 
    Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vrieze, J. Landmark research integrity survey finds questionable practices are surprisingly common. ScienceInsider https://www.sciencemag.org/news/2021/07/landmark-research-integrity-survey-finds-questionable-practices-are-surprisingly-common (2021).Woolston, C. Impact factor abandoned by Dutch university in hiring and promotion decisions. Nature 595, 462 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Directorate-General for Research and Innovation (European Commission). Towards a Reform of the Research Assessment System. Scoping Report (Publications Office, 2021).Athena Research & Innovation Center, Directorate-General for Research and Innovation (European Commission), PPMI, UNU-MERIT. Monitoring the Open Access Policy of Horizon 2020. Final report (European Commission, 2021).Kwon, D. University of California and Elsevier forge open-access deal. TheScientist https://www.the-scientist.com/news-opinion/university-of-california-and-elsevier-forge-open-access-deal–68557 (2021).Vines, T. H. et al. Mandated data archiving greatly improves access to research data. FASEB J. 27, 1304–1308 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    NPQIP Collaborative Group. Did a change in Nature journals’ editorial policy for life sciences research improve reporting? BMJ Open Sci. 3, e000035 (2019).Article 

    Google Scholar 
    Glasziou, P. et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276 (2014).PubMed 
    Article 

    Google Scholar 
    Fecher, B. & Friesike, S. in Opening Science: the Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (eds Bartling, S. & Friesike, S.) 17–47 (Springer International Publishing, 2014).Hardwicke, T. E. et al. Calibrating the scientific ecosystem through meta-research. Annu. Rev. Stat. Appl. 7, 11–37 (2020).Article 

    Google Scholar 
    McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fidler, F. et al. Metaresearch for evaluating reproducibility in ecology and evolution. Bioscience 67, 282–289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).Article 

    Google Scholar 
    Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. & Thomason, N. Impact of criticism of null-hypothesis significance testing on statistical reporting practices in conservation biology. Conserv. Biol. 20, 1539–1544 (2006).PubMed 
    Article 

    Google Scholar 
    Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).PubMed 
    Article 

    Google Scholar 
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425 (2015).Article 

    Google Scholar 
    Haddaway, N. R., Styles, D. & Pullin, A. S. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environ. Evid. 3, 17 (2014).Article 

    Google Scholar 
    Heffner, R. A., Butler, M. J. & Reilly, C. K. Pseudoreplication revisited. Ecology 77, 2558–2562 (1996).Article 

    Google Scholar 
    Holman, L., Head, M. L., Lanfear, R. & Jennions, M. D. Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hurlbert, S. H. & White, M. D. Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses. Bull. Mar. Sci. 53, 128–153 (1993).
    Google Scholar 
    Johnson, W. T.3rd & Freeberg, T. M. Pseudoreplication in use of predator stimuli in experiments on antipredator responses. Anim. Behav. 119, 161–164 (2016).Article 

    Google Scholar 
    Kozlov, M. V. Pseudoreplication in ecological research: the problem overlooked by Russian scientists. Zh. Obshch. Biol. 64, 292–307 (2003).CAS 
    PubMed 

    Google Scholar 
    Kozlov, M. V. Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1–9 (2017).Article 

    Google Scholar 
    McDonald, S., Cresswell, T., Hassell, K. & Keough, M. Experimental design and statistical analysis in aquatic live animal radiotracing studies: a systematic review. Crit. Rev. Environ. Sci. Technol. 52, 2772–2801 (2021).Article 

    Google Scholar 
    Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    Mrosovsky, N. & Godfrey, M. H. The path from grey literature to Red Lists. Endang. Species Res. 6, 185–191 (2008).
    Google Scholar 
    O’Brien, C., van Riper, C.3rd & Myers, D. E. Making reliable decisions in the study of wildlife diseases: using hypothesis tests, statistical power, and observed effects. J. Wildl. Dis. 45, 700–712 (2009).PubMed 
    Article 

    Google Scholar 
    Parker, T. H. What do we really know about the signalling role of plumage colour in blue tits? A case study of impediments to progress in evolutionary biology. Biol. Rev. Camb. Philos. Soc. 88, 511–536 (2013).PubMed 
    Article 

    Google Scholar 
    Ramage, B. S. et al. Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. Conserv. Biol. 27, 364–372 (2013).PubMed 
    Article 

    Google Scholar 
    Sallabanks, R., Arnett, E. B. & Marzluff, J. M. An evaluation of research on the effects of timber harvest on bird populations. Wildl. Soc. Bull. 28, 1144–1155 (2000).
    Google Scholar 
    Sánchez-Tójar, A. et al. Meta-analysis challenges a textbook example of status signalling and demonstrates publication bias. eLife 7, e37385 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waller, B., Warmelink, L., Liebal, K., Micheletta, J. & Slocombe, K. Pseudoreplication: a widespread problem in primate communication research. Anim. Behav. 86, 483–488 (2013).Article 

    Google Scholar 
    Van Wilgenburg, E. & Elgar, M. A. Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals. PLoS ONE 8, e53548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoccoz, N. G. Use, overuse, and misuse of significance tests in evolutionary biology and ecology. Bull. Ecol. Soc. Am. 72, 106–111 (1991).
    Google Scholar 
    Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T. & Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 98, 261–271 (2016).Article 

    Google Scholar 
    Zvereva, E. L. & Kozlov, M. V. Biases in studies of spatial patterns in insect herbivory. Ecol. Monogr. 89, e01361 (2019).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar  More

  • in

    Harnessing the microbiome to prevent global biodiversity loss

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 461, 472–475 (2009).Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sweet, M., Burian, A. & Bulling, M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. J. Invertebr. Pathol. 186, 107538 (2021).PubMed 
    Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).PubMed 
    Article 

    Google Scholar 
    Doering, T. et al. Towards enhancing coral heat tolerance: a ‘microbiome transplantation’ treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 
    CAS 

    Google Scholar 
    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoyt, J. R. et al. Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci. Rep. 9, 9158 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, D., Guzman-Novoa, E. & Goodwin, P. H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9, 481 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trinder, M. et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 82, 6204–6213 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge. (International Coral Reef Society, Future Earth Coasts, 2021).Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).PubMed 
    Article 

    Google Scholar 
    Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).PubMed 
    Article 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes and their roles in marine ecosystem functions. PLoS Biol. 17, e3000533 (2019).Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. Lond. B 375, 20190604 (2020).Article 

    Google Scholar 
    Keller-Costa, T. et al. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9, 72 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article 

    Google Scholar 
    Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, fiab031 (2021).Erlacher, A., Cardinale, M., Grosch, R., Grube, M. & Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5, 175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shahi, F., Redeker, K. & Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob. Resist. 1, dlz015 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).PubMed 
    Article 

    Google Scholar 
    McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).Article 

    Google Scholar 
    Woodhams, D. C. et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75, 1049–1062 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).Article 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonnenschein, E. C., Jimenez, G., Castex, M. & Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 87, e0258120 (2021).PubMed 
    Article 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabana, M. D. et al. Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics 140, e20163000 (2017).Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS ONE 7, e43996 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86, e00499-20 (2020).Metchnikoff, E. The Prolongation of Life: Optimistic Studies (Heinemann, 1907).Khanna, S., Jones, C., Jones, L., Bushman, F. & Bailey, A. Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation FMT for recurrent Clostridium difficile infection. Open Forum Infect. Dis 5, 304–309(2015).Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms 8, 200 (2020).Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).Zachow, C., Müller, H., Tilcher, R., Donat, C. & Berg, G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3, 794–815 (2013).Article 
    CAS 

    Google Scholar 
    Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12, 650610 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehlers, R.-U. in Regulation of Biological Control Agents (ed. Ehlers, R.-U.) 3–23 (Springer Netherlands, 2011).CDC. V-Safe After Vaccination Health Checker https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html (2022).Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vestal, R. Fecal microbiota transplant. Hosp. Med. Clin. 5, 58–70 (2016).Article 

    Google Scholar 
    Jansen, J. W. Fecal microbiota transplant vs oral vancomycin taper: important undiscussed limitations. Clin. Infect. Dis. 64, 1292–1293 (2017).PubMed 
    Article 

    Google Scholar 
    Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).PubMed 
    Article 

    Google Scholar 
    Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and human disease control. Mol. Biochem. Parasitol. 195, 88–95 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahantarig, A. & Kittayapong, P. Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J. Appl. Entomol. 135, 479–486 (2011).Article 

    Google Scholar 
    Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).Article 

    Google Scholar 
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).Article 

    Google Scholar 
    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. Ecol. Manage. 259, 685–697 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    Sieiro, C. et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics 9, 493 (2020).Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 23, 650–665 (2006).Obotey Ezugbe, E. & Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020).Lee, C. S., Robinson, J. & Chong, M. F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014).Guo, W.-Q., Yang, S.-S., Xiang, W.-S., Wang, X.-J. & Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes–a comprehensive review. Biotechnol. Adv. 31, 1386–1396 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front. Mar. Sci. 8, 670829 (2021).Hunt, P. R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37, 50–59 (2017).Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total Environ. 763, 143038 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Microbiota Vault. A Vault for Humanity https://www.microbiotavault.org/ (2021).Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (FAO, WHO, 2001).Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).PubMed 
    Article 

    Google Scholar 
    Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).PubMed 
    Article 

    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).PubMed 
    Article 

    Google Scholar 
    Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 39–46 (2018).PubMed 
    Article 

    Google Scholar 
    Tobias, J. et al. Bifidobacterium longum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2021.12.070 (2022).Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).Article 

    Google Scholar 
    Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 
    Article 

    Google Scholar 
    Evensen, Ø. & Leong, J.-A. C. DNA vaccines against viral diseases of farmed fish. Fish. Shellfish Immunol. 35, 1751–1758 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burridge, L., Weis, J. S., Cabello, F., Pizarro, J. & Bostick, K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23 (2010).CAS 
    Article 

    Google Scholar 
    Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J. & Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14 (2008).Article 

    Google Scholar 
    Irianto, A. & Austin, B. Probiotics in aquaculture. J. Fish. Dis. 25, 633–642 (2002).Article 

    Google Scholar 
    Assefa, A. & Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 5432497 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hoseinifar, S. H., Sun, Y.-Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Castex, M., Leclercq, E., Lemaire, P. & Chim, L. Dietary probiotic Pediococcus acidilactici MA18/5M improves the growth, feed performance and antioxidant status of penaeid shrimp Litopenaeus stylirostris: a growth-ration-size approach. Animals 11, 3451 (2021).Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. Mbio 10, e01395-19 (2019).Daisley, B. A. et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 84, e02820-17 (2018).Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387–390 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgans, C. A., Hung, J. Y. & Bourne, D. G. Symbiodiniaceae probiotics for use in bleaching recovery. Restoration 28, 282–288 (2020).Zhang, Y. et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol. 21, 130 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, G. et al. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci. Rep. 6, 35971 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N., Lauer, A., Simon, M. A., Banning, J. L. & Alford, R. A. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83, 11–16 (2009).PubMed 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).CAS 
    Article 

    Google Scholar 
    Küng, D. et al. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS ONE 9, e87101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gabriel, K. T., Joseph Sexton, D. & Cornelison, C. T. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J. Appl. Microbiol. 124, 1024–1031 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).CAS 
    PubMed 
    Article 

    Google Scholar  More