More stories

  • in

    Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils

    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2(10), 720–735. https://doi.org/10.1038/s43017-021-00207-2 (2021).ADS 
    Article 

    Google Scholar 
    O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270. https://doi.org/10.1093/aob/mcs209 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eze, S., Palmer, S. M. & Chapman, P. J. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manage. 223, 74–84. https://doi.org/10.1016/j.jenvman.2018.06.013 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Makoudi, B. et al. Phosphorus deficiency increases nodule phytase activity of faba bean rhizobia symbiosis. Acta Physiol. Plant 40, 63. https://doi.org/10.1007/s11738-018-2619-6 (2018).CAS 
    Article 

    Google Scholar 
    Stecca, J. D. L. et al. Inoculation of soybean seeds coated with osmoprotector in differentssoil pH’s. Acta Sci. Agron. 41, 9. https://doi.org/10.4025/actasciagron.v41i1.39482 (2019).Article 

    Google Scholar 
    Afonso, S., Arrobas, M. & Rodrigues, M. Â. Soil and plant analyses to diagnose hop fields irregular growth. J. Soil Sci. Plant Nutr. 20, 1999–2013. https://doi.org/10.1007/s42729-020-00270-6 (2020).CAS 
    Article 

    Google Scholar 
    Crews, T. E. & Peoples, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ 102(3), 279–297. https://doi.org/10.1016/j.agee.2003.09.018 (2004).Article 

    Google Scholar 
    Ossler, J. N., Zielinski, C. A. & Heath, K. D. Tripartite mutualism: Facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. Am. J. Bot. 102, 1332–1341. https://doi.org/10.3732/ajb.1500007 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1473. https://doi.org/10.3389/fpls.2018.01473 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keet, J. H., Ellis, A. G., Hui, C. & Le Roux, J. J. Strong spatial and temporal turnover of soil bacterial communities in South Africa’s hyper diverse fynbos biome. Soil Biol. Biochem. 136, 107541. https://doi.org/10.1016/j.soilbio.2019.107541 (2019).CAS 
    Article 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kracmarova, M. et al. Response of soil microbes and soil enzymatic activity to 20 years of fertilization. Agronomy 10, 1542. https://doi.org/10.3390/agronomy10101542 (2020).CAS 
    Article 

    Google Scholar 
    Wang, C., Liu, D. H. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003 (2018).CAS 
    Article 

    Google Scholar 
    Lucas, R. W. et al. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manage. 262, 95–104. https://doi.org/10.1016/j.foreco.2011.03.018 (2011).Article 

    Google Scholar 
    Wang, Y. et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biol. Biochem. 115, 547–555. https://doi.org/10.1016/j.soilbio.2017.09.024 (2017).CAS 
    Article 

    Google Scholar 
    Wan, S. et al. Effects of lime application and understory removal on soil microbial communities in subtropical eucalyptus L’Hér. plantations. Forests 10, 338 (2019).Article 

    Google Scholar 
    Yin, C., Schlatter, D. C., Kroese, D. R., Paulitz, T. C. & Hagerty, C. H. Impacts of lime application on soil bacterial microbiome in dryland wheat soil in the Pacific Northwest. Appl. Soil Ecol. 168, 104113 (2021).Article 

    Google Scholar 
    Schroeder, K. L., Schlatter, D. C. & Paulitz, T. C. Location-dependent impacts of liming and crop rotation on bacterial communities in acid soils of the Pacific Northwest. Appl. Soil. Ecol. 130, 59–68 (2018).Article 

    Google Scholar 
    Sudhakaran, M. & Ravanachandar, A. Role of soil enzymes in agroecosystem. Biotica Res. Today 2(6), 443–444 (2020).
    Google Scholar 
    Lacava, P. T., Machado, P. C. & de Andrade, P. H. M. Phosphate solubilization by endophytes from the tropical plants. Endophytes 3, 207–226 (2021).
    Google Scholar 
    Nannipieri, P., Giagnoni, L., Landi, L. & Renella, G. Role of Phosphatase Enzymes in Soil. Phosphorus in Action 215–243 (Springer, 2011).Book 

    Google Scholar 
    Zhang, L. et al. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Sci. Rep. 10(1), 11318. https://doi.org/10.1038/s41598-020-68163-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Acosta-Martínez, V., Pérez-Guzmán, L. & Johnson, J. M. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 142, 72–80. https://doi.org/10.12691/aees-8-6-26 (2019).CAS 
    Article 

    Google Scholar 
    Parham, J. A. & Deng, S. P. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 32(8–9), 1183–1190. https://doi.org/10.1016/S0038-0717(00)00034-1 (2000).CAS 
    Article 

    Google Scholar 
    Olajuyigbe, F. M. & Fatokun, C. O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int. J. Biol. Macromol. 94, 535–543. https://doi.org/10.1016/j.ijbiomac.2016.10.037 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhuyan, M. B. et al. Explicating physiological and biochemical responses of wheat cultivars under acidity stress: insight into the antioxidant defense and glyoxalase systems. Physiol. Mol. Biol. Plants 25, 865–879. https://doi.org/10.1007/s12298-019-00678-0 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M., Grinyer, J., Reich, P. B. & Singh, B. K. Relative importance of soil properties and microbial community for soil functionality: Insights from a microbial swap experiment. Funct. Ecol. 30, 1862–1873 (2016).Article 

    Google Scholar 
    Zhao, L. et al. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environ. Pollut. 215, 1–9. https://doi.org/10.1016/j.envpol.2016.05.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, D., Kirkman, K., Hagenah, N. & Tsvuura, Z. Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biol. Biochem. 115, 415–422. https://doi.org/10.1016/j.soilbio.2017.08.035 (2017).CAS 
    Article 

    Google Scholar 
    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1 (2020).Article 
    PubMed 

    Google Scholar 
    Fynn, R. W. & O’Connor, T. G. Determinants of community organization of a South African mesic grassland. J. Veg. Sci. 16(1), 93–102 (2005).Article 

    Google Scholar 
    Morris, C. & Fynn, R. The Ukulinga long-term grassland trials: Reaping the fruits of meticulous, patient research. Bull. Grassl. Soc. S. Afr. 11(1), 7–22 (2001).
    Google Scholar 
    Le Roux, N. P. & Mentis, M. Veld compositional response to fertilization in the tall grassveld of Natal. S. Afr. J. Plant Soil 3(1), 1–10. https://doi.org/10.1080/02571862.1986.10634177 (1986).Article 

    Google Scholar 
    Tsvuura, Z. & Kirkman, K. P. Yield and species composition of a mesic grassland savannah in South Africa are influenced by long-term nutrient addition. Austral Ecol. 38, 959–970 (2013).Article 

    Google Scholar 
    Goldman, E. & Green, L. H. Practical Handbook of Microbiology 2nd edn, 864 (CRC Press Taylor and Francis Group, 2008).Book 

    Google Scholar 
    Akinbowale, O. L., Peng, H. & Barton, M. D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J. Appl. Microbiol. 103(5), 2016–2025 (2007).CAS 
    Article 

    Google Scholar 
    Jackson, C. R., Tyler, H. L. & Millar, J. J. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. Preparation of substrate and buffer solutions for colorimetric analyses of enzyme. J. Vis. Exp. 80, 1–9. https://doi.org/10.3791/50399 (2013).CAS 
    Article 

    Google Scholar 
    Goyal, M. & Kaur, R. Interactive effect of nitrogen nutrition, nitrate reduction and seasonal variation on oxalate synthesis in leaves of Napier-bajar hybrid (Pennisetum purpureum P. glaucum). Crop Pasture Sci 70, 669–675 (2019).CAS 
    Article 

    Google Scholar 
    Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A. & Nikolic, M. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 12, 1224. https://doi.org/10.3389/fpls.2021.697592 (2021).Article 

    Google Scholar 
    Li, Y., Tremblay, J., Bainard, L. D., Cade-Menun, B. & Hamel, C. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ. Microbiol. 22, 1066–1088 (2020).CAS 
    Article 

    Google Scholar 
    Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).CAS 
    Article 

    Google Scholar 
    Shang, L., Wan, L. I., Zhou, X., Li, S. & Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE https://doi.org/10.1371/journal.pone.0240559 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gautam, A. et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environ. Sustain. Indic. 8, 10007S. https://doi.org/10.1016/j.indic.2020.100073 (2020).Article 

    Google Scholar 
    Wang, J., Lu, X., Zhang, J., Wei, G. & Xiong, Y. Regulating soil bacterial diversity, community structure and enzyme activity using residues from golden apple snails. Sci. Rep. 10(1), 1–11 (2020).CAS 
    Article 

    Google Scholar 
    Xu, D., Carswell, A., Zhu, Q., Zhang, F. & de Vries, W. Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Sci. Total Environ. 713, 136249 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    von Tucher, S., Hörndl, D. & Schmidhalter, U. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio 47, 41–49 (2018).Article 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 112, 10967–10972 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, J. et al. Dynamics of soil nutrients, microbial community structure, enzymatic activity, and their relationships along a chronosequence of Pinus massoniana plantations. Forests 12, 376 (2021).Article 

    Google Scholar 
    Andrés, J. A., Rovera, M., Guiñazú, L. B., Pastor, N. A. & Rosas, S. B. Role of in crop improvement. In Bacteria in Agrobiology: Plant Growth Responses 107–122 (Springer, 2011).Chapter 

    Google Scholar 
    Jeong, H., Choi, S. K., Ryu, C. M. & Park, S. H. Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front. Microbiol. 10, 467 (2019).Article 

    Google Scholar 
    Garbeva, P. V., van Veen, J. A. & van Elsas, J. D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinsabaugh, R. L. & Moorhead, D. L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26(10), 1305–1311. https://doi.org/10.1016/0038-0717(94)90211-9 (1994).Article 

    Google Scholar 
    Xiao, W., Chen, X., Jing, X. & Zhu, B. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 123, 21–32. https://doi.org/10.1016/j.soilbio.2018.05.001 (2018).CAS 
    Article 

    Google Scholar 
    Billah, M. et al. Phosphorus & phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043 (2019).CAS 
    Article 

    Google Scholar 
    Turner, B. L., McKelvie, I. D. & Haygarth, P. M. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem. 34, 27–35. https://doi.org/10.1016/S0038-0717(01)00144-4 (2002).CAS 
    Article 

    Google Scholar 
    van Aarle, I. M. & Plassard, C. Spatial distribution of phosphatase activity associated with ectomycorrhizal plants related to soil type. Soil Biol. Biochem. 42(2), 324–330. https://doi.org/10.1016/j.soilbio.2009.11.011 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Comparing dormancy in two distantly related tunicates reveals morphological, molecular, and ecological convergences and repeated co-option

    Hand, S.C. Metabolic dormancy in aquatic invertebrates. In Advances in Comparative and Environmental Physiology, Vol. 8 (ed. Gilles, R.) 1–50. https://doi.org/10.1007/978-3-642-75900-0_1 (1991).Cáceres, C. E. Dormancy in Invertebrates. Invertebr. Biol. 116(4), 371–383. https://doi.org/10.2307/3226870 (1997).Article 

    Google Scholar 
    Wilsterman, K., Ballinger, M. A. & Williams, C. M. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11–31. https://doi.org/10.1111/1365-2435.13718 (2021).Article 

    Google Scholar 
    Bertolani, R., Guidetti, R., Altiero, T., Nelson, D. R. & Rebecchi, L. Dormancy in Freshwater Tardigrades. In Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae Vol. 92 (eds Alekseev, V. & Pinel-Alloul, B.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-21213-1_3.Chapter 

    Google Scholar 
    Guidetti, R., Altiero, T. & Rebecchi, L. On dormancy strategies in tardigrades. J. Insect Physiol. 57(5), 567–576. https://doi.org/10.1016/j.jinsphys.2011.03.003 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42(3), 246–256. https://doi.org/10.1111/phen.12193 (2017).CAS 
    Article 

    Google Scholar 
    Wang, Y., Ezemaduka, A. N., Tang, Y. & Chang, Z. Understanding the mechanism of the dormant dauer formation of C. elegans: From genetics to biochemistry. IUBMB Life 61(6), 607–12. https://doi.org/10.1002/iub.211 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dias, I. B., Bouma, H. R. & Henning, R. H. Unraveling the big sleep: Molecular aspects of stem cell dormancy and hibernation. Front. Physiol. 12, 624950. https://doi.org/10.3389/fphys.2021.624950 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic regulation and gene expression during aestivation. Prog. Mol. Subcell. Biol. 49, 25–45. https://doi.org/10.1007/978-3-642-02421-4_2 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(11), R1193–R1211. https://doi.org/10.1152/ajpregu.00250.2015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ikeda, H., Ohtsu, K. & Uye, S. I. Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). Biol. Bull. 221(3), 248–260 (2011).PubMed 
    Article 

    Google Scholar 
    Bushnell, J. H. & Rao, K. S. Dormant or quiescent stages and structures among the Ectoprocta: Physical and chemical factors affecting viability and germination of statoblasts. Trans. Am. Microsc. Soc. 93, 524–543. https://doi.org/10.2307/3225156 (1974).Article 

    Google Scholar 
    Hyman, L. H. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta Vol. III (McGraw-Hill, 1951).
    Google Scholar 
    Mukai, H. & Toshiki, M. Studies on the regeneration of an entoproct, Barentsia discreta. J. Exp. Zool. 205(2), 261–276. https://doi.org/10.1002/jez.1402050210 (1978).Article 

    Google Scholar 
    Nakauchi, M. Asexual development of ascidians: Its biological significance, diversity, and morphogenesis. Am. Zool. 22(4), 753–763. https://doi.org/10.1093/icb/22.4.753 (1982).Article 

    Google Scholar 
    Hyams, Y., Paz, G., Rabinowitz, C. & Rinkevich, B. Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev. Biol. 428(1), 101–117. https://doi.org/10.1016/j.ydbio.2017.05.020 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown, C. J. D. A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Microsc. Soc. 52, 271–313 (1933).CAS 
    Article 

    Google Scholar 
    Mukai, H. Development of freshwater bryozoans (Phylactolaemata). In Developmental Biology of Freshwater Invertebrates (eds Harrison, R. W. & Cowden, R. R.) 535–576 (Alan R. Liss Inc., 1982).
    Google Scholar 
    Wood, T. S. Phyla ectoprocta and entoprocta (Bryozoans). In Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 327–345 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00016-4.Chapter 

    Google Scholar 
    Simpson, T. L. The Cell Biology of Sponges (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5214-6.Book 

    Google Scholar 
    Alié, A., Hiebert, L. S., Scelzo, M. & Tiozzo, S. The eventful history of nonembryonic development in tunicates. J. Exp. Zool. Part B Mol. Dev. Evol. 33(3), 181–217. https://doi.org/10.1002/jez.b.22940 (2020).Article 

    Google Scholar 
    Brown, F. D. & Swalla, B. J. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev. Biol. 3692, 151–162 (2012).Article 
    CAS 

    Google Scholar 
    Kawamura, K. & Fujiwara, S. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates. Semin. Cell Biol. 6, 117–126 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kassmer, S. H., Langenbacher, A. D. & De Tomaso, A. W. Integrin-alpha-6+ candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat. Commun. 11(1), 4435–4511. https://doi.org/10.1038/s41467-020-18288-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman, G. The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J. Exp. Zool. 156, 157–183 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kürn, U., Rendulic, S., Tiozzo, S. & Lauzon, R. J. Asexual propagation and regeneration in colonial ascidians. Biol. Bull. 221(1), 43–61. https://doi.org/10.1086/BBLv221n1p43 (2011).Article 
    PubMed 

    Google Scholar 
    Sköld, H. N., Obst, M., Sköld, M. & Åkesson, B. Stem cells in asexual reproduction of marine invertebrates. In Stem Cells in Marine Organisms (eds Rinkevich, B. & Matranga, V.) 105–137 (Springer, Dordrecht, 2009).Chapter 

    Google Scholar 
    Tiozzo, S., Brown, F. D. & De Tomaso, A. W. Regeneration and stem cells in ascidians. In Stem Cells (ed. Bosch, T. C. G.) (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8274-0_6.Chapter 

    Google Scholar 
    Mukai, H., Koyama, H. & Watanabe, H. Studies on the reproduction of three species of Perophora (Ascidiacea). Biol. Bull. 164(2), 251–266 (1983).Article 

    Google Scholar 
    Huxley, J. Memoirs: studies in dedifferentiation: II. Dedifferentiation and resorption in Perophora. Q. J. Microsc. Sci. s2-65(260), 643–697 (1921).
    Google Scholar 
    Huxley, J. Studies in dedifferentiation. VI. Reduction phenomena in Clavelina lepadiformis. Pubb. Staz. Zool. Napoli. 7, 1–34 (1926).
    Google Scholar 
    Turon, X. Periods of nonfeeding in Polysyncraton-lacazei (Ascidiacea, Didemnidae)—A process. Mar. Biol. 112, 647–655 (1992).Article 

    Google Scholar 
    Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Giard, M. A. & Caullery, M. On the hibernation of Clavelina lepadiformis, Müller. Ann. Mag. Nat. Hist. 18(108), 485–486. https://doi.org/10.1080/00222939608680499 (1896).Article 

    Google Scholar 
    Orton, J. H. The production of living Clavellina Zooids in winter by experiment. Nature 107, 75. https://doi.org/10.1038/107075a0 (1921).ADS 
    Article 

    Google Scholar 
    Della, Valle P. Studii sui rapporti fra differenziazione e rigenerazione. 4. Bollettino Della Società Dei Naturalisti in Napoli 7, 1–37 (1915).
    Google Scholar 
    Scelzo, M. et al. Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. EvoDevo https://doi.org/10.1186/s13227-019-0121-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berrill, N. J. Regeneration and budding in tunicates. Biol. Rev. 26, 456–475. https://doi.org/10.1111/j.1469-185X.1951.tb01207.x/full (1951).Article 

    Google Scholar 
    Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197. https://doi.org/10.1029/1999JC000065 (2001).ADS 
    Article 

    Google Scholar 
    Berrill, N. J. & Cohen, A. Regeneration in Clavelina lepadiformis. J. Exp. Biol. 13(3), 352–362. https://doi.org/10.1242/jeb.13.3.352 (1936).Article 

    Google Scholar 
    Jiménez-Merino, J. et al. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo https://doi.org/10.1186/s13227-019-0144-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics UK 7, 1051–1073 (2015).CAS 
    Article 

    Google Scholar 
    Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. In DNA Methylation: Development, Genetic Disease and Cancer: Current Topics in Microbiology and Immunology Vol. 310 (eds Doerfler, W. & Böhm, P.) (Springer, 2006). https://doi.org/10.1007/3-540-31181-5_7.Chapter 

    Google Scholar 
    Orton, J. H. Preliminary account of a contribution to an evaluation of the sea. J. Mar. Biol. Assoc. UK 10(2), 312–326. https://doi.org/10.1017/S0025315400007815 (1914).Article 

    Google Scholar 
    Mukai, H. Histological and histochemical studies of two compound ascidians, Clavelina lepadiformis and Diazona violacea, with special reference to the trophocytes, ovary and pyloric gland. Sci. Rep. Fac. Educ. Gunma Univ. 26, 37–77 (1977).
    Google Scholar 
    de Caralt, S., López-Legentil, S., Tarjuelo, I., Uriz, M. J. & Turon, X. Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Mar. Ecol. Prog. Ser. 244, 125–137 (2002).ADS 
    Article 

    Google Scholar 
    Turon, X. A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebr. Biol. 124(3), 273–283. https://doi.org/10.1111/j.1744-7410.2005.00025.x (2005).Article 

    Google Scholar 
    Pyo, J. & Shin, S. A new record of invasive alien colonial tunicate Clavelina lepadiformis (Ascidiacea: Aplousobranchia: Clavelinidae) in Korea. Anim. Syst. Evol. Divers. 27, 197–200 (2011).Article 

    Google Scholar 
    Reinhardt, J. et al. First record of the non-native light bulb tunicate Clavelina lepadiformis (Müller, 1776) in the northwest Atlantic. Aquat. Invasions 5(2), 185–190. https://doi.org/10.3391/ai.2010.5.2.09 (2010).Article 

    Google Scholar 
    Turon, X., Tarjuelo, I., Duran, S. & Pascual, M. Characterising invasion processes with genetic data: An Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503(1–3), 29–35. https://doi.org/10.1023/b:hydr.0000008481.10705.c2 (2003).Article 

    Google Scholar 
    Van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945).
    Google Scholar 
    Carman, M. et al. Ascidians at the Pacific and Atlantic entrances to the Panama Canal. Aquat. Invasions 6(4), 371–380. https://doi.org/10.3391/ai.2011.6.4.02 (2011).Article 

    Google Scholar 
    Holman, L. E. et al. Managing human-mediated range shifts: Understanding spatial, temporal and genetic variation in marine non-native species. Philos. Trans. R. Soc. B 377, 20210025 (2022).CAS 
    Article 

    Google Scholar 
    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Marine Ecology Progress Series 259, 145–161. https://doi.org/10.3354/meps259145 (2003).ADS 
    Article 

    Google Scholar 
    Brunetti, R. Polyandrocarpa zorritensis (Van Name, 1931). A colonial ascidian new to the Mediterranean record. Vie et Milieu 28–29, 647–652 (1978).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. The non-indigenous stolidobranch ascidian Polyandrocarpa zorritensis in the Mediterranean: Description, larval morphology and pattern of vascular budding. Zootaxa 528, 1–8 (2004).Article 

    Google Scholar 
    Mastrototaro, F., D’Onghia, G. & Tursi, A. Spatial and seasonal distribution of ascidians in a semi-enclosed basin of the Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1053–1061 (2008).Article 

    Google Scholar 
    Stabili, L., Licciano, M., Longo, C., Lezzi, M. & Giangrande, A. The Mediterranean non- indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications. Mar. Pollut. Bull. 101, 146–152 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turon, X. & Becerro, M. A. Growth and survival of several ascidian species from the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 82, 235–247 (1992).ADS 
    Article 

    Google Scholar 
    Sumida, P. Y. G. et al. Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: Potential for deep-sea invasion. Braz. J. Oceanogr. 63, 515–520 (2015).Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Responses of compound ascidian larvae to haloclines. Mar. Ecol. Prog. Ser. 133, 179–190 (1996).ADS 
    Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Ontogenetic changes in phototaxis during larval life of the Ascidian Polyandrocarpa zorritensis (Van Name, 1931). J. Exp. Mar. Biol. Ecol. 231, 267–277 (1998).Article 

    Google Scholar 
    Brien, P. & Brien-Gavage, E. Contribution à l’étude de la Blastogénèse des Tuniciers: III: Bourgeonnement de Clavelina Lepadiformis Müller. Recueil de L’Institut Zoologique Torley-Rousseau 1–56 (1927).Fujimoto, H. & Watanabe, H. The characterization of granular amoebocytes and their possible roles in the asexual reproduction of the polystyelid ascidian, Polyzoa vesiculiphora. J. Morphol. 150(3), 623–637. https://doi.org/10.1002/jmor.1051500303 (1976).Article 
    PubMed 

    Google Scholar 
    Cima, F., Franchi, N. & Ballarin, L. Origin and functions of tunicate hemocytes. In The Evolution of the Immune System (ed. Malagoli, D.) 29–49 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801975-7/00002-5.Chapter 

    Google Scholar 
    Kerb, H. Biologische Beiträge zur Frage der Überwinterung der Ascidien. Arch. Mikrosk. Anat. 72(1), 386–414 (1908).Article 

    Google Scholar 
    Driesch, H. Studien über das Regulationsvermögen de Organismen. 6. Die Restitutionen der Clavellina lepadiformis. Arch. F. Entw.-Mech. 14, 247–287 (1902).Article 

    Google Scholar 
    Schultz, E. Über Reductionen. III. Die Reduction und Regeneration des abgeschnitten Kiemenkorbes von Clavellina lepadiformis. Arch. Entw. Mech. Org. 24, 503–523 (1907).
    Google Scholar 
    Spek, J. Über die Winterknospenentwicklung, Regeneration und Reduktion bei Clavellina lepadiformis und die Bedeutung besonderer “omnipotenter” Zellelemente für diese Vorgänge. Wilhelm Roux’Archiv Entwicklungsmechanik der Org 111(119), 172 (1927).
    Google Scholar 
    Brien, P. Contribution à l’étude de la régéneration naturelle et expérimentale chez les Clavelinidae. Soc. R. Zool. Belg. Ann LXI, 19–112 (1930).
    Google Scholar 
    Ries, E. Die Tropfenzellen und ihre Bedeutung für die Tunicabildung bei Clavelina. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 363–371. https://doi.org/10.1007/BF00593066 (1937).Article 
    PubMed 

    Google Scholar 
    Fischer, I. Über das Verhalten des stolonialen Gewebes der Ascidie Clavelina lepadiformis in vitro. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 383–403. https://doi.org/10.1007/BF00593068 (1937).Article 
    PubMed 

    Google Scholar 
    Seelinger, O. Eibildung und Knospung von Clavelina lepadiformis. Sitzungsber. d. Kais. Kgl. Acad. d. Wiss 1–56 (1882).Van Beneden, E. & Julin, C. Recherches sur la morphologie des tuniciers. Arch. Biol. 6, 237–476 (1886).
    Google Scholar 
    Garstang, W. Memoirs: The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. J. Cell Sci. 1928(2), 51–187 (1928).Article 

    Google Scholar 
    Kimura, K. D., Tissenbaum, H. A., Liu, Y. X. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogawa, A. & Brown, F. Dauer formation and dauer-specific behaviours in Pristionchus pacificus. In Pristionchus pacificus—A nematode model for comparative and evolutionary biology (ed. Sommer, R. J.) (Brill, 2015). https://doi.org/10.1163/9789004260306_011.Chapter 

    Google Scholar 
    Wisdom, R. AP-1: One switch for many signals. Exp. Cell Res. 253(1), 180–185. https://doi.org/10.1006/excr.1999.4685 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M. Beyond casual resemblances: rigorous frameworks for comparing regeneration across species. Annu. Rev. Cell Dev. Biol. 37, 1–26 (2021).Article 
    CAS 

    Google Scholar 
    Alié, A. et al. Convergent acquisition of nonembryonic development in styelid ascidians. Mol. Biol. Evol. 35, 1728–1743. https://doi.org/10.1093/molbev/msy068 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, 1. https://doi.org/10.1371/journal.pbio.1001725 (2013).CAS 
    Article 

    Google Scholar 
    Prünster, M. M., Ricci, L., Brown, F. D. & Tiozzo, S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo https://doi.org/10.1186/s13227-019-0116-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawamura, K., Shiohara, M., Kanda, M. & Fujiwara, S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev. Biol. 384, 343–355 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol. 5, e71. https://doi.org/10.1371/journal.pbio.0050071 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 4(1), 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krueger, F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. https://doi.org/10.1038/nbt.1883 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Research 6, 1287. https://doi.org/10.12688/f1000research.12232.1 (2017).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene prediction (ed. Kollmar, M.) 227–245 (Humana, New York, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14.Chapter 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-021-01101-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100 (2021).CAS 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15(2), 1–17. https://doi.org/10.1186/gb-2014-15-2-r29 (2014).CAS 
    Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12(1), 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).CAS 
    Article 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009).Article 
    CAS 

    Google Scholar  More

  • in

    Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?

    Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ. 2001;84:1–20.Article 

    Google Scholar 
    Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–6.Article 
    CAS 

    Google Scholar 
    Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.Article 

    Google Scholar 
    Pearson DE, Ortega YK, Eren Ö, Hierro JL. Community assembly theory as a framework for biological invasions. Trends Ecol Evol. 2018;33:313–25.PubMed 
    Article 

    Google Scholar 
    Inderjit, van der Putten WH. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol. 2010;25:512–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.Article 

    Google Scholar 
    Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 2006;4:e140.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hierro JL, Callaway RM. Allelopathy and exotic plant invasion. Plant Soil. 2003;256:29–39.Article 
    CAS 

    Google Scholar 
    Reinhart KO, Callaway RM. Soil biota and invasive plants. N Phytol. 2006;170:445–57.Article 

    Google Scholar 
    Waller LP, Allen WJ, Barratt BIP, Condron LM, França FM, Hunt JE, et al. Biotic interactions drive ecosystem responses to exotic plant invaders. Science. 2020;368:967–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol. 2016;104:994–1002.Article 
    CAS 

    Google Scholar 
    Saul WC, Jeschke JM. Eco-evolutionary experience in novel species interactions. Ecol Lett. 2015;18:236–45.PubMed 
    Article 

    Google Scholar 
    Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, et al. The fungal dimension of biological invasions. Trends Ecol Evol. 2007;22:472–80.PubMed 
    Article 

    Google Scholar 
    Hierro JL, Maron JL, Callaway RM. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol. 2005;93:5–15.Article 

    Google Scholar 
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Maron JL, Klironomos J, Waller L, Callaway RM. Invasive plants escape from suppressive soil biota at regional scales. J Ecol. 2014;102:19–27.Article 

    Google Scholar 
    Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77.Article 
    CAS 

    Google Scholar 
    Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 2008.O’Neill EG, O’Neill RV, Norby RJ. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut. 1991;73:271–84.PubMed 
    Article 

    Google Scholar 
    Johnson NC, Wilson GWTT, Wilson JA, Miller RM, Bowker MA. Mycorrhizal phenotypes and the Law of the Minimum. N Phytol. 2015;205:1473–84.Article 
    CAS 

    Google Scholar 
    Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun. 2021;12:3484.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Richardson DM, Allsopp N, D’Antonio CM, Milton S, Rejmanek M. Plant invasions – the role of mutualisms. Biol Rev. 2000;75:65–93.PubMed 
    Article 
    CAS 

    Google Scholar 
    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.Article 

    Google Scholar 
    Soti PG, Jayachandran K, Purcell M, Volin JC, Kitajima K. Mycorrhizal symbiosis and Lygodium microphyllum invasion in South Florida—a biogeographic comparison. Symbiosis. 2014;62:81–90.Article 

    Google Scholar 
    Fumanal B, Plenchette C, Chauvel B, Bretagnolle F. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza. 2006;17:25–35.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. N Phytol. 2002;153:335–44.Article 

    Google Scholar 
    Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science. 2007;316:1746–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kivlin SN, Hawkes CV, Treseder KK. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem. 2011;43:2294–303.Article 
    CAS 

    Google Scholar 
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3.PubMed 
    Article 
    CAS 

    Google Scholar 
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.PubMed 
    Article 

    Google Scholar 
    Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.Article 
    CAS 

    Google Scholar 
    Rout ME, Chrzanowski TH. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil. 2009;315:163–72.Article 
    CAS 

    Google Scholar 
    Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol. 2017;23:1282–91.Article 

    Google Scholar 
    Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia. 2005;144:1–11.PubMed 
    Article 

    Google Scholar 
    Lankau RA. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. N Phytol. 2011;189:536–48.Article 

    Google Scholar 
    Blossey B, Nötzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.Article 

    Google Scholar 
    van Kleunen M, Bossdorf O, Dawson W. The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst. 2018;49:25–47.Article 

    Google Scholar 
    Rosche C, Hensen I, Schaar A, Zehra U, Jasieniuk M, Callaway RM, et al. Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. Ecol Monogr. 2019;89:e01386.Article 

    Google Scholar 
    Weaver SE. The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci. 2001;81:867–75.Article 

    Google Scholar 
    Gange AC, Ayres RL. On the relation between arbuscular mycorrhizal colonization and plant ’ benefit. Oikos. 1999;87:615–21.Article 

    Google Scholar 
    Řezáčová V, Konvalinková T, Řezáč M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia. 2020;75:693–9.Article 

    Google Scholar 
    Zhang Q, Sun Q, Koide RT, Peng Z, Zhou J, Gu X, et al. Arbuscular mycorrhizal fungal mediation of plant-plant onteractions in a marshland plant community. Sci World J. 2014;2014:1–10.
    Google Scholar 
    Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC, Li GL, et al. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol Biochem. 2020;143:107739.Article 
    CAS 

    Google Scholar 
    Shah MA, Callaway RM, Shah T, Houseman GR, Pal RW, Xiao S, et al. Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. N Phytol. 2014;202:1286–96.Article 

    Google Scholar 
    Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol. 2015;24:1999–2017.PubMed 
    Article 

    Google Scholar 
    Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol. 2018;20:75–84.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hart SC, Start JM, Davidson EA, Firestone MK. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle J., Bottomley P., editors. Methods of soil analysis, part 2 microbiological and biochemical properties. Madison, WI: Soil Science Society of America; 1994. p. 985–1018.Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR Monogr. 1996;32:1–374.
    Google Scholar 
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. N Phytol. 1990;115:495–501.Article 
    CAS 

    Google Scholar 
    Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;4315:4302–15.Article 

    Google Scholar 
    Hijmans RJ. raster: Geographic data analysis and modeling. R package version 3.3-13. 2020. https://cran.r-project.org/package=raster.R Core Team. R: A language and environment for statistical computing [https://www.r-project.org/]. Vienna, Austria: R Foundation for Statistical Computing; 2019.Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package. 2019. https://cran.r-project.org/package=vegan.Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. N Phytol. 2011;190:794–804.Article 
    CAS 

    Google Scholar 
    Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339–49.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep. 2021;11:3645.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.Article 
    CAS 

    Google Scholar 
    Chen J. GUniFrac: generalized UniFrac distances. R package version 1.1. 2018. https://cran.r-project.org/package=GUniFrac.Webb CO. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat. 2000;156:145–55.PubMed 
    Article 

    Google Scholar 
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014;67.Borcard D, Gillet F, Legendre P. Numerical ecology with R. New York: Springer; 2011.Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Felker-Quinn E, Schweitzer JA, Bailey JK. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol. 2013;3:739–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal RW, Maron JL, Nagy DU, Waller LP, Tosto A, Liao H, et al. What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology 2020;101:e03072.PubMed 
    Article 

    Google Scholar 
    Matesanz S, Sultan SE. High-performance genotypes in an introduced plant: insights to future invasiveness. Ecology. 2013;94:2464–74.PubMed 
    Article 

    Google Scholar 
    Hart M, Reader R. Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils. 2002;36:357–66.Article 

    Google Scholar 
    Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, et al. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol. 2017;105:219–28.Article 
    CAS 

    Google Scholar 
    Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, et al. Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr. 2011;38:1305–17.Article 

    Google Scholar 
    Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. N Phytol. 2019;222:714–25.Article 

    Google Scholar 
    Jia Y, Heijden MGA, Wagg C, Feng G, Walder F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J Ecol. 2021;109:3171–81.Article 
    CAS 

    Google Scholar 
    Van Der Heijden MGAA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72.Article 
    CAS 

    Google Scholar 
    Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE. 2010;5:e12380.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shah MA, Reshi ZA, Khasa DP. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot Rev. 2009;75:397–417.Article 

    Google Scholar 
    Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil. 2016;404:1–12.Article 
    CAS 

    Google Scholar 
    Wilson GWT, Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot. 1998;85:1732–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Seifert EK, Bever JD, Maron JL. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 2009;90:1055–62.PubMed 
    Article 

    Google Scholar 
    Deveautour C, Donn S, Power SA, Bennett AE, Powell JR. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol Ecol. 2018;27:2152–63.PubMed 
    Article 

    Google Scholar 
    Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. N Phytol. 2018;217:1254–66.Article 
    CAS 

    Google Scholar 
    Tian B, Pei Y, Huang W, Ding J, Siemann E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 2021;15:1919–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pimprikar P, Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018;59:673–90.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wendlandt CE, Helliwell E, Roberts M, Nguyen KT, Friesen ML, Wettberg E, et al. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume‐rhizobium mutualism. Evolution. 2021;75:731–47.PubMed 
    Article 

    Google Scholar 
    Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology. 2011;92:1027–35.PubMed 
    Article 

    Google Scholar 
    Shelby N, Duncan RP, Putten WH, McGinn KJ, Weser C, Hulme PE. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. J Ecol. 2016;104:1259–70.Article 
    CAS 

    Google Scholar 
    Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem. 2013;65:78–85.Article 
    CAS 

    Google Scholar 
    Bronstein JL. The exploitation of mutualisms. Ecol Lett. 2001;4:277–87.Article 

    Google Scholar 
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.PubMed 
    Article 
    CAS 

    Google Scholar 
    Koziol L, Bever JD. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J Ecol. 2019;107:622–32.Article 

    Google Scholar 
    Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena. 2011;87:70–7.Article 
    CAS 

    Google Scholar 
    Zhang J, Wang F, Che R, Wang P, Liu H, Ji B, et al. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Sci Rep. 2016;6:23488.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Read DJ. Mycorrhizas in ecosystems. Experientia. 1991;47:376–91.Article 

    Google Scholar 
    Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology. 2017;98:2111–9.PubMed 
    Article 

    Google Scholar  More

  • in

    Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms

    Experimental designThis experiment was set up containing two levels of soil biodiversity (high and low soil biodiversity) and seven treatments considering the number of global change factors (GCFs) (0, 1, 2, 4, 6, 8, 10) (Table 1, Supplementary Fig. 1 and Supplementary Data 1). We used the dilution-to-extinction approach to create the high and low soil biodiversity treatments (Supplementary Methods). Soil dilution can lead to a gradual loss of rare soil microbes, which can simulate a realistic loss of soil biodiversity, because rare soil microbes are more sensitive to anthropogenic pressures, e.g., warming, nitrogen addition and drought15. We note that the low soil biodiversity treatment is a subset of the high biodiversity, as many rare species have been eliminated through the dilution; this approach will likely lead to relatively more tolerant microbes in the resulting communities.An increasing number of GCFs was created inspired by the experimental design of the studies on biodiversity-ecosystem function relationships, based on random sampling from a species pool5,6,14. The combination of multiple GCFs was replicated 15 times at each level by randomly selecting GCFs from a pool with 10 GCFs for each replicate (Table 1 and Supplementary Data 1). For each replicate of combined GCFs, there were identical GCF combinations between the high and low soil biodiversity treatments to avoid a confounding effect of GCF combination and soil biodiversity treatments. The pool of 10 GCFs included: warming, nitrogen deposition, drought, heavy metal pollution, plastic mulching film residues, salinity, agricultural fungicide, bactericide application, surfactant contaminant and soil compaction (Supplementary Methods). These GCFs frequently occur in intensively managed agroecosystems and are treated as anthropogenic pressures10,13,14,15.MicrocosmsThis experiment was conducted using 50 ml conical Mini Bioreactors (Product Number 431720, Corning Inc., NY) as experimental units (Supplementary Fig. 2). Each Mini Bioreactor has four vents in the cap, where a hydrophobic membrane avoids microbial contamination but allows gas exchange. We filled each Mini Bioreactor with 40.0 g (dry weight, d.w.) of soil in total, which received the appropriate treatments.Soil sterilization and inoculum preparationWe collected the field soil from the top 10 cm of an intensive farming system in Berlin (52.466°N, 13.303°E). Field soil was passed through a 2 mm mesh to remove large roots and stones. We sterilized 20 kg of soil for 90 min at 121 °C, and stored 2 kg of fresh soil at 4 °C. The dilution-to-extinction approach38,39,40,41,42 was used to create high and low soil biodiversity (Supplementary Fig. 1). A parent inoculum suspension was prepared by mixing 100 g of fresh soil with 200 ml of sterilized VE water. The sediment settled for 1 min. The upper 200 ml of soil suspension was treated as parent inoculum suspension. 50 ml of parent inoculum suspension was added to 500 g of sterilized soil in a plastic bag, and homogenized by turning the bag up and down 30 times to obtain the inoculum of high soil biodiversity. Another 5 ml of parent inoculum suspension was mixed with 45 ml of sterilized parent inoculum suspension to create the 10-1 dilution. This procedure was repeated five times to reach the 10-6 dilution. 50 ml of the 10-6 dilution was mixed and homogenized with 500 g of sterilized soil in a plastic bag to obtain the inoculum of low soil biodiversity. This whole dilution procedure was repeated five times to obtain 10 bags of soil inoculum (five bags for each soil biodiversity inoculum).Sterile water was added to each plastic bag to reach the water content of the fresh soil in the field. All bags were closed with a sterilized cotton plug and a rubber band to avoid microbial contamination but allow gas exchange42. All bags were incubated in a dark room at 20 °C until similar microbial abundance was observed between the high and low soil biodiversity inoculum. Soil inoculum was homogenized by shaking and turning the bags once a week. After incubation, 2.0 g of soil in each bag was collected and stored at −80 °C for DNA extraction. Quantitative real-time PCR (qPCR) was used to determine fungal and bacterial abundance. In the present study, it took two months to recover soil microbial biomass (Supplementary Fig. 3).The implementation of GCFs and harvestAgroecosystems, some of the most intensively managed ecosystems, are affected by the co-occurrence of multiple GCFs13,14,15. This study focused on GCFs that frequently occur in agroecosystems, including warming, nitrogen deposition, drought, heavy metal pollution, plastic film residues, salinity, agricultural fungicide and bactericide application, surfactant contaminant and soil compaction. We present the rationale for the 10 tested GCFs in the Supplementary Methods.Loading soils were used to achieve an effective mixing of chemical agents into 40.0 g soil in each Mini Bioreactor. We created separate ‘loading soil’ for each GCF with chemical addition by mixing an appropriate dose of a chemical agent with sterilized soil through careful homogenization. This was done to avoid exaggerated effects of more concentrated chemicals when mixed with soil. For each chemical, 1.0 g (d.w.) of loading soil contained an appropriate dose for 40.0 g soil in a Mini Bioreactor. For instance, 1 634 mg of NH4NO3 was mixed with 100 g (d.w.) of sterilized soil, to ensure that there was about 16.34 mg of NH4NO3 in 1.0 g of sterilized loading soil. We weighed 40.0 g (d.w.) of soils, including 1.0 g (d.w.) of each loading soil, 5.0 g (d.w.) of soil inoculum (high or low soil biodiversity), an appropriate amount of film (0 or 0.16 g plastic film) and sterilized soil, according to GCF combination for each experimental unit. We put 40.0 g of mixed soils into a clean and sterilized cup (200 ml) with a cap, and then homogenized it by turning the cup up and down for 5 min using a shaking machine (Heidolph Reax 2, Heidolph Instruments GmbH & CO. KG, Schwabach, Germany). After homogenization, 40.0 g of mixed soils was transferred to a Mini Bioreactor, and a mesh bag containing about 100 mg of dry Medicago lupulina leaves (65 °C for 72 h) was buried 1 cm below the soil surface. We used a stick to press soils in each Mini Bioreactor to simulate an ambient condition (1.3 g cm−3) or mechanical compaction (1.7 g cm−3) in farmland.For the warming treatment with an increment of 5.0 °C over the ambient temperature (20 °C), we wrapped heating cables (Exo Terra PT-2012; Hagen Deutschland GmbH & Co. KG, Holm, Germany) around the outside of the bioreactors. A set temperature was maintained by temperature controllers (Voltcraft ETC-902; Conrad Electronic SE, Hirschau, Germany), which can switch off and on heating cables depending on the real-time temperature of the outside surface of Mini Bioreactors. Mini Bioreactors were placed in beakers filled with sand to reduce thermal radiation from neighboring units. At the start of the experiment, we added suitable amounts of sterilized water to each experimental unit to reach 60% of water holding capacity for the non-drought treatment and 30% water holding capacity for the drought treatment.All Mini Bioreactors were incubated at 20.0 °C in the dark for six weeks before the final harvest. Because there was 2.0 g of weight loss on average in each Mini Bioreactor in the first three weeks, we added 2 ml of sterilized water to each Mini Bioreactor on the first day of the fourth week. During the final harvest, soil in each Mini Bioreactor was gently homogenized using a spoon, and then 2.0 g of fresh soil was collected and stored at −80 °C for DNA extraction; 5.0 g was stored at 4 °C for the determination of soil enzyme activity; the leftover was oven-dried at 40 °C for other measurements. DNA of each soil sample was extracted from 250 mg soil, using DNeasy PowerSoil Pro Kit (QIAGEN GmbH, Hilden, Germany), following manufacturer’s instructions. Soil DNA extraction was stored at −80 °C for further analysis.The measurement of response variablesWe measured the following response variables: microbial activity (soil respiration), microbial abundance (bacterial and fungal abundance), nutrient cycling (litter decomposition rate and soil enzyme activity), physical properties (water-stable soil aggregates and soil water repellency), bacterial and fungal biodiversity (richness and microbial network features) (See details in the Supplementary Methods). We measured soil respiration as CO2 concentration (ppm h−1 g−1 soil) in the third and sixth week as an indicator for soil microbial activity. Bacterial and fungal abundance was estimated by qPCR. The proportional loss of litter (Medicago lupulina leaves) dry weight during soil incubation was used as an indication of decomposition rate. We measured the activity of β-glucosidase (cellulose degradation), β-D-celluliosidase (cellulose degradation), N-acetyl-β-glucosaminidase (chitin degradation) and phosphatase (organic phosphorus mineralization) using high throughput microplate assay43,44. A modified protocol by Kemper and Rosenau was used to measure water-stable soil aggregates45. Soil water repellency was measured using the water drop penetration time method46. High throughput sequencing (Illumina MiSeq) was used to measure the taxonomic composition of soil fungal and bacterial communities with the primers fITS7 and ITS4 for fungi and 515F-Y and 806 R for bacteria47,48 (Supplementary Methods).Statistical analysesFor diversity and community composition analysis, we excluded the samples with less than 1% of the observations of the largest sample in the ASV table. For network analysis, we then removed ASVs with low prevalence, which presented less than 20% of samples across all experimental units to reduce the high percentage of zero counts. A co-occurrence network was constructed based on both fungal and bacterial ASV tables. The PLNnetwork function in the R package PLNmodels was employed to infer the network, using a sparse multivariate Poisson log-normal (PLN) model49. According to the Extended Bayesian Information Criterion (EBIC), the best model was extracted with the function getBestModel. The network was compartmentalized into different modules using the cluster_fast_greedy function in the igraph package and visualized with partial correlations with |ρ| > 0.05. We focused on the response of the relative abundance of modules, also known as clusters, which represent the closely associated microbes, e.g., groups of coexisting or co-evolving microbes27. The relative abundance of modules was calculated by summing relative abundances for individual ASVs in modules. We used the package FUNGuildR50 to taxonomically parse fungal trait information, using the FUNGuild database51.For each single GCF treatment, we took the average response from the 10 replicates before analysis. To confirm how the effect of soil biodiversity treatment can change along with the increasing number of GCFs, we quantified the effect size of soil biodiversity treatment for each response variable using Hedges’ g (mean and 95% CIs) at each level of the number of GCFs, using the R package effsize52. Hedges’ g is calculated as the mean difference between the high and low soil biodiversity treatments in units of the pooled standard deviation as a paired-samples because there were identical GCFs and GCF combinations for both high and low biodiversity conditions, with the exception of the zero and 10 GCF treatments.To evaluate how each of the response variables changes along with the number of GCFs, we applied a generalized additive model (GAM)53. GAM is a penalized generalized linear model that fits a nonparametric, nonlinear smooth curve54. The degree of smoothness of model terms is estimated as part of fitting, using the generalized cross validation. We reasonably assume that the curve shapes are different between high and low soil biodiversity treatments. Therefore, we included biodiversity conditions (low/high) as the model intercept and as the “factor smooth” smoothing class, where a smooth function is created for each factor level independently55. For GAM modeling, we used the mgcv package55. The dimension of the basis used to represent the smooth term was set as k = 5 so that the model does not overfit to the data. For this, we compared some other values (from 3 to 8) and confirmed that the results are essentially the same within the tested range. The other parameters were set as default.The relationships between soil microbial indices and other soil indices were tested using Spearman correlation in the package microbiome, and the adjustment method “fdr” was employed to control the false discovery rate for multiple testing correction56. For the further multivariate integration of soil functions/properties and composition of modules, the DIABLO (Data Integration Analysis for Biomarker discovery using a Latent component method for Omics studies) was employed to detect correlation (Pearson’s correlation |r| > 0.5) among variables using the package mixOmics57.The Z-scores for each of the eight soil functions (as shown in Fig. 1, with the exception of soil water repellency) were evaluated, and then we computed an improved weighted multifunctionality metric to represent soil multifunctionality (Supplementary Methods)58. Structural equation models (SEMs) were used to reveal the direct and indirect effects of an increasing number of GCFs on soil multifunctionality within each soil biodiversity treatment using the package lavaan59. We assumed that an increasing number of GCFs influences soil multifunctionality by regulating the bacterial and fungal abundance and the relative abundance of modules. All response variables were standardized to the same comparison scale using the z-score transformation before constructing SEMs. Models with optimal fitting indices were reported (Supplementary Fig. 11).The permutational multivariate analysis (ADONIS) and non-metric multidimensional scaling (NMDS) ordination based on the Bray-Curtis distance were conducted to test the effect of soil biodiversity and GCF treatments on the community composition of bacteria and fungi using the R package vegan60. For the data handling, processing, and visualization, we used the packages tidyverse61, reshaping62, cowplot63, RColorBrewer64, qgraph65, igraph66, factoextra67, phyloseq68 and itsadug69. These data manipulation and analyses were conducted using R version 4.1.370. The R script and data are available in a publicly accessible database71.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Sexual selection for males with beneficial mutations

    Charlesworth, D., Barton, N. H. & Charlesworth, B. The sources of adaptive variation. Proc. R. Soc. B Biol. Sci. 284(1855), 20162864 (1855).Article 
    CAS 

    Google Scholar 
    Whitlock, M. C. Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54(6), 1855–1861 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 218(4570), 384 (1982).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadany, L. & Beker, T. Sexual selection and the evolution of obligatory sex. BMC Evol. Biol. 7(1), 245 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. B Biol. Sci. 372(1729), 20160310 (2017).Article 

    Google Scholar 
    Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387(6634), 700–702 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: Evidence for condition-dependent DNA repair. PLoS Biol. 6(2), e30 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98(4), 198–205 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dugand, R. J., Kennington, W. J. & Tomkins, J. L. Evolutionary divergence in competitive mating success through female mating bias for good genes. Sci. Adv. 4(5), eaaq0369 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Siller, S. Sexual selection and the maintenance of sex. Nature 411(6838), 689–692 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411(6838), 692–695 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehtonen, J., Jennions, M. D. & Kokko, H. The many costs of sex. Trends Ecol. Evol. 27(3), 172–178 (2012).PubMed 
    Article 

    Google Scholar 
    Maynard Smith, J. What use is sex?. J. Theor. Biol. 30(2), 319–335 (1971).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldone, 1972).
    Google Scholar 
    Petrie, M. & Lipsitch, M. Avian polygyny is most likely in populations with high variability in heritable male fitness. Proc. R. Soc. Lond. Ser. B Biol. Sci. 256(1347), 275–280 (1994).ADS 
    Article 

    Google Scholar 
    Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371(6498), 598–599 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1414), 85–91 (1999).Article 

    Google Scholar 
    David, P. et al. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406(6792), 186–188 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hale, M. L. et al. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex?. J. Evol. Biol. 22(6), 1284–1294 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prokop, Z. M. et al. Meta-analysis suggests choosy females get sexy sons more than “good genes”. Evolution 66(9), 2665–2673 (2012).PubMed 
    Article 

    Google Scholar 
    Kokko, H. et al. The sexual selection continuum. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1498), 1331–1340 (2002).Article 

    Google Scholar 
    Drake, J. W. et al. Rates of Spontaneous Mutation. Genetics 148(4), 1667 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190(2), 295–304 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445(7123), 82–85 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101(6), 581–584 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janetos, A. C. Strategies of female mate choice: A theoretical analysis. Behav. Ecol. Sociobiol. 7(2), 107–112 (1980).Article 

    Google Scholar 
    Johnstone, R. A. & Earn, D. J. D. Imperfect female choice and male mating skew on leks of different sizes. Behav. Ecol. Sociobiol. 45(3), 277–281 (1999).Article 

    Google Scholar 
    Petrie, M., Halliday, T. & Sanders, C. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41(2), 323–331 (1991).Article 

    Google Scholar 
    Cally, J. G., Stuart-Fox, D. & Holman, L. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10(1), 2017 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kotiaho, J. S. et al. On the resolution of the lek paradox. Trends Ecol. Evol. 23(1), 1–3 (2008).PubMed 
    Article 

    Google Scholar 
    Parker, G. A., Baker, R. R. & Smith, V. G. F. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36(3), 529–553 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Perspect. Biol. 6(10), a017509–a017509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263(1375), 1415–1421 (1996).ADS 
    Article 

    Google Scholar 
    Petrie, M. Evolution by sexual selection. Front. Ecol. Evol. 9, 950 (2021).Article 

    Google Scholar 
    Petrie, M. & Kempenaers, B. Extra-pair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13(2), 52–58 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller, A. P. & Cuervo, J. J. Minisatellite mutation rates increase with extra-pair paternity among birds. BMC Evol. Biol. 9(1), 100 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anmarkrud, J. A. et al. Factors affecting germline mutations in a hypervariable microsatellite: A comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat. Res. Fundam. Mol. Mech. Mutagen. 708(1), 37–43 (2011).CAS 
    Article 

    Google Scholar 
    Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B Biol. Sci. 274(1606), 1–10 (2007).CAS 
    Article 

    Google Scholar 
    Baur, J. & Berger, D. Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nat. Ecol. Evol. 4, 737–744 (2020).PubMed 
    Article 

    Google Scholar 
    Vrijenhoek, R. C. & Parker, E. D. Geographical parthenogenesis: General purpose genotypes and frozen niche variation. In Lost Sex (eds Schön, I. et al.) (Springer, Dordrecht, 2009).
    Google Scholar 
    Reudink, M. W. et al. Evolution of song and color in island birds. Wilson J. Ornithol. 133(1), 1–10 (2021).Article 

    Google Scholar 
    Iglesias-Carrasco, M. et al. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc. R. Soc. B Biol. Sci. 2019(286), 20190172 (1899).
    Google Scholar 
    Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. U. S. A. 101(32), 11531 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Thermodynamic basis for the demarcation of Arctic and alpine treelines

    Explaining the heterogeneous organization of vegetation across landscapes has proved both a puzzling and an inspiring concept as patterns have formed naturally across the world. One such pattern is the existence of treelines, i.e., the demarcation zone between forestland and vegetation without trees1,2. There is a large body of work with developed and competing theories for understanding the specific limits and drivers for the non-existence of trees beyond a treeline. Yet after decades of study, there is still debate among ecologists and biologists over the mechanisms that limit the presence of trees beyond treelines. Current explanations are rooted in, but not limited to, consideration of factors such as excessive light and wind, limited CO(_2), and low temperatures1,3,4,5,6,7.
    With this in mind, we ask: Is there another perspective that could provide insights complementary to and beyond what has been developed through the prevailing mechanistic approach? While the existing explanations are based on ideas of structural stability (e.g., high winds above the treeline) and limited resources pertaining to water, energy, and nutrients1,3,4,5,6,7, we instead examine the question of what determines the existence of a treeline from the perspective of thermodynamic feasibility. Our premise is that the existence or non-existence of certain vegetation first and foremost has to be ascertained through thermodynamic feasibility or infeasibility, respectively. Therefore, we approach the question of the existence of treelines by asking: If certain vegetation does not exist at a given location, is there a role that the thermodynamic perspective can play in telling us that its existence is infeasible? By approaching the topic from the thermodynamic perspective, we seek to provide important complementary insight to the broad base of scientific understanding ecologists and biologists have developed to explain the existence of treelines. Further, this work lays out additional context for the discussion around the advance of treelines (e.g., why some treelines advance and others do not).For example, several theories assert that the stature of vegetation is limited by CO(_2) balance and photosynthetic requirements under harsh winter conditions1,6. Other hypotheses argue that plant life is instead limited by the atmospheric temperature and the local environments that the plants experience7,8. Is there a perspective that could unify both of these findings? Through this work, we demonstrate how thermodynamic infeasibility inferred from model simulations pertaining to counterfactual scenarios manifests through both of these physiological limits. This means that either of these limits, individually or together, could lead to the nonexistence of trees—which limiting factor is expressed first varies by location. Thus, the commonality among locations that have different limiting mechanisms can be found in the unifying concept of thermodynamic infeasibility. While CO(_2) limitation may prevail in one location and temperature-related constraints may be limiting in another, both lead to thermodynamic infeasibility, meaning that the thermal environment results in a mechanistic infeasibility, such as net CO(_2) loss. In the examples presented in this paper, thermodynamic infeasibility manifests through negative work associated with constraints arising from temperature gradients and net CO(_2) loss, demonstrating that both limitations can be encapsulated using the thermodynamic perspective.Ecosystem thermodynamicsIt is now generally accepted that observed patterns of vegetation composition and its organization are a result of self-organization, or the spontaneous emergence of pattern without external predetermination9,10. By framing ecosystems as open thermodynamic systems, we explore further the concept of thermodynamic feasibility and its role in the self-organization of vegetation structure. Vegetation structure consists of composition (i.e., the number and type of functional groups11) and organizational patterns on the landscape12. We focus on composition rather than the spatial pattern of vegetation organization. We utilize a one-dimensional ecohydrological model that incorporates representative functional groups with no lateral transport of energy or matter under the assumption that the vegetation composition and pattern remain spatially uniform at a given site. Thus, we are able to compare the vertical thermodynamic regimes of proximal ecosystems with varying vegetation composition. We present the case that observed organization reflected in the demarcation of differing vegetation structures on either side of a treeline is established in tandem with vertical thermodynamic gradients at a given location, driven by the incoming solar energy into an ecosystem. In other words, we hypothesize that beyond a treeline, the existence of trees is prevented by conditions of thermodynamic infeasibility.The application of thermodynamic theory to ecology has been studied for the better part of the last century through the introduction of theoretical thermodynamic properties, such as entropy and exergy, into environmental systems. This work asserts that open thermodynamic systems will evolve based on the strength of applied concentration gradients on the system and will undergo irreversible processes to dissipate energy and destroy these gradients through all means available13,14. In the context of ecosystems, fluxes of mass or energy from the external environment (i.e., above the canopy) result in concentration gradients within the system itself. State variables will transition along these gradients according to the second law of thermodynamics. When the magnitude of incoming energy and consequent spatial imbalance of energy becomes great enough, dissipative structures spontaneously emerge, or self-organize, and establish temperature gradients consistent with the dissipative need of the ecosystem13,15. In this paper we conceptualize the work performed by an ecosystem as its ability to dissipate these applied concentration gradients. Consequently, work is highly dependent upon the existence and composition of self-organized vegetation.In classical thermodynamics, work is performed due to a transfer, or physical movement, of heat15. In the context of ecosystems, work performed by an ecosystem is represented by the exchange of heat with the external environment outside the ecosystem control volume12. Work performed by an ecosystem is, therefore, estimated as the vertical transport of heat in the form of latent and sensible heat, driven by the vertical gradient in temperature within the control volume structured by both the incoming downward shortwave and longwave radiation and the vegetation structure. The bottom boundary of the ecosystem control volumes studied are significantly deep such that heat exchanges due to water infiltration at this interface are insignificant in magnitude relative to latent and sensible heat flux out of the top of the control volume above the canopy. Further, we ignore the substantially slower thermodynamic processes associated with geochemistry in the soil.The vertical temperature gradient creates a directionality of dissipation of incident radiation as heat leaves out of the ecosystem from higher surface temperatures to lower air temperatures. Throughout this paper, we measure work through the net sum of heat leaving the ecosystem as latent and sensible heat—which can either be positive or negative depending on the direction of the resultant temperature gradient (see “Thermodynamic Calculations” in the “Methods” section). This temperature gradient (Eq. 1) emerges as a result of self-organization through feedback between the incoming shortwave and longwave radiation, local environmental conditions, and the heat dissipation and work performed by the vegetation. The presence of ground cover, such as snow, is impacted by aboveground vegetation structure, which provides a physical buffer between the atmosphere and the ground, further influencing the thermal environment and temperature gradient.Although significant research has been conducted by studying plant response to snowpack7,16,17, including the physiological requirements for life under prolonged snowpack and alpine climatic conditions, the thermodynamic perspective provides further insight. In addition to the physiological/mechanistic response of plants to snowpack and other environmental conditions, the thermal regime of a column of land experiencing snowpack is fundamentally different when an ecosystem does or does not have plants with stature taller than the height of snowpack (e.g., trees). Presence of trees results in shading from solar radiation and a physical buffer between the earth/snow surface and the atmosphere. Thus, the thermal profile of an ecosystem reveals valuable information about ecosystem behavior, and there is a need to explore the thermodynamic relationship between solar radiation and vegetation composition under varying environmental conditions. Thus, through this paper we define the circumstances under which multiple functional groups that include trees are no longer feasible for the available solar radiation leading to demarcated zones identifiable as treelines.Work by Körner argues that the “climate [that] plants experience” is different than the ambient temperature7. By modeling the layers within the canopy of plants with differing stand heights and leaf distributions, we are able to characterize the thermal regime and the “climate [that] plants experience” throughout the course of a given year. This characterization helps us understand the fundamental changes in behavior under varying environmental conditions with and without trees.An ecosystem’s ability to perform work manifests into four distinct cases depending on the sign of the resultant temperature gradient and the net loss or gain of heat driven by the thermal environment derived from present ground cover, such as vegetation or snow: (1) First and most common during the day when photosynthesis is occurring, the temperature of the earth surface, which receives the solar radiation, is typically warmer than the air above the canopy, and heat leaves the ecosystem upward along the negative temperature gradient, corresponding to a positive work (Fig. 1a). (2) Even when the temperature of the earth surface is warmer than the air above the canopy, there can be situations when there is a net heat gain within the ecosystem, meaning that heat moves into the ecosystem against the direction of the temperature gradient. This case is rare and counterproductive to heat dissipation, corresponding to negative work. (3) Common during the night, temperature inversion emerges. In this case, the temperature gradient from the earth surface to the atmosphere can become positive, meaning that the temperature of the air above the canopy is greater than the temperature of the earth surface. As heat enters the ecosystem to warm the surface, positive work is performed since the heat is still moving along a negative temperature gradient into the ecosystem (Fig. 1b). (4) During snowmelt conditions during the day, particularly for Arctic and alpine ecosystems, temperature inversions also emerge18,19. When this occurs and the ecosystem experiences a net heat loss through latent and sensible heat from the canopy, the heat leaving the ecosystem travels opposite of the direction dictated by the temperature gradient. Thus, in this case, ecosystems perform negative work. Our findings demonstrate how extended periods of time in this last case of work lead to thermodynamic infeasibility for the alpine/Arctic ecosystem counterfactual vegetation scenarios; i.e., ecosystems with vegetation properties from below the treelines cannot be sustained under the environmental conditions above the treelines, and, hence, they do not occur in nature.A recent study concluded that at sites where multiple functional groups exist (e.g., forests), the vegetation structure in which all groups co-exist and interact is thermodynamically more advantageous and, thus, more likely to occur than any one of the individual functional groups that the forest comprises12. Thermodynamic advantage is defined by the production of larger fluxes of entropy, more work performed, and higher work efficiency – a quantity that captures how much of the incoming energy is converted into forms useful for actively dissipating heat. It is possible to envision that under certain environmental conditions, the thermodynamic advantage offered by the existence of multiple functional groups is not tenable, indicating a thermodynamic infeasibility. Thermodynamic infeasibility occurs when a particular vegetation structure is not supported by the thermal environment at a given location. The demarcation exhibited by treelines presents an ideal case to explore this scenario, in that there is a distinct transition from multiple functional groups below the treeline to a single functional group above.Research questionIn this paper, we examine vegetation above and below Arctic and alpine treelines to determine whether the absence of trees in ecosystems above treelines are a result of thermodynamic infeasibility. Simply speaking, we seek to answer the following research question: Is the non-existence of trees beyond the transition zone demarcated as a treeline a reflection of thermodynamic infeasibility associated with the presence of trees, and if so, how is this infeasibility exhibited?Figure 1Conceptual diagram of temperature gradients. The W+ arrow indicates the positive direction of work performed through heat transport. Although in different directions, in both cases (a) and (b), the work performed is positive because heat moves from high to low temperatures. (a) Typical summertime temperature gradients from the earth surface to the air above the canopy are negative for the two real scenarios: subalpine/sub-Arctic forest (left) and alpine tundra/Arctic meadow (right). (b) A conceptual temperature inversion, or positive temperature gradient, which arise when alpine/Arctic forest are simulated as counterfactuals.Full size imageTo address this question, we use an extensively validated multi-layer 1-D physics-based ecohydrological model, MLCan12,20,21,22,23,24,25,26, consisting of 20 above-ground layers, 1 ground surface layer, and 12 below-ground layers (see Supplementary Material). This model is chosen because of its ability to capture interactions among functional groups, such as the impact of shading on understory vegetation and the resulting thermal environment within the canopy23. To balance model performance and accuracy, standing plant species are aggregated into functional groups (i.e., evergreen needleleaf trees, shrubs, grasses; see Table 1) based on literature27,28,29,30. The model output is used to compare the thermodynamic work performed at paired sites above and below the respective treelines for three different locations: the Italian Alps (IT), the United States Rocky Mountains (US), and the Western Canadian Taiga-Tundra (CA) (Fig. 2; see Site Descriptions). For each site pair, four scenarios are performed (Table 1): (1) The subalpine/sub-Arctic forest ecosystems are modeled as they exist with multiple functional groups (Fig. 1a, left). (2) The alpine/Arctic ecosystems are modeled as they exist with one functional group (i.e., shrubs or grasses; Fig. 1a, right). (3) We construct counterfactual scenarios above the treeline in which the vegetation of the subalpine or sub-Arctic forest is simulated with the environmental conditions and parameters of the alpine meadow or Arctic tundra (i.e., adding hypothetical trees where none exist; Fig. 1b). (4) As a control, a final counterfactual scenario is constructed below the treeline in which we model the understory of the subalpine/sub-Arctic forest individually (i.e., removing trees from the existing ecosystem).Table 1 Simulation scenarios with observed and hypothetical vegetation.Full size tableThe simulation of these four scenarios facilitates comparison of the existing vegetation structure of each site with the corresponding counterfactual scenarios. By varying the model inputs of vegetation present at each site while holding the environmental conditions and site-specific parameters consistent, we are able to directly compare thermodynamic outcomes as a result of varying vegetation structure and determine whether the counterfactual scenario with the simulated forest is thermodynamically feasible. Model performance was judged based on comparison to observed heat fluxes, such as latent and sensible heat (see Supplementary Material, Figs. S1–S3). As detailed below, the analysis supports the conclusion that thermodynamic feasibility is an important and complementary condition to the usual considerations of resource availability, such as water and nutrients, which determines the organizing form and function of ecosystems. More

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More

  • in

    Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa

    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. https://doi.org/10.1111/jeu.12691 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A. Amoebas, Lobose. In Encyclopedia of Microbiology (ed. Schaechter, M.) 191–212 (Elsevier, 2012).
    Google Scholar 
    Schaeffer, A. A. Taxonomy of the Amoebas: With Descriptions of Thirty-Nine New Marine and Freshwater Species (Carnegie Inst, 1926).
    Google Scholar 
    Page, F. C. The classification of “naked” amoebae (Phylum Rhizopoda). Arch. Protistenkd. 133, 199–217. https://doi.org/10.1016/S0003-9365(87)80053-2 (1987).Article 

    Google Scholar 
    Page, F. C. A New Key to Freshwater and Soil Gymnamoebae (Freshwater Biological Association, 1988).
    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. An illustrated list of basic morphotypes of Gymnamoebia (Rhizopoda, Lobosea). Protistology 1, 20–29 (1999).
    Google Scholar 
    Smirnov, A. V. & Brown, S. Guide to the methods of study and identification of soil gymnamoebae. Protistology 3, 148–190 (2004).
    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy of Sarcodina. II. The organization of subclasses and orders in relationship to the classes Autotractea and Hydraulea. Am. Midland Nat. 73, 293–298. https://doi.org/10.2307/2423456 (1965).Article 

    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy or sarcodina. III. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst. Zool. 15, 229–240. https://doi.org/10.2307/sysbio/15.3.229 (1966).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bovee, E.C. & Sawyer, T.K. Marine Flora and Fauna of the Northeastern United States. Protozoa: Sarcodina: Amoebae. (NOAA Technical Report, 1979). https://doi.org/10.5962/bhl.title.63225.Jahn, T. L. & Bovee, E. C. Mechanisms of movement in taxonomy of Sarcodina. I. As a basis for a new major dichotomy into two classes, Autotractea and Hydraulea. Am. Midl. Nat. 73, 30–40. https://doi.org/10.2307/2423319 (1965).Article 

    Google Scholar 
    Jahn, T. L., Bovee, E. C. & Griffith, D. L. Taxonomy and evolution of the Sarcodina: A reclassification. Taxon 23, 483–496. https://doi.org/10.2307/1218771 (1974).Article 

    Google Scholar 
    Cavalier-Smith, T., Chao, E.E.-Y. & Oates, B. Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur. J. Protistol. 40, 21–48. https://doi.org/10.1016/j.ejop.2003.10.001 (2004).Article 

    Google Scholar 
    Smirnov, A. et al. Molecular phylogeny and classification of the lobose amoebae. Protist 156, 129–142. https://doi.org/10.1016/j.protis.2005.06.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amaral Zettler, L. A. et al. A molecular reassessment of the leptomyxid amoebae. Protist 151, 275–282. https://doi.org/10.1078/1434-4610-00025 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolivar, I., Fahrni, J. F., Smirnov, A. & Pawlowski, J. SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): The origin of gymnamoebae revisited. Mol. Biol. Evol. 18, 2306–2314. https://doi.org/10.1093/oxfordjournals.molbev.a003777 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fahrni, J. F. et al. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol. Biol. Evol. 20, 1881–1886. https://doi.org/10.1093/molbev/msg201 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T. et al. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83, 293–304. https://doi.org/10.1016/j.ympev.2014.08.011 (2015).Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T., Chao, E. E. & Lewis, R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99, 275–296. https://doi.org/10.1016/j.ympev.2016.03.023 (2016).Article 
    PubMed 

    Google Scholar 
    Kang, S. et al. Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34, 2258–2270. https://doi.org/10.1093/molbev/msx162 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tekle, Y. I. & Wood, F. C. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol. Phylogenet. Evol. 114, 249–260. https://doi.org/10.1016/j.ympev.2017.06.019 (2017).Article 
    PubMed 

    Google Scholar 
    Tekle, Y. I., Wang, F., Wood, F. C., Anderson, O. R. & Smirnov, A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. bioRxiv https://doi.org/10.1101/2022.02.28.482369 (2022).Article 

    Google Scholar 
    Van Wichelen, J. et al. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium microcystis. Acta Protozool. 55, 61–87. https://doi.org/10.4467/16890027AP.16.007.4942 (2016).Article 

    Google Scholar 
    Janicki, C. Paramoebenstudien (P. pigmentifera Grassi und P. chaetognathi Grassi). Z. Wiss. Zool. 103, 449–518 (1912).
    Google Scholar 
    Volkova, E. & Kudryavtsev, A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953—an amoebozoan parasite of arrow-worms (Chaetognatha). Int. J. Syst. Evol. Microbiol. 71, 005094. https://doi.org/10.1099/ijsem.0.005094 (2021).CAS 
    Article 

    Google Scholar 
    Page, F. C. Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J. Protozool. 14, 499–521 (1967).CAS 
    Article 

    Google Scholar 
    Page, F. C. & Blanton, R. L. The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21, 121–132 (1985).
    Google Scholar 
    Laurin, V., Labbé, N., Parent, S., Juteau, P. & Villemur, R. Microeukaryote diversity in a marine methanol-fed fluidized denitrification system. Microb. Ecol. 56, 637–648. https://doi.org/10.1007/s00248-008-9383-x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Page, F. C. A further study of taxonomic criteria for limax amoebae, with descriptions of new species and a key to genera. Arch. Protistenkd. 116, 149–184 (1974).
    Google Scholar 
    Page, F. C. Marine Gymnamoebae (Institute of Terrestrial Ecology, 1983).
    Google Scholar 
    Page, F. C. A light- and electron-microscopical comparison of limax and flabellate marine amoebae belonging to four genera. Protistologica 16, 57–78 (1980).
    Google Scholar 
    Kuiper, M. W. et al. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Environ. Microbiol. 72, 5750–5756. https://doi.org/10.1128/AEM.00085-06 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A., Chao, E., Nassonova, E. & Cavalier-Smith, T. A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162, 545–570. https://doi.org/10.1016/j.protis.2011.04.004 (2011).Article 
    PubMed 

    Google Scholar 
    Page, F. C. & Blakey, S. M. Cell surface structure as a taxonomic character in the Thecamoebidae (Protozoa: Gymnamoebia). Zool. J. Linn. Soc. 66, 113–135. https://doi.org/10.1111/j.1096-3642.1979.tb01905.x (1979).Article 

    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. Paradermamoeba valamo gen. n., sp. n. (Gymnamoebia, Thecamoebidae)—a freshwater amoeba from bottom sediments. Zool. Zhurn. 72, 5–11 (1993) (In Russian with English summary).
    Google Scholar 
    Smirnov, A. & Goodkov, A. Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae). Eur. J. Protistol. 40, 113–118. https://doi.org/10.1016/j.ejop.2003.12.001 (2004).Article 

    Google Scholar 
    Smirnov, A. V., Bedjagina, O. M. & Goodkov, A. V. Dermamoeba algensis n sp (Amoebozoa, Dermamoebidae)—an algivorous lobose amoeba with complex cell coat and unusual feeding mode. Eur. J. Protistol. 47, 67–78. https://doi.org/10.1016/j.ejop.2010.12.002 (2011).Article 
    PubMed 

    Google Scholar 
    Bailey, G. B., Day, D. B. & McCoomer, N. E. Entamoeba motility: Dynamics of cytoplasmic streaming, locomotion and translocation of surface-bound particles, and organization of the actin cytoskeleton in Entamoeba invadens. J. Protozool. 39, 267–272. https://doi.org/10.1111/j.1550-7408.1992.tb01313.x (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shiratori, T. & Ishida, K. I. Entamoeba marina n. sp.; a new species of Entamoeba isolated from tidal flat sediment of Iriomote Island, Okinawa, Japan. J. Eukaryot. Microbiol. 63, 280–286. https://doi.org/10.1111/jeu.12276 (2016).Article 
    PubMed 

    Google Scholar 
    Lahr, D. J., Laughinghouse, H. D. IV., Oliverio, A. M., Gao, F. & Katz, L. A. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. BioEssays 36, 950–959. https://doi.org/10.1002/bies.201400056 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pomorski, P. et al. Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41. https://doi.org/10.1007/s00709-007-0243-1 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rogerson, A., Anderson, O. R. & Vogel, C. Are planktonic naked amoebae predominately floc associated or free in the water column?. J. Plankton Res. 25, 1359–1365. https://doi.org/10.1093/plankt/fbg102 (2003).Article 

    Google Scholar 
    Kudryavtsev, A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur. J. Protistol. 50, 258–269. https://doi.org/10.1016/j.ejop.2013.12.004 (2014).Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A., Völcker, E., Clauß, S. & Pawlowski, J. Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa). Int. J. Sys. Evol. Microbiol. 71, 004737. https://doi.org/10.1099/ijsem.0.004737 (2021).CAS 
    Article 

    Google Scholar 
    Blandenier, Q. et al. Mycamoeba gemmipara nov. gen., nov. sp., the first cultured member of the environmental Dermamoebidae clade LKM74 and its unusual life cycle. J. Eukaryot. Microbiol. 64, 257–265. https://doi.org/10.1111/jeu.12357 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A. & Volkova, E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur. J. Protistol. 73, 125685. https://doi.org/10.1016/j.ejop.2020.125685 (2020).Article 
    PubMed 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, 1982).
    Google Scholar 
    Kudryavtsev, A. & Pawlowski, J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur. J. Protistol. 51, 197–209. https://doi.org/10.1016/j.ejop.2015.04.002 (2015).Article 
    PubMed 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71, 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yoon, H. S. et al. Broadly sampled multigene trees of eukaryotes. BMC Evol. Biol. 8, 14. https://doi.org/10.1186/1471-2148-8-14 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In Multiple Sequence Alignment. Methods in Molecular Biology (ed. Katoh, K.) 241–260 (Humana, 2021). https://doi.org/10.1007/978-1-0716-1036-7_15.Chapter 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ronquist, F. et al. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320. https://doi.org/10.1093/molbev/msn067 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More