More stories

  • in

    Factors associated with the differential distribution of cetaceans linked with deep habitats in the Western Mediterranean Sea

    Panigada, S., Lauriano, G., Burt, L., Pierantonio, N. & Donovan, G. Monitoring winter and summer abundance of cetaceans in the Pelagos Sanctuary (northwestern Mediterranean Sea) through aerial surveys. PLoS One 6, e22878 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moura, A. E., Sillero, N. & Rodrigues, A. Common dolphin (Delphinus delphis) habitat preferences using data from two platforms of opportunity. Acta Oecol. 38, 24–32 (2012).ADS 
    Article 

    Google Scholar 
    Rendell, L. et al. Abundance and movements of sperm whales in the western Mediterranean basin. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 31–40 (2014).Article 

    Google Scholar 
    Schipper, J. et al. The status of the world’s land and marine mammals: Diversity. Threat Knowl. 322, 225–230 (2008).CAS 

    Google Scholar 
    Luksenburg, J. A. & Parsons, E. C. M. Attitudes towards marine mammal conservation issues before the introduction of whale-watching: A case study in Aruba (southern Caribbean). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 135–146 (2014).Article 

    Google Scholar 
    Erbe, C. et al. Managing the effects of noise from ship traffic, seismic surveying and construction on marine mammals in Antarctica. Front. Mar. Sci. 6, 25 (2019).Article 

    Google Scholar 
    Wurtz, M. & Simard, F. Following the food chain- an ecosystem approach to pelagic protected areas in the Mediterranean by means of cetacean presence. Rapp. Comm. Int. Mer Médit 38, 634 (2007).
    Google Scholar 
    Bǎnaru, D. et al. Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts. J. Mar. Syst. 111–112, 45–68 (2013).Article 

    Google Scholar 
    Moore, S. E. Marine mammals as ecosystem sentinels. J. Mammal. 89, 534–540 (2008).Article 

    Google Scholar 
    Hooker, S. K. & Gerber, L. R. Marine reserves as a tool for ecosystem-based management: The potential importance of Megafauna. Bioscience 54, 27–39 (2004).Article 

    Google Scholar 
    Burek, K. A., Gulland, F. M. D. & O’Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).PubMed 
    Article 

    Google Scholar 
    Laran, S. et al. Seasonal distribution and abundance of cetaceans within French waters—Part I: The North-Western Mediterranean, including the Pelagos sanctuary. Deep. Res. Part II Top. Stud. Oceanogr. 141, 20–30 (2017).ADS 
    Article 

    Google Scholar 
    Arranz, P. et al. Diving behavior and fine-scale kinematics of free-ranging Risso’s dolphins foraging in shallow and deep-water habitats. Front. Ecol. Evol. 7, 1–15 (2019).Article 

    Google Scholar 
    Praca, E. & Gannier, A. Ecological niche of three teuthophageous odontocetes in the northwestern Mediterranean Sea. Ocean Sci. Discuss. 4, 785–815 (2008).ADS 

    Google Scholar 
    Tepsich, P., Rosso, M., Halpin, P. N. & Moulins, A. Habitat preferences of two deep-diving cetacean species in the northern Ligurian Sea. Mar. Ecol. Prog. Ser. 508, 247–260 (2014).ADS 
    Article 

    Google Scholar 
    Gannier, A., Drouot, V. & Goold, J. C. Distribution and relative abundance of sperm whales in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 243, 281–293 (2002).ADS 
    Article 

    Google Scholar 
    Gannier, A. & Praca, E. SST fronts and the summer sperm whale distribution in the north-west Mediterranean Sea. J. Mar. Biol. Assoc. UK 87, 187–193 (2007).Article 

    Google Scholar 
    Azzellino, A. et al. Predictive habitat models for managing marine areas: Spatial and temporal distribution of marine mammals within the Pelagos Sanctuary (Northwestern Mediterranean sea). Ocean Coast. Manage. 67, 63–74 (2012).Article 

    Google Scholar 
    de Stephanis, R., Giménez, J., Carpinelli, E., Gutierrez-Exposito, C. & Cañadas, A. As main meal for sperm whales: Plastics debris. Mar. Pollut. Bull. 69, 206–214 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Notarbartolo-Di-Sciara, G. Sperm whales, Physeter macrocephalus, in the Mediterranean Sea: A summary of status, threats, and conservation recommendations. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 4–10 (2014).Article 

    Google Scholar 
    Laran, S. & Drouot-dulau, V. Seasonal variation of striped dolphins , fin- and sperm whales ’ abundance in the Ligurian Sea (Mediterranean Sea). 345–352 (2007). https://doi.org/10.1017/S0025315407054719.Notarbartolo-Di-Sciara, G., Agardy, T., Hyrenbach, D., Scovazzi, T. & Van Klaveren, P. The Pelagos Sanctuary for Mediterranean marine mammals. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 367–391 (2008).Article 

    Google Scholar 
    Azzellino, A., Gaspari, S., Airoldi, S. & Nani, B. Habitat use and preferences of cetaceans along the continental slope and the adjacent pelagic waters in the western Ligurian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 55, 296–323 (2008).ADS 
    Article 

    Google Scholar 
    Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E. & Hammond, P. S. Habitat preference modelling as a conservation tool: Proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 495–521 (2005).Article 

    Google Scholar 
    Cañadas, A. & Vázquez, J. A. Conserving Cuvier’s beaked whales in the Alboran Sea (SW Mediterranean): Identification of high density areas to be avoided by intense man-made sound. Biol. Conserv. 178, 155–162 (2014).Article 

    Google Scholar 
    Lewis, T. et al. Sperm whale abundance estimates from acoustic surveys of the Ionian Sea and Straits of Sicily in 2003. J. Mar. Biol. Assoc. UK 87, 353 (2007).Article 

    Google Scholar 
    Caruso, F. et al. Size distribution of sperm whales acoustically identified during long term deep-sea monitoring in the Ionian Sea. PLoS One 10, e0144503 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Frantzis, A., Leaper, R., Alexiadou, P., Prospathopoulos, A. & Lekkas, D. Shipping routes through core habitat of endangered sperm whales along the Hellenic Trench, Greece: Can we reduce collision risks?. PLoS One 14, 1–21 (2019).
    Google Scholar 
    Pirotta, E., Matthiopoulos, J., Mackenzie, M., Scott-hayward, L. & Rendell, L. Modelling sperm whale habitat preference: A novel approach combining transect and follow data. Mar. Ecol. Prog. Ser. 436, 257–272 (2011).ADS 
    Article 

    Google Scholar 
    Mussi, B., Miragliuolo, A., Zucchini, A. & Pace, D. S. Occurrence and spatio-temporal distribution of sperm whale (Physeter macrocephalus) in the submarine canyon of Cuma (Tyrrhenian Sea, Italy). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 59–70 (2014).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Carlucci, R. et al. Residency patterns and site fidelity of Grampus griseus (Cuvier, 1812) in the Gulf of Taranto (Northern Ionian Sea, Central-Eastern Mediterranean Sea). Mammal Res. https://doi.org/10.1007/s13364-020-00485-z (2020).Article 

    Google Scholar 
    Cañadas, A. et al. The challenge of habitat modelling for threatened low density species using heterogeneous data: The case of Cuvier’s beaked whales in the Mediterranean. Ecol. Indic. 85, 128–136 (2018).Article 

    Google Scholar 
    Aïssi, M., Ouammi, A., Fiori, C. & Alessi, J. Modelling predicted sperm whale habitat in the central Mediterranean Sea: Requirement for protection beyond the Pelagos Sanctuary boundaries. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 50–58 (2014).Article 

    Google Scholar 
    Taylor, B. L. et al. Physeter macrocephalus, sperm whale (Amended version). IUCN Red List Threat. Species 8235, 1–17 (2019).
    Google Scholar 
    Notarbartolo Di Sciara, G., Frantzis, A., Bearzi, G. & Reeves, R. R. Physeter macrocephalus (Mediterranean subpopulation). IUCN Red List Threat. Species 2012 8235, e.T16370739A16370477 (2012).Notarbartolo di Sciara, G. & Birkun, A. J. Conserving whales, dolophins and porpoises in the Mediterranean and Black Seas. (2010).Kiszka, J. & Braulik, G. Grampus griseus. IUCN Red List Threat. Species 2018 8235, e.T9461A50356660 (2018).Gaspari, S. & Natoli, A. Grampus griseus (Mediterranean subpopulation). IUCN Red List Threat. Species 2012 e.T16378423A16378453 8235, 10 (2012).Baird, R. W., Brownell, R. L. Jr. & Taylor, B. L. Ziphius cavirostris. The IUCN Red List of Threatened Species. Popul. (English Ed.) 8235, 1–3 (2020).
    Google Scholar 
    Canadas, A. Ziphius cavirostris (Mediterranean subpopulation). IUCN Red List Threat. Species Version 20 (2012).Drouot, V. et al. A note on genetic isolation of Mediterranean sperm whales (Physeter macrocephalus) suggested by mitochondrial DNA. J. Cetacean Res. Manage. 6, 29–32 (2004).
    Google Scholar 
    Engelhaupt, D. et al. Female philopatry in coastal basins and male dispersion across the North Atlantic in a highly mobile marine species, the sperm whale (Physeter macrocephalus). Mol. Ecol https://doi.org/10.1111/j.1365-294X.2009.04355.x (2009).Article 
    PubMed 

    Google Scholar 
    Lewis, T. et al. Abundance estimates for sperm whales in the Mediterranean Sea from acoustic line-transect surveys. J. Cetacean Res. Manage. 18, 103–117 (2018).
    Google Scholar 
    Rendell, L. & Frantzis, A. Mediterranean Sperm Whales, Physeter macrocephalus: The Precarious State of a Lost Tribe. In Advances in Marine Biology, Vol 75 (ed. Sad, D.) (Elsevier, 2016).
    Google Scholar 
    Alessi, J., Aïssi, M. & Fiori, C. Photo-identification of sperm whales in the north-western Mediterranean Sea: An assessment of natural markings. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 11–22 (2014).Article 

    Google Scholar 
    Blanco, C., Raduán, M. Á. & Raga, J. A. Diet of Risso’s dolphin (Grampus griseus) in the western Mediterranean Sea. Sci. Mar. 70, 407–411 (2006).Article 

    Google Scholar 
    Jefferson, T. A. et al. Global distribution of Risso’s dolphin Grampus griseus: A review and critical evaluation. Mamm. Rev. 44, 56–68 (2014).Article 

    Google Scholar 
    Gaspari, S. & Natoli, A. Grampus griseus, Risso’s dolphin. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/es/species/9461/3151471 (2012).Macias Lopez, D., Garcia Barcelona, S., Baez, J. C., De La Serna, J. M. & Ortizde Urbina, J. M. Marine mammal bycatch in Spanish Mediterranean large pelagic longline fisheries, with a focus on Risso’s dolphin (Grampus griseus). Aquat. Liv. Resour. 331, 321–331 (2012).Article 

    Google Scholar 
    Zucca, P. et al. Causes of stranding in four Risso’s dolphins (Grampus griseus) found beached along the North Adriatic Sea coast. Vet. Res. Commun. 29, 261–264 (2005).PubMed 
    Article 

    Google Scholar 
    Alexiadou, P., Foskolos, I. & Frantzis, A. Ingestion of macroplastics by odontocetes of the Greek Seas, Eastern Mediterranean: Often deadly!. Mar. Pollut. Bull. 146, 67–75 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jepson, P. D. et al. Gas-bubble lesions in stranded cetaceans. Nature 425, 575–576 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 3126 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Báez, J., Estrada, A., Torreblanca, D. & Real, R. Predicting the distribution of cryptic species: The case of the spur-thighed tortoise in Andalusia (southern Iberian Peninsula). Biodivers. Conserv. 20, 65–78. https://doi.org/10.1007/s10531-011-0164-3 (2012).Article 

    Google Scholar 
    Torreblanca, E. et al. Using opportunistic sightings to infer differential spatio-temporal use of western mediterranean waters by the fin whale. PeerJ 2019, 1–20 (2019).
    Google Scholar 
    Russo, D., Sgammato, R. & Bosso, L. First sighting of the humpback whale Megaptera novaeangliae in the Tyrrhenian Sea and a mini-review of Mediterranean records. Hystrix Ital. J. Mammal. 27, 219–221 (2016).
    Google Scholar 
    Esteban, R. et al. Identifying key habitat and seasonal patterns of a critically endangered population of killer whales. J. Mar. Biol. Assoc. UK 94, 1317–1325 (2014).Article 

    Google Scholar 
    Folkens, P. & Reeves, R. Guide to Marine Mammals of the World (Knopf, 2005).
    Google Scholar 
    Real, R., Barbosa, A. M. & Vargas, J. M. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13, 237–245 (2006).MathSciNet 
    Article 

    Google Scholar 
    MacNally, R. Regression and model-building in conservation biology, biogeography and ecology: The distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers. Conserv. 20, 655–671. https://doi.org/10.1103/PhysRevD.66.085018 (2000).CAS 
    Article 

    Google Scholar 
    Real, R., Márcia Barbosa, A. & Bull, J. W. Species distributions, quantum theory, and the enhancement of biodiversity measures. Syst. Biol. 66, 453–462 (2017).PubMed 

    Google Scholar 
    Praca, E., Gannier, A., Das, K. & Laran, S. Modelling the habitat suitability of cetaceans: Example of the sperm whale in the northwestern Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 648–657 (2009).ADS 
    Article 

    Google Scholar 
    Boisseau, O. et al. Encounter rates of cetaceans in the Mediterranean Sea and contiguous Atlantic area. J. Mar. Biol. Assoc. UK 90, 1589–1599 (2010).Article 

    Google Scholar 
    Hamazaki, T. Spatiotemporal prediction models of cetacean habitats in the mid-western North Atlantic Ocean (from Cape Hatteras, North Carolina, USA to Nova Scotia, Canada). Mar. Mammal Sci. 18, 920–939 (2002).Article 

    Google Scholar 
    Cañadas, A., Sagarminaga, R. & Garcıa-Tiscar, S. Cetacean distribution related with depth and slope in the Mediterranean waters off southern Spain. Deep Sea Res. Part I 49, 2053–2073 (2002).Article 

    Google Scholar 
    Fiori, C., Giancardo, L., Aïssi, M., Alessi, J. & Vassallo, P. Geostatistical modelling of spatial distribution of sperm whales in the Pelagos Sanctuary based on sparse count data and heterogeneous observations. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 41–49 (2014).Article 

    Google Scholar 
    Pikesley, S. K. Cetacean sightings and strandings: Evidence for spatial and temporal trends?. J. Mar. Biol. Assoc. UK 92, 1809–1820 (2012).Article 

    Google Scholar 
    O’Reilly, J. E. et al. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 103, 24937–24953 (1998).ADS 
    Article 

    Google Scholar 
    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).ADS 
    Article 

    Google Scholar 
    Romero, J. & Real, R. Macroenvironmental factors as ultimate determinants of distribution of common toad and natterjack toad in the south of Spain. Ecography (Cop.) 20, 305–312 (1996).Article 

    Google Scholar 
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression 2nd edn. (Wiley, 2000).MATH 
    Book 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier BV, New York, 1998).MATH 

    Google Scholar 
    Peng, C.-Y.J., Lee, K. L. & Ingersoll, G. M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 96, 3–14 (2002).Article 

    Google Scholar 
    Acevedo, P., Ward, A. I., Real, R. & Smith, G. C. Assessing biogeographical relationships of ecologically related species using favourability functions: A case study on British deer. Divers. Distrib. 16, 515–528 (2010).Article 

    Google Scholar 
    Zhang, Y., Tang, J., Ren, G., Zhao, K. & Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 11, 1–10 (2021).Article 
    CAS 

    Google Scholar 
    Ancillotto, L. et al. An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecol. Evol. 10, 5785–5800 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Akaike. Information theory and an extension of the maximum likelihood principle. 199–213 (1929). More

  • in

    Post-foraging in-colony behaviour of a central-place foraging seabird

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotler, B. P., Brown, J. S. & Bouskila, A. Apprehension and time allocation in gerbils: The effects of predatory risk and energetic state. Ecology 85, 917–922 (2004).Article 

    Google Scholar 
    Wajnberg, E., Bernhard, P., Hamelin, F. & Boivin, G. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60, 1–10 (2006).Article 

    Google Scholar 
    Embar, K., Kotler, B. P. & Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 120, 1657–1666 (2011).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Beauchamp, G. & Ruxton, G. D. A reassessment of the predation risk allocation hypothesis: A comment on Lima and Bednekoff. Am. Nat. 177, 143–146 (2011).PubMed 
    Article 

    Google Scholar 
    Ferrari, M. C. O., Sih, A. & Chivers, D. P. The paradox of risk allocation: A review and prospectus. Anim. Behav. 78, 579–585 (2009).Article 

    Google Scholar 
    Wolf, L. L. & Hainsworth, F. R. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128 (1975).Article 

    Google Scholar 
    Litzow, M. A. & Piatt, J. F. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba. J. Avian Biol. 34, 54–64 (2003).Article 

    Google Scholar 
    Rishworth, G. M., Tremblay, Y. & Green, D. B. Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9, e116544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology. (The University of Chicago Press, 2007).Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Systems (eds. Horn, D., Mitchell, R. & Stairs, G.) 154–177 (The Ohio State University Press, 1979).Chaurand, T. & Weimerskirch, H. The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: A previously undescribed strategy of food provisioning in a pelagic seabird. J. Anim. Ecol. 63, 275–282 (1994).Article 

    Google Scholar 
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. 23, 1372–1378 (2012).Article 

    Google Scholar 
    Welcker, J. et al. Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J. Avian Biol. 40, 388–399 (2009).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M. & Kidawa, D. Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci. Rep. https://doi.org/10.1038/s41598-020-65210-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shoji, A. et al. Dual foraging and pair coordination during chick provisioning by Manx shearwaters: Empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, R. A., Wakefield, E. D., Croxall, J. P., Fukuda, A. & Higuchi, H. Albatross foraging behaviour: No evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar. Ecol. Prog. Ser. 391, 279–292 (2009).ADS 
    Article 

    Google Scholar 
    Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W. & Karnovsky, N. J. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. J. Avian Biol. 43, 215–226 (2012).Article 

    Google Scholar 
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: Does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 
    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ochi, D., Oka, N. & Watanuki, Y. Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J. Ethol. 28, 313–321 (2010).Article 

    Google Scholar 
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).ADS 
    Article 

    Google Scholar 
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).ADS 
    Article 

    Google Scholar 
    Weimerskirch, H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J. Anim. Ecol. 67, 99–109 (1998).Article 

    Google Scholar 
    Stempniewicz, L. BWP update. Little Auk (Alle alle). J. Birds West. Palearct. 3, 175–201 (2001).
    Google Scholar 
    Wojczulanis-Jakubas, K. & Jakubas, D. When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle Alle). Auk 129, 632–637 (2012).Article 

    Google Scholar 
    Harding, A. M. A., Van Pelt, T. I., Lifjeld, J. T. & Mehlum, F. Sex differences in little auk Alle alle parental care: Transition from biparental to paternal-only care. Ibis (Lond. 1859). 146, 642–651 (2004).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K. et al. Duration of female parental care and their survival in the little auk Alle alle—Are these two traits linked ?. Behav. Ecol. Sociobiol. 74, 1–11 (2020).Article 

    Google Scholar 
    Wojczulanis, K., Dariusz, J. & Lech, S. The Little Auk Alle alle: An ecological indicator of a changing Arctic and a model organism. Polar Biol. https://doi.org/10.1007/s00300-021-02981-7 (2021).Article 

    Google Scholar 
    Steen, H., Vogedes, D., Broms, F., Falk-Petersen, S. & Berge, J. Little auks (Alle alle) breeding in a High Arctic fjord system: Bimodal foraging strategies as a response to poor food quality?. Polar Res. 26, 118–125 (2007).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D., Karnovsky, N. J. & Walkusz, W. Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res. 29, 22–29 (2010).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L., Darecki, M. & Stempniewicz, L. Foraging strategy of the little auk Alle alle throughout breeding season—switch from unimodal to bimodal pattern. J. Avian Biol. 45, 551–560 (2014).Article 

    Google Scholar 
    Jakubas, D., Iliszko, L., Wojczulanis-Jakubas, K. & Stempniewicz, L. Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol. 35, 73–81 (2012).Article 

    Google Scholar 
    Jakubas, D. et al. Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol. 391, 1547–1561 (2016).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 
    Article 

    Google Scholar 
    Stempniewicz, L. Predator-prey interactions between Glaucous Gull Larus hyperboreus and Little Auk Alle alle in Spitsbergen. Acta Ornithol. 29, 155–170 (1995).
    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Changes in the glaucous gull predatory pressure on little auks in Southwest Spitsbergen. Waterbirds 28, 430–435 (2005).Article 

    Google Scholar 
    Kharitonov, S. Methods and Theoretical Aspects of Seabird Studies. (Proc 5 All-Russian Mar Biol School, Marine Biological Institute, 2007).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Avifauna of Hornsund area, SW Spitsbergen: Present state and recent changes. Polish Polar Res. 29, 187–197 (2008).
    Google Scholar 
    Keslinka, K. L., Wojczulanis-Jakubas, K., Jakubas, D. & Neubauer, G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 14, 1–20 (2019).
    Google Scholar 
    Kidawa, D., Barcikowski, M. & Palme, R. Parent-offspring interactions in a long-lived seabird, the Little Auk (Alle alle): Begging and provisioning under simulated stress. J. Ornithol. 158, 145–157 (2017).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. https://doi.org/10.1093/beheco/ars131 (2012).Article 

    Google Scholar 
    Jakubas, D. & Wojczulanis, K. Predicting the sex of Dovekies by discriminant analysis. Waterbirds 30, 92–96 (2007).Article 

    Google Scholar 
    Grissot, A. et al. Parental coordination of chick provisioning in a planktivorous arctic seabird under divergent conditions on foraging grounds. Front. Ecol. Evol. 7, 349 (2019).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R. (2019).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Sex-specific parental care by incubating Little Auks (Alle alle). Ornis Fenn. 86, 140–148 (2009).
    Google Scholar 
    Welcker, J., Steen, H., Harding, A. M. A. & Gabrielsen, G. W. Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis (Lond. 1859). 151, 502–513 (2009).Article 

    Google Scholar 
    Kidawa, D. et al. Parental efforts of an Arctic seabird, the little auk Alle alle under variable foraging conditions. Mar. Biol. Res. 11, 349–360 (2015).Article 

    Google Scholar 
    Wickham, H. Hadley Wickham. Media 35, 211 (2009).
    Google Scholar 
    Karnovsky, N. J. et al. Inter-colony comparison of diving behavior of an Arctic top predator: Implications for warming in the Greenland Sea. Mar. Ecol. Prog. Ser. 440, 229–240 (2011).ADS 
    Article 

    Google Scholar 
    Karnovsky, N. et al. Foraging distributions of little auks Alle alle across the Greenland Sea: Implications of present and future Arctic climate change. Mar. Ecol. Prog. Ser. 415, 283–293 (2010).ADS 
    Article 

    Google Scholar 
    Gremillet, D. et al. Little auks buffer the impact of current Arctic climate change. Mar. Ecol. Prog. Ser. 454, 197–206 (2012).ADS 
    Article 

    Google Scholar 
    Harding, A. M. A. et al. Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23, 348–358 (2009).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging effort does not influence body condition and stress level in little auks. Mar. Ecol. Prog. Ser. 432, 277–290 (2011).ADS 
    Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M., Strøm, H. & Stempniewicz, L. Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change

    El Bilali, H., Callenius, C., Strassner, C. & Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8, e00154 (2019).Article 

    Google Scholar 
    De Raymond, A. B. & Goulet, F. Science, technology and food security: An introduction. Sci. Technol. Soc. 25, 7–18 (2020).Article 

    Google Scholar 
    Wang, C. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).Article 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verger, P. J. P. & Boobis, A. R. Reevaluate pesticides for food security and safety. Science 341, 717–718 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Humann‐Guilleminot, S. et al. A nation‐wide survey of neonicotinoid insecticides in agricultural land with implications for agri‐environment schemes. J. Appl. Ecol. 56, 1502–1514 (2019).Article 
    CAS 

    Google Scholar 
    Haynes, K. J., Allstadt, A. J. & Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 20, 2004–2018 (2014).Article 

    Google Scholar 
    Sheppard, L., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Change 6, 610–613 (2016).Article 

    Google Scholar 
    Skendžić, S. et al. The impact of climate change on agricultural insect pests. Insects 12, 440 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    WASDE. World Agricultural Supply and Demand Estimates 1554–9089 (World Agricultural Outlook Board, 2012).FAOSTAT. Food and agriculture organisation of the United Nations. http://faostat.fao.org/ (2018).Bellard, C. et al. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).PubMed 
    Article 

    Google Scholar 
    Stephane, A. P., Derocles, D. H., Lunt Sophie, C. F. & Moss., B. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Mol. Ecol. 27, 4931–4946 (2018).Article 

    Google Scholar 
    Nechols, J. R. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. Bio. Control 66, 37–44 (2021).
    Google Scholar 
    Tian, B. et al. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. Pest Manag. Sci. 75, 466–475 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Zhao, F., Zhang, W., Hoffmann, A. A. & Ma, C. Night warming on hot days produces novel impacts on development, survival, and reproduction in a small arthropod. J. Anim. Ecol. 83, 769–778 (2014).PubMed 
    Article 

    Google Scholar 
    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).Article 

    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gagic, V. et al. Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, 1–6 (2021).Article 
    CAS 

    Google Scholar 
    Paredes, D. et al. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 24, 73–83 (2021).PubMed 
    Article 

    Google Scholar 
    Brattsten, L. B., Holyoke, C. W., Leeper, J. R. & Raffa, K. F. Insecticide resistance: Challenge to pest management and basic research. Science 231, 1255–1260 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddi, K. et al. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 76, 2286–2293 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gould, F., Brown, Z. S. & Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, N. et al. Transcriptome analysis and identification of insecticide tolerance-related genes after exposure to insecticide in Sitobion avenae. Genes 1012, 951 (2019).Article 
    CAS 

    Google Scholar 
    Gong, X. et al. Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere 269, 128687 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain 1, 361–368 (2018).Article 

    Google Scholar 
    Lu, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed 
    Article 

    Google Scholar 
    Baillod, A. B., Tscharntke, T., Clough, Y. & Batary, P. Landscape‐scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J. Appl. Ecol. 54, 1804–1813 (2017).Article 

    Google Scholar 
    Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20, 1427–1436 (2017).PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc. Natl Acad. Sci. USA 115, 700–7709 (2018).
    Google Scholar 
    Horgan, F. G. et al. Population development of rice black bug, Scotinophara latiuscula (Breddin), under varying nitrogen in a field experiment. Entomol. Gen. 37, 19–33 (2018).Article 

    Google Scholar 
    Butler, J., Garratt, M., & Leather, S. Fertilisers and insect herbivores: A meta‐analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article 

    Google Scholar 
    Aqueel, M. A. et al. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. Insect Sci. 21, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579 (2011).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macfadyen, S. et al. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol. Lett. 12, 229–238 (2009).PubMed 
    Article 

    Google Scholar 
    Liu, J., Ning, J., Kuang, W. & Xu, X. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 73, 789–802 (2018).
    Google Scholar 
    Ma, C., Ma, G. & Zhao, F. Impact of global warming on cereal aphids. Chin. J. Appl. Entomol. 51, 1435–1443 (2014).
    Google Scholar 
    Han, Z. et al. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Manag. Sci. 75, 3252–3259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long‐term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).Article 

    Google Scholar 
    Xiao, H. et al. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117–125 (2017).Article 

    Google Scholar 
    Senior, V. L. et al. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study. Glob. Change Biol. 26, 2814–2828 (2020).Article 

    Google Scholar 
    Chiu, M. C., Chen, Y. H. & Kuo, M. H. The effect of experimental warming on a low‐latitude aphid, Myzus varians. Entomol. Exp. Appl. 142, 216–222 (2012).Article 

    Google Scholar 
    Adler, L. S., De Valpine, P., Harte, J. & Call, J. Effects of long-term experimental warming on aphid density in the field. J. Kans. Entomol. Soc. 80, 156–169 (2007).Article 

    Google Scholar 
    Clement, S. L., Husebye, D. S. & Eigenbrode, S. D. Aphid Biodiversity under Environmental Change 107–129 (Springer, 2010).Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos. T. Roy. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur. J. Entomol. 105, 369–380 (2013).Article 

    Google Scholar 
    Sigsgaard, L. A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids’ role in biological control. J. Appl. Entomol. 126, 101–107 (2002).Article 

    Google Scholar 
    Diehl, E., Sereda, E., Wolters, V. & Birkhofer, K. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J. Appl. Ecol. 50, 262–270 (2013).Article 

    Google Scholar 
    Hopper, K. R. et al. Natural enemy impact on the abundance of Diuraphis noxia (Homoptera: Aphididae) in wheat in Southern France. Environ. Entomol. 24, 402–408 (1995).Article 

    Google Scholar 
    Latham, D. R. & Mills, N. J. Quantifying aphid predation: The mealy plum aphid Hyalopterus pruni in California as a case study. J. Appl. Ecol. 47, 200–208 (2010).Article 

    Google Scholar 
    Östman, Ö., Ekbom, B. & Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45, 149–158 (2003).Article 

    Google Scholar 
    Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid control. Ecology 84, 91–107 (2003).Article 

    Google Scholar 
    Freier, B., Triltsch, H., Möwes, M. & Moll, E. The potential of predators in natural control of aphids in wheat: results of a ten-year field study in two German landscapes. Biocontrology 52, 775–788 (2007).Article 

    Google Scholar 
    Barczak, T., Dębek-Jankowska, A. & Bennewicz, J. Primary parasitoid and hyperparasitoid guilds (Hymenoptera) of grain aphid (Sitobion avenae F.) in northern Poland. Arch. Biol. Sci. 66, 1141–1148 (2014).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Jiang, F. & Ou, J. Global pesticide consumption and pollution: With China as a focus. P. Intern. Acad. Ecol. Environ. Sci. 1, 125–144 (2011).CAS 

    Google Scholar 
    El-Wakeil, N., Gaafar, N., Sallam, A. & Volkmar, C. Side Effects of Insecticides on Natural Enemies and Possibility of their Integration in Plant Protection Strategies. Insecticides: Development of Safer and More Effective Technologies Agricultural and Biological Sciences (ed Trdan, S.) 1–56 (Intech Open Access Publisher, 2013).Peshin, R. & Dhawan, A. K. Integrated Pest Management: Innovation-Development Process (Springer Science & Business Media, 2009).Jia, B., Hong, S., Zhang, Y. & Cao, Y. Toxicity and safety of 12 insecticides to Diadegma semiclausum. J. Shanxi Agric. Sci. 43, 999–1002 (2015).
    Google Scholar 
    Emery, S. E. et al. High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agric. Ecosyst. Environ. 306, 107199 (2021).Article 

    Google Scholar 
    Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.)(Homoptera: Aphididae) on different wheat cultivars. Crop. Prot. 30, 216–221 (2011).Article 

    Google Scholar 
    Gao, J., Guo, H. J., Sun, Y. C. & Ge, F. Juvenile hormone mediates the positive effects of nitrogen fertilization on weight and reproduction in pea aphid. Pest Manag. Sci. 74, 2511–2519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnett, K. L. & Facey, S. L. Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Front. Plant. Sci. 7, 1196 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, X. et al. Engineering plants for aphid resistance: Current status and future perspectives. Theor. Appl. Genet. 127, 2065–2083 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article 

    Google Scholar 
    Lu, Y. H. et al. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manag. 48, 13–27 (2011).Article 

    Google Scholar 
    Wood, G. A. et al. Real-time measures of canopy size as a basis for spatially varying nitroge applications to winter wheat sown at different seed rates. Biosyst. Eng. 84, 513–531 (2003).Article 

    Google Scholar 
    NOAA. https://www.ncdc.noaa.gov/cdo-web/ (2018).WORLD BANK GROUP. https://climateknowledgeportal.worldbank.org/download-data (2018). More

  • in

    Fire activity as measured by burned area reveals weak effects of ENSO in China

    Mixing fire occurrence with wildfire activity is problematic also when trying to draw policy conclusions. Fang et al.1 examined the temporal pattern of fire numbers between 2005-18 and concluded that the application of a fire suppression policy after 1987 has contributed to decreases in fire occurrences after 2007. However, fire suppression is an effort to mitigate the results of a fire once it has started10. Consequently, fire suppression strictly affects the burned area, and not fire occurrence. Other aspects associated with fire planning, like awareness campaigns or fire bans, may act on fire occurrence. However, any relationship between fire occurrence and fire suppression will necessarily be artefactual because the latter does not affect the former.We acknowledge that part of the discrepancy with Fang et al.1 may lie in the different scales used in these analyses. However, fire activity is a term that currently lacks a rigorous definition and should be used with caution. Fire occurrence depends primarily on the number of ignitions (along with other factors affecting fire detection such as climate, topography or vegetation), which, in turn, results from human activity1 and, in some areas, lightning11. Using fire occurrence as an indicator for fire activity is particularly problematic when comparing multiple biomes that show marked differences in fire regime, as we demonstrate here. Additionally, ENSO and fire suppression may both affect burned area, but there is currently no mechanism that can explain a mechanistic link between either of these processes and the number of fire events. Consequently, fire occurrence should not be used as a sole metric of fire activity.We additionally note that burned area is not necessarily a reliable metric of fire impacts on ecosystems and society. Significant variation in severity and intensity may occur within a fire perimeter12. Additionally, damage to people and property are not captured by this metric13. While we caution against the use of a single metric to evaluate fire activity, we hope to have demonstrated that using fire occurrence alone is particularly problematic, and that the picture it paints is rather unrealistic. More

  • in

    Mapping hydrologic alteration and ecological consequences in stream reaches of the conterminous United States

    Overview of hydrologic and ecological mapping protocolMapping hydrologic and ecological alteration at the stream reach level followed a 7-step process that builds upon several previously published methods (Fig. 1). The steps include: (1) compiling a nationwide dataset of streamflow gauges from the US Geological Survey (USGS) and distinguishing reference and non-reference gages and associated records21,22,23, (2) assembling stream flow records and calculating hydrologic indices23, (3) quantifying hydrologic alteration for stream gages22, (4) developing models to predict hydrologic alteration from human disturbance variables24, (5) using models to extrapolate hydrologic alteration to ungauged stream reaches24, (6) developing empirical models of fish species richness responses to hydrologic alteration17, and (7) mapping fish richness responses to ungauged stream reaches based on modeled estimates of hydrologic alteration. Methodological details are provided in each of the publications cited above; however, an overview of the steps is provided here. We elaborate more fully on the detailed methodology starting at step 3, as this reflects more of the focus of the technical validation of the dataset (Fig. 1).Fig. 1Overview of the 7-step approach used to map hydrologic alteration and ecological consequences in stream reaches of the conterminous US.Full size imageStep 1 – Compiling a nationwide streamflow datasetWe assembled streamflow information for 7,088 USGS stream gages with at least 15 years of daily discharge data as of 2010. We only included gages with at least 15 years of complete annual records (i.e., those with More

  • in

    Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia

    Sylvan, J. How to protect a coral reef: the public trust doctrine and the law of the sea recommended citation. Sustain. Dev. Law Policy 7, 12 (2006).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4, e00052–13 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reef. 25, 75–87 (1990).
    Google Scholar 
    Dubinsky, Z. & Stambler, N. Coral reefs: an ecosystem in transition. (Springer, 2011).Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. https://doi.org/10.1038/NCLIMATE1661 (2012).Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evolution 32, 735–745 (2017).Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehnert, E. M. et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda) 4, 277–95 (2014).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Berman-Frank, I. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. in. Aquat. Sci. 63, 4–17 (2001).CAS 
    Article 

    Google Scholar 
    Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–61 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15, e1008189 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2022653118 (2021).Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences Discuss. 9, 8111–8139 (2012).
    Google Scholar 
    Cziesielski, M. J., Schmidt‐Roach, S. & Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. https://doi.org/10.1002/ece3.5576 (2019).Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).PubMed 
    Article 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. Biol. Sci./R. Soc. 273, 2305–12 (2006).
    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change https://doi.org/10.1038/nclimate1330 (2011).Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. Biol. Sci. 285, 20172654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to environmental stress,making its relative ability to acclimate or adapt extremely important to the to future climate change. Science 344, 895–898 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrera, M. et al. Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J. 15, 141–153 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 1–19 https://doi.org/10.1007/s00338-020-01917-7 (2020).Perez, S. F., Cook, C. B. & Brooks, W. R. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 256, 1–14 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4, e6364 (2009).Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405–414 (2009).Article 

    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).Article 

    Google Scholar 
    LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).Article 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. 112, 201513318 (2015).
    Google Scholar 
    Matthews, J. L. et al. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J. Exp. Biol. jeb.128934 https://doi.org/10.1242/JEB.128934 (2015).Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeSalvo, M., Sunagawa, S., Voolstra, C. R. & Medina, M. Transcriptomic resonses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97–113 (2010).CAS 
    Article 

    Google Scholar 
    Maor-Landaw, K. & Levy, O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4, e1814 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).PubMed 
    Article 

    Google Scholar 
    Meyer, E. & Weis, V. M. Study of cnidarian-algal symbiosis in the “omics” age. Biol. Bull. 223, 44–65 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oakley, C. A. et al. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. J. Proteome Res. 16, 2121–2134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robbart, M. L., Peckol, P., Scordilis, S. P., Curran, H. A. & Brown-Saracino, J. Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A-tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283, 151–160 (2004).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H. & Palumbi, S. R. The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol. 220, 1837–1845 (2017).PubMed 

    Google Scholar 
    Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: The diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 62 (2016).Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).Article 

    Google Scholar 
    Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. N. Phytologist 212, 472–484 (2016).CAS 
    Article 

    Google Scholar 
    Lesser, K. B. & Garcia, F. A. Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern. Fetal Med. 6, 303–307 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunn, S. R., Schnitzler, C. E. & Weis, V. M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B: Biol. Sci. 274, 3079–3085 (2007).
    Google Scholar 
    DeSalvo, M. K. et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174–1186 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01220 (2017).Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 16802 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sproles, A. E. et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ. Microbiol. 22, 3741–3753 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rädecker, N. et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front. Physiol. 9, 214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. BioScience 43, 606–611 (1993).Article 

    Google Scholar 
    Wang & Douglas. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J. Exp. Biol. 201, 2445–53 (1998).Loram, J. E., Trapido-Rosenthal, H. G. & Douglas, A. E. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol. Ecol. 16, 4849–4857 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karako-Lampert, S. et al. Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS One 9, e88615 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hillyer, K. E., Tumanov, S., Villas-Bôas, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 219, 516–27 (2016).PubMed 

    Google Scholar 
    Bertucci, A., Forêt, S., Ball, E. E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl Acad. Sci. 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, M.-F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol. Open 8, bio038281 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medrano, E., Merselis, D. G., Bellantuono, A. J. & Rodriguez-Lanetty, M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Front. Microbiol. 10, 1153 (2019).Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J. Phycol. 49, 447–458 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Drone-based investigation of natural restoration of vegetation in the water level fluctuation zone of cascade reservoirs in Jinsha River

    Species composition of vegetation in the WLFZIn this survey, a total of 44 species in 43 genera of 21 families of vascular plants were found and confirmed in the reservoir WLFZ of the Jinsha River basin, among which, 13 genera and 13 species of Compositae, 4 genera and 4 species of Gramineae, 3 genera and 3 species of Amaranthaceae, 2 genera and 2 species of Verbenaceae, Labiatae, Umbelliferae, Cruciferae and Convolvulaceae, 1 genus and 2 species of Polygonaceae, and the remaining 12 families were all single genera. Compositae had the highest number of species, followed by Gramineae and Amaranthaceae, accounting for 29.55%, 9.09% and 6.82% of the total number of species in this survey, respectively, which are the main dominant families in the region.According to the life type classification system of the Flora of China, the plants in the WLFZ of this survey can be classified into five life types: annual herbs, perennial herbs, annual or biennial herbs, annual or perennial herbs, and biennial herbs. The community is overwhelmingly dominated by annuals with a high proportion of 54.55%, followed by perennials with 34.09% and the rest of all life types with a total of 11.36%.The higher number of annual plants indicates that the environmental conditions in the WLFZ are harsher after inundation by water storage, and plants that can complete their entire life cycle in a short period of time after receding water are more likely to survive compared to plants that take a long time to complete their entire life cycle.The vegetation types in each study area of the WLFZ are shown in Table 3, among which 17 species, including S. subulatum, E. humifusa, C. bonariensis, V. officinalis, O. biennis, S. plebeia, U. fissa, B. juncea, S. orientalis, D. repens, A. lividus, T. mongolicum, G. parviflora, P. praeruptorum, P. hys-terophorus, D. stramonium and Ph. Nil, are newly discovered species in the reservoir WLFZ, which are rarely reported in other reservoir WLFZ studies so far. Among the study areas, the Longkou study area was the richest in vegetation types, with the most families, species and life types among all study areas, and the number of perennial herb species was comparable to that of annual herb species, while all other study areas were mainly dominated by annual herbs. The vegetation composition of the remaining study areas averaged 6–8 families and 11–12 species, except for the Ludila study area with no plants growing and the Liyuan study area with only 5 families and 5 species. In general, each study area was dominated by Compositae and Gramineae.Table 3 Vegetation composition in each study area.Full size tableVegetation area, coverage, and percentage of the WLFZAccording to the vegetation classification in the WLFZ of each study area (Fig. 5 and Table 4), the vegetation coverage of the study areas of the Liyuan, Ahai, Ludila and Guanyinyan reservoir WLFZ were all less than 5%. The study area of Ludila was completey devoid of vegetation in the WLFZ. The coverage in Liyuan was only 0.02%, with mostly individual herbaceous plants sporadically distributed on the upper boundary of the WLFZ. In Ahai, C. dactylon grow concentratly in patches at the top of the WLFZ together with some other sparsely growing vegetation, with a coverage of 1.47%. The vegetation coverage of Guanyinyan was 3.21%, mainly distributed in the upper part of the WLFZ and expanding towards the middle. In this area, 30.39% of the vegetation was X. sibiricum, growing in large tracts as low seedlings; 21.03% was A. sessilis growing in patches, 10.87% was C. dactylon growing mainly on the upper boundary of the WLFZ, and 37.71% was a mixture of plants growing in clusters with only a few of each.Figure 5The results of vegetation classification in the WLFZ of each study area. (a) Liyuan, (b) Ahai (c) Longkaikou, (d) Ludila, (e) Guanyinyan, (f) Xiluodu. Note: Non-Veg (Non-vegetation), Other-Veg (Other vegetation), C. Dac (Cynodon dactylon), A. Ses (Alternanthera sessilis), C. Bon (Conyza bonariensis), Ch. Amb (Chenopodium ambrosioides), C. Can (Conyza canadensis), D. Rep (Dichondra repens), H. Sib (Hydrocotyle sibthorpioides), V. Off (Verbena officinalis), X. Sib (Xanthium sibiricum). (Generated with eCognition Developer, and the URL is https://www.ecognition.com).Full size imageTable 4 Vegetation area, vegetation coverage and vegetation classification accuracy of WLFZ in each study area.Full size tableThe vegetation coverage of Longkaikou and Xiluodu WLFZ was more abundant, 46.47% and 55.81% respectively. In Longkaikou, vegetation mainly covered the middle and upper parts of the WLFZ. Of the vegetation, 66.38% was C. dactylon, 26.50% was A. sessilis, 2.35% was H. sibthorpioides, 1.68% was Ch. ambrosioides, and 3.09% was a variety of vegetation species, only a few of each, divided into Other-Veg class.Due to weather and equipment constraints, we were unable to photograph the upper and lower boundaries of the WLFZ in Xiluodu study area, but we still obtained the images of the main part of the WLFZ, which consisted mainly of 58.4% X. sibiricum, 28.04% C. dactylon, 10.59% S. viridis, and 2.97% other vegetation.The vegetation coverage in the WLFZ of different reservoirs of the Jinsha River basin varied significantly, but in terms of quantity, most of them were absolutely dominated by 1–4 species, which were distributed in patches and strips, and covered an area and proportion far more than the rest of the vegetation, while the rest of the vegetation was sparse in quantity each and was sporadically distributed. C. dactylon, A. sessilis, X. sibiricum, S. viridis, H. sibthorpioides, Ch. Ambrosioides were the main dominant and pioneer species for vegetation restoration in the reservoir WLFZ of the Jinsha River basin.Spatial distribution pattern of vegetation in fluctuating zoneSince no vegetation survived in the Ludila study area, and the vegetation in the Liyuan, Ahai and Guanyinyan study areas was sparse, with less than 5% coverage, and all of them were concentrated in the upper part of the WLFZs (Fig. 5), this paper mainly analyzed the spatial distribution pattern of vegetation in the Longkou and Xiluodu study areas, which had better vegetation coverage.Landscape patternCA is a basic index for landscape pattern study, and LPI reflects the proportion of the largest patch in the landscape type to the total landscape area, which is an expression of patch dominance. The SHAPE and PAFRAC describe the complexity of patch shape, the larger the SHAPE value indicates the more complex patch shape; the closer the PAFRAC value to 1 indicates the more regular patch shape. PROX reflects the degree of proximity of each landscape type, the larger its value indicates the higher degree of patch aggregation and the lower degree of fragmentation; ENN describes the degree of physical connection of the landscape types, the larger its value indicates the greater distance between patches and the greater degree of fragmentation.From the overall landscape level (Fig. 6), in the Longkaikou study area, CA and LPI showed that the areas of vegetation patches were large, less spatially fluctuating and uniform distribution, with obvious patch dominance, reflecting characteristics of patchy distribution; PROX and ENN showed that the vegetation patches were clustered and the landscape was well connected; SHAPE and PAFRAC showed that there was little variation in the shape complexity of vegetation patches in most areas of the WLFZ.Figure 6Spatial characteristics of vegetation landscape pattern index in the Longkaikou study area (Generated with ArcGIS 10.5 software, and the URL is: https://www.esri.com/en-us/home).Full size imageAt the level of landscape types (Table 5), the vegetation landscape types in the Longkou study area included C. dactylon, A. sessilis, H. sibthorpioides and other vegetation, among which, C. dactylon showed significant advantages in patch area, patch dominance, patch aggregation and connectivity; followed by A. sessilis and H. sibthorpioides, A. sessilis was significantly better than H. sibthorpioides in patch area, but in patch shape, H. sibthorpioides was more aggregated than A. sessilis and had better patch connectivity; Other-Veg showed significant weaknesses in patch area and aggregation; there were no significant differences among the landscape types in patch shape.Table 5 Landscape index of patch types in the Longkaikou study area.Full size tableThe spatial characteristics of the vegetation landscape pattern index in the Xiluodu study area were shown in Fig. 7. From the overall level of the landscape, the area of vegetation patches and the dominance of patches were spatially variable, the vegetation was well connected, with obvious characteristics of patchy distribution, and the shape of vegetation patches did not show obvious spatial characteristics.Figure 7Spatial characteristics of vegetation landscape pattern index in the Xiluodu study area (Generated with ArcGIS 10.5 software, and the URL is:https://www.esri.com/en-us/home).Full size imageFrom the level of landscape types (Table 6), the vegetation landscape types in Xiluodu study area included four categories: X. sibiricum, C. dactylon, S. viridis and Other-Veg type. Among them, X. sibiricum showed obvious advantages in patch area, patch dominance, patch aggregation and connectivity, followed by C. dactylon, both of which were significantly better than S. viridis and Other-Veg, and the differences in patch shape complexity among landscape types were small.Table 6 Landscape index of patch types in the Xiluodu study area.Full size tableDistribution characteristics along terrainAccording to the statistics (Fig. 8), the vegetation area share of Longkaikou study area in the upper, middle and lower elevation gradients of the WLFZ was 54.61%, 26.62% and 18.77%, respectively, indicating that the vegetation was mostly in the upper part of the WLFZ, with a coverage of 83.80%, while the vegetation in the lower part was the least, with a coverage of less than 1%. From the viewpoint of each vegetation species, in the upper part of the WLFZ, C. dactylon had the largest area, accounting for 66.9% of the total vegetation area, followed by A. sessilis, accounting for 25.9%, while H. sibthorpioides and Other-Veg only survived in the upper part, accounting for 2.3% and 4.9% each. From the distribution of each slope class, the vegetation of the WLFZ gradually decreased with the increase of slope, and the vegetation was mainly concentrated in the range of slope 35°, and the coverage of each vegetation decreased significantly when the slope exceeded 35°. In the aspect, the distribution of vegetation in the WLFZ did not show any obvious preference. The surface relief in the study area of Longkou was generally low, and C. dactylon was mainly distributed in the range of surface relief less than 0.84 m. When the surface relief is greater than 2.52 m, the vegetation coverage tends to be close to 0. The vegetation showed no obvious distribution preference in terms of surface roughness and topographic wetness index.Figure 8Changes in vegetation coverage with topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageThe spatial distribution of vegetation in the study area of Xiluodu was shown in Fig. 9. The maximum drop in water level at Xiluodu study area can reach 60 m, but only the half of the upper part of the subsidence zone with a drop of about 30 m was photographed. The coverage rate of C. dactylon was the largest in this elevation gradient, S. viridis was mainly distributed in the uppermost part of the zone, while X. strumarium was well covered in all elevation gradients. From the distribution of surface relief, the overall vegetation coverage decreases with the increase of surface relief, with X. strumarium and S. viridis mainly distributed in the area of 0–3.45 m, while both the coverage of C. dactylon and Other-Veg were not much different across the surface relief . The distribution of vegetation showed no obvious preference in terms of slope, aspect, surface roughness and topographic wetness index.Figure 9Changes in vegetation coverage with topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageInfluence of topographic factors on the spatial distribution pattern of vegetation in the WLFZAccording to the results of species distribution modeling, the number of samples in the study area of Longkaikou was 39,321, and the overall accuracy of the model was 88.2%. The terrain factors, in descending order of importance, were elevation  > slope  > surface relief  > surface roughness  > aspect  > topographic wetness index, with values of 0.681, 0.146, 0.091, 0.042, 0.033 and 0.007, respectively (Fig. 10). It can be seen that the vegetation distribution in the WLFZ was mainly influenced by elevation, followed by slope and surface relief, and is less influenced by surface roughness, aspect and topographic wetness index. This was consistent with the results of typical correlation analysis.Figure 10Ranking of important values of topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageA total of six pairs of typical variables were calculated in the Longkou study area, and standardized typical coefficients were used due to the inconsistency of each landscape pattern index as well as topographic factor units. According to the results of significance test (Table 7), the first four pairs of typical p-values were less than 0.05, indicating that the correlations reached a significant level, and their correlation coefficients were 0.565, 0.262, 0.142, and 0.034, among which the correlation coefficient of the first pair was the largest, so the first pair was selected for analysis. The topographic factors and landscape indices highly correlated with the first pair of typical variables were elevation, surface relief and CA and SHAPE, respectively. According to Tables 8 and 9, their mechanism of action was that the greater the elevation, the smaller the surface relief, resulting in a larger patch size and more complex shape of the vegetation, and therefore a more frequent exchange of energy with the outside world and a greater ability to survive.Table 7 Significance test of typical correlation coefficient in the Longkaikou study area.Full size tableTable 8 Standardized canonical correlation coefficients of terrain factors in the Longkaikou study area.Full size tableTable 9 Standardized typical correlation coefficients of landscape pattern in the Longkaikou study area.Full size tableThe number of samples in the study area of Xiluodu was 41,010, and the overall accuracy of the model was 61.4%. The terrain factors, in descending order of importance, were elevation  > surface relief  > ground roughness  > aspect  > slope  > terrain moisture index, with values of 0.395, 0.209, 0.157, 0.123, 0.073, and 0.043, respectively (Fig. 11). It can be seen that the vegetation distribution in the WLFZ was most influenced by the elevation, followed by the surface relief.According to the typical correlation analysis, six pairs of typical variables were calculated for the Xiluodu study area, of which the first four pairs had typical P values less than 0.05 (Table 10), indicating that the correlation reached a significant level, and their correlation coefficients were 0.299, 0.208, 0.102, and 0.033, and the first pair was the largest, so the first pair was selected for analysis.The topographic factors and landscape indices with high correlation with the first pair of typical variables were elevation,surface relief and CA, PAFRAC, respectively, and according to Tables 11 and 12, their mechanism of action was that the greater the elevation, the greater the surface relief, leading to a smaller patch area and simpler shape of the vegetation.Figure 11Ranking of important values of topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageTable 10 Significance test of typical correlation coefficient in the Xiluodu study area.Full size tableTable 11 Standardized canonical correlation coefficients of terrain factors in the Xiluodu study area.Full size tableTable 12 Standardized typical correlation coefficients of landscape pattern in the Xiluodu study area.Full size tableLimiting factors of vegetation restoration in WLFZPreliminary studies showed that after long-term water level fluctuations in the cascade reservoirs, most of the vegetation in the WLFZs of the cascade reservoirs in the Jinsha River basin could be restored to different degrees, however, the restored species types were relatively simple, all of them were herbaceous plants, and mainly annual herbaceous plants. The restoration of the WLFZs of different reservoirs varied significantly, with vegetation coverage of more than 46% and 27 species types in the better restored areas, such as the Longkou study area, while the vegetation coverage of the less restored areas was usually less than 5% and 5–12 species types, and some areas even had no grass, such as the Ludila study area. According to the statistics (Fig. 12), the habitats in the study area of different reservoirs in the Jinsha River basin were significantly heterogeneous, with significant differences in climate, soil conditions, topography, and water level drop, etc. Because of the inconsistent range of values and units of different environmental factors, comparative analysis was performed by normalization, as shown in Fig. 12, vegetation cover was significantly correlated with the average soil Ph and the average thickness of the subsurface 30 cm soil layer, and the two study areas with average soil Ph greater than 8, Pear Garden and Rudyra, were almost completely bare. These two study areas were almost dominated by sand and gravel, with thin soils averaging  8 and soil thickness  More

  • in

    Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.Article 
    CAS 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.Article 
    CAS 

    Google Scholar 
    Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.Article 
    CAS 

    Google Scholar 
    Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.CAS 
    Article 

    Google Scholar 
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.CAS 
    Article 

    Google Scholar 
    Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.PubMed 
    Article 

    Google Scholar 
    Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.CAS 
    Article 

    Google Scholar 
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.CAS 
    Article 

    Google Scholar 
    Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.Article 

    Google Scholar 
    Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.Article 

    Google Scholar 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.CAS 
    Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.Article 
    CAS 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.PubMed 
    Article 

    Google Scholar 
    Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.Article 

    Google Scholar 
    Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.Article 

    Google Scholar 
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.PubMed 
    Article 

    Google Scholar 
    Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
    Google Scholar 
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.CAS 
    Article 

    Google Scholar 
    Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.PubMed 
    Article 

    Google Scholar 
    Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.CAS 
    Article 

    Google Scholar 
    Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.Article 
    CAS 

    Google Scholar 
    Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.Article 

    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.Article 
    CAS 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.Article 

    Google Scholar 
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
    Google Scholar 
    Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.CAS 
    Article 

    Google Scholar 
    Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
    Google Scholar 
    Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.CAS 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.Article 
    CAS 

    Google Scholar 
    Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.CAS 
    Article 

    Google Scholar 
    Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.Article 

    Google Scholar 
    He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.CAS 
    Article 

    Google Scholar 
    Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.Article 

    Google Scholar 
    Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.Article 

    Google Scholar 
    Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.Article 
    CAS 

    Google Scholar 
    MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.Article 

    Google Scholar 
    Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.Article 

    Google Scholar 
    Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.CAS 
    Article 

    Google Scholar 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.Article 

    Google Scholar  More