More stories

  • in

    Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia

    Berthold, P. Bird Migration: A General Survey. (Oxford University Press, 2001).Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18 (2011).PubMed 
    Article 

    Google Scholar 
    Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: Unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).Article 

    Google Scholar 
    Saurola, P., Valkama, J. & Velmala, W. Suomen rengastusatlas Osa I/The Finnish Bird Ringing Atlas Vol. I. (Finnish Museum of Natural History and Ministry of Environment, 2013).Bergman, G. Allin ja mustalinnun muuttokannat keväällä 1960 (in Finnish). Suomen Riista 14, 69–74 (1961).
    Google Scholar 
    Skov, H. et al. Waterbird Populations and Pressures in the Baltic Sea. (TemaNord 550, 2011).Grenquist, P. Öljytuhoista Suomen aluevesillä v. 1948–1955. Suomen Riista 10, 105–116 (1956).Hario, M., Rintala, J. & Nordenswan, G. Dynamics of wintering long-tailed ducks in the Baltic Sea–the connection with lemming cycles, oil disasters, and hunting. Suomen Riista 55, 83–96 (2009).
    Google Scholar 
    Ellermaa, M. & Pettay, T. Põõsaspean niemen arktinen muutto syksyllä 2004. Linnut Vuosik. 2005, 99–112 (2005).
    Google Scholar 
    Delany, S. & Scott, D. Waterbird Population Estimates. (Wetlands International, 2006).Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sokolov, V., Vardeh, S. & Quillfeldt, P. Long-tailed Duck (Clangula hyemalis) ecology: Insights from the Russian literature. Part 1: Asian part of the Russian breeding range. Polar Biol. 42, 2259–2276 (2019).Article 

    Google Scholar 
    Summers, R. W. & Underhill, L. G. Factors related to breeding production of Brent Geese Branta b. bernicla and waders (Charadrii) on the Taimyr Peninsula. Bird Study 34(161), 171 (1987).
    Google Scholar 
    Summers, R. W., Underhill, L. G. & Syroechkovski, J. The breeding productivity of dark-bellied brent geese and curlew sandpipers in relation to changes in the numbers of arctic foxes and lemmings on the Taimyr Peninsula Siberia. Ecography 21, 573–580 (1998).Article 

    Google Scholar 
    Underhill, L. G. et al. Breeding of waders (Charadrii) and Brent Geese Branta bernicla bernicla at Pronchishcheva Lake, northeastern Taimyr, Russia, in a peak and a decreasing lemming year. Ibis 135, 277–292 (1993).Article 

    Google Scholar 
    Gauthier, G., Bëty, J., Giroux, J.-F. & Rochefort, L. Trophic interactions in a High Arctic snow goose colony. Integr. Comp. Biol. 44, 119–129 (2004).PubMed 
    Article 

    Google Scholar 
    Elton, C. Voles, Mice and Lemmings: Problems in Population Dynamics. (Clarendon Press, 1942).Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kokorev, Y. I. & Kuksov, V. A. Population dynamics of lemmings, Lemmus sibirica and Dicrostonyx torquatus, and Arctic Fox Alopex lagopus on the Taimyr peninsula, Siberia, 1960–2001. Ornis Svecica 12, 139–145 (2002).
    Google Scholar 
    Angerbjörn, A., Tannerfeldt, M. & Erlinge, S. Predator-prey relationships: Arctic foxes and lemmings. J. Anim. Ecol. 68, 34–49 (1999).Article 

    Google Scholar 
    Fauteux, D., Gauthier, G. & Berteaux, D. Seasonal demography of a cyclic lemming population in the Canadian Arctic. J. Anim. Ecol. 84, 1412–1422 (2015).PubMed 
    Article 

    Google Scholar 
    Gilg, O., Sittler, B. & Hanski, I. Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob. Chang. Biol. 15, 2634–2652 (2009).ADS 
    Article 

    Google Scholar 
    Berryman, A. A. The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992).Article 

    Google Scholar 
    Framstad, E., Stenseth, N. C., Bjørnstad, O. N. & Falck, W. Limit cycles in Norwegian lemmings: Tensions between phase-dependence and density-dependence. Proc. R Soc. London. Ser. B Biol. Sci. 264, 31–38 (1997).ADS 
    Article 

    Google Scholar 
    Hanski, I. & Korpimaki, E. Microtine rodent dynamics in northern Europe: Parameterized models for the predator-prey interaction. Ecology 76, 840–850 (1995).Article 

    Google Scholar 
    May, R. M. Limit cycles in predator-prey communities. Science 177, 900–902 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilg, O., Hanski, I. & Sittler, B. Cyclic dynamics in a simple vertebrate predator-prey community. Science 302, 866–868 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juhasz, C. C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715 (2020).PubMed 
    Article 

    Google Scholar 
    McKinnon, L., Berteaux, D., Gauthier, G. & Bêty, J. Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra. Oikos 122, 1042–1048 (2013).Article 

    Google Scholar 
    Angelstam, P., Lindström, E. & Widén, P. Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia. Oecologia 62, 199–208 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ehrich, D. et al. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal Russia. BMC Ecol. 17, 1–13 (2017).Article 

    Google Scholar 
    Brook, R. W., Duncan, D. C., Hines, J. E., Carrière, S. & Clark, R. G. Effects of small mammal cycles on productivity of boreal ducks. Wildlife Biol. 11, 3–11 (2005).Article 

    Google Scholar 
    Guillemain, M. et al. Effects of climate change on European ducks: what do we know and what do we need to know?. Wildlife Biol. 19, 404–419 (2013).Article 

    Google Scholar 
    Pehrsson, O. Duckling production of the Oldsquaw in relation to spring weather and small-rodent fluctuations. Can. J. Zool. 64, 1835–1841 (1986).Article 

    Google Scholar 
    ACIA. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. (Cambridge University Press, 2004).Høye, T. T., Post, E., Meltofte, H., Schmidt, N. M. & Forchhammer, M. C. Rapid advancement of spring in the High Arctic. Curr. Biol. 17, R449–R451 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 3, 65–90 (2017).Article 

    Google Scholar 
    Bilodeau, F., Gauthier, G. & Berteaux, D. The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia 172, 1007–1016 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Madsen, F. J. On the food habits of the diving ducks in Denmark. Danish Rev. Game Biol. 3, 2–83 (1954).
    Google Scholar 
    Nilsson, L. Habitat selection, food choice, and feeding habits of diving ducks in coastal waters of South Sweden during the non-breeding season. Ornis Scand. 3, 55–78 (1972).Article 

    Google Scholar 
    Žydelis, R. & Ruškytė, D. Winter foraging of long-tailed ducks (Clangula hyemalis) exploiting different benthic communities in the Baltic Sea. Wilson Bull. 117, 133–141 (2005).Article 

    Google Scholar 
    Skabeikis, A. et al. Effect of round goby (Neogobius melanostomus) invasion on blue mussel (Mytilus edulis trossulus) population and winter diet of the long-tailed duck (Clangula hyemalis). Biol. Invasions 21, 911–923 (2019).Article 

    Google Scholar 
    Laursen, K. & Møller, A. P. Long-Term changes in nutrients and mussel stocks are related to numbers of breeding eiders Somateria mollissima at a large Baltic colony. PLoS ONE 9, e95851 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the baltic sea during the last century. Proc. Natl. Acad. Sci. USA 111, 5628–5633 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savchuk, O. P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5, 95 (2018).Article 

    Google Scholar 
    Møller, A. P., Flensted-Jensen, E. & Mardal, W. Agriculture, fertilizers and life history of a coastal seabird. J. Anim. Ecol. 76, 515–525 (2007).PubMed 
    Article 

    Google Scholar 
    Møller, A. P., Thorup, O. & Laursen, K. Predation and nutrients drive population declines in breeding waders. Ecol. Appl. 28, 1292–1301 (2018).PubMed 
    Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis. (Chapman & Hall/CRC, 2004).Lebreton, J.-D. & Gimenez, O. Detecting and estimating density dependence in wildlife populations. J. Wildl. Manage. 77, 12–23 (2013).Article 

    Google Scholar 
    Bergman, G. The spring migration of the Long-tailed Duck and the Common Scoter in western Finland. Ornis Fenn. 51, 129–145 (1974).
    Google Scholar 
    Richardson, W. J. Timing and amount of bird migration in relation to weather: A Review. Oikos 30, 224–272 (1978).Article 

    Google Scholar 
    Alerstam, T. Bird flight and optimal migration. Trends Ecol. Evol. 6, 210–215 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, W. J. Wind and Orientation of Migrating Birds: A Review. in Orientation in Birds (ed. Berthold, P.) 226–249 (Birkhäuser, 1991). https://doi.org/10.1007/978-3-0348-7208-9_11.Christensen, T. K. & Fox, A. D. Changes in age and sex ratios amongst samples of hunter-shot wings from common duck species in Denmark 1982–2010. Eur. J. Wildl. Res. 60, 303–312 (2014).Article 

    Google Scholar 
    Fox, A. D., Clausen, K. K., Dalby, L., Christensen, T. K. & Sunde, P. Age-ratio bias among hunter-based surveys of Eurasian Wigeon Anas penelope based on wing vs. field samples. Ibis 157, 391–395 (2015).Article 

    Google Scholar 
    Møller, A. P., Flensted-Jensen, E., Laursen, K. & Mardal, W. Fertilizer leakage to the marine environment, ecosystem effects and population trends of waterbirds in Denmark. Ecosystems 18, 30–44 (2015).Article 
    CAS 

    Google Scholar 
    Scott, D. A. & Rose, P. M. Atlas of Anatidae Populations in Africa and Western Eurasia. Wetlands International Publication 41 (Wetlands International, 1996).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Hijmans, R. J. Introduction to the ’raster’ package (version 3.0–12). https://rspatial.org/raster/pkg/index.html (2020).National Center for Atmospheric Research Staff. The climate data guide: Hurrell North Atlantic Oscillation (NAO) index (PC-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (2019).Hurrell, J. W. Decadal trends in the north atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Büttger, H., Nehls, G. & Stoddard, P. The history of intertidal blue mussel beds in the North Frisian Wadden Sea in the 20th century: Can we define reference conditions for conservation targets by analysing aerial photographs?. J. Sea Res. 87, 91–102 (2014).ADS 
    Article 

    Google Scholar 
    Kristensen, P. S. & Borgstrøm, R. The Danish Wadden Sea: Fishery of mussels (Mytilus edulis L.) in a wildlife reserve? in Proceedings from the 11. Scientific Wadden Sea Symposium, Esbjerg, Denmark, 4.-8. April 2005. NERI technical report (ed. Laursen, K.) vol. 573 107–111 (National Environmental Research Institute. Department of Wildlife Ecology and Biodiversity, 2006).Baird, R. H. Measurement of condition in mussels and oysters. ICES J. Mar. Sci. 23, 249–257 (1958).Article 

    Google Scholar 
    Waldeck, P. & Larsson, K. Effects of winter water temperature on mass loss in Baltic blue mussels: Implications for foraging sea ducks. J. Exp. Mar. Bio. Ecol. 444, 24–30 (2013).Article 

    Google Scholar 
    Nehls, G. et al. Beds of blue mussels and Pacific oysters. Quality Status Report, Thematic Report; No. 11. Wadden Sea Ecosystem; No. 25 (2009).Laursen, K., Møller, A. P., Haugaard, L., Öst, M. & Vainio, J. Allocation of body reserves during winter in eider Somateria mollissima as preparation for spring migration and reproduction. J. Sea Res. 144, 49–56 (2019).ADS 
    Article 

    Google Scholar 
    Morelli, F., Laursen, K., Svitok, M., Benedetti, Y. & Møller, A. P. Eiders, nutrients and eagles: Bottom-up and top-down population dynamics in a marine bird. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13498 (2021).Article 
    PubMed 

    Google Scholar 
    Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).Article 

    Google Scholar 
    Kery, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective. (Elsevier, 2012).Kerman, J. Neutral noninformative and informative conjugate beta and gamma prior distributions. Electron. J. Stat. 5, 1450–1470 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Crainiceanu, C. M., Ruppert, D. & Wand, M. P. Bayesian analysis for penalized spline regression using WinBUGS. J. Stat. Softw. 14, (2005).Saha, K. & Paul, S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185 (2005).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 80, 101–107 (2011).PubMed 
    Article 

    Google Scholar 
    Pöysä, H. et al. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?. Ecol. Evol. 6, 7004–7014 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Almaraz, P., Green, A. J., Aguilera, E., Rendón, M. A. & Bustamante, J. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol. https://doi.org/10.1111/j.1365-2656.2012.01972.x (2012).Article 
    PubMed 

    Google Scholar 
    Schmidt, N. M. et al. Response of an arctic predator guild to collapsing lemming cycles. Proc. R. Soc. B Biol. Sci. 279, 4417–4422 (2012).Article 

    Google Scholar 
    Ebbinge, B. S., Heesterbeek, H. J. A. P., Ens, B. J. & Goedhart, P. W. Density dependent population limitation in dark-bellied brent geese Branta b. bernicla. Avian Sci. 2, 63–75 (2002).
    Google Scholar 
    Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).Article 

    Google Scholar 
    Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).PubMed 
    Article 

    Google Scholar 
    Korslund, L. & Steen, H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 75, 156–166 (2006).PubMed 
    Article 

    Google Scholar 
    Callaghan, T. V. et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio 40, 17–31 (2011).Article 

    Google Scholar 
    Machín, P. et al. The role of ecological and environmental conditions on the nesting success of waders in sub-Arctic Sweden. Polar Biol. 42, 1571–1579 (2019).Article 

    Google Scholar 
    Koneff, M. D. et al. Evaluation of harvest and information needs for North American sea ducks. PLoS ONE 12, e0175411 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81, 654–665 (2000).Article 

    Google Scholar 
    Sæther, B.-E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).Article 

    Google Scholar 
    Öst, M., Ramula, S., Lindén, A., Karell, P. & Kilpi, M. Small-scale spatial and temporal variation in the demographic processes underlying the large-scale decline of eiders in the Baltic Sea. Popul. Ecol. 58, 121–133 (2016).Article 

    Google Scholar 
    Holopainen, S. & Fox, A. D. Associations between duck harvest, hunting wing ratios and measures of reproductive output in Northern Europe. Eur. J. Wildl. Res. 64, (2018).Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 36, 5315–5320 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carstensen, J. et al. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43, 26–36 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conley, D. J. et al. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412–3420 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Conley, D. J. et al. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17, 165–184 (2007).Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox, A. D. et al. Current and potential threats to Nordic duck populations–a horizon scanning exercise. Ann. Zool. Fennici 52, 193–220 (2015).Article 

    Google Scholar 
    Møller, A. P. Biological consequences of global change for birds. Integr. Zool. 8, 136–144 (2013).PubMed 
    Article 

    Google Scholar  More

  • in

    Temporal variation in climatic factors influences phenotypic diversity of Trochulus land snails

    Temporal differentiation of wild populations of T. hispidus and climatic parametersComparison of morphometric features of T. hispidus shells collected in different years in two geographic regions, i.e., Wrocław and Lubawka, showed significant differences depending on the year of collection. The largest number of differences was revealed in shells from Wrocław (Figs. 1 and 2A; Additional file 2: Table S1). Out of 210 comparisons (15 pairs of collection years × 14 features), 84 were statistically significant (Additional file 2: Table S2), e.g., shell diameter (D) was significantly different in 11 cases, shell height (H) and shell width (W) in 10 cases, body whorl height (bwH), the number of whorls (whl), umbilicus major (U) and minor (u) diameters in 9 cases and aperture height/width ratio (h/w) in 7 cases. Nine features obtained more than 10% difference between shells in at least one comparison of mean values, e.g., U 24%, u 19%, H 16% and D 15% (Additional file 2: Table S2). Umbilicus major (U) and minor (u) diameters showed the largest average percentage difference, i.e., 12% and 10%, respectively, in comparisons of all years.Figure 1Shells of Trochulus hispidus collected in different years in Wrocław.Full size imageFigure 2Changes in: mean values of selected morphometric features of shells collected in various years in Wrocław (A) as well as the mean temperature (B) and the relative humidity (C) recorded in four seasons in Wrocław in eight-year period. Abbreviations: D—shell diameter (in mm), H—shell height (in mm), h/w—aperture height/width ratio, whl—number of whorls. The summary statistics for A is included in Table S1 and original data in Table S10 in Additional file 2.Full size imageFor snails from Lubawka, out of 84 comparisons (6 pairs of collection years × 14 features) only 8 were statistically significant (Additional file 2: Table S3). The shells differed significantly in their aperture height (h) and width (w) in 3 comparisons. The h feature showed the percentage difference up to 9% (Additional file 2: Table S3) and the largest average difference was 4.5%.Besides the phenotypic variation, climatic parameters also showed high fluctuations in the studied period (Fig. 2B,C, Additional file 2: Table S4). The maximum difference reported between temperature parameters in some years prior to sample collection in Wrocław was up to 3.7 °C for the maximum winter temperature, while the maximum difference in the relative humidity was up to 11% for autumn. The maximum temperature difference in Jelenia Góra close to Lubawka was up to 3.5 °C for the minimum winter temperature, while the relative humidity differed at most by up to 8% in summer.Differences in shell morphometry under various climatic conditionsThe distinction between shells collected in individual years and changes in climatic parameters along the same period suggest that these differences can be associated with the climate. Therefore, we calculated the average value of a given climatic parameter for each season and studied region and next divided the collected shell data into two groups according to this value. The first group included the shells that developed in conditions above this average and the second below this average (Additional file 2: Table S5). The differences between these groups were statistically significant for 15 out of 16 considered climatic parameters for at least two shell features (Fig. 3). Similarly, each of 14 features significantly separated the groups based on at least two climatic conditions. The results demonstrated that the mean winter temperature substantially influenced nine morphometric shell features, whereas eight characters were changed due to the maximum winter temperature as well as the mean and minimum temperatures in spring, summer and autumn. Umbilicus major (U) and minor (u) diameters as well as umbilicus relative diameter (U/D) were significantly different in 14 pairs of groups characterized by various climatic parameters. In 11 pairs, the height/width ratio (H/W) was significantly different and shell height (H) in 10 pairs.Figure 3Mean percentage differences in morphometric features between shells that were grown in different conditions. The shells were divided into two groups according to the average value of a given climatic parameter for each season and studied region. The first group included the shells that developed in conditions above this average and the second below this average. Positive values indicate that the given feature was greater in the first group, whereas negative values indicate that this feature was greater in the second group. Dendrograms cluster the features and the parameters according to their similarity in the percentage differences. Values marked in bold indicate statistically significant differences between the compared groups of shells. Values at the dendrogram nodes indicate significance assessed according to approximately unbiased test (au) and bootstrap resampling (bp).Full size imageThe umbilicus diameters (u and U) as well as umbilicus relative diameter (U/D) clustered together in the dendrogram based on the mean percentage difference, which indicates that they similarly responded to climatic conditions (Fig. 3). The features u and U revealed the strongest average increase of all features, from 4.1 to 10.5% in shells developed in higher temperatures in all seasons. The largest percentage difference exceeding 10% was recorded for groups separated according to the mean summer and autumn temperatures as well as the maximum summer and minimum autumn temperatures. The U/D ratio was also significantly greater with the mean percentage difference of 2.8–7.6% in shells grown under high temperatures for all seasons and almost all temperature types. On the other hand, the u and U diameters as well as the U/D ratio were on average by 3.7–6.0% significantly smaller in shells developed under higher humidity in summer and winter.The height/width shell ratio (H/W) was grouped with H and bwH features in the dendrogram and was on average by up to 3.6% significantly smaller in shells grown under higher temperatures in all seasons for almost all types of parameters. The maximum winter temperature caused a significant increase, on average by ca. 3%, in shell height (H) and body whorl height (bwH), whereas higher temperatures in other seasons led to their decrease by up to 3.4% (Fig. 3).The shells that were grown in autumn with a relatively high maximum temperature were characterized by ca. 3% significantly smaller aperture height (h) and aperture height/width ratio (h/w), which were clustered together in the dendrogram (Fig. 3).Other four features, shell diameter (D), number of whorls (whl) as well as shell (W) and aperture width (w), formed an additional cluster in the dendrogram (Fig. 3). All of them were on average significantly greater in shells collected one year after winter that was characterized by relatively higher mean and maximum temperatures. The percentage difference was greater, with 3.6–3.9% for W and D.In the dendrogram, the climatic parameters were clustered in several groups indicating their similar influence on the morphometric features of shells (Fig. 3). There are separate clusters for temperature and humidity parameters with the exception of the autumn maximum temperature and autumn humidity, which are grouped together. The other temperature parameters for warmer seasons are separated from those for winter, which indicates that they differently influenced the shell morphometry.Correlations between morphometric shell features and climatic parametersThe influence of climatic conditions on the shells collected in individual years was also assessed using Spearman’s correlation coefficient between the morphometric features and climatic parameters (Fig. 4). Of 224 potential relationships 113 were statistically significant. The spring mean temperature was significantly correlated with 10 morphometric features. Summer humidity and six temperature parameters, i.e., the minimum temperatures as well as the spring and winter maximum temperatures, significantly correlated with eight shell features. Minor umbilicus diameter (u) and umbilicus relative diameter (U/D) were significantly correlated with almost all climatic parameters, i.e., 15, umbilicus major diameter (U) and height/width ratio (H/W) with 13 and the ratio of umbilicus minor to its major diameter (u/U) with 11.Figure 4Spearman’s correlation coefficients between morphometric features of shells with climatic parameters under which the snails were grown. Dendrograms cluster the features and the parameters according to their similarity in the coefficients. Values marked in bold are statistically significant. Values at the dendrogram nodes indicate significance assessed according to approximately unbiased test (au) and bootstrap resampling (bp).Full size imageAs in the case of percentage difference, we can also recognize groups of morphometric features that were similarly correlated with climatic parameters (Fig. 4). Features U/D, U and u were significantly positively correlated with all or almost all temperature parameters for four seasons with the coefficients up to 0.34, 0.30 and 0.36, respectively. On the other hand, the significant correlation coefficients between these features and the humidity in spring, summer and winter were negative and reached − 0.34.Another group of features included shell height/width ratio (H/W), shell height (H) and body whorl height (bwH) (Fig. 4). All of them showed significant negative correlations with all temperature parameters for spring and summer as well as the minimum autumn temperature, and H/W also with the mean and maximum autumn temperatures as well as the mean and minimum winter temperatures. The correlation coefficients reached − 0.28, − 0.27 and − 0.28, respectively. These three features significantly correlated with summer and spring humidity, at up to 0.23.The number of whorls (whl), shell width (W), shell diameter (D), demonstrated a similar correlation with climatic parameters (Fig. 4). They showed the largest and significant correlation coefficients with winter temperatures: up to 0.24, 0.22 and 0.22, respectively. The ratio of umbilicus minor to its major diameter (u/U) showed significant positive correlation up to 0.22 with temperature of warmer seasons.The climatic parameters were grouped into several clusters indicating their similar relationships with morphometric features (Fig. 4). Humidity parameters of warmer seasons formed a separate cluster and temperature parameters were grouped according to seasons. The winter parameters were connected with autumn humidity and separated from temperatures for warmer seasons.Modelling relationships between morphometric shell features and climatic parametersThe joint influence of many climatic parameters on morphometry of shells collected in individual years was studied using a linear mixed-effects (LME) model after exclusion of correlated parameters and a linear ridge regression (LRR) model including all climatic parameters. The latter allows for the inclusion of correlated variables. We separately investigated the seasonal maximum, mean and minimum temperature parameters in combination with seasonal humidity parameters (Additional file 2: Table S6) because they are obviously correlated.Umbilicus minor (u) and major (U) diameters as well as umbilicus relative diameter (U/D) turned out best explained by the climatic parameters (with R2  > 0.15) in two models (Additional file 2: Table S6). Moreover, u, U and U/D were described in LME models by the largest number of significant climatic parameters, i.e., 15. The features u and U had also the largest number of significant parameters in LRR models, i.e., 18 out of 24 possibilities. The largest average values of temperature coefficients for the LRR models were 0.66 for D, 0.58 for W, 0.32 for H, 0.26 for U and 0.22 for u. Thus, all the above-mentioned features were under the strongest influence of the climatic conditions.In the case of LRR models, the coefficients at the winter mean temperature were most often selected as significant, in 12 out of 14 possibilities (Additional file 2: Table S6). The humidity coefficients for autumn were significant in 30 cases of 42 possibilities. The highest average absolute values of coefficients in climatic variables were those for the summer (0.63), spring (0.31) and autumn (0.24) minimum temperatures as well as the summer mean temperature (0.31). Thus, the temperatures of warmer seasons were more important for developing shell morphology. Seasonal humidity coefficients showed similar values compared to each other.Comparison of shell morphometry of T. hispidus and T. sericeus kept under various conditionsIn order to verify the influence of different climatic parameters on Trochulus shell morphometry in selected conditions, we compared shells from three groups of T. hispidus, which represented several subsequent generations: (1) parental snails collected in the wild in Wrocław-Jarnołtów, (2) their offspring bred in the laboratory for two generations and (3) offspring of the second laboratory-bred generation transplanted again into a garden in Wrocław (Fig. 5A–C). The comparison of the group 2 and 1 was to verify if laboratory conditions with controlled temperature and humidity can influence the shell morphometry within only one generation, whereas including the group 3 in the comparison, we wanted to check if snails raised in wild garden conditions can recover the original phenotype. Furthermore, we transplanted into the same garden conditions T. sericeus, which was collected in the wild in Muszkowice (Fig. 5D,E). In this case, we verified if two originally different ecophenotypes T. hispidus and T. sericeus, develop the same shell morphometry under the same conditions.Figure 5Shells of two Trochulus ecophenotypes: parental T. hispidus from wild habitat in Wrocław (A), the first generation of T. hispidus raised in laboratory (B); T. hispidus reared in garden in Wrocław (C); T. sericeus from wild habitat in Muszkowice (D); T. sericeus reared in garden in Wrocław (E).Full size imageConditions in which these snails developed were different. According to WorldClim, the wild environment of T. hispidus in Wrocław was generally warmer than that of T. sericeus in Muszkowice (Additional file 2: Table S7). The largest difference was 1.4 °C for the maximum summer temperature. Relative humidity was lower in Wrocław by up to 2% for warmer seasons but was higher in winter by 1.6%. The difference between the wild and garden localities in Wrocław was much smaller and did not exceed 0.41 °C. The garden conditions were less humid, by up to 2%. However, data from WorldClim are generalized over a longer period and wider regions, so may not well reflect local conditions in the studied places. Actually, the Wrocław site was an open habitat covered with a nettle community like a garden patch, while the Muszkowice site was overgrown by a beech forest, which most likely maintained a higher humidity and a more stable temperature.Laboratory temperatures were substantially different from those in the field, especially for winter (by 18–19.7 °C) as well as for spring and autumn (by 8.2–12 °C). Laboratory humidity was by up to 4.5% lower compared to winter and 5.9–9.9% higher than in spring and summer.A discriminant function analysis (DFA) for the defined groups of snails provided their interesting grouping and separation (Fig. 6). The analysis identified three significant discriminant functions (p  More

  • in

    Length weight relationships of coleoid cephalopods from the eastern Mediterranean

    Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5), 236–238 (2006).
    Google Scholar 
    Tarkan, A. S., Gaygusuz, Ö., Acıpınar, H., Gürsoy, Ç. & Özuluğ, M. Length–weight relationships of fishes from the Marmara region (NW-Turkey). J. Appl. Ichthyol. 22(4), 271–273 (2006).Article 

    Google Scholar 
    Al Nahdi, A., de Leaniz, C. G. & King, A. J. Spatio-temporal variation in length-weight relationships and condition of ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for fisheries. PLoS One 11(8), e0161989 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Froese, R., Tsikliras, A. C. & Stergiou, K. I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 41(4), 261–263 (2011).Article 

    Google Scholar 
    Torres, M. A. et al. Length–weight relationships for 22 crustecans and cephalopods from the Gulf of Cadiz (SW Spain). Aquat. Liv. Resour. 30, 12 (2017).Article 

    Google Scholar 
    Rocha, F., Guerra, A. & Gonzalez, A. F. A review of reproductive strategies in cephalopods. Biol. Rev. 76, 291–304 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Laptikhovsky, V. & Salman, A. On reproductive strategies of the epipelagic octopods of the superfamily Argonautoidea (Cephalopoda: Octopoda). Mar. Biol. 142, 321–326 (2003).Article 

    Google Scholar 
    Forsythe, J. W. & van Heukelem, W. F. Growth. In Cephalopod Life Cycles (ed. Boyle, P. R.) 135–156 (Academic Press, 1987).
    Google Scholar 
    Jereb, P., et al. (eds) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p. 360.Salman, A. Cephalopod research in the eastern Mediterranean (East of 23°E): A review. Boll. Malacol. 45, 47–59 (2009).
    Google Scholar 
    Salman, A. & İzmirli, C. Ege Üniversitesi Su Ürünleri Fakültesi Müzesi (ESFM)’nin cephalopod envanteri. EgeJFAS 37(4), 357–361. https://doi.org/10.12714/egejfas.37.4.06) (2020) (in Turkish).Article 

    Google Scholar 
    Önsoy, B. & Salman, A. Reproductive biology of the common cuttlefish Sepia officinalis L. (Sepiida: Cephalpoda) in the Aegean Sea. Turk. J. Vet. Anim. Sci. 29, 613–619 (2005).
    Google Scholar 
    Salman, A. Reproductive biology of the elegant cuttlefish (Sepia elegans) in the Eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 15(2), 265–272 (2015).Article 

    Google Scholar 
    Dursun, D., Eronat, E. G. T., Akalın, M. & Salman, M. A. Reproductive biology of pink cuttlefish Sepia orbignyana in the Aegean Sea (eastern Mediterranean). Turk. J. Zool. 37, 576–581 (2013).Article 

    Google Scholar 
    Salman, A. Reproductive biology of Sepietta oweniana (Pfeffer, 1908) (Sepiolidae: Cephalopoda) in the Aegean Sea. Sci. Mar. 62(4), 379–383 (1998).Article 

    Google Scholar 
    Salman, A. & Önsoy, B. Reproductive biology of the bobtail squid Rossia macrosoma (Cephalopoda: Sepiolidea) from the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 10, 81–86 (2010).Article 

    Google Scholar 
    Salman, A. Fecundity and spawning strategy of shortfin squid Illex coindetii (Oegopsida: Ommastrephidae), in the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 17, 841–849 (2017).
    Google Scholar 
    Mangold-Wirz, K. Biologie des céphalopodes benthiques et nectoniques de la Mer Catalane. Vie Millieu suppl. 13, 1–285 (1963).
    Google Scholar 
    Salman, A. Fecundity, spawning strategy and oocyte development of shortfin squid Alloteuthis media (Myopsida: Loliginidae) in the eastern Mediterranean. Cah. Biol. Mar. 55, 163–171 (2014).
    Google Scholar 
    Önsoy, B. & Salman, A. Reproduction patterns of the Mediterranean endemic, Eledone moschata (Lamarck, 1798) (Octopoda: Cephalopoda) in the eastern Mediterranean. (In Turkish) 1st National Malacology Congress, 1–3 September 2004, Izmir-Turkey (Bilal Öztürk & Alp Salman, eds). Turk. J. Aquat. Life 2(2), 55–60 (2004).
    Google Scholar 
    Tesch, F. W. Age and growth. In Methods for Assessment of Fish Production in Fresh Waters (ed. Ricker, W. E.) 99–130 (Blackwell Scientific Publications, 1971).
    Google Scholar 
    Merella, P., Quetglas, A., Alemany, F. & Carbonell, A. Length–weight relationship of fishes and cephalopods from the Balearic Islands (western Mediterranean). Naga ICLARM Q. 20(3–4), 66–68 (1997).
    Google Scholar 
    Manfrin Piccinetti, G. & Giovanardi, O. Données sur la biologie de Sepia officinalis L. dans l’Adriatique obtenues lors de expéditions pipeta. FAO Fish. Rep. 290, 135–138 (1984).
    Google Scholar 
    Bello, G. Length–weight relationship in males and females of Sepia orbignyana and Sepia elegans (Cephalopoda: Sepiidae). Rapp. Comm. Int. Mer. Médit. 31(2), 254 (1988).
    Google Scholar 
    Ragonese, S. & Jereb, P. Length-weight relationship and growth of the pink and elegant cuttlefish Sepia orbignyana and Sepia elegans in the Sicilian Channel. In Acta of the 1st International Symposium on the Cuttlefish (ed. Boucaud-Camou, E.) 31–47 (SEPIA. Centre de Publications de l’Universite de Caen, 1991).
    Google Scholar 
    Akyol, O. & Metin, G. An investigation on determination of some morphological characteristics of Cephalopods in Izmir Bay (Aegean Sea). EU J. Fish. Aquat. Sci. 18(3–4), 357–365 (2001).
    Google Scholar 
    Lefkaditou, E., Verriopoulos, G. & Valavanis, V. VII9. Research on Cephalopod resources in Hellas. In State of Hellenic Fisheries (eds Papaconstantinou, C. et al.) 440–451 (HCMR Publications, 2007).
    Google Scholar 
    Duysak, Ö., Sendão, J., Borges, T., Türeli, C. & Erdem, Ü. Cephalopod distribution in Iskenderun bay (eastern Mediterranean–Turkey). J. Fish. Sci. 2, 118–125 (2008).
    Google Scholar 
    Giordano, D. et al. Distribution and biology of Sepietta oweniana (Pfeffer, 1908) (Cephalopoda: Sepiolidae) in the southern Tyrrhenian Sea (central Mediterranean Sea). Cah. Biol. Mar. 50, 1–10 (2009).
    Google Scholar 
    Andriguetto, J. M. Jr. & Haimovici, M. Effects of fixation and preservation methods on the morphology of a Loliginid squid (Cephalopoda: Myopsida). Am. Malac Bull. 6(2), 213–217 (1988).
    Google Scholar 
    Sanchez, P. Donnés preliminaires sur la biologie de trois species de cephalopods de la Mer Catalan. Rapp. Comm. Int. Mer. Médit. 30(2), 247 (1986).
    Google Scholar 
    Belcari, P., Sartor, P., Nannini, N. & De Ranieri, S. Length-weight relationship of Toda- ropsis eblanae (Cephalopoda: Ommastrephidae) of the northern Tyrrhenian Sea in relation to sexual maturation. Biol. Mar. Mediter. 6, 524–528 (1999).
    Google Scholar 
    Belcari, P. Length–weight relationship in relation to sexual maturation of Illex coindetii (Cephalopoda: Ommastrephidae) in the northern Tyrrhenian Sea (western Mediterranean). Sci. Mar. 60, 379–384 (1996).
    Google Scholar 
    Petric, M., Ferri, J., Skeljo, F. & Krstulovic Sifner, S. Body and beak measures of Illex coindetii (Cephalopoda: Ommastrephidae) and their relation to growth and maturity. Cah. Biol. Mar. 51, 275–287 (2010).
    Google Scholar 
    Ceriola, L., Ungaro, N. & Toteda, F. Some information on the biology of Illex coindetii Verany, 1839 (Cephalopoda, Ommastrephidae) in the south-western Adriatic Sea (central Mediterranean). Fish. Res. 82, 41–49 (2006).Article 

    Google Scholar 
    Arvanitidis, C. et al. A comparison of the fishery biology of three Illex coindetii Verany, 1839 (Cephalopoda: Ommastrephidae) populations from the European Atlantic and Mediterranean Waters. Bull. Mar. Sci. 71, 129–146 (2002).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (western Mediterranean). Sci. Mar. 62, 73–82 (1998).Article 

    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the central Adriatic Sea. Fish. Res. 69, 239–249 (2004).Article 

    Google Scholar 
    Moreno, A. et al. Biological variation of Loligo vulgaris (Cephalopoda: Loliginidae) in the eastern Atlantic and Mediterranean. Bull. Mar. Sci. 71(1), 515–534 (2002).
    Google Scholar 
    Guerra, A. & Manriquez, M. Parametros biometricos de Octopus vulgaris. Invest. Pesq. 44, 177–198 (1980).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, western Mediterranean). Fish. Res. 36, 237–249 (1998).Article 

    Google Scholar 
    Sanchez, P., & Obarti, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In: Jereb, P., Allcock, A. L., Lefkaditou, E., Piatkowski, U., Hastie, L. C., Pierce, G. J. (Eds.) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p 360.Gonzalez, M., Barcala, E., Perez-Gil, J. L., Carrasco, M. N. & Garcia-Martinez, M. C. Fisheries and reproductive biology of Octopus vulgaris (Mollusca: Cephalopoda) in the Gulf of Alicante (Northwestern Mediterranean). Medit. Mar. Sci. 12, 369–389 (2011).Article 

    Google Scholar 
    Jabeur, C., Nouira, T., Khoufi, W., Mosbahi, D. S. & Ezzedine-Najai, S. Age and growth of Octopus vulgaris Cuvier, 1797 along the east coast of Tunisia. J. Shellf. Res. 31, 119–124 (2012).Article 

    Google Scholar 
    Quetglas, A., Ordines, F., Gonzalez, M. & Franco, I. Life history of the bathyal octopus Pteroctopus tetracirrhus (Mollusca, Cephalopoda) in the Mediterranean Sea. Deep Sea Res. Part I 56, 1379–1390 (2009).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M. & Franco, I. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131–1138 (2005).Article 

    Google Scholar 
    Moriyasu, M. Etude biometrique de la croissance d’E. cirrhosa [LAM. 1798 (Cephalopoda, Octopoda)] du Golfe du Lion. Oceanol. Acta 6, 35–41 (1983).
    Google Scholar 
    Massi, D. Effetti del congelamento sull’accuratezza delle misure in Eledone cirrhosa (Lamarck, 1798). Biol. Mar. Suppl. al Notiziario S.I.B.M. 1, 379–380 (1993).
    Google Scholar 
    Agnesi, S., Belluscio, A. & Ardizzone, G. D. Biologia e dinamica di populazione di Eledone cirrhosa (Cephalopoda: Octopoda) nel Tirreno Centrale. Biol. Mar. Mediterr. 5, 336–348 (1998).
    Google Scholar 
    Giordano, D. et al. Population dynamics and distribution of Eledone cirrhosa (Lamarck, 1798) in the Southern Tyrrhenian Sea (Central Mediterranean). Cah. Biol. Mar. 51, 213–227 (2010).
    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Reproductive cycle and sexual maturation of the musky octopus Eledone moschata (Cephalopoda: Octopodidae) in the northern and central Adriatic Sea. Sci. Mar. 73, 439–447 (2009).Article 

    Google Scholar 
    Ikica, Z., Krstulovic Sifner, S. & Joksimovic, A. Some preliminary data on biological aspects of the musky octopus, Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopodidae) in Montenegrin waters. Stud. Mar. 25, 21–36 (2011).
    Google Scholar 
    Akyol, O., Şen, H. & Kinacigil, H. T. Reproductive biology of Eledone moschata (Cephalopoda: Octopodidae) in the Aegean Sea (Izmir Bay, Turkey). J. Mar. Biol. Assoc. UK 87, 967–970 (2007).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M., Carbonell, A. & Sanchez, P. Biology of the deep-sea octopus Bathypolypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785–792 (2001).Article 

    Google Scholar  More

  • in

    Vertebrate growth plasticity in response to variation in a mutualistic interaction

    Pfennig, D. The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia 85, 101–107 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brönmark, C. & Miner, J. G. Predator-induced phenotypical change in body morphology in Crucian carp. Science 258, 1348–1350 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huchard, E., English, S., Bell, M. B. V., Thavarajah, N. & Clutton-Brock, T. Competitive growth in a cooperative mammal. Nature 533, 532–534 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Travis, J. Evaluating the adaptive role of morphological plasticity. In: Ecological morphology (pp. 99–122) (The University of Chicago Press, Chicago, 1994).Lázaro, J., Dechmann, D. K. N., LaPoint, S., Wikelski, M. & Hertel, M. Profound reversible seasonal changes of individual skull size in a mammal. Curr. Biol. 27, R1106–R1107 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lázaro, J. & Dechmann, D. K. Dehnel’s phenomenon. Ecol. Evol. 31, R463–R465 (2021).
    Google Scholar 
    Bronstein, J. L. The evolution of facilitation and mutualism. J. Ecol. 97, 1160–1170 (2009).Article 

    Google Scholar 
    Leigh, J. The evolution of mutualism. J. Environ. Biol. 23, 2507–2528 (2010).
    Google Scholar 
    Liu, C., Yang, D. R. & Peng, Y. Q. Body size in a pollinating fig wasp and implications for stability in a fig-pollinator mutualism. Entomol. Exper. Appl. 138, 249–255 (2011).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Boucher, D., James, S. & Keeler, K. The ecology of mutualism. Annu. Rev. Ecol. Syst. 13, 315–347 (1982).Article 

    Google Scholar 
    Irwin, R. E. & Brody, A. K. Nectar robbing in Ipomopsis aggregata: effects on pollinator behavior and plant fitness. Oecologia 116, 519–527 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Allen, G. The Anemonefishes: their classification and biology (T.F.H. Publications, 1972).
    Google Scholar 
    Fautin, D.G. & Allen, G.R. Field guide to anemonefishes and their host sea anemones. (Western Australian Museum, Perth, 1992).Ollerton, J., McCollin, D., Fautin, D. G. & Allen, G. R. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc. R. Soc. B Biol. Sci. 274, 591–598 (2006).Article 

    Google Scholar 
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar. Biol. 6, 58–65 (1970).Article 

    Google Scholar 
    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location, and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).Article 

    Google Scholar 
    Verde, A. E., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429 (2015).Article 
    CAS 

    Google Scholar 
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).Article 

    Google Scholar 
    Sale, P. F. Effect of cover on agonistic behavior of a reef fish: a possible spacing mechanism. Ecology 53, 753–758 (1972).Article 

    Google Scholar 
    Fricke, H. W. & Holzberg, S. Social units and hermaphroditism in a pomacentrid fish. Naturwissenschaften 61, 367–368 (1974).ADS 
    Article 

    Google Scholar 
    Fricke, H. W. Control of different mating systems in a coral reef fish by one environmental factor. Anim. Behav. 28, 561–569 (1980).Article 

    Google Scholar 
    Mitchell, J. S. & Dill, L. M. Why is group size correlated with the size of the host sea anemone in the false clown anemonefish?. Canad. J. Zool. 83, 372–376 (2005).Article 

    Google Scholar 
    Chausson, J., Srinivasan, M. & Jones, G. P. Host anemone size as a determinant of social group size and structure in the orange clownfish (Amphiprion percula). PeerJ 6, e5841 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reed, C., Branconi, R., Majoris, J., Johnson, C. & Buston, P. Competitive growth in a social fish. Biol. Lett. 15, 20180737 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).Article 

    Google Scholar 
    Branconi, R. et al. Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish. Comm. Biol. 3, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    Schmiege, P. F., D’Aloia, C. C. & Buston, P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar. Biol. 164, 24 (2017).Article 

    Google Scholar 
    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).Article 

    Google Scholar 
    Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image PROcessing with ImageJ. Biophoto. Int. 11, 36–42 (2004).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Goodrich, B., Gabry, J., Ali I. & Brilleman, S. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Weatherley, A. H. Approaches to understanding fish growth. Trans. Am. Fish. Soc. 119, 662–672 (1990).Article 

    Google Scholar 
    Gabry, J. Shinystan: interactive visual and numerical diagnostics and posterior analysis for Bayesian models. R package version 2.5.0. https://CRAN.R-project.org/package=shinystan (2018).Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 3, 307–309 (2018).MathSciNet 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 60 (2021).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A Stat. Soc. 182, 389–402 (2019).MathSciNet 
    Article 

    Google Scholar 
    Gabry, J. & Mahr, T. Bayesplot: plotting for bayesian models. R package version 1.8.0. https://mc-stan.org/bayesplot/ (2021).Elliott, J. K. & Mariscal, R. N. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).Article 

    Google Scholar 
    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).Article 

    Google Scholar 
    Fautin, D. G. & Allen, G. R. Anemone fishes and their host sea anemones: a guide for aquarists and divers. Sea Challengers (1997).Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 1–9 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Cortese, D. et al. Physiological and behavioural effects of anemone bleaching on symbiont anemonefish in the wild. Funct. Ecol. 35, 663–674 (2021).Article 

    Google Scholar 
    Scherbatskoy, E. C. et al. Characterization of a novel picornavirus isolated from moribund aquacultured clownfish. J. Gen. Virol. 101, 735–745 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Mothers matter: contribution to local replenishment is linked to female size, mate replacement and fecundity in a fish metapopulation. Mar. Biol. 162, 3–14 (2014).Article 

    Google Scholar 
    Barbasch, T. A. et al. Substantial plasticity of reproduction and parental care in response to local resource availability in a wild clownfish population. Oikos 129, 1844–1855 (2020).Article 

    Google Scholar 
    Sebens, K. P. The ecology of indeterminate growth in animals. A. Rev. Ecol. Syst. 18, 371–407 (1987).Article 

    Google Scholar 
    Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719 (2007).Article 

    Google Scholar 
    Chamberlain, S. A., Kilpatrick, J. R. & Holland, J. N. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant–plant mutualistic networks?. Oecologia 164, 741–750 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Marting, P. R., Kallman, N. M., Wcislo, W. T. & Pratt, S. C. Ant-plant sociometry in the Azteca-Cecropia mutualism. Sci. Rep. 8, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).PubMed 
    Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    West-Eberhard, M. J. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B Mol. Develop. Evol. 304, 610–618 (2005).Article 

    Google Scholar 
    Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B Biol. Sci. 278, 2705–2713 (2011).Article 

    Google Scholar  More

  • in

    Timescale mediates the effects of environmental controls on water temperature in mid- to low-order streams

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8 (2002).Article 

    Google Scholar 
    Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368. https://doi.org/10.1111/j.1752-1688.2003.tb04390.x (2003).ADS 
    Article 

    Google Scholar 
    Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246. https://doi.org/10.1111/j.1600-0587.2013.00282.x (2013).Article 

    Google Scholar 
    Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A. & Curry, R. A. Preserving, augmenting, and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8, 1095–1108. https://doi.org/10.1002/eco.1566 (2015).Article 

    Google Scholar 
    Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280. https://doi.org/10.1002/fee.2206 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x (2006).Article 

    Google Scholar 
    Dick, J. J., Tetzlaff, D. & Soulsby, C. Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrol. Process. 29, 3098–3111. https://doi.org/10.1002/hyp.10423 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 29, 4719–4737. https://doi.org/10.1002/hyp.10506 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquatic Sci. 80, 3. https://doi.org/10.1007/s00027-017-0557-9 (2018).Article 

    Google Scholar 
    Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process. 29, 2178–2195. https://doi.org/10.1002/hyp.10357 (2015).ADS 
    Article 

    Google Scholar 
    Jonkers, A. R. T. & Sharkey, K. J. The differential warming response of Britain’s rivers (1982–2011). PLOS One 11, e0166247. https://doi.org/10.1371/journal.pone.0166247 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. L., Hannah, D. M., Fryer, R. J., Millar, C. P. & Malcolm, I. A. Development of spatial regression models for predicting summer river temperatures from landscape characteristics: Implications for land and fisheries management. Hydrol. Process. 31, 1225–1238. https://doi.org/10.1002/hyp.11087 (2017).ADS 
    Article 

    Google Scholar 
    Maheu, A., Poff, N. L. & St-Hilaire, A. A classification of stream water temperature regimes in the conterminous USA. River Res. Appl. 32, 896–906. https://doi.org/10.1002/rra.2906 (2016).Article 

    Google Scholar 
    Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787. https://doi.org/10.1111/1752-1688.12423 (2016).Article 

    Google Scholar 
    Kearney, M. R., Matzelle, A. & Helmuth, B. Biomechanics meets the ecological niche: The importance of temporal data resolution. J. Exp. Biol. 215, 922–933. https://doi.org/10.1242/jeb.059634 (2012).Article 
    PubMed 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103. https://doi.org/10.1007/s00442-006-0542-9 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553. https://doi.org/10.1111/gcb.12879 (2015).ADS 
    Article 

    Google Scholar 
    Steel, E. A., Beechie, T. J., Torgersen, C. E. & Fullerton, A. H. Envisioning, quantifying, and managing thermal regimes on river networks. Bioscience 67, 506–522. https://doi.org/10.1093/biosci/bix047 (2017).Article 

    Google Scholar 
    Budescu, D. V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551. https://doi.org/10.1037/0033-2909.114.3.542 (1993).Article 

    Google Scholar 
    Singhal, B. B. S. & Gupta, R. P. Applied Hydrogeology of Fractured Rocks. 2 edn, 408 (Springer, 2010).Shimizu, T. Relation between scanty runoff from mountainous watershed and geology, slope and vegetation (in Japanese with English summary). Bull. Forestry Forest Prod. Res. Inst. 310, 109–128 (1980).
    Google Scholar 
    Iwasaki, K., Nagasaka, Y. & Nagasaka, A. Geological effects on the scaling relationships of groundwater contributions in Forested Watersheds. Water Resour. Res. 57, e2021WR029641. https://doi.org/10.1029/2021WR029641 (2021).ADS 
    Article 

    Google Scholar 
    Ishiyama, N. et al. The role of geology in creating stream climate-change refugia along climate gradients. bioRxiv, 2022.2005.2002.490355, https://doi.org/10.1101/2022.05.02.490355 (2022).Kanno, Y., Vokoun, J. C. & Letcher, B. H. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Res. Appl. 30, 745–755. https://doi.org/10.1002/rra.2677 (2014).Article 

    Google Scholar 
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419. https://doi.org/10.1890/14-1354.1 (2015).Article 
    PubMed 

    Google Scholar 
    Carslaw, D. C. & Ropkins, K. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 (2012).Article 

    Google Scholar 
    Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS. (Springer, 2000).Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clarke, P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. J. Epidemiol. Commun. Health 62, 752. https://doi.org/10.1136/jech.2007.060798 (2008).CAS 
    Article 

    Google Scholar 
    Theall, K. P. et al. Impact of small group size on neighbourhood influences in multilevel models. J. Epidemiol. Commun. Health 65, 688–695. https://doi.org/10.1136/jech.2009.097956 (2011).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. https://doi.org/10.21105/joss.03139 (2021).ADS 
    Article 

    Google Scholar 
    Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis: A Global Perspective. 7 edn, (Prentice Hall, 2009).Azen, R. & Budescu, D. V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 8, 129–148. https://doi.org/10.1037/1082-989x.8.2.129 (2003).Article 
    PubMed 

    Google Scholar 
    Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147. https://doi.org/10.1198/000313007X188252 (2007).MathSciNet 
    Article 

    Google Scholar 
    Luo, W. & Azen, R. Determining predictor importance in hierarchical linear models using dominance analysis. J. Educ. Behav. Stat. 38, 3–31. https://doi.org/10.3102/1076998612458319 (2013).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Erickson, T. R. & Stefan, H. G. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng. 5, 317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317) (2000).Article 

    Google Scholar 
    Webb, B. W., Clack, P. D. & Walling, D. E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 17, 3069–3084. https://doi.org/10.1002/hyp.1280 (2003).ADS 
    Article 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics.
    30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).Sugimoto, S., Nakamura, F. & Ito, A. Heat budget and statistical analysis of the relationship between stream temperature and riparian forest in the Toikanbetsu River Basin, Northern Japan. J. For. Res. 2, 103–107. https://doi.org/10.1007/BF02348477 (1997).Article 

    Google Scholar 
    Dugdale, S. J., Malcolm, I. A., Kantola, K. & Hannah, D. M. Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. Sci. Total Environ. 610–611, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Timm, A., Ouellet, V. & Daniels, M. Riparian land cover, water temperature variability, and thermal stress for aquatic species in urban streams. Water 13, 2732. https://doi.org/10.3390/w13192732 (2021).Article 

    Google Scholar 
    Mitchell, S. A simple model for estimating mean monthly stream temperatures after riparian canopy removal. Environ. Manage. 24, 77–83. https://doi.org/10.1007/s002679900216 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horne, J. P. & Hubbart, J. A. A spatially distributed investigation of stream water temperature in a contemporary mixed-land-use watershed. Water 12, 1756. https://doi.org/10.3390/w12061756 (2020).Article 

    Google Scholar 
    Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556. https://doi.org/10.1002/hyp.9334 (2013).ADS 
    Article 

    Google Scholar 
    Sun, H., Kasahara, T., Otsuki, K., Saito, T. & Onda, Y. Spatio-temporal streamflow generation in a small, steep headwater catchment in Western Japan. Hydrol. Sci. J. 62, 818–829. https://doi.org/10.1080/02626667.2016.1266635 (2017).Article 

    Google Scholar 
    Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Arnott, S., Hilton, J. & Webb, B. W. The impact of geological control on flow accretion in lowland permeable catchments. Hydrol. Res. 40, 533–543. https://doi.org/10.2166/nh.2009.017 (2009).Article 

    Google Scholar 
    Calvache, M. L., Duque, C., Fontalva, J. M. G. & Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol. 8, 223–236. https://doi.org/10.1007/BF03326211 (2011).Article 

    Google Scholar 
    Nejadhashemi, A. P., Wardynski, B. J. & Munoz, J. D. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol. Earth Syst. Sci. 2011, 3421–3468, https://doi.org/10.5194/hessd-8-3421-2011 (2011).Macedo, M. N. et al. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120153–20120153. https://doi.org/10.1098/rstb.2012.0153 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, K. M. et al. Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128. https://doi.org/10.1002/2013JG002516 (2014).Article 

    Google Scholar 
    Wang, Y. I., He, B. I. N. & Takase, K. Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge. Hydrol. Sci. J. 54, 886–898. https://doi.org/10.1623/hysj.54.5.886 (2009).Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447 (1992).Article 

    Google Scholar 
    García Molinos, J. & Donohue, I. Downscaling the non-stationary effect of climate forcing on local-scale dynamics: The importance of environmental filters. Clim. Change 124, 333–346. https://doi.org/10.1007/s10584-014-1077-4 (2014).ADS 
    Article 

    Google Scholar 
    Newman, E. A., Kennedy, M. C., Falk, D. A. & McKenzie, D. Scaling and complexity in landscape ecology. Front. Ecol. Evolution https://doi.org/10.3389/fevo.2019.00293 (2019).Article 

    Google Scholar 
    Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38, 50-51–50-17, https://doi.org/10.1029/2002WR001487 (2002).Engel, M. et al. Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment. Hydrol. Earth Syst. Sci. 23, 2041–2063. https://doi.org/10.5194/hess-23-2041-2019 (2019).ADS 
    Article 

    Google Scholar 
    Karlsen, R. H. et al. Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resour. Res. 52, 6541–6556. https://doi.org/10.1002/2016WR019186 (2016).ADS 
    Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kingsford, R. T. Conservation management of rivers and wetlands under climate change—a synthesis. Mar. Freshw. Res. 62, 217–222. https://doi.org/10.1071/MF11029 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Slow science: how I’m protecting sloth species

    It’s surprisingly hard to catch a sloth. Although they’re slow — very, very slow — if you climb a tree to catch one, it will move along to the next tree. Once you climb the new tree, it will move back again.My team does this regularly, as we conduct the Sloth Backpack Project, a data-logging initiative here in Costa Rica, where many sloths coexist with people. In 2017, I wanted to do more than research, so I started the Sloth Conservation Foundation.In this photograph, I’m fitting a backpack to a brown-throated three-fingered sloth (Bradypus variegatus) that we named Baguette, after a nearby bakery. The backpack will collect data on her location, movement and living patterns.We had found Baguette about 20 minutes earlier, balancing atop construction fencing as she attempted to escape two pit bulls. Baguette wasn’t all that grateful. She’s a feisty old girl. She’s old: she’s missing fingers, and she’s got scars on her face.I adore sloths, but I also envy them. They’re a powerful symbol of the slowness that our society needs more of. They don’t let anything stress them out unless it’s really important — they just get on with life.The backpack project will help us to understand sloth behaviour, so we can better protect them as the urban environment grows. This year, I received a €50,000 (US$52,220) Future For Nature award, which we will use to train a dog to detect sloth faeces. We can use faeces as a proxy for sloth numbers and locations in the region, and ultimately work out the boundaries of the species, how fast populations are declining and which conservation measures work.I’m happy I’ve moved away from academia — I can put all my energy into conservation as opposed to bashing out papers. That’s what I feel ecology should focus on — how we can use what we’re learning to give back to other species. More

  • in

    Contrasting reproductive strategies of two Hawaiian Montipora corals

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montilla, L. M., Ascanio, A., Verde, A. & Croquer, A. Systematic review and meta-analysis of 50 years of coral disease research visualized through the scope of network theory. PeerJ 7, e7041. https://doi.org/10.7717/peerj.7041 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, S. D., Walter, C. S. & Muller, E. M. Fine Scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida keys. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.631776 (2021).Article 

    Google Scholar 
    Harrison, P. L. in Coral Reefs: An Ecosystem in Transition (eds Zvy Dubinsky & Noga Stambler) 59–85 (Springer Netherlands, 2011).Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60, 185–203 (1990).ADS 
    Article 

    Google Scholar 
    Humphrey, C., Weber, M., Lott, C., Cooper, T. & Fabricius, K. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27, 837–850. https://doi.org/10.1007/s00338-008-0408-1 (2008).ADS 
    Article 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413-419.e413. https://doi.org/10.1016/j.cub.2020.10.039 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224. https://doi.org/10.1007/BF00265014 (1990).ADS 
    Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.2128 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Highsmith, R. C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226 (1982).ADS 
    Article 

    Google Scholar 
    Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811. https://doi.org/10.1111/j.1365-294X.2008.03787.x (2008).Article 
    PubMed 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394. https://doi.org/10.1007/BF00428562 (1986).Article 

    Google Scholar 
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/annurev.ecolsys.110308.120220 (2009).Article 

    Google Scholar 
    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs 34, 65–77. https://doi.org/10.1007/s00338-014-1214-6 (2015).ADS 
    Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24, 112–116. https://doi.org/10.1007/s00338-004-0433-7 (2005).Article 

    Google Scholar 
    Chelliah, A. et al. First record of multi-species synchronous coral spawning from Malaysia. PeerJ 3, e777. https://doi.org/10.7717/peerj.777 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunter, C. L. in Proceedings of the 6th International Coral Reef Symposium Vol. 2, 727–732 (1988).Jokiel, P. L., Ito, R. Y. & Liu, P. M. Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar. Biol. 88, 167–174. https://doi.org/10.1007/BF00397164 (1985).Article 

    Google Scholar 
    Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. in Proceedings of the 5th International Coral Reef Congress Vol. 4, 343–348 (1985).Brady, A. K., Hilton, J. D. & Vize, P. D. Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28, 677–680. https://doi.org/10.1007/s00338-009-0498-4 (2009).ADS 
    Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar. Ecol. Prog. Ser. 227, 241–251. https://doi.org/10.3354/meps227241 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R. Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc. Biol. Sci. 277, 715–722. https://doi.org/10.1098/rspb.2009.1524 (2010).Article 
    PubMed 

    Google Scholar 
    Twan, W.-H. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 247–253. https://doi.org/10.1016/j.cbpa.2006.01.011 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tan, E. S., Izumi, R., Takeuchi, Y., Isomura, N. & Takemura, A. Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci. Rep. 10, 9914. https://doi.org/10.1038/s41598-020-66020-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141. https://doi.org/10.3354/meps237133 (2002).ADS 
    Article 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    Ward, S., Harrison, P. L. & Hoegh-Guldberg, O. in Proceedings of the Ninth International Coral Reef Symposium Vol. 2, 1123–1128 (2002).Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS 
    Article 

    Google Scholar 
    Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192. https://doi.org/10.1007/s00227-003-1150-4 (2003).CAS 
    Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs https://doi.org/10.1007/s00338-021-02129-3 (2021).Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102. https://doi.org/10.3354/meps235093 (2002).ADS 
    Article 

    Google Scholar 
    Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de la Cruz, D. W. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985. https://doi.org/10.1038/s41598-017-14546-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villanueva, R. D., Baria, M. V. B. & de la Cruz, D. W. Growth and survivorship of juvenile corals outplanted to degraded reef areas in Bolinao-Anda Reef Complex, Philippines. Mar. Biol. Res. 8, 877–884. https://doi.org/10.1080/17451000.2012.682582 (2012).Article 

    Google Scholar 
    Chamberland, V. F. et al. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecol. Conserv. 4, 526–537. https://doi.org/10.1016/j.gecco.2015.10.005 (2015).Article 

    Google Scholar 
    Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    Maragos, J. E. et al. 2000–2002 rapid ecological assessment of corals (Anthozoa) on shallow reefs of the Northwestern Hawaiian Islands. Part 1: species and distribution. Pac. Sci. 58, 211–230. https://doi.org/10.1353/psc.2004.0020 (2004).Article 

    Google Scholar 
    Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu, University of Hawaiʻi at Mānoa, (2019).Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164. https://doi.org/10.1007/BF00336722 (1983).ADS 
    Article 

    Google Scholar 
    Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    Heyward, A. J. Sexual reproduction in five species of the coral Montipora. Coral Reef Popul. Biol. Hawaii Inst. Mar. Biol. Tech. Rep. 37, 170–178 (1985).
    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: causes and consequences. Ecology 69, 1552–1565. https://doi.org/10.2307/1941653 (1988).Article 

    Google Scholar 
    Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18. https://doi.org/10.1086/BBLv226n1p8 (2014).Article 
    PubMed 

    Google Scholar 
    Humason, G. L. Animal Tissue Techniques. 661 (W. H. Freeman & Co, 1979).Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Szmant-Froelich, A., Reutter, M. & Riggs, L. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122. https://doi.org/10.1007/s00338-005-0070-9 (2006).ADS 
    Article 

    Google Scholar 
    Baird, A. H., Blakeway, D. R., Hurley, T. J. & Stoddart, J. A. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 158, 275–285. https://doi.org/10.1007/s00227-010-1557-7 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org, 2019).An {R} Companion to Applied Regression. Third Edition (Sage, Thousand Oaks (CA), 2019).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.7. https://CRAN.R-project.org/package=rcompanion. (2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398. https://doi.org/10.3389/fmars.2017.00398 (2017).Article 

    Google Scholar 
    Bachtiar, I. Reproduction of three scleractinian corals (Acropora cytherea, A. nobilis, Hydnophora rigida) in easter Lombok Strait, Indonesia. Indones. J. Mar. Sci. 6, 18–27 (2001).
    Google Scholar 
    Baird, A. H., Marshall, P. A. & Wolstenholme, J. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 385–389 (2002).Mangubhai, S. & Harrison, P. L. Asynchronous coral spawning patterns on equatorial reefs in Kenya. Mar. Ecol. Prog. Ser. 360, 85–96. https://doi.org/10.3354/meps07385 (2008).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F. & Harii, S. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35, 53–62. https://doi.org/10.1007/s00338-015-1348-1 (2016).ADS 
    Article 

    Google Scholar 
    Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayward, A. & Gillooly, J. F. The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway (Mutual Publishing Company, 2005).
    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x (2012).Article 
    PubMed 

    Google Scholar 
    Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363. https://doi.org/10.1007/s00227-006-0490-2 (2006).Article 

    Google Scholar 
    Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Q. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269. https://doi.org/10.2307/1540935 (1980).Article 

    Google Scholar 
    Kojis, B. L. Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia). Mar. Biol. 91, 311–318. https://doi.org/10.1007/BF00428624 (1986).Article 

    Google Scholar 
    Neves, E. & Pires, D. Sexual reproduction of Brazilian coral Mussismilia hispida (Verrill, 1902). Coral Reefs 21, 161–168. https://doi.org/10.1007/s00338-002-0217-x (2002).Article 

    Google Scholar 
    Pennington, J. T. The ecology of fertilization of Echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    Oliver, J. & Babcock, R. C. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315. https://doi.org/10.4319/lo.2002.47.1.0309 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398. https://doi.org/10.1111/j.1461-0248.2006.00886.x (2006).Article 
    PubMed 

    Google Scholar 
    Wolstenholme, J. K. Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar. Biol. 144, 567–582. https://doi.org/10.1007/s00227-003-1209-2 (2004).Article 

    Google Scholar 
    Colley, S. B., Feingold, J. S., Peña, J. & Glynn, P. W. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 23–27 (2000).Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96, 515–528. https://doi.org/10.1017/S0025315415000636 (2016).Article 

    Google Scholar 
    Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94. https://doi.org/10.1007/s00338-016-1504-2 (2017).ADS 
    Article 

    Google Scholar 
    Sherman, C. D. H. Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 100, 296–303. https://doi.org/10.1038/sj.hdy.6801076 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yeoh, S.-R. & Dai, C.-F. The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar. Biol. 157, 351–359. https://doi.org/10.1007/s00227-009-1322-y (2010).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525. https://doi.org/10.1038/s41598-021-91030-8 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Westneat, M. W. & Resing, J. M. Predation on coral spawn by planktivorous fish. Coral Reefs 7, 89–92. https://doi.org/10.1007/BF00301646 (1988).ADS 
    Article 

    Google Scholar 
    Fitzhugh, G. R., Shertzer, K. W., Kellison, G. T. & Wyanski, D. M. Review of size- and age-dependence in batch spawning: implications for stock assessment of fish species exhibiting indeterminate fecundity. Fish. Bull. 110, 413–425 (2012).
    Google Scholar 
    Alvarado, E. M., García, R. & Acosta, A. Sexual reproduction of the reef-building coral Diploria labyrinthiformis (Scleractinia:Faviidae), in the Colombian Caribbean. Rev. Biol. Trop. 52, 859–868 (2004).PubMed 

    Google Scholar 
    Maragos, J. E. A Study of the Ecology of Hawaiian Reef Corals, University of Hawaiʻi at Mānoa, (1972).Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Berec, L., Angulo, E. & Courchamp, F. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191. https://doi.org/10.1016/j.tree.2006.12.002 (2007).Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).Article 

    Google Scholar 
    Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).Article 

    Google Scholar 
    Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).Article 

    Google Scholar 
    Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).Article 

    Google Scholar 
    Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).Article 

    Google Scholar 
    Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).Article 

    Google Scholar 
    Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).Article 

    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).Article 

    Google Scholar 
    Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).Article 

    Google Scholar 
    Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).Article 

    Google Scholar 
    Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).Article 

    Google Scholar 
    Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).Article 

    Google Scholar 
    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).Article 

    Google Scholar 
    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).Article 
    ADS 

    Google Scholar 
    Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).Article 

    Google Scholar 
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).CAS 
    Article 

    Google Scholar 
    Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).Article 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).Article 
    ADS 

    Google Scholar 
    Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).Article 

    Google Scholar 
    Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).Article 

    Google Scholar 
    Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).Article 

    Google Scholar 
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).Article 

    Google Scholar 
    Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).Article 
    ADS 

    Google Scholar 
    Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. Ciênc. 92, 1–2 (2020).
    Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).Article 

    Google Scholar 
    Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).Article 

    Google Scholar 
    Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).
    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).Article 

    Google Scholar 
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).Article 

    Google Scholar 
    Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).Article 

    Google Scholar 
    Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).Article 
    ADS 

    Google Scholar 
    Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).
    Google Scholar 
    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).Article 

    Google Scholar 
    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).Article 

    Google Scholar 
    Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).CAS 
    Article 

    Google Scholar 
    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).Article 

    Google Scholar 
    Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).Article 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).Article 

    Google Scholar 
    Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).
    Google Scholar 
    Dalapicolla, J. Tutorial de modelos de distribuição de espécies: guia prático usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia. Universidade Federal do Espírito Santo, Vitória. Retrieved, 6 (2016).Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & Corrêa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., Corrêa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).Article 

    Google Scholar 
    Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).Article 

    Google Scholar 
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).Terrell, G. R. & Scott, D. W. Variable kernel density estimation.  Ann. Stat. 20(3), 1236–1265 (1992).
    O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar  More