More stories

  • in

    Network metrics guide good control choices

    The management of introduced species, whether kudzu or zebra mussels, is costly and complex. Now, a paper reports a workable, effective solution that harnesses network analyses of ecological phenomena.Invasive species can pose severe economic and environmental problems, costing more than US$1 trillion worldwide since 1970 (ref. 1). Yet managing this human-driven issue is difficult in itself. The regions involved can be vast — entire continents or countries, for instance — while budgets are typically limited. As well, the sites potentially affected and management options can be numerous. Real systems (for example, all the lakes in the United States) can have thousands of locations that could potentially be infested. By contrast, considering just 40 locations means dealing theoretically with over 1 trillion unique combinations (240) where management could be applied (for instance, to reduce the number of invasive species leaving infested areas or entering uninfested ones). Given these constraints, a key problem is how and where to deploy control measures such as invasive-species removal. While sophisticated optimization approaches exist2, which use mathematical rules to exclude most suboptimal combinations and quickly zoom in to which locations should be managed to minimize new invasions, these algorithms are generally unfeasible for very large systems. Now, writing in Nature Sustainability, Ashander et al.3 demonstrate that simpler network metrics revealing linkages between patches can provide solutions that are often comparable to the more complex optimization algorithms. More

  • in

    Gentrified gardens

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems

    Site descriptionThe experiment was conducted at the Beef Cattle Research Center of the Institute of Animal Science/APTA/SAA, Sertãozinho, São Paulo, Brazil (21°08′16″ S e 47°59′25″ W, average altitude 548 m), during two consecutive years. The climate in this region is Aw according to the Köppen’s classification, characterized as humid tropical, with a rainy season during summer and drought during winter. The meteorological data is reported in Fig. 1. The soil in the experimental area is classified as an Oxisol42. Before the experiment, soil samples were collected for chemical characterization (Table 4), which was performed following the methodology described in Van Raij et al.43. Samples were collected in 18 experimental paddocks, at the depths of 0- to 10- and 10- to 20-cm layers, from 10 distinct sampling points in each paddock, in order to create one composite sample per unit, totaling 36 samples analyzed.Figure 1Meteorological data during the study period, obtained from the meteorological station located at Centro de Pesquisa de Bovinos de Corte, Instituto de Zootecnia/Agência Paulista de Tecnologia dos Agronegócios (APTA)/Secretaria de Agricultura e Abastecimento de São Paulo (SAA), Sertãozinho, São Paulo, Brazil.Full size imageTable 4 Chemical attributes of the soil in the experimental area, before installing the experiment (November 2015).Full size tableThe nitrogen total (Nt) content was determined by the micro-Kjeldahl method44, and the soil nitrogen stocks (SN) were calculated using the following equation below, according to Veldkamp et al.45.$${text{SN }}left[ {{text{Mg ha}}^{ – 1} {text{ at a given depth}}} right], = ,({text{concentration }} times {text{ BD}}, times ,{1}/{1}0),$$ where concentration refers to the Nt concentration at a given depth (g kg−1), BD is the bulk density at a certain depth (average 1.24 kg dm−3), and 1 is the layer thickness (cm).Description of treatments and managementsThe experiment was carried out in a 16-ha area, divided into 18 paddocks of 0.89 ha each (Fig. 2), organized in a randomized blocks design with three replicates and six treatments, namely conventional crop system with grain maize production (CROP), conventional livestock system with beef cattle production in pasture using Marandu grass (LS), and four ICLS for the production of intercropped maize grain with beef cattle pasture. All production systems were sowed in December 2015, under a no-tillage system. The fertilization recommendations in the systems were based on the recommendation presented in the Boletim 10046.Figure 2Localization and representation of the area of the experiment carried out in the study. Google Earth version Pro was used to construct the map (http://www.google.com/earth/index.html).Full size imageIn the CROP system, the maize Pioneer P2830H was cultivated, sowed in a spacing of 75 cm and sowing density of 70 thousand plants. Applications of 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (single superphosphate) and 64 kg ha−1 of KCl (potassium chloride) were performed. Complementarily, a topdressing fertilization was made using 80 kg ha−1 of nitrogen (urea) and 80 kg ha−1 of KCl. Sowing was carried out for two consecutive years (December 2015 and 2016), providing two harvests of maize grains (May 2016 and 2017), and between one harvest and the other, the soil remained in fallow without any cover crop. The total amount of fertilizer applied in two years was 224 kg ha−1 of nitrogen (urea), 224 kg ha−1 of P2O5 (single superphosphate) and 288 kg ha−1 of KCl (potassium chloride).For the LS treatment, Urochloa brizantha (Hoechst. ex A. Rich) R.D. Webster cv. Marandu (syn. Brachiaria brizantha cv. Marandu) was sowed in a spacing of 37.5 cm, with a density of 5 kg ha−1 of seeds (76% of crop value) for the pasture assemblage. Marandu grass seeds were mixed with the planting fertilizer, applying 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (as single superphosphate) and 64 kg ha−1 of KCl. Applications of 40 kg ha−1 of nitrogen, 10 kg ha−1 of P2O5 and 40 kg ha−1 of KCl were also performed as topdressing fertilization in October 2016 and March 2017. 90 days after sowing, the pasture was ready to be grazed (March 2016). Three grazing periods were carried out in continuous stocking systems, with the first period between March and April 2016, the second period between August and October 2016 and the third between November 2016 and December 2017. The total amount for 2 years was 112 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 144 kg ha−1 of KCl (potassium chloride).The same cultivar, spacing, sowing density and fertilization rates described in the CROP treatment were used in all ICLS, as well as the same density of Marandu grass seeds and topdressing fertilization adopted in the pasture of the LS treatment. The total amount for two years was 192 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 224 kg ha−1 of KCl (potassium chloride). In ICLS-1, Marandu grass was sowed in lines simultaneously with maize, while in ICLS-2, the sowing was also simultaneous, but the application of an under-dose of 200 mL of the herbicide Nicosulfuron was used, 20 days after seedlings emergence. In the ICLS-3, Marandu grass seeds were sown the time of topdressing fertilization of maize, thus the grass seeds were mixed with the fertilizer, and sowing was carried out in the interlines of maize, using a minimum cultivator. In ICLS-4, the sowing of Marandu grass was performed simultaneously with maize, but the grass seeds were sowed in both rows and inter-rows of maize, resulting in a spacing of 37.5 cm. In this treatment, the application of 200 mL of the herbicide Nicosulfuron was adopted, 20 days after seedlings emergence.In all ICLS treatments, maize harvest was carried out in May 2016. Ninety days after harvesting the plants, the pastures were ready to be grazed. Therefore, two grazing periods were made in continuous stocking, being the first period between August and October 2016 and the second period between November 2016 and December 2017. The method for animal stocking in treatments LS and ICLS was continuous with a stocking rate (put and take) being defined according to Mott47. Caracu beef cattle with 14 months of age were used at the beginning of the experiment, with an average body weight of 335 ± 30 kg.Estimations of the nutrient balance (NB) and nutrient use efficiency (NUE)In this study, the inputs and outputs of N were assessed at the farm level48,49. The NB was calculated by the equation below19,45,50.$${text{NB}}_{{text{N}}} = {text{ Input}}_{{text{N}}} {-}{text{ Output}}_{{text{N}}}$$As for the NUE, this parameter was evaluated as defined by the EU Nitrogen Expert Panel51, being calculated as the ratio between outputs and inputs of nitrogen.$${text{NUE}}_{{text{N}}} = , left[ {{text{Output}}_{{text{N}}} /{text{ Input}}_{{text{N}}} } right]$$where NB is the nutrient balance, N is nitrogen, Input is the N concentration in the mineral fertilizer (urea), Output is the nitrogen concentration in export (maize grain and animal tissue), and NUE is the use efficiency of the nutrient.The amount of N exported in maize grains, the grain production results (Table 2) were multiplied by the mean value of N, consulted in Crampton and Harris52.In order to estimate the amounts of nutrient exported by the animals in their tissues, the values of live weight gain were considered [kg ha-1 of live weight (PV)] (Table 2), as well as the nitrogen values of the tissue, according to the methodology proposed by Rasmussen et al.21. Those authors reported that for animals weighting less than 452 kg/PV, it represents 2.7%, while heavier animals have a 2.4% nitrogen content representation of their body weight.The inputs and outputs of N in each production system are represented in Figs. 3, 4 and 5. Biological N fixation, atmospheric deposition, denitrification, leaching, rainfall, and volatilization and absorption of ammonia were not considered in the calculation of NB.Figure 3Representation of inputs and outputs of nitrogen and organic residues generated in the crop system.Full size imageFigure 4Representation of inputs and outputs of nitrogen and organic residues generated in the livestock system.Full size imageFigure 5Representation of inputs and outputs of nitrogen and organic residues generated in the integrated systems.Full size imageData for animal tissue, animal excreta, and N concentration in grains were obtained from key manuscripts from the scientific literature in order to estimate the N balance.Calculation of nitrogen quantity and valuation of organic residuesThe amount of N in the organic residues was determined as a function of the system (Figs. 3, 4, 5). The residue considered in the CROP was the straw derived from maize, while for LS it was the litter deposited (LD) in the grass Marandu, and animal manure (feces and urine). The ICLS were considered as the straw, LD, and animal manure.The N concentration in straw and LD was determined following the methods of AOAC (1990). Straw was sampled immediately after maize grain harvest, using a 1-m2 frame in the field. The material was collected in two spots of the plot that were chosen randomly. All straw deposited on the soil was sampled, weighted and dried in an oven with air circulation (60 °C) until constant weight, for the determination of dry matter in kg of straw per hectare (Table 2). The LD in the pasture system (Table 2) was analyzed according to Rezende et al.53.In order to estimate the daily amount of excreta, we considered the stocking rate adopted in the experiment (Table 2) and the values proposed by Haynes and Williams54. According to those authors, adult beef cattle can defecate on average 13 times a day and urinate 10 times a day, totaling a daily amount of 28.35 kg of feces and 19 L of urine.The valuation was calculated based on the mean value of urea for the last 10 years in the fertilizer market55,56,57, namely $0.28 kg−1 ha−1 of urea, and considering the loss of nitrogen by volatilization, which according to Freney et al.58 and Subair et al.59 can reach up to 28%.Statistical analysisThe experiment was assembled in a randomized blocks design. The model adopted for the analysis of all response variables included the block’s and treatments fixed effects (3 blocks and 6 treatments), in addition to the random error. Statistical analysis were carried out by the function “dbc()” of the package “ExpDes.pt” of the software R Development Core Team60, and the mean values were compared by the Tukey’s test at a 5% probability level. More

  • in

    Plant rarity in fire-prone dry sclerophyll communities

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R Soc. B 283, 20160084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J. et al. The commonness of rarity: Global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).Bevill, R. L. & Louda, S. M. Comparisons of related rare and common species in the study of plant rarity. Conserv. Biol. 13, 493–498 (1999).Article 

    Google Scholar 
    Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).Article 

    Google Scholar 
    Gaston, K. J. Common ecology. Bioscience 61, 354–362 (2011).Article 

    Google Scholar 
    Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    Gaston, K. J. What is rarity? in Rarity 1–21 (Springer, 1994).Rabinowitz, D. Seven forms of rarity. in The biological aspects of rare plant conservation (ed. Synge, H.) 205–217 (John Wiley and Sons: Chichester, UK, 1981).Sykes, L., Santini, L., Etard, A. & Newbold, T. Effects of rarity form on species’ responses to land use. Conserv. Biol. 34, 688–696 (2019).PubMed 
    Article 

    Google Scholar 
    Patykowski, J. et al. The effect of prescribed burning on plant rarity in a temperate forest. Ecol. Evol. 8, 1714–1725 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ames, G. M., Wall, W. A., Hohmann, M. G. & Wright, J. P. Trait space of rare plants in a fire-dependent ecosystem. Conserv. Biol. 31, 903–911 (2017).PubMed 
    Article 

    Google Scholar 
    Foster, C. N. et al. Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation. Appl. Veg. Sci. 21, 132–143 (2018).Article 

    Google Scholar 
    Fernández-García, V. et al. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Sci. Total Environ. 716, 137137 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Bassett, M., Leonard, S. W. J., Chia, E. K., Clarke, M. F. & Bennett, A. F. Interacting effects of fire severity, time since fire and topography on vegetation structure after wildfire. For. Ecol. Manag. 396, 26–34 (2017).Article 

    Google Scholar 
    Miller, B. P., Symons, D. R. & Barrett, M. D. Persistence of rare species depends on rare events: Demography, fire response and phenology of two plant species endemic to a semiarid Banded Iron Formation range. Aust. J. Bot. 67, 268–280 (2019).Article 

    Google Scholar 
    Etchells, H., O’Donnell, A. J., Lachlan McCaw, W. & Grierson, P. F. Fire severity impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest Australia. For. Ecol. Manag. 459, 117850 (2020).Article 

    Google Scholar 
    Bradstock, R. A., Tozer, M. G. & Keith, D. A. Effects of high frequency fire on floristic composition and abundance in a fire-prone heathland near Sydney. Aust. J. Bot. 45, 641–655 (1997).Article 

    Google Scholar 
    Penman, T. D., Binns, D. L., Brassil, T. E., Shiels, R. J. & Allen, R. M. Long-term changes in understorey vegetation in the absence of wildfire in south-east dry sclerophyll forests. Aust. J. Bot. 57, 533–540 (2010).Article 

    Google Scholar 
    Ooi, M. K. The importance of fire season when managing threatened plant species: A long-term case-study of a rare Leucopogon species (Ericaceae). J. Environ. Manage. 236, 17–24 (2019).PubMed 
    Article 

    Google Scholar 
    Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Australian Bureau of Meteorology. Climate Data Online. www.bom.gov.au (2019).Abell, R. S. Geoscience map of Jervis Bay Territory and Beecroft peninsula (1:25000 scale). Australian Geological Survey Organisation (1992).Taws, N. Vegetation survey and mapping of Jervis Bay Territory. (Taws Botanical Research, 1997).Taylor, G., Abell, R. & Paterson, I. Geology, geomorphology, soils and earth resources. in Jervis Bay (eds. Cho Arthur, G., Georges, Stoutjesdikj Richard, R., & Longmore) .-. (Australian Nature Conservation Agency, 1995).Keith, D. A. Ocean shores to desert dunes: the native vegetation of NSW and the ACT (Selected Extracts). (Department of Environment and Conservation (NSW), 2004).Keith, D. A. & Tozer, M. G. Vegetation dynamics in coastal heathlands of the Sydney basin. in Proceedings of the Linnean Society of New South Wales vol. 134 (2012).Lindenmayer, D. B. et al. Contrasting mammal responses to vegetation type and fire. Wildl. Res. 35, 395–408 (2008).Article 

    Google Scholar 
    Bradstock, R. A. & Kenny, B. J. An application of plant functional types to fire management in a conservation reserve in southeastern Australia. J. Veg. Sci. 14, 345–354 (2003).Article 

    Google Scholar 
    Bowd, E. J., Banks, S. C., Bissett, A., May, T. W. & Lindenmayer, D. B. Direct and indirect disturbance impacts in forests. Ecol. Lett. https://doi.org/10.1111/ele.13741 (2021).Article 
    PubMed 

    Google Scholar 
    Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psychol. 39, 81–90 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg (Sage, 2019).
    Google Scholar 
    Venables, W. N. R., B. D. Modern Applied Statistics with S. Fourth Edition. (Springer, 2002).Morrison, D. A. et al. Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: Inter-fire interval and time-since-fire. Aust. J. Ecol. 20, 239–247 (1995).ADS 
    Article 

    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-Level / mixed) regression models. (2020).Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tozer, M. G. & Bradstock, R. A. Fire-mediated effects of overstorey on plant species diversity and abundance in an eastern Australian heath. Plant Ecol. 164, 213–223 (2003).Article 

    Google Scholar 
    Gosper, C. R., Yates, C. J., Prober, S. M. & Parsons, B. C. Contrasting changes in vegetation structure and diversity with time since fire in two Australian Mediterranean-climate plant communities. Austral Ecol. 37, 164–174 (2012).Article 

    Google Scholar 
    Foster, C., Barton, P., Robinson, N., MacGregor, C. & Lindenmayer, D. B. Effects of a large wildfire on vegetation structure in a variable fire mosaic. Ecol. Appl. 27, 2369–2381 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Preston, F. W. The commonness, and rarity, of species. Ecology 29, 254–283 (1948).Article 

    Google Scholar 
    McGill, B. J. A renaissance in the study of abundance. Science 314, 770–772 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).Article 

    Google Scholar 
    Lyons, K. G. & Schwartz, M. W. Rare species loss alters ecosystem function—invasion resistance. Ecol. Lett. 4, 358–365 (2001).Article 

    Google Scholar 
    Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 

    Google Scholar 
    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lennon, J. J., Koleff, P., Greenwood, J. J. & Gaston, K. J. Contribution of rarity and commonness to patterns of species richness. Ecol. Lett. 7, 81–87 (2004).Article 

    Google Scholar 
    Foster, C. N. et al. Herbivory and fire interact to affect forest understory habitat, but not its use by small vertebrates. Anim. Conserv. 19, 15–25 (2016).Article 

    Google Scholar 
    Lamont, B. B., Enright, N. J. & He, T. Fitness and evolution of resprouters in relation to fire. Plant Ecol. 212, 1945–1957 (2011).Article 

    Google Scholar 
    Tolhurst, K. G. & Turvey, N. D. Effects of bracken (Pteridium esculentum (forst. f.) cockayne) on eucalypt regeneration in west-central Victoria. For. Ecol. Manag. 54, 45–67 (1992).Candeias, M. & Warren, R. J. Rareness starts early for disturbance-dependent grassland plant species. Biodivers. Conserv. 25, 2771–2785 (2016).Article 

    Google Scholar 
    Beadle, N. Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35, 370–375 (1954).CAS 
    Article 

    Google Scholar 
    Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed 
    Article 

    Google Scholar 
    Vesk, P. A. & Westoby, M. Funding the bud bank: A review of the costs of buds. Oikos 106, 200–208 (2004).Article 

    Google Scholar 
    Wilfahrt, P. et al. Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology https://doi.org/10.1002/ecy.3504 (2021).Article 
    PubMed 

    Google Scholar 
    Miller, B. P. et al. Persistence of rare species depends on rare events: Demography, fire response and phenology of two plant species endemic to a semiarid Banded Iron Formation range. Aust. J. Bot. 67, 268–280 (2019).Article 

    Google Scholar 
    Gillespie, I. G. & Allen, E. B. Fire and competition in a southern California grassland: Impacts on the rare forb Erodium macrophyllum. J. Appl. Ecol. 41, 643–652 (2004).Article 

    Google Scholar 
    Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509 (2012).PubMed 
    Article 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Do persistent rare species experience stronger negative frequency dependence than common species?. Glob. Ecol. Biogeogr. 26, 513–523 (2017).Article 

    Google Scholar 
    Mayberry, R. J. & Elle, E. Conservation of a rare plant requires different methods in different habitats: Demographic lessons from Actaea elata. Oecologia 164, 1121–1130 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rabinowitz, D. & Rapp, J. K. Dispersal abilities of seven sparse and common grasses froma Missouri prairie. Am. J. Bot. 68, 616–624 (1981).Article 

    Google Scholar 
    McIntyre, S. Comparison of a common, rare and declining plant species in the Asteraceae: Possible causes of rarity. Pac. Conserv. Biol. 2, 177–190 (1995).Article 

    Google Scholar 
    Hopfensperger, K. N. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116, 1438–1448 (2007).Article 

    Google Scholar 
    Cross, A. T. et al. Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub. AoB Plants 9, (2017). More

  • in

    Increasing climatic decoupling of bird abundances and distributions

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. IPBES (2019): Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).CAS 
    PubMed 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270, 467–473 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, J. K. et al. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 4, 313–321 (2001).
    Google Scholar 
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).
    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
    Google Scholar 
    Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).
    Google Scholar 
    Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).PubMed 

    Google Scholar 
    McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).PubMed 

    Google Scholar 
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111–113 (2006).PubMed 

    Google Scholar 
    Partners in Flight. Avian Conservation Assessment Database Version 2021 (accessed 5 February 2021); http://pif.birdconservancy.org/ACADHill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sens. (Basel) 12, 406 (2020).
    Google Scholar 
    Wiebe, K. L. & Gerstmar, H. Influence of spring temperatures and individual traits on reproductive timing and success in a migratory woodpecker. Auk 127, 917–925 (2010).
    Google Scholar 
    Viana, D. S. & Chase, J. M. Ecological traits underlying interspecific variation in climate matching of birds. Glob. Ecol. Biogeogr. 31, 1021–1034 (2022).
    Google Scholar 
    Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).CAS 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    Google Scholar 
    Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).
    Google Scholar 
    Coyle, J. R., Hurlbert, A. H. & White, E. P. Opposing mechanisms drive richness patterns of core and transient bird species. Am. Nat. 181, E83–E90 (2013).PubMed 

    Google Scholar 
    Valiela, I. & Martinetto, P. Changes in bird abundance in eastern North America: urban sprawl and global footprint? BioScience 57, 360–370 (2007).
    Google Scholar 
    Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).
    Google Scholar 
    Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).
    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnagaud, J.-Y. et al. Relating habitat and climatic niches in birds. PLoS ONE 7, e32819 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).
    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).
    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 

    Google Scholar 
    Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390–1399 (2017).
    Google Scholar 
    Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).PubMed 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).
    Google Scholar 
    van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).
    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87, 1034–1045 (2018).PubMed 

    Google Scholar 
    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).
    Google Scholar 
    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pardieck, K. L., Ziolkowski, D. J. Jr, Lutmerding, M., Aponte, V. & Hudson, M.-A. R. North American Breeding Bird Survey Dataset 1966–2018 Version 2018.0. (US Geological Survey, 2019); https://www.sciencebase.gov/catalog/item/5d65256ae4b09b198a26c1d7Harris, D. J., Taylor, S. D. & White, E. P. Forecasting biodiversity in breeding birds using best practices. PeerJ 6, e4278 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: a Grammar of Data Manipulation. R package version 1.0.0 https://cran.r-project.org/web/packages/dplyr/index.html (2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.1.0 https://cran.r-project.org/web/packages/tidyr/index.html (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-12 https://cran.r-project.org/web/packages/raster/index.html (2015).Bivand, R., Pebesma, E. J. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5–10 https://cran.r-project.org/web/packages/geosphere/index.html (2019).Hart, E. M. & Bell, K. prism. R package version 0.0.6 https://github.com/ropensci/prism (2015).Senyondo, H. et al. rdataretriever: R interface to the data retriever. J. Open Source Softw. 6, 2800 (2021).
    Google Scholar 
    Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological data. PLoS ONE 8, e65848 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Senyondo, H. et al. Retriever: data retrieval tool. J. Open Source Softw. 2, 451 (2017).
    Google Scholar 
    Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).
    Google Scholar 
    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).
    Google Scholar 
    Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).PubMed 

    Google Scholar 
    Sauer, J. R. & Link, W. A. Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128, 87–98 (2011).
    Google Scholar 
    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    Krenek, S., Berendonk, T. U. & Petzoldt, T. Thermal performance curves of Paramecium caudatum: a model selection approach. Eur. J. Protistol. 47, 124–137 (2011).PubMed 

    Google Scholar 
    Bahn, V. & McGill, B. J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16, 733–742 (2007).
    Google Scholar 
    Dobson, L. L., La Sorte, F. A., Manne, L. L. & Hawkins, B. A. The diversity and abundance of North American bird assemblages fail to track changing productivity. Ecology 96, 1105–1114 (2015).PubMed 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.5 https://cran.r-project.org/web/packages/gbm/index.html (2019).Wood, S. N. Generalized Additive Models: an Introduction with R (CRC Press/Taylor & Francis Group, 2017).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Stan Development Team. Stan Modeling Language Users Guide and Reference Manual (2020); https://mc-stan.org/users/documentation/ More

  • in

    Urban tropical forest islets as hotspots of ants in general and invasive ants in particular

    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).Article 

    Google Scholar 
    Frizzo, T. L., Souza, L. M., Sujii, E. R. & Togni, P. H. Ants provide biological control on tropical organic farms influenced by local and landscape factors. Biol. Control 151, 104378 (2020).CAS 
    Article 

    Google Scholar 
    Elizalde, L. et al. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 95, 1418–1441 (2020).PubMed 
    Article 

    Google Scholar 
    Zhong, Z. et al. Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology 102, e03312 (2021).PubMed 
    Article 

    Google Scholar 
    Ortiz, D. P., Elizalde, L. & Pirk, G. I. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecol. Entomol. 46, 626–636 (2021).Article 

    Google Scholar 
    Li, X. et al. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct. Ecol. 35, 1822–1832 (2021).Article 

    Google Scholar 
    Wendt, C. F. et al. Local environmental variables are key drivers of ant taxonomic and functional beta-diversity in a Mediterranean dryland. Sci. Rep. 11, 1–10 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Lach, L. Invasive ant establishment, spread, and management with changing climate. Curr. Opin. Insect Sci. 47, 119–124 (2021).PubMed 
    Article 

    Google Scholar 
    Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    Miguelena, J. G. & Baker, P. B. Effects of urbanization on the diversity, abundance, and composition of ant assemblages in an arid city. Environ. Entomol. 48, 836–846 (2019).PubMed 
    Article 

    Google Scholar 
    Nielsen, A. B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).Article 

    Google Scholar 
    Peng, M.-H., Hung, Y.-C., Liu, K.-L. & Neoh, K.-B. Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Sci. Rep. 10, 16043 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos, M. N., Delabie, J. H. & Queiroz, J. M. Biodiversity conservation in urban parks: A study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B Biol. Sci. 285, 20180643 (2018).Article 
    CAS 

    Google Scholar 
    Abdel-Dayem, M. S. et al. Ant diversity and composition patterns along the urbanization gradients in an arid city. J. Nat. Hist. 55, 2521–2547 (2021).Article 

    Google Scholar 
    Nooten, S. S., Lee, R. H. & Guénard, B. Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biol. Conserv. 261, 109286 (2021).Article 

    Google Scholar 
    Bhagwat, S. A. & Rutte, C. Sacred groves: Potential for biodiversity management. Front. Ecol. Environ. 4, 519–524 (2006).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Rajesh, T. P., Unni, A. P., Ballullaya, U. P., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves–an island habitat–using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90 (2021).Article 

    Google Scholar 
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    Plowes, R. M., Dunn, J. G. & Gilbert, L. E. The urban fire ant paradox: Native fire ants persist in an urban refuge while invasive fire ants dominate natural habitats. Biol. Invasions 9, 825–836 (2007).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Surendran, P. & Sinu, P. A. Ants indicate urbanization pressure in sacred groves of southwest India: A pilot study. Curr. Sci. 113, 317–322 (2017).Article 

    Google Scholar 
    Wetterer, J. K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 77–97 (2005).
    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. A landscape approach to biodiversity conservation of sacred groves in the Western Ghats of India. Conserv. Biol. 19, 1853–1862 (2005).Article 

    Google Scholar 
    Chandrashekara, U. M. & Sankar, S. Ecology and management of sacred groves in Kerala, India. For. Ecol. Manag. 112, 165–177 (1998).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Manoj, K. et al. Diversity of Platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats Biodiversity Hotspot, India. Environ. Entomol. 46, 685–692 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hariraveendra, M., Rajesh, T. P., Unni, A. P. & Sinu, P. A. Prey–predator interaction suggests sacred groves are not functionally different from neighbouring used lands. J. Trop. Ecol. 36, 220–224 (2020).Article 

    Google Scholar 
    Bingham, C. T. The fauna of British India, including Ceylon and Burma. Hymenoptera, Vol. II. Ants and Cuckoo-wasps. (1903).Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, 1994).
    Google Scholar 
    Bellow, J. G. & Nair, P. K. R. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. For. Meteorol. 114, 197–211 (2003).ADS 
    Article 

    Google Scholar 
    Dobson, A. J. & Barnett, A. G. An Introduction to Generalized Linear Models (Chapman and Hall/CRC, 2018).MATH 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Kim, T. N., Savannah, B., Bill, D. W., Douglas, A. L. & Claudio, G. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).Article 

    Google Scholar 
    Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Nash, J. C. On best practice optimization methods in R. J. Stat. Softw. 60, 1–14 (2014).Article 

    Google Scholar 
    Berman, M., Andersen, A. N. & Ibanez, T. Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biol. Invasions 15, 2311–2331 (2013).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H.-P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guénard, B., Cardinal-De Casas, A. & Dunn, R. R. High diversity in an urban habitat: Are some animal assemblages resilient to long-term anthropogenic change?. Urban Ecosyst. 18, 449–463 (2015).Article 

    Google Scholar 
    Slipinski, P., Zmihorski, M. & Czechowski, W. Species diversity and nestedness of ant assemblages in an urban environment. Eur. J. Entomol. 109, 197 (2012).Article 

    Google Scholar 
    Heterick, B. E., Lythe, M. & Smithyman, C. Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: Two case studies. Urban Ecosyst. 16, 145–173 (2013).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Goodman, M. & Warren, R. J. II. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol. Invasions 21, 2713–2722 (2019).Article 

    Google Scholar 
    Philpott, S. M. & Armbrecht, I. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31, 369–377 (2006).Article 

    Google Scholar 
    Philpott, S. M., Perfecto, I. & Vandermeer, J. Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. Biodivers. Conserv. 15, 139–155 (2006).Article 

    Google Scholar 
    García-Cárdenas, R., Montoya-Lerma, J. & Armbrecht, I. Ant diversity under three coverages in a Neotropical coffee landscape. Rev. Biol. Trop. 66, 1373–1389 (2018).Article 

    Google Scholar 
    Sinu, P. A. et al. Invasive ant (Anoplolepis gracilipes) disrupts pollination in pumpkin. Biol. Invasions 19, 2599–2607 (2017).Article 

    Google Scholar 
    Tsang, T. P., Dyer, E. E. & Bonebrake, T. C. Alien species richness is currently unbounded in all but the most urbanized bird communities. Ecography 42, 1426–1435 (2019).Article 

    Google Scholar 
    D’ettorre, P. Invasive eusocieties: commonalities between ants and humans. In Human Dispersal and Species Movement (eds Boivin, N. et al.) (Cambridge University Press, 2017).
    Google Scholar 
    Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    Lizon à l’Allemand, S. & Witte, V. sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biol. invasions 12, 3551–3561 (2010).Article 

    Google Scholar 
    Silverman, J. & Buczkowski, G. Behaviours mediating ant invasions. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) (Cambridge University Press, 2016).
    Google Scholar  More

  • in

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils

    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).
    Google Scholar 
    Salimpour, S., Khavazi, K., Nadian, H., Besharati, H. & Miransari, M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 6, 629–642 (2010).
    Google Scholar 
    Ezawa, T., Smith, S. E. & Smith, F. A. P metabolism and transport in AM fungi. Plant Soil 244, 221–230 (2002).CAS 
    Article 

    Google Scholar 
    Halajnia, A., Haghnia, G. H., Fotovat, A. & Khorasani, R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 150, 209–213 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Adnan, M. et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. & Rasheed, M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48–58 (2009).
    Google Scholar 
    Torrent, J., Barron, V. & Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990).ADS 
    Article 

    Google Scholar 
    Rehim, A. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turk. J. Agric. For. 40, 319–326 (2016).CAS 
    Article 

    Google Scholar 
    Bieleski, R. L. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 24, 225–252 (1973).CAS 
    Article 

    Google Scholar 
    Goldstein, A. H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12, 185–193 (1995).Article 

    Google Scholar 
    Lopez-Bucio, J., Vega, O. M., Guevara-Garcıa, A. & Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18, 450–453 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, S., Solomon, D., Hyl, C., Ketterings, Q. M. & Lehmann, J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ. Sci. Technol. 39, 7485–74919 (2000).ADS 
    Article 
    CAS 

    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils Vol. 13, 662–710 (Prentice Hall, 2008).
    Google Scholar 
    Adnan, M. et al. Coupling phosphate solubilizing bacteria with Phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. & Roldan, A. Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L.. Appl. Soil Ecol. 25, 169–180 (2004).Article 

    Google Scholar 
    Zaidi, A., Khan, M., Ahemad, M. S., Oves, M. & Wani, P. A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement (eds Khan, M. S. et al.) 23–50 (Springer, 2009).Chapter 

    Google Scholar 
    Illmer, P., Barbato, A. & Schinner, F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 27, 265–270 (1995).CAS 
    Article 

    Google Scholar 
    Ryan, P. R., Delhaize, E. & Jones, D. L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 52, 527–560 (2001).CAS 
    Article 

    Google Scholar 
    Chen, Y. P. et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006).Article 

    Google Scholar 
    Adnan, M. et al. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech 9, 368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Z. & Zhu, J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 30, 917–923 (1988).Article 

    Google Scholar 
    Kucey, R. M. N. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261–270 (1988).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E. & Oberson, A. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 36, 889–901 (2004).Article 
    CAS 

    Google Scholar 
    McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–268 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62, 173–181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucey, R. M. N., Janzen, H. H. & Legett, M. E. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42, 198–228 (1989).
    Google Scholar 
    Rodriguez, H. & Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, Y., Wang, X., Chen, W. & Huang, Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34, 873–880 (2017).CAS 
    Article 

    Google Scholar 
    Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 56, 105–114 (2010).CAS 
    Article 

    Google Scholar 
    Jalili, F. et al. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166, 667–674 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tiwari, V. N., Lehri, L. K. & Pathak, A. N. Effect of inoculating crops with phospho-microbes. Exp. Agric. 25, 47–50 (1989).Article 

    Google Scholar 
    Pal, S. S. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 213, 221–230 (1999).MathSciNet 
    Article 

    Google Scholar 
    Afzal, A., Ashraf, M., Asad, S. A. & Faroog, M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 7, 207–209 (2005).
    Google Scholar 
    Bolan, N. S., Naidu, R., Mahimairajaand, S. & Baskaran, S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils 18, 311–319 (1994).CAS 
    Article 

    Google Scholar 
    Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F. & Naeem, A. Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. J. Soil Sci. Plant Nutr. 22(1), 465–474 (2022).CAS 
    Article 

    Google Scholar 
    Adnan, M., Shah, Z., Sharif, M. & Rahman, H. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environ. Sci. Pollut. Res. 25(10), 9501–9509 (2018).CAS 
    Article 

    Google Scholar 
    Amin, A. E. E. A. Z. & Mihoub, A. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. J. Soil Sci. Plant Nutr. 21(3), 2041–2047 (2021).CAS 
    Article 

    Google Scholar 
    Tawaraya, K., Hirose, R. & Wagatsuma, T. Inoculation of arbuscularmycorrhizal fungi can substantially reduce phosphate fertilizer application to Alliumfis-tulosum L. and achieve marketable yield underfield condition. Biol. Fertil. Soils 48, 839–843 (2012).Article 

    Google Scholar 
    Islam, M. T. & Hossain, M. M. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In Bacteria in Agrobiology, Plant Probiotics (ed. Maheshwari, D. K.) 325–363 (Springer, 2012).Chapter 

    Google Scholar 
    Amruthesh, K. N., Raj, S. N., Kiran, B., Shetty, H. S. & Reddy, M. S. Growth promotion by plant growth-promoting rhizobacteria in some economically important crop plants. In Sixth International PGPR Workshop, 5–10 October, Calicut, India, 97–103 (2003).Kumar, S. et al. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 111, 1046–1059 (2019).CAS 
    Article 

    Google Scholar 
    Mihoub, A. & Boukhalfa-Deraoui, N. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian J. Crop Sci. 6, 383–391 (2014).Article 

    Google Scholar 
    Piccini, D. & Azcon, R. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 50, 45–50 (1987).Article 

    Google Scholar 
    Dwivedi, B. S., Singh, V. K. & Dwivedi, V. Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the Indo Gangetic plains of India. Aus. J. Exp. Agric. 44, 1041–1050 (2004).CAS 
    Article 

    Google Scholar 
    Saad, O. A. O. & Hammad, A. M. M. Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and V.A mycorrhiza as alternate for ca–superphosphate. Ann. Agric. Sci. Cairo 43, 445–460 (1998).
    Google Scholar 
    Chabot, R. & Antoun, H. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum. Plant Soil. 184, 311–321 (1996).CAS 
    Article 

    Google Scholar 
    Kundu, B. S. & Gaur, A. C. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant Soil. 79, 227–234 (1984).CAS 
    Article 

    Google Scholar 
    Sharma, G. D., Thakur, R., Raj, S., Kauraw, D. L. & Kulhare, P. S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan 8, 1159–1164 (2013).CAS 

    Google Scholar 
    Afzal, A. & Asghari, B. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10, 85–88 (2008).CAS 

    Google Scholar 
    Jalili, G. et al. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere micro flora through organic and bio fertilizers. Ann. Microbiol. 57(2), 177–183 (2007).Article 

    Google Scholar 
    Sharma, S. N. & Prasad, R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J. Agric. Sci. 141, 359–369 (2003).CAS 
    Article 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mukherjee, P. K. & Rai, R. K. Sensitivity of P uptake to change in root growth and soil volume as influenced by VAM, PSB and P levels in wheat and chickpeas. Ann. Agric. Res. 20, 528–530 (1999).
    Google Scholar 
    Egamberdiyeva, D. Proc. Inst. Microbiol. Tashkent, Uzekistan (2004).Mihoub, A., Daddi Bouhoun, M., Naeem, A. & Saker, M. L. Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch. Agron. Soil Sci. 63, 1023–1034 (2017).CAS 
    Article 

    Google Scholar 
    Thakuria, D. et al. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 86, 978–985 (2004).
    Google Scholar 
    Mamta, P. et al. Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A content of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46, 222–229 (2010).Article 

    Google Scholar 
    Banik, S. B. K. Solubilization of inorganic phosphate and production of organic acids by micro-organisms isolated in sucrose tricalcium phosphate agar plate. Zentralblat. Bakterol. Parasilenkl. Infektionskr. Hyg. 136, 478–486 (1981).CAS 

    Google Scholar 
    Stevenson, F. J. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micro-nutrients (Wiley, 2005).
    Google Scholar 
    Ekin, Z. Performance of phosphorus solubilizing bacteria for improving growth and yield of sun flower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 9, 3794–3800 (2010).CAS 

    Google Scholar 
    Zabihi, H. R., Savaghebi, G. R., Khavazi, K., Ganjali, A. & Miransari, M. Pseudomonas bacteria and phosphorus fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under green house and field conditions. Acta Physiol. Plant 33, 145–152 (2010).Article 

    Google Scholar 
    Gulati, A., Rahi, P. & Vyas, P. Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56, 73–79 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kloepper, J. W., Lifshitz, R. & Zablotowicz, R. M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7, 39–44 (1989).Article 

    Google Scholar 
    Satchell, J. E. Ecology and environment in the United Arab Emirates. J. Arid. Environ. 1, 201–226 (1978).ADS 
    Article 

    Google Scholar 
    Biswas, D. R. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr. Cycl. Agroecosyst. 89, 15–30 (2011).Article 

    Google Scholar 
    Mitra, S. et al. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius). Indian J. Anim. Sci. 80(9), 801–804 (2010).
    Google Scholar 
    Laxminarayana, K. Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in Ultisols of Mizoram. J. Indian Soc. Soil Sci. 54, 120–123 (2006).
    Google Scholar 
    Sanyal, S. K. & De Datta, S. K. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16, 1–120 (1991).CAS 

    Google Scholar 
    Briedis, C. et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80–88 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Krieg, N. R. & Holt, J. G. Bergey’s Manual of Systemetic Bacteriology Vol. 1, 984 (Williams & Wilkin, 1984).
    Google Scholar 
    Holt, J. G. et al. (eds) Bergey’s Manual of Determinative Bacteriology 9th edn, 787 (The Williams & Wilkin, 1994).
    Google Scholar 
    Gordon, R. E., Haynes, W. C. & Pang, C. N. The Genus Bacillus. Agricultural Handbook. No. 427 283 (Department of Agriculture, 1973).
    Google Scholar 
    Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265–270 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 14 (ed. Page, A. L.) 961–1010 (Wiley, 1996).
    Google Scholar 
    Eivazi, F. & Tabatabai, M. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).CAS 
    Article 

    Google Scholar 
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45 (1991).CAS 
    Article 

    Google Scholar 
    Vincet, J. M. A. Manual for the Practical Study of the Root-Nodule Bacteria; IBPH and Book No. 15 (Blackwell Scientific Publication, 1970).
    Google Scholar 
    Alagawadi, A. R. & Gaur, A. C. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 105, 241–246 (1988).Article 

    Google Scholar 
    Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B. & Vani, S. S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 6, 2133–2144 (2017).CAS 
    Article 

    Google Scholar 
    Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. & Wong, M. H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125, 155–166 (2005).ADS 
    Article 

    Google Scholar 
    Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 475–490 (Wiley, 1996).
    Google Scholar 
    Rhoades, J. D. Salinity, electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 417–435 (Soil Science Society of America, 1996).
    Google Scholar 
    Bremner, J. M. & Breitenbeck, G. A. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 14, 905–913 (1983).CAS 
    Article 

    Google Scholar 
    Ryan, J., Estefan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual 2nd edn, 172 (The National Agricultural Research Center (NARC), 2001).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) (Department of Agriculture Circular, 1954).
    Google Scholar 
    Loeppert, R. H. & Suarez, D. L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 9 (eds Sparks, D. L. et al.) 181–197 (Soil Science Society of America, 1996).
    Google Scholar 
    Bahadur, L., Tiwari, D. D., Mishra, J. & Gupta, B. R. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J. Indian Soc. Soil Sci. 60(4), 326–329 (2012).CAS 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 9 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, 1996).
    Google Scholar 
    Richards, L. A. Diagnosis and improvement of saline and alkali soils. LWW 78(2), 154 (1954).
    Google Scholar 
    Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics, a Biometrical Approach 195–233 (McGraw Hill, 1996).MATH 

    Google Scholar  More

  • in

    Towards 3D basic theories of plant forms

    Cremers, G. Presence of 10 models of plant architecture in Euphorbes-Malgaches. Comptes Rendus Hebd. des. Seances de. L Academie des. Sci. Ser. D. 281, 1575–1578 (1975).
    Google Scholar 
    Balduzzi, M. et al. Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Front. Plant Sci. 8, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).Article 

    Google Scholar 
    Farnsworth, K. D. & Niklas, K. J. Theories of optimization, form and function in branching architecture in plants. Funct. Ecol. 9, 355–363 (1995).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research (eds Pawar, S.et al.), 249–318 (Academic Press, 2015).Niklas, K. J. & Spatz, H. C. Allometric theory and the mechanical stability of large trees: proof and conjecture. Am. J. Bot. 93, 824–828 (2006).PubMed 
    Article 

    Google Scholar 
    Price, C. A. et al. The metabolic theory of ecology: prospects and challenges for plant biology. N. Phytol. 188, 696–710 (2010).Article 

    Google Scholar 
    Martone, P. T. et al. Mechanics without muscle: biomechanical inspiration from the plant world. Integr. Comp. Biol. 50, 888–907 (2010).PubMed 
    Article 

    Google Scholar 
    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).PubMed 
    Article 

    Google Scholar 
    Enquist, B. J. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).PubMed 
    Article 

    Google Scholar 
    Anfodillo, T. et al. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122375 (2013).
    Google Scholar 
    Duncanson, L. I., Dubayah, R. O. & Enquist, B. J. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Glob. Ecol. Biogeogr. 24, 1465–1475 (2015).Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winter, C. L. & Tartakovsky, D. M. Theoretical foundation for conductivity scaling. Geophys. Res. Lett. 28, 4367–4369 (2001).Article 

    Google Scholar 
    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, S. et al. Application of the metabolic scaling theory and water–energy balance equation to model large‐scale patterns of maximum forest canopy height. Glob. Ecol. Biogeogr. 25, 1428–1442 (2016).Article 

    Google Scholar 
    Osler, G. H. R., West, P. W. & Downes, G. M. Effects of bending stress on taper and growth of stems of young Eucalyptus regnans trees. Trees 10, 239–246 (1996).
    Google Scholar 
    Berthier, S. et al. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87, 19–25 (2001).Article 

    Google Scholar 
    Fournier, M. et al. Integrative biomechanics for tree ecology: beyond wood density and strength. J. Exp. Bot. 64, 4793–4815 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, K., Noguchi, K. & Terashima, I. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation. Tree Physiol. 25, 39–48 (2005).PubMed 
    Article 

    Google Scholar 
    Anten, N. P. & Schieving, F. The role of wood mass density and mechanical constraints in the economy of tree architecture. Am. Nat. 175, 250–260 (2010).PubMed 
    Article 

    Google Scholar 
    Jelonek, T. et al. The biomechanical formation of trees (Prace Naukowe, Doniesienia, Komunikaty, 2019).Muller‐Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed 
    Article 

    Google Scholar 
    McMahon, T. A. & Kronauer, R. E. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alméras, T. & Fournier, M. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol. 256, 370–381 (2009).PubMed 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mäkelä, A. & Valentine, H. T. Crown ratio influences allometric scaling in trees. Ecol 87, 2967–2972 (2006).Article 

    Google Scholar 
    Duursma, R. A. et al. Self‐shading affects allometric scaling in trees. Funct. Ecol. 24, 723–730 (2010).Article 

    Google Scholar 
    Pretzsch, H. & Dieler, J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169, 637–649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, Y. et al. Plant interactions alter the predictions of metabolic scaling theory. PloS One 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, D. et al. Scaling relationship between tree respiration rates and biomass. Biol. Lett. 6, 715–717 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogawa, K. Scaling relations based on the geometric and metabolic theories in woody plant species: A review. Perspect. Plant Ecol. Evol. Syst. 40, 125480 (2019).Article 

    Google Scholar 
    Risto, S. et al. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).Article 

    Google Scholar 
    Jackson, T. et al. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agric. Meteorol. 265, 137–144 (2019).Article 

    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three‐dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).Article 

    Google Scholar 
    Malhi, Y. et al. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8, 20170052 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27, 1035–1047 (2013).Article 

    Google Scholar 
    Lin, Y. & Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. Meteorol. 216, 105–114 (2016).Article 

    Google Scholar 
    Tanago, J. G. et al. Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).Article 

    Google Scholar 
    Takoudjou, S. M. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9, 905–916 (2018).Article 

    Google Scholar 
    Dassot, M., Fournier, M. & Deleuze, C. Assessing the scaling of the tree branch diameters frequency distribution with terrestrial laser scanning: methodological framework and issues. Ann. Sci. 76, 66 (2019).Article 

    Google Scholar 
    Klockow, P. A. et al. Allometry and structural volume change of standing dead southern pine trees using non-destructive terrestrial LiDAR. Remote Sens. Environ. 241, 111729 (2020).Article 

    Google Scholar 
    Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Ecol. Manag. 427, 217–229 (2018).Article 

    Google Scholar 
    Dai, J. et al. Drought-modulated allometric patterns of trees in semi-arid forests. Commun. Biol. 3, 1–8 (2020).Article 

    Google Scholar 
    Ogawa, K., Hagihara, A. & Hozumi, K. Growth analysis of a seedling community of Chamaecyparis obtusa. VI. Estimation of individual gross primary production by the summation method. In Transactions of the 30th Meeting of Chubu Branch of Japanese Forestry Society, 179–181 (Honda Kiyoshi, 1985).Yokota, T. & Hagihara, A. Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamaecyparis obtusa). J. Plant Res. 109, 177–184 (1996).Article 

    Google Scholar 
    Enquist, B. J. et al. Biological scaling: does the exception prove the rule? Nature 445, E9–E10 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lau, A. et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Ecol. Manag. 439, 132–145 (2019).Article 

    Google Scholar 
    Li, Y. et al. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agric. Meteorol. 284, 107874 (2020).Article 

    Google Scholar 
    Noyer, E. et al. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground‐truth data using terrestrial LiDAR. Am. J. Bot. 106, 187–198 (2019).PubMed 
    Article 

    Google Scholar 
    Jackson, T. et al. A new architectural perspective on wind damage in a natural forest. Front. Glob. Chang. 1, 13 (2019).Article 

    Google Scholar 
    Jackson, T. Strain Measurements on 21 Trees in Wytham Woods, UK. NERC Environmental Information Data Centre. https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-fda273ab45bc (2018).Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hay, M. J. M. et al. Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation. Oecologia 127, 185–190 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordero, R. A., Fetcher, N. & Voltzow, J. Effects of wind on the allometry of two species of plants in an elfin cloud forest. Biotropica 39, 177–185 (2010).Article 

    Google Scholar 
    Anfodillo, T. et al. Allometric trajectories and “stress”: a quantitative approach. Front. Plant Sci. 7, 1681 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louarn, G. & Song, Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, S. C. Reproductive allometry in Malaysian rain forest trees: biomechanics versus optimal allocation. Evol. Ecol. 10, 517–530 (1996).Article 

    Google Scholar 
    Kempes, C. P. et al. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One 6, e20551 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, E. et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30, 1953–1968 (2016).Article 

    Google Scholar 
    Swetnam, T. L., O’Connor, C. D. & Lynch, A. M. Tree morphologic plasticity explains deviation from metabolic scaling theory in semi-arid conifer forests, southwestern USA. PLoS One 11, e0157582 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Loehle, C. Biomechanical constraints on tree architecture. Trees 30, 2061–2070 (2016).Article 

    Google Scholar 
    Guillon, T., Dumont, Y. & Fourcaud, T. Numerical methods for the biomechanics of growing trees. Comput. Math. Appl. 64, 289–309 (2012).Article 

    Google Scholar 
    Olson, M. E., Rosell, J. A., Muñoz, S. Z. & Castorena, M. Carbon limitation, stem growth rate and the biomechanical cause of Corner’s rules. Ann. Bot. 122, 583–592 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Enquist, B. J. & Brown, J. H. A general quantitative theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 106, 7040–7045 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More