More stories

  • in

    Drone-based investigation of natural restoration of vegetation in the water level fluctuation zone of cascade reservoirs in Jinsha River

    Species composition of vegetation in the WLFZIn this survey, a total of 44 species in 43 genera of 21 families of vascular plants were found and confirmed in the reservoir WLFZ of the Jinsha River basin, among which, 13 genera and 13 species of Compositae, 4 genera and 4 species of Gramineae, 3 genera and 3 species of Amaranthaceae, 2 genera and 2 species of Verbenaceae, Labiatae, Umbelliferae, Cruciferae and Convolvulaceae, 1 genus and 2 species of Polygonaceae, and the remaining 12 families were all single genera. Compositae had the highest number of species, followed by Gramineae and Amaranthaceae, accounting for 29.55%, 9.09% and 6.82% of the total number of species in this survey, respectively, which are the main dominant families in the region.According to the life type classification system of the Flora of China, the plants in the WLFZ of this survey can be classified into five life types: annual herbs, perennial herbs, annual or biennial herbs, annual or perennial herbs, and biennial herbs. The community is overwhelmingly dominated by annuals with a high proportion of 54.55%, followed by perennials with 34.09% and the rest of all life types with a total of 11.36%.The higher number of annual plants indicates that the environmental conditions in the WLFZ are harsher after inundation by water storage, and plants that can complete their entire life cycle in a short period of time after receding water are more likely to survive compared to plants that take a long time to complete their entire life cycle.The vegetation types in each study area of the WLFZ are shown in Table 3, among which 17 species, including S. subulatum, E. humifusa, C. bonariensis, V. officinalis, O. biennis, S. plebeia, U. fissa, B. juncea, S. orientalis, D. repens, A. lividus, T. mongolicum, G. parviflora, P. praeruptorum, P. hys-terophorus, D. stramonium and Ph. Nil, are newly discovered species in the reservoir WLFZ, which are rarely reported in other reservoir WLFZ studies so far. Among the study areas, the Longkou study area was the richest in vegetation types, with the most families, species and life types among all study areas, and the number of perennial herb species was comparable to that of annual herb species, while all other study areas were mainly dominated by annual herbs. The vegetation composition of the remaining study areas averaged 6–8 families and 11–12 species, except for the Ludila study area with no plants growing and the Liyuan study area with only 5 families and 5 species. In general, each study area was dominated by Compositae and Gramineae.Table 3 Vegetation composition in each study area.Full size tableVegetation area, coverage, and percentage of the WLFZAccording to the vegetation classification in the WLFZ of each study area (Fig. 5 and Table 4), the vegetation coverage of the study areas of the Liyuan, Ahai, Ludila and Guanyinyan reservoir WLFZ were all less than 5%. The study area of Ludila was completey devoid of vegetation in the WLFZ. The coverage in Liyuan was only 0.02%, with mostly individual herbaceous plants sporadically distributed on the upper boundary of the WLFZ. In Ahai, C. dactylon grow concentratly in patches at the top of the WLFZ together with some other sparsely growing vegetation, with a coverage of 1.47%. The vegetation coverage of Guanyinyan was 3.21%, mainly distributed in the upper part of the WLFZ and expanding towards the middle. In this area, 30.39% of the vegetation was X. sibiricum, growing in large tracts as low seedlings; 21.03% was A. sessilis growing in patches, 10.87% was C. dactylon growing mainly on the upper boundary of the WLFZ, and 37.71% was a mixture of plants growing in clusters with only a few of each.Figure 5The results of vegetation classification in the WLFZ of each study area. (a) Liyuan, (b) Ahai (c) Longkaikou, (d) Ludila, (e) Guanyinyan, (f) Xiluodu. Note: Non-Veg (Non-vegetation), Other-Veg (Other vegetation), C. Dac (Cynodon dactylon), A. Ses (Alternanthera sessilis), C. Bon (Conyza bonariensis), Ch. Amb (Chenopodium ambrosioides), C. Can (Conyza canadensis), D. Rep (Dichondra repens), H. Sib (Hydrocotyle sibthorpioides), V. Off (Verbena officinalis), X. Sib (Xanthium sibiricum). (Generated with eCognition Developer, and the URL is https://www.ecognition.com).Full size imageTable 4 Vegetation area, vegetation coverage and vegetation classification accuracy of WLFZ in each study area.Full size tableThe vegetation coverage of Longkaikou and Xiluodu WLFZ was more abundant, 46.47% and 55.81% respectively. In Longkaikou, vegetation mainly covered the middle and upper parts of the WLFZ. Of the vegetation, 66.38% was C. dactylon, 26.50% was A. sessilis, 2.35% was H. sibthorpioides, 1.68% was Ch. ambrosioides, and 3.09% was a variety of vegetation species, only a few of each, divided into Other-Veg class.Due to weather and equipment constraints, we were unable to photograph the upper and lower boundaries of the WLFZ in Xiluodu study area, but we still obtained the images of the main part of the WLFZ, which consisted mainly of 58.4% X. sibiricum, 28.04% C. dactylon, 10.59% S. viridis, and 2.97% other vegetation.The vegetation coverage in the WLFZ of different reservoirs of the Jinsha River basin varied significantly, but in terms of quantity, most of them were absolutely dominated by 1–4 species, which were distributed in patches and strips, and covered an area and proportion far more than the rest of the vegetation, while the rest of the vegetation was sparse in quantity each and was sporadically distributed. C. dactylon, A. sessilis, X. sibiricum, S. viridis, H. sibthorpioides, Ch. Ambrosioides were the main dominant and pioneer species for vegetation restoration in the reservoir WLFZ of the Jinsha River basin.Spatial distribution pattern of vegetation in fluctuating zoneSince no vegetation survived in the Ludila study area, and the vegetation in the Liyuan, Ahai and Guanyinyan study areas was sparse, with less than 5% coverage, and all of them were concentrated in the upper part of the WLFZs (Fig. 5), this paper mainly analyzed the spatial distribution pattern of vegetation in the Longkou and Xiluodu study areas, which had better vegetation coverage.Landscape patternCA is a basic index for landscape pattern study, and LPI reflects the proportion of the largest patch in the landscape type to the total landscape area, which is an expression of patch dominance. The SHAPE and PAFRAC describe the complexity of patch shape, the larger the SHAPE value indicates the more complex patch shape; the closer the PAFRAC value to 1 indicates the more regular patch shape. PROX reflects the degree of proximity of each landscape type, the larger its value indicates the higher degree of patch aggregation and the lower degree of fragmentation; ENN describes the degree of physical connection of the landscape types, the larger its value indicates the greater distance between patches and the greater degree of fragmentation.From the overall landscape level (Fig. 6), in the Longkaikou study area, CA and LPI showed that the areas of vegetation patches were large, less spatially fluctuating and uniform distribution, with obvious patch dominance, reflecting characteristics of patchy distribution; PROX and ENN showed that the vegetation patches were clustered and the landscape was well connected; SHAPE and PAFRAC showed that there was little variation in the shape complexity of vegetation patches in most areas of the WLFZ.Figure 6Spatial characteristics of vegetation landscape pattern index in the Longkaikou study area (Generated with ArcGIS 10.5 software, and the URL is: https://www.esri.com/en-us/home).Full size imageAt the level of landscape types (Table 5), the vegetation landscape types in the Longkou study area included C. dactylon, A. sessilis, H. sibthorpioides and other vegetation, among which, C. dactylon showed significant advantages in patch area, patch dominance, patch aggregation and connectivity; followed by A. sessilis and H. sibthorpioides, A. sessilis was significantly better than H. sibthorpioides in patch area, but in patch shape, H. sibthorpioides was more aggregated than A. sessilis and had better patch connectivity; Other-Veg showed significant weaknesses in patch area and aggregation; there were no significant differences among the landscape types in patch shape.Table 5 Landscape index of patch types in the Longkaikou study area.Full size tableThe spatial characteristics of the vegetation landscape pattern index in the Xiluodu study area were shown in Fig. 7. From the overall level of the landscape, the area of vegetation patches and the dominance of patches were spatially variable, the vegetation was well connected, with obvious characteristics of patchy distribution, and the shape of vegetation patches did not show obvious spatial characteristics.Figure 7Spatial characteristics of vegetation landscape pattern index in the Xiluodu study area (Generated with ArcGIS 10.5 software, and the URL is:https://www.esri.com/en-us/home).Full size imageFrom the level of landscape types (Table 6), the vegetation landscape types in Xiluodu study area included four categories: X. sibiricum, C. dactylon, S. viridis and Other-Veg type. Among them, X. sibiricum showed obvious advantages in patch area, patch dominance, patch aggregation and connectivity, followed by C. dactylon, both of which were significantly better than S. viridis and Other-Veg, and the differences in patch shape complexity among landscape types were small.Table 6 Landscape index of patch types in the Xiluodu study area.Full size tableDistribution characteristics along terrainAccording to the statistics (Fig. 8), the vegetation area share of Longkaikou study area in the upper, middle and lower elevation gradients of the WLFZ was 54.61%, 26.62% and 18.77%, respectively, indicating that the vegetation was mostly in the upper part of the WLFZ, with a coverage of 83.80%, while the vegetation in the lower part was the least, with a coverage of less than 1%. From the viewpoint of each vegetation species, in the upper part of the WLFZ, C. dactylon had the largest area, accounting for 66.9% of the total vegetation area, followed by A. sessilis, accounting for 25.9%, while H. sibthorpioides and Other-Veg only survived in the upper part, accounting for 2.3% and 4.9% each. From the distribution of each slope class, the vegetation of the WLFZ gradually decreased with the increase of slope, and the vegetation was mainly concentrated in the range of slope 35°, and the coverage of each vegetation decreased significantly when the slope exceeded 35°. In the aspect, the distribution of vegetation in the WLFZ did not show any obvious preference. The surface relief in the study area of Longkou was generally low, and C. dactylon was mainly distributed in the range of surface relief less than 0.84 m. When the surface relief is greater than 2.52 m, the vegetation coverage tends to be close to 0. The vegetation showed no obvious distribution preference in terms of surface roughness and topographic wetness index.Figure 8Changes in vegetation coverage with topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageThe spatial distribution of vegetation in the study area of Xiluodu was shown in Fig. 9. The maximum drop in water level at Xiluodu study area can reach 60 m, but only the half of the upper part of the subsidence zone with a drop of about 30 m was photographed. The coverage rate of C. dactylon was the largest in this elevation gradient, S. viridis was mainly distributed in the uppermost part of the zone, while X. strumarium was well covered in all elevation gradients. From the distribution of surface relief, the overall vegetation coverage decreases with the increase of surface relief, with X. strumarium and S. viridis mainly distributed in the area of 0–3.45 m, while both the coverage of C. dactylon and Other-Veg were not much different across the surface relief . The distribution of vegetation showed no obvious preference in terms of slope, aspect, surface roughness and topographic wetness index.Figure 9Changes in vegetation coverage with topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageInfluence of topographic factors on the spatial distribution pattern of vegetation in the WLFZAccording to the results of species distribution modeling, the number of samples in the study area of Longkaikou was 39,321, and the overall accuracy of the model was 88.2%. The terrain factors, in descending order of importance, were elevation  > slope  > surface relief  > surface roughness  > aspect  > topographic wetness index, with values of 0.681, 0.146, 0.091, 0.042, 0.033 and 0.007, respectively (Fig. 10). It can be seen that the vegetation distribution in the WLFZ was mainly influenced by elevation, followed by slope and surface relief, and is less influenced by surface roughness, aspect and topographic wetness index. This was consistent with the results of typical correlation analysis.Figure 10Ranking of important values of topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageA total of six pairs of typical variables were calculated in the Longkou study area, and standardized typical coefficients were used due to the inconsistency of each landscape pattern index as well as topographic factor units. According to the results of significance test (Table 7), the first four pairs of typical p-values were less than 0.05, indicating that the correlations reached a significant level, and their correlation coefficients were 0.565, 0.262, 0.142, and 0.034, among which the correlation coefficient of the first pair was the largest, so the first pair was selected for analysis. The topographic factors and landscape indices highly correlated with the first pair of typical variables were elevation, surface relief and CA and SHAPE, respectively. According to Tables 8 and 9, their mechanism of action was that the greater the elevation, the smaller the surface relief, resulting in a larger patch size and more complex shape of the vegetation, and therefore a more frequent exchange of energy with the outside world and a greater ability to survive.Table 7 Significance test of typical correlation coefficient in the Longkaikou study area.Full size tableTable 8 Standardized canonical correlation coefficients of terrain factors in the Longkaikou study area.Full size tableTable 9 Standardized typical correlation coefficients of landscape pattern in the Longkaikou study area.Full size tableThe number of samples in the study area of Xiluodu was 41,010, and the overall accuracy of the model was 61.4%. The terrain factors, in descending order of importance, were elevation  > surface relief  > ground roughness  > aspect  > slope  > terrain moisture index, with values of 0.395, 0.209, 0.157, 0.123, 0.073, and 0.043, respectively (Fig. 11). It can be seen that the vegetation distribution in the WLFZ was most influenced by the elevation, followed by the surface relief.According to the typical correlation analysis, six pairs of typical variables were calculated for the Xiluodu study area, of which the first four pairs had typical P values less than 0.05 (Table 10), indicating that the correlation reached a significant level, and their correlation coefficients were 0.299, 0.208, 0.102, and 0.033, and the first pair was the largest, so the first pair was selected for analysis.The topographic factors and landscape indices with high correlation with the first pair of typical variables were elevation,surface relief and CA, PAFRAC, respectively, and according to Tables 11 and 12, their mechanism of action was that the greater the elevation, the greater the surface relief, leading to a smaller patch area and simpler shape of the vegetation.Figure 11Ranking of important values of topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageTable 10 Significance test of typical correlation coefficient in the Xiluodu study area.Full size tableTable 11 Standardized canonical correlation coefficients of terrain factors in the Xiluodu study area.Full size tableTable 12 Standardized typical correlation coefficients of landscape pattern in the Xiluodu study area.Full size tableLimiting factors of vegetation restoration in WLFZPreliminary studies showed that after long-term water level fluctuations in the cascade reservoirs, most of the vegetation in the WLFZs of the cascade reservoirs in the Jinsha River basin could be restored to different degrees, however, the restored species types were relatively simple, all of them were herbaceous plants, and mainly annual herbaceous plants. The restoration of the WLFZs of different reservoirs varied significantly, with vegetation coverage of more than 46% and 27 species types in the better restored areas, such as the Longkou study area, while the vegetation coverage of the less restored areas was usually less than 5% and 5–12 species types, and some areas even had no grass, such as the Ludila study area. According to the statistics (Fig. 12), the habitats in the study area of different reservoirs in the Jinsha River basin were significantly heterogeneous, with significant differences in climate, soil conditions, topography, and water level drop, etc. Because of the inconsistent range of values and units of different environmental factors, comparative analysis was performed by normalization, as shown in Fig. 12, vegetation cover was significantly correlated with the average soil Ph and the average thickness of the subsurface 30 cm soil layer, and the two study areas with average soil Ph greater than 8, Pear Garden and Rudyra, were almost completely bare. These two study areas were almost dominated by sand and gravel, with thin soils averaging  8 and soil thickness  More

  • in

    Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.Article 
    CAS 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.Article 
    CAS 

    Google Scholar 
    Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.Article 
    CAS 

    Google Scholar 
    Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.CAS 
    Article 

    Google Scholar 
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.CAS 
    Article 

    Google Scholar 
    Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.PubMed 
    Article 

    Google Scholar 
    Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.CAS 
    Article 

    Google Scholar 
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.CAS 
    Article 

    Google Scholar 
    Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.Article 

    Google Scholar 
    Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.Article 

    Google Scholar 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.CAS 
    Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.Article 
    CAS 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.PubMed 
    Article 

    Google Scholar 
    Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.Article 

    Google Scholar 
    Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.Article 

    Google Scholar 
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.PubMed 
    Article 

    Google Scholar 
    Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
    Google Scholar 
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.CAS 
    Article 

    Google Scholar 
    Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.PubMed 
    Article 

    Google Scholar 
    Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.CAS 
    Article 

    Google Scholar 
    Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.Article 
    CAS 

    Google Scholar 
    Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.Article 

    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.Article 
    CAS 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.Article 

    Google Scholar 
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
    Google Scholar 
    Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.CAS 
    Article 

    Google Scholar 
    Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
    Google Scholar 
    Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.CAS 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.Article 
    CAS 

    Google Scholar 
    Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.CAS 
    Article 

    Google Scholar 
    Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.Article 

    Google Scholar 
    He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.CAS 
    Article 

    Google Scholar 
    Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.Article 

    Google Scholar 
    Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.Article 

    Google Scholar 
    Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.Article 
    CAS 

    Google Scholar 
    MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.Article 

    Google Scholar 
    Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.Article 

    Google Scholar 
    Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.CAS 
    Article 

    Google Scholar 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.Article 

    Google Scholar  More

  • in

    Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia

    MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. M. et al. Bluetongue, Schmallenberg—What is next? Culicoides-borne viral diseases in the 21st Century. BMC Res. Notes 10, 77 (2014).
    Google Scholar 
    Dennis, S. J., Meyers, A. E., Hitzeroth, I. I. & Rybicki, E. P. African horse sickness: A review of current understanding and vaccine development in the. Viruses 11, 844 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, Á. B., Doherty, M. L., Barrett, D. J. & Mee, J. F. Schmallenberg virus: A systematic international literature review (2011–2019) from an Irish perspective. Ir. Vet. J. 72, 1–22 (2019).Article 

    Google Scholar 
    Tkuwet, G. & Firesbhat, A. A review on African horse sickness. Eur. J. Appl. Sci. 7, 213–219 (2015).CAS 

    Google Scholar 
    Mellor, P. S. & Hamblin, C. African horse sickness. Vet. Res. 35, 445–466 (2004).PubMed 
    Article 

    Google Scholar 
    Coetzee, P., Stokstad, M., Venter, E. H., Myrmel, M. & Van Vuuren, M. Bluetongue: A historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9, 198 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagienard, A., Griot, C., Mellor, P. S., Denison, E. & Stärk, K. D. Bluetongue vector species of Culicoides in Switzerland. Med. Vet. Entomol. 20, 239–247 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oluwayelu, D., Adebiyi, A. & Tomori, O. Endemic and emerging arboviral diseases of livestock in Nigeria: A review. Parasit. Vectors 11, 1–12 (2018).Article 

    Google Scholar 
    Sibhat, B., Ayelet, G., Gebremedhin, E. Z., Skjerve, E. & Asmare, K. Seroprevalence of Schmallenberg virus in dairy cattle in Ethiopia. Acta Trop. 178, 61–67 (2018).PubMed 
    Article 

    Google Scholar 
    Aklilu, N. et al. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound. Emerg. Dis. 61, 185–192 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rojas, J. M., Rodríguez-Martín, D., Martín, V. & Sevilla, N. Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Vet. Med. Res. Rep. 10, 17 (2019).
    Google Scholar 
    Gizaw, D., Sibhat, D., Ayalew, B. & Sehal, M. Sero-prevalence study of bluetongue infection in sheep and goats in selected areas of Ethiopia. Ethiop. Vet. J. 20, 105 (2016).Article 

    Google Scholar 
    Abera, T. et al. Bluetongue disease in small ruminants in south western Ethiopia: Cross-sectional sero-epidemiological study. BMC Res. Notes 11, 112 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antivir. Res. 100, 102–113 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sick, F., Beer, M., Kampen, H. & Wernike, K. Culicoides biting midges—Underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11, 376 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Blanda, V. et al. Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy. Parasit. Vectors 11, 78 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vasić, A. et al. Species diversity, host preference and arbovirus detection of Culicoides (Diptera: Ceratopogonidae) in south-eastern Serbia. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Martin, E. et al. Culicoides species community composition and infection status with parasites in an urban environment of east central Texas, USA. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Gusmão, G. M. C., Brito, G. A., Moraes, L. S., Bandeira, M. D. C. A. & Rebêlo, J. M. M. Temporal variation in species abundance and richness of Culicoides (Diptera: Ceratopogonidae) in a tropical equatorial area. J. Med. Entomol. https://doi.org/10.1093/jme/tjz015 (2019).Article 
    PubMed 

    Google Scholar 
    Sghaier, S. et al. New species of the genus Culicoides (Diptera Ceratopogonidae) for Tunisia, with detection of Bluetongue viruses in vectors. Vet. Ital. 53, 357–366 (2017).PubMed 

    Google Scholar 
    Gordon, S. J. G. et al. The occurrence of Culicoides species, the vectors of arboviruses, at selected trap sites in Zimbabwe. Onderstepoort J. Vet. Res. 82, e1–e8 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Villard, P. et al. Modeling Culicoides abundance in mainland France: Implications for surveillance. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 341 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calvete, C. et al. Spatial distribution of Culicoides imicola, the main vector of bluetongue virus, Spain. Vet. Rec. 158, 130–131 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Med. Vet. Entomol. 18, 90–101 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Med. Vet. Entomol. 20, 335–344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Modeling the global distribution of Culicoides imicola: An ensemble approach. Sci. Rep. 9, 1–9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mulatu, T. & Hailu, A. The occurrence and identification of Culicoides species in the Western Ethiopia. Acad. J. Entomol. 12, 40–43 (2019).
    Google Scholar 
    Khamala, C. P. M. & Kettle, D. S. The Culicoides Latreille (Diptera: Ceratopogonidae) of East Africa. Trans. R. Entomol. Soc. Lond. 123, 1–95 (1971).Article 

    Google Scholar 
    Venter, G. J. Specie di Culicoides (Diptera: Ceratopogonidae) vettori del virus della Bluetongue in Sud Africa. Vet. Ital. 51, 325–333 (2015).PubMed 

    Google Scholar 
    Mathieu, B. et al. Development and validation of IIKC: An interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit. Vectors 5, 137 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).Article 

    Google Scholar 
    Baylis, M., Bouayoune, H., Touti, J. & El Hasnaoui, H. Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med. Vet. Entomol. 12, 255–266 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diarra, M. et al. Modelling the abundances of two major culicoides (Diptera: Ceratopogonidae) species in the Niayes area of Senegal. PLoS One 10, e0131021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ramilo, D. W., Nunes, T., Madeira, S., Boinas, F. & da Fonseca, I. P. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species. PLoS One 12, e0180606 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Chang. Biol. 16, 3233–3245 (2010).ADS 
    Article 

    Google Scholar 
    Tiffin, P. & Ross-Ibarra, J. Goal-oriented evaluation of species distribution models accuracy and precision: True Skill Statistic profile and uncertainty maps. PeerJ PrePints https://doi.org/10.7287/peerj.preprints.488v1 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Demissie, G. H. Seroepidemiological study of African horse sickness in southern Ethiopia. Open Sci. Repos. Vet. Med. 10, e70081919 (2013).
    Google Scholar 
    Zeleke, A., Sori, T., Powel, K., Gebre-Ab, F. & Endebu, B. Isolation and identification of circulating serotypes of African horse sickness virus in Ethiopia. J. Appl. Res. Vet. Med. 3, 40–43 (2005).
    Google Scholar 
    Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).PubMed 
    Article 

    Google Scholar 
    Gulima, D. Seroepidemiological study of bluetongue in indigenous sheep in selected districts of Amhara National Regional State, north western Ethiopia. Ethiop. Vet. J. 13, 1–15 (2009).
    Google Scholar 
    Borkent, A. & Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787, 1–377 (2020).Article 

    Google Scholar 
    Borkent, A. & Wirth, W. W. World species of biting midges (Diptera: Ceratopogonidae). Bull. Am. Museum Nat. Hist. 233, 5–195 (1997).
    Google Scholar 
    Guichard, S. et al. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One 9, e112491 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Becker, E. E. E., Venter, G. J., Labuschagne, K., Greyling, T. & van Hamburg, H. Occurrence of Culicoides species Diptera: Ceratopogonidae) in the Khomas region of Namibia during the winter months. Vet. Ital. 48, 45–54 (2012).PubMed 

    Google Scholar 
    Capela, R. et al. Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Med. Vet. Entomol. 17, 165–177 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvete, C. et al. Modelling the distributions and spatial coincidence of bluetongue vectors Culicoides imicola and the Culicoides obsoletus group throughout the Iberian peninsula. Med. Vet. Entomol. 22, 124–134 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 498–511 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foxi, C. et al. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering in Sardinia (Italy). Parasit. Vectors 9, 440 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musuka, G. N., Mellor, P. S., Meiswinkel, R., Baylis, M. & Kelly, P. J. Prevalence of Culicoides imicola and other species (Diptera: Ceratopogonidae) ateight sites in Zimbabwe: To the editor. J. S. Afr. Vet. Assoc. 72, 62–63 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiswinkel, R. The 1996 outbreak of African horse sickness in South Africa—the entomological perspective. Arch. Virol. Suppl. 14, 69–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Jean Pierre, T. et al. Characteristics, classification and genesis of vertisols under seasonally contrasted climate in the Lake Chad Basin, Central Africa. J. Afr. Earth Sci. 150, 176–193 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 6, 1–15 (2017).Article 

    Google Scholar 
    Nachtergaele, F. The classification of leptosols in the world reference base for soil resources.Veronesi, E., Venter, G. J., Labuschagne, K., Mellor, P. S. & Carpenter, S. Life-history parameters of Culicoides (Avaritia) imicola Kieffer in the laboratory at different rearing temperatures. Vet. Parasitol. 163, 370–373 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verhoef, F. A. A., Venter, G. J. & Weldon, C. W. Thermal limits of two biting midges, Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae). Parasites Vectors 7, 384 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conte, A., Goffredo, M., Ippoliti, C. & Meiswinkel, R. Influence of biotic and abiotic factors on the distribution and abundance of Culicoides imicola and the Obsoletus Complex in Italy. Vet. Parasitol. 150, 333–344 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinez-de la Puente, J., Navarro, J., Ferraguti, M., Soriguer, R. & Figuerola, J. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: Implications for the transmission of bluetongue disease and African horse sickness. Med. Vet. Entomol. 31, 333–339 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Updating the global occurrence of Culicoides imicola, a vector for emerging viral diseases. Sci. Data 6, 1–8 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites

    Site selectionWe selected 104 sites covering a range of ecological, land cover, and climate conditions across North America (Table 1). These sites were selected because they are part of either the National Ecological Observatory Network (NEON) or AmeriFlux network, all have PhenoCams, and each has at least one year of available flux data between 2017 and 2021. Among the included sites, 44 are part of the NEON.Table 1 List of AmeriFlux and NEON sites included in the dataset. .Full size tablePlanetScope image database compilationThe LSP metrics included in the dataset are derived from a database of daily 3 m PlanetScope imagery. To compile this database, a Python script was created to search, request, and download imagery using Planet’s RESTful API interface (https://developers.planet.com/docs/apis/data/). For each site, the area of interest (AOI) was defined using a GeoJSON file that prescribed a 10 by 10 km box centered over the flux tower at each site. Each GeoJSON was then used to submit search requests to the API. As part of the search process, the following filters were applied to ensure that good quality images with adequate clear sky views and high-accuracy geolocation were downloaded: (1) quality category identified as ‘standard’; (2) cloud cover less than or equal to 50%; and (3) ground control is ‘true’. Filtering was performed using all available PlanetScope ‘PSScene4Band’ imagery from 2016 to 2022. Once the API completed the search, the Python script read the search results, submitted orders, and the selected imagery was downloaded from Planet’s cloud-based system to local storage. During execution of the Python script, a log file was created to keep track of successful and failed orders. If an order failed, the script was run again targeting the specific order that failed. The resulting dataset included over 1.8 million unique files with, on average, 3,885 scene images for each site (i.e., the number of images, on average, that overlap part of each 10 by 10 km site), and had a total volume of 62.2 TB.Image processingTo ensure that high-quality image time series were used to generate LSP metrics, we used PlanetScope per-pixel quality assurance information to exclude pixels that had low quality in all 4 bands (i.e., blue, green, red, and near-infrared). Specifically, we excluded pixels where the Unusable Data Mask (layer ‘umd’) was not 0 (i.e., we retained pixels that were not cloud contaminated or located in non-image areas) and pixels where the Usable Data Mask (layer ‘umd2’) is 0 (i.e., we retained pixels that were not contaminated by snow, shadow, haze, or clouds). We then cropped all the images to exclude pixels outside of the 10 by 10 km window centered over each tower. We selected this window size based on published results showing that 80% of the average monthly footprint at eddy covariance towers ranges from 103 to 107 square meters22. Note that the swath for PlanetScope imagery often did not cover entire sites and some sites (e.g., the tall tower at US-Pfa) have larger footprints than other sites. Similarly, most sites had multiple PlanetScope image acquisitions on the same day. To create image time series, we mosaiced all available imagery at each site on each date, and, under the assumption that geolocation error was non-systematic and modest, we created a single image for each date using the mean surface reflectance for pixels with multiple values on the same day. The resulting database of daily surface reflectance images were sorted in chronological order, sub-divided into 200 sub-areas at each site (i.e., 0.5 km2 each), and then stored as image stacks to facilitate parallel processing to estimate LSP metrics, where each image stack included all images from July 1, 2016 through January 31, 2022.Creation of daily EVI2 time seriesTo estimate LSP metrics we adapted the algorithm described by Bolton et al.19, which was originally implemented to estimate LSP metrics from harmonized Landsat and Sentinel-2 (HLS) imagery, for use with PlanetScope imagery. Prior to LSP estimation, daily images of the two-band Enhanced Vegetation Index30 (EVI2) data were generated from PlanetScope imagery and then interpolated to create smooth time series of daily EVI2 values at each pixel in three main steps. First, sources of variation related to clouds, atmospheric aerosols, and snow were detected and removed from the EVI2 time series at each pixel based on data masks provided with PlanetScope imagery (described above) and outlier detection criteria (i.e., de-spiking and removing negative EVI2 values). Second, we identified the ‘background’ EVI2 value (the minimum EVI2 value outside of the growing season) based on the 10th percentile of snow-free EVI2 values at each pixel. Any dates with EVI2 values below the background value were replaced with the background EVI2. Third, penalized cubic smoothing splines were used to gap-fill and smooth the data to create daily EVI2 time series across all years of available data. Complete details on these steps are given in Bolton et al.19. This approach has been tested and shown to yield PlanetScope EVI2 time series that are consistent with both EVI2 time series from HLS imagery and time series of the Green Chromatic Coordinate (GCC) from PhenoCam imagery26. We used the EVI2 instead of other vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized Difference Vegetation Index (NDVI) because EVI2 is less sensitive to noise from atmospheric effects relative to EVI and is less prone to saturation over dense canopies and noise from variation in soil background reflectance over sparse canopies relative to the NDVI30,32. Thus, phenological metrics from EVI2 time series tend to have better agreement with PhenoCam observations than corresponding metrics from NDVI33.Identifying phenological cyclesPrior to estimating LSP metrics, we first identity unique growth cycles by searching the period before and after each local peak in the daily PlanetScope EVI2 time series. To be considered a valid growth cycle, the difference in EVI2 between the local minimum and maximum was required to be at least 0.1 and greater than 35% of the total range in EVI2 over the 24-month period centered on the target year ± 6 months. The start of each growth cycle is restricted to occur within 185 days before the peak of the cycle and at least 30 days after the previous peak. The same procedure was applied in reverse at the end of the cycle to constrain the range of end dates for each growth cycle. This procedure is applied recursively over the time series until each local peak has been assessed and all growth cycles (with associated green-up period, peak greenness, and green-down period) are identified in the time series at each pixel. As part of this process, the algorithm provides the number of growth cycles identified for each year in the time series.Retrieving LSP metricsLSP metrics are estimated for each pixel in up to two growth cycles in each year. If no growth cycles are detected, the algorithm returns fill values for all timing metrics, but does report values for the four annual metrics: EVImax, EVIamp, EVIarea, and numObs (see below). If more than two growth cycles are detected, which is rare but does occur (e.g., alfalfa, which is harvested and regrows multiple times in a year), the algorithm records 7 LSP metrics for each of the two growth cycles with the largest EVI2 amplitudes. The resulting dataset includes seven ‘timing’ metrics that identify the timing of greenup onset, mid-greenup, maturity, peak EVI2, greendown onset, mid-greendown, and dormancy. These metrics record the day of year (DOY) when the EVI2 time series exceeds 15%, 50%, and 90% of EVI2 amplitude during the greenup phase, reaches its maximum, and goes below 90%, 50%, and 15% of EVI2 amplitude during the greendown phase. In addition, the algorithm records three complementary metrics that characterize the magnitude of seasonality and total ‘greenness’ at each pixel in each growth cycle: the EVI2 amplitude, the maximum EVI2, and the growing season integral of EVI2, which is calculated as the sum of daily EVI2 values between the growth cycle start- and end-dates (i.e., from greenup onset to dormancy).Quality assurance flagsQuality Assurance (QA) values are estimated at each pixel based on the density of observations and the quality of spline fits during each phenophase of the growing season. A QA value of 1 (high quality) is assigned if the correlation between observed versus fitted daily EVI2 values is greater than 0.75 and the maximum gap during each phase is less than 30 days. A QA value of 2 (moderate quality) is assigned if the correlation coefficient is less than 0.75 or the length of the maximum gap over the segment is greater than 30 days. A QA value of 3 (low quality) is assigned if the correlation coefficient is less than 0.75 and the length of the maximum gap over the segment is greater than 30 days. A QA value of 4 is assigned if no growth cycles were detected or insufficient data were available to run the algorithm. More

  • in

    Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

    Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reissig, M., Trochine, C., Queimaliños, C., Balseiro, E. & Modenutti, B. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Conserv. 132, 437–447 (2006).Article 

    Google Scholar 
    Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biol. Invasions 12, 1533–1542 (2010).Article 

    Google Scholar 
    Beaulieu, M., Pick, F. & Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 58, 1736–1746 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (E & FN Spon, 1999).Sukenik, A., Quesada, A. & Salmaso, N. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers. Conserv. 24, 889–908 (2015).Article 

    Google Scholar 
    Ibelings, B. W., Bormans, M., Fastner, J. & Visser, P. M. CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation. Aquat. Ecol. 50, 595–605 (2016).CAS 
    Article 

    Google Scholar 
    Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4, 988–1012 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01254 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewing, H. A. et al. “New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere 11, e03170 (2020).Article 

    Google Scholar 
    McGlone, M. S. & Wilmshurst, J. M. Dating initial Maori environmental impact in New Zealand. Quat. Int. 59, 5–16 (1999).Article 

    Google Scholar 
    Brooking, A. P. D. of H. T. & Brooking, T. The History of New Zealand. (Greenwood Publishing Group, 2004).Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. PNAS 105, 7676–7680 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGlone, M. S. The Polynesian settlement of New Zealand in relation to environmental and biotic changes. N. Z. J. Ecol. 12, 115–129 (1989).
    Google Scholar 
    McGlone, M. S. Polynesian deforestation of New Zealand: a preliminary synthesis. Archaeol. Ocean. 18, 11–25 (1983).Article 

    Google Scholar 
    McWethy, D. B. et al. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. PNAS 107, 21343–21348 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. & McGlone, M. S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 9, e111328 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Star, P. New Zealand environmental history: a question of attitudes. Environ. Hist. Camb. 9, 463–475 (2003).Article 

    Google Scholar 
    Clark, A. H. The Invasion of New Zealand by Plants, People, and Animals (Rutgers University Press, 1949).
    Google Scholar 
    Wilmshurst, J. M. Human effects on the environment: European impact. Te Ara: The Encyclopedia of New Zealand https://teara.govt.nz/en/human-effects-on-the-environment/page-3 (2007).Smol, J. P. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123, 199–208 (1985).Article 

    Google Scholar 
    Rees, A. B. H., Cwynar, L. C. & Cranston, P. S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J. Paleolimnol. 40, 1159–1178 (2008).ADS 
    Article 

    Google Scholar 
    Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).ADS 
    Article 

    Google Scholar 
    Buchaca, T. et al. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14, 458–477 (2011).CAS 
    Article 

    Google Scholar 
    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).Article 

    Google Scholar 
    Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nelson-Chorney, H. T. et al. Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Front. Ecol. Environ. 17, 313–318 (2019).
    Google Scholar 
    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Ind. 85, 1044–1057 (2018).CAS 
    Article 

    Google Scholar 
    Monchamp, M.-E., Walser, J.-C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal, S., Gregory-Eaves, I. & Pick, F. R. Temporal trends in cyanobacteria revealed through DNA and pigment analyses of temperate lake sediment cores. J. Paleolimnol. 54, 87–101 (2015).ADS 
    Article 

    Google Scholar 
    Dodsworth, W. Temporal Trends in Cyanobacteria Through Paleo-Genetic Analyses. (Université d’Ottawa/University of Ottawa, 2020). https://doi.org/10.20381/ruor-24401.Rinta-Kanto, J. M. et al. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8, 385–394 (2009).CAS 
    Article 

    Google Scholar 
    Zastepa, A. et al. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci. Total Environ. 579, 893–901 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schallenberg, M. et al. Ecosystem services of lakes. In Ecosystem Services in New Zealand (ed. Dymond, J.) 23 (Manaaki Whenua Press, 2013).
    Google Scholar 
    Ministry for the Environment & Ausseil, A.-G. Our freshwater 2020. www.mfe.govt.nz (2020).Takiwa—Map Page. https://lernz.takiwa.co/map.Leathwick, J. et al. Freshwater ecosystems of New Zealand (FENZ) geodatabase. Users guide. (2010).Cochrane, L. Reconstructing Ecological Change, Catchment Disturbance, and Anthropogenic Impact over the last 3000 years at Lake Pounui, Wairarapa, New Zealand. (2017).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of phytoplankton in Lake Hayes and Lake Johnson, South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 8, 167–209 (1974).Article 

    Google Scholar 
    Lawa. Land, Air, Water Aotearoa (LAWA) https://www.lawa.org.nz/ (2018).Bunny, T., Perrie, A., Milne, J. & Keenan, L. Lake water quality in the Ruamāhanga Whaitua. 17 (2014).McKinnon, M. Volcanic Plateau region: The lure of trout. Te Ara—The Encyclopedia of New Zealand https://teara.govt.nz/en/volcanic-plateau-region/page-8 (2015).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. N. Z. J. Mar. Freshw. Res. 14, 189–204 (1980).Article 

    Google Scholar 
    Schallenberg, M. & Schallenberg, L. Lake Hayes restoration and monitoring plan. 55 https://a234f952-dbf2-444e-983e-ef311d984ee7.filesusr.com/ugd/c1b10b_d2993ed023cd4bdbac7eef71a89c2de7.pdf (2017).NIWA. NIWA https://niwa.co.nz/.Mackereth, F. J. H. A portable core sampler for lake deposits. Limnol. Oceanogr. 3, 181–191 (1958).ADS 
    Article 

    Google Scholar 
    Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 40, 1091–1094 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Trodahl, M. I., Rees, A. B. H., Newnham, R. M. & Vandergoes, M. J. Late Holocene geomorphic history of Lake Wairarapa, North Island, New Zealand. N. Z. J. Geol. Geophys. 59, 330–340 (2016).CAS 
    Article 

    Google Scholar 
    Khan, S., Puddick, J., Burns, C. W., Closs, G. & Schallenberg, M. Palaeolimnological evaluation of historical nutrient and food web contributions to the eutrophication of two monomictic lakes. Submitted for Journal Publication (2022).Rinta-Kanto, J. M. et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. (2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Sour. Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. 2019. (2019).Williams, P. A. & Cameron, E. K. Creating gardens: the diversity and progression of European plant introductions. In Biological Invasions in New Zealand Vol. 186 (eds Allen, R. B. & Lee, W. G.) 33–47 (Springer-Verlag, 2006).Chapter 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).Article 

    Google Scholar 
    Juggins, S. rioja: analysis of quaternary science data. (2020).de Vries, A. & Ripley, B. D. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. (2022).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Soo, R. M. et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6, 1031–1045 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacKeigan, P. W. et al. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae 113, 102187 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood, S. A. et al. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw234 (2017).Article 
    PubMed 

    Google Scholar 
    Becker, S., Richl, P. & Ernst, A. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol. Ecol. 62, 64–77 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Handley, B. A. & Hayes, P. K. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (Reading) 154, 3347–3357 (2008).Article 
    CAS 

    Google Scholar 
    Pilon, S. et al. Contrasting histories of microcystin-producing cyanobacteria in two temperate lakes as inferred from quantitative sediment DNA analyses. Lake Reserv. Manag. 35, 102–117 (2019).CAS 
    Article 

    Google Scholar 
    Queenstown’s Pioneering Beginnings. https://www.queenstownnz.co.nz/stories/post/queenstowns-pioneer-beginnings/ (2017).Fish, G. R. A limnological study of four lakes near Rotorua. N. Z. J. Mar. Freshw. Res. 4, 165–194 (1970).Article 

    Google Scholar 
    Lake Rotoehu—Lakes Water Quality Society. https://lakeswaterquality.co.nz/lake-rotoehu/.Bay of Plenty Regional Council, Rotorua District Council, & Te Arawa Lakes Trust. Lake Rotoehu Action Plan. 61 http://www.rotorualakes.co.nz/vdb/document/76 (2007).Hobbs, W. O. et al. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing Dolichospermum sp.. Harmful Algae 101, 101971 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    de la Escalera, G. M., Antoniades, D., Bonilla, S. & Piccini, C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol. Ecol. 23, 5791–5802 (2014).Article 
    CAS 

    Google Scholar 
    Retrolens—Historical Imagery Resource. https://retrolens.co.nz/.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174 (2010).Article 

    Google Scholar 
    Hall, S. R. & Mills, E. L. Exotic species in large lakes of the world. Aquat. Ecosyst. Health Manag. 3, 105–135 (2000).Article 

    Google Scholar 
    Gehrke, P. C. & Harris, J. H. The role of fish in cyanobacterial blooms in Australia. Mar. Freshw. Res. 45, 905–915 (1994).Article 

    Google Scholar 
    Burns, C. W. & Schallenberg, M. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J. Plankton Res. 20, 1501–1525 (1998).Article 

    Google Scholar 
    Rowe, D. K. & Schallenberg, M. Food webs in lakes. In Freshwaters of New Zealand (ed. Harding, J. S.) 23 (Wellington, N.Z.: New Zealand Hydrological Society, 2004).Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer, 1989).Chapter 

    Google Scholar 
    Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Trophic interactions promote dominance by cyanobacteria (Anabaena spp.) in the pelagic zone of lower Karori reservoir, Wellington, New Zealand. N. Z. J. Mar. Freshw. Res. 41, 143–155 (2007).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Cyanobacterial blooms appear to be driven by top-down rather than bottom-up effects in the Lower Karori Reservoir (Wellington, New Zealand). N. Z. J. Mar. Freshw. Res. 40, 53–63 (2006).CAS 
    Article 

    Google Scholar 
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).Article 

    Google Scholar 
    Pulina, S. et al. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuaries Coasts 40, 469–478 (2017).CAS 
    Article 

    Google Scholar 
    Callieri, C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw. Rev. 1, 1–28 (2008).Article 

    Google Scholar 
    Keefer, D. K. Investigating landslides caused by earthquakes: a historical review. Surv. Geophys. 23, 473–510 (2002).ADS 
    Article 

    Google Scholar 
    Fan, X. et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57, 421–503 (2019).ADS 
    Article 

    Google Scholar 
    Manighetti, I. et al. Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Sci. Rep. 10, 2124 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McSaveney, E. Historic earthquakes: the 1942 Wairarapa earthquakes. Te Ara Encyclopedia of New Zealand https://teara.govt.nz/en/historic-earthquakes/page-9 (2006).New Zealand’s environmental reporting series: our atmosphere and climate. (Ministry for the Environment & Stats NZ, 2020).Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).Article 

    Google Scholar 
    Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome https://doi.org/10.1139/gen-2016-0100 (2016).Article 
    PubMed 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA https://doi.org/10.1002/edn3.160 (2020).Article 

    Google Scholar 
    Corinaldesi, C., Beolchini, F. & Dell’anno, A. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol. Ecol. 17, 3939–3951 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. https://doi.org/10.1038/s42003-017-0005-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00218 (2020).Article 

    Google Scholar 
    Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).ADS 
    Article 

    Google Scholar 
    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Stable isotopes unveil one millennium of domestic cat paleoecology in Europe

    Turner, D. & Bateson, P. (eds) The Domestic Cat: The Biology of Its Behaviour (Cambridge Univ. Press, 2000).
    Google Scholar 
    Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V. & Nott, H. M. R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. A Physiol. 114, 205–209 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: A blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).Article 

    Google Scholar 
    Crowley, S. L., Cecchetti, M. & McDonald, R. A. Our wild companions: Domestic cats in the anthropocene. Trends Ecol. Evol. 35, 477–483 (2020).PubMed 
    Article 

    Google Scholar 
    Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Neer, W., Linseele, V., Friedman, R. & De Cupere, B. More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). J. Archaeol. Sci. 45, 103–111 (2014).Article 

    Google Scholar 
    Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).Article 

    Google Scholar 
    Baca, M. et al. Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity 121, 557–563 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vigne, J. The beginning of cat domestication in East and West Asia. Doc. Archaeobiol. 15, 343–354 (2019).
    Google Scholar 
    Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet. Proc. Natl. Acad. Sci. USA 117, 17710–17719 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piontek, A. M. et al. Analysis of cat diet across an urbanisation gradient. Urban Ecosyst. 24, 59–69 (2021).Article 

    Google Scholar 
    Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    Moseby, K. E., Peacock, D. E. & Read, J. L. Catastrophic cat predation: A call for predator profiling in wildlife protection programs. Biol. Conserv. 191, 331–340 (2015).Article 

    Google Scholar 
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Beaumont, M. et al. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beugin, M. P. et al. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol. Evol. 10, 263–276 (2020).PubMed 
    Article 

    Google Scholar 
    Biró, Z., Lanszki, J., Szemethy, L., Heltai, M. & Randi, E. Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: Trophic niche overlap among cat groups in Hungary. J. Zool. 266, 187–196 (2005).Article 

    Google Scholar 
    Széles, G. L., Purger, J. J., Molnár, T. & Lanszki, J. Comparative analysis of the diet of feral and house cats and wildcat in Europe. Mammal. Res. 63, 43–53 (2018).Article 

    Google Scholar 
    Ottoni, C. & Van Neer, W. The dispersal of the domestic cat paleogenetic and zooarcheological evidence. Near East. Archaeol. 83, 38–45 (2020).Article 

    Google Scholar 
    Bitz-Thorsen, J. & Gotfredsen, A. B. Domestic cats (Felis catus) in Denmark have increased significantly in size since the Viking Age. Danish J. Archaeol. 7, 241–254 (2018).Article 

    Google Scholar 
    Faure, E. & Kitchener, A. C. An archaeological and historical review of the relationships between felids and people. Anthrozoos 22, 221–238 (2009).Article 

    Google Scholar 
    von den Driesch, A. Kulturgeschichte der Hauskatze. In Krankheiten der Katze, Bd. 1 (eds Schmidt, V. & Horzinek, M. C.) 17–40 (Fischer, 1992).
    Google Scholar 
    Głażewska, I. & Kijewski, T. A new view on the European feline population from mtDNA analysis in Polish domestic cats. Forensic Sci. Int. Genet. 27, 116–122 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological, and cultural effects. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. & Katzenberg, M.) 39–63 (Kluwer Academic Publishers, 2002). https://doi.org/10.1007/0-306-47194-9_3.Chapter 

    Google Scholar 
    Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).Article 

    Google Scholar 
    Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 99–154 (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470691854.ch5.Chapter 

    Google Scholar 
    Hofman-Kamińska, E. et al. Foraging habitats and niche partitioning of European large herbivores during the holocene—Insights from 3D dental microwear texture analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 183–195 (2018).Article 

    Google Scholar 
    Bocherens, H., Hofman-Kamińska, E., Drucker, D. G., Schmölcke, U. & Kowalczyk, R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl. Acad. Sci. USA. 111, 116–120 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haruda, A. F. et al. The earliest domestic cat on the Silk Road. Sci. Rep. 10, 11241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meckstroth, A. M., Miles, A. K. & Chandra, S. Diets of introduced predators using stable isotopes and stomach contents. J. Wildl. Manag. 71, 2387–2392 (2007).Article 

    Google Scholar 
    McDonald, B. W. et al. High variability within pet foods prevents the identification of native species in pet cats’ diets using isotopic evaluation. PeerJ 8, e8337 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart, G. R., Aidar, M. P. M., Joly, C. A. & Schmidt, S. Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131, 468–472 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Graven, H., Keeling, R. F. & Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34, 1–21 (2020).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Linderholm, A. & Kjellström, A. Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden. J. Archaeol. Sci. 38, 925–933 (2011).Article 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18 (2018).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Fast or feast: Reconstructing diet in later medieval England by stable isotope analysis. J. Archaeol. Sci. 32, 39–48 (2005).Article 

    Google Scholar 
    van der Sluis, L. G., Hollund, H. I., Kars, H., Sandvik, P. U. & Denham, S. D. A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J. Archaeol. Sci. Rep. 9, 120–133 (2016).
    Google Scholar 
    Polet, C. & Katzenberg, M. A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 30, 525–533 (2003).Article 

    Google Scholar 
    Kosiba, S. B., Tykot, R. H. & Carlsson, D. Stable isotopes as indicators of change in the food procurement and food preference of Viking Age and Early Christian populations on Gotland (Sweden). J. Anthropol. Archaeol. 26, 394–411 (2007).Article 

    Google Scholar 
    Olsen, K. C. et al. Isotopic anthropology of rural German medieval diet: Intra- and inter-population variability. Archaeol. Anthropol. Sci. 10, 1053–1065 (2018).Article 

    Google Scholar 
    Benevolo, L. The European City (Blackwell Publishers, 1993).
    Google Scholar 
    Barrett, J. et al. Detecting the medieval cod trade: A new method and first results. J. Archaeol. Sci. 35, 850–861 (2008).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).Article 

    Google Scholar 
    Heaton, T. H. E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).Article 

    Google Scholar 
    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA. 110, 12589–12594 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Styring, A. K. et al. Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J. Archaeol. Sci. 53, 504–515 (2015).CAS 
    Article 

    Google Scholar 
    Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).Article 

    Google Scholar 
    Fuller, B. T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M. P. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J. Anal. At. Spectrom. 27, 807–820 (2012).CAS 
    Article 

    Google Scholar 
    Robson, H. K. et al. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ. Archaeol. 21, 105–118 (2016).Article 

    Google Scholar 
    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).Article 

    Google Scholar 
    Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B Biol. Sci. 285, 20181441 (2018).Article 
    CAS 

    Google Scholar 
    Bicknell, A. W. J. et al. Stable isotopes reveal the importance of seabirds and marine foods in the diet of St Kilda field mice. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Hoffmann, R. C. Medieval fishing. In Working with Water in Medieval Europe. Technology and Resource-Use (ed. Squatriti, P.) 331–393 (Brill, 2000).
    Google Scholar 
    Gillies, C. & Clout, M. The prey of domestic cats (Felis catus) in two suburbs of Auckland City, New Zealand. J. Zool. 259, 309–315 (2003).Article 

    Google Scholar 
    Brickner-Braun, I., Geffen, E. & Yom-Tov, Y. The domestic cat as a predator of Israeli wildlife. Isr. J. Ecol. Evol. 53, 129–142 (2007).Article 

    Google Scholar 
    Flockhart, D. T. T., Norris, D. R. & Coe, J. B. Predicting free-roaming cat population densities in urban areas. Anim. Conserv. 19, 472–483 (2016).Article 

    Google Scholar 
    Castañeda, I., Zarzoso-Lacoste, D. & Bonnaud, E. Feeding behaviour of red fox and domestic cat populations in suburban areas in the south of Paris. Urban Ecosyst. 23, 731–743 (2020).Article 

    Google Scholar 
    Zhu, Y., Siegwolf, R. T. W., Durka, W. & Körner, C. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162, 853–863 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).Article 

    Google Scholar 
    Pińska, K. & Badura, M. Warunki przyrodnicze i dieta roślinna mieszkańców Pucka w późnym średniowieczu. In Puck – kultura materialna małego miasta w późnym średniowieczu (ed. Starski, M.) 517 (Uniwersytet Warszawski, 2017).
    Google Scholar 
    Lefebvre, A. et al. Morphology of estuarine bedforms, Weser Estuary, Germany. Earth Surf. Process. Landforms 47, 242–256 (2022).ADS 
    Article 

    Google Scholar 
    Bischop, D. & Von der Küchelmann, H. C. Küche in den Graben – Bremens Stadtgraben und die Essgewohnheiten seiner Anwohner an der Wende zur Frühen Neuzeit. In Lebensmittel im Mittelalter und in der frühen Neuzeit. Erzeugung, Verarbeitung, Versorgung. Beiträge des 16. Kolloquiums des Arbeitskreises zur archäologischen Erforschung des mittelalterlichen Handwerks, Soester Beiträge zur Archäologie 15 (ed. Melzer, W.) 137–151 (Mocker und Jahn, 2018).
    Google Scholar 
    Elmshäuser, K. & Pordzik, V. V. Lachsgarnen, Tomen und Kumpanen – Die älteste Bremer Fischeramtsrolle. Bremisches Jahrb. 98, 13–72 (2019).
    Google Scholar 
    Küchelmann, H. C. Viel Butter bei wenig Fisch. Zwei Fischknochenkomplexe des 12.–13. Jahrhunderts aus der Bremer Altstadt. In Grenzen überwinden. Archäologie zwischen Disziplin und Disziplinen. Festschrift für Uta Halle zum 65. Geburtstag, Internationale Archäologie Studia Honoraria 40 (eds Kahlow, S. et al.) 413–426 (Verlag Marie Leidorf GmbH, 2021).
    Google Scholar 
    Schwarcz, H. P. & Schoeninger, M. J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 34, 283–321 (1991).Article 

    Google Scholar 
    Wallace, M. et al. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 45, 388–409 (2013).Article 

    Google Scholar 
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    Ervynck, A. Orant, pugnant, laborant. The diet of the three orders in the feudal society of medieval north-western Europe. In Behaviour Behind Bones. The Zooarchaeology of Ritual, Religion, Status and Identity (eds O’Day, S. J. et al.) 215–223 (Oxbow Books, 2004).
    Google Scholar 
    von den Driesch, A. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bull. 1, 1–137 (1976).
    Google Scholar 
    O’Connor, T. P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).Article 

    Google Scholar 
    Kratochvíl, Z. Schadelkriterien der Wild- und Hauskatze (Felis silvestris silvestris Schreber 1777 und Felis s. f. catus L. 1758). Acta Sci. Nat. Brno 7, 1–50 (1973).
    Google Scholar 
    Kratochvíl, Z. Das Postkranialskelett der Wild- und Hauskatze (Felis silvestris und F. lybica f. catus). Acta Sci. Nat. Brno 10, 1–43 (1976).
    Google Scholar 
    Dyce, K. M., Sack, W. O. & Wensing, C. J. G. Textbook of Veterinary Anatomy (Saunders/Elsevier, 2010).
    Google Scholar 
    Krajcarz, M. et al. On the trail of the oldest domestic cat in Poland. An insight from morphometry, ancient DNA and radiocarbon dating. Int. J. Osteoarchaeol. 26, 912–919 (2016).Article 

    Google Scholar 
    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).CAS 
    Article 

    Google Scholar 
    Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T. & Staff, R. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).Article 

    Google Scholar 
    Ferreira, J. P., Leitão, I., Santos-Reis, M. & Revilla, E. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. E. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 220, 104338 (2022).Article 

    Google Scholar 
    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48, 370–380 (1997).Article 

    Google Scholar 
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudin, M., Boeckx, P., Vandenabeele, P. & Van Strydonck, M. Improved radiocarbon dating of contaminated protein-containing archaeological samples via cross-flow nanofiltrated amino acids. Rapid Commun. Mass Spectrom. 27, 2039–2050 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wojcieszak, M., Van Den Brande, T., Ligovich, G. & Boudin, M. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62, e14–e24 (2020).Article 

    Google Scholar 
    Hammer, Ø. PAST. PAleontological Statistics. Version 4.05 Reference manual (Natural History Museum University of Oslo, 2021).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Ecological niche models for the assessment of site suitability of sea cucumbers and sea urchins in China

    FAO (Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department). The State of World Fisheries and Aquaculture 2020 (Food and Agriculture Organization of the United Nations, 2020).Costello, C. et al. The future of food from the sea. Nature 588(7836), 1–6 (2020).
    Google Scholar 
    Sarah, A. B. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26(12), 1780–1797 (2020).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Academic Journal Electronic Publishing House, 1949–1975). https://www.cafs.ac.cn/kxyj/qgyytjnj.htm. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2021). (in Chinese).Shelton, W. L. & Rothbard, S. Exotic species in global aquaculture—a review. Isr. J. Aquac. 58(1), 3–28 (2006).
    Google Scholar 
    Ju, R. et al. Emerging risks of non-native species escapes from aquaculture: Call for policy improvements in China and other developing countries. J. Appl. Ecol. 57, 86–90 (2020).
    Google Scholar 
    Zhu, C. & Dong S. Aquaculture site selection and carrying capacity management in the People’s Republic of China. In Site Selection and Carrying Capacities for Inland and Coastal Aquaculture (eds Ross, L. G., Telfer, T. C., Falconer, L., Soto, D. & Aguilar Manjarrez, J.) 219–230 (FAO/Institute of Aquaculture, Expert Workshop, 6–8 December 2010, University of Stirling, UK, FAO, Rome, 2013).Falconer, L., Telfer, T. C. & Ross, L. G. Investigation of a novel approach for aquaculture site selection. J. Environ. Manag. 181, 791–804 (2016).
    Google Scholar 
    Liu, Y. et al. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in the Dalian coastal area from 2003 to 2012. Aquaculture 422, 172–183 (2014).
    Google Scholar 
    Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1870 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eve, G., Marc, B. & Montserrat, R. Immune response of the sea cucumber Parastichopus regalis to different temperatures: Implications for aquaculture purposes. Aquaculture 497, 357–363 (2018).
    Google Scholar 
    Gentry, R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1(9), 1317 (2017).PubMed 

    Google Scholar 
    Kim, B. et al. Impact of seawater temperature on Korean aquaculture under representative concentration pathways (RCP) scenarios. Aquaculture 542(3), 736893 (2021).
    Google Scholar 
    Wentz, F. J. et al. Satellite measurements of sea surface temperature through clouds. Science 288(5467), 847–850 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mediodia, H. Effects of sea surface temperature on tuna catch: Evidence from countries in the Eastern Pacific Ocean. Ocean. Coast. Manag. 209, 105657 (2021).
    Google Scholar 
    Liu, S., Zhang, Z., Wu, J. & Yu W. Spatial and temporal variations of potential habitats of jumbo flying squid Dosidicus gigas off Peru under increasing sea surface Temperature. Fish. Sci. (2020). (in Chinese with an English Abstract).Nian, R. et al. The identification and prediction in abundance variation of Atlantic cod via long short-term memory with periodicity, time–frequency co-movement, and lead-lag effect across sea surface temperature, sea surface salinity, catches, and prey biomass from 1919 to 2016. Front. Mar. Sci. 8, 665716 (2021).
    Google Scholar 
    Radiarta, I. & Saitoh, S. Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquacult. Int. 17(5), 403 (2009).
    Google Scholar 
    Laama, C. & Bachar, N. Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. J. Appl. Aquac. 31(4), 337–355 (2019).
    Google Scholar 
    Liu, Y. et al. Impact of iceanographic environmental shifts and atmospheric events on the sustainable development of coastal aquaculture: A case study of kelp and scallops in southern Hokkaido, Japan. Sustainability 7(2), 1263–1279 (2015).
    Google Scholar 
    Foo, S. & Gregory, P. Sea surface temperature in coral reef restoration outcomes. Environ. Res. Lett. 15(7), 074045 (2020).ADS 

    Google Scholar 
    Warren, D. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).PubMed 

    Google Scholar 
    Warren, D., Glor, R. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).
    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222(8), 1343–1346 (2011).
    Google Scholar 
    Bo, Z., Xin-Jun, C. & Gang, L. Relationship between the resource and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea. Shuichan Xuebao 32(3), 379–386 (2008) (in Chinese with an English abstract).
    Google Scholar 
    Chen, P. & Chen, X. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the southwest Atlantic Ocean using maximum entropy model. Shuichan Xuebao 40(6), 893–902 (2016) (in Chinese with an English abstract).
    Google Scholar 
    Zhang, S., Shi, Y., Li, F., Zhu, M. & Wei, Z. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based on MAXENT model. J. Ocean. Univ. China 29(2), 280–286 (2020) (in Chinese with an English abstract).
    Google Scholar 
    Phillips, S. & Elith, J. On estimating probability of presence from use–availability or presence–background data. Ecology 94(6), 1409–1419 (2013).PubMed 

    Google Scholar 
    Yang, H. et al. Current advances and technological prospects of the sea cucumber seed industry in China. Mar. Sci. 7, 2–9 (2020) (in Chinese with an English abstract).CAS 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, Beijing, 2004) (in Chinese).
    Google Scholar 
    Li, C. & Hu, W. Status, trend and countermeasure in development of sea cucumber Apostichopus Japonicus Selenka industry in China. Mar. Econ. China. 1, 3–20 (2017) (in Chinese with an English abstract).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook. China Agriculture Press; 2003. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2012). (in Chinese).He, C. & Huang, G. On Apostichopus japonicus culture in China and major culture provinces. Fish. Inf. St. (2014). (in Chinese with an English abstract).Su, L., Zhou, C., Hu, L. & Xu, J. Development status and sustainable development of Apostichopus japonicus industry in south China. Fish. Sci. Technol. Inf. 2, 57–60 (2014) (in Chinese).
    Google Scholar 
    Guo, F. Research and analysis report on sea cucumber Apostichopus japonicus aquaculture industry in typical regions of North and South China: A case study of Wafangdian city and Xiapu county. Masteral dissertation, Dalian Ocean University. (2021). (in Chinese with an English abstract).Agatsuma, Y. Strongylocentrotus intermedius. In Sea Urchins: Biology and Ecology 4th edn (ed. Lawrence, J. M.) 609–621 (Elsevier, Amsterdam, 2020).
    Google Scholar 
    Wang, Z. & Chang, Y. Studies on hatching of Japanese sea urchin Strongylocentrotus intermedius. J. Fish. Sci. C 4(1), 60–67 (1997) (in Chinese with an English abstract).
    Google Scholar 
    Liao, Y. Fauna of China: Echinodermata: Holothuroidea (Science Press, 1997) (in Chinese).Merckx, B. et al. Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecol. Model. 222(3), 588–597 (2011).CAS 

    Google Scholar 
    Matthew, A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery 35–38 (Tianjin, China. 2009).Zhao, G. Water environment analysis of two typical breeding patterns. Masteral dissertation, Hebei Agricultural University. (2019). (in Chinese with an English abstract).Liu, C. & Lan, Y. Situation and countermeasure of sea cucumber culturing industry in Fujian Province. J. Fujian Fish. (2013). (in Chinese with an English abstract).Fei, G. et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation. J. Oceanol. Limnol. 27(4), 714–722 (2009).
    Google Scholar 
    Han, C., Lin, P., et al. A study on key technique of Stichopus japonicus Selenka farming in southern sea area. Mod. Fish. Inf. (2011). (in Chinese with an English abstract).Chang, Y., Wang, Z. & Wang, G. Effect of temperature and algae on feeding and growth in sea urchin, Strongylocentrotus intermedius. J. Fish. China. (1997). (in Chinese with an English abstract).Lawrence, J. et al. Temperature effect of feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius. J. Shellfish Res. 28, 389–395 (2009).
    Google Scholar 
    Zhao, C. et al. Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biolog. Assoc. 96(1), 185–195 (2015).
    Google Scholar 
    Lawrence, J., Zhao, C. & Chang, Y. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 27(1), 1–7 (2019).CAS 

    Google Scholar 
    Chang, Y. et al. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas. South China Fish. Sci. 16(3), 1–9 (2020).
    Google Scholar 
    Yu, Z. Raft culture technique of sea urchin in south China. China Fish. 376(003), 57–57 (2007) (in Chinese).
    Google Scholar  More

  • in

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, et al. Editors. Cambridge, UK and New York, NY, USA: Cambridge University Press. 2021. https://doi.org/10.1017/9781009157896.Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839.Article 

    Google Scholar 
    FAO. Global agriculture towards 2050, high-level expert forum, how to feed the world 2050. Rome: Food and Agriculture Organization of United Nations FAO. 2009.Agoussar A, Yergeau E. Engineering the plant microbiota in the context of the theory of ecological communities. Curr Opin Biotechnol. 2021;70:220–5.CAS 
    Article 

    Google Scholar 
    Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:507.Article 

    Google Scholar 
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00011.Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.CAS 
    Article 

    Google Scholar 
    Nelson EB, Simoneau P, Barret M, Mitter B, Compant S. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Tremblay J, Yergeau E. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 2021;5:418–31.Article 

    Google Scholar 
    Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L, Shen J-P, et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.Article 

    Google Scholar 
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    Article 

    Google Scholar 
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry. 2012;109:101–16.Article 

    Google Scholar 
    Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, et al. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J. 2021;15:1207–21.CAS 
    Article 

    Google Scholar 
    Azarbad H, Constant P, Giard-Laliberté C, Bainard LD, Yergeau E. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem. 2018;126:228–36.CAS 
    Article 

    Google Scholar 
    Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.CAS 
    Article 

    Google Scholar 
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    Article 

    Google Scholar 
    Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A. Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot. 2018;121:61–9.CAS 
    Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Mendes L, Tremblay J, Tripathi B, Yergeau É. Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean Microbiome. Microb Ecol. 2021;82:416–28. https://doi.org/10.1007/s00248-021-01688-w.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    Article 

    Google Scholar 
    Azarbad H, Tremblay J, Giard-Laliberté C, Bainard LD, Yergeau E. Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture. FEMS Microbiol Ecol. 2020;96. https://doi.org/10.1093/femsec/fiaa098.Chen S, Cade-Menun BJ, Bainard LD, St. Luce M, Hu Y, Chen Q. The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma. 2021;404:115274.CAS 
    Article 

    Google Scholar 
    Smith EG, Zentner RP, Campbell CA, Lemke R, Brandt K. Long-term crop rotation effects on production, grain quality, profitability, and risk in the northern great plains. Agron J. 2017;109:957–67.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.Article 

    Google Scholar 
    Yang S. otuSummary: summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. 2018.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. 2019. Available online at: https://CRAN.R-project.org/package=vegan.Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    Article 

    Google Scholar 
    Hardoim PR, Hardoim CCP, Overbeek LS, van, Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE. 2012;7:e30438.CAS 
    Article 

    Google Scholar 
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.Article 

    Google Scholar 
    Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 2021;15:2748–62.Morales Moreira ZP, Helgason BL, Germida JJ Environment has a Stronger Effect than Host Plant Genotype in Shaping Spring Brassica napus Seed Microbiomes. Phytobiomes J. 2021:PBIOMES-08-20-0059-R.Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res. 2021;31:75–86.CAS 
    Article 

    Google Scholar 
    Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00457.Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01068.Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.CAS 
    Article 

    Google Scholar 
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.Article 

    Google Scholar 
    Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.Article 

    Google Scholar 
    Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Front Plant Sci. 2018;8:2223.Article 

    Google Scholar 
    Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, et al. Rhizobacterial Strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci. 2016;17:E976.Article 

    Google Scholar 
    Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep. 2019;9:18154.CAS 
    Article 

    Google Scholar 
    Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA. 2018;115:E4284–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na X, Cao X, Ma C, Ma S, Xu P, Liu S, et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00828. More