More stories

  • in

    The Campsis-Icterus association as a model system for avian nectar-robbery studies

    Darwin, C. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the good effects of Intercrossing. (John Murray, 1862).Darwin, C. The various Contrivances by which Orchids are Fertilised by Insects. Second edition, revised., (D. Appleton and Company, 1877).Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).Müller, H. Befruchtung der Blumen durch Insekten (Verlag Von Wilhelm Englemann, 1873).Book 

    Google Scholar 
    Riley, C. V. The yucca moth and yucca pollination. Rep. Missouri Botan. Garden 3, 99–159 (1892).Article 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology 3rd edn. (Pergamon, Berlin, 1979).
    Google Scholar 
    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 (2004).Article 

    Google Scholar 
    Inouye, D. W. In The Biology of Nectaries (eds Elias, T. S. & Bentley, B. L.) 153–173 (Columbia University Press, 1983).
    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. https://doi.org/10.1146/annurev.ecolsys.110308.120330 (2010).Article 

    Google Scholar 
    Irwin, R. E. & Maloof, J. E. Variation in nectar robbing over time, space, and species. Oecologia 133, 525–533. https://doi.org/10.1007/s00442-002-1060-z (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661. https://doi.org/10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2 (2000).Article 

    Google Scholar 
    Inouye, D. W. The terminology of floral larceny. Ecology 61, 1251–1253. https://doi.org/10.2307/1936841 (1980).Article 

    Google Scholar 
    Lyon, D. L. & Chadek, C. Exploitation of nectar resources by hummingbirds, bees (Bombus), and Diglossa baritula and Its role in the evolution of Penstemon kunthii. Condor 73, 246–248. https://doi.org/10.2307/1365847 (1971).Article 

    Google Scholar 
    Colwell, R. K., Betts, B. J., Bunnell, P., Carpenter, F. L. & Feinsinger, P. Competition for the nectar of Centropogon valerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and Its evolutionary implications. Condor 76, 447–452. https://doi.org/10.2307/1365817 (1974).Article 

    Google Scholar 
    Arizmendi, M. C., Dominguez, C. A. & Dirzo, R. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10, 119–127. https://doi.org/10.2307/2390270 (1996).Article 

    Google Scholar 
    Arizmendi, M. C. Multiple ecological interactions: Nectar robbers and hummingbirds in a highland forest in Mexico. Can. J. Zool. 79, 997–1006. https://doi.org/10.1139/z01-066 (2001).Article 

    Google Scholar 
    Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae)1. Biotropica 31, 618–625. https://doi.org/10.1111/j.1744-7429.1999.tb00410.x (1999).Article 

    Google Scholar 
    Traveset, A., Willson, M. F. & Sabag, C. Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Funct. Ecol. 12, 459–464. https://doi.org/10.1046/j.1365-2435.1998.00212.x (1998).Article 

    Google Scholar 
    Skutch, A. F. Life histories of Central American birds. Families Fringillidae, Thraupidae Parulidae and Coerebidae. Pacific Coast Avifauna 31, 1–448 (1954).
    Google Scholar 
    Vuilleumier, F. Systematics and evolution in Diglossa (Aves, Coerebidae). Am. Mus. Novit. 2381, 1–44 (1969).
    Google Scholar 
    Graves, G. R. Pollination of a Tristerix mistletoe (Loranthaceae) by Diglossa (Aves: Thraupidae). Biotropica 14, 315–317. https://doi.org/10.2307/2388094 (1982).Article 

    Google Scholar 
    Hernández, H. M. & Toledo, V. M. The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann. Mo. Bot. Gard. 66, 512–520. https://doi.org/10.2307/2398843 (1979).Article 

    Google Scholar 
    Neill, D. A. Trapliners in the trees: Hummingbird pollination of Erythrina Sect Erythrina (Leguminosae: Papilionoideae). Ann. Missouri Botan. Garden 74, 27–41. https://doi.org/10.2307/2399259 (1987).Article 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125, 1668–1676. https://doi.org/10.1111/oik.03195 (2016).CAS 
    Article 

    Google Scholar 
    Cuta-Pineda, J. A., Arias-Sosa, L. A. & Pelayo, R. C. The flowerpiercers interactions with a community of high Andean plants. Avian Res. 12, 22. https://doi.org/10.1186/s40657-021-00256-7 (2021).Article 

    Google Scholar 
    Askins, R. A., Karen, M. E. & Jeffrey, D. W. Flower destruction and nectar depletion by avian nectar robbers on a tropical tree, Cordia sebestena. J. Field Ornithol. 58, 345–349 (1987).
    Google Scholar 
    McDade, L. A. & Kinsman, S. The impact of floral parasitism in two Neotropical hummingbird-pollinated plant species. Evolution 34, 944–958. https://doi.org/10.2307/2408000 (1980).Article 
    PubMed 

    Google Scholar 
    Ingels, J. Observations of the hummingbirds Orthorhynchus cristatus and Eulampis jugularis of Martinique (West Indies). Gerfaut 66, 129–132 (1976).
    Google Scholar 
    Feinsinger, P., Beach, J. H., Linhart, Y. B., Busby, W. H. & Murray, K. G. Disturbance, pollinator predictability, and pollination success among Costa Rican cloud forest plants. Ecology 68, 1294–1305. https://doi.org/10.2307/1939214 (1987).Article 

    Google Scholar 
    Kodric-Brown, A., Brown, J. H., Byers, G. S. & Gori, D. F. Organization of a tropical island community of hummingbirds and flowers. Ecology 65, 1358–1368. https://doi.org/10.2307/1939116 (1984).Article 

    Google Scholar 
    Lara, C. & Ornelas, J. F. Preferential nectar robbing of flowers with long corollas: Experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273. https://doi.org/10.1007/s004420100640 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Impacts of nectar robbing on the foraging ecology of a territorial hummingbird. Behav. Proc. 149, 27–34. https://doi.org/10.1016/j.beproc.2018.01.001 (2018).Article 

    Google Scholar 
    Boehm, M. A. Biting the hand that feeds you: Wedge-billed hummingbird is a nectar robber of a sicklebill-adapted Andean bellflower. Acta Amazon. 48, 146–150. https://doi.org/10.1590/1809-4392201703932 (2018).Article 

    Google Scholar 
    Igić, B., Nguyen, I. & Fenberg, P. B. Nectar robbing in the trainbearers (Lesbia, Trochilidae). PeerJ 8, e9561. https://doi.org/10.7717/peerj.9561 (2020).Article 

    Google Scholar 
    Lunardi, V. D. O., Silva, É. E., Silva, S. T. A. & Lunardi, D. G. Handroanthus impetiginosus (Bignoniaceae) as an important floral resource for synanthropic birds in the Brazilian semiarid. Oecol. Austr. https://doi.org/10.4257/oeco.2019.2301.12 (2019).Article 

    Google Scholar 
    Almeida, J. M., Missagia, C. C. C. & Alves, M. A. S. Effects of the availability of floral resources and neighboring plants on nectar robbery in a specialized pollination system. Curr. Zool. https://doi.org/10.1093/cz/zoab083 (2021).Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. C. & Valido, A. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am. J. Bot. 95, 1408–1415. https://doi.org/10.3732/ajb.0800055 (2008).Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am. J. Bot. 93, 304–318. https://doi.org/10.3732/ajb.93.2.304 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O. & Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731–1743. https://doi.org/10.3732/ajb.0900004 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. & Taylor, C. M. A new generic classification of tribe Bignonieae (Bignoniaceae). Ann. Mo. Bot. Gard. 99, 348–489. https://doi.org/10.3417/2003187 (2014).Article 

    Google Scholar 
    Gentry, A. H. Coevolutionary patterns in Central American bignoniaceae. Ann. Mo. Bot. Gard. 61, 728–759. https://doi.org/10.2307/2395026 (1974).Article 

    Google Scholar 
    Bertin, R. I. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134. https://doi.org/10.2307/2442837 (1982).Article 

    Google Scholar 
    Bertin, R. I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119, 694–709. https://doi.org/10.1086/283943 (1982).Article 

    Google Scholar 
    Bertin, R. I. & Sullivan, M. Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75, 1140–1147. https://doi.org/10.1002/j.1537-2197.1988.tb08827.x (1988).Article 

    Google Scholar 
    Bertin, R. I. Paternal success following mixed pollinations of Campsis radicans. Am. Midl. Nat. 124, 153–163. https://doi.org/10.2307/2426088 (1990).Article 

    Google Scholar 
    Bertin, R. I. Effects of pollination intensity in Campsis radicans. Am. J. Bot. 77, 178–187. https://doi.org/10.1002/j.1537-2197.1990.tb13544.x (1990).Article 
    PubMed 

    Google Scholar 
    Bertin, R. I. & Peters, P. J. Paternal effects on offspring quality in Campsis radicans. Am. Nat. 140, 166–178. https://doi.org/10.1086/285408 (1992).Article 

    Google Scholar 
    Kartesz, J. T. Campsis radicans. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP) http://bonap.net/MapGallery/County/Campsis%20radicans.png. (2015).Kolodziejska-Degorska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans [L.] Seem in Poland. Acta Soc. Botanicorum Poloniae 75, 79–85 (2006).Article 

    Google Scholar 
    Catesby, M. The Natural History of Carolina, Florida and the Bahama islands. Volume 1. (Published by the author, 1731).Audubon, J. J. Ornithological Biography Vol. 3, 638 (Adam and Charles Black, 1835).
    Google Scholar 
    Audubon, J. J. Ruby-throated Hummingbird, plate CCLIII, The Birds of America Vol. 3 (Havell, 1835).
    Google Scholar 
    Nuttall, T. Manual of the Ornithology of the United States and of Canada. The Land Birds (Hilliard and Brown, 1832).
    Google Scholar 
    Stiles, F. G. & Freeman, C. E. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25, 191–205. https://doi.org/10.2307/2389183 (1993).Article 

    Google Scholar 
    Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301. https://doi.org/10.2307/1934961 (1975).Article 

    Google Scholar 
    McDade, L. A. & Weeks, J. A. Nectar in hummingbird-pollinated Neotropical plants I: Patterns of production and variability in 12 species. Biotropica 36, 196–215. https://doi.org/10.1111/j.1744-7429.2004.tb00312.x (2004).Article 

    Google Scholar 
    Wunderle, J. M. Jr. Nectar robbing by Orchard Orioles. Chat 44, 107–108 (1980).
    Google Scholar 
    Tyler, W. M. in Life histories of North American blackbirds, orioles, tanagers, and allies. Order Passeriformes: Families Ploceidae, Icteridae, and Thraupidae. United States National Museum Bulletin 211 (ed Arthur Cleveland Bent) 247–270 (United States Government Printing Office, 1958).George, F. W. Baltimore Orioles destroying trumpet vine blossoms. Wilson Bull. 46, 64 (1934).
    Google Scholar 
    Ridgway, R. The birds of North and Middle America, Part 2. Bull. U.S. Natl. Mus. 50, 1–834 (1902).
    Google Scholar 
    Scharf, W. C. & Kren, J. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Morton, E. S. Effective pollination of Erythrina fusca by the Orchard Oriole (Icterus spurius): Coevolved behavioral manipulation?. Ann. Mo. Bot. Gard. 66, 482–489. https://doi.org/10.2307/2398840 (1979).Article 

    Google Scholar 
    Dickey, D. R. & van Rossem, A. J. The birds of El Salvador. Field Mus. Publ. Zool. 23, 1–609 (1938).
    Google Scholar 
    Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C. (eds). Handbook of Avian Anatomy: Nomina Anatomica Avium, Second Edition. Publications of the Nuttall Ornithological Club no. 23 (Nuttall Ornithological Club, 1993).Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440. https://doi.org/10.2307/4080840 (1951).Article 

    Google Scholar 
    Zusi, R. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Natl. Mus. 123, 1–28 (1967).Article 

    Google Scholar 
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 
    Skutch, A. F. Orioles, Blackbirds, and Their Kin (University of Arizona Press, 1996).
    Google Scholar 
    Hansell, M. P. Bird nests and Construction Behaviour 294 (Cambridge University Press, 2000).Book 

    Google Scholar 
    Bent, A. C. Life histories of North American blackbirds, orioles, tanagers, and allies. Bull. U.S. Natl. Museum 211, 1–531 (1958).
    Google Scholar 
    Dennis, J. V. Observations on the orchard oriole in lower Mississippi Delta. Bird-Banding 19, 12–21. https://doi.org/10.2307/4509997 (1948).Article 

    Google Scholar 
    Wunderle, J. M. & Lodge, D. J. The effect of age and visual cues on floral patch use by bananaquits (Aves: Emberizidae). Anim. Behav. 36, 44–54. https://doi.org/10.1016/S0003-3472(88)80248-3 (1988).Article 

    Google Scholar 
    Edge, A. A. Characteristics of nectar production and standing crop in Campsis radicans (Bignoniaceae). MSc thesis. (East Tennessee State University, 2010).Galetto, L. Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst. Evol. 196, 99–121. https://doi.org/10.1007/BF00985338 (1995).Article 

    Google Scholar 
    Elias, T. S. & Gelband, H. Nectar: Its production and functions in trumpet creeper. Science 189, 289–291. https://doi.org/10.1126/science.189.4199.289 (1975).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, T. S. & Gelband, H. Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am. J. Bot. 63, 1349–1353. https://doi.org/10.1002/j.1537-2197.1976.tb13220.x (1976).Article 

    Google Scholar 
    Hermans, M. & Rasson, J. P. A new Sobolev test for uniformity on the circle. Biometrika 72, 698–702. https://doi.org/10.2307/2336748 (1985).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Landler, L., Ruxton, G. D. & Malkemper, E. P. The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol. 19, 30. https://doi.org/10.1186/s12898-019-0246-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. PBC, Boston, MA http://www.rstudio.com/. (RStudio 2020).Beecher, W. J. Convergent evolution in the American orioles. Wilson Bulletin 62, 50–86 (1950).
    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Stiles, F. G. Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176, 1351–1352. https://doi.org/10.1126/science.176.4041.1351 (1972).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Gill, F. B. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128. https://doi.org/10.2307/1935304 (1975).Article 

    Google Scholar 
    Alcantara, S. & Lohmann, L. G. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am. J. Bot. 97, 782–796. https://doi.org/10.3732/ajb.0900182 (2010).Article 
    PubMed 

    Google Scholar 
    Gentry, A. H. Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotrop. 25, 1–370 (1992).
    Google Scholar 
    Grant, V. Historical development of ornithophily in the western North American flora. Proc. Natl. Acad. Sci. 91, 10407–10411. https://doi.org/10.1073/pnas.91.22.10407 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, R. L. Some hummingbird flowers east of the Mississippi. Castanea 13, 97–109 (1948).
    Google Scholar 
    Van Nest, B. N., Edge, A. A., Feathers, M. V., Worley, A. C. & Moore, D. Bees provide pollination service to Campsis radicans (Bignoniaceae), a primarily ornithophilous trumpet flowering vine. Ecol. Entomol. 46, 117–127. https://doi.org/10.1111/een.12947 (2021).Article 

    Google Scholar 
    Patuxent Wildlife Research Center. Orchard oriole Icterus spurius. BBS summer distribution map, 2011–2015 (relative abundance map). https://www.mbr-pwrc.usgs.gov/bbs/ra2015/ra2015_red_v3.shtml (accessed 7 March 2021) (2021). More

  • in

    Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness

    Lindenmayer, D. B., Cunningham, R. B., Donnelly, C. F. & Lesslie, R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 159(3), 203–216. https://doi.org/10.1016/S0378-1127(01)00433-9 (2002).Article 

    Google Scholar 
    Hannah, L., Carr, J. L. & Lankerani, A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 4(2), 128–155. https://doi.org/10.1007/BF00137781 (1995).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are europe’s last primary forests?. Divers. Distrib. 24(10), 1426–1439. https://doi.org/10.1111/ddi.12778 (2018).Article 

    Google Scholar 
    Mikoláš, M. et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2019.117466 (2019).Article 

    Google Scholar 
    Hilmers, T. et al. Biodiversity along temperate forest succession. J. Appl. Ecol. 55(6), 2756–2766. https://doi.org/10.1111/1365-2664.13238 (2018).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Diaci, J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 226(1–3), 268–278. https://doi.org/10.1016/j.foreco.2006.01.039 (2006).Article 

    Google Scholar 
    Thorn, S. et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 11, 4762. https://doi.org/10.1038/s41467-020-18612-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seibold, S. et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006 (2015).Article 

    Google Scholar 
    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24(1), 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x (2010).Article 
    PubMed 

    Google Scholar 
    Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publicationsSchiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7(3), 290–298. https://doi.org/10.1080/11956860.2000.11682598 (2016).Article 

    Google Scholar 
    Müller, J. et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 6(2), 162–169. https://doi.org/10.1111/j.1752-4598.2012.00200.x (2013).Article 

    Google Scholar 
    Schneider, A. et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119564 (2021).Article 

    Google Scholar 
    Brunet, J., Fritz, Ö. & Richnau, G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 53, 77–94 (2010).
    Google Scholar 
    Bilek, L., Remes, J. & Zahradnik, D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 20(1), 122–138. https://doi.org/10.5424/fs/2011201-10243 (2011).Article 

    Google Scholar 
    Müller, J., Bußler, H. & Kneib, T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 12(2), 107–124. https://doi.org/10.1007/s10841-006-9065-2 (2008).Article 

    Google Scholar 
    Doerfler, I., Müller, J., Gossner, M. M., Hofner, B. & Weisser, W. W. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 400, 607–620. https://doi.org/10.1016/j.foreco.2017.06.013 (2017).Article 

    Google Scholar 
    Doerfler, I., Gossner, M. M., Müller, J., Seibold, S. & Weisser, W. W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 228, 70–78. https://doi.org/10.1016/j.biocon.2018.10.013 (2018).Article 

    Google Scholar 
    Doerfler, I. et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 57(12), 2429–2440. https://doi.org/10.1111/1365-2664.13741 (2020).Article 

    Google Scholar 
    Zumr, V., Remeš, J. & Pulkrab, K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests https://doi.org/10.3390/f12060814 (2021).Article 

    Google Scholar 
    Svoboda, M., Fraver, S., Janda, P., Bače, R. & Zenáhlíková, J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 260(5), 707–714. https://doi.org/10.1016/j.foreco.2010.05.027 (2010).Article 

    Google Scholar 
    Šebková, B. et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 262(5), 873–885. https://doi.org/10.1016/j.foreco.2011.05.028 (2011).Article 

    Google Scholar 
    Bílek, L. et al. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology https://doi.org/10.12657/denbio.071.006 (2013).Article 

    Google Scholar 
    Čada, V. et al. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 363, 169–178. https://doi.org/10.1016/j.foreco.2015.12.023 (2016).Article 

    Google Scholar 
    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55(1), 279–289. https://doi.org/10.1111/1365-2664.12945 (2018).Article 
    PubMed 

    Google Scholar 
    Schelhaas, M.-J., Nabuurs, G.-J. & Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9(11), 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x (2003).ADS 
    Article 

    Google Scholar 
    Vera, F. W. M. (ed.) Grazing Ecology and Forest History (CABI, 2000). https://doi.org/10.1079/9780851994420.0000.Book 

    Google Scholar 
    Vera, F. W. M. The dynamic European forest. Arboric. J. 26(3), 179–211. https://doi.org/10.1080/03071375.2002.9747335 (2012).Article 

    Google Scholar 
    Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9(2), 117–125. https://doi.org/10.1890/090157 (2011).Article 

    Google Scholar 
    Lachat, T. et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 9(6), 559–573. https://doi.org/10.1111/icad.12188 (2016).Article 

    Google Scholar 
    Gossner, M. M. et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27(3), 605–614. https://doi.org/10.1111/cobi.12023 (2013).Article 
    PubMed 

    Google Scholar 
    Procházka, J. & Schlaghamerský, J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe?. J. Insect Conserv. 23(1), 157–173. https://doi.org/10.1007/s10841-019-00130-4 (2019).Article 

    Google Scholar 
    Winter, S. & Möller, G. C. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 255(3–4), 1251–1261. https://doi.org/10.1016/j.foreco.2007.10.029 (2008).Article 

    Google Scholar 
    Bouget, C., Larrieu, L. & Brin, A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 36, 656–664. https://doi.org/10.1016/j.ecolind.2013.09.031 (2014).Article 

    Google Scholar 
    Sebek, P. et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 380, 172–181. https://doi.org/10.1016/j.foreco.2016.08.052 (2016).Article 

    Google Scholar 
    Kozel, P. et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 58(12), 2951–2961. https://doi.org/10.1111/1365-2664.14019 (2021).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Kobal, M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 24(4), 663–679. https://doi.org/10.1890/13-0632.1 (2014).Article 
    PubMed 

    Google Scholar 
    Christensen, M. et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 52, 33–42 (2007).
    Google Scholar 
    Trotsiuk, V., Hobi, M. L. & Commarmot, B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). For. Ecol. Manag. 265, 181–190. https://doi.org/10.1016/j.foreco.2011.10.042 (2012).Article 

    Google Scholar 
    Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 77, 133–148 (2002).
    Google Scholar 
    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).Article 

    Google Scholar 
    Meyer, P., Schmidt, M., Feldmann, E., Willig, J. & Larkin, R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis?. Ecol. Evol. 11(18), 12801–12815. https://doi.org/10.1002/ece3.8028 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpeľ, S. Die Urwälder der Westkarpaten (Gustav Fischer, Stuttgart, 1995) (in German).
    Google Scholar 
    Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 126, 173–189 (2000).Article 

    Google Scholar 
    Peňa, J., Remeš, J. & Bílek, L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 56(12), 580–588 (2010).Article 

    Google Scholar 
    Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).Ruchin, A. B. & Egorov, L. V. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity 13, 508. https://doi.org/10.3390/d13110508 (2021).Article 

    Google Scholar 
    Parmain, G. et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bull. Entomol. Res. 105(1), 101–109. https://doi.org/10.1017/S0007485314000741 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidl, J. & Bußler, H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 36, 202–218 (2004).
    Google Scholar 
    Seibold, S. et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 29(2), 382–390. https://doi.org/10.1111/cobi.12427 (2015).Article 
    PubMed 

    Google Scholar 
    Hejda, R., Farkač, J. & Chobot, K. Red List of Threatened Species of the Czech Republic Vol. 36, 1–612 (Agentura ochrany přírody a krajiny České republiky, Praha, 2017).
    Google Scholar 
    Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Seibold, S. et al. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 409, 564–570. https://doi.org/10.1016/j.foreco.2017.11.052 (2018).Article 

    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).MathSciNet 
    Article 

    Google Scholar 
    Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 315, 80–85. https://doi.org/10.1016/j.foreco.2013.12.018 (2014).Article 

    Google Scholar 
    Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511615146.Book 
    MATH 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 2nd edn. (New York, 2014).Book 

    Google Scholar 
    Parisi, F. et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 381, 217–234. https://doi.org/10.1016/j.foreco.2016.09.041 (2016).Article 

    Google Scholar 
    Siitonen, J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 31, 89–95 (1994).
    Google Scholar 
    Alinvi, O., Ball, J. P., Danell, K., Hjältén, J. & Pettersson, R. B. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11(2), 99–112. https://doi.org/10.1007/s10841-006-9012-2 (2007).Article 

    Google Scholar 
    Økland, B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 93, 195–209 (1996).
    Google Scholar 
    Quinto, J., Marcos-García, M. D. L. Á., Brustel, H., Galante, E. & Micó, E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 17(4), 765–776. https://doi.org/10.1007/s10841-013-9559-7 (2013).Article 

    Google Scholar 
    Müller, J. et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38(5), 499–509. https://doi.org/10.1111/ecog.00908 (2015).Article 

    Google Scholar 
    Schiegg, K. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography 23, 579–587 (2000).Article 

    Google Scholar 
    Bouget, C., Larrieu, L., Nusillard, B. & Parmain, G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 22(9), 2111–2130. https://doi.org/10.1007/s10531-013-0531-3 (2013).Article 

    Google Scholar 
    Brunet, J. & Isacsson, G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 18(9), 2387–2404. https://doi.org/10.1007/s10531-009-9595-5 (2009).Article 

    Google Scholar 
    Eckelt, A. et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 22(1), 15–28. https://doi.org/10.1007/s10841-017-0028-6 (2018).Article 

    Google Scholar 
    Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.Gustafsson, L. et al. Research on retention forestry in northern Europe. Ecol. Process. https://doi.org/10.1186/s13717-019-0208-2 (2020).Article 

    Google Scholar 
    Zumr, V. & Remeš, J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 65, 242–257 (2020).
    Google Scholar 
    Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 118(3), 281–299. https://doi.org/10.1016/j.biocon.2003.09.009 (2004).Article 

    Google Scholar 
    Gran, O. & Götmark, F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451–1472. https://doi.org/10.1007/s10531-019-01736-5 (2019).Article 

    Google Scholar 
    Fahrig, L. & Storch, D. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29(4), 615–628. https://doi.org/10.1111/geb.13059 (2020).Article 

    Google Scholar 
    Müller, J., Engel, H. & Blaschke, M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126(4), 513–527. https://doi.org/10.1007/s10342-007-0173-7 (2007).Article 

    Google Scholar 
    Friess, N. et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 25(5), 783–796. https://doi.org/10.1111/ddi.12882 (2019).Article 

    Google Scholar 
    Brin, A., Brustel, H. & Jactel, H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. https://doi.org/10.1051/forest/2009009 (2009).Article 

    Google Scholar 
    Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 129(6), 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article 

    Google Scholar 
    Alencar, J. B. R., Fonseca, C. R. V., Marra, D. M. & Baccaro, F. B. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. https://doi.org/10.1111/icad.12523 (2021).Article 

    Google Scholar 
    Audisio, P. et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae). Acta Entomol. Musei Natl. Pragae 49(2), 341–504 (2009).
    Google Scholar 
    Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.Laibner, S. Elateridae of the Czech and Slovak Republics (Kabourek, Zlín, 2000).
    Google Scholar 
    Frank, T. & Reichhart, B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 94(3), 209–217. https://doi.org/10.1079/BER2004301 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrmann, S., Kahl, T. & Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. https://doi.org/10.1186/s40663-015-0052-5 (2015).Article 

    Google Scholar 
    Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. https://doi.org/10.1186/s40663-020-00248-x (2020).Article 

    Google Scholar 
    Jonsell, M., Weslien, J. & Ehnström, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7(6), 749–764. https://doi.org/10.1023/A:1008888319031 (1998).Article 

    Google Scholar 
    Bobiec, A. (ed.) The After Life of a Tree 252 (Warsawa, WWF Poland, 2005).
    Google Scholar 
    Gossner, M. M. et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity?. Biol. Cons. 201, 92–102. https://doi.org/10.1016/j.biocon.2016.06.032 (2016).Article 

    Google Scholar 
    Vogel, S. et al. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 57(10), 2075–2085. https://doi.org/10.1111/1365-2664.13648 (2020).Article 

    Google Scholar 
    Gough, L. A. et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 5(23), 5632–5641. https://doi.org/10.1002/ece3.1799 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koch Widerberg, M., Ranius, T., Drobyshev, I., Nilsson, U. & Lindbladh, M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 21(12), 3035–3059. https://doi.org/10.1007/s10531-012-0353-8 (2012).Article 

    Google Scholar 
    Horák, J., Pavlíček, J., Kout, J. & Halda, J. P. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 27(11), 3019–3029. https://doi.org/10.1007/s10531-018-1585-z (2018).Article 

    Google Scholar 
    Vandekerkhove, K. et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 9(4), 536–545. https://doi.org/10.3832/ifor1841-009 (2016).Article 

    Google Scholar 
    Lachat, T. et al. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 23, 323–331. https://doi.org/10.1016/j.ecolind.2012.04.013 (2012).Article 

    Google Scholar 
    Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129(10), 1579–1588. https://doi.org/10.1111/oik.07335 (2020).Article 

    Google Scholar 
    Černecká, Ľ, Mihál, I., Gajdoš, P. & Jarčuška, B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 13(3), 250–261. https://doi.org/10.1111/icad.12380 (2020).Article 

    Google Scholar 
    Spitzer, L. et al. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 141(3), 827–837. https://doi.org/10.1016/j.biocon.2008.01.005 (2008).Article 

    Google Scholar 
    Podrázský, V., Remeš, J. & Farkač, J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 55, 10–15 (2010).
    Google Scholar 
    Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).Article 

    Google Scholar 
    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87(4), 492–503. https://doi.org/10.1093/forestry/cpu018 (2014).Article 

    Google Scholar 
    Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55(1), 267–278. https://doi.org/10.1111/1365-2664.12950 (2018).Article 

    Google Scholar 
    Leidinger, J. et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119552 (2021).Article 

    Google Scholar 
    Christensen, M. et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 210(1–3), 267–282. https://doi.org/10.1016/j.foreco.2005.02.032 (2005).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Weiss, M. et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2020.118774 (2021).Article 

    Google Scholar  More

  • in

    Restoration prioritization must be informed by marginalized people

    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456 (2017).CAS 
    Article 

    Google Scholar 
    Rights and Resources Initiative. Estimate of the Area of Land and Territories of Indigenous Peoples, Local Communities, and Afro-Descendants Where Their Rights Have Not Been Recognized https://doi.org/10.53892/UZEZ6605 (Rights + Resources, 2020).Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).CAS 
    Article 

    Google Scholar 
    Adams, C., Rodrigues, S. T., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48, 731–744 (2016).Article 

    Google Scholar 
    Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soc. 25, 1 (2020).Article 

    Google Scholar 
    Kumar, B. M. Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 140, 430–440 (2011).Article 

    Google Scholar 
    Ribot, J. Cause and response: vulnerability and climate in the Anthropocene. J. Peasant Stud. 41, 667–705 (2014).Article 

    Google Scholar 
    Davis, D. K. & Robbins, P. Ecologies of the colonial present: pathological forestry from the taux de boisement to civilized plantations. Environ. Plan. E Nat. Space 1, 447–469 (2018).Article 

    Google Scholar 
    Agrawal, A. & Redford, K. Conservation and displacement: an overview. Conserv. Soc. https://www.jstor.org/stable/pdf/26392956.pdf (2009).Barletti, J. P. S. & Larson, A. M. Rights Abuse Allegations in the Context of REDD+ Readiness and Implementation: A Preliminary Review and Proposal for Moving Forward https://doi.org/10.17528/cifor/006630 (Center for International Forestry Research, 2017).Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).CAS 
    Article 

    Google Scholar 
    IUFRO. Forests, Trees and the Eradication of Poverty: Potential and Limitations. World Series Vol. 39 (International Union of Forest Research Organizations, 2020).Luttrell, C., Sills, E., Aryani, R., Ekaputri, A. D. & Evinke, M. F. Beyond opportunity costs: who bears the implementation costs of reducing emissions from deforestation and degradation? Mitig. Adapt. Strateg. Glob. Chang 23, 291–310 (2018).Article 

    Google Scholar 
    Coleman, E. A., Manyindo, J., Parker, A. R. & Schultz, B. Stakeholder engagement increases transparency, satisfaction, and civic action. Proc. Natl Acad. Sci. USA 116, 24486–24491 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Tropical forests as drivers of lake carbon burial

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. B Biol. Sci. 363, 1839–1848 (2008).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Res. Ecol. Environ. 15, 332–337 (2000).CAS 
    Article 

    Google Scholar 
    Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).ADS 
    CAS 

    Google Scholar 
    Dean, W. E. & Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26, 535–538 (1998).ADS 
    Article 

    Google Scholar 
    Tranvik, L. J., Cole, J. J. & Prairie, Y. T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 3, 41–48 (2018).Article 

    Google Scholar 
    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Heathcote, A. J. & Engstrom, D. R. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marotta, H., Pinho, L. & Gudasz, C. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Chang. 4, 11–14 (2014).Article 
    CAS 

    Google Scholar 
    Cardoso, S. J. B., Enrich-Prast, A. C., Pace, M. L. & Rol, F. B. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol. Oceanogr. 59, 48–54 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    Tateishi, R. et al. Production of global land cover data – GLCNMO2008. J. Geogr. Geol. 6, (2014).Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35, 745–756 (2015).Article 

    Google Scholar 
    Clow, D. W. et al. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ. Sci. Technol. 49, 7614–7622 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundin, E. J. et al. Large difference in carbon emission – burial balances between boreal and arctic lakes. Sci. Rep. 5, 14248 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, N. J., Dietz, R. D. & Engstrom, D. R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. Biol. Sci. 280, 20131278 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, L. M. et al. Carbon accumulation in Amazonian floodplain lakes: a significant component of Amazon budgets? Limnol. Oceanogr. Lett. 2, 29–35 (2017).Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. In Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences (eds. Ivanovich, M. & Harmon, R. S.) (Clarendon Press, 1992).Engstrom, D. R., Fritz, S. C., Almendinger, J. E. & Juggins, S. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161–166 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J.-H. et al. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim. Cosmochim. Acta 90, 163–180 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Marotta, H., Paiva, L. T. & Petrucio, M. M. Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil. Limnology 10, 195–202 (2009).CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Bennion, H. & Lotter, A. F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Chang. Biol. 20, 2741–2751 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanders, L. M. et al. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences 15, 447–455 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 9, 73–79 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Marotta, H., Duarte, C. M., Sobek, S. & Enrich-Prast, A. Large CO 2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 23, (2009).Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunne, T., Mertes, L. A. K. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Bull. Geol. Soc. Am. 110, 450–467 (1998).Article 

    Google Scholar 
    McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).ADS 
    Article 

    Google Scholar 
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).ADS 
    Article 

    Google Scholar 
    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Glob. Biogeochem. Cycles 29, 708–727 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hobbs, W. O., Engstrom, D. R., Scottler, S. P., Zimmer, K. D. & Cotner, J. B. Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol. Oceanogr. Methods 11, 316–326 (2013).CAS 
    Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. The calculation of Pb-210 dates assuming a constant rate of supply of unsupported Pb-210 to the sediment. Catena 5, 1–8 (1978).CAS 
    Article 

    Google Scholar 
    Turner, L. J. & Delorme, L. D. Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ. Geol. 28, 78–87 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Breithaupt, J. L., Smoak, J. M., Smith, T. J. & Sanders, C. J. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J. Geophys. Res. G Biogeosci. 119, 2032–2048 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41, 2475–2480 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Mitra, S., Wassmann, R. & Vlek, P. L. G. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 88, 25–35 (2005).CAS 

    Google Scholar 
    Ravichandran, K. S. Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng. A 201, 269–276 (1995).Article 

    Google Scholar 
    Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinelli, L. A., Victoria, R. L. & Forsberg, B. R. Isotopic composition of majors carbon reservoirs in the Amazon floodplain. Int. J. Ecol. Environ. Sci. 20, 31–46 (1994).
    Google Scholar 
    Martinelli, L. A. et al. Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrol. Process. 17, 1419–1430 (2003).ADS 
    Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis, Books a la Carte Edition (Pearson, 2010). More

  • in

    The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity

    Pigliucci, M. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20, 481–486 (2005).PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).PubMed 
    Article 

    Google Scholar 
    Xue, B. & Leibler, S. Benefits of phenotypic plasticity for population growth in varying environments. PNAS 115, 12745–12750 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheiner, S. Selection experiments and the study of phenotypic plasticity. J. Evol. Biol. 15, 889–898 (2002).Article 

    Google Scholar 
    Garland, T. & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed 
    Article 

    Google Scholar 
    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).Article 

    Google Scholar 
    Gu, L. et al. Induction and reversibility of Ceriodaphnia cornuta horns under varied intensity of predation risk and their defensive effectiveness against Chaoborus larvae. Freshw. Biol. 66, 1200–1210 (2021).Article 

    Google Scholar 
    Van Buskirk, J. & Steiner, U. The fitness costs of developmental canalization and plasticity. J. Evol. Biol. 22, 852–860 (2009).PubMed 
    Article 

    Google Scholar 
    Zhang, C. et al. Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural Daphnia population. Mol. Ecol. 30, 2285–2297 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. Lond. B Biol. Sci. 20, 25 (2009).
    Google Scholar 
    Tsuji, H., Taoka, K.-I. & Shimamoto, K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14, 45–52 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: Roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nozawa, M., Kawahara, Y. & Nei, M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc. Natl. Acad. Sci. 104, 20421–20426 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abbott, L. F. & Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andersen, S. L. Trajectories of brain development: Point of vulnerability or window of opportunity?. Neurosci. Biobehav. Rev. 27, 3–18 (2003).PubMed 
    Article 

    Google Scholar 
    Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC Dev. Biol. 10, 1 (2010).Article 
    CAS 

    Google Scholar 
    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boidron-Metairon, I. F. Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 119, 31–41 (1988).Article 

    Google Scholar 
    Miner, B. G. Larval feeding structure plasticity during pre-feeding stages of echinoids: Not all species respond to the same cues. J. Exp. Mar. Biol. Ecol. 343, 158–165 (2007).Article 

    Google Scholar 
    Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun. 12, 4306 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M., Sewell, M. & Prowse, T. Nutritional ecology of sea urchin larvae: Influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article 

    Google Scholar 
    Sewell, M. A., Cameron, M. J. & McArdle, B. H. Developmental plasticity in larval development in the echinometrid sea urchin Evechinus chloroticus with varying food ration. J. Exp. Mar. Biol. Ecol. 309, 219–237 (2004).Article 

    Google Scholar 
    Adams, D. K., Sewell, M. A., Angerer, R. C. & Angerer, L. M. Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat. Commun. 2, 592 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Williamson, D. The Origins of Larvae (Springer, 2003).Book 

    Google Scholar 
    McIntyre, D. C., Lyons, D. C., Martik, M. & McClay, D. R. Branching out: Origins of the sea urchin larval skeleton in development and evolution. Genesis 52, 173–185 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littlewood, D. & Smith, A. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos. Trans. R. Soc. B Biol. Sci. 347, 213–234 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212 (2010).Article 

    Google Scholar 
    Smith, A. B. et al. Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol. Biol. Evol. 23, 1832–1851 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reitzel, A. M. & Heyland, A. Reduction in morphological plasticity in echinoid larvae: Relationship of plasticity with maternal investment and food availability. Evol. Ecol. Res. 9, 109–121 (2007).
    Google Scholar 
    McAlister, J. S. Evolutionary responses to environmental heterogeneity in Central American echinoid larvae: Plastic versus constant phenotypes. Evolution 62, 1358–1372 (2008).PubMed 
    Article 

    Google Scholar 
    Soars, N. A., Prowse, T. A. A. & Byrne, M. Overview of phenotypic plasticity in echinoid larvae, ‘Echinopluteus transversus’ type vs typical echinoplutei. Mar. Ecol. Progress Ser. 383, 113–125 (2009).ADS 
    Article 

    Google Scholar 
    Eckert, G. L. A novel larval feeding strategy of the tropical sand dollar, Encope michelini (Agassiz): Adaptation to food limitation and an evolutionary link between planktotrophy and lecithotrophy. J. Exp. Mar. Biol. Ecol. 187, 103–128 (1995).Article 

    Google Scholar 
    Miner, B. G. & Vonesh, J. R. Effects of fine grain environmental variability on morphological plasticity. Ecol. Lett. 7, 794–801 (2004).Article 

    Google Scholar 
    Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 20, 972–986 (1992).Article 

    Google Scholar 
    Poorbagher, H., Lamare, M. D., Barker, M. F. & Rayment, W. Relative importance of parental diet versus larval nutrition on development and phenotypic plasticity of Pseudechinus huttoni larvae (Echinodermata: Echinoidea). Mar. Biol. Res. 6, 302–314 (2010).Article 

    Google Scholar 
    Bertram, D. F. & Strathmann, R. R. Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology 79, 315–327 (1998).Article 

    Google Scholar 
    Miner, B. G. Evolution of feeding structure plasticity in marine invertebrate larvae: A possible trade-off between arm length and stomach size. J. Exp. Mar. Biol. Ecol. 315, 117–125 (2005).Article 

    Google Scholar 
    McAlister, J. S. Egg size and the evolution of phenotypic plasticity in larvae of the echinoid genus Strongylocentrotus. J. Exp. Mar. Biol. Ecol. 352, 306–316 (2007).Article 

    Google Scholar 
    McIntyre, D. C., Seay, N. W., Croce, J. C. & McClay, D. R. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 140, 4881–4889 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adomako-Ankomah, A. & Ettensohn, C. A. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 140, 4214–4225 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duloquin, L., Lhomond, G. & Gache, C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134, 2293–2302 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ettensohn, C. A. Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136, 11–21 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rafiq, K., Shashikant, T., McManus, C. J. & Ettensohn, C. A. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141, 950–961 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Röttinger, E. et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353–365 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cavalieri, V., Spinelli, G. & Di Bernardo, M. Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev. Biol. 262, 107–118 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryu, S. et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr. Biol. 17, 873–880 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75–88 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 300, 349–365 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zigler, K. S. & Lessios, H. Speciation on the coasts of the new world: Phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58, 1225–1241 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maggio, R. & Millan, M. J. Dopamine D2–D3 receptor heteromers: Pharmacological properties and therapeutic significance. Curr. Opin. Pharmacol. 10, 100–107 (2010).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap

    IPCC. Summary for policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge University Press, 2021).Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).United Nations. What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/the-convention/what-is-the-united-nations-framework-convention-on-climate-change (2021).United Nations. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).United Nations. The Convention on Biological Diversity. https://www.cbd.int/convention/ (2021).UN environment programme. Aichi Target 11, Convention on Biological Diversity https://www.cbd.int/aichi-targets/target/11 (2021).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).Article 

    Google Scholar 
    Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Morgan Siegers, S. The state of conservation in North America’s boreal forest: issues and opportunities. Front. For. Glob. Chang. 3, 90 (2020).Article 

    Google Scholar 
    Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).ADS 
    Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034. https://doi.org/10.1126/sciadv.abd6034 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Government of Canada. Species at Risk Act (S.C. 2002, c. 29) https://laws.justice.gc.ca/eng/acts/S-15.3/ (2021).SARA registry. Woodland caribou (Rangifer tarandus), boreal population: species summary. https://species-registry.canada.ca/index-en.html#/species/636-252 (2022).Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article 

    Google Scholar 
    Environment and Climate Change Canada. Boreal caribou ranges – Canada https://open.canada.ca/data/en/dataset/4eb3e825-5b0f-45a3-8b8b-355188d24b71 (2016).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Cons. 206, 102–111 (2017).Article 

    Google Scholar 
    Hebblewhite, M. & Fortin, D. Canada fails to protect its caribou. Science 358, 730 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Boan, J. J., Malcolm, J. R., Vanier, M. D., Euler, D. L. & Moola, F. M. From climate to caribou: how manufactured uncertainty is affecting wildlife management. Wildl. Soc. Bull. 42, 366–381 (2018).Article 

    Google Scholar 
    Government of Canada. Overview of the Pan-Canadian approach to transforming species at risk conservation in Canada https://www.canada.ca/en/services/environment/wildlife-plants-species/species-risk/pan-canadian-approach.html (2020).Environment and Climate Change Canada. Pan-Canadian approach to transforming species at risk conservation in Canada (Environment and Climate Change Canada, 2018).Assembly of First Nations & David Suzuki Foundation. Cultural and ecological value of Boreal Woodland Caribou habitat https://davidsuzuki.org/science-learning-centre-article/cultural-ecological-value-boreal-woodland-caribou-habitat/ (2013).Royal Canadian Mint. A familiar face – the 25-cent coin. https://www.mint.ca/en/discover/canadian-circulation/25-cents (2022).Drever, C. R. et al. Conservation through co-occurrence: woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252 (2019).Article 

    Google Scholar 
    Johnson, C. A., Drever, C. R., Kirby, P., Neave, E. & Martin, A. E. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Sci. Rep. (in review).Government of Canada. Canadian Protected and Conserved Areas Database https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2022).Trudeau, J. Minister of Environment and Climate Change mandate letter https://pm.gc.ca/en/mandate-letters/2021/12/16/minister-environment-and-climate-change-mandate-letter (2021).Environment Canada. Scientific assessment to inform the identification of critical habitat for Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada: 2011 update (Environment Canada, 2011).Environment and Climate Change Canada. Amended recovery strategy of the Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment and Climate Change Canada, 2020).Johnson, C. A. et al. Science to inform policy: linking population dynamics to habitat for a threatened species in Canada. J. Appl. Ecol. 57, 1314–1327 (2020).Article 

    Google Scholar 
    Mansuy, N. et al. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environ. Res. Lett. 14, 064007. https://doi.org/10.1088/1748-9326/ab1bc5 (2019).ADS 
    Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Kocsis, Á. T., Zhao, Q., Costello, M. J. & Kiessling, W. Not all biodiversity rich spots are climate refugia. Biogeosciences 18, 6567–6579 (2021).ADS 
    Article 

    Google Scholar 
    Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geogr. 65, 152–165 (2021).Article 

    Google Scholar 
    Groves, C. R. et al. Incorporating climate change into systematic conservation planning. Biodivers. Conserv. 21, 1651–1671 (2012).Article 

    Google Scholar 
    Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).Article 

    Google Scholar 
    Sothe, C. et al. Large soil carbon storage in terrestrial ecosystems of Canada. Global Biogeochem. Cycles 36, e2021GB007213. https://doi.org/10.1029/2021GB007213 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).Article 

    Google Scholar 
    Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article 

    Google Scholar 
    Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McIntosh, E. J. et al. Absence of evidence for the conservation outcomes of systematic conservation planning around the globe: a systematic map. Environ. Evid. 7, 22. https://doi.org/10.1186/s13750-018-0134-2 (2018).Article 

    Google Scholar 
    Díaz-Yáñez, O., Pukkala, T., Packalen, P., Lexer, M. J. & Peltola, H. Multi-objective forestry increases the production of ecosystem services. For. Int. J. For. Res. 94, 386–394 (2021).
    Google Scholar 
    Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: a science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562 (2018).Article 

    Google Scholar 
    Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang. Biol. 27, 3395–3414 (2021).Article 

    Google Scholar 
    Indigenous Circle of Experts. We rise together: achieving Pathway to Canada Target 1 through the creation of Indigenous Protected and Conserved Areas in the spirit and practice of reconciliation. (2018).Zurba, M., Beazley, K. F., English, E. & Buchmann-Duck, J. Indigenous Protected and Conserved Areas (IPCAs), Aichi Target 11 and Canada’s Pathway to Target 1: focusing conservation on reconciliation. Land 8, 10. https://doi.org/10.3390/land8010010 (2019).Article 

    Google Scholar 
    Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).Article 

    Google Scholar 
    Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).Article 

    Google Scholar 
    Ray, J. C. Defining habitat restoration for boreal caribou in the context of national recovery: a discussion paper (Wildlife Conservation Society Canada, 2014).Carwardine, J. et al. Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority settings. PLoS ONE 3, e2586. https://doi.org/10.1371/journal.pone.0002586 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. et al. Estimating ungulate recruitment and growth rates using age ratios. J. Wildl. Manage. 76, 144–153 (2012).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146. https://doi.org/10.1016/j.biocon.2021.109146 (2021).Article 

    Google Scholar 
    Olds, A. D., Connolly, R. M., Pitt, K. A. & Maxwell, P. S. Habitat connectivity improves reserve performance. Conserv. Lett. 5, 56–63 (2012).Article 

    Google Scholar 
    Gurd, D. B., Nudds, T. D. & Rivard, D. H. Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv. Biol. 15, 1355–1363 (2001).Article 

    Google Scholar 
    Government of Canada. Canadian Protected and Conserved Areas Database, December 2019 CPCAD data https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2019).Environment Canada. Recovery strategy for the woodland caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment Canada, 2012).R Core Team. R: A language and environment for statistical computing. Version 4.0.4 (The R Foundation, 2021).Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinf. 20, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. jaccard: test similarity between binary data using Jaccard/Tanimoto coefficients. R package version 0.1.0. https://cran.r-project.org/package=jaccard (2018).Ralphs, T., Ladanyi, L., Guzelsoy, M. & Mahajan, A. Symphony. Zenodo https://doi.org/10.5281/zenodo.2576603/ (2019).Theußl, S., Schwendinger, F. & Hornik, K. ROI: an extensible R optimization infrastructure. J. Stat. Softw. 94, 1–64 (2020).Article 

    Google Scholar 
    Theussl, S. ROI.plugin.symphony: ‘SYMPHONY’ plug-in for the ‘R’ optimization interface. R package version 1.0–0 https://CRAN.R-project.org/package=ROI.plugin.symphony (2020).Environment and Climate Change Canada. 2015 – Anthropogenic disturbance footprint within boreal caribou ranges across Canada – as interpreted from 2015 Landsat satellite imagery https://open.canada.ca/data/en/dataset/a71ab99c-6756-4e56-9d2e-2a63246a5e94 (2019).Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo https://doi.org/10.5281/zenodo.2579337 (2019).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748. https://doi.org/10.1371/journal.pone.0169748 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Reply to: Restoration prioritization must be informed by marginalized people

    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda & Agnieszka E. LatawiecInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda, Agnieszka E. Latawiec, Robin L. Chazdon & Carlos Alberto de Mattos ScaramuzzaPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Renato Crouzeilles & Fabio R. ScaranoBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgSchool of Biological Sciences, University of Queensland, St Lucia, Queensland, AustraliaHawthorne L. BeyerAgricultural Science Center, Federal University of Santa Catarina, Florianópolis, BrazilCatarina JakovacInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré Braga JunqueiraDepartment of Geography, Fluminense Federal University, Niterói, BrazilEduardo LacerdaDepartment of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, PolandAgnieszka E. LatawiecSchool of Environmental Sciences, University of East Anglia, Norwich, UKAgnieszka E. LatawiecDepartment of Zoology, University of Cambridge, Cambridge, UKAndrew Balmford, Stuart H. M. Butchart & Paul F. DonaldInternational Union for Conservation of Nature (IUCN), Gland, SwitzerlandThomas M. BrooksWorld Agroforestry Center (ICRAF), University of The Philippines, Los Baños, The PhilippinesThomas M. BrooksInstitute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaThomas M. BrooksBirdLife International, Cambridge, UKStuart H. M. Butchart & Paul F. DonaldDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USARobin L. ChazdonWorld Resources Institute, Global Restoration Initiative, Washington, DC, USARobin L. ChazdonTropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaRobin L. ChazdonInstitute of Social Ecology, University of Natural Resources and Life Sciences Vienna, Vienna, AustriaKarl-Heinz Erb & Christoph PlutzarDepartment of Forest Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro BrancalionRSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Edinburgh, UKGraeme Buchanan & Paul F. DonaldSecretariat of the Convention on Biological Diversity (SCBD), Montreal, Quebec, CanadaDavid CooperInstituto Multidisciplinario de Biología Vegetal, CONICET and Universidad Nacional de Córdoba, Córdoba, ArgentinaSandra DíazUnited Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UKValerie Kapos & Lera MilesBiodiversity and Natural Resources (BNR) program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaDavid Leclère, Michael Obersteiner & Piero ViscontiDivision of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Vienna, AustriaChristoph PlutzarB.B.N.S. wrote the first version of the paper. All authors provided input into subsequent versions of the manuscript. More

  • in

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Benchmark regression resultsParallel trend testThe premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.Table 4 Parallel trend test.Full size tableDynamic effect analysisTo compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.Figure 1Dynamic analysis diagram.Full size imageThe effect of ETS on ecologicalization efficiency of industryControlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.Table 5 Influence of ETS on ecologicalization efficiency of industry.Full size tableRobustness testPropensity matching score—double difference method (PSM-DID)The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.Table 6 The result of the PSM-DID.Full size tableCounterfactual testTo verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.Table 7 Counterfactual test results.Full size tableActing pattern analysis of ETS on the regional ecologicalization efficiency of industryFirst, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.Table 8 Mediating effect test results.Full size table More