Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS
CAS
PubMed
Article
Google Scholar
IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS
PubMed
Article
Google Scholar
Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article
Google Scholar
Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article
Google Scholar
Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article
Google Scholar
Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article
Google Scholar
Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article
Google Scholar
Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS
Article
Google Scholar
Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
Google Scholar
Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS
PubMed
Article
Google Scholar
Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS
Article
Google Scholar
Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
Google Scholar
IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS
CAS
PubMed
Article
Google Scholar
ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS
PubMed
Article
Google Scholar
Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS
PubMed
Article
Google Scholar
Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article
CAS
Google Scholar
Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS
CAS
PubMed
Article
Google Scholar
Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS
Google Scholar
CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS
PubMed
Article
Google Scholar
Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article
Google Scholar
Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed
Article
CAS
Google Scholar
Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS
PubMed
Article
Google Scholar
USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS
CAS
PubMed
Article
Google Scholar
De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article
CAS
Google Scholar
Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
Google Scholar
Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article
Google Scholar
Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS
Article
Google Scholar
La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article
Google Scholar
Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article
CAS
Google Scholar
Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS
Article
Google Scholar
Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article
CAS
Google Scholar
Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS
CAS
PubMed
Article
Google Scholar
DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed
PubMed Central
Article
Google Scholar
Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed
PubMed Central
Article
Google Scholar
Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article
Google Scholar
Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article
Google Scholar
Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article
Google Scholar
Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
Google Scholar
Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
Google Scholar
Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
Google Scholar
Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article
Google Scholar
Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article
Google Scholar
Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed
Google Scholar
Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article
CAS
Google Scholar
Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS
Article
Google Scholar
Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed
Article
Google Scholar
Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed
PubMed Central
Article
Google Scholar
Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
Google Scholar
Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article
Google Scholar
Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS
PubMed
Article
Google Scholar
Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed
Article
CAS
Google Scholar
Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS
PubMed
Article
Google Scholar
Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS
CAS
PubMed
Article
Google Scholar
Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS
PubMed
Article
Google Scholar
Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
Google Scholar
Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS
PubMed
Article
Google Scholar
Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS
CAS
PubMed
Article
Google Scholar
Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS
PubMed
Article
Google Scholar
Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS
PubMed
Article
Google Scholar
Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS
CAS
PubMed
Article
Google Scholar
Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article
Google Scholar
Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS
Article
Google Scholar
Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed
PubMed Central
Article
Google Scholar
Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article
Google Scholar
Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS
PubMed
Article
Google Scholar
Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article
Google Scholar
Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS
CAS
PubMed
Article
Google Scholar
Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
Google Scholar
Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS
PubMed
PubMed Central
Article
Google Scholar
Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS
CAS
PubMed
Article
Google Scholar
Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS
Article
Google Scholar
Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS
PubMed
Article
Google Scholar
Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed
Article
CAS
Google Scholar
Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS
PubMed
Article
CAS
Google Scholar More