More stories

  • in

    Invasive brown treesnakes (Boiga irregularis) move short distances and have small activity areas in a high prey environment

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 1122–1133. https://doi.org/10.1126/science.aaa2478 (2015).CAS 
    Article 

    Google Scholar 
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 1–13. https://doi.org/10.3389/fevo.2015.00155 (2016).ADS 
    Article 

    Google Scholar 
    Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00150 (2018).Article 

    Google Scholar 
    Boutin, S. Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Can. J. Zool. 68, 203–220 (1990).Article 

    Google Scholar 
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).Article 

    Google Scholar 
    Ruffino, L., Salo, P., Koivisto, E., Banks, P. B. & Korpimaki, E. Reproductive responses of birds to experimental food supplementation: A meta-analysis. Front. Ecol. Evol. 11, 1–13. https://doi.org/10.1186/s12983-014-0080-y (2014).CAS 
    Article 

    Google Scholar 
    Taylor, E. N., Malawy, M. A., Browning, D. M., Lemar, S. V. & DeNardo, D. F. Effects of food supplementation on the physiological ecology of female western diamond-backed rattlesnakes (Crotalus atrox). Oecologia 144, 206–213. https://doi.org/10.1007/s00442-005-0056-x (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Wasko, D. K. & Sasa, M. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): An experimental study. Zoology 115, 179–187. https://doi.org/10.1016/j.zool.2011.10.001 (2012).Article 
    PubMed 

    Google Scholar 
    Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 1–11. https://doi.org/10.1007/s00265-016-2239-3 (2017).Article 

    Google Scholar 
    Secor, S. M. & Nagy, K. A. Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology 75, 1600–1614 (1994).Article 

    Google Scholar 
    Christy, M. T., Savidge, J. A., Yackel Adams, A. A., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasions 8, 455–467. https://doi.org/10.3391/mbi.2017.8.4.01 (2017).Article 

    Google Scholar 
    Neilson, E. W., Avgar, T., Burton, A. C., Broadley, K. & Boutin, S. Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals. Ecosphere 9, 1–15. https://doi.org/10.1002/ecs2.2092 (2018).Article 

    Google Scholar 
    Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1–15. https://doi.org/10.1890/ES11-00308.1 (2012).Article 

    Google Scholar 
    Tang, Z., Huang, Q., Wu, H., Kuang, L. & Fu, S. The behavioral response of prey fish to predators: The role of predator size. PeerJ 5, 1–13. https://doi.org/10.7717/peerj.3222 (2017).Article 

    Google Scholar 
    Thorsen, M., Shorten, R., Lucking, R. & Lucking, V. Norway rats (Rattus norvegicus) on Fregate Island, Seychelles: The invasion; subsequent eradication attempts and implications for the island’s fauna. Biol. Cons. 96, 133–138 (2000).Article 

    Google Scholar 
    Rodda, G. H. Foraging behavior of the brown tree snake, Boiga irregularis. Herpetol. J. 2, 110–114 (1992).
    Google Scholar 
    Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).Article 

    Google Scholar 
    Rodda, G. H., McCoid, M. J., Fritts, T. H. & Campbell, E. W. III. Population trends and limiting factors in Boiga irregularis. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 236–256 (Cornell University Press, 1999).Chapter 

    Google Scholar 
    Yackel Adams, A. A., Lardner, B., Knox, A. J. & Reed, R. N. Inferring the absence of an incipient population during a rapid response for an invasive species. PLoS ONE 13, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Clark, L., Clark, C. & Siers, S. Brown tree snake methods and approaches for control. In Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States (eds Pitt, W. C. et al.) 107–134 (CRC Press, 2018).
    Google Scholar 
    Christy, M. T., Yackel Adams, A. A., Rodda, G. H., Savidge, J. A. & Tyrrell, C. L. Modelling detection probabilities to evaluate management and control tools for an invasive species. J. Appl. Ecol. 47, 106–113 (2010).Article 

    Google Scholar 
    Tyrrell, C. L. et al. Evaluation of trap capture in a geographically closed population of brown treesnakes on Guam. J. Appl. Ecol. 46, 128–135 (2009).Article 

    Google Scholar 
    Siers, S. R., Yackel Adams, A. A. & Reed, R. N. Behavioral differences following ingestion of large meals and consequences for management of a harmful invasive snake: A field experiment. Ecol. Evol. 8, 10075–10093 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santana-Bendix, M. A. Movements, Activity Patterns and Habitat Use of Boiga irregularis (Colubridae), an Introduced Predator in the Island of Guam (University of Arizona, 1994).
    Google Scholar 
    Tobin, M. E., Sugihara, R. T., Pochop, P. A. & Linnell, M. A. Nightly and seasonal movements of Boiga irregularis on Guam. J. Herpetol. 33, 281–291 (1999).Article 

    Google Scholar 
    Lardner, B., Savidge, J. A., Reed, R. N. & Rodda, G. H. Movements and activity of juvenile brown treesnakes (Boiga irregularis). Copeia 2014, 428–436 (2014).Article 

    Google Scholar 
    Siers, S. R., Savidge, J. A. & Reed, R. N. Invasive brown treesnake movements at road edges indicate road-crossing avoidance. J. Herpetol. 48, 500–505 (2014).Article 

    Google Scholar 
    Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Distribution, density, and biomass of introduced small mammals in the southern Marian Islands. Pac. Sci. 63, 205–222 (2009).Article 

    Google Scholar 
    Camp, R. J., Amidon, F. A., Marshall, A. P. & Pratt, T. K. Bird populations on the island of Tinian; Persistence despite wholesale loss of native forests. Pac. Sci. 66, 283–298. https://doi.org/10.2984/66.3.3 (2012).Article 

    Google Scholar 
    Lardner, B., Yackel Adams, A. A., Knox, A. J., Savidge, J. A. & Reed, R. N. Do observer fatigue and taxon bias compromise visual encounter surveys for small vertebrates?. Wildl. Res. 46, 127–135 (2019).Article 

    Google Scholar 
    Mathies, T., Levine, B., Engeman, R. & Savidge, J. A. Pheromonal control of the invasive brown treesnake: Potency of female sexual attractiveness pheromone varies with ovarian state. Int. J. Pest Manag. https://doi.org/10.1080/09670874.2013.784374 (2013).Article 

    Google Scholar 
    Boback, S. M., Nafus, M. G., Yackel Adams, A. A. & Reed, R. N. Use of visual surveys and radiotelemetry reveals sources of detection bias for a cryptic snake at low densities. Ecosphere https://doi.org/10.1002/ecs2.3000 (2020).Article 

    Google Scholar 
    Harper, G. A. & Rutherford, M. Home range and population density of black rats (Rattus rattus) on a seabird island: A case for a marine subsidised effect?. N. Z. J. Ecol. 40, 219–228 (2016).
    Google Scholar 
    Hochachka, W. M., Martin, K., Doyle, F. & Krebs, C. J. Monitoring vertebrate populations using observational data. Can. J. Zool. 78, 521–529 (2000).Article 

    Google Scholar 
    Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Evaluating abundance estimate precision and the assumptions of a count-based index for small mammals. J. Wildl. Manag. 73, 761–771. https://doi.org/10.2193/2008-180 (2009).Article 

    Google Scholar 
    Fauteux, D. et al. Evaluation of invasive and non-invasive methods to monitor rodent abundance in the Arctic. Ecosphere 9, 1–18. https://doi.org/10.1002/ecs2.2124 (2018).Article 

    Google Scholar 
    Siers, S. R. et al. Assessment of brown treesnake activity and bait take following large-scale snake suppression in Guam. (ed APHIS USDA, WS, NWRC) (Final Report QA-2438, Hilo, HI, 2018).McQueen, D. J., Post, J. R. & Mills, E. L. Trophic relationships in fresh-water pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43, 1571–1581 (1986).Article 

    Google Scholar 
    Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).Article 

    Google Scholar 
    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422. https://doi.org/10.1073/pnas.1115226109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 1–15. https://doi.org/10.3389/fevo.2017.00159 (2017).Article 

    Google Scholar 
    Campbell, E. W. III., Yackel Adams, A. A., Converse, S. J., Fritts, T. H. & Rodda, G. H. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam. Ecology 93, 1194–1203 (2012).PubMed 
    Article 

    Google Scholar 
    Lindell, L. E. & Forsman, A. Density effects and snake predation: Prey limitation and reduced growth rate of adders at high density of conspecifics. Can. J. Zool. 74, 1000–1007 (1996).Article 

    Google Scholar 
    Schoener, T. W., Spiller, D. A. & Losos, J. B. Predation on a common Anolis lizard: Can the food-web effects of a devastating predator be reversed?. Ecol. Monogr. 72, 383–407 (2002).Article 

    Google Scholar 
    McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. Lond. 282, 20150120. https://doi.org/10.1098/rspb.2015.0120 (2015).Article 

    Google Scholar 
    Plummer, M. V. & Congdon, J. D. Radiotelemetric study of activity and movements of racers (Coluber constrictor) associated with a Carolina bay in South Carolina. Copeia 1994, 20–26 (1994).Article 

    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons, and rats in tropical Australia. Ecology 77, 149–156 (1996).Article 

    Google Scholar 
    Chandler, C. J., Van Helden, B., Close, P. G. & Speldewinde, P. C. 2D or not 2D? Three-dimensional home range analysis better represents space use by an arboreal mammal. Acta Oecol. 105, 103576. https://doi.org/10.1016/j.actao.2020.103576 (2020).Article 

    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelem. 3, 1–9. https://doi.org/10.1186/s40317-015-0063-6 (2015).Article 

    Google Scholar 
    Shine, R. Reproduction in Australian elapid snakes II. Female reproductive cycles. Aust. J. Zool. 25, 655–666 (1977).Article 

    Google Scholar 
    Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matlack, G. R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Cons. 66, 185–194 (1993).Article 

    Google Scholar 
    Kapos, V. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Trop. Ecol. 5, 173–185 (1989).Article 

    Google Scholar 
    Williams-Linera, G. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78, 356–373 (1990).Article 

    Google Scholar 
    Matlack, G. R. Vegetation dynamics of the forest edge: Trends in space and successional time. J. Ecol. 82, 113–123 (1994).Article 

    Google Scholar 
    Chen, J., Franklin, J. F. & Spies, T. A. Vegetation responses to edge environments in old-growth douglas-fir forests. Ecol. Appl. 2, 387–396 (1992).PubMed 
    Article 

    Google Scholar 
    Gates, J. E. Powerline corridors, edge effects, and wildlife in forested landscapes of the central Appalachians. In Wildlife and Habitats in Managed Landscapes (eds Rodiek, J. E. & Bolen, E. G.) 13–32 (Island Press, 1991).
    Google Scholar 
    Kroodsma, R. L. Edge effect on breeding forest birds along a power-line corridor. J. Appl. Ecol. 19, 361–370 (1982).Article 

    Google Scholar 
    Morgan, K. A. & Gates, J. E. Bird population patterns in forest edge and strip vegetation at Remington Farms, Maryland. J. Wildl. Manag. 46, 933–944 (1982).Article 

    Google Scholar 
    Weatherhead, P. J. & Charland, M. B. Habitat selection in an Ontario population of the snake, Elaphe obsoleta. J. Herpetol. 19, 12–19 (1985).Article 

    Google Scholar 
    Durner, G. M. & Gates, J. E. Spatial ecology of black rat snakes on Remington Farms, Maryland. J. Wildl. Manag. 57, 812–826 (1993).Article 

    Google Scholar 
    Mushinsky, H. R. Foraging ecology. In Snakes: Ecology and Evolutionary Biology (eds Seigel, R. A. et al.) 302–334 (Macmillan Publishing Company, 1987).
    Google Scholar 
    Fritts, T. H., Scott, N. J. Jr. & Smith, B. J. Trapping Boiga irregularis on Guam using bird odors. J. Herpetol. 23, 189–192 (1989).Article 

    Google Scholar 
    Shivik, J. A. Brown tree snake response to visual and olfactory cues. J. Wildl. Manag. 62, 105–111 (1998).Article 

    Google Scholar 
    Simkova, O., Frydlova, P., Zampachova, B., Frynta, D. & Landova, E. Development of behavioral profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality?. PLoS ONE 12, 1–35. https://doi.org/10.1371/journal.pone.0177911 (2017).CAS 
    Article 

    Google Scholar 
    Fritts, T. H., McCoid, M. J. & Gomez, D. M. Dispersal of snakes to extralimital islands: Incidents of the brown treesnake, Boiga irregularis, dispersing to islands in ships and aircraft. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 209–223 (Cornell University Press, 1999).
    Google Scholar 
    Yackel Adams, A. A. et al. Can we prove that an undetected species is absent? Evaluating whether brown treesnakes are established on the island of Saipan using surveillance and expert opinion. Manag. Biol. Invas. 12, 901–926 (2021).Article 

    Google Scholar 
    Siers, S. R. & Savidge, J. A. Restoration Plan for the Habitat Management Unit, Naval Support Activity Andersen, Guam 1–238 (Colorado State University, 2017).
    Google Scholar 
    Dorr, B. S., Clark, C. S. & Savarie, P. (USDA APHIS WS National Wildlife Research Center, Fort Collins, CO, 2016).Reinert, H. K. & Cundall, D. An improved surgical implantation method for radio-tracking snakes. Copeia 1982, 702–705 (1982).Article 

    Google Scholar 
    Shine, R. Strangers in a strange land: Ecology of the Australian colubrid snakes. Copeia 1991, 120–131 (1991).Article 

    Google Scholar 
    Savidge, J. A., Qualls, F. J. & Rodda, G. H. Reproductive biology of the brown tree snake, Boiga irregularis (Reptilia: Colubridae), during colonization of Guam and comparison with that in their native range. Pac. Sci. 61, 191–199 (2007).Article 

    Google Scholar 
    Yackel Adams, A. A. & Nafus, M. G. Brown Treesnake visual survey and radiotelemetry data, Guam 2015: U.S. Geological Survey data release. https://doi.org/10.5066/P939BM0W (2020).Savidge, J. A. Food habits of Boiga irregularis, an introduced predator on Guam. J. Herpetol. 22, 275–282 (1988).Article 

    Google Scholar 
    Reed, R. N. & Boback, S. M. Does body size predict dates of species description among North American and Australian reptiles and amphibians?. Glob. Ecol. Biogeogr. 11, 41–47 (2002).Article 

    Google Scholar 
    Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).Article 

    Google Scholar 
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Simpfendorfer, C. A., Olsen, E. M., Heupel, M. R. & Moland, E. Three-dimensional kernel utilization distributions improve estimates of space use in aquatic animals. Can. J. Fish. Aquat. Sci. 69, 565–572 (2012).Article 

    Google Scholar 
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).Article 

    Google Scholar 
    Cooper, N. W., Sherry, T. W. & Marra, P. P. Modeling three-dimensional space use and overlap in birds. Auk 131, 681–693 (2014).Article 

    Google Scholar 
    ArcGIS Desktop (Environmental Systems Research, 2017).Nafus, M. G., Boback, S. M., Klug, P. E., Yackel Adams, A. A. & Reed, R. N. Brown treesnake movement following snake suppression in the Habitat Management Unit on Northern Guam from 2015. U.S Geological Survey data release. https://doi.org/10.5066/P95QJ2PE (2022). More

  • in

    Soil inoculum identity and rate jointly steer microbiomes and plant communities in the field

    Hu ZM, Li SG, Guo Q, Niu SL, He NP, Li LH. et al. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biol. 2016;22:1385–93.Article 

    Google Scholar 
    Lyu X, Li XB, Gong JR, Wang H, Dang DL, Dou HS, et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, China. Sustainability. 2020;12:3682.Article 

    Google Scholar 
    O’Mara FP. The role of grasslands in food security and climate change. Ann Bot-London. 2012;110:1263–70.Article 

    Google Scholar 
    Bryan BA, Gao L, Ye YQ, Sun XF, Connor JD, Crossman ND, et al. China’s response to a national land-system sustainability emergency. Nature. 2018;559:193–204.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N. et al. Combatting global grassland degradation. Nat Rev Earth Environ. 2021;2:720–35.Article 

    Google Scholar 
    Chang JF, Ciais P, Gasser T, Smith P, Herrero M, Havlik P, et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat Commun. 2021;12:118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, et al. Three-dimensional microorganization of the soil-root-microbe system. Microb Ecol. 2006;52:151–8.PubMed 
    Article 

    Google Scholar 
    Harris J. Soil microbial communities and restoration ecology: Facilitators or followers? Science. 2009;325:573–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vecrin MP, Muller S. Top-soil translocation as a technique in the re-creation of species-rich meadows. Appl Veg Sci. 2003;6:271–8.Article 

    Google Scholar 
    Middleton EL, Bever JD. Inoculation with a native soil community advances succession in a grassland restoration. Restor Ecol. 2012;20:218–26.Article 

    Google Scholar 
    Wubs ERJ, van der Putten WH, Bosch M, Bezemer TM. Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants. 2016;2:16107.PubMed 
    Article 

    Google Scholar 
    Wubs ERJ, van Heusden T, Melchers PD, Bezemer TM. Soil inoculation steers plant-soil feedback, suppressing ruderal plant species. Front Ecol Evol. 2019;7:451.Article 

    Google Scholar 
    Bever JD. Feedback between plants and their soil communities in an old field community. Ecology. 1994;75:1965–77.Article 

    Google Scholar 
    Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Contos P, Wood JL, Murphy NP, Gibb H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol Evol. 2021;11:7187–200.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emam T. Local soil, but not commercial AMF inoculum, increases native and non-native grass growth at a mine restoration site. Restor Ecol. 2016;24:35–44.Article 

    Google Scholar 
    Moradi J, Vicentini F, Simackova H, Pizl V, Tajovsky K, Stary J. An investigation into the long-term effect of soil transplant in bare spoil heaps on survival and migration of soil meso and macrofauna. Ecol Eng. 2018;110:158–64.Article 

    Google Scholar 
    Carbajo V, den Braber B, van der Putten WH, De Deyn GB. Enhancement of late successional plants on ex-arable land by soil inoculations. Plos One. 2011;6:e21943.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma W, Liang XS, Wang ZW, Luo WT, Yu Q, Han XG. Resistance of steppe communities to extreme drought in northeast China. Plant Soil. 2022;473:181–194.IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 2015.Jaunatre R, Buisson E, Dutoit T. Topsoil removal improves various restoration treatments of a Mediterranean steppe (La Crau, southeast France). Appl Veg Sci. 2014;17:236–45.Article 

    Google Scholar 
    Kuo S. Methods of soil analysis. Part 3: chemical methods. Soil Science Society of America: Madison, 1996.Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. P Natl Acad Sci USA. 2008;105:10583–8.CAS 
    Article 

    Google Scholar 
    De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. Plos One. 2014;9:e97629.Article 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen SF, Zhou YQ, Chen YR, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:590–6.Article 
    CAS 

    Google Scholar 
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Oostenbrink M. Estimating nematode populations by some selected methods. Nematology, Chapel Hill, 1960.Townshend JL. A modification and evaluation of the apparatus for the Oostenbrink direct cotton wool filter extraction method. Nematologica. 1963;9:106–10.Article 

    Google Scholar 
    Bongers T. De Nematoden van Nederland. In: Vormgeving en technische realisatie. Uitgeverij Pirola, Schoorl, 1994.Ahmad W, Jairjpuri MS. Mononchida: the predaceous nematodes. Nematology Monographs and Perspectives. Brill, Boston, 2010.Li Q, Liang WJ, Zhang XK, Mahamood M. Soil nematodes of grasslands in Northern China. Academic Press: San Diego, 2017.Wu ZY, Raven PH, Hong DY. Flora of China. Science Press: Beijing, 2013.Munson SM, Long AL, Wallace CSA, Webb RH. Cumulative drought and land-use impacts on perennial vegetation across a North American dryland region. Appl Veg Sci. 2016;19:430–41.Article 

    Google Scholar 
    Li YH, Wang W, Liu ZL, Jiang S. Grazing gradient versus restoration succession of leymus chinensis (Trin.) Tzvel. grassland in inner mongolia. Restor Ecol. 2008;16:572–83.Article 

    Google Scholar 
    Liang C, Michalk DL, Millar GD. The ecology and growth patterns of Cleistogenes species in degraded grasslands of eastern Inner Mongolia, China. J Appl Ecol. 2002;39:584–94.Article 

    Google Scholar 
    Liu ZG, Li ZQ. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe. China. New Zeal J Agr Res. 2010;53:5–12.Article 

    Google Scholar 
    Liu M, Gong JR, Pan Y, Luo QP, Zhai ZW, Yang LL, et al. Response of dominant grassland species in the temperate steppe of Inner Mongolia to different land uses at leaf and ecosystem levels. Photosynthetica. 2018;56:921–31.Article 

    Google Scholar 
    Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 
    CAS 

    Google Scholar 
    Dixon P. Vegan, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Plos One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.Article 

    Google Scholar 
    Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome. 2018;6:14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aitchison J. A new approach to null correlations of proportions. Mathematical Geology. 1981;13:175–89.Article 

    Google Scholar 
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. Plos Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cao YP, Lin W, Li HZ. Two-sample tests of high-dimensional means for compositional data. Biometrika. 2018;105:115–32.Article 

    Google Scholar 
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGA. Reply to ‘Can we predict microbial keystones?’. Nat Rev Microbiol. 2019;17:194–194.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, et al. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem. 2021;157:108230.CAS 
    Article 

    Google Scholar 
    Kardol P, Wardle DA. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol Evol. 2010;25:670–9.PubMed 
    Article 

    Google Scholar 
    Wubs ERJ, van der Putten WH, Mortimer SR, Korthals GW, Duyts H, Wagenaar R, et al. Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecol Lett. 2019;22:1145–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    St-Denis A, Kneeshaw D, Belanger N, Simard S, Laforest-Lapointe I, Messier C. Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field. Appl Soil Ecol. 2017;112:1–10.Article 

    Google Scholar 
    Kitto JAJ, Gray DP, Greig HS, Niyogi DK, Harding JS. Meta-community theory and stream restoration: evidence that spatial position constrains stream invertebrate communities in a mine impacted landscape. Restor Ecol. 2015;23:284–91.Article 

    Google Scholar 
    Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). Plos One. 2012;7:e40117.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lyu D, Backer R, Smith DL. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind Crop Prod. 2022;178:114583.CAS 
    Article 

    Google Scholar 
    Kulmatiski A, Beard KH. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem. 2011;43:823–30.CAS 
    Article 

    Google Scholar 
    Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2017;2:16198.Article 
    CAS 

    Google Scholar 
    Reme J. Development and present state of close-to-nature silviculture. J Landscape Ecol. 2018;11:17–32.Article 

    Google Scholar  More

  • in

    The scientists who switched focus to fight climate change

    Sophie Gilbert left a tenured position to join a start-up that allows small private landowners to sell carbon credits for preserving forests on their land.Credit: Sophie Gilbert

    It was during a car journey to California in temperatures sometimes exceeding 40 °C that Sophie Gilbert decided she needed to make a major career change.Driving to visit family from her home in Moscow, Idaho, she passed columns of wildfire smoke, the oppressive heat limiting the time she could spend out of her air-conditioned car. The two-day drive midway through last year helped to crystallize a feeling that she urgently needed to do something more concrete to help deal with the threat of climate change.“It hit at a gut level,” says Gilbert. “Climate change isn’t something that’s going to happen to someone else later on. It felt deeply, viscerally real for me and my family and what I care about.”Given her role as a wildlife ecologist at the University of Idaho in Moscow, it might seem that Gilbert was already well placed to have a positive impact on climate change. But the slow, incremental pace of academia, and the difficulty of getting policymakers to act on her findings, left her feeling that she was not making as much of a difference as she’d hoped.“I’ve been studying how wildlife responds to environmental change to inform conservation planning for 15 years now, researching and publishing and waiting for something to happen and then having it not happen, even when I’ve worked closely with wildlife and land-management agencies,” she says. “The system just isn’t designed to respond to the urgent challenges we’re facing,” she says.Gilbert took stock of her skills and knowledge, and how they could be put to use, settling on nature-based solutions such as forest-carbon storage and biodiversity. She made a shortlist of companies and non-governmental organizations (NGOs) doing that kind of work and started contacting them to discuss her options.In April this year, a month after securing tenure, Gilbert joined Natural Capital Exchange, a start-up firm based in San Francisco, California. The company allows small private landowners to sell carbon credits for preserving forests on their land. Gilbert’s role as senior lead for natural capital involves adding biodiversity credits to the company’s offerings, to provide incentives for conserving functioning, well-managed forests.Giving up the security and freedom that tenure offers was a big step, but Gilbert says that the hardest part of the decision was actually breaking the news to her graduate students, whose reactions ranged from anger, to understanding, to some combination of the two. “There’s a lot of mentoring and mutual responsibility there, so telling them and helping them through the process of finding a new adviser has been by far the most emotionally gruelling part,” she says.But she is excited to be taking up the challenge of working in the fast-paced world of a start-up company. “The company is full of rigorous, smart people who want to do good work,” she says. “It’s going to be a wild and exciting ride.”Spreading the wordIt’s a ride that Alice Bell knows well. By 2015, she had spent 11 years working as a lecturer in science communication at Imperial College London, and as a research fellow in the Science Policy Research Unit at the University of Sussex in Brighton, UK. She decided to leave academia for good and took up a position as head of communications at the climate-change campaign group Possible, based in London.The move came about partly by necessity — Bell’s contract was due to end, and she felt that UK government cuts were making academia an ever-more precarious occupation — but it stemmed mainly from a desire to be more directly involved in tackling the climate crisis.While at Imperial, she had built and launched a college-wide interdisciplinary course on climate change that had forced her to look more deeply into the issue. “I felt a greater urgency to put my skills somewhere they would be best utilized,” she says.Bell says leaving academia was the right choice. She thinks she is having a bigger impact on the climate crisis, and that her work–life balance has improved; she also feels more engaged in her work. “I feel more intellectually stimulated in workshops with NGOs than I did in most academic meetings,” she says, adding that she finds it liberating to be freed from academia’s pressure to publish, and from the weight of that pressure on career progression.But there are some drawbacks. “When you’re working for a small charity, no one knows who you are,” says Bell. “I was taken more seriously when I could say I was from Imperial.”Some might fear that leaving academia could arouse suspicions that they weren’t good enough to stay. “Ignore that voice,” she advises. “For many individuals, it could well be the best decision to give up.”Change from withinNot everyone, however, is ready or willing to give up on an academic career that they have spend years building up. And some find opportunities to get more involved in concrete climate solutions from within academia.

    Meade Krosby provides natural-resource managers and policymakers with scientific evidence on climate-change impacts and adaptation actions.Credit: Eric Bruns

    Since 2017, Meade Krosby has combined an academic post as a senior scientist at the University of Washington’s Climate Impacts Group in Seattle, where she works on climate vulnerability assessment and adaptation planning, with a director’s role at the university’s Northwest Climate Adaptation Science Center. The centre provides natural-resource managers and policymakers in the region with scientific evidence on climate-change impacts and adaptation actions. Krosby calls it a “boundary organization”, an interface between science and society, “acting as a conduit between the two”.“We bring applied science to decision-making around climate change, and bring decision-makers’ and communities’ concerns and knowledge back into academia to inform the kind of research that is done,” she says.Between 2016 and 2018, Krosby collaborated with Indigenous scholars, tribal organizations and other university scientists to develop the Tribal Climate Tool, a free online resource that aims to get the best available climate projections into the hands of Indigenous communities, to inform their planning for climate change. The tool, which launched in 2018, is now being used in many hazard-mitigation plans, such as the Samish Indian Nation’s 2019 climate-change vulnerability assessment. Krosby is also writing a paper on its development and use, producing a more conventional academic output to complement a tool that makes a difference in the real world.“You can do really useful work that doesn’t look like basic science, but it’s not always a trade-off between doing cool science and useful science,” she says.Funding challengeKrosby knew early on in her academic career that she wanted to make practical contributions that would help society to prepare for climate change. She started looking for this kind of applied work in 2009, during her postdoctoral research at the University of Washington, but found it hard at first to find funding — either from federal funding agencies or from private foundations. Then, in 2010, she received funding from the US Department of the Interior to look at species mobility and connectivity, and was able to use that to create a position for herself in the Climate Impacts Group.But she quickly found that her experience in more conventional academic settings had not prepared her for the kinds of project that the group undertook, with the aim of making science useful for policymakers and the public. “It was shocking how ill-prepared I was for transdisciplinary work,” she says. “We’re not trained to do, or to value, those kinds of collaborations.” The centre now supports fellowships and training in societally engaged research, and Krosby teaches a graduate course on how to connect science to society. “It’s an opportunity to train early-career scientists to do the work we never got trained to do,” she says. In 2020, she co-authored a paper1 calling for changes in how scientists are trained, by emphasizing skills such as collaboration and communication1.Academic career structures are not set up to promote and reward work that requires lots of collaboration with people outside the university, and which doesn’t necessarily result in a typical scientific publication, says Krosby. “The work I want to do wouldn’t be rewarded in a tenure-track position,” she adds. “To do this effectively, universities need to think about their incentive structure. Is a peer-reviewed paper really the most important outcome?”Reef encounterJulia Baum, a marine ecologist at the University of Victoria in Canada, has found a way to do practical, climate-focused work in a standard academic job. For her, the turning point came in 2015, when a massive marine heatwave nearly wiped out the tropical reef she was studying. “I watched a beautiful pristine reef melt down in 10 months,” she says. “I used to think overfishing was the biggest threat — then climate change came and hit me over the head.”

    Julia Baum records data on the Pacific atoll of Kiritimati, after a marine heatwave in 2015 nearly destroyed the coral reef.Credit: Kristina Tietjen

    That experience prompted her to completely overhaul her research programme to focus exclusively on climate impacts and how to mitigate them. “I want to do more than just document a sinking ship — I want to help right it,” she says.Baum’s tenured position offers her the flexibility of making that change, and she says she felt a moral obligation to apply her knowledge in a way that would help address the biggest threat facing the planet. As well as redirecting her research, Baum is designing a cross-university graduate-training programme focused on coastal climate solutions. This will offer training in professional skills that are crucial for climate work but are rarely taught in universities — such as how to collaborate and negotiate with non-academic partners, and how to deal with the media.But, like Krosby, Baum says she and many of her colleagues feel frustrated that a lot of universities don’t seem to value or support any kind of work outside conventional academic publications. Those who want to apply their findings to real-world problems often have to do it on their own, with no real benefit to their academic career. “Universities need to rise to the challenge and find innovative ways to support their faculty, by valuing and rewarding solutions work in their hiring and promotion criteria,” she says.If they don’t, universities risk losing more dedicated researchers such as Gilbert and Bell to the private sector. “If there comes a point when the climate-solutions impact I can have within academia seems too small, then yes, I would make the leap,” says Baum.Maximum impactFor academics looking for a way to take on a bigger role in the fight against climate change, there are a lot of options — from finding or making your own position in a university, to leaving for a company or charity that is doing more immediate, hands-on work. But the first step is working out where you can have the most impact, and what you can bring to the table. “For many people, the biggest impact you can have is through your students,” says Gilbert. “If you can focus on that and feel satisfied, that’s great.”For those who choose to leave, however, it pays to spend some time doing your research, finding companies and organizations that are doing the kind of work you are interested in, and talking to them about what you could offer. You might be surprised to find just how useful your skills can be outside academia — not just the disciplinary knowledge you have gained, but transferable skills such as technical writing and the ability to review and synthesize complex research. “The list of things we’re good at is pretty awesome,” says Gilbert. More

  • in

    Author Correction: A new wave of marine fish invasions through the Panama and Suez canals

    Authors and AffiliationsSmithsonian Tropical Research Institute – STRI, Balboa, Republic of PanamaGustavo A. Castellanos-Galindo, D. Ross Robertson, Diana M. T. Sharpe & Mark E. TorchinLeibniz Centre for Tropical Marine Research (ZMT), Bremen, GermanyGustavo A. Castellanos-GalindoAuthorsGustavo A. Castellanos-GalindoD. Ross RobertsonDiana M. T. SharpeMark E. TorchinCorresponding authorCorrespondence to
    Gustavo A. Castellanos-Galindo. More

  • in

    Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root

    Ramoliya, P. & Pandey, A. Effect of salinization of soil on emergence, growth and survival of seedlings of Cordia rothii. For. Ecol. Manage. 176, 185–194 (2003).Article 

    Google Scholar 
    Müller, H. M. et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol. 216, 150–162 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hazzouri, K. M. et al. Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Front. Plant Sci. 11, 293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelfattah, M. A. Integrated suitability assessment: A way forward for land use planning and sustainable development in Abu Dhabi, United Arab Emirates. Arid Land Res. Manage. 27, 41–64 (2013).Article 

    Google Scholar 
    Al-Muaini, A. et al. Water requirements for irrigation with saline groundwater of three date-palm cultivars with different salt-tolerances in the hyper-arid United Arab Emirates. Agric. Water Manage. 222, 213–220 (2019).Article 

    Google Scholar 
    Guo, H., Shi, X., Ma, L., Yang, T. & Min, W. Long-term irrigation with saline water decreases soil nutrients, diversity of bacterial communities, and cotton yields in a gray desert soil in China. Pol. J. Environ. Stud. 29, 4077–4088 (2020).CAS 
    Article 

    Google Scholar 
    Blaskó, L. Salinity, physical effects on soils. In Encyclopedia of Agrophysics (eds Gliński, J. et al.) 723–725 (Springer, 2011).Chapter 

    Google Scholar 
    Rengasamy, P. Irrigation water quality and soil structural stability: A perspective with some new insights. Agronomy 8, 72 (2018).Article 
    CAS 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Masmoudi, K. et al. Metagenomics of beneficial microbes in abiotic stress tolerance of date palm. In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding (eds Al-Khayri, J. M. et al.) 203–214 (Springer, 2021).Chapter 

    Google Scholar 
    Boncompagni, E., Østerås, M., Poggi, M.-C. & Le Rudulier, D. Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl. Environ. Microbiol. 65, 2072–2077 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. & Beattie, G. A. Characterization of the osmoprotectant transporter opuc from Pseudomonas syringae and demonstration that cystathionine-β-synthase domains are required for its osmoregulatory function. J. Bacteriol. 189, 6901–6912 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rath, H. et al. Management of osmoprotectant uptake hierarchy in Bacillus subtilis via a SigB-dependent antisense RNA. Front. Microbiol. 11, 622 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Singh, R. P. & Jha, P. N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front. Microbiol. 8, 1945 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferjani, R. et al. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. Biomed Res. Int. 2015, 1–10 (2015).Article 

    Google Scholar 
    Sanka Loganathachetti, D., Alhashmi, F., Chandran, S. & Mundra, S. Irrigation water salinity structures the bacterial communities of date palm (Phoenix dactylifera)-associated bulk soil. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.944637 (2022).Article 

    Google Scholar 
    Chen, L. J. et al. An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities. J. Agric. Sci. 157, 693–700 (2019).CAS 
    Article 

    Google Scholar 
    Li, Y. Q. et al. Bacterial community in saline farmland soil on the Tibetan plateau: Responding to salinization while resisting extreme environments. BMC Microbiol. 21, 119 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mosqueira, M. J. et al. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci. Rep. 9, 4033 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cherif, H. et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ. Microbiol. Rep. 7, 668–678 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. Standard Operating Procedure for Soil Electrical Conductivity, Soil/Water, 1:5. (2021).Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Chemical Methods-SSSA Book Series No. 5 (eds Bigham, J. M. et al.) (Soil Science Society of America and American Society of Agronomy, 1996).
    Google Scholar 
    Mizrahi-Man, O., Davenport, E. R. & Gilad, Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 8, e53608 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin-Sanchez, P. M. et al. Analysing indoor mycobiomes through a large-scale citizen science study in Norway. Mol. Ecol. 30, 2689–2705 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dai, T. et al. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: A case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiol. Ecol. 92, 150 (2016).Article 
    CAS 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2020).Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    Emirates Soil Museum. Emirates Soil Museum. https://www.emiratessoilmuseum.org/index.php/ (Accessed 08 July 2022).Jackson, O., Quilliam, R. S., Stott, A., Grant, H. & Subke, J.-A. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil 440, 473–490 (2019).CAS 
    Article 

    Google Scholar 
    Xie, E. et al. Short-term effects of salt stress on the amino acids of Phragmites australis root exudates in constructed wetlands. Water 12, 569 (2020).CAS 
    Article 

    Google Scholar 
    Korber, D. R., Choi, A., Wolfaardt, G. M. & Caldwell, D. E. Bacterial plasmolysis as a physical indicator of viability. Appl. Environ. Microbiol. 62, 3939–3947 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, K. et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4, e00225 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hessini, K. et al. Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol. Biochem. 139, 171–178 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lammel, D. R. et al. Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome 6, 106 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopes, L. D., Hao, J. & Schachtman, D. P. Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiol. Ecol. 97, 028 (2021).Article 
    CAS 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 
    Article 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, A., Mann, A., Kumar, A., Kumar, N. & Meena, B. L. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. Int. J. Phytoremediat. 23, 1041–1051 (2021).CAS 
    Article 

    Google Scholar 
    Kalam, S. et al. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.580024 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boukhatem, Z. F., Merabet, C. & Tsaki, H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Front. Agron. https://doi.org/10.3389/fagro.2022.849911 (2022).Article 

    Google Scholar 
    Köberl, M. et al. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol. Ecol. 92, 166 (2016).Article 
    CAS 

    Google Scholar 
    Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front. Microbiol. 10, 2015 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hou, Y. et al. Responses of the soil microbial community to salinity stress in maize fields. Biology (Basel) 10, 1114 (2021).CAS 

    Google Scholar 
    Patil, A., Kale, A., Ajane, G., Sheikh, R. & Patil, S. Plant growth-promoting rhizobium: Mechanisms and biotechnological prospective. Rhizobium Biol. Biotechnol. https://doi.org/10.1007/978-3-319-64982-5_7 (2017).Article 

    Google Scholar 
    Lima Guimarães, S. et al. Effects of inoculation of Rhizobium on nodulation and nitrogen accumulation in cowpea subjected to water availabilities. Am. J. Plant Sci. 06, 1378–1384 (2015).Article 

    Google Scholar 
    Ghadbane, M., Medjekal, S., Benderradji, L., Belhadj, H. & Daoud, H. Assessment of arbuscular mycorrhizal fungi status and Rhizobium on date palm (Phoenix dactylifera L.) cultivated in a Pb contaminated soil. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions 2nd edn (eds Ksibi, M. et al.) 703–707 (Springer, 2021).
    Google Scholar 
    Saeed, E. E. et al. Streptomyces globosus UAE1, a potential effective biocontrol agent for black scorch disease in date palm plantations. Front. Microbiol. 8, 1455 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falagán, C. & Johnson, D. B. Acidibacter ferrireducens gen. nov., sp. nov.: An acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18, 1067–1073 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Schulze-Makuch, D. et al. Transitory microbial habitat in the hyperarid Atacama desert. Proc. Natl. Acad. Sci. 115, 2670–2675 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, K. et al. Actinobacteria associated with Glycyrrhiza inflata Bat. are diverse and have plant growth promoting and antimicrobial activity. Sci. Rep. 8, 13661 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    An, S.-U. et al. Invasive Spartina anglica greatly alters the rates and pathways of organic carbon oxidation and associated microbial communities in an intertidal wetland of the Han river estuary, Yellow Sea. Front. Mar. Sci. 7, 59 (2020).ADS 
    Article 

    Google Scholar 
    Khan, M. A. et al. Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L.. Front. Plant Sci. 12, 1145 (2021).
    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 

    Google Scholar 
    Mukhtar, S., Mehnaz, S., Mirza, M. S., Mirza, B. S. & Malik, K. A. Diversity of bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can. J. Microbiol. 64, 567–579 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yeager, C. M. et al. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the colorado plateau. Appl. Environ. Microbiol. 83, e03020-e3116 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortúzar, M., Trujillo, M. E., Román-Ponce, B. & Carro, L. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation? Sci. Total Environ. 739, 139850 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    El-Tarabily, K. A. et al. Growth promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an endophytic 1-aminocyclopropane-1-carboxylic acid deaminase-producing actinobacterial isolate. Front. Microbiol. 10, 1694 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carro, L. et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci. Rep. 8, 525 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, M. et al. Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chin. Med. 15, 85 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rufián, J. S., Rueda-Blanco, J., Beuzón, C. R. & Ruiz-Albert, J. Protocol: An improved method to quantify activation of systemic acquired resistance (SAR). Plant Methods 15, 16 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhise, K. K., Bhagwat, P. K. & Dandge, P. B. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L.. 3 Biotech 7, 105 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cao, C., Tao, S., Cui, Z. & Zhang, Y. Response of soil properties and microbial communities to increasing salinization in the meadow grassland of Northeast China. Microb. Ecol. 82, 722–735 (2021).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Dauvin, J. C. et al. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environ. Pollut. 224, 336–351 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obolewski, K. & Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration-A case study of the southern Baltic Sea. Ecol. Eng. 155, 1700 (2020).Article 

    Google Scholar 
    Dobrowolski, Z. Occurrence of macrobenthos in different littoral habitats of the polymictic Lebsko lake. Ekologia Polska 42, 19–40 (1994).
    Google Scholar 
    Paturej, E., Gutkowska, A. & Durczak, K. Biodiversity and indicative role of zooplankton in the shallow macrophyte-dominated lake Łuknajno. Pol. J. Nat. Sci. 27, 53–66 (2012).
    Google Scholar 
    Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 150 (2018).Article 
    CAS 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, 179 (2019).
    Google Scholar 
    Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).Article 

    Google Scholar 
    Törnroos, A. & Bonsdorff, E. Developing the multitrait concept for functional diversity: Lessons from a system rich in functions but poor in species. Ecol. Appl. 22, 2221–2236 (2012).PubMed 
    Article 

    Google Scholar 
    Baldrighi, E. & Manini, E. Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related?. Mar. Biodivers. 45, 469–488 (2015).Article 

    Google Scholar 
    Belley, R. & Snelgrove, P. V. R. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Front. Mar. Sci. 3, 7598 (2016).Article 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 689 (2015).
    Google Scholar 
    Ding, N. et al. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Sci. Total Environ. 574, 288–299 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Llanos, E. N., Saracho Bottero, M. A., Jaubet, M. L., Elías, R. & Garaffo, G. V. Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic. Mar. Pollut. Bull. 157, 7448 (2020).Article 
    CAS 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Nasi, F. et al. Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Mar. Environ. Res. 137, 121–132 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, C. et al. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107–1116 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. Responses of benthic scavengers to fishing disturbance by towed gears in different habitats. J. Exp. Mar. Biol. Ecol. 224, 4458 (1998).Article 

    Google Scholar 
    Sigala, K., Reizopoulou, S., Basset, A. & Nicolaidou, A. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202–209 (2012).ADS 
    Article 

    Google Scholar 
    de Loiola, P. P., Cianciaruso, M. V., Silva, I. A. & Batalha, M. A. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora Morphol. Distrib. Funct. Ecol. Plants 205, 674–681 (2010).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecological Monographs vol. 80 http://www.scopus.com/scopus/search/form.urli (2010).Wan, H. W. M. R., Cooper, K. M., Froján, C. R. S. B., Defew, E. C. & Paterson, D. M. Impacts of physical disturbance on the recovery of a macrofaunal community: A comparative analysis using traditional and novel approaches. Ecol. Indicators 12, 37–45 (2012).Article 

    Google Scholar 
    Millet, B. & Guelorget, O. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar. Ecol. Prog. Ser. 108, 161–174 (1994).ADS 
    Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem (Oxford University Press, 2004). https://doi.org/10.1093/acprof:oso/9780198525080.001.0001.Book 

    Google Scholar 
    Mrozińska, N. & Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern baltic coast. Int. J. Environ. Res. Public Health 17, 1–19 (2020).Article 
    CAS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 
    Article 

    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20, 1512–1522 (2010).PubMed 
    Article 

    Google Scholar 
    Dolédec, S. & Statzner, B. Theoretical habitat templets, species traits, and species richness: 548 plant and animal species in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 523–538 (1994).Article 

    Google Scholar 
    Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases?. Hydrobiologia 422, 153–162 (2000).Article 

    Google Scholar 
    Charvet, S., Statzner, B., Usseglio-Polatera, P. & Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 43, 277–296 (2000).Article 

    Google Scholar 
    Statzner, B., Dolédec, S. & Hugueny, B. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27, 470–488 (2004).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar Ecol Prog Ser 254, 5589 (2003).Article 

    Google Scholar 
    Tillin, H., Hiddink, J., Jennings, S. & Kaiser, M. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31–45 (2006).ADS 
    Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boikova, E., Botva, U. & Līcīte, V. Implementation of trophic status index in brackish water quality assessment of baltic coastal waters. Proc. Latv. Acad. Sci. Sect. B 62, 115–119 (2008).CAS 

    Google Scholar 
    Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. Nutrient fluxes and their impact on the phytoplankton in a Shallow Coastal Lake. Polish J. Environ. Stud. 24, 7780 (2015).Article 
    CAS 

    Google Scholar 
    Kruk, C., Devercelli, M. & Huszar, V. L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021).Article 

    Google Scholar 
    Trojanowski, J., Trojanowska, C. & Korzeniewski, K. Trophic state of coastal lakes. Polish Arch. Hydrobiol. 38, 23–34 (1975).
    Google Scholar 
    Astel, A. M., Bigus, K., Obolewski, K. & Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic. Estuar. Coast. Shelf Sci. 182, 47–59 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Choiński, A. Changes in morphometrics of the coastal lakes. in Hydroecological Determinants of Functioning of Southern Baltic Coastal Lakes (eds. Obolewski, K., Astel, A. & Kujawa, R.) 26–37 (PWN, 2017).Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M. & Mrozińska, N. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631–632, 951–961 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Szymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P. & Obolewski, K. Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 19, 4131 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mrozińska, N., Glińska-Lewczuk, K. & Obolewski, K. Salinity as a key factor on the benthic fauna diversity in the coastal lakes. Animals 11, 7440 (2021).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Ind. 6, 609–622 (2006).Article 

    Google Scholar 
    Papageorgiou, N., Sigala, K. & Karakassis, I. Changes of macrofaunal functional composition at sedimentary habitats in the vicinity of fish farms. Estuar. Coast. Shelf Sci. 83, 561–568 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol Indic 115, 5589 (2020).Article 

    Google Scholar 
    Kołodziejczyk, A. & Koperski, P. Bezkręgowce słodkowodne Polski: klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. (Wydawnictwa Uniwersytetu Warszawskiego, 2000).Wiederholm, Torgny. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: larvae. (1983).Antsulevich, A. et al. Helcom, 2012. Development of a set of core indicators: Interim report of the HELCOM CORESET project. PART A. Description of the selection process. (2012).Piechocki, A. & Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland. (2016).Zettler, M. L. et al. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49–57 (2014).ADS 
    Article 

    Google Scholar 
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. https://www.sealifebase.ca/ (2021).MarLIN. BIOTIC-biological traits information catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the UK. http://www.marlin.ac.uk/biotic/ (2006).Horton, T. et al. World Register of Marine Species (WoRMS). https://www.marinespecies.org (2021).Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).Article 

    Google Scholar 
    Oug, E., Fleddum, A., Rygg, B. & Olsgard, F. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Biol. Ecol. 432–433, 94–105 (2012).Article 

    Google Scholar 
    Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Ind. 96, 229–240 (2019).CAS 
    Article 

    Google Scholar 
    Charvet, S., Kosmala, A. & Statzner, B. Biomonitoring through biological traits of benthic macroinvertebrates: Perspectives for a general tool in stream management. Fundam. Appl. Limnol. 142, 415–432 (1998).Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (2006).Dobrowolski, Z. Density, biomass, and distribution of benthic invertebrates in the mid-lake zone of the coastal Lake Gardno. Oceanol. Stud. 30, 39–58 (2001).
    Google Scholar 
    Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).CAS 
    Article 

    Google Scholar 
    Taurusman, A. A. Community structure of macrozoobenthic feeding guilds in responses to eutrophication in Jakarta Bay. Biodivers. J. Biol. Divers. 11, 998 (2010).Article 

    Google Scholar 
    Uwadiae, R. E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Sci. J. 3, 778 (2010).
    Google Scholar 
    Obolewski, K., Glińska-Lewczuk, K., Sidoruk, M. & Szymańska, M. M. Response of benthic fauna to habitat heterogeneity in a shallow temperate lake. Animals 11, 558 (2021).Article 

    Google Scholar 
    Rhoads, D. C. Organism-sediment relations on the muddy sea floor. in Oceanography and Marine Biology: An Annual Review. vol. 12 263–300 (Aberdeen University Press/Allen & Unwin, 1974).Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. & Norkko, A. Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 1029–1040 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. in ICES Journal of Marine Science vol. 57 1303–1309 (Academic Press, 2000).Bradshaw, C., Veale, L. O. & Brand, A. R. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: A re-analysis of an historical dataset. J. Sea Res. 47, 161–184 (2002).ADS 
    Article 

    Google Scholar 
    Cañedo-Argüelles, M. et al. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci. Total Environ. 540, 3–10 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Herbst, D. B. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26, 475–485 (2006).Article 

    Google Scholar 
    Merritt, R. W. et al. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Am. Benthol. Soc. 21, 550 (2002).Article 

    Google Scholar 
    de Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).Article 

    Google Scholar 
    Reizopoulou, S. & Nicolaidou, A. Index of size distribution (ISD): A method of quality assessment for coastal lagoons. Hydrobiologia 577, 141–149 (2007).Article 

    Google Scholar 
    Basset, A., Pinna, M., Sabetta, L., Barbone, E. & Galuppo, N. Hierarchical scaling of biodiversity in lagoon ecosystems. Trans. Waters Bull. 2, 75–86 (2008).
    Google Scholar 
    Basset, A. et al. A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol. Ind. 12, 72–83 (2012).Article 

    Google Scholar 
    Robson, B. J., Barmuta, L. A. & Fairweather, P. G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56, 1–11 (2005).Article 

    Google Scholar 
    Parry, D. M., Kendall, M. A., Rowden, A. A. & Widdicombe, S. Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J. Mar. Biol. Assoc. U.K. 79, 793–801 (1999).Article 

    Google Scholar 
    Netto, S. A., Domingos, A. M. & Kurtz, M. N. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35, 1069–1081 (2012).CAS 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Montefalcone, M., Parravicini, V. & Bianchi, C. N. Quantification of Coastal Ecosystem Resilience. in Treatise on Estuarine and Coastal Science 49–70 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-374711-2.01003-2.Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).Article 

    Google Scholar 
    Smee, D. L., Reustle, J. W., Belgrad, B. A. & Pettis, E. L. Storms promote ecosystem resilience by alleviating fishing. Curr. Biol. 30, R869–R870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilby, B. L. et al. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 199, 132–140 (2017).ADS 
    Article 

    Google Scholar 
    Henderson, C. J. et al. Landscape transformation alters functional diversity in coastal seascapes. Ecography 43, 138–148 (2020).Article 

    Google Scholar 
    Yeager, L. A., Geyer, J. K. & Fodrie, F. J. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure. J. Anim. Ecol. 88, 1743–1754 (2019).PubMed 
    Article 

    Google Scholar 
    Darr, A., Gogina, M. & Zettler, M. L. Functional changes in benthic communities along a salinity gradient- a western Baltic case study. J. Sea Res. 85, 315–324 (2014).ADS 
    Article 

    Google Scholar 
    Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article 

    Google Scholar  More

  • in

    Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity

    White, R., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems Technical Report (World Resources Institute, 2000).Thornton, P. K. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B 365, 2853–2867 (2010).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry 54, 1–39 (2001).CAS 
    Article 

    Google Scholar 
    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).CAS 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).Article 

    Google Scholar 
    Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).Article 

    Google Scholar 
    Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).Article 

    Google Scholar 
    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).Article 

    Google Scholar 
    Osem, Y., Perevolotsky, A. & Kigel, J. Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi-arid rangeland. J. Ecol. 92, 297–309 (2004).Article 

    Google Scholar 
    Gao, J. & Carmel, Y. Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale? Oikos 129, 493–502 (2020).Article 

    Google Scholar 
    Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).PubMed 
    Article 

    Google Scholar 
    Mack, R. N. & Thompson, J. N. Evolution in steppe with few large, hooved mammals. Am. Nat. 119, 757–773 (1982).Article 

    Google Scholar 
    Axelrod, D. I. Rise of the grassland biome, central North America. Bot. Rev. 51, 163–201 (1985).Article 

    Google Scholar 
    Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).Article 

    Google Scholar 
    Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Proulx, M. & Mazumder, A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79, 2581–2592 (1998).Article 

    Google Scholar 
    Westoby, M., Walker, B. & Noy-Meir, I. Opportunistic management for rangelands not at equilibrium. J. Range Manag. 42, 266–274 (1989).Article 

    Google Scholar 
    Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).Article 

    Google Scholar 
    Seabloom, E. W., Harpole, W. S., Reichman, O. J. & Tilman, D. Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc. Natl Acad. Sci. USA 100, 13384–13389 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, J. N., Schultz, N. L., Hodges, J. A., Cleland, M. A. & Morgan, J. W. Land-use legacies limit the effectiveness of switches in disturbance type to restore endangered grasslands. Restor. Ecol. 29, e13271 (2021).Article 

    Google Scholar 
    Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337 (1992).Article 

    Google Scholar 
    MacDougall, A. S. et al. The Neolithic plant invasion hypothesis: the role of preadaptation and disturbance in grassland invasion. New Phytol. 220, 94–103 (2018).PubMed 
    Article 

    Google Scholar 
    Mörsdorf, M. A., Ravolainen, V. T., Yoccoz, N. G., Thórhallsdóttir, T. E. & Jónsdóttir, I. S. Decades of recovery from sheep grazing reveal no effects on plant diversity patterns within Icelandic tundra landscapes. Front. Ecol. Evol. 8, 602538 (2021).Mack, R. N. in Biological Invasions: A Global Perspective (eds Drake, J. A. et al.) 155–180 (John Wiley, 1989).Sinkins, P. A. & Otfinowski, R. Invasion or retreat? The fate of exotic invaders on the northern prairies, 40 years after cattle grazing. Plant Ecol. 213, 1251–1262 (2012).Article 

    Google Scholar 
    Stahlheber, K. A., D’Antonio, C. M. & Tyler, C. M. Livestock exclusion impacts on oak savanna habitats—differential responses of understory and open habitats. Rangel. Ecol. Manag. 70, 316–323 (2017).Article 

    Google Scholar 
    Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).PubMed 
    Article 

    Google Scholar 
    Gao, J. & Carmel, Y. A global meta-analysis of grazing effects on plant richness. Agric. Ecosyst. Environ. 302, 107072 (2020).Article 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).Article 

    Google Scholar 
    Mortensen, B. et al. Herbivores safeguard plant diversity by reducing variability in dominance. J. Ecol. 106, 101–112 (2018).CAS 
    Article 

    Google Scholar 
    Chen, Q. et al. Small herbivores slow down species loss up to 22 years but only at early successional stage. J. Ecol. 107, 2688–2696 (2019).Article 

    Google Scholar 
    Lunt, I. D., Eldridge, D. J., Morgan, J. W. & Witt, G. B. A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust. J. Bot. 55, 401–415 (2007).Article 

    Google Scholar 
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).PubMed 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrio, I. C. et al. The sheep in wolf’s clothing? Recognizing threats for land degradation in Iceland using state-and-transition models. Land Degrad. Dev. 29, 1714–1725 (2018).Article 

    Google Scholar 
    Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).PubMed 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 102, e03218 (2021).PubMed 
    Article 

    Google Scholar 
    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol. Lett. 24, 2100–2112 (2021).PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Astronomically controlled aridity in the Sahara since at least 11 million years ago

    Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).Article 

    Google Scholar 
    Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).Article 

    Google Scholar 
    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).Article 

    Google Scholar 
    Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).Article 

    Google Scholar 
    McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).Article 

    Google Scholar 
    Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).Article 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).Article 

    Google Scholar 
    Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).Article 

    Google Scholar 
    Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).Article 

    Google Scholar 
    Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).Article 

    Google Scholar 
    McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).Article 

    Google Scholar 
    Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).Article 

    Google Scholar 
    Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).Article 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).Article 

    Google Scholar 
    Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).Article 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 

    Google Scholar 
    Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).Article 

    Google Scholar 
    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).Article 

    Google Scholar 
    Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).Article 

    Google Scholar 
    Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).Article 

    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).Article 

    Google Scholar 
    Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).Article 

    Google Scholar 
    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).Article 

    Google Scholar 
    Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).Article 

    Google Scholar 
    Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).Article 

    Google Scholar 
    Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).Article 

    Google Scholar 
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).Article 

    Google Scholar 
    Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).Article 

    Google Scholar 
    Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).Article 

    Google Scholar 
    Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).Article 

    Google Scholar 
    DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).Article 

    Google Scholar 
    Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).Article 

    Google Scholar 
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).Article 

    Google Scholar 
    Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).Article 

    Google Scholar 
    Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).Article 

    Google Scholar 
    Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).Article 

    Google Scholar 
    Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).Article 

    Google Scholar 
    Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).Article 

    Google Scholar 
    Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).Article 

    Google Scholar 
    Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).Article 

    Google Scholar 
    Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).Article 

    Google Scholar 
    Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).Article 

    Google Scholar 
    Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).Article 

    Google Scholar 
    McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).Article 

    Google Scholar 
    Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).Article 

    Google Scholar 
    Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).Article 

    Google Scholar 
    Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).Article 

    Google Scholar 
    Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).Article 

    Google Scholar 
    Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).Article 

    Google Scholar 
    Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).Article 

    Google Scholar 
    Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).Article 

    Google Scholar 
    Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).Article 

    Google Scholar 
    Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).
    Google Scholar 
    Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).Article 

    Google Scholar 
    Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).
    Google Scholar 
    Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).Article 

    Google Scholar 
    Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).Article 

    Google Scholar 
    Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).Article 

    Google Scholar 
    Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).Article 

    Google Scholar 
    Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).Article 

    Google Scholar 
    Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).Article 

    Google Scholar 
    Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).Article 

    Google Scholar 
    Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).Article 

    Google Scholar 
    Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).Article 

    Google Scholar 
    Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).Article 

    Google Scholar 
    Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).Article 

    Google Scholar 
    Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).Article 

    Google Scholar 
    Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).Article 

    Google Scholar  More