More stories

  • in

    Brazil: heed price of marine mining for an alternative fertilizer

    Brazil’s government risks fuelling the climate and biodiversity crisis by offsetting the fertilizer shortage resulting from Russia’s invasion of Ukraine this year (J. Liu et al. Nature 604, 425 (2022); S. Osendarp et al. Nature 604, 620–624; 2022). To produce an alternative fertilizer, it plans to mine up to 12 million tonnes annually of rhodoliths taken from an area in the South Atlantic that is roughly the size of the United Kingdom (see go.nature.com/3yhiyio).A full list of co-signatories to this letter appears in Supplementary Information.
    Competing Interests
    The author declares no competing interests. More

  • in

    A feeding frenzy of 150 whales marks a species’ comeback

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Prediction of the potential distribution of the predatory mite Neoseiulus californicus (McGregor) in China under current and future climate scenarios

    Moraes, G. J., Mcmurtry, J. A., Denmark, H. A. & Campos, C. B. A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1–494 (2004).Article 

    Google Scholar 
    Fraulo, A. B. & Liburd, O. E. Biological control of twospotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries. Exp. Appl. Acarol. 43, 109–119 (2007).PubMed 
    Article 

    Google Scholar 
    Kuştutan, O. & Cakmak, I. Development, fecundity, and prey consumption of Neoseiulus californicus (McGregor) fed Tetranychus cinnabarinus Boisduval. Turk. J. Agric. For. 33, 19–28 (2009).
    Google Scholar 
    Kishimoto, H. et al. Occurrence of Neoseiulus californicus (Acari: Phytoseiidae) on citrus in Kyushu district, Japan. J. Acarol. Soc. Japan 16, 129–137 (2007).Article 

    Google Scholar 
    Albayrak, T., Yorulmaz, S., İnak, E., Toprak, U. & Van Leeuwen, T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pestic. Biochem. Phys. 180, 104984 (2022).CAS 
    Article 

    Google Scholar 
    Abdellah, A., Abdelaziz, Z., Philipe, A., Serge, K. & Abdelhamid, E. M. Seasonal trend of Eutetranychus orientalis in Moroccan citrus orchards and its potential control by Neoseiulus californicus and Stethorus punctillum. Syst. Appl. Acarol. 26, 1458–1480 (2021).
    Google Scholar 
    Vidrih, M., Turnšek, A., Rak Cizej, M., Bohinc, T. & Trdan, S. Results of the single release efficacy of the predatory mite Neoseiulus californicus (McGregor) against the two-spotted spider mite (Tetranychus urticae Koch) on a hop plantation. Appl. Sci. 11, 118 (2021).CAS 
    Article 

    Google Scholar 
    Jiang, C. X., Chen, L., Huang, T. T., Mumtaz, M. & Li, Q. Neoseiulus californicus (Acari: Phytoseiidae) shows good predation potential when reared on an artificial diet supplemented with Tetranychus cinnabarinus. Syst. Appl. Acarol. 26, 2229–2246 (2021).
    Google Scholar 
    Katayama, H. et al. Density suppression of the citrus red mite Panonychus citri (Acari: Tetranychidae) due to the occurrence of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on Satsuma mandarin. Appl. Entomol. Zool. 41, 679–684 (2006).Article 

    Google Scholar 
    Zhu, R., Guo, J. J., Yi, T. C., Xiao, R. & Jin, D. C. Preying potential of predatory mite Neoseiulus californicus to broad mite Polyphagotarsonemus latus. J. Plant Prot. 46, 465–471 (2019) ([In Chinese]).
    Google Scholar 
    Silva, D. E. et al. Impact of vineyard agrochemicals against Panonychus ulmi (Acari: Tetranychidae) and its natural enemy, Neoseiulus californicus (Acari: Phytoseiidae) in Brazil. Crop Prot. 123, 5–11 (2019).CAS 
    Article 

    Google Scholar 
    Sato, M. E., Da Silva, M. Z., De Souza Filho, M. F., Matioli, A. L. & Raga, A. Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae) and acaricides. Exp. Appl. Acarol. 42, 107–120 (2007).PubMed 
    Article 

    Google Scholar 
    De Souza-Pimentel, G. C. et al. Biological control of Tetranychus urticae (Tetranychidae) on rosebushes using Neoseiulus californicus (Phytoseiidae) and agrochemical selectivity. Rev. Colombi. Entomol. 40, 80–84 (2014).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Peterson, A. T. & Shaw, J. Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distribution, and climate change effects. Int. J. Parasitol. 33, 919–931 (2003).PubMed 
    Article 

    Google Scholar 
    Peterson, A. T. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the Concepts Right. Nat. Conserv. 10, 102–107 (2012).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. P. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article 

    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).Article 

    Google Scholar 
    Arslan, E. S. & Örücü, Ö. K. MaxEnt modelling of the potential distribution areas of cultural ecosystem services using social media data and GIS. Environ. Dev. Sustain. 23, 2655–2667 (2021).Article 

    Google Scholar 
    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species distributions areas. Biodivers. Inf. 2, 1–10 (2005).
    Google Scholar 
    Ab Lah, N. Z., Yusop, Z., Hashim, M., Salim, J. M. & Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt Species Distribution Model. Forests 12, 1449 (2021).Article 

    Google Scholar 
    Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecol. Process. 10, 1–16 (2021).Article 

    Google Scholar 
    Kamyo, T. & Asanok, L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Sci. Technol. 16, 1–7 (2020).ADS 
    Article 

    Google Scholar 
    Barber, R. A., Ball, S. G., Morris, R. K. A. & Gilbert, F. Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Divers. Distrib. 28, 128–141 (2022).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Comino, E., Fiorucci, A., Rosso, M., Terenziani, A. & Treves, A. Vegetation and Glacier Trends in the area of the Maritime Alps Natural Park (Italy): MaxEnt application to predict habitat development. Clim. 9, 54 (2021).Article 

    Google Scholar 
    Wang, R. L. et al. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Glob. Ecol. Conserv. 29, e01733 (2021).Article 

    Google Scholar 
    Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive Pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Tang, J. T., Li, J. H., Lu, H., Lu, F. P. & Lu, B. Q. Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Manag. Sci. 75, 1630–1637 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chang, Y. et al. Predicting dynamics of the potential breeding habitat of Larus saundersi by MaxEnt model under changing land-use conditions in wetland nature reserve of Liaohe Estuary, China. Remote Sens. 14, 552 (2022).ADS 
    Article 

    Google Scholar 
    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article 

    Google Scholar 
    Smeraldo, S. et al. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).Article 

    Google Scholar 
    Pörtner, H. O. et al. Climate Change 2022: The Physical Science Basis. Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 15. https://www.ipcc.ch/report/ar6/wg3/ (2022).Ahmed, S. E. et al. Scientists and software–surveying the species distribution modelling community. Divers. Distrib. 21, 258–267 (2015).Article 

    Google Scholar 
    Tognelli, M. F., Roig-Juñent, S. A., Marvaldi, A. E., Flores, G. E. & Lobo, J. M. An evaluation of methods for modelling distribution of Patagonian insects. Rev. Chil. Hist. Nat. 82, 347–360 (2009).Article 

    Google Scholar 
    Pangga, I., Salvacion, A., Hamor, N. & Yap, S. Maximum entropy (MaxEnt) modeling of the potential distribution of Aspidiotus rigidus Reyne (Hemiptera: Diaspididae) in the Philippines. Philipp. Agric. Sci. 104, 1–7 (2021).
    Google Scholar 
    Zhou, R. B. et al. Projecting the potential distribution of Glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biol. 10, 1150 (2021).Article 

    Google Scholar 
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’s distribtional areas. Biodivers. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    Soberon, J. M. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167 (2010).Article 

    Google Scholar 
    Soberon, J. M. & Nakamura, M. Niches and distributional areas: concepts, methods and assumptions. P. Natl. Acad. Sci. USA 106, 19644–19650 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, Y. X., Ji, J., Chen, X., Lin, J. Z. & Chen, B. L. The effect of temperature on reproduction and development duration of Neoseiulus (Amblyseius) californicus (Mcgregor). Fujian J. Agric. Sci. 27, 157–161 (2012) ([In Chinese]).
    Google Scholar 
    Neto, M. P., Reis, P. R., Zacarias, M. S. & Silva, R. A. Influence of rainfall on mite distribution in organic and conventional coffee systems. Coffee Sci. 5, 67–74 (2010).
    Google Scholar 
    Hu, Z., Gui, L. Y., Hua, D. K. & Luo, J. Effect of simulated rainfall on laboratory population dynamics of Tetranychus cinnabarinus. J. Environ. Entomol. 38, 936–941 (2016) ([In Chinese]).
    Google Scholar 
    Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162, 79–98 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained.Gotoh, T., Yamaguchi, K. & Mori, K. Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 32, 15–30 (2004).PubMed 
    Article 

    Google Scholar 
    Yuan, X. P., Wang, X. D., Wang, J. W. & Zhao, Y. Y. Effects of brief exposure to high temperature on Neoseiulus californicus. Ying Yong Sheng Tai Xue Bao 26, 853–858 (2015) ([In Chinese]).PubMed 

    Google Scholar 
    Zhang, G. H. et al. Intraspecific variations on thermal susceptibility in the predatory mite Neoseiulus barkeri Hughes (Acari: Phytoseiidae): responding to long-term heat acclimations and frequent heat hardenings. Biol. Control 121, 208–215 (2018).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E.[Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 17 March 2022.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. url: https://www.R-project.org/ (2021).Seyedizadeh, S., Ghane-Jahromi, M., Sedaratian-Jahromi, A. & Faraji, F. Discovery of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) in some rose greenhouses in Iran and describing variation in spermathecal calyx shape. Pers. J. Acarol. 6, 67–70 (2017).
    Google Scholar 
    Fang, X. D., Nguyen, V. L., Ouyang, G. C. & Wu, W. N. Survey of phytoseiid mites (Acari: Mesostigmata, Phytoseiidae) in citrus orchards and a key for Amblyseiinae in Vietnam. Acarologia 60, 254–267 (2020).Article 

    Google Scholar 
    Greco, N. M., Tetzlaff, G. T. & Liljesthröm, G. G. Presence–absence sampling for Tetranychus urticae and its predator Neoseiulus californicus (Acari: Tetranychidae; Phytoseiidae) on strawberries. Int. J. Pest Manag. 50, 23–27 (2004).Article 

    Google Scholar 
    Beaulieu, F. & Beard, J. J. Acarine biocontrol agents Neoseiulus californicus sensu Athias-Henriot (1977) and N. barkeri Hughes (Mesostigmata: Phytoseiidae) redescribed, their synonymies assessed, and the identity of N. californicus (McGregor) clarified based on examination of types. Zootaxa 4500, 451–507 (2018).Kawashima, M. & Jung, C. Effects of sheltered ground habitats on the overwintering potential of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards on mainland Korea. Exp. Appl. Acarol. 55, 375–388 (2011).PubMed 
    Article 

    Google Scholar 
    Koller, M., Knapp, M. & Schausberger, P. Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol. Exp. Appl. 125, 297–305 (2007).Article 

    Google Scholar 
    Ohno, S. et al. Geographic distribution of phytoseiid mite species (Acari: Phytoseiidae) on crops in Okinawa, a subtropical area of Japan. Entomol. Sci. 15, 115–120 (2012).Article 

    Google Scholar 
    Tixier, M. S., Otto, J., Kreiter, S., Dos Santos, V. & Beard, J. Is Neoseiulus wearnei the Neoseiulus californicus of Australia? Exp. Appl. Acarol. 62, 267–277 (2014).PubMed 
    Article 

    Google Scholar 
    Vacacela Ajila, H. E. et al. Supplementary food for Neoseiulus californicus boosts biological control of Tetranychus urticae on strawberry. Pest Manag. Sci. 75, 1986–1992 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, X. N., Wang, B. M., Wang, E. D. & Zhang, Z. Q. Comments on the identity of Neoseiulus californicus sensu lato (Acari: Phytoseiidae) with a redescription of this species from southern China. Syst. Appl. Acarol. 18, 329–344 (2013).
    Google Scholar 
    Pringle, K. L. & Heunis, J. M. Biological control of phytophagous mites in apple orchards in the Elgin area of South Africa using the predatory mite, Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae): a benefit-cost analysis. Afr. Entomol. 14, 113–121 (2006).
    Google Scholar 
    Tai, Y. W. et al. R package ‘corrplot’: Visualization of a Correlation Matrix. url: https://github.com/taiyun/corrplot (2021).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).Article 

    Google Scholar 
    Araujo, M. B., Pearson, R. G., Tuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).ADS 
    Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar  More

  • in

    No new evidence for an Atlantic eels spawning area outside the Sargasso Sea

    The Sargasso Sea was identified as the spawning area of the European eel (Anguilla anguilla) 100 years ago, and numerous subsequent surveys have verified that eel larvae just a week old are regularly recorded there. However, no adult eels or eel eggs have ever been found, leaving room for alternative hypotheses on the reproduction biology of this enigmatic species. Chang et al.1 theorize about an area along the Mid-Atlantic Ridge as a potential spawning ground. The main argument for this hypothesis was that the chemical signature found in eel otoliths would indicate that early stage larvae had been exposed to a volcanic environment, such as the one present along the Mid-Atlantic Ridge. Since this correlation was solely based on a mis-interpretation of cited literature data, no new, conclusive information to pinpoint the Mid-Atlantic Ridge as an additional or even alternative spawning area was presented by Chang et al.For more than 100 years, the life history of Atlantic eels remains a matter of scientific debate. In a recent paper by Chang and colleagues, published in Scientific Reports (Sci Rep 10, 15981 (2020)), it is hypothesized that the spawning areas of the European eel (Anguilla anguilla) and the American eel (A. rostrata) are located along the Mid-Atlantic Ridge at longitudes between 50° W and 40° W1. This area lies outside the Sargasso Sea, which has so far been widely assumed to be the spawning region of both species since the beginning of the twentieth century2. The Danish researcher Johannes Schmidt collected eel leptocephali 30 mm long or less, some as short as 9 mm, all south of 30° N and west of 50° W3,4. Since then, Schmidt’s assumption was supported by a number of investigations that found recently hatched European eel larvae ( More

  • in

    Caught by a whisker

    The whiskers of seals are known to function as vibration receptors. Earlier experiments with blindfolded harbour seals in captivity have for example revealed that the animals can detect small water movements, and follow the hydrodynamic trails created by passing objects. But it is unclear if seals in the wild actively use this ability to find prey.
    This is a preview of subscription content More

  • in

    Small lakes at risk from extensive solar-panel coverage

    Rafael Almeida and his colleagues estimate that floating solar panels on 5–10% of the area of large reservoirs could help the world to reach electricity decarbonization targets by 2050 (R. M. Almeida et al. Nature 606, 246–249; 2022). On small lakes in Europe and Asia, however, the existing coverage is significantly higher (averaging 50%, according to our unpublished data), with potentially greater ecological impact (G. Exley et al. Solar Energy 219, 24–33; 2021).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Evolutionary ecology of Miocene hominoid primates in Southeast Asia

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).
    Google Scholar 
    Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).ADS 

    Google Scholar 
    Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).
    Google Scholar 
    Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).
    Google Scholar 
    Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).PubMed 

    Google Scholar 
    Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).
    Google Scholar 
    Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).
    Google Scholar 
    Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).
    Google Scholar 
    Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).
    Google Scholar 
    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).Article 

    Google Scholar 
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).
    Google Scholar 
    Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).Article 

    Google Scholar 
    Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 

    Google Scholar 
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).Article 

    Google Scholar 
    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).Article 

    Google Scholar 
    Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).Article 

    Google Scholar 
    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).Article 
    PubMed 

    Google Scholar 
    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).Article 

    Google Scholar 
    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
    Google Scholar 
    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).Article 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).Article 
    PubMed 

    Google Scholar 
    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).Article 

    Google Scholar 
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).ADS 
    Article 

    Google Scholar 
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).ADS 
    Article 

    Google Scholar 
    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).Article 
    PubMed 

    Google Scholar 
    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).ADS 
    Article 

    Google Scholar 
    Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).
    Google Scholar 
    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
    Google Scholar 
    Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).
    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).ADS 
    CAS 
    Article 

    Google Scholar 
    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 

    Google Scholar 
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).Article 

    Google Scholar 
    Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).Article 

    Google Scholar 
    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).CAS 
    Article 

    Google Scholar 
    Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).
    Google Scholar 
    Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).
    Google Scholar 
    Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).
    Google Scholar 
    Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).
    Google Scholar 
    Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).CAS 
    Article 

    Google Scholar 
    Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Google Scholar 
    Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).
    Google Scholar 
    Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).Article 
    PubMed 

    Google Scholar 
    Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).Article 
    PubMed 

    Google Scholar 
    Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).Article 

    Google Scholar 
    Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).ADS 

    Google Scholar 
    Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).
    Google Scholar 
    Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).
    Google Scholar 
    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).Article 

    Google Scholar 
    Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).
    Google Scholar 
    Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).ADS 

    Google Scholar 
    Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).
    Google Scholar 
    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).
    Google Scholar 
    Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).
    Google Scholar 
    Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).Article 

    Google Scholar 
    Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).Article 
    PubMed 

    Google Scholar 
    Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).
    Google Scholar 
    Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).CAS 
    PubMed 

    Google Scholar 
    Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).
    Google Scholar 
    Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).Article 

    Google Scholar 
    Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).ADS 

    Google Scholar  More

  • in

    Reference database of teeth images from the Family Bovidae

    Fossil remains from the Family Bovidae, such as antelopes and buffalo, are frequently used to reconstruct past environments1,2,3. Bovids reflect distinct ecological adaptations in terms of diet, habitat, water dependence, and seasonal migrations that vary according to their respective ecological niches. Widespread cooling in the late Miocene led to a major adaptive radiation of the bovids, and increasingly they began to exploit more open environments4,5,6. Thus, by approximately 4 Ma, bovids came to dominate the African fauna, replacing the previously abundant suids7,8,9. The current distribution of bovids extends across the African continent in myriad environments that differ significantly in proportions of wood and grass cover.The importance of bovid remains to paleoanthropological research was established initially by Broom10,11 and Wells and Cooke12. This dependence has been expanded and now ranges from paleodietary studies and evolutionary trends to hominin behavioral patterns13,14,15. In addition, several studies have demonstrated that changes in the relative abundance of bovid taxa reflected in fossil assemblages are indicative of fluctuations in environmental conditions, as bovids appear to be particularly responsive to environmental changes16,17,18.Bovid teeth, in particular isolated teeth, make up a majority of the southern African fossil record. Thus, bovid teeth, coupled with their ecological tendencies, are important sources of information for reconstructing the paleoenvironments associated with the fossil hominins. Taxonomic identification of fossil bovid teeth, however, is often problematic; biasing factors such as age and degree of wear complicate identifications and often result in considerable overlap in the shape and size of teeth. Traditionally, researchers rely upon modern and fossil comparative collections to identify isolated bovid teeth. However, researchers are somewhat limited by travel and the specific type and number of bovids housed at each institution. Here, we present B.O.V.I.D. (Bovidae Occlusal Visual IDentification) which is a repository of images of the occlusal surface of bovid teeth (~3900). The purpose of the database is to allow researchers to visualize a large sample of teeth from different tribes, genera, and species. The sample includes the three upper and three lower molars in multiple states of wear from the seven most common tribes in the southern African fossil record and the twenty most common species from those tribes. This design will help researchers see the natural variation that exists within a specific tooth type of a taxon and, with the current sample, help taxonomically identify extant and fossil teeth with modern counterparts. More