The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity
Pigliucci, M. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20, 481–486 (2005).PubMed
Article
Google Scholar
Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).PubMed
Article
Google Scholar
Xue, B. & Leibler, S. Benefits of phenotypic plasticity for population growth in varying environments. PNAS 115, 12745–12750 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
Scheiner, S. Selection experiments and the study of phenotypic plasticity. J. Evol. Biol. 15, 889–898 (2002).Article
Google Scholar
Garland, T. & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed
Article
Google Scholar
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS
PubMed
Article
Google Scholar
Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).Article
Google Scholar
Gu, L. et al. Induction and reversibility of Ceriodaphnia cornuta horns under varied intensity of predation risk and their defensive effectiveness against Chaoborus larvae. Freshw. Biol. 66, 1200–1210 (2021).Article
Google Scholar
Van Buskirk, J. & Steiner, U. The fitness costs of developmental canalization and plasticity. J. Evol. Biol. 22, 852–860 (2009).PubMed
Article
Google Scholar
Zhang, C. et al. Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural Daphnia population. Mol. Ecol. 30, 2285–2297 (2021).CAS
PubMed
Article
Google Scholar
Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. Lond. B Biol. Sci. 20, 25 (2009).
Google Scholar
Tsuji, H., Taoka, K.-I. & Shimamoto, K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14, 45–52 (2011).CAS
PubMed
Article
Google Scholar
Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS
PubMed
Article
Google Scholar
Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: Roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).CAS
PubMed
Article
Google Scholar
Nozawa, M., Kawahara, Y. & Nei, M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc. Natl. Acad. Sci. 104, 20421–20426 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).CAS
PubMed
Article
Google Scholar
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).CAS
PubMed
Article
Google Scholar
Andersen, S. L. Trajectories of brain development: Point of vulnerability or window of opportunity?. Neurosci. Biobehav. Rev. 27, 3–18 (2003).PubMed
Article
Google Scholar
Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC Dev. Biol. 10, 1 (2010).Article
CAS
Google Scholar
Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
Boidron-Metairon, I. F. Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 119, 31–41 (1988).Article
Google Scholar
Miner, B. G. Larval feeding structure plasticity during pre-feeding stages of echinoids: Not all species respond to the same cues. J. Exp. Mar. Biol. Ecol. 343, 158–165 (2007).Article
Google Scholar
Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun. 12, 4306 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Byrne, M., Sewell, M. & Prowse, T. Nutritional ecology of sea urchin larvae: Influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article
Google Scholar
Sewell, M. A., Cameron, M. J. & McArdle, B. H. Developmental plasticity in larval development in the echinometrid sea urchin Evechinus chloroticus with varying food ration. J. Exp. Mar. Biol. Ecol. 309, 219–237 (2004).Article
Google Scholar
Adams, D. K., Sewell, M. A., Angerer, R. C. & Angerer, L. M. Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat. Commun. 2, 592 (2011).ADS
PubMed
Article
CAS
Google Scholar
Williamson, D. The Origins of Larvae (Springer, 2003).Book
Google Scholar
McIntyre, D. C., Lyons, D. C., Martik, M. & McClay, D. R. Branching out: Origins of the sea urchin larval skeleton in development and evolution. Genesis 52, 173–185 (2014).PubMed
PubMed Central
Article
Google Scholar
Littlewood, D. & Smith, A. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos. Trans. R. Soc. B Biol. Sci. 347, 213–234 (1995).ADS
CAS
Article
Google Scholar
Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212 (2010).Article
Google Scholar
Smith, A. B. et al. Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol. Biol. Evol. 23, 1832–1851 (2006).CAS
PubMed
Article
Google Scholar
Reitzel, A. M. & Heyland, A. Reduction in morphological plasticity in echinoid larvae: Relationship of plasticity with maternal investment and food availability. Evol. Ecol. Res. 9, 109–121 (2007).
Google Scholar
McAlister, J. S. Evolutionary responses to environmental heterogeneity in Central American echinoid larvae: Plastic versus constant phenotypes. Evolution 62, 1358–1372 (2008).PubMed
Article
Google Scholar
Soars, N. A., Prowse, T. A. A. & Byrne, M. Overview of phenotypic plasticity in echinoid larvae, ‘Echinopluteus transversus’ type vs typical echinoplutei. Mar. Ecol. Progress Ser. 383, 113–125 (2009).ADS
Article
Google Scholar
Eckert, G. L. A novel larval feeding strategy of the tropical sand dollar, Encope michelini (Agassiz): Adaptation to food limitation and an evolutionary link between planktotrophy and lecithotrophy. J. Exp. Mar. Biol. Ecol. 187, 103–128 (1995).Article
Google Scholar
Miner, B. G. & Vonesh, J. R. Effects of fine grain environmental variability on morphological plasticity. Ecol. Lett. 7, 794–801 (2004).Article
Google Scholar
Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 20, 972–986 (1992).Article
Google Scholar
Poorbagher, H., Lamare, M. D., Barker, M. F. & Rayment, W. Relative importance of parental diet versus larval nutrition on development and phenotypic plasticity of Pseudechinus huttoni larvae (Echinodermata: Echinoidea). Mar. Biol. Res. 6, 302–314 (2010).Article
Google Scholar
Bertram, D. F. & Strathmann, R. R. Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology 79, 315–327 (1998).Article
Google Scholar
Miner, B. G. Evolution of feeding structure plasticity in marine invertebrate larvae: A possible trade-off between arm length and stomach size. J. Exp. Mar. Biol. Ecol. 315, 117–125 (2005).Article
Google Scholar
McAlister, J. S. Egg size and the evolution of phenotypic plasticity in larvae of the echinoid genus Strongylocentrotus. J. Exp. Mar. Biol. Ecol. 352, 306–316 (2007).Article
Google Scholar
McIntyre, D. C., Seay, N. W., Croce, J. C. & McClay, D. R. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 140, 4881–4889 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Adomako-Ankomah, A. & Ettensohn, C. A. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 140, 4214–4225 (2013).CAS
PubMed
Article
Google Scholar
Duloquin, L., Lhomond, G. & Gache, C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134, 2293–2302 (2007).CAS
PubMed
Article
Google Scholar
Ettensohn, C. A. Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136, 11–21 (2009).CAS
PubMed
Article
Google Scholar
Rafiq, K., Shashikant, T., McManus, C. J. & Ettensohn, C. A. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141, 950–961 (2014).CAS
PubMed
Article
Google Scholar
Röttinger, E. et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353–365 (2008).PubMed
Article
CAS
Google Scholar
Cavalieri, V., Spinelli, G. & Di Bernardo, M. Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev. Biol. 262, 107–118 (2003).CAS
PubMed
Article
Google Scholar
Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).CAS
PubMed
Article
Google Scholar
Ryu, S. et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr. Biol. 17, 873–880 (2007).CAS
PubMed
Article
Google Scholar
Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75–88 (2003).CAS
PubMed
Article
Google Scholar
Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 300, 349–365 (2006).CAS
PubMed
Article
Google Scholar
Zigler, K. S. & Lessios, H. Speciation on the coasts of the new world: Phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58, 1225–1241 (2004).CAS
PubMed
Article
Google Scholar
Maggio, R. & Millan, M. J. Dopamine D2–D3 receptor heteromers: Pharmacological properties and therapeutic significance. Curr. Opin. Pharmacol. 10, 100–107 (2010).CAS
PubMed
Article
Google Scholar More