More stories

  • in

    Impacts of urban expansion on natural habitats in global drylands

    Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, 2005).Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).Article 

    Google Scholar 
    Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).Article 

    Google Scholar 
    He, C. et al. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 14, 034008 (2019).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2019).Article 

    Google Scholar 
    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, 2013).van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).Article 

    Google Scholar 
    Sharp, R. et al. InVEST 3.2.0 User’s Guide (The Natural Capital Project, Stanford Univ., Univ. Minnesota, The Nature Conservancy and World Wildlife Fund, 2015).Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016).CAS 
    Article 

    Google Scholar 
    Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).Article 
    CAS 

    Google Scholar 
    McDonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).Article 

    Google Scholar 
    Mirzabaev, A. et al. in Climate Change and Land (eds Shukla, P. R. et al.) 249–343 (IPCC, 2019).Friis, C. & Nielsen, J. Telecoupling. Exploring Land-use Change in a Globalised World (Palgrave Macmillan, 2019).Maestre, F. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    Leh, M. D. K., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: a case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).Article 

    Google Scholar 
    Whitford, W. & Wade, E. L. Ecology of Desert Systems (Academic Press, 2002).Brito, J. C. et al. Conservation biogeography of the Sahara‐Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384 (2016).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Article 
    CAS 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Díaz, S. M. et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019).Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    Article 

    Google Scholar 
    Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).Article 

    Google Scholar 
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Phil. Soc. 82, 607–645 (2007).Article 

    Google Scholar 
    McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. C. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2017-3 (IUCN, 2017); https://www.iucnredlist.org/resources/spatial-data-downloadTucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).CAS 
    Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).CAS 
    Article 

    Google Scholar 
    Guidelines for Geoconservation in Protected and Conserved Areas (IUCN, 2020).Gao, J. How China will protect one-quarter of its land. Nature 569, 457 (2019).CAS 
    Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Gao, B., Huang, Q., He, C., Sun, Z. & Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 148, 89–98 (2016).Article 

    Google Scholar 
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Lambin, E. A. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).CAS 
    Article 

    Google Scholar 
    Arlidge, W. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).Article 

    Google Scholar 
    Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).Article 

    Google Scholar 
    Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).Article 

    Google Scholar 
    Ramaswami, A. et al. A social‐ecological‐infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16, 801–813 (2012).Article 

    Google Scholar 
    Boerema, A. et al. Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 11, e0155222 (2016).Article 
    CAS 

    Google Scholar 
    Garrett, R. D., Lambin, E. F. & Naylor, R. L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 31, 385–396 (2013).Article 

    Google Scholar 
    Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W. & Shi, S. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).Article 

    Google Scholar 
    Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manage. 125, 38–46 (2016).Article 

    Google Scholar 
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 201510272 (2016).
    Google Scholar 
    García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).Article 

    Google Scholar 
    Martínez-Valderrama, J., Guirado, E. & Maestre, F. Desertifying deserts. Nat. Sustain. 3, 572–575 (2020).Article 

    Google Scholar 
    Maestre, F. et al. Biogeography of global drylands. New Phytol. 231, 540–558 (2021).Article 

    Google Scholar 
    United Nations Environment World Conservation Monitoring Centre. World dryland areas according to UNCCD and CBD definitions. https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08 (2022).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).Article 

    Google Scholar 
    Revision of World Urbanization Prospects (United Nations, 2018); https://esa.un.org/unpd/wupLand Cover CCI—Product User Guide Version 2.0. (European Space Agency, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/index.phpGrekousis, G., Mountrakis, G. & Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335 (2015).Article 

    Google Scholar 
    Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Change Biol. 25, 2137–2151 (2019).Article 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).Article 

    Google Scholar 
    Huang, Q. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 084037 (2020).Article 

    Google Scholar 
    He, C., Liu, Z., Tian, J. & Ma, Q. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Change Biol. 20, 2886–2902 (2014).Article 

    Google Scholar 
    Di Febbraro, M. et al. Expert-based and correlative models to map habitat quality: which gives better support to conservation planning? Glob. Ecol. Conserv. 16, e00513 (2018).Article 

    Google Scholar 
    Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115 (2010).Article 

    Google Scholar  More

  • in

    Astronomically controlled aridity in the Sahara since at least 11 million years ago

    Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).Article 

    Google Scholar 
    Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).Article 

    Google Scholar 
    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).Article 

    Google Scholar 
    Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).Article 

    Google Scholar 
    McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).Article 

    Google Scholar 
    Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).Article 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).Article 

    Google Scholar 
    Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).Article 

    Google Scholar 
    Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).Article 

    Google Scholar 
    Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).Article 

    Google Scholar 
    McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).Article 

    Google Scholar 
    Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).Article 

    Google Scholar 
    Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).Article 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).Article 

    Google Scholar 
    Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).Article 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 

    Google Scholar 
    Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).Article 

    Google Scholar 
    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).Article 

    Google Scholar 
    Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).Article 

    Google Scholar 
    Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).Article 

    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).Article 

    Google Scholar 
    Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).Article 

    Google Scholar 
    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).Article 

    Google Scholar 
    Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).Article 

    Google Scholar 
    Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).Article 

    Google Scholar 
    Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).Article 

    Google Scholar 
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).Article 

    Google Scholar 
    Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).Article 

    Google Scholar 
    Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).Article 

    Google Scholar 
    Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).Article 

    Google Scholar 
    DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).Article 

    Google Scholar 
    Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).Article 

    Google Scholar 
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).Article 

    Google Scholar 
    Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).Article 

    Google Scholar 
    Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).Article 

    Google Scholar 
    Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).Article 

    Google Scholar 
    Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).Article 

    Google Scholar 
    Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).Article 

    Google Scholar 
    Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).Article 

    Google Scholar 
    Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).Article 

    Google Scholar 
    Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).Article 

    Google Scholar 
    Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).Article 

    Google Scholar 
    Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).Article 

    Google Scholar 
    McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).Article 

    Google Scholar 
    Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).Article 

    Google Scholar 
    Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).Article 

    Google Scholar 
    Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).Article 

    Google Scholar 
    Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).Article 

    Google Scholar 
    Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).Article 

    Google Scholar 
    Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).Article 

    Google Scholar 
    Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).Article 

    Google Scholar 
    Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).Article 

    Google Scholar 
    Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).
    Google Scholar 
    Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).Article 

    Google Scholar 
    Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).
    Google Scholar 
    Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).Article 

    Google Scholar 
    Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).Article 

    Google Scholar 
    Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).Article 

    Google Scholar 
    Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).Article 

    Google Scholar 
    Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).Article 

    Google Scholar 
    Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).Article 

    Google Scholar 
    Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).Article 

    Google Scholar 
    Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).Article 

    Google Scholar 
    Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).Article 

    Google Scholar 
    Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).Article 

    Google Scholar 
    Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).Article 

    Google Scholar 
    Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).Article 

    Google Scholar 
    Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).Article 

    Google Scholar  More

  • in

    Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world

    IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) Contribution of working group 1 to the ‘Sixth assessment report of the intergovernmental panel on climate change’ (Cambridge University Press, 2021).Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosc. 7, 716–721 (2014).CAS 
    Article 

    Google Scholar 
    Lin, L., Gettelman, A., Feng, S. & Fu, Q. Simulated climatology and evolution of aridity in the 21st century. J. Geophys. Res. Atmos. 120, 5795–5815 (2015).Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).Article 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C. & Diffenbaugh, N. S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 526, 196–207 (2015).Article 

    Google Scholar 
    Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth Syst. Dyn. 9, 267–283 (2018).Article 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).Article 

    Google Scholar 
    Harpold, A. A. et al. Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol. Process. 29, 2782–2798 (2015).Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).PubMed 
    Article 

    Google Scholar 
    Parton, W. et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adair, E. C. et al. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob. Change Biol. 14, 2636–2660 (2008).Article 

    Google Scholar 
    Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A. & Lin, Y. Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems. Ecosphere 8, e01892 (2017).Article 

    Google Scholar 
    Chen, M. et al. Simulation of the effects of photodecay on long-term litter decay using DayCent. Ecosphere 7, e01631 (2016).
    Google Scholar 
    Asao, S., Parton, W. J., Chen, M. & Gao, W. Photodegradation accelerates ecosystem N cycling in a simulated California grassland. Ecosphere 9, e02370 (2018).Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article 

    Google Scholar 
    Whitford, W. G. & Duval, B. D. Ecology of Desert Systems 2nd edn (Academic Press, 2020).Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 21, 1407–1421 (2015).Article 

    Google Scholar 
    Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).Article 

    Google Scholar 
    Kim, D.-G., Mu, S., Kang, S. & Lee, D. Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biol. Biochem. 42, 576–585 (2010).Article 
    CAS 

    Google Scholar 
    Curiel Yuste, J., Janssens, I. A., Carrara, A., Meiresonne, L. & Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23, 1263–1270 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savage, K., Davidson, E. A., Richardson, A. D. & Hollinger, D. Y. Three scales of temporal resolution from automated soil respiration measurements. Agric. Meteorol. 149, 2012–2021 (2009).Article 

    Google Scholar 
    Hao, Y., Wang, Y., Mei, X. & Cui, X. The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecol. 209, 335–347 (2010).Article 

    Google Scholar 
    Krüger, J. P., Beckedahl, H., Gerold, G. & Jungkunst, H. F. Greenhouse gas emission peaks following natural rewetting of two wetlands in the southern Ukhahlamba-Drakensberg Park, South Africa. S. Afr. Geogr. J. 96, 113–118 (2013).Article 

    Google Scholar 
    Haverd, V., Ahlström, A., Smith, B. & Canadell, J. G. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob. Change Biol. 23, 793–800 (2017).Article 

    Google Scholar 
    Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).CAS 
    Article 

    Google Scholar 
    Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol. 193, 830–841 (2012).PubMed 
    Article 

    Google Scholar 
    Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).PubMed 
    Article 

    Google Scholar 
    Mooney, H. A., Gulmon, S. L., Rundel, P. W. & Ehleringer, J. Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44, 177–180 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richards, J. H. & Caldwell, M. M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73, 486–489 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell, M. M., Dawson, T. E. & Richards, J. H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151–161 (1998).PubMed 
    Article 

    Google Scholar 
    Brooks, J. R., Meinzer, F. C., Coulombe, R. & Gregg, J. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22, 1107–1117 (2002).PubMed 
    Article 

    Google Scholar 
    Lee, J. E., Oliveira, R. S., Dawson, T. E. & Fung, I. Root functioning modifies seasonal climate. Proc. Natl Acad. Sci. USA 102, 17576–17581 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, J. L., Slater, L. D. & Schäfer, K. V. R. Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. J. Hydrol. 430-431, 69–79 (2012).Article 

    Google Scholar 
    Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).PubMed 
    Article 

    Google Scholar 
    Zapater, M. et al. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885–894 (2011).Article 

    Google Scholar 
    Sardans, J. & Peñuelas, J. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology 7, 1–20 (2014).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems. J. Ecol. 90, 480–494 (2002).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017).
    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. New Phytol. 219, 1156–1169 (2018).PubMed 
    Article 

    Google Scholar 
    Agam, N. & Berliner, P. R. Dew formation and water vapor adsorption in semi-arid environments – a review. J. Arid. Environ. 65, 572–590 (2006).Article 

    Google Scholar 
    Dirks, I., Navon, Y., Kanas, D., Dumbur, R. & Grünzweig, J. M. Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob. Change Biol. 16, 2799–2812 (2010).Article 

    Google Scholar 
    Jacobson, K. et al. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS ONE 10, e0126977 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A. & Schwartz, E. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci. Rep. 5, 13767 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).PubMed 
    Article 

    Google Scholar 
    Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).Article 

    Google Scholar 
    Benzing, D. H. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim. Change 39, 519–540 (1998).Article 

    Google Scholar 
    Evans, S., Todd-Brown, K. E. O., Jacobson, K. & Jacobson, P. Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems 23, 1154–1169 (2020).CAS 
    Article 

    Google Scholar 
    Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C. & Groene, L. C. Influence of rain, tidal wetting and relative-humidity on release of carbon-dioxide by standing-dead salt-marsh plants. Oecologia 68, 73–79 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuehn, K. A., Steiner, D. & Gessner, M. O. Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85, 2504–2518 (2004).Article 

    Google Scholar 
    Doerr, S. H., Shakesby, R. A. & Walsh, R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51, 33–65 (2000).Article 

    Google Scholar 
    Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–26596 (2011).Article 

    Google Scholar 
    Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W. & Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments 19, 171–185 (2019).Article 

    Google Scholar 
    Doerr, S. H., Shakesby, R. A., Dekker, L. W. & Ritsema, C. J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57, 741–754 (2006).Article 

    Google Scholar 
    Lebron, I., Robinson, D. A., Oatham, M. & Wuddivira, M. N. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol. 414-415, 194–200 (2012).CAS 
    Article 

    Google Scholar 
    Buczko, U., Bens, O. & Hüttl, R. F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126, 317–336 (2005).Article 

    Google Scholar 
    Dekker, L. W. & Ritsema, C. J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 28, 89–105 (1996).CAS 
    Article 

    Google Scholar 
    de Blas, E., Almendros, G. & Sanz, J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils. Geoderma 206, 75–84 (2013).Article 
    CAS 

    Google Scholar 
    MacDonald, L. H. & Huffman, E. L. Post-fire soil water repellency. Soil Sci. Soc. Am. J. 68, 1729–1734 (2004).CAS 
    Article 

    Google Scholar 
    Hewelke, E. et al. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 10, 1121 (2018).Article 
    CAS 

    Google Scholar 
    Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).Article 

    Google Scholar 
    Siteur, K. et al. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 19, 1210–1224 (2016).CAS 
    Article 

    Google Scholar 
    Austin, A. T. & Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555–558 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    King, J. Y., Brandt, L. A. & Adair, E. C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111, 57–81 (2012).Article 

    Google Scholar 
    Moorhead, D. L. & Callaghan, T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol. Fertil. Soils 18, 19–26 (1994).CAS 
    Article 

    Google Scholar 
    Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Austin, A. T., Mendez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G. & Sinsabaugh, R. L. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13, 765–781 (2010).CAS 
    Article 

    Google Scholar 
    Pieristè, M. et al. Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 191, 191–203 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, C. et al. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. For. Ecol. Manage. 409, 225–232 (2018).Article 

    Google Scholar 
    Marinho, O. A., Martinelli, L. A., Duarte-Neto, P. J. R., Mazzi, E. A. & King, J. Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Sci. Total Environ. 715, 136601 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Q. W. et al. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol. 229, 2625–2636 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutledge, S., Campbell, D. I., Baldocchi, D. & Schipper, L. A. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob. Change Biol. 16, 3065–3074 (2010).
    Google Scholar 
    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).Article 

    Google Scholar 
    Zepp, R. G., Erickson, D. J. III, Paul, N. D. & Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10, 261–271 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Austin, A. Has water limited our imagination for aridland biogeochemistry? Trends Ecol. Evol. 26, 229–235 (2011).PubMed 
    Article 

    Google Scholar 
    McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. L. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Change Biol. 18, 1185–1195 (2012).Article 

    Google Scholar 
    Wang, B., Lerdau, M. & He, Y. Widespread production of nonmicrobial greenhouse gases in soils. Glob. Change Biol. 23, 4472–4482 (2017).Article 

    Google Scholar 
    Soper, F. M., McCalley, C. K., Sparks, K. & Sparks, J. P. Soil carbon dioxide emissions from the Mojave desert: isotopic evidence for a carbonate source. Geophys. Res. Lett. 44, 245–251 (2017).CAS 
    Article 

    Google Scholar 
    Day, T. A. & Bliss, M. S. Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss. Ecosystems 23, 1344–1361 (2020).CAS 
    Article 

    Google Scholar 
    Throop, H. L. & Belnap, J. Connectivity dynamics in dryland litter cycles: moving decomposition beyond spatial stasis. Bioscience 69, 602–614 (2019).Article 

    Google Scholar 
    Throop, H. L. & Archer, S. R. Resolving the dryland decomposition conundrum: some new perspectives on potential drivers. Prog. Bot. 70, 171–194 (2009).CAS 

    Google Scholar 
    Barnes, P. W. et al. in Progress in Botany Vol. 76 (eds Lüttge, U. & Beyschlag, W.) 273–302 (Springer, 2015).Barnes, P. W., Throop, H. L., Hewins, D. B., Abbene, M. L. & Archer, S. R. Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15, 311–321 (2012).CAS 
    Article 

    Google Scholar 
    Joly, F. X., Kurupas, K. L. & Throop, H. L. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).PubMed 
    Article 

    Google Scholar 
    Weber, B., Büdel, B. & Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands Vol. 226 (Springer, 2016).Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).Article 

    Google Scholar 
    Belnap, J. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1, 181–189 (2003).Article 

    Google Scholar 
    Rodríguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).Article 
    CAS 

    Google Scholar 
    Hawkes, C. V. & Flechtner, V. R. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43, 1–12 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Langhans, T. M., Storm, C. & Schwabe, A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58, 394–407 (2009).PubMed 
    Article 

    Google Scholar 
    Veluci, R. M., Neher, D. A. & Weicht, T. R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 51, 189–196 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabała, J. & Rahmonov, O. Cyanophyta and algae as an important component of biological crust from the Pustynia Błędowska Desert (Poland). Pol. Bot. J. 49, 93–100 (2004).
    Google Scholar 
    Thiet, R. K., Boerner, R. E. J., Nagy, M. & Jardine, R. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278, 235–251 (2005).CAS 
    Article 

    Google Scholar 
    Jentsch, A. & Beyschlag, W. Vegetation ecology of dry acidic grasslands in the lowland area of Central Europe. Flora 198, 3–25 (2003).Article 

    Google Scholar 
    Dümig, A. et al. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. CATENA 122, 196–208 (2014).Article 
    CAS 

    Google Scholar 
    Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).Article 

    Google Scholar 
    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldridge, D. J. & Greene, R. S. B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389–415 (1994).Article 

    Google Scholar 
    Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M., Maestre, F. T., Rodríguez, J. G. P. & Gallardo, A. Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol. Biochem. 62, 22–27 (2013).CAS 
    Article 

    Google Scholar 
    Meron, E. From patterns to function in living systems: dryland ecosystems as a case study. Annu. Rev. Condens. Matter Phys. 9, 79–103 (2018).Article 

    Google Scholar 
    Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).PubMed 
    Article 

    Google Scholar 
    Meron, E. Vegetation pattern formation: the mechanisms behind the forms. Phys. Today 72, 30–36 (2019).Article 

    Google Scholar 
    Gandhi, P., Iams, S., Bonetti, S. & Silber, M. in Dryland Ecohydrology 2nd edn (eds D’Odorico, P. et al.) 469–509 (Springer, 2019).Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lejeune, O., Tlidi, M. & Couteron, P. Localized vegetation patches: a self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002).CAS 
    Article 

    Google Scholar 
    Belyea, L. R. & Lancaster, J. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. J. Ecol. 90, 223–234 (2002).Article 

    Google Scholar 
    Eppinga, M. B. et al. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11, 520–536 (2008).CAS 
    Article 

    Google Scholar 
    Hiemstra, C. A., Liston, G. E. & Reiners, W. A. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell. 197, 35–51 (2006).Article 

    Google Scholar 
    Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86, 2695–2704 (2005).Article 

    Google Scholar 
    Stanton, D. E., Armesto, J. J. & Hedin, L. O. Ecosystem properties self-organize in response to a directional fog-vegetation interaction. Ecology 95, 1203–1212 (2014).PubMed 
    Article 

    Google Scholar 
    van de Koppel, J., van der Wal, D., Bakker, J. P. & Herman, P. M. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).PubMed 
    Article 

    Google Scholar 
    Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).PubMed 
    Article 

    Google Scholar 
    Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bera, B. K., Tzuk, O., Bennett, J. J. & Meron, E. Linking spatial self-organization to community assembly and biodiversity. eLife 10, e73819 (2021).Garcia-Moya, E. & McKell, C. M. Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51, 81–88 (1970).Article 

    Google Scholar 
    Peters, D. P. C. et al. Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56, 491–501 (2006).Article 

    Google Scholar 
    Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).Article 

    Google Scholar 
    Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).Article 

    Google Scholar 
    Fahnestock, J. T., Povirk, K. L. & Welker, J. M. Ecological significance of litter redistribution by wind and snow in Arctic landscapes. Ecography 23, 623–631 (2000).Article 

    Google Scholar 
    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J. & Bhattachan, A. The interactive role of wind and water in functioning of drylands: what does the future hold? Bioscience 68, 670–677 (2018).Article 

    Google Scholar 
    Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).Article 

    Google Scholar 
    Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255 (2017).Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X.-G. et al. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087 (2020).CAS 
    Article 

    Google Scholar 
    Mulder, C. et al. Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. Adv. Ecol. Res. 49, 69–175 (2013).Article 

    Google Scholar 
    Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).CAS 
    Article 

    Google Scholar 
    Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee, T., De Roo, F. & Mauder, M. Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrol. Earth Syst. Sci. 21, 2987–3000 (2017).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).CAS 
    Article 

    Google Scholar 
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).De Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).Article 

    Google Scholar 
    Pan, N. et al. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends. Remote Sens. Environ. 214, 59–72 (2018).Article 

    Google Scholar 
    Mueller, T. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6, 5717–5731 (2014).Article 

    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).PubMed 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Stocker, B. D. et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).CAS 
    Article 

    Google Scholar 
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).Article 

    Google Scholar 
    Davenport, D. W., Breshears, D. D., Wilcox, B. P. & Allen, C. D. Viewpoint: sustainability of piñon-juniper ecosystems – a unifying perspective of soil erosion thresholds. J. Range Manage. 51, 231 (1998).Article 

    Google Scholar 
    Briske, D. D., Fuhlendorf, S. D. & Smeins, F. E. A unified framework for assessment and application of ecological thresholds. Rangel. Ecol. Manage. 59, 225–236 (2006).Article 

    Google Scholar 
    Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).Article 

    Google Scholar 
    Haase, P. et al. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Halbritter, A. H. et al. The handbook for standardised field and laboratory measurements in terrestrial climate‐change experiments and observational studies (ClimEx). Methods Ecol. Evol. 11, 22–37 (2020).Article 

    Google Scholar 
    De Boeck, H. J. et al. Global change experiments: challenges and opportunities. Bioscience 65, 922–931 (2015).Article 

    Google Scholar 
    Kreyling, J. et al. To replicate, or not to replicate – that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).De Boeck, H. J. et al. Understanding ecosystems of the future will require more than realistic climate change experiments – a response to Korell et al. Glob. Change Biol. 26, e6–e7 (2020).Article 

    Google Scholar 
    Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: where have we been and where might we go? Glob. Change Biol. 26, 287–299 (2020).Article 

    Google Scholar 
    Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).Article 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonicke, K. et al. Advancing the understanding of adaptive capacity of social‐ecological systems to absorb climate extremes. Earths Future 8, e2019EF001221 (2020). More

  • in

    Density estimates reveal that fragmented landscapes provide important habitat for conserving an endangered mesopredator, the spotted-tailed quoll

    Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993. https://doi.org/10.1111/jbi.12478 (2015).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502. https://doi.org/10.1046/j.1523-1739.2002.00386.x (2002).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178. https://doi.org/10.1111/1365-2664.12282 (2014).Article 

    Google Scholar 
    Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104. https://doi.org/10.1111/j.1523-1739.2007.00719.x (2007).Article 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Farris, Z. J. et al. Hunting, exotic carnivores, and habitat loss: Anthropogenic effects on a native carnivore community, Madagascar. PLOS ONE 10, e0136456. https://doi.org/10.1371/journal.pone.0136456 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farris, Z. J. et al. Threats to a rainforest carnivore community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biol. Cons. 210, 116–124. https://doi.org/10.1016/j.biocon.2017.04.010 (2017).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of “resistant” vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18. https://doi.org/10.1046/j.1472-4642.2003.00158.x (2003).Article 

    Google Scholar 
    Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: The importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-MAMM-A-149.1 (2012).Article 

    Google Scholar 
    Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    Fleschutz, M. M. et al. Response of a small felid of conservation concern to habitat fragmentation. Biodivers. Conserv. 25, 1447–1463. https://doi.org/10.1007/s10531-016-1118-6 (2016).Article 

    Google Scholar 
    Gálvez, N. et al. Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47, 251–258. https://doi.org/10.1017/S0030605312000099 (2013).Article 

    Google Scholar 
    Belcher, C. A. Demographics of tiger quoll (Dasyurus maculatus maculatus) populations in south-eastern Australia. Aust. J. Zool. 51, 611–626. https://doi.org/10.1071/ZO02051 (2003).Article 

    Google Scholar 
    Maxwell, S., Burbidge, A. & Morris, K. Spotted-tailed Quoll (SE mainland and Tas); recovery outline. (1996).Jones, M. E., Rose, R. K. & Burnett, S. Dasyurus maculatus. Mammalian Species 676, 1–9 (2001).Article 

    Google Scholar 
    Long, K. & Nelson, J. National recovery plan for the spotted-tailed Quoll Dasyurus maculatus. Victorian Department of Sustainability and Environment (2010).Claridge, A. W. et al. Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildl. Res. 32, 7–14. https://doi.org/10.1071/WR04031 (2005).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. J. Zool. 268, 347–354. https://doi.org/10.1111/j.1469-7998.2006.00064.x (2006).Article 

    Google Scholar 
    Körtner, G. et al. Population structure, turnover and movement of spotted-tailed quolls on the New England Tablelands. Wildl. Res. 31, 475–484. https://doi.org/10.1071/WR03041 (2004).Article 

    Google Scholar 
    Belcher, C. The Largest Surviving Marsupial Carnivore on Mainland Australia: The Tiger or Spotted-Tailed Quoll Dasyurus maculatus, A Nationally Threatened, Forest-Dependent Species 612–623 (Royal Zoological Society of New South Wales, Sydney, 2004).
    Google Scholar 
    Henderson, T., Fancourt, B. A., Rajaratnam, R., Vernes, K. & Ballard, G. Spatial and temporal interactions between endangered spotted-tailed quolls and introduced red foxes in a fragmented landscape. J. Zool. https://doi.org/10.1111/jzo.12919 (2021).Article 

    Google Scholar 
    Troy, S. N. Spatial Ecology of the Tasmanian Spotted-Tailed Quoll. Ph.D. Thesis, University of Tasmania, (2014).Jones, M. E. et al. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. Ecol. Manag. Restor. 22, 65–74. https://doi.org/10.1111/emr.12504 (2021).Article 

    Google Scholar 
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports 7, 1–11. https://doi.org/10.1038/s41598-017-11454-z (2017).CAS 
    Article 

    Google Scholar 
    Nichols, J. D. in Applied Ecology and Human Dimensions in Biological Conservation (eds L. M. Verdade, M.C. Lyra-Jorge, & C.I. Pina) 117–131 (Springer, 2014).Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. in Spatial Capture-Recapture (eds J. Andrew Royle, Richard B. Chandler, Rahel Sollmann, & Beth Gardner) 3–19 (Academic Press, 2014).Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriol. 56, 335–342. https://doi.org/10.1007/s13364-011-0038-9 (2011).Article 

    Google Scholar 
    Vissia, S., Wadhwa, R. & van Langevelde, F. Co-occurrence of high densities of brown hyena and spotted hyena in central Tuli, Botswana. J. Zool. 314, 143–150. https://doi.org/10.1111/jzo.12873 (2021).Article 

    Google Scholar 
    Henderson, T., Fancourt, B. A. & Ballard, G. The importance of species-specific survey designs: Prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Aust. Mammalogy https://doi.org/10.1071/AM21039 (2022).Gorta, S. B. Z., Alting, B., Claridge, A. & Henderson, T. Apparent piebald variants in quolls (Dasyurus): Examples of three recent cases in the spotted-tailed quoll Dasyurus maculatus. Aust. Mammalogy 43, 373–377. https://doi.org/10.1071/AM20058 (2021).Article 

    Google Scholar 
    Kowalksi, M. (https://exifpro.informer.com/2.1/, 2011).Efford, M. in R package version 4.5.3 (2022).R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, London, 2016).
    Google Scholar 
    Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610. https://doi.org/10.1111/j.0030-1299.2004.13043.x (2004).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462. https://doi.org/10.1111/2041-210X.12600 (2016).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 70–71 (2002).MATH 

    Google Scholar 
    Hamer, R. P. et al. Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Res. 49, 158–168. https://doi.org/10.1071/WR20134 (2021).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80, 387–401. https://doi.org/10.1017/s1464793105006718 (2005).Article 
    PubMed 

    Google Scholar 
    Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecol. 36, 290–296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Population viability analysis shows spotted-tailed quolls may be vulnerable to competition. Aust Mammalogy 35, 180–183. https://doi.org/10.1071/AM12045 (2013).Article 

    Google Scholar 
    Graham, C. A., Maron, M. & McAlpine, C. A. Influence of landscape structure on invasive predators: Feral cats and red foxes in the brigalow landscapes, Queensland Australia. Wildl. Res. 39, 661–676. https://doi.org/10.1071/WR12008 (2012).Article 

    Google Scholar 
    Glen, A. S. Population attributes of the spotted-tailed quoll (Dasyurus maculatus) in north-eastern New South Wales. Aust. J. Zool. 56, 137–142. https://doi.org/10.1071/ZO08025 (2008).Article 

    Google Scholar 
    Chua, M. A., Sivasothi, N. & Meier, R. Population density, spatiotemporal use and diet of the leopard cat (Prionailurus bengalensis) in a human-modified succession forest landscape of Singapore. Mammal Res. 61, 99–108 (2016).Article 

    Google Scholar 
    Lorica, M. & Heaney, L. Survival of a native mammalian carnivore, the leopard cat Prionailurus bengalensis Kerr, 1792 (Carnivora: Felidae), in an agricultural landscape on an oceanic Philippine island. J. Threatened Taxa, 4451–4460 (2013).Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).Article 

    Google Scholar 
    Belcher, C. A. & Darrant, J. P. Den use by the spotted-tailed quoll Dasyurus maculatus in south-eastern Australia. Aust Mammalogy 28, 59–64. https://doi.org/10.1071/AM06007 (2006).Article 

    Google Scholar 
    Glen, A. & Dickman, C. Why are there so many spotted-tailed Quolls Dasyurus maculatus in parts of north-eastern New South Wales?. Aust Zool 35, 711–718. https://doi.org/10.7882/az.2011.023 (2011).Article 

    Google Scholar 
    Hanski, I. Metapopulation ecology (Oxford University Press, Oxford, 1999).
    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Belcher, C. A. Susceptibility of the tiger quoll, Dasyurus maculatus, and the eastern quoll, D. viverrinus, to 1080-poisoned baits in control programmes for vertebrate pests in eastern Australia. Wildl. Res. 25, 33–40. https://doi.org/10.1071/WR95077 (1998).Article 

    Google Scholar 
    Schmidt, G. M., Graves, T. A., Pederson, J. C. & Carroll, S. L. Precision and bias of spatial capture–recapture estimates: A multi-site, multi-year Utah black bear case study. Ecological Applications 32, e2618. https://doi.org/10.1002/eap.2618 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. Capture-Recapture and Removal Methods for Sampling Closed Populations (Los Alamos National Laboratory, New Mexico, 1982).
    Google Scholar 
    Thornton, D. H. & Pekins, C. E. Spatially explicit capture–recapture analysis of bobcat (Lynx rufus) density: Implications for mesocarnivore monitoring. Wildl. Res. 42, 394–404. https://doi.org/10.1071/WR15092 (2015).Article 

    Google Scholar 
    Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Cons. 144, 1017–1024 (2011).Article 

    Google Scholar 
    Green, A. M., Chynoweth, M. W. & Şekercioğlu, Ç. H. Spatially explicit capture-recapture through camera trapping: A review of benchmark analyses for wildlife density estimation. Front. Ecol. Evol. 8, 473. https://doi.org/10.3389/fevo.2020.563477 (2020).Article 

    Google Scholar 
    du Preez, B. D., Loveridge, A. J. & Macdonald, D. W. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Cons. 176, 153–161 (2014).Article 

    Google Scholar 
    Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).Article 

    Google Scholar 
    Dupont, P., Milleret, C., Gimenez, O. & Bischof, R. Population closure and the bias-precision trade-off in spatial capture–recapture. Methods Ecol. Evol. 10, 661–672. https://doi.org/10.1111/2041-210X.13158 (2019).Article 

    Google Scholar 
    Mergey, M., Helder, R. & Roeder, J. J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335. https://doi.org/10.1644/09-MAMM-A-366.1 (2011).Article 

    Google Scholar 
    Silmi, M. et al. Activity and ranging behavior of leopard cats (Prionailurus bengalensis) in an oil palm landscape. Frontiers in Environmental Science 9, 651939. https://doi.org/10.3389/fenvs.2021.651939 (2021).Article 

    Google Scholar  More

  • in

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Basic information of intervieweesResults of the descriptive analysis summarized in Table 2 show that more than half of the respondents were males (69%) and were on average 41.3 years old while more than 32 years of farming experience. The study area is comprised of multiple ethnic groups (Han, Tibetan, Yugur, Mongolian, Hui, etc.). In most cases, the main livelihood activity of the Ethnic Minorities (Tibetan, Yugur, Mongolian, Hui, etc.) is livestock, while Han people main livelihood activity is farming. The majority of respondents (64%) were minority nationality. The vast majority of the agro-pastoralists (86%) have a primary school education or above, even though only 1% of them have Undergraduate education or Above. The results also reveal that 92% of respondents have access to weather information. The average cultivated land Per household is 10.23 Mu and Grassland is 156.21 Mu, respectively. The average per household income is RMB78000, and agricultural income is RMB52000.Table 2 Descriptive statistics of agro-pastoralist characteristics.Full size tableDue to their long-term farming experience, the agro-pastoralists were expected to have a high-level of understanding of local climate knowledge. Also contributing to this could be the information they receive about climate change and for some, the associated training through agro-pastoralists’ associations. Therefore, they also have a propensity to adapt to adverse conditions resulting from climate change impacts. In addition, the high-level of farming experience, the cultivated-land size, grassland size, Credit loan, Insurance, Village cadres all have a positive impact on the level of agro-pastoralists’ adaptation to new climate scenarios.However, the education level and cadres experience may be the major limiting factors for adopting specific long-term adaptation strategies. Ethnicity and gender are also expected to be key factors influencing awareness and adaptation to climate change. There are differences in relative perception intensity between Ethnic Minority and Han because of their cultural ecology (the main livelihood activity of minorities nationality is livestock, while Han main livelihood activity is farming.). In terms of gender, women in rural areas are less mobile and have less access to information and rights. They are also heavily involved in domestic work. However, men may have easier access to information (socializing, going out to work, etc.) Therefore, male headed households are expected to be more likely to adapt to the impact of climate change.Climate change trend in the study areaFigure 2 shows the trend of annual precipitation, annual rainfall and annual snow at different meteorological stations in the study area. As shown in the Fig. 2, precipitation, rainfall and snow show an increasing trend, but the increase range of snow (0.0325–0.375/a) is significantly lower than that of precipitation (1.22–3.1/a) and rainfall (1.04–2.81/a). Similarly, through the inspection, it is found that the multi-collinearity among precipitation, rainfall and snow at each meteorological station is obvious (most R2  > 0.5, and p  More

  • in

    Comparing dormancy in two distantly related tunicates reveals morphological, molecular, and ecological convergences and repeated co-option

    Hand, S.C. Metabolic dormancy in aquatic invertebrates. In Advances in Comparative and Environmental Physiology, Vol. 8 (ed. Gilles, R.) 1–50. https://doi.org/10.1007/978-3-642-75900-0_1 (1991).Cáceres, C. E. Dormancy in Invertebrates. Invertebr. Biol. 116(4), 371–383. https://doi.org/10.2307/3226870 (1997).Article 

    Google Scholar 
    Wilsterman, K., Ballinger, M. A. & Williams, C. M. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11–31. https://doi.org/10.1111/1365-2435.13718 (2021).Article 

    Google Scholar 
    Bertolani, R., Guidetti, R., Altiero, T., Nelson, D. R. & Rebecchi, L. Dormancy in Freshwater Tardigrades. In Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae Vol. 92 (eds Alekseev, V. & Pinel-Alloul, B.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-21213-1_3.Chapter 

    Google Scholar 
    Guidetti, R., Altiero, T. & Rebecchi, L. On dormancy strategies in tardigrades. J. Insect Physiol. 57(5), 567–576. https://doi.org/10.1016/j.jinsphys.2011.03.003 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42(3), 246–256. https://doi.org/10.1111/phen.12193 (2017).CAS 
    Article 

    Google Scholar 
    Wang, Y., Ezemaduka, A. N., Tang, Y. & Chang, Z. Understanding the mechanism of the dormant dauer formation of C. elegans: From genetics to biochemistry. IUBMB Life 61(6), 607–12. https://doi.org/10.1002/iub.211 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dias, I. B., Bouma, H. R. & Henning, R. H. Unraveling the big sleep: Molecular aspects of stem cell dormancy and hibernation. Front. Physiol. 12, 624950. https://doi.org/10.3389/fphys.2021.624950 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic regulation and gene expression during aestivation. Prog. Mol. Subcell. Biol. 49, 25–45. https://doi.org/10.1007/978-3-642-02421-4_2 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hand, S. C., Denlinger, D. L., Podrabsky, J. E. & Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(11), R1193–R1211. https://doi.org/10.1152/ajpregu.00250.2015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ikeda, H., Ohtsu, K. & Uye, S. I. Fine structure, histochemistry, and morphogenesis during excystment of the podocysts of the giant jellyfish Nemopilema nomurai (Scyphozoa, Rhizostomeae). Biol. Bull. 221(3), 248–260 (2011).PubMed 
    Article 

    Google Scholar 
    Bushnell, J. H. & Rao, K. S. Dormant or quiescent stages and structures among the Ectoprocta: Physical and chemical factors affecting viability and germination of statoblasts. Trans. Am. Microsc. Soc. 93, 524–543. https://doi.org/10.2307/3225156 (1974).Article 

    Google Scholar 
    Hyman, L. H. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta Vol. III (McGraw-Hill, 1951).
    Google Scholar 
    Mukai, H. & Toshiki, M. Studies on the regeneration of an entoproct, Barentsia discreta. J. Exp. Zool. 205(2), 261–276. https://doi.org/10.1002/jez.1402050210 (1978).Article 

    Google Scholar 
    Nakauchi, M. Asexual development of ascidians: Its biological significance, diversity, and morphogenesis. Am. Zool. 22(4), 753–763. https://doi.org/10.1093/icb/22.4.753 (1982).Article 

    Google Scholar 
    Hyams, Y., Paz, G., Rabinowitz, C. & Rinkevich, B. Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev. Biol. 428(1), 101–117. https://doi.org/10.1016/j.ydbio.2017.05.020 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown, C. J. D. A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Microsc. Soc. 52, 271–313 (1933).CAS 
    Article 

    Google Scholar 
    Mukai, H. Development of freshwater bryozoans (Phylactolaemata). In Developmental Biology of Freshwater Invertebrates (eds Harrison, R. W. & Cowden, R. R.) 535–576 (Alan R. Liss Inc., 1982).
    Google Scholar 
    Wood, T. S. Phyla ectoprocta and entoprocta (Bryozoans). In Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 327–345 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00016-4.Chapter 

    Google Scholar 
    Simpson, T. L. The Cell Biology of Sponges (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5214-6.Book 

    Google Scholar 
    Alié, A., Hiebert, L. S., Scelzo, M. & Tiozzo, S. The eventful history of nonembryonic development in tunicates. J. Exp. Zool. Part B Mol. Dev. Evol. 33(3), 181–217. https://doi.org/10.1002/jez.b.22940 (2020).Article 

    Google Scholar 
    Brown, F. D. & Swalla, B. J. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev. Biol. 3692, 151–162 (2012).Article 
    CAS 

    Google Scholar 
    Kawamura, K. & Fujiwara, S. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates. Semin. Cell Biol. 6, 117–126 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kassmer, S. H., Langenbacher, A. D. & De Tomaso, A. W. Integrin-alpha-6+ candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat. Commun. 11(1), 4435–4511. https://doi.org/10.1038/s41467-020-18288-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman, G. The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J. Exp. Zool. 156, 157–183 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kürn, U., Rendulic, S., Tiozzo, S. & Lauzon, R. J. Asexual propagation and regeneration in colonial ascidians. Biol. Bull. 221(1), 43–61. https://doi.org/10.1086/BBLv221n1p43 (2011).Article 
    PubMed 

    Google Scholar 
    Sköld, H. N., Obst, M., Sköld, M. & Åkesson, B. Stem cells in asexual reproduction of marine invertebrates. In Stem Cells in Marine Organisms (eds Rinkevich, B. & Matranga, V.) 105–137 (Springer, Dordrecht, 2009).Chapter 

    Google Scholar 
    Tiozzo, S., Brown, F. D. & De Tomaso, A. W. Regeneration and stem cells in ascidians. In Stem Cells (ed. Bosch, T. C. G.) (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8274-0_6.Chapter 

    Google Scholar 
    Mukai, H., Koyama, H. & Watanabe, H. Studies on the reproduction of three species of Perophora (Ascidiacea). Biol. Bull. 164(2), 251–266 (1983).Article 

    Google Scholar 
    Huxley, J. Memoirs: studies in dedifferentiation: II. Dedifferentiation and resorption in Perophora. Q. J. Microsc. Sci. s2-65(260), 643–697 (1921).
    Google Scholar 
    Huxley, J. Studies in dedifferentiation. VI. Reduction phenomena in Clavelina lepadiformis. Pubb. Staz. Zool. Napoli. 7, 1–34 (1926).
    Google Scholar 
    Turon, X. Periods of nonfeeding in Polysyncraton-lacazei (Ascidiacea, Didemnidae)—A process. Mar. Biol. 112, 647–655 (1992).Article 

    Google Scholar 
    Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Giard, M. A. & Caullery, M. On the hibernation of Clavelina lepadiformis, Müller. Ann. Mag. Nat. Hist. 18(108), 485–486. https://doi.org/10.1080/00222939608680499 (1896).Article 

    Google Scholar 
    Orton, J. H. The production of living Clavellina Zooids in winter by experiment. Nature 107, 75. https://doi.org/10.1038/107075a0 (1921).ADS 
    Article 

    Google Scholar 
    Della, Valle P. Studii sui rapporti fra differenziazione e rigenerazione. 4. Bollettino Della Società Dei Naturalisti in Napoli 7, 1–37 (1915).
    Google Scholar 
    Scelzo, M. et al. Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. EvoDevo https://doi.org/10.1186/s13227-019-0121-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berrill, N. J. Regeneration and budding in tunicates. Biol. Rev. 26, 456–475. https://doi.org/10.1111/j.1469-185X.1951.tb01207.x/full (1951).Article 

    Google Scholar 
    Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197. https://doi.org/10.1029/1999JC000065 (2001).ADS 
    Article 

    Google Scholar 
    Berrill, N. J. & Cohen, A. Regeneration in Clavelina lepadiformis. J. Exp. Biol. 13(3), 352–362. https://doi.org/10.1242/jeb.13.3.352 (1936).Article 

    Google Scholar 
    Jiménez-Merino, J. et al. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo https://doi.org/10.1186/s13227-019-0144-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics UK 7, 1051–1073 (2015).CAS 
    Article 

    Google Scholar 
    Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. In DNA Methylation: Development, Genetic Disease and Cancer: Current Topics in Microbiology and Immunology Vol. 310 (eds Doerfler, W. & Böhm, P.) (Springer, 2006). https://doi.org/10.1007/3-540-31181-5_7.Chapter 

    Google Scholar 
    Orton, J. H. Preliminary account of a contribution to an evaluation of the sea. J. Mar. Biol. Assoc. UK 10(2), 312–326. https://doi.org/10.1017/S0025315400007815 (1914).Article 

    Google Scholar 
    Mukai, H. Histological and histochemical studies of two compound ascidians, Clavelina lepadiformis and Diazona violacea, with special reference to the trophocytes, ovary and pyloric gland. Sci. Rep. Fac. Educ. Gunma Univ. 26, 37–77 (1977).
    Google Scholar 
    de Caralt, S., López-Legentil, S., Tarjuelo, I., Uriz, M. J. & Turon, X. Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Mar. Ecol. Prog. Ser. 244, 125–137 (2002).ADS 
    Article 

    Google Scholar 
    Turon, X. A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebr. Biol. 124(3), 273–283. https://doi.org/10.1111/j.1744-7410.2005.00025.x (2005).Article 

    Google Scholar 
    Pyo, J. & Shin, S. A new record of invasive alien colonial tunicate Clavelina lepadiformis (Ascidiacea: Aplousobranchia: Clavelinidae) in Korea. Anim. Syst. Evol. Divers. 27, 197–200 (2011).Article 

    Google Scholar 
    Reinhardt, J. et al. First record of the non-native light bulb tunicate Clavelina lepadiformis (Müller, 1776) in the northwest Atlantic. Aquat. Invasions 5(2), 185–190. https://doi.org/10.3391/ai.2010.5.2.09 (2010).Article 

    Google Scholar 
    Turon, X., Tarjuelo, I., Duran, S. & Pascual, M. Characterising invasion processes with genetic data: An Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503(1–3), 29–35. https://doi.org/10.1023/b:hydr.0000008481.10705.c2 (2003).Article 

    Google Scholar 
    Van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist. 84, 1–476 (1945).
    Google Scholar 
    Carman, M. et al. Ascidians at the Pacific and Atlantic entrances to the Panama Canal. Aquat. Invasions 6(4), 371–380. https://doi.org/10.3391/ai.2011.6.4.02 (2011).Article 

    Google Scholar 
    Holman, L. E. et al. Managing human-mediated range shifts: Understanding spatial, temporal and genetic variation in marine non-native species. Philos. Trans. R. Soc. B 377, 20210025 (2022).CAS 
    Article 

    Google Scholar 
    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Marine Ecology Progress Series 259, 145–161. https://doi.org/10.3354/meps259145 (2003).ADS 
    Article 

    Google Scholar 
    Brunetti, R. Polyandrocarpa zorritensis (Van Name, 1931). A colonial ascidian new to the Mediterranean record. Vie et Milieu 28–29, 647–652 (1978).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. The non-indigenous stolidobranch ascidian Polyandrocarpa zorritensis in the Mediterranean: Description, larval morphology and pattern of vascular budding. Zootaxa 528, 1–8 (2004).Article 

    Google Scholar 
    Mastrototaro, F., D’Onghia, G. & Tursi, A. Spatial and seasonal distribution of ascidians in a semi-enclosed basin of the Mediterranean Sea. J. Mar. Biol. Assoc. UK 88, 1053–1061 (2008).Article 

    Google Scholar 
    Stabili, L., Licciano, M., Longo, C., Lezzi, M. & Giangrande, A. The Mediterranean non- indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications. Mar. Pollut. Bull. 101, 146–152 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turon, X. & Becerro, M. A. Growth and survival of several ascidian species from the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 82, 235–247 (1992).ADS 
    Article 

    Google Scholar 
    Sumida, P. Y. G. et al. Pressure tolerance of tadpole larvae of the Atlantic ascidian Polyandrocarpa zorritensis: Potential for deep-sea invasion. Braz. J. Oceanogr. 63, 515–520 (2015).Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Responses of compound ascidian larvae to haloclines. Mar. Ecol. Prog. Ser. 133, 179–190 (1996).ADS 
    Article 

    Google Scholar 
    Vázquez, E. & Young, C. M. Ontogenetic changes in phototaxis during larval life of the Ascidian Polyandrocarpa zorritensis (Van Name, 1931). J. Exp. Mar. Biol. Ecol. 231, 267–277 (1998).Article 

    Google Scholar 
    Brien, P. & Brien-Gavage, E. Contribution à l’étude de la Blastogénèse des Tuniciers: III: Bourgeonnement de Clavelina Lepadiformis Müller. Recueil de L’Institut Zoologique Torley-Rousseau 1–56 (1927).Fujimoto, H. & Watanabe, H. The characterization of granular amoebocytes and their possible roles in the asexual reproduction of the polystyelid ascidian, Polyzoa vesiculiphora. J. Morphol. 150(3), 623–637. https://doi.org/10.1002/jmor.1051500303 (1976).Article 
    PubMed 

    Google Scholar 
    Cima, F., Franchi, N. & Ballarin, L. Origin and functions of tunicate hemocytes. In The Evolution of the Immune System (ed. Malagoli, D.) 29–49 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801975-7/00002-5.Chapter 

    Google Scholar 
    Kerb, H. Biologische Beiträge zur Frage der Überwinterung der Ascidien. Arch. Mikrosk. Anat. 72(1), 386–414 (1908).Article 

    Google Scholar 
    Driesch, H. Studien über das Regulationsvermögen de Organismen. 6. Die Restitutionen der Clavellina lepadiformis. Arch. F. Entw.-Mech. 14, 247–287 (1902).Article 

    Google Scholar 
    Schultz, E. Über Reductionen. III. Die Reduction und Regeneration des abgeschnitten Kiemenkorbes von Clavellina lepadiformis. Arch. Entw. Mech. Org. 24, 503–523 (1907).
    Google Scholar 
    Spek, J. Über die Winterknospenentwicklung, Regeneration und Reduktion bei Clavellina lepadiformis und die Bedeutung besonderer “omnipotenter” Zellelemente für diese Vorgänge. Wilhelm Roux’Archiv Entwicklungsmechanik der Org 111(119), 172 (1927).
    Google Scholar 
    Brien, P. Contribution à l’étude de la régéneration naturelle et expérimentale chez les Clavelinidae. Soc. R. Zool. Belg. Ann LXI, 19–112 (1930).
    Google Scholar 
    Ries, E. Die Tropfenzellen und ihre Bedeutung für die Tunicabildung bei Clavelina. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 363–371. https://doi.org/10.1007/BF00593066 (1937).Article 
    PubMed 

    Google Scholar 
    Fischer, I. Über das Verhalten des stolonialen Gewebes der Ascidie Clavelina lepadiformis in vitro. Wilhelm Roux Arch. Entwickl. Mech. Org. 137(3), 383–403. https://doi.org/10.1007/BF00593068 (1937).Article 
    PubMed 

    Google Scholar 
    Seelinger, O. Eibildung und Knospung von Clavelina lepadiformis. Sitzungsber. d. Kais. Kgl. Acad. d. Wiss 1–56 (1882).Van Beneden, E. & Julin, C. Recherches sur la morphologie des tuniciers. Arch. Biol. 6, 237–476 (1886).
    Google Scholar 
    Garstang, W. Memoirs: The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. J. Cell Sci. 1928(2), 51–187 (1928).Article 

    Google Scholar 
    Kimura, K. D., Tissenbaum, H. A., Liu, Y. X. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ogawa, A. & Brown, F. Dauer formation and dauer-specific behaviours in Pristionchus pacificus. In Pristionchus pacificus—A nematode model for comparative and evolutionary biology (ed. Sommer, R. J.) (Brill, 2015). https://doi.org/10.1163/9789004260306_011.Chapter 

    Google Scholar 
    Wisdom, R. AP-1: One switch for many signals. Exp. Cell Res. 253(1), 180–185. https://doi.org/10.1006/excr.1999.4685 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M. Beyond casual resemblances: rigorous frameworks for comparing regeneration across species. Annu. Rev. Cell Dev. Biol. 37, 1–26 (2021).Article 
    CAS 

    Google Scholar 
    Alié, A. et al. Convergent acquisition of nonembryonic development in styelid ascidians. Mol. Biol. Evol. 35, 1728–1743. https://doi.org/10.1093/molbev/msy068 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, 1. https://doi.org/10.1371/journal.pbio.1001725 (2013).CAS 
    Article 

    Google Scholar 
    Prünster, M. M., Ricci, L., Brown, F. D. & Tiozzo, S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo https://doi.org/10.1186/s13227-019-0116-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawamura, K., Shiohara, M., Kanda, M. & Fujiwara, S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev. Biol. 384, 343–355 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol. 5, e71. https://doi.org/10.1371/journal.pbio.0050071 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 4(1), 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krueger, F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. https://doi.org/10.1038/nbt.1883 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Research 6, 1287. https://doi.org/10.12688/f1000research.12232.1 (2017).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene prediction (ed. Kollmar, M.) 227–245 (Humana, New York, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14.Chapter 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-021-01101-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100 (2021).CAS 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15(2), 1–17. https://doi.org/10.1186/gb-2014-15-2-r29 (2014).CAS 
    Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12(1), 35. https://doi.org/10.1186/1471-2105-12-35 (2011).Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).CAS 
    Article 

    Google Scholar 
    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009).Article 
    CAS 

    Google Scholar  More

  • in

    Ecological memory of prior nutrient exposure in the human gut microbiome

    Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, et al. Quantifying ecological memory in plant and ecosystem processes. Ecol Lett. 2015;18:221–35.PubMed 
    Article 

    Google Scholar 
    Schweiger AH, Boulangeat I, Conradi T, Davis M, Svenning JC. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach. Biol Rev. 2019;94:1–15.Article 

    Google Scholar 
    Webster CR, Dickinson YL, Burton JI, Frelich LE, Jenkins MA, Kern CC, et al. Promoting and maintaining diversity in contemporary hardwood forests: confronting contemporary drivers of change and the loss of ecological memory. Ecol Manag. 2018;421:98–108.Article 

    Google Scholar 
    Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM, Heron SF, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Change. 2019;9:40–43.Article 

    Google Scholar 
    Stockwell SR, Landry CR, Rifkin SA. The yeast galactose network as a quantitative model for cellular memory. Mol Biosyst. 2015;11:28–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE. 2008;3:e1700.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lyon P. The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 2015;6:264.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith MB, Rocha AM, Smillie CS, Olesen SW, Paradis C, Wu L, et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio. 2015;6:e00326–15.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cordeiro MC, Garcia GD, Rocha AM, Tschoeke DA, Campeão ME, Appolinario LR, et al. Insights on the freshwater microbiomes metabolic changes associated with the world’s largest mining disaster. Sci Total Environ. 2019;654:1209–17.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kuster SP, Rudnick W, Shigayeva A, Green K, Baqi M, Gold WL, et al. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin Infect Dis. 2014;59:944–52.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.PubMed 
    Article 
    CAS 

    Google Scholar 
    David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial succession follows acute secretory diarrhea in humans. mBio. 2015;6:e00381–15.PubMed 
    PubMed Central 

    Google Scholar 
    Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184:615–27.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540:544–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Coyte KZ, Rakoff-Nahoum S. Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol. 2019;29:R538–R544.Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25:789–802.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tarini J, Wolever TMS. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab. 2010;35:9–16.PubMed 
    Article 
    CAS 

    Google Scholar 
    van Loo J, Coussement P, de Leenheer L, Hoebreg H, Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35:525–52.PubMed 
    Article 

    Google Scholar 
    Holmes ZC, Silverman JD, Dressman HK, Wei Z, Dallow EP, Armstrong SC, et al. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. mBio. 2020;11:e00914–20.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22:261–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silverman JD, Durand HK, Bloom RJ, Mukherjee S, David LA. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome. 2018;6:1–20.Article 

    Google Scholar 
    Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, et al. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe. 2008;14:280–86.den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.Article 
    CAS 

    Google Scholar 
    Reichardt N, Vollmer M, Holtrop G, Farquharson FM, Wefers D, Bunzel M, et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2018;12:610–22.PubMed 
    Article 
    CAS 

    Google Scholar 
    Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–52.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533:255–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.PubMed 
    Article 
    CAS 

    Google Scholar 
    van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007;102:452–60.PubMed 

    Google Scholar 
    Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 2016;167:114–25.PubMed 
    Article 
    CAS 

    Google Scholar 
    Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA 2014;111:7427–32.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, et al. The Virtual Metabolic Human database: Integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 2019;47:D614–D624.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li H, Liu F, Lu J, Shi J, Guan J, Yan F, et al. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front Microbiol. 2020;11:512.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2018;46:D677–D683.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bolam DN, van den Berg B. TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Curr Opin Struct Biol. 2018;51:35–43.PubMed 
    Article 
    CAS 

    Google Scholar 
    Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr. 2004;91:915–23.PubMed 
    Article 
    CAS 

    Google Scholar 
    Holmes ZC, Villa MM, Durand HK, Jiang S, Dallow EP, Petrone BL, et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. bioRxiv. 2021. https://doi.org/10.1101/2021.06.26.450023.Holscher HD, Gregory Caporaso J, Hooda S, Brulc JM, Fahey GC, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;101:55–64.Liu H, Liao C, Wu L, Tang J, Chen J, Lei C, et al. Ecological dynamics of the gut microbiome in response to dietary fiber. ISME J. 2022;16:2040–55.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaczmarek JL, Musaad SMA, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 2017;106:1220–31.Basan M, Honda T, Christodoulou D, Hörl M, Chang YF, Leoncini E, et al. A universal trade-off between growth and lag in fluctuating environments. Nature. 2020;584:470–4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340.PubMed 
    Article 

    Google Scholar 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMed 
    Article 

    Google Scholar 
    Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11:1–11.Article 
    CAS 

    Google Scholar 
    Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22.PubMed 
    Article 
    CAS 

    Google Scholar 
    Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wissel EF, Smith LK. Inter-individual variation shapes the human microbiome. Behav Brain Sci. 2019;42:E79.Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, et al. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep. 2021;37:110113.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kerimi A, Kraut NU, da Encarnacao JA, Williamson G. The gut microbiome drives inter- and intra-individual differences in metabolism of bioactive small molecules. Sci Rep. 2020;10:1–12.Article 
    CAS 

    Google Scholar 
    di Bartolomeo F, van den Ende W. Fructose and fructans: opposite effects on health? Plant Foods Hum Nutr. 2015;70:227–37.Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun. 2014;5:1–9.Article 
    CAS 

    Google Scholar 
    Oliphant K, Parreira VR, Cochrane K, Allen-Vercoe E. Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity. ISME J. 2019;13:3080–92.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2004;49:495–507.PubMed 
    Article 
    CAS 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(supplement_1):4516–22.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–D122.Bioinformatics B, Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.Webb EC. Enzyme nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of Enzymes. Cambridge, MA, USA: Academic Press; 1992.Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, et al. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem. 2021;296:100125.Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE. 2013;8:e67019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sakamoto M, Ohkuma M. Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology. 2011;157:3388–97.PubMed 
    Article 

    Google Scholar 
    Silverman JD, Roche K, Holmes ZC, David LA, Mukherjee S. Bayesian multinomial logistic normal models through marginally latent matrix-T processes. J Mach Learn Res. 2022;23:1–42.
    Google Scholar  More

  • in

    Influence of the intertropical convergence zone on early cretaceous plant distribution in the South Atlantic

    The pre-evaporitic, evaporitic, and post-evaporitic phases are recognized for the late Aptian. These phases are recorded within the K40–K50 sequences (Fig. 2A), and show an average maximum thickness of approximately 650 m in the studied basins. The pre-evaporitic phase is represented by carbonate and siliciclastic deposits formed in fluvial and lacustrine deltaic environments within a large proto-oceanic gulf28 (Fig. 2A). The peak of the evaporitic deposition is recorded in the K50 sequence, with widespread occurrences in the Brazilian equatorial margin. The origin of these deposits is the heat intensification associated with the widening of the Atlantic Ocean. These conditions caused strong evaporation leading to a wide distribution of evaporites (mainly halite and anhydrite gypsum) in the South Atlantic basins. The eastern continental margin of Brazil contains a restricted marine section characterized by evaporites, which are particularly prominent in thickness and occurrence in the Espírito Santo Basin (Itaúnas Member of the Mariricu Formation) and the Sergipe Basin (the Ibura Member of the Muribeca Formation)28. Evaporites form the most prominent evidence of dry climates in the South Atlantic basins11, with evaporation exceeding precipitation. The post-evaporitic phase is characterized by fully marine conditions evidenced by rich assemblages of marine fossils. During this phase, carbonates were deposited, followed by muddy and sandy sediments in shallow-marine and slope environments.Figure 2Paleoclimatic phases scheme and principal component analysis for paleoclimatic phases. (A) Paleoclimatic phases scheme for the late Aptian and the main depositional environments. (B) Principal component plot of bioclimatic groups. (C) Principal component for the pre-evaporitic phase (N = 92), evaporitic phase (N = 78), and post-evaporitic phase (N = 385); see Supplementary Fig. 9 for individual basins.Full size imagePaleovegetationWe identified a rich plant community with 139 spore and pollen genera/morphotypes representing all plant groups: bryophytes (five genera), ferns (58 genera), lycophytes (18 genera), pteridosperms (one genus), gymnosperms (27 genera), and angiosperms (30 genera) (Supplementary Table 2). The inferred systematic affinities at the family level reached 100% in bryophytes, 56.9% in ferns, 100% in lycophytes, 100% in pteridosperms, 92.6% in gymnosperms, and 40.0% in angiosperms, totaling 67.6% of the recorded genera (Supplementary Table 2). Marine elements (e.g., dinoflagellate cysts and microforaminiferal linings) were identified, in particular from the Sergipe and Araripe basins (Fig. 1). Pollen grains from gymnosperms were most abundant, represented mainly by the conifer families Cheirolepidiaceae, Araucariaceae, and Podocarpaceae, although representing different climatic settings. Classopollis (Cheirolepidiaceae) is the most abundant genus in all sections studied, followed by Araucariacites (Araucariaceae). Gymnosperms showed low diversity. Spore-producing plants are the most diverse in the assemblages of all basins (82 genera) and represented by several families of bryophytes, ferns, and lycophytes (e.g., Sphagnaceae, Anemiaceae, Cyatheaceae, Marsileaceae, Selaginellaceae, and Lycopodiaceae). These plant groups depend on water to reproduce and are therefore associated with humid settings.Cicatricosisporites (Anemiaceae) is the third most abundant palynomorph in all the basins, but especially in the northeastern basins (e.g., Sergipe Basin). Angiosperms are among the least abundant; however, they are diverse and include the most abundant and controversial genus Afropollis, herein attributed to angiosperms. In the most recent publication that addressed this question, ref.29 suggest that Afropollis should be treated as an angiosperm genus, although without more precise systematic assignment. The 30 genera/morphotypes of angiosperms are assigned to 8 families, viz., Arecaceae, Chloranthaceae, Euphorbiaceae, Flacourtiaceae, Illiciaceae, Liliaceae, Solanaceae and Trimeniaceae. The second most abundant genus is Stellatopollis also without precise systematic assignment.Spatio-temporal distribution of bioclimatic groupsOn the basis of their botanical affinities, most taxa were classified into five bioclimatic groups [see “Methods” section and Supplementary information], viz., hydrophytes, hygrophytes, tropical lowland flora, upland flora, and xerophytes (Supplementary Table 2) (Fig. 3).Figure 3Relevant palynomorphs of bioclimatic groups: (1) Aequitriradites sp.; (2) Crybelosporites sp.; (3) Perotriletes sp.; (4) Cicatricosisporites sp.; (5) Echinatisporis sp.; (6) Verrucosisporites sp.; (7) Bennettitaepollenites sp.; (8) Stellatopollis sp.; (9) Afropollis sp.; (10) Dejaxpollenites microfoveolatus; (11) Classopollis classoides; (12) Equisetosporites ovatus; (13) Gnetaceaepollenites jansonii; (14) Regalipollenites sp.; (15) Araucariacites sp.; (16) Callialasporites dampieri; (17) Complicatissacus cearensis; (18) Cyathidites sp.. Scale bar 20 µm.Full size imageOverall, the vegetation is dominated by the xerophytic bioclimatic group on account of the very high abundance of Classopollis (Cheirolepidiaceae) (general mean of 60.5%). However, the stratigraphic distribution of the bioclimatic groups in the sections studied (Supplementary Figs. 1–6) indicates wet phases confirmed by the curves of the other bioclimatic groups (hygrophytes, hydrophytes, tropical lowland flora, and upland flora). We used Pearson correlation analysis (Supplementary Fig. 7) to assess the correlation between the bioclimatic groups. The analysis revealed positive correlations between the bioclimatic groups of hygrophytes, hydrophytes, tropical lowland flora, and upland flora, and a negative correlation between these groups and the xerophyte group (Supplementary Fig. 7). The positive correlation between upland flora and hygrophytes confirms previous studies for the Sergipe Basin6,7, suggesting a relation between these groups and the hot and humid climate. The weak negative correlation between tropical lowland flora and upland flora is presumably related to elevation.The upland flora forms the second most abundant bioclimatic group, with an average of 18.9%. The large number of specimens of Araucariacites (Araucariaceae) in this group is notable. The hydrophytes are the least abundant group, with an average of only 1.4%. In this group, the highest values are attributed to the genus Crybelosporites (Marsileaceae).Principal component analyses (PCA) were used to reduce the multidimensional dataset, based on the percent abundance of the bioclimatic groups to a smaller number of dimensions for interpretive analysis. For all sections, two components or axes explain 97.6% of the observed variability (Fig. 2B). Hygrophytes, hydrophytes, tropical lowland flora, and upland flora show positive correlation (positive loading, 0.320, 0.029, 0.006, and 0.468, respectively), whereas xerophytes show a negative relationship (negative loading, − 0.823) on the first axis, which alone explains 83.0% of the variability. In summary, the first axis of the PCA reveals a separation of two major climatic conditions (wet and dry) along the axis (Fig. 2B). The wet conditions include the associations of hygrophytes, hydrophytes, tropical lowland flora, and upland flora, with dry conditions associated with taxa from the xerophyte group. The second axis explains 14.6%, in which hygrophytes, hydrophytes, and tropical lowland flora show a positive correlation relationship (positive loading, 0.719, 0.037, 0.036, respectively), whereas upland flora and xerophytes show a negative relationship (negative loading, − 0.684 and − 0.108, respectively). With respect to the second axis, a polarization between the hygrophytes (positive loading, 0.719) and the upland flora (negative loading, − 0.684) can be interpreted as a lowland–upland trend. The same pattern was recorded for all paleoclimatic phases (Fig. 2C) and sections (Supplementary Fig. 8), that is, the first axis is related to humidity vs. aridity, and the second axis to elevation (lowland vs. upland). This suggests that these two factors, particularly the first one, controlled the vegetation distribution in the late Aptian of the region. As all bioclimatic groups occurred in the three evaporitic phases, these trends in abundance reflect expansion and contraction of the recorded vegetation.Parallel increasing trends of bioclimatic groups mark the pre-evaporitic phase: hygrophytes and upland flora in the Bragança-Viseu, São Luís, Parnaíba, Ceará, Potiguar, and Araripe basins (Supplementary Figs. 1–3 and 5), suggesting that there was a certain amount of moisture in these areas. The xerophytes show the lowest average of this phase (44.1%) (Table 1), whereas hygrophytes show the highest average (27.0%). These humid conditions are confirmed by the highest mean of the Fs/X ratio (Fs/X = 0.4), representing the predominance of spore-producing plants [see Methods section and Supplementary information]. Despite the low abundance of hydrophytes in the sections, a prominent feature is the highest average (2.5%) of this group (Table 1), which is assigned to aquatic environments, confirming relatively wet conditions in this phase. There are no pre-evaporitic samples available from the Sergipe and Espírito Santo basins.Table 1 Average abundance of bioclimatic groups, diversity, Fs/X and marine elements for the paleoclimatic phases.Full size tableThe evaporitic phase is characterized by the highest abundance of the xerophyte bioclimatic group (76.4%) (Table 1), represented mainly by Classopollis (Supplementary Figs. 1–6). A high abundance of xerophytes occurred widely distributed in all basins studied. In this phase, tropical lowland flora is notable, showing an average higher than the overall average (3.3%), particularly in the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins (Supplementary Figs. 1 and 2). This result is related to the moderate to high abundance of the genus Afropollis in these basins. The evaporitic phase is also characterized by the lowest average Fs/X ratio (Fs/X = 0.1) (Table 1), confirming the dominance of xerophytes.The post-evaporitic phase is characterized by the upland flora bioclimatic group (mean = 24.4%) (Table 1). The moderate to high abundance of upland flora in this phase is represented, in particular, by pollen grains of Araucariacites, which represent the high-relief family Araucariaceae. This bioclimatic group is associated with more humid conditions, as confirmed by an Fs/X ratio higher than the overall average (Fs/X = 0.2). The upland flora is significant in all basins, except the Espírito Santo Basin, where xerophytes predominate in both studied phases in this basin.Latitudinal biome distributionsBiome change is a fundamental biological response to climate change. In the study area, the predominance of a specific biome is mainly related to humidity, since all five recorded bioclimatic groups are related to a warm climate (Supplementary Table 2) representing two biomes: tropical xerophytic shrubland and tropical rainforest. In the rainforest biome two phytophysiognomies are recognized: lowland and montane rainforest. The tropical xerophytic shrubland biome predominates in the three paleoclimatic phases, with a wide latitudinal range from the Bragança-Viseu, São Luís, and Parnaíba basins (1° S) to the Espírito Santo Basin (20° S). This wide distribution is compatible with a predominantly arid climate in South America in the late Aptian, as indicated by paleoclimatic maps8,9,15 (Fig. 4A). Most arid and semi-arid ecosystems are mainly controlled by precipitation. Other climate parameters are less important, a condition that simplifies cause-effect interpretations. The PCA (Fig. 2B) demonstrated that the wet–dry trend, which reflects high–low precipitation, was the main determinant in the distribution of the biomes. However, considering all phases, an increasing trend in humidity was observed from the southeast (Espírito Santo Basin) to the northeast (e.g., Potiguar Basin) (Fig. 4B), coinciding with the hot and wet belt attributed to the ITCZ (Fig. 4A)15. The latitudinal distribution of diversity also follows this trend. Diversity increased significantly towards in the basins near the equator. Diversity indices (Shannon – H’) peaked in the Sergipe Basin (H’ = 3.5, CL-47 section) at 11° S. Conversely, the lowest average diversity is recorded in the Espírito Santo Basin (H’ = 1.1) at 20° S. Additionally, there is a clear correlation between high diversity (H’) and humidity (Fs/X ratio) (r = 0.691), regardless of paleoclimatic phase, as evidenced by the synchronicity of the H’ and Fs/X curves (Fig. 5). After data normalization between humidity (Fs/X) and marine elements (dinoflagellate cysts and microforaminifer linings), we performed linear correlation analyses, which showed a weak but positive correlation (r = 0.137). This is due to the fact that pre- evaporitic deposits contain only 19 occurrences of dinoflagellate cysts in 90 samples. Despite this, the curves of Fs/X, marine elements and diversity are synchronous (Fig. 5), suggesting a relation between humidity, diversity, and marine incursions.Figure 4Latitudinal changes in late Aptian biomes from southeast to center-north. (A) Paleoclimatic belts of the late Aptian in South America (climatic belts modified from refer.14). Reconstruction map at 116 Ma modified from ODSN Plate Tectonic Reconstruction Service. The Reconstruction map at 116 Ma was generated by ODSN Plate Tectonic Reconstruction Service (https://www.odsn.de/odsn/services/paleomap/paleomap.html). (B) Late Aptian latitudinal distribution of the tropical xerophytic biome in Brazil. (C) Stratigraphic distribution of biomes for individual basins. (D) Relative Importance of biomes for paleoclimatic phases.Full size imageFigure 5Biome trends in relation to paleoclimatic phases. Change in biomes, diversity, Fs/X ratio and marine elements shown by changepoint analysis plotted against paleoclimatic phases.Full size imageThe pre-evaporitic phase is marked by a certain balance between the biomes (Fig. 4C,D). In the lowlands, the tropical xerophytic shrubland biome predominated in the Bragança- Viseu, São Luís, Parnaíba, and Ceará basins, but in the Potiguar Basin it is co-dominant with the lowland rainforest. The montane rainforest was relatively extensive in this phase, although with several areal changes, and reached its widest extent in the Araripe (7° S) and Potiguar (5° S) basins in response to the deterioration of the tropical xerophytic shrubland biome. These conditions demonstrate that humidity was relatively high at this stage. The pre-evaporitic deposits were characterized by the highest diversity average (H’ = 1.8).The method of indicator species analysis (IndVal) was used to identify the key species of each paleoclimatic phase (Supplementary Table 15). The species identified for the pre-evaporitic phase, Deltoidospora spp. (Cyatheaceae-Dicksoniaceae) related to the montane rainforest, are indicator species for the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins. The Gnetaceaepollenites spp. (Gnetaceae) of the Potiguar Basin and Equisetosporites spp. (Ephedraceae) of the Araripe Basin are related to the tropical xerophytic shrubland biome (Supplementary Table 15). Even for the pre-evaporitic phase, a progressive increase in the tropical xerophytic shrubland biome was observed and interpreted as the start of a climatic deterioration stage (Fig. 4C), which culminated in the evaporitic phase. Shifts in vegetation types may occur when precipitation reaches a threshold value, which means that a regionally synchronous gradual climate change can cause abrupt vegetation shifts. The change from humid to warm and arid conditions (evaporitic phase) is directly related to a decrease in precipitation. This aridization process coincides with the appearance of marine elements (e.g., dinoflagellate cysts). The threshold effect (intense evaporation) is reflected in an abrupt decrease in the abundance of lowland and montane rainforest and a sharp increase to a very high abundance of the tropical xerophytic shrubland biome (Supplementary Figs. 4C and 5). The threshold effect was not detected in the Espírito Santo Basin, where the arid conditions remained stable with minimal shift (expansion and contraction) of the biome. The main representatives of this biome are conifers of the family Cheirolepidiaceae (Classopollis), which were most abundant in lagoons and coastal environments and are often associated with evaporates30,31,32,33,34,35. Even under xeric or water-stressed conditions there was a slight increase in biomes related to a humid climate (lowland and montane rainforest phytophysiognomies) towards the equatorial region, suggesting influence of the ITCZ (Fig. 4A,B).The evaporitic phase was characterized by the lowest diversity average (H’ = 1.2). With modest rainfall, arid regions are generally characterized by fewer species than moister biomes36. However, diversity indices peaked in the Bragança-Viseu, São Luís, and Parnaíba basins (H’ = 2.6, RL-01 section) and along the equatorial margin (2° S) (Supplementary Fig. 1).IndVal emphasizes the xeric conditions in the evaporitic phase by association with the species from the tropical xerophytic shrubland biome: Classopollis spp. (Ceará and Potiguar basins), Classopollis classoides (Sergipe Basin), Classopollis intrareticulatus (Araripe Basin), and Gnetaceaepollenites spp. (Espírito Santo Basin). For the Bragança-Viseu, São Luís, Parnaíba, and Ceará basins, where xeric restrictions are milder, the indicator taxon is Afropollis spp. from the lowland rainforest. This genus shows the weakest negative correlation with xerophytes.After the end of evaporite deposition, all sections indicate climatic stability, which kept the climate hot and arid even in the post-evaporitic phase, although the response was not linear.The shift in the biomes, especially the tropical xerophytic shrubland in the Bragança-Viseu, São Luís, Parnaíba, Ceará, and Araripe basins, occurred in the transition between the evaporitic and post-evaporitic phases, whereas in the Potiguar and Sergipe basins it occurred within the post-evaporitic phase. As indicated in the dendrograms of each section (Supplementary Figs. 1–6), the shift occurred abruptly in all basins, except the Espírito Santo Basin. The tropical rainforest biome (lowland and montane rainforests) replaced the tropical xerophytic shrubland in almost all basins (Fig. 4C). Even the Espírito Santo Basin, far from the influence of the ITCZ, shows a slight increase in lowland rainforest. The changes in the biomes are attributable to threshold effects caused by gradual climate change related to the ITCZ intensification shift and progressive increase in marine influence, indicated by an increase in marine microplankton from an average of 3.9% in the evaporitic phase to 44.1%. The increase in marine influence is reflected in the first major flooding surface observed in the Cretaceous succession27. Thus, a climate amelioration stage was established in the post- evaporitic phase (Fig. 5). In combination with published paleotopographic information25, the bioclimatic groups associated to the humid conditions (hygrophytes, hydrophytes, tropical lowland flora, and upland flora) were combined and visualized to create Fig. 6.Figure 6Reconstruction of the transitional gradient between marine to terrestrial environment (uplands) under ITCZ influence. The illustration is based on paleoflora and environmental information from palynological data from studied sections. Original size illustration: 18 × 24 cm, by Julio Lacerda.Full size imageAccording to refs.7,37, arid conditions are characterized by sea-level lowstands, whereas warm and humid conditions are correlated with sea levels rise, which explains the increase in the tropical rainforest biome (lowland and montane rainforests). The more intense humidity is supported by the results of IndVal for the post-evaporitic phase, with all species related to humid climate: Deltoidospora spp. (Bragança-Viseu, São Luís and Parnaíba basins), Araucariacites limbatus (Ceará Basin), Cicatricosisporites spp. (Potiguar Basin), Cicatricosisporites spp. and Araucariacites australis (Sergipe Basin), Inaperturopollenites spp. (Araripe Basin) and Inaperturopollenites simplex (Espírito Santo Basin).Our results show that the ITCZ combined with the opening of the South Atlantic Ocean during the late Aptian altered vegetation dynamics. As today, the ITCZ influence is stronger in the northeastern and north-central regions of South America. It is notable that the late Aptian climate evolution in the South Atlantic, culminating in higher humidity, was accompanied by an intrinsic relation between plant diversity, humidity, and marine influence. More