More stories

  • in

    Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).Article 

    Google Scholar 
    Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).Article 

    Google Scholar 
    Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).Article 

    Google Scholar 
    Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).Article 

    Google Scholar 
    Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).Article 

    Google Scholar 
    Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).Article 

    Google Scholar 
    Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).Article 

    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).Article 

    Google Scholar 
    Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).Article 

    Google Scholar 
    Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).Article 

    Google Scholar 
    Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).Article 

    Google Scholar 
    Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).Article 

    Google Scholar 
    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).Article 

    Google Scholar 
    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).Article 
    ADS 

    Google Scholar 
    Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).Article 

    Google Scholar 
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).CAS 
    Article 

    Google Scholar 
    Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).Article 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).Article 
    ADS 

    Google Scholar 
    Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).Article 

    Google Scholar 
    Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).Article 

    Google Scholar 
    Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).Article 

    Google Scholar 
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).Article 

    Google Scholar 
    Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).Article 
    ADS 

    Google Scholar 
    Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. Ciênc. 92, 1–2 (2020).
    Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).Article 

    Google Scholar 
    Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).Article 

    Google Scholar 
    Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).
    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).Article 

    Google Scholar 
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).Article 

    Google Scholar 
    Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).Article 

    Google Scholar 
    Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).Article 
    ADS 

    Google Scholar 
    Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).
    Google Scholar 
    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).Article 

    Google Scholar 
    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).Article 

    Google Scholar 
    Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).CAS 
    Article 

    Google Scholar 
    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).Article 

    Google Scholar 
    Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).Article 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).Article 

    Google Scholar 
    Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).
    Google Scholar 
    Dalapicolla, J. Tutorial de modelos de distribuição de espécies: guia prático usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia. Universidade Federal do Espírito Santo, Vitória. Retrieved, 6 (2016).Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & Corrêa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., Corrêa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).Article 

    Google Scholar 
    Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).Article 

    Google Scholar 
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).Terrell, G. R. & Scott, D. W. Variable kernel density estimation.  Ann. Stat. 20(3), 1236–1265 (1992).
    O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar  More

  • in

    Air exposure moderates ocean acidification effects during embryonic development of intertidally spawning fish

    Abiotic parametersThe temperature regime experienced by the embryos was purposefully natural and therefore varied between the three air exposure treatments. The subtidal treatment, where embryos were continuously submerged in water, remained around 9.5 °C for the duration of the experiment, while the intertidal treatments experienced dips in temperature during outside air exposure down to 2.5 °C and 0.8 °C, for the low and high intertidal respectively (Fig. 3A). Accumulated thermal units (ATU; days × temperature post collection until hatch) for each air exposure treatment were 79.6, 75.4 and 65.3 for subtidal, low intertidal and high intertidal, respectively. Despite differences in thermal regime, peak hatch was on the same day (March 14, 2021) for all air exposure and CO2 treatments, estimated at 11 dpf.Figure 3Temperature and pH experienced by the herring embryos and larvae throughout the experiment. Hourly measurements of (A) air/water temperature experienced by herring embryos in each of the tidal treatments (subtidal: continuous immersion in 9.5 °C water; low intertidal: 2 × 2 h air exposure; high intertidal: 5 + 9 h air exposure) and (B) pH levels in the tanks for each of the CO2 treatments (greens = control, 400 µatm CO2, yellows = medium, 1600 µatm CO2, reds = high, 3000 µatm CO2); dots are pH levels measured in the individual jars during larval incubation.Full size imageThe pH levels in the tanks were measured hourly and were stable over the course of the embryonic incubation period, with no overlap between treatments, although there was some overlap between individual jars. Control treatment was consistently around a pH of 8, the medium treatment had a pH of 7.4 and the high CO2 treatment had a mean pH of 7.1 (Table 1). After hatch, when the larvae were transferred to the jars, circulation and gas exchange between jars and tank were not as high and CO2 accumulated in the jars over time, leading to pH levels deviating from tank pH levels (Fig. 3B). Although oxygen levels remained high (7–9 mg/L), the pH dropped from a mean 8–7.6 in the control on two occasions, and was brought back up with a partial water exchange from the incubation tank water. The pH in the medium and high CO2 treatments were not as affected (Fig. 3B), however, final water chemistry measurements after completion of the experiment (2 days post water exchange) revealed much higher CO2 levels in all treatments (Table 1: day 15).Table 1 Mean water parameters for each treatment (mean of 3 tanks ± S.D.) at the beginning (day 1, 2021-03-06) and end (day 6, 2021-03-12) of embryonic incubation and mean parameters in the jars (N = 9) at the end of larval incubation (day 15, 2021-03-19); Temperature (T), salinity, pCO2, total CO2 (TCO2) measured at distinct sampling intervals with the BoL; total alkalinity (TA) and pH (on the total scale) calculated with CO2SYS.Full size tableEffect of air exposure and CO2 treatment during embryonic developmentNeither embryonic survival nor growth were significantly affected by treatment in our experiment. Percent daily embryonic mortality was low and not significantly affected by CO2 treatment or air exposure (CO2: p = 0.088, F2 = 2.45; Tide: p = 0.11, F2 = 2.19; CO2*Tide: p = 0.18, F2 = 1.59) . Egg diameter at 6 dpf was also not significantly affected by treatment (CO2: p = 0.38, X2 (2, N = 30) = 1.92; Tide: p = 0.83, X2 (2, N = 30) = 0.33; CO2*Tide: p = 0.08, X2 (2, N = 30) = 8.25). Metabolic rate, as indicated by embryonic heart rate, was significantly affected by air exposure at 6 dpf (p  *; 0.1  >).Full size image More

  • in

    α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats

    Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev. 2018;42:205–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Partensky F, Blanchot J, Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull Oceanogr Monaco, no Spec. 1999;19:457–76.
    Google Scholar 
    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10:147–61.PubMed 

    Google Scholar 
    Callieri C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev. 2008;1:1–28.Article 

    Google Scholar 
    Stal LJ. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 1995;131:1–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rikkinen J. Cyanobacteria in terrestrial symbiotic systems. In: Hallenbeck PC editor. Modern topics in the phototrophic prokaryotes. Switzerland: Springer; 2017. p. 243–94.Badger MR, Price GD, Long BM, Woodger FJ. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot. 2006;57:249–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rae BD, Long BM, Badger MR, Price GD. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev. 2013;77:357–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115:6506–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data. 2012;4:37–46.Article 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud. 2003;109:213.
    Google Scholar 
    Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 2009;73:249–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, et al. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front Microbiol. 2020;11:2129.Article 

    Google Scholar 
    Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008;9:R90.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Badger MR, Hanson D, Price GD. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol. 2002;29:161–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitehead L, Long BM, Price GD, Badger MR. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. Plant Physiol. 2014;165:398–411.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, et al. Phylum BX. cyanobacteria. In: Boone DR, Castenholz RW, Garrity GM editors. Bergey’s manual of systematic bacteriology. New York, NY: Springer; 2001. p. 473–599.Cabello‐Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol. 2018;20:3757–71.PubMed 
    Article 
    CAS 

    Google Scholar 
    Di Cesare A, Cabello-Yeves PJ, Chrismas NAM, Sánchez-Baracaldo P, Salcher MM, Callieri C, et al. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics. 2018;19:259.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10:a45.Article 

    Google Scholar 
    Callieri C, Mandolini E, Bertoni R, Lauceri R, Picazo A, Camacho A, et al. Atlas of picocyanobacteria monoclonal strains from the collection of CNR-IRSA, Italy. J Limnol. 2021;80:2002.Article 

    Google Scholar 
    Herdman M, Castenholz RW, Iteman I, Waterbury JB, Rippka R. Subsection I (Formerly Chroococcales Wettstein 1924, emend. Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Boone DR, Castenholz RW, Garrity GM, editors. Bergey’s manual of systematic bacteriology, Vol 1, 2nd ed., The archaea and the deeply branching and phototrophic bacteria. New York: Springer; 2001. p. 493–514.Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado A, Ghai R, Picazo A, Camacho A, et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol. 2017;8:1151.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Badger MR, Price GD. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot. 2003;54:609–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. J Biol Chem. 2014;289:7973–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang F, Kong WW, Sun Y, Chen T, Dykes GF, Jiang Y, et al. Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci USA. 2020;117:17418–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerfeld CA, Melnicki MR. Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol. 2016;31:66–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupriyanova E, Pronina N, Los D. Carbonic anhydrase—a universal enzyme of the carbon-based life. Photosynthetica. 2017;55:3–19.CAS 
    Article 

    Google Scholar 
    DiMario RJ, Machingura MC, Waldrop GL, Moroney JV. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 2018;268:11–17.Heinhorst S, Cannon GC. A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol. 2004;186:623–30.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, et al. The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem. 2006;281:7546–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC. Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol. 2006;188:8087–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Omata T, Takahashi Y, Yamaguchi O, Nishimura T. Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. Funct Plant Biol. 2002;29:151–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci USA. 1999;96:13571–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shelden MC, Howitt SM, Price GD. Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol. 2010;27:12–22.PubMed 
    Article 
    CAS 

    Google Scholar 
    Price GD, Howitt SM. The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem Cell Biol. 2011;89:178–88.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA. 2004;101:18228–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonfil DJ, Ronen-Tarazia M, Sültemeyer D, Lieman-Hurwitza J, Schatz D, Kaplan A. A putative HCO−3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett. 1998;430:236–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price GD, Shelden MC, Howitt SM. Membrane topology of the cyanobacterial bicarbonate transporter, SbtA, and identification of potential regulatory loops. Mol Membr Biol. 2011;28:265–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem. 2002;277:18658–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro EM. Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell. 2004;16:3326–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price GD, Badger MR, Woodger FJ, Long BM. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot. 2008;59:1441–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Battchikova N, Eisenhut M, Aro E-M. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta Bioenerg. 2011;1807:935–44.CAS 
    Article 

    Google Scholar 
    Koester RP, Pignon CP, Kesler DC, Willison RS, Kang M, Shen Y. Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. PLoS ONE. 2021;16:e0246359.Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 2013;85:293–301.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schallenberg LA, Pearman JK, Burns CW, Wood SA. Spatial abundance and distribution of picocyanobacterial communities in two contrasting lakes revealed using environmental DNA metabarcoding. FEMS Microbiol Ecol. 2021;97:fiab075.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mózes A, Présing M, Vörös L. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int Rev Hydrobiol. 2006;91:38–50.Article 
    CAS 

    Google Scholar 
    Vörös L, Callieri C, Balogh KV, Bertoni R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia. 1998;369/370:117–25.Watanabe MF, Harada K, Carmichael WW, Fujiki H. Toxic microcystis. Boca Raton, FL: CRC Press; 1995.Stockner J, Callieri C, Cronberg G. Picoplankton and other non-bloom-forming cyanobacteria in lakes. In: Whitton BA, Potts M editors. The ecology of cyanobacteria. The Netherlands: Springer; 2000. p. 195–231.Flamholz AI, Prywes N, Moran U, Davidi D, Bar-On YM, Oltrogge LM. Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry. 2019;58:3365–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Filazzola A, Mahdiyan O, Shuvo A, Ewins C, Moslenko L, Sadid T. A database of chlorophyll and water chemistry in freshwater lakes. Sci Data. 2020;7:1–10.Article 

    Google Scholar 
    Cabello‐Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R, et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2019.Rodrigo MA, Miracle MR, Vicente E. The meromictic Lake La Cruz (Central Spain). Patterns of stratification. Aquat Sci. 2001;63:406–16.Article 

    Google Scholar 
    Camacho A, Picazo A, Miracle MR, Vicente E. Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Arch Hydrobiol Suppl Algol Stud. 2003;109:171–84.
    Google Scholar 
    Vicente E, Camacho A, Rodrigo MA. Morphometry and physico-chemistry of the crenogenic meromictic Lake El Tobar (Spain). Int Ver für Theor und Angew Limnol Verhandlungen. 1993;25:698–704.CAS 

    Google Scholar 
    Camacho A, Miracle MR, Vicente E. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch für Hydrobiol. 2003;157:321–38.Article 

    Google Scholar 
    Kaźmierczak J, Kempe S, Kremer B, López-García P, Moreira D, Tavera R. Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies. 2011;57:543–70.Article 

    Google Scholar 
    Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez‐Valera F. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol. 2014;23:6073–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-Valera F. Reconstruction of diverse Verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front Microbiol. 2017;8:2131.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Hoyos C, Negro AI, Aldasoro JJ. Cyanobacteria distribution and abundance in the Spanish water reservoirs during thermal stratification. Limnetica. 2004;23:119–32.Article 

    Google Scholar 
    Raven J, Caldeira K, Eldefield H, Hoegh-Guldberg O, Liss P, Riebesell U, et al. Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society; 2005.Mangan NM, Flamholz A, Hood RD, Milo R, Savage DF. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc Natl Acad Sci USA. 2016;113:E5354–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tadesse I, Green FB, Puhakka JA. Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Res. 2004;38:645–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao Y, Zhang Z, Liu X, Yi N, Zhang L, Song W, et al. Seasonal and diurnal dynamics of physicochemical parameters and gas production in vertical water column of a eutrophic pond. Ecol Eng. 2016;87:313–23.Article 

    Google Scholar 
    Schindler DW. Recent advances in the understanding and management of eutrophication. Limnol Oceanogr. 2006;51:356–63.Article 

    Google Scholar 
    Bosak T, Bush JWM, Flynn MR, Liang B, Ono S, Petroff AP, et al. Formation and stability of oxygen‐rich bubbles that shape photosynthetic mats. Geobiology. 2010;8:45–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Amsterdam: Elsevier Science B.V.; 2001.Rae BD, Förster B, Badger MR, Price GD. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth Res. 2011;109:59–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 1979;111:1–61.Article 

    Google Scholar 
    Martín-Cuadrado A-B, López-García P, Alba J-C, Moreira D, Monticelli L, Strittmatter A, et al. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS ONE. 2007;2:e914.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:1.Article 
    CAS 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2013;42:D206–14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang D, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ Prepr. 2019;7:e27522v1.
    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun. 2020;11:1–10.Article 
    CAS 

    Google Scholar 
    Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, Brillet-Guéguen L, et al. Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res. 2021;49:D667–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Erwin PM, Thacker RW. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol. 2008;17:2937–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Usher KM, Toze S, Fromont J, Ku J, Sutton DC. A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis. 2004.Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, et al. High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res. 2005;12:103–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen M-Y, Teng W-K, Zhao L, Hu C-X, Zhou Y-K, Han B-P, et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 2021;15:211–27.PubMed 
    Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000;132:365–86.CAS 
    PubMed 

    Google Scholar  More

  • in

    Length weight relationships of coleoid cephalopods from the eastern Mediterranean

    Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5), 236–238 (2006).
    Google Scholar 
    Tarkan, A. S., Gaygusuz, Ö., Acıpınar, H., Gürsoy, Ç. & Özuluğ, M. Length–weight relationships of fishes from the Marmara region (NW-Turkey). J. Appl. Ichthyol. 22(4), 271–273 (2006).Article 

    Google Scholar 
    Al Nahdi, A., de Leaniz, C. G. & King, A. J. Spatio-temporal variation in length-weight relationships and condition of ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for fisheries. PLoS One 11(8), e0161989 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Froese, R., Tsikliras, A. C. & Stergiou, K. I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 41(4), 261–263 (2011).Article 

    Google Scholar 
    Torres, M. A. et al. Length–weight relationships for 22 crustecans and cephalopods from the Gulf of Cadiz (SW Spain). Aquat. Liv. Resour. 30, 12 (2017).Article 

    Google Scholar 
    Rocha, F., Guerra, A. & Gonzalez, A. F. A review of reproductive strategies in cephalopods. Biol. Rev. 76, 291–304 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Laptikhovsky, V. & Salman, A. On reproductive strategies of the epipelagic octopods of the superfamily Argonautoidea (Cephalopoda: Octopoda). Mar. Biol. 142, 321–326 (2003).Article 

    Google Scholar 
    Forsythe, J. W. & van Heukelem, W. F. Growth. In Cephalopod Life Cycles (ed. Boyle, P. R.) 135–156 (Academic Press, 1987).
    Google Scholar 
    Jereb, P., et al. (eds) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p. 360.Salman, A. Cephalopod research in the eastern Mediterranean (East of 23°E): A review. Boll. Malacol. 45, 47–59 (2009).
    Google Scholar 
    Salman, A. & İzmirli, C. Ege Üniversitesi Su Ürünleri Fakültesi Müzesi (ESFM)’nin cephalopod envanteri. EgeJFAS 37(4), 357–361. https://doi.org/10.12714/egejfas.37.4.06) (2020) (in Turkish).Article 

    Google Scholar 
    Önsoy, B. & Salman, A. Reproductive biology of the common cuttlefish Sepia officinalis L. (Sepiida: Cephalpoda) in the Aegean Sea. Turk. J. Vet. Anim. Sci. 29, 613–619 (2005).
    Google Scholar 
    Salman, A. Reproductive biology of the elegant cuttlefish (Sepia elegans) in the Eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 15(2), 265–272 (2015).Article 

    Google Scholar 
    Dursun, D., Eronat, E. G. T., Akalın, M. & Salman, M. A. Reproductive biology of pink cuttlefish Sepia orbignyana in the Aegean Sea (eastern Mediterranean). Turk. J. Zool. 37, 576–581 (2013).Article 

    Google Scholar 
    Salman, A. Reproductive biology of Sepietta oweniana (Pfeffer, 1908) (Sepiolidae: Cephalopoda) in the Aegean Sea. Sci. Mar. 62(4), 379–383 (1998).Article 

    Google Scholar 
    Salman, A. & Önsoy, B. Reproductive biology of the bobtail squid Rossia macrosoma (Cephalopoda: Sepiolidea) from the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 10, 81–86 (2010).Article 

    Google Scholar 
    Salman, A. Fecundity and spawning strategy of shortfin squid Illex coindetii (Oegopsida: Ommastrephidae), in the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 17, 841–849 (2017).
    Google Scholar 
    Mangold-Wirz, K. Biologie des céphalopodes benthiques et nectoniques de la Mer Catalane. Vie Millieu suppl. 13, 1–285 (1963).
    Google Scholar 
    Salman, A. Fecundity, spawning strategy and oocyte development of shortfin squid Alloteuthis media (Myopsida: Loliginidae) in the eastern Mediterranean. Cah. Biol. Mar. 55, 163–171 (2014).
    Google Scholar 
    Önsoy, B. & Salman, A. Reproduction patterns of the Mediterranean endemic, Eledone moschata (Lamarck, 1798) (Octopoda: Cephalopoda) in the eastern Mediterranean. (In Turkish) 1st National Malacology Congress, 1–3 September 2004, Izmir-Turkey (Bilal Öztürk & Alp Salman, eds). Turk. J. Aquat. Life 2(2), 55–60 (2004).
    Google Scholar 
    Tesch, F. W. Age and growth. In Methods for Assessment of Fish Production in Fresh Waters (ed. Ricker, W. E.) 99–130 (Blackwell Scientific Publications, 1971).
    Google Scholar 
    Merella, P., Quetglas, A., Alemany, F. & Carbonell, A. Length–weight relationship of fishes and cephalopods from the Balearic Islands (western Mediterranean). Naga ICLARM Q. 20(3–4), 66–68 (1997).
    Google Scholar 
    Manfrin Piccinetti, G. & Giovanardi, O. Données sur la biologie de Sepia officinalis L. dans l’Adriatique obtenues lors de expéditions pipeta. FAO Fish. Rep. 290, 135–138 (1984).
    Google Scholar 
    Bello, G. Length–weight relationship in males and females of Sepia orbignyana and Sepia elegans (Cephalopoda: Sepiidae). Rapp. Comm. Int. Mer. Médit. 31(2), 254 (1988).
    Google Scholar 
    Ragonese, S. & Jereb, P. Length-weight relationship and growth of the pink and elegant cuttlefish Sepia orbignyana and Sepia elegans in the Sicilian Channel. In Acta of the 1st International Symposium on the Cuttlefish (ed. Boucaud-Camou, E.) 31–47 (SEPIA. Centre de Publications de l’Universite de Caen, 1991).
    Google Scholar 
    Akyol, O. & Metin, G. An investigation on determination of some morphological characteristics of Cephalopods in Izmir Bay (Aegean Sea). EU J. Fish. Aquat. Sci. 18(3–4), 357–365 (2001).
    Google Scholar 
    Lefkaditou, E., Verriopoulos, G. & Valavanis, V. VII9. Research on Cephalopod resources in Hellas. In State of Hellenic Fisheries (eds Papaconstantinou, C. et al.) 440–451 (HCMR Publications, 2007).
    Google Scholar 
    Duysak, Ö., Sendão, J., Borges, T., Türeli, C. & Erdem, Ü. Cephalopod distribution in Iskenderun bay (eastern Mediterranean–Turkey). J. Fish. Sci. 2, 118–125 (2008).
    Google Scholar 
    Giordano, D. et al. Distribution and biology of Sepietta oweniana (Pfeffer, 1908) (Cephalopoda: Sepiolidae) in the southern Tyrrhenian Sea (central Mediterranean Sea). Cah. Biol. Mar. 50, 1–10 (2009).
    Google Scholar 
    Andriguetto, J. M. Jr. & Haimovici, M. Effects of fixation and preservation methods on the morphology of a Loliginid squid (Cephalopoda: Myopsida). Am. Malac Bull. 6(2), 213–217 (1988).
    Google Scholar 
    Sanchez, P. Donnés preliminaires sur la biologie de trois species de cephalopods de la Mer Catalan. Rapp. Comm. Int. Mer. Médit. 30(2), 247 (1986).
    Google Scholar 
    Belcari, P., Sartor, P., Nannini, N. & De Ranieri, S. Length-weight relationship of Toda- ropsis eblanae (Cephalopoda: Ommastrephidae) of the northern Tyrrhenian Sea in relation to sexual maturation. Biol. Mar. Mediter. 6, 524–528 (1999).
    Google Scholar 
    Belcari, P. Length–weight relationship in relation to sexual maturation of Illex coindetii (Cephalopoda: Ommastrephidae) in the northern Tyrrhenian Sea (western Mediterranean). Sci. Mar. 60, 379–384 (1996).
    Google Scholar 
    Petric, M., Ferri, J., Skeljo, F. & Krstulovic Sifner, S. Body and beak measures of Illex coindetii (Cephalopoda: Ommastrephidae) and their relation to growth and maturity. Cah. Biol. Mar. 51, 275–287 (2010).
    Google Scholar 
    Ceriola, L., Ungaro, N. & Toteda, F. Some information on the biology of Illex coindetii Verany, 1839 (Cephalopoda, Ommastrephidae) in the south-western Adriatic Sea (central Mediterranean). Fish. Res. 82, 41–49 (2006).Article 

    Google Scholar 
    Arvanitidis, C. et al. A comparison of the fishery biology of three Illex coindetii Verany, 1839 (Cephalopoda: Ommastrephidae) populations from the European Atlantic and Mediterranean Waters. Bull. Mar. Sci. 71, 129–146 (2002).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (western Mediterranean). Sci. Mar. 62, 73–82 (1998).Article 

    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the central Adriatic Sea. Fish. Res. 69, 239–249 (2004).Article 

    Google Scholar 
    Moreno, A. et al. Biological variation of Loligo vulgaris (Cephalopoda: Loliginidae) in the eastern Atlantic and Mediterranean. Bull. Mar. Sci. 71(1), 515–534 (2002).
    Google Scholar 
    Guerra, A. & Manriquez, M. Parametros biometricos de Octopus vulgaris. Invest. Pesq. 44, 177–198 (1980).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, western Mediterranean). Fish. Res. 36, 237–249 (1998).Article 

    Google Scholar 
    Sanchez, P., & Obarti, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In: Jereb, P., Allcock, A. L., Lefkaditou, E., Piatkowski, U., Hastie, L. C., Pierce, G. J. (Eds.) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p 360.Gonzalez, M., Barcala, E., Perez-Gil, J. L., Carrasco, M. N. & Garcia-Martinez, M. C. Fisheries and reproductive biology of Octopus vulgaris (Mollusca: Cephalopoda) in the Gulf of Alicante (Northwestern Mediterranean). Medit. Mar. Sci. 12, 369–389 (2011).Article 

    Google Scholar 
    Jabeur, C., Nouira, T., Khoufi, W., Mosbahi, D. S. & Ezzedine-Najai, S. Age and growth of Octopus vulgaris Cuvier, 1797 along the east coast of Tunisia. J. Shellf. Res. 31, 119–124 (2012).Article 

    Google Scholar 
    Quetglas, A., Ordines, F., Gonzalez, M. & Franco, I. Life history of the bathyal octopus Pteroctopus tetracirrhus (Mollusca, Cephalopoda) in the Mediterranean Sea. Deep Sea Res. Part I 56, 1379–1390 (2009).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M. & Franco, I. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131–1138 (2005).Article 

    Google Scholar 
    Moriyasu, M. Etude biometrique de la croissance d’E. cirrhosa [LAM. 1798 (Cephalopoda, Octopoda)] du Golfe du Lion. Oceanol. Acta 6, 35–41 (1983).
    Google Scholar 
    Massi, D. Effetti del congelamento sull’accuratezza delle misure in Eledone cirrhosa (Lamarck, 1798). Biol. Mar. Suppl. al Notiziario S.I.B.M. 1, 379–380 (1993).
    Google Scholar 
    Agnesi, S., Belluscio, A. & Ardizzone, G. D. Biologia e dinamica di populazione di Eledone cirrhosa (Cephalopoda: Octopoda) nel Tirreno Centrale. Biol. Mar. Mediterr. 5, 336–348 (1998).
    Google Scholar 
    Giordano, D. et al. Population dynamics and distribution of Eledone cirrhosa (Lamarck, 1798) in the Southern Tyrrhenian Sea (Central Mediterranean). Cah. Biol. Mar. 51, 213–227 (2010).
    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Reproductive cycle and sexual maturation of the musky octopus Eledone moschata (Cephalopoda: Octopodidae) in the northern and central Adriatic Sea. Sci. Mar. 73, 439–447 (2009).Article 

    Google Scholar 
    Ikica, Z., Krstulovic Sifner, S. & Joksimovic, A. Some preliminary data on biological aspects of the musky octopus, Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopodidae) in Montenegrin waters. Stud. Mar. 25, 21–36 (2011).
    Google Scholar 
    Akyol, O., Şen, H. & Kinacigil, H. T. Reproductive biology of Eledone moschata (Cephalopoda: Octopodidae) in the Aegean Sea (Izmir Bay, Turkey). J. Mar. Biol. Assoc. UK 87, 967–970 (2007).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M., Carbonell, A. & Sanchez, P. Biology of the deep-sea octopus Bathypolypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785–792 (2001).Article 

    Google Scholar  More

  • in

    Slow science: how I’m protecting sloth species

    It’s surprisingly hard to catch a sloth. Although they’re slow — very, very slow — if you climb a tree to catch one, it will move along to the next tree. Once you climb the new tree, it will move back again.My team does this regularly, as we conduct the Sloth Backpack Project, a data-logging initiative here in Costa Rica, where many sloths coexist with people. In 2017, I wanted to do more than research, so I started the Sloth Conservation Foundation.In this photograph, I’m fitting a backpack to a brown-throated three-fingered sloth (Bradypus variegatus) that we named Baguette, after a nearby bakery. The backpack will collect data on her location, movement and living patterns.We had found Baguette about 20 minutes earlier, balancing atop construction fencing as she attempted to escape two pit bulls. Baguette wasn’t all that grateful. She’s a feisty old girl. She’s old: she’s missing fingers, and she’s got scars on her face.I adore sloths, but I also envy them. They’re a powerful symbol of the slowness that our society needs more of. They don’t let anything stress them out unless it’s really important — they just get on with life.The backpack project will help us to understand sloth behaviour, so we can better protect them as the urban environment grows. This year, I received a €50,000 (US$52,220) Future For Nature award, which we will use to train a dog to detect sloth faeces. We can use faeces as a proxy for sloth numbers and locations in the region, and ultimately work out the boundaries of the species, how fast populations are declining and which conservation measures work.I’m happy I’ve moved away from academia — I can put all my energy into conservation as opposed to bashing out papers. That’s what I feel ecology should focus on — how we can use what we’re learning to give back to other species. More

  • in

    Community confounding in joint species distribution models

    Historically, species distributions have been modeled independently from each other due to unavailability of multispecies datasets and computational restraints. However, ecological datasets that provide insights about collections of organisms have become prevalent over the last decade thanks to efforts like Long Term Ecological Research Network (LTER), National Ecological Observatory Network (NEON), and citizen science surveys1. In addition, technology has improved our ability to fit modern statistical models to these datasets that account for both species environmental preferences and interspecies dependence. These advancements have allowed for the development of joint species distribution models (JSDM)2,3,4 that can model dependence among species simultaneously with environmental drivers of occurrence and/or abundance.Species distributions are shaped by both interspecies dynamics and environmental preferences5,6,7,8. JSDMs integrate both sources of variability and adjust uncertainty to reflect that multiple confounded factors can contribute to similar patterns in species distributions. Some have proposed that JSDMs not only account for biotic interactions but also correct estimates of association between species distributions and environmental drivers3,9, while others claim JSDMs cannot disentangle the roles of interspecies dependence and environmental drivers5. We address why JSDMs can provide inference distinct from their concomitant independent SDMs, how certain parameterizations of a JSDM induce confounding between the environmental and random species effects, and when deconfounding these effects may be appealing for computation and interpretation.Because of the prevalence of occupancy data for biomonitoring in ecology, we focus our discussion of community confounding in JSDMs on occupancy models, although we also consider a JSDM for species density data in the simulation study. The individual species occupancy model was first formulated by MacKenzie et al.10 and has several joint species extensions4,11,12,13,14,15,16. We chose to investigate the impacts of community confounding on the probit model since it has been widely used in the analysis of occupancy data4,13,17. We also developed a joint species extension to the Royle-Nichols model18 and consider community confounding in that model.We use the probit and Royle-Nichols occupancy models to improve our understanding of montaine mammal communities in what follows. We show that including unstructured random species effects in either occupancy model induces confounding between the fixed environmental and random species effects. We demonstrate how to orthogonalize these effects in the model and compare the resulting inference compared to models where species are treated independently.Unlike previous approaches that have applied restricted regression techniques similar to ours, we use it in the context of well-known ecological models for species occupancy and intensity. While such approaches have been discussed in spatial statistics and environmental science, they have not been adopted in settings involving the multivariate analysis of community data. We draw parallels between restricted spatial regression and restricted JSDMs but also highlight where the methods differ in goals and outcomes. We find that the computational benefits conferred by performing restricted spatial regression also hold for some joint species distribution models.Royle-Nichols joint species distribution modelWe present a JSDM extension to the Royle-Nichols model18. The Royle-Nichols model accounts for heterogeneity in detection induced by the species’ latent intensity, a surrogate related to true species abundance. Abundance, density, and occupancy estimation often requires an explicit spatial region that is closed to emmigration and immigration. In our model, the unobservable intensity variable helps us explain heterogeneity in the frequencies we observe a species at different sites without making assumptions about population closure. In the “Model” section, we further discuss the distinctions between abundance and intensity in the Royle-Nichols model.The Royle-Nichols model utilizes occupancy survey data but provides inference distinct from the basic occupancy model10. In the Royle-Nichols model, we estimate individual detection probability for homogeneous members of the population, whereas in an occupancy model, we estimate probability of observing at least one member of the population given that the site is occupied. Furthermore, the Royle-Nichols model allows us to relate environmental covariates to the latent intensity associated with a species at a site, while in an occupancy model, environmental covariates are associated with the species latent probability of occupancy at a site. Species intensity and occupancy may be governed by different mechanisms, and inference from an intensity model can be distinct from that provided by an occupancy model19,20,21. Cingolani et al.20 proposed that, in plant communities, certain environmental filters preclude species from occupying a site and an additional set of filters may regulate if a species can flourish. Hence, certain covariates that were unimportant in an occupancy model may improve predictive power in an intensity model.Community confoundingSpecies distributions are shaped by environment as well as competition and mutualism within the community8,22,23. Community confounding occurs when species distributions are explained by a convolution of environmental and interspecies effects and can lead to inferential differences between a joint and single species distribution model as well as create difficulties for fitting JSDMs. Former studies have incorporated interspecies dependence into an occupancy model4,11,12,13,14,15,16, and others have addressed spatial confounding1,17,24,25, but none of these explicitly addressed community confounding. However, all Bayesian joint occupancy models naturally attenuate the effects of community confounding due to the prior on the regression coefficients. The prior, assuming it is proper, induces regularization on the regression coefficients26 that can lessen the inferential and computational impacts of confounding27. Furthermore, latent factor models like that described by Tobler et al.4 restrict the dimensionality of the random species effect which should also reduce confounding with the environmental effects.We address community confounding by formulating a version of our model that orthogonalizes the environmental effects and random species effects. Orthogonalizing the fixed and random effects is common practice in spatial statistics and often referred to as restricted spatial regression27,28,29,30,31. Restricted regression has been applied to spatial generalized linear mixed models (SGLMM) for observations (varvec{y},) which can be expressed as$$begin{aligned} varvec{y}&sim [varvec{y}|varvec{mu }, varvec{psi }], end{aligned}$$
    (1)
    $$begin{aligned} g(varvec{mu })&= varvec{X}varvec{beta } + varvec{eta }, end{aligned}$$
    (2)
    $$begin{aligned} varvec{eta }&sim mathcal {N}(varvec{0}, varvec{Sigma }), end{aligned}$$
    (3)
    where (g(cdot )) is a link function, (varvec{psi }) are additional parameters for the data model, and (varvec{Sigma }) is the covariance matrix of the spatial random effect. In the SGLMM, prior information facilitates the estimation of (varvec{eta },) which would not be estimable otherwise due to its shared column space with (varvec{beta })30. This is analogous to applying a ridge penalty to (varvec{eta },) which stabilizes the likelihood. Another method for fitting the confounded SGLMM is to specify a restricted version:$$begin{aligned} varvec{y}&sim [varvec{y}|varvec{mu }, varvec{psi }], end{aligned}$$
    (4)
    $$begin{aligned} g(varvec{mu })&= varvec{X}varvec{delta } + (varvec{I}-varvec{P}_{varvec{X}})varvec{eta }, end{aligned}$$
    (5)
    $$begin{aligned} varvec{eta }&sim mathcal {N}(varvec{0}, varvec{Sigma }), end{aligned}$$
    (6)
    where (varvec{P}_{varvec{X}}=varvec{X}(varvec{X}varvec{X})^{-1}varvec{X}’) is the projection matrix onto the column space of (varvec{X}.) In the unrestricted SGLMM, the regression coefficients (varvec{beta }) and random effect (varvec{eta }) in (1) compete to explain variability in the latent mean (varvec{mu }) in the direction of (varvec{X})27. In the restricted model, however, all variability in the direction of (varvec{X}) is explained solely by the regression coefficients (varvec{delta }) in (4)31, and (varvec{eta }) explains residual variation that is orthogonal to (varvec{X}). We refer to (varvec{beta }) as the conditional effects because they depend on (varvec{eta }), and (varvec{delta }) as the unconditional effects.Restricted regression, as specified in (4), was proposed by Reich et al.28. Reich et al.28 described a disease-mapping example in which the inclusion of a spatial random effect rendered one covariate effect unimportant that was important in the non-spatial model. Spatial maps indicated an association between the covariate and response, making inference from the spatial model appear untenable. Reich et al.28 proposed restricted spatial regression as a method for recovering the posterior expectations of the non-spatial model and shrinking the posterior variances which tend to be inflated for the unrestricted SGLMM.Several modifications of restricted spatial regression have been proposed30,32,33,34,35. All restricted spatial regression methods seek to provide posterior means (text {E}left( delta _j|varvec{y}right)) and marginal posterior variances (text {Var}left( delta _j|varvec{y}right)), (j=1,…,p) that satisfy the following two conditions36:

    1.

    (text {E}left( varvec{delta }|varvec{y}right) = text {E}left( varvec{beta }_{text {NS}}|varvec{y}right)) and,

    2.

    (text {Var}left( beta _{text {NS,}j}|varvec{y}right) le text {Var}left( delta _{j}|varvec{y}right) le text {Var}left( beta _{text {Spatial,}j}|varvec{y}right)) for (j=1,…,p),

    where (varvec{beta }_{NS}) and (varvec{beta }_{Spatial}) are the regression coefficients corresponding to the non-spatial and unrestricted spatial models, respectively.The inferential impacts of spatial confounding on the regression coefficients has been debated. Hodges and Reich29 outlined five viewpoints on spatial confounding and restricted regression in the literature and refuted the two following views:

    1.

    Adding the random effect (varvec{eta }) corrects for bias in (varvec{beta }) resulting from missing covariates.

    2.

    Estimates of (varvec{beta }) in a SGLMM are shrunk by the random effect and hence conservative.

    The random effect (varvec{eta }) can increase or decrease the magnitude of (varvec{beta }), and the change may be galvanized by mechanisms not related to missing covariates. Therefore, we cannot assume the regression coefficients in the SGLMM will exceed those of the restricted model, nor should we regard the estimates in either model as biased due to misspecification. Confounding in the SGLMM causes (text {Var}left( beta _j|varvec{y}right) ge text {Var}left( delta _j|varvec{y}right)), (j=1,…,p), because of the shared column space of the fixed and random effects. Thus, we refer to the conditional coefficients as conservative with regard to their credible intervals, not their posterior expectations.Reich et al.28 argued that restricted spatial regression should always be applied because the spatial random effect is generally added to improve predictions and/or correct the fixed effect variance estimate. While it may be inappropriate to orthogonalize a set of fixed effects in an ordinary linear model, orthogonalizing the fixed and random effect in a spatial model is permissible because the random effect is generally not of inferential interest. Paciorek37 provided the alternative perspective that, if confounding exists, it is inappropriate to attribute all contested variability in (varvec{y}) to the fixed effects. Hanks et al.31 discussed factors for deciding between the unrestricted and restricted SGLMM on a continuous spatial support. The restricted SGLMM leads to improved computational stability, but the unconditional effects are less conservative under model misspecification and more prone to type-S errors: The Bayesian analogue of Type I error. Fitting the unrestricted SGLMM when the fixed and random effects are truly orthogonal does not introduce bias, but it will increase the fixed effect variance. Given these considerations, Hanks et al.31 suggested a hybrid approach where the conditional effects, (varvec{beta }), are extracted from the restricted SGLMM. This is possible because the restricted SGLMM is a reparameterization of the unrestricted SGLMM. This hybrid approach leads to improved computational stability but yields the more conservative parameter estimates. We describe how to implement this hybrid approach for joint species distribution models in the “Community confounding” section.Restricted regression has also been applied in time series applications. Dominici et al.38 debiased estimates of fixed effects confounded by time using restricted smoothing splines. Without the temporal random effect, Dominici et al.38 asserted all temporal variation in the response would be wrongly attributed to temporally correlated fixed effects. Houseman et al.39 used restricted regression to ensure identifiability of a nonparametric temporal effect and highlighted certain covariate effects that were more evident in the restricted model (i.e., the unconditional effects’ magnitude was greater). Furthermore, restricted regression is implicit in restricted maximum likelihood estimation (REML). REML is often employed for debiasing the estimate of the variance of (varvec{y}) in linear regression and fitting linear mixed models that are not estimable in their unrestricted format40. Because REML is generally applied in the context of variance and covariance estimation, considerations regarding the effects of REML on inference for the fixed effects are lacking in the literature.In ecological science, JSDMs often include an unstructured random effect like (varvec{eta }) in (1) to account for interspecies dependence, and hence can also experience community confounding between (varvec{X}) and (varvec{eta }) analogous to spatial confounding. Unlike a spatial or temporal random effect, we consider random species effects to be inferentially important, rather than a tool solely for improving predictions or catch-all for missing covariates. An orthogonalization approach in a JSDM attributes contested variation between the fixed effects (environmental information) and random effect (community information) to the fixed effect.We describe how to orthogonalize the fixed and random species effects in a suite of JSDMs and present a method for detecting community confounding. In the simulation study, we test the efficacy of our method for detecting confounding, show that community confounding can lead to computational difficulties similar to those caused by spatial confounding31, and highlight that, for some models, restricted regression can improve model fitting. We also investigate the inferential implications of community confouding and restricted regression in JSDMs by comparing outputs from the SDM, unrestricted JSDM, and restricted JSDM of the Royle-Nichols and probit occupancy models fit to mammalian camera trap data. Lastly, we discuss other inferential and computational methods for confounded models and consider their appropriateness for joint species distribution modeling. More

  • in

    Contrasting reproductive strategies of two Hawaiian Montipora corals

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montilla, L. M., Ascanio, A., Verde, A. & Croquer, A. Systematic review and meta-analysis of 50 years of coral disease research visualized through the scope of network theory. PeerJ 7, e7041. https://doi.org/10.7717/peerj.7041 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, S. D., Walter, C. S. & Muller, E. M. Fine Scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida keys. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.631776 (2021).Article 

    Google Scholar 
    Harrison, P. L. in Coral Reefs: An Ecosystem in Transition (eds Zvy Dubinsky & Noga Stambler) 59–85 (Springer Netherlands, 2011).Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60, 185–203 (1990).ADS 
    Article 

    Google Scholar 
    Humphrey, C., Weber, M., Lott, C., Cooper, T. & Fabricius, K. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27, 837–850. https://doi.org/10.1007/s00338-008-0408-1 (2008).ADS 
    Article 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413-419.e413. https://doi.org/10.1016/j.cub.2020.10.039 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224. https://doi.org/10.1007/BF00265014 (1990).ADS 
    Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.2128 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Highsmith, R. C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226 (1982).ADS 
    Article 

    Google Scholar 
    Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811. https://doi.org/10.1111/j.1365-294X.2008.03787.x (2008).Article 
    PubMed 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394. https://doi.org/10.1007/BF00428562 (1986).Article 

    Google Scholar 
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/annurev.ecolsys.110308.120220 (2009).Article 

    Google Scholar 
    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs 34, 65–77. https://doi.org/10.1007/s00338-014-1214-6 (2015).ADS 
    Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24, 112–116. https://doi.org/10.1007/s00338-004-0433-7 (2005).Article 

    Google Scholar 
    Chelliah, A. et al. First record of multi-species synchronous coral spawning from Malaysia. PeerJ 3, e777. https://doi.org/10.7717/peerj.777 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunter, C. L. in Proceedings of the 6th International Coral Reef Symposium Vol. 2, 727–732 (1988).Jokiel, P. L., Ito, R. Y. & Liu, P. M. Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar. Biol. 88, 167–174. https://doi.org/10.1007/BF00397164 (1985).Article 

    Google Scholar 
    Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. in Proceedings of the 5th International Coral Reef Congress Vol. 4, 343–348 (1985).Brady, A. K., Hilton, J. D. & Vize, P. D. Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28, 677–680. https://doi.org/10.1007/s00338-009-0498-4 (2009).ADS 
    Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar. Ecol. Prog. Ser. 227, 241–251. https://doi.org/10.3354/meps227241 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R. Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc. Biol. Sci. 277, 715–722. https://doi.org/10.1098/rspb.2009.1524 (2010).Article 
    PubMed 

    Google Scholar 
    Twan, W.-H. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 247–253. https://doi.org/10.1016/j.cbpa.2006.01.011 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tan, E. S., Izumi, R., Takeuchi, Y., Isomura, N. & Takemura, A. Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci. Rep. 10, 9914. https://doi.org/10.1038/s41598-020-66020-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141. https://doi.org/10.3354/meps237133 (2002).ADS 
    Article 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    Ward, S., Harrison, P. L. & Hoegh-Guldberg, O. in Proceedings of the Ninth International Coral Reef Symposium Vol. 2, 1123–1128 (2002).Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS 
    Article 

    Google Scholar 
    Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192. https://doi.org/10.1007/s00227-003-1150-4 (2003).CAS 
    Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs https://doi.org/10.1007/s00338-021-02129-3 (2021).Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102. https://doi.org/10.3354/meps235093 (2002).ADS 
    Article 

    Google Scholar 
    Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de la Cruz, D. W. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985. https://doi.org/10.1038/s41598-017-14546-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villanueva, R. D., Baria, M. V. B. & de la Cruz, D. W. Growth and survivorship of juvenile corals outplanted to degraded reef areas in Bolinao-Anda Reef Complex, Philippines. Mar. Biol. Res. 8, 877–884. https://doi.org/10.1080/17451000.2012.682582 (2012).Article 

    Google Scholar 
    Chamberland, V. F. et al. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecol. Conserv. 4, 526–537. https://doi.org/10.1016/j.gecco.2015.10.005 (2015).Article 

    Google Scholar 
    Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    Maragos, J. E. et al. 2000–2002 rapid ecological assessment of corals (Anthozoa) on shallow reefs of the Northwestern Hawaiian Islands. Part 1: species and distribution. Pac. Sci. 58, 211–230. https://doi.org/10.1353/psc.2004.0020 (2004).Article 

    Google Scholar 
    Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu, University of Hawaiʻi at Mānoa, (2019).Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164. https://doi.org/10.1007/BF00336722 (1983).ADS 
    Article 

    Google Scholar 
    Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    Heyward, A. J. Sexual reproduction in five species of the coral Montipora. Coral Reef Popul. Biol. Hawaii Inst. Mar. Biol. Tech. Rep. 37, 170–178 (1985).
    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: causes and consequences. Ecology 69, 1552–1565. https://doi.org/10.2307/1941653 (1988).Article 

    Google Scholar 
    Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18. https://doi.org/10.1086/BBLv226n1p8 (2014).Article 
    PubMed 

    Google Scholar 
    Humason, G. L. Animal Tissue Techniques. 661 (W. H. Freeman & Co, 1979).Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Szmant-Froelich, A., Reutter, M. & Riggs, L. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122. https://doi.org/10.1007/s00338-005-0070-9 (2006).ADS 
    Article 

    Google Scholar 
    Baird, A. H., Blakeway, D. R., Hurley, T. J. & Stoddart, J. A. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 158, 275–285. https://doi.org/10.1007/s00227-010-1557-7 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org, 2019).An {R} Companion to Applied Regression. Third Edition (Sage, Thousand Oaks (CA), 2019).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.7. https://CRAN.R-project.org/package=rcompanion. (2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398. https://doi.org/10.3389/fmars.2017.00398 (2017).Article 

    Google Scholar 
    Bachtiar, I. Reproduction of three scleractinian corals (Acropora cytherea, A. nobilis, Hydnophora rigida) in easter Lombok Strait, Indonesia. Indones. J. Mar. Sci. 6, 18–27 (2001).
    Google Scholar 
    Baird, A. H., Marshall, P. A. & Wolstenholme, J. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 385–389 (2002).Mangubhai, S. & Harrison, P. L. Asynchronous coral spawning patterns on equatorial reefs in Kenya. Mar. Ecol. Prog. Ser. 360, 85–96. https://doi.org/10.3354/meps07385 (2008).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F. & Harii, S. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35, 53–62. https://doi.org/10.1007/s00338-015-1348-1 (2016).ADS 
    Article 

    Google Scholar 
    Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayward, A. & Gillooly, J. F. The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway (Mutual Publishing Company, 2005).
    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x (2012).Article 
    PubMed 

    Google Scholar 
    Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363. https://doi.org/10.1007/s00227-006-0490-2 (2006).Article 

    Google Scholar 
    Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Q. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269. https://doi.org/10.2307/1540935 (1980).Article 

    Google Scholar 
    Kojis, B. L. Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia). Mar. Biol. 91, 311–318. https://doi.org/10.1007/BF00428624 (1986).Article 

    Google Scholar 
    Neves, E. & Pires, D. Sexual reproduction of Brazilian coral Mussismilia hispida (Verrill, 1902). Coral Reefs 21, 161–168. https://doi.org/10.1007/s00338-002-0217-x (2002).Article 

    Google Scholar 
    Pennington, J. T. The ecology of fertilization of Echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    Oliver, J. & Babcock, R. C. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315. https://doi.org/10.4319/lo.2002.47.1.0309 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398. https://doi.org/10.1111/j.1461-0248.2006.00886.x (2006).Article 
    PubMed 

    Google Scholar 
    Wolstenholme, J. K. Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar. Biol. 144, 567–582. https://doi.org/10.1007/s00227-003-1209-2 (2004).Article 

    Google Scholar 
    Colley, S. B., Feingold, J. S., Peña, J. & Glynn, P. W. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 23–27 (2000).Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96, 515–528. https://doi.org/10.1017/S0025315415000636 (2016).Article 

    Google Scholar 
    Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94. https://doi.org/10.1007/s00338-016-1504-2 (2017).ADS 
    Article 

    Google Scholar 
    Sherman, C. D. H. Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 100, 296–303. https://doi.org/10.1038/sj.hdy.6801076 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yeoh, S.-R. & Dai, C.-F. The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar. Biol. 157, 351–359. https://doi.org/10.1007/s00227-009-1322-y (2010).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525. https://doi.org/10.1038/s41598-021-91030-8 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Westneat, M. W. & Resing, J. M. Predation on coral spawn by planktivorous fish. Coral Reefs 7, 89–92. https://doi.org/10.1007/BF00301646 (1988).ADS 
    Article 

    Google Scholar 
    Fitzhugh, G. R., Shertzer, K. W., Kellison, G. T. & Wyanski, D. M. Review of size- and age-dependence in batch spawning: implications for stock assessment of fish species exhibiting indeterminate fecundity. Fish. Bull. 110, 413–425 (2012).
    Google Scholar 
    Alvarado, E. M., García, R. & Acosta, A. Sexual reproduction of the reef-building coral Diploria labyrinthiformis (Scleractinia:Faviidae), in the Colombian Caribbean. Rev. Biol. Trop. 52, 859–868 (2004).PubMed 

    Google Scholar 
    Maragos, J. E. A Study of the Ecology of Hawaiian Reef Corals, University of Hawaiʻi at Mānoa, (1972).Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Berec, L., Angulo, E. & Courchamp, F. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191. https://doi.org/10.1016/j.tree.2006.12.002 (2007).Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Human recreation impacts seasonal activity and occupancy of American black bears (Ursus americanus) across the anthropogenic-wildland interface

    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lute, M. L., Carter, N. H., López-Bao, J. V. & Linnell, J. D. C. Conservation professionals’ views on governing for coexistence with large carnivores. Biol. Cons. 248, 108668 (2020).Article 

    Google Scholar 
    Gantchoff, M. G. & Belant, J. L. Regional connectivity for recolonizing American black bears (Ursus americanus) in southcentral USA. Biol. Cons. 214, 66–75 (2017).Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 25 (2014).Article 
    CAS 

    Google Scholar 
    Kays, R. et al. Does hunting or hiking affect wildlife communities in protected areas?. J. Appl. Ecol. 54, 242–252 (2017).Article 

    Google Scholar 
    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, J. A., Wang, Y. & Wilmers, C. C. Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc. R. Soc. B Biol. Sci. 282, 20142711 (2015).Article 

    Google Scholar 
    Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E. & Kramer-Schadt, S. When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behav. Proc. 120, 30–39 (2015).Article 

    Google Scholar 
    Støen, O.-G. et al. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos). Physiol. Behav. 152, 244–248 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Evans, M. J., Rittenhouse, T. A. G., Hawley, J. E. & Rego, P. W. Black bear recolonization patterns in a human-dominated landscape vary based on housing: New insights from spatially explicit density models. Landsc. Urban Plan. 162, 13–24 (2017).Article 

    Google Scholar 
    LaRue, M. A. et al. Cougars are recolonizing the midwest: Analysis of cougar confirmations during 1990–2008. J. Wildl. Manag. 76, 1364–1369 (2012).Article 

    Google Scholar 
    Cove, M. V., Fergus, C., Lacher, I., Akre, T. & McShea, W. J. Projecting mammal distributions in response to future alternative landscapes in a rapidly transitioning region. Remote Sens. 11, 2482 (2019).ADS 
    Article 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 25 (2002).
    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).
    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).PubMed 
    Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, J. A., Thomas, A. C., Levi, T., Wang, Y. & Wilmers, C. C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127, 890–901 (2018).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter, N. H., Brown, D. G., Etter, D. R. & Visser, L. G. American black bear habitat selection in northern Lower Peninsula, Michigan, USA, using discrete-choice modeling. Ursus 21, 57–71 (2010).Article 

    Google Scholar 
    Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
    Google Scholar 
    Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. Trends Ecol. Evol. 30, 755–765 (2015).PubMed 
    Article 

    Google Scholar 
    Geffroy, B. et al. Evolutionary dynamics in the Anthropocene: Life history and intensity of human contact shape antipredator responses. PLoS Biol. 18, e3000818 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beeco, J. A., Hallo, J. C. & Brownlee, M. T. J. GPS visitor tracking and recreation suitability mapping: tools for understanding and managing visitor use. Landsc. Urban Plan. 127, 136–145 (2014).Article 

    Google Scholar 
    Thorsen, N. H. et al. Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale. Sci. Rep. 12, 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Evans, M. J., Hawley, J. E., Rego, P. W. & Rittenhouse, T. A. G. Hourly movement decisions indicate how a large carnivore inhabits developed landscapes. Oecologia 190, 11–23 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Carlos, A. W. D., Bright, A. D., Teel, T. L. & Vaske, J. J. Human-black bear conflict in urban areas: an integrated approach to management response. Hum. Dimens. Wildl. 14, 174–184 (2009).Article 

    Google Scholar 
    Johnson, H. E. et al. Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts. J. Appl. Ecol. 55, 663–672 (2018).Article 

    Google Scholar 
    Gould, N. P., Powell, R., Olfenbuttel, C. & DePerno, C. S. Growth and reproduction by young urban and rural black bears. J. Mammal. 102, 1165–1173 (2021).Article 

    Google Scholar 
    Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelis, D. L. Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).Article 

    Google Scholar 
    McFadden-Hiller, J. E. Jr. & Belant, J. L. Spatial distribution of black bear incident reports in michigan. PLoS One 11, e0154474 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS One 13, e0191730 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilbur, R. C., Lischka, S. A., Young, J. R. & Johnson, H. E. Experience, attitudes, and demographic factors influence the probability of reporting human–black bear interactions. Wildl. Soc. Bull. 42, 22–31 (2018).Article 

    Google Scholar 
    Lustig, E. J., Lyda, S. B., Leslie, D. M., Luttbeg, B. & Fairbanks, W. S. Resource selection by recolonizing American Black Bears. J. Wildl. Manage. 85, 531–542 (2021).Article 

    Google Scholar 
    Sun, C. C., Fuller, A. K., Hare, M. P. & Hurst, J. E. Evaluating population expansion of black bears using spatial capture-recapture. J. Wildl. Manage. 81, 814–823 (2017).Article 

    Google Scholar 
    Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).Article 

    Google Scholar 
    Michigan Department of Natural Resources (MIDNR) (2021).Blount, J. D., Chynoweth, M. W., Green, A. M. & Şekercioğlu, Ç. H. Review: COVID-19 highlights the importance of camera traps for wildlife conservation research and management. Biol. Cons. 256, 108984 (2021).Article 

    Google Scholar 
    Weather Atlas. https://www.weather-atlas.com/enEvans, J. S. Spatial Analysis and Modelling Utilities. Package ‘spatialEco’. https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf (2021).Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    Moore, J. F. et al. Comparison of species richness and detection between line transects, ground camera traps, and arboreal camera traps. Anim. Conserv. 23, 561–572 (2020).Article 

    Google Scholar 
    Parsons, A. W. et al. Urbanization focuses carnivore activity in remaining natural habitats, increasing species interactions. J. Appl. Ecol. 56, 1894–1904 (2019).Article 

    Google Scholar 
    Allen, M. L., Sibarani, M. C., Utoyo, L. & Krofel, M. Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park, Sumatra. Anim. Biodiv. Conserv. 43(1), 97–107 (2020).Article 

    Google Scholar 
    Tian, C. et al. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China. Glob. Ecol. Conserv. 22, e01015 (2020).Article 

    Google Scholar 
    Meredith, M. & Ridout, M. Estimates of coefficient of overlapping for animal activity patterns. Package ‘overlap’. https://cran.r-project.org/web/packages/overlap/overlap.pdf (2020).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. JABES 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Lashley, M. A. et al. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    Rowcliffe, M. Animal Activity Statistics. Package ‘activity’. https://cran.r-project.org/web/packages/activity/activity.pdf (2021).MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).Article 

    Google Scholar 
    Wei, T., & Simko, V. Visualization of a Correlation Matrix. Package ‘corrplot’. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (2017).Norton, D. C. et al. Female American black bears do not alter space use or movements to reduce infanticide risk. PLoS One 13, e0203651 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ditmer, M. A. et al. Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere 6, 1–21 (2015).Article 

    Google Scholar 
    Clark, D. et al. Using machine learning methods to predict the movement trajectories of the Louisiana black bear. SMU Data Sci. Rev. 5, 25 (2021).
    Google Scholar  More