More stories

  • in

    Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems

    Site descriptionThe experiment was conducted at the Beef Cattle Research Center of the Institute of Animal Science/APTA/SAA, Sertãozinho, São Paulo, Brazil (21°08′16″ S e 47°59′25″ W, average altitude 548 m), during two consecutive years. The climate in this region is Aw according to the Köppen’s classification, characterized as humid tropical, with a rainy season during summer and drought during winter. The meteorological data is reported in Fig. 1. The soil in the experimental area is classified as an Oxisol42. Before the experiment, soil samples were collected for chemical characterization (Table 4), which was performed following the methodology described in Van Raij et al.43. Samples were collected in 18 experimental paddocks, at the depths of 0- to 10- and 10- to 20-cm layers, from 10 distinct sampling points in each paddock, in order to create one composite sample per unit, totaling 36 samples analyzed.Figure 1Meteorological data during the study period, obtained from the meteorological station located at Centro de Pesquisa de Bovinos de Corte, Instituto de Zootecnia/Agência Paulista de Tecnologia dos Agronegócios (APTA)/Secretaria de Agricultura e Abastecimento de São Paulo (SAA), Sertãozinho, São Paulo, Brazil.Full size imageTable 4 Chemical attributes of the soil in the experimental area, before installing the experiment (November 2015).Full size tableThe nitrogen total (Nt) content was determined by the micro-Kjeldahl method44, and the soil nitrogen stocks (SN) were calculated using the following equation below, according to Veldkamp et al.45.$${text{SN }}left[ {{text{Mg ha}}^{ – 1} {text{ at a given depth}}} right], = ,({text{concentration }} times {text{ BD}}, times ,{1}/{1}0),$$ where concentration refers to the Nt concentration at a given depth (g kg−1), BD is the bulk density at a certain depth (average 1.24 kg dm−3), and 1 is the layer thickness (cm).Description of treatments and managementsThe experiment was carried out in a 16-ha area, divided into 18 paddocks of 0.89 ha each (Fig. 2), organized in a randomized blocks design with three replicates and six treatments, namely conventional crop system with grain maize production (CROP), conventional livestock system with beef cattle production in pasture using Marandu grass (LS), and four ICLS for the production of intercropped maize grain with beef cattle pasture. All production systems were sowed in December 2015, under a no-tillage system. The fertilization recommendations in the systems were based on the recommendation presented in the Boletim 10046.Figure 2Localization and representation of the area of the experiment carried out in the study. Google Earth version Pro was used to construct the map (http://www.google.com/earth/index.html).Full size imageIn the CROP system, the maize Pioneer P2830H was cultivated, sowed in a spacing of 75 cm and sowing density of 70 thousand plants. Applications of 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (single superphosphate) and 64 kg ha−1 of KCl (potassium chloride) were performed. Complementarily, a topdressing fertilization was made using 80 kg ha−1 of nitrogen (urea) and 80 kg ha−1 of KCl. Sowing was carried out for two consecutive years (December 2015 and 2016), providing two harvests of maize grains (May 2016 and 2017), and between one harvest and the other, the soil remained in fallow without any cover crop. The total amount of fertilizer applied in two years was 224 kg ha−1 of nitrogen (urea), 224 kg ha−1 of P2O5 (single superphosphate) and 288 kg ha−1 of KCl (potassium chloride).For the LS treatment, Urochloa brizantha (Hoechst. ex A. Rich) R.D. Webster cv. Marandu (syn. Brachiaria brizantha cv. Marandu) was sowed in a spacing of 37.5 cm, with a density of 5 kg ha−1 of seeds (76% of crop value) for the pasture assemblage. Marandu grass seeds were mixed with the planting fertilizer, applying 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (as single superphosphate) and 64 kg ha−1 of KCl. Applications of 40 kg ha−1 of nitrogen, 10 kg ha−1 of P2O5 and 40 kg ha−1 of KCl were also performed as topdressing fertilization in October 2016 and March 2017. 90 days after sowing, the pasture was ready to be grazed (March 2016). Three grazing periods were carried out in continuous stocking systems, with the first period between March and April 2016, the second period between August and October 2016 and the third between November 2016 and December 2017. The total amount for 2 years was 112 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 144 kg ha−1 of KCl (potassium chloride).The same cultivar, spacing, sowing density and fertilization rates described in the CROP treatment were used in all ICLS, as well as the same density of Marandu grass seeds and topdressing fertilization adopted in the pasture of the LS treatment. The total amount for two years was 192 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 224 kg ha−1 of KCl (potassium chloride). In ICLS-1, Marandu grass was sowed in lines simultaneously with maize, while in ICLS-2, the sowing was also simultaneous, but the application of an under-dose of 200 mL of the herbicide Nicosulfuron was used, 20 days after seedlings emergence. In the ICLS-3, Marandu grass seeds were sown the time of topdressing fertilization of maize, thus the grass seeds were mixed with the fertilizer, and sowing was carried out in the interlines of maize, using a minimum cultivator. In ICLS-4, the sowing of Marandu grass was performed simultaneously with maize, but the grass seeds were sowed in both rows and inter-rows of maize, resulting in a spacing of 37.5 cm. In this treatment, the application of 200 mL of the herbicide Nicosulfuron was adopted, 20 days after seedlings emergence.In all ICLS treatments, maize harvest was carried out in May 2016. Ninety days after harvesting the plants, the pastures were ready to be grazed. Therefore, two grazing periods were made in continuous stocking, being the first period between August and October 2016 and the second period between November 2016 and December 2017. The method for animal stocking in treatments LS and ICLS was continuous with a stocking rate (put and take) being defined according to Mott47. Caracu beef cattle with 14 months of age were used at the beginning of the experiment, with an average body weight of 335 ± 30 kg.Estimations of the nutrient balance (NB) and nutrient use efficiency (NUE)In this study, the inputs and outputs of N were assessed at the farm level48,49. The NB was calculated by the equation below19,45,50.$${text{NB}}_{{text{N}}} = {text{ Input}}_{{text{N}}} {-}{text{ Output}}_{{text{N}}}$$As for the NUE, this parameter was evaluated as defined by the EU Nitrogen Expert Panel51, being calculated as the ratio between outputs and inputs of nitrogen.$${text{NUE}}_{{text{N}}} = , left[ {{text{Output}}_{{text{N}}} /{text{ Input}}_{{text{N}}} } right]$$where NB is the nutrient balance, N is nitrogen, Input is the N concentration in the mineral fertilizer (urea), Output is the nitrogen concentration in export (maize grain and animal tissue), and NUE is the use efficiency of the nutrient.The amount of N exported in maize grains, the grain production results (Table 2) were multiplied by the mean value of N, consulted in Crampton and Harris52.In order to estimate the amounts of nutrient exported by the animals in their tissues, the values of live weight gain were considered [kg ha-1 of live weight (PV)] (Table 2), as well as the nitrogen values of the tissue, according to the methodology proposed by Rasmussen et al.21. Those authors reported that for animals weighting less than 452 kg/PV, it represents 2.7%, while heavier animals have a 2.4% nitrogen content representation of their body weight.The inputs and outputs of N in each production system are represented in Figs. 3, 4 and 5. Biological N fixation, atmospheric deposition, denitrification, leaching, rainfall, and volatilization and absorption of ammonia were not considered in the calculation of NB.Figure 3Representation of inputs and outputs of nitrogen and organic residues generated in the crop system.Full size imageFigure 4Representation of inputs and outputs of nitrogen and organic residues generated in the livestock system.Full size imageFigure 5Representation of inputs and outputs of nitrogen and organic residues generated in the integrated systems.Full size imageData for animal tissue, animal excreta, and N concentration in grains were obtained from key manuscripts from the scientific literature in order to estimate the N balance.Calculation of nitrogen quantity and valuation of organic residuesThe amount of N in the organic residues was determined as a function of the system (Figs. 3, 4, 5). The residue considered in the CROP was the straw derived from maize, while for LS it was the litter deposited (LD) in the grass Marandu, and animal manure (feces and urine). The ICLS were considered as the straw, LD, and animal manure.The N concentration in straw and LD was determined following the methods of AOAC (1990). Straw was sampled immediately after maize grain harvest, using a 1-m2 frame in the field. The material was collected in two spots of the plot that were chosen randomly. All straw deposited on the soil was sampled, weighted and dried in an oven with air circulation (60 °C) until constant weight, for the determination of dry matter in kg of straw per hectare (Table 2). The LD in the pasture system (Table 2) was analyzed according to Rezende et al.53.In order to estimate the daily amount of excreta, we considered the stocking rate adopted in the experiment (Table 2) and the values proposed by Haynes and Williams54. According to those authors, adult beef cattle can defecate on average 13 times a day and urinate 10 times a day, totaling a daily amount of 28.35 kg of feces and 19 L of urine.The valuation was calculated based on the mean value of urea for the last 10 years in the fertilizer market55,56,57, namely $0.28 kg−1 ha−1 of urea, and considering the loss of nitrogen by volatilization, which according to Freney et al.58 and Subair et al.59 can reach up to 28%.Statistical analysisThe experiment was assembled in a randomized blocks design. The model adopted for the analysis of all response variables included the block’s and treatments fixed effects (3 blocks and 6 treatments), in addition to the random error. Statistical analysis were carried out by the function “dbc()” of the package “ExpDes.pt” of the software R Development Core Team60, and the mean values were compared by the Tukey’s test at a 5% probability level. More

  • in

    Biodegradable sensors are ready to transform autonomous ecological monitoring

    Rundel, P. W., Graham, E. A., Allen, M. F., Fisher, J. C. & Harmon, T. C. New Phytol. 182, 589–607 (2009).Article 

    Google Scholar 
    Gibb, R., Browning, E., Glover‐Kapfer, P. & Jones, K. E. Methods Ecol. Evol. 10, 169–185 (2019).Article 

    Google Scholar 
    O’Connell, A. F. (ed) Camera Traps in Animal Ecology: Methods and Analyses. Vol. 271 (Springer, 2011).Hale, R. C., Seeley, M. E., Guardia, M. J. L., Mai, L. & Zeng, E. Y. J. Geophys. Res. Oceans 125, e2018JC014719 (2020).Article 

    Google Scholar 
    Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M. & Böni, H. Environ. Impact Assess. Rev. 25, 436–458 (2005).Article 

    Google Scholar 
    Hwang, S.-W. et al. Science 337, 1640–1644 (2012).CAS 
    Article 

    Google Scholar 
    Ashammakhi, N. et al. Adv. Funct. Mater. 31, 2104149 (2021).Boutry, C. M. et al. Nat. Biomed. Eng. 3, 47–57 (2019).CAS 
    Article 

    Google Scholar 
    Boutry, C. M. et al. Nat. Electron. 1, 314–321 (2018).Article 

    Google Scholar 
    Hori, K., Inami, A., Kan, T. & Onoe, H. In Proc. 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 863–866 (IEEE, Orlando, 2021).Dincer, C. et al. Adv. Mater. 31, 1806739 (2019).Article 

    Google Scholar 
    Kocer, B. B. et al. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–8 (IEEE, Biograd na Moru, 2021).Pandolfi, C. & Izzo, D. Bioinspir. Biomim. 8, 025003 (2013).Article 

    Google Scholar 
    Wiesemüller, F., Miriyev, A. & Kovac, M. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–6 (IEEE, Biograd na Moru, 2021).Boutry, C. M. et al. Sens. Actuators A Phys. 189, 344–355 (2013).CAS 
    Article 

    Google Scholar 
    Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Microsyst. Nanoeng. 1, 15024 (2015).CAS 
    Article 

    Google Scholar 
    Lee, G. et al. Adv. Energy Mater. 7, 1700157 (2017).Article 

    Google Scholar 
    Dagdeviren, C. et al. Small 9, 3398–3404 (2013).CAS 
    Article 

    Google Scholar 
    Sadasivuni, K. K. et al. J. Mater. Sci. Mater. Electron. 30, 951–974 (2019).CAS 
    Article 

    Google Scholar 
    Luvisi, A., Panattoni, A. & Materazzi, A. Comput. Electron. Agric. 123, 135–141 (2016).Article 

    Google Scholar 
    Yin, L. et al. Adv. Mater. 26, 3879–3884 (2014).CAS 
    Article 

    Google Scholar 
    Demetillo, A. T., Japitana, M. V. & Taboada, E. B. Sustain. Environ. Res. 29, 12 (2019).CAS 
    Article 

    Google Scholar 
    Salvatore, G. A. et al. Adv. Funct. Mater. 27, 1702390 (2017).Article 

    Google Scholar 
    Farinha, A., Zufferey, R., Zheng, P., Armanini, S. F. & Kovac, M. IEEE Robot. Autom. Lett. 5, 6623–6630 (2020).Article 

    Google Scholar 
    Miriyev, A. & Kovač, M. Nat. Mach. Intell. 2, 658–660 (2020).Article 

    Google Scholar 
    Kang, S.-K., Koo, J., Lee, Y. K. & Rogers, J. A. Acc. Chem. Res. 51, 988–998 (2018).CAS 
    Article 

    Google Scholar 
    Goel, V., Luthra, P., Kapur, G. S. & Ramakumar, S. S. V. J. Polym. Environ. 29, 3079–3104 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Gentrified gardens

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Social support correlates with glucocorticoid concentrations in wild African elephant orphans

    Wu, A. Social buffering of stress – Physiological and ethological perspectives. Appl. Anim. Behav. Sci. 239, 105325 (2021).
    Google Scholar 
    Hennessy, M. B., Kaiser, S. & Sachser, N. Social buffering of the stress response: diversity, mechanisms, and functions. Front. Neuroendocrinol. 30, 470–482 (2009).CAS 
    PubMed 

    Google Scholar 
    Young, C., Majolo, B., Heistermann, M., Schülke, O. & Ostner, J. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proc. Natl Acad. Sci. USA 111, 18195–18200 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stanton, M. E., Patterson, J. M. & Levine, S. Social influences on conditioned cortisol secretion in the squirrel monkey. Psychoneuroendocrinology 10, 125–134 (1985).CAS 
    PubMed 

    Google Scholar 
    Caldji, C., Diorio, J. & Meaney, M. J. Variations in maternal care in infancy regulate the development of stress reactivity. Biol. Psychiatry 48, 1164–1174 (2000).CAS 
    PubMed 

    Google Scholar 
    Novak, M. A., Hamel, A. F., Kelly, B. J., Dettmer, A. M. & Meyer, J. S. Stress, the HPA axis, and nonhuman primate well-being: a review. Appl. Anim. Behav. Sci. 143, 135–149 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Liu, D. et al. Maternal Care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Sci. Ment. Heal. Stress Brain 9, 75–78 (1997).
    Google Scholar 
    Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403–416 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spiga, F., Walker, J. J., Terry, J. R. & Lightman, S. L. HPA axis-rhythms. Compr. Physiol. 4, 1273–1298 (2014).PubMed 

    Google Scholar 
    Sapolsky, R. M. Why Zebras Don’t Get Ulcers (Henry Holt and Company, LLC, 2004).Campos, F. A. et al. Glucocorticoid exposure predicts survival in female baboons. Sci. Adv. 7, 1–10 (2021).
    Google Scholar 
    Banerjee, S. B., Arterbery, A. S., Fergus, D. J. & Adkins-Regan, E. Deprivation of maternal care has long-lasting consequences for the hypothalamic-pituitary-adrenal axis of zebra finches. Proc. R. Soc. B Biol. Sci. 279, 759–766 (2012).
    Google Scholar 
    Hennessy, M. B., Nigh, C. K., Sims, M. L. & Long, S. J. Plasma cortisol and vocalization responses of postweaning age guinea pigs to maternal and sibling separation: evidence for filial attachment after weaning. Dev. Psychobiol. 28, 103–115 (1995).CAS 
    PubMed 

    Google Scholar 
    Hennessy, M. B., O’Leary, S. K., Hawke, J. L. & Wilson, S. E. Social influences on cortisol and behavioral responses of preweaning, periadolescent, and adult guinea pigs. Physiol. Behav. 76, 305–314 (2002).CAS 
    PubMed 

    Google Scholar 
    Wiener, S. G., Johnson, D. F. & Levine, S. Influence of postnatal rearing conditions on the response of squirrel monkey infants to brief perturbations in mother-infant relationships. Physiol. Behav. 39, 21–26 (1987).CAS 
    PubMed 

    Google Scholar 
    Girard-Buttoz, C. et al. Early maternal loss leads to short-but not long-term effects on diurnal cortisol slopes in wild chimpanzees. Elife 10, e64134 (2021).Rosenbaum, S. et al. Social bonds do not mediate the relationship between early adversity and adult glucocorticoids in wild baboons. Proc. Natl Acad. Sci. USA 117, 20052–20062 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moss, C. Elephant Memories: Thirteen Years in the Life of an Elephant Family (Univ. Chicago Press, 1988).Douglas-Hamilton, I., Bhalla, S., Wittemyer, G. & Vollrath, F. Behavioural reactions of elephants towards a dying and deceased matriarch. Appl. Anim. Behav. Sci. 100, 87–102 (2006).
    Google Scholar 
    Shoshani, J., Kupsky, W. J. & Marchant, G. H. Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res. Bull. 70, 124–157 (2006).PubMed 

    Google Scholar 
    Goldenberg, S. Z. & Wittemyer, G. Orphaned female elephant social bonds reflect lack of access to mature adults. Sci. Rep. 7, 14408 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Goldenberg, S. Z. & Wittemyer, G. Orphaning and natal group dispersal are associated with social costs in female elephants. Anim. Behav. 143, 1–8 (2018).
    Google Scholar 
    Lee, P. C. Allomothering among African elephants. Anim. Behav. 35, 278–291 (1987).
    Google Scholar 
    Parker, J. M. et al. Poaching of African elephants indirectly decreases population growth through lowered orphan survival. Curr. Biol. 31, 4156–4162.e5 (2021).Wittemyer, G. et al. Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc. R. Soc. B Biol. Sci. 276, 3513–3521 (2009).
    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Vertical transmission of social roles drives resilience to poaching in elephant metworks. Curr. Biol. 26, 75–79 (2016).CAS 
    PubMed 

    Google Scholar 
    Gobush, K. S., Mutayoba, B. M. & Wasser, S. K. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female African elephants. Conserv. Biol. 22, 1590–1599 (2008).CAS 
    PubMed 

    Google Scholar 
    Gobush, K. S. et al. Loxodonta africana (African Savanna Elephant). Loxodonta africana: the IUCN red list of threatened species 2021 e.T181008073A181022663 https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T181008073A181022663.en (2021).Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittemyer, G., Daballen, D. & Douglas-Hamilton, I. Comparative Demography of an At-Risk African Elephant Population. PLoS ONE 8, e53726 (2013).McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).
    Google Scholar 
    Wittemyer, G. The elephant population of Samburu and Buffalo Springs National Reserves, Kenya. Afr. J. Ecol. 39, 357–369 (2001).
    Google Scholar 
    Cockrem, J. F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181, 45–58 (2013).CAS 
    PubMed 

    Google Scholar 
    Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of glucocorticoids: a review and meta-analysis. Gen. Comp. Endocrinol. 260, 136–145 (2018).CAS 
    PubMed 

    Google Scholar 
    Hooten, M. B. & Hobbs, N. T. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 85, 3–28 (2015).
    Google Scholar 
    Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Anim. Behav. 73, 671–681 (2007).
    Google Scholar 
    Heim, C., Ehlert, U. & Hellhammer, D. H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25, 1–35 (2000).CAS 
    PubMed 

    Google Scholar 
    Dickens, M. J. & Romero, L. M. A consensus endocrine profile for chronically stressed wild animals does not exist. Gen. Comp. Endocrinol. 191, 177–189 (2013).CAS 
    PubMed 

    Google Scholar 
    Ma, D., Serbin, L. A. & Stack, D. M. How children’s anxiety symptoms impact the functioning of the hypothalamus–pituitary–adrenal axis over time: a cross-lagged panel approach using hierarchical linear modeling. Dev. Psychopathol. 31, 1–15 (2018).
    Google Scholar 
    Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl Acad. Sci. USA 104, 8880–8884 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boonstra, R. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23 (2013).
    Google Scholar 
    Gunnar, M. R. & Vazquez, D. M. Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Dev. Psychopathol. 13, 515–538 (2001).CAS 
    PubMed 

    Google Scholar 
    Perry, R. E. et al. Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Dev. Cogn. Neurosci. 40, 100716 (2019).Fries, E., Hesse, J., Hellhammer, J. & Hellhammer, D. H. A new view on hypocortisolism. Psychoneuroendocrinology 30, 1010–1016 (2005).CAS 
    PubMed 

    Google Scholar 
    Dorsey, C., Dennis, P., Guagnano, G., Wood, T. & Brown, J. L. Decreased baseline fecal glucocorticoid concentrations associated with skin and oral lesions in black rhinoceros (Diceros bicornis). J. Zoo. Wildl. Med. 41, 616–625 (2010).PubMed 

    Google Scholar 
    Pawluski, J. et al. Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS ONE 12, 1–18 (2017).
    Google Scholar 
    Feng, X. et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc. Natl Acad. Sci. USA 108, 14312–14317 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González Ramírez, C. et al. The NR3C1 gene expression is a potential surrogate biomarker for risk and diagnosis of posttraumatic stress disorder. Psychiatry Res. 284, 112797 (2020).PubMed 

    Google Scholar 
    Cluver, L., Fincham, D. S. & Seedat, S. Posttraumatic stress in AIDS-orphaned children exposed to high levels of trauma: the protective role of perceived social support. J. Trauma. Stress 22, 106–112 (2009).PubMed 

    Google Scholar 
    Bastille-Rousseau, G. et al. Landscape-scale habitat response of African elephants shows strong selection for foraging opportunities in a human dominated ecosystem. Ecography 43, 149–160 (2020).
    Google Scholar 
    Foley, C. A. H., Papageorge, S. & Wasser, S. K. Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv. Biol. 15, 1134–1142 (2001).
    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    Wittemyer, G., Daballen, D. & Douglas‐Hamilton, I. Differential influence of human impacts on age‐specific demography underpins trends in an African elephant population. Ecosphere 12, e03720 (2021).Brown, J. L. et al. Individual and environmental risk factors associated with fecal glucocorticoid metabolite concentrations in zoo-housed Asian and African elephants. PLoS ONE 14, 1–18 (2019).
    Google Scholar 
    Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. Glob. Ecol. Conserv. 18, e00604 (2019).Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conserv. Physiol. 2, 1–18 (2014).
    Google Scholar 
    Kaisin, O., Fuzessy, L., Poncin, P., Brotcorne, F. & Culot, L. A meta-analysis of anthropogenic impacts on physiological stress in wild primates. Conserv. Biol. 0, 1–14 (2020).CAS 

    Google Scholar 
    Ganswindt, A., Rasmussen, H. B., Heistermann, M. & Hodges, J. K. The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Horm. Behav. 47, 83–91 (2005).CAS 
    PubMed 

    Google Scholar 
    Santymire, R. M. et al. Using ACTH challenges to validate techniques for adrenocortical activity analysis in various African wildlife species. Int. J. Anim. Vet. Adv. 4, 99–108 (2012).CAS 

    Google Scholar 
    Watson, R. et al. Development of a versatile enzyme immunoassay for non-invasive assessment of glucocorticoid metabolites in a diversity of taxonomic species. Gen. Comp. Endocrinol. 186, 16–24 (2013).CAS 
    PubMed 

    Google Scholar 
    Oduor, S. et al. Differing physiological and behavioral responses to anthropogenic factors between resident and non-resident African elephants at Mpala Ranch, Laikipia County, Kenya. PeerJ 8, e10010 (2020).Brown, J. L., Kersey, D. C., Freeman, E. W. & Wagener, T. Assessment of diurnal urinary cortisol excretion in Asian and African elephants using different endocrine methods. Zoo. Biol. 29, 274–283 (2010).PubMed 

    Google Scholar 
    Justice, C. O. et al. The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998).
    Google Scholar 
    Lafferty, D. J. R., Zimova, M., Clontz, L., Hackländer, K. & Mills, L. S. Noninvasive measures of physiological stress are confounded by exposure. Sci. Rep. 9, 1–6 (2019).
    Google Scholar 
    O’Dwyer, K., Dargent, F., Forbes, M. R. & Koprivnikar, J. Parasite infection leads to widespread glucocorticoid hormone increases in vertebrate hosts: a meta-analysis. J. Anim. Ecol. 89, 519–529 (2020).PubMed 

    Google Scholar 
    Parker, J. M., Goldenberg, S. Z., Letitiya, D. & Wittemyer, G. Strongylid infection varies with age, sex, movement and social factors in wild African elephants. Parasitology 147, 348–359 (2020).PubMed 

    Google Scholar 
    Gibbons, L., Jacobs, D. E., Fox, M. T. & Hansen, J. The RVC/FAO guide to veterinary diagnostic parasitology. McMaster egg-counting technique. http://www.rvc.ac.uk/review/Parasitology/EggCount/Purpose.htm (2004)R Core Team. A language and environment for statistical computing. https://www.r-project.org/. (2020).Rstudio Team. RStudio: integrated development for R. http://www.rstudio.com/ (2020).Plummer, M. rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/package=rjags (2019).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).
    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
    Google Scholar 
    Wickham, H. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).
    Google Scholar 
    Parker, J. M. The Physiological Condition of Orphaned African Elephants (Loxodonta africana). Doctoral dissertation, Colorado State University. (2021). More

  • in

    Network metrics guide good control choices

    The management of introduced species, whether kudzu or zebra mussels, is costly and complex. Now, a paper reports a workable, effective solution that harnesses network analyses of ecological phenomena.Invasive species can pose severe economic and environmental problems, costing more than US$1 trillion worldwide since 1970 (ref. 1). Yet managing this human-driven issue is difficult in itself. The regions involved can be vast — entire continents or countries, for instance — while budgets are typically limited. As well, the sites potentially affected and management options can be numerous. Real systems (for example, all the lakes in the United States) can have thousands of locations that could potentially be infested. By contrast, considering just 40 locations means dealing theoretically with over 1 trillion unique combinations (240) where management could be applied (for instance, to reduce the number of invasive species leaving infested areas or entering uninfested ones). Given these constraints, a key problem is how and where to deploy control measures such as invasive-species removal. While sophisticated optimization approaches exist2, which use mathematical rules to exclude most suboptimal combinations and quickly zoom in to which locations should be managed to minimize new invasions, these algorithms are generally unfeasible for very large systems. Now, writing in Nature Sustainability, Ashander et al.3 demonstrate that simpler network metrics revealing linkages between patches can provide solutions that are often comparable to the more complex optimization algorithms. More

  • in

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils

    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).
    Google Scholar 
    Salimpour, S., Khavazi, K., Nadian, H., Besharati, H. & Miransari, M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 6, 629–642 (2010).
    Google Scholar 
    Ezawa, T., Smith, S. E. & Smith, F. A. P metabolism and transport in AM fungi. Plant Soil 244, 221–230 (2002).CAS 
    Article 

    Google Scholar 
    Halajnia, A., Haghnia, G. H., Fotovat, A. & Khorasani, R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 150, 209–213 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Adnan, M. et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. & Rasheed, M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48–58 (2009).
    Google Scholar 
    Torrent, J., Barron, V. & Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990).ADS 
    Article 

    Google Scholar 
    Rehim, A. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turk. J. Agric. For. 40, 319–326 (2016).CAS 
    Article 

    Google Scholar 
    Bieleski, R. L. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 24, 225–252 (1973).CAS 
    Article 

    Google Scholar 
    Goldstein, A. H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12, 185–193 (1995).Article 

    Google Scholar 
    Lopez-Bucio, J., Vega, O. M., Guevara-Garcıa, A. & Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18, 450–453 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, S., Solomon, D., Hyl, C., Ketterings, Q. M. & Lehmann, J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ. Sci. Technol. 39, 7485–74919 (2000).ADS 
    Article 
    CAS 

    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils Vol. 13, 662–710 (Prentice Hall, 2008).
    Google Scholar 
    Adnan, M. et al. Coupling phosphate solubilizing bacteria with Phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. & Roldan, A. Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L.. Appl. Soil Ecol. 25, 169–180 (2004).Article 

    Google Scholar 
    Zaidi, A., Khan, M., Ahemad, M. S., Oves, M. & Wani, P. A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement (eds Khan, M. S. et al.) 23–50 (Springer, 2009).Chapter 

    Google Scholar 
    Illmer, P., Barbato, A. & Schinner, F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 27, 265–270 (1995).CAS 
    Article 

    Google Scholar 
    Ryan, P. R., Delhaize, E. & Jones, D. L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 52, 527–560 (2001).CAS 
    Article 

    Google Scholar 
    Chen, Y. P. et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006).Article 

    Google Scholar 
    Adnan, M. et al. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech 9, 368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Z. & Zhu, J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 30, 917–923 (1988).Article 

    Google Scholar 
    Kucey, R. M. N. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261–270 (1988).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E. & Oberson, A. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 36, 889–901 (2004).Article 
    CAS 

    Google Scholar 
    McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–268 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62, 173–181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucey, R. M. N., Janzen, H. H. & Legett, M. E. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42, 198–228 (1989).
    Google Scholar 
    Rodriguez, H. & Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, Y., Wang, X., Chen, W. & Huang, Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34, 873–880 (2017).CAS 
    Article 

    Google Scholar 
    Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 56, 105–114 (2010).CAS 
    Article 

    Google Scholar 
    Jalili, F. et al. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166, 667–674 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tiwari, V. N., Lehri, L. K. & Pathak, A. N. Effect of inoculating crops with phospho-microbes. Exp. Agric. 25, 47–50 (1989).Article 

    Google Scholar 
    Pal, S. S. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 213, 221–230 (1999).MathSciNet 
    Article 

    Google Scholar 
    Afzal, A., Ashraf, M., Asad, S. A. & Faroog, M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 7, 207–209 (2005).
    Google Scholar 
    Bolan, N. S., Naidu, R., Mahimairajaand, S. & Baskaran, S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils 18, 311–319 (1994).CAS 
    Article 

    Google Scholar 
    Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F. & Naeem, A. Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. J. Soil Sci. Plant Nutr. 22(1), 465–474 (2022).CAS 
    Article 

    Google Scholar 
    Adnan, M., Shah, Z., Sharif, M. & Rahman, H. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environ. Sci. Pollut. Res. 25(10), 9501–9509 (2018).CAS 
    Article 

    Google Scholar 
    Amin, A. E. E. A. Z. & Mihoub, A. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. J. Soil Sci. Plant Nutr. 21(3), 2041–2047 (2021).CAS 
    Article 

    Google Scholar 
    Tawaraya, K., Hirose, R. & Wagatsuma, T. Inoculation of arbuscularmycorrhizal fungi can substantially reduce phosphate fertilizer application to Alliumfis-tulosum L. and achieve marketable yield underfield condition. Biol. Fertil. Soils 48, 839–843 (2012).Article 

    Google Scholar 
    Islam, M. T. & Hossain, M. M. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In Bacteria in Agrobiology, Plant Probiotics (ed. Maheshwari, D. K.) 325–363 (Springer, 2012).Chapter 

    Google Scholar 
    Amruthesh, K. N., Raj, S. N., Kiran, B., Shetty, H. S. & Reddy, M. S. Growth promotion by plant growth-promoting rhizobacteria in some economically important crop plants. In Sixth International PGPR Workshop, 5–10 October, Calicut, India, 97–103 (2003).Kumar, S. et al. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 111, 1046–1059 (2019).CAS 
    Article 

    Google Scholar 
    Mihoub, A. & Boukhalfa-Deraoui, N. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian J. Crop Sci. 6, 383–391 (2014).Article 

    Google Scholar 
    Piccini, D. & Azcon, R. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 50, 45–50 (1987).Article 

    Google Scholar 
    Dwivedi, B. S., Singh, V. K. & Dwivedi, V. Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the Indo Gangetic plains of India. Aus. J. Exp. Agric. 44, 1041–1050 (2004).CAS 
    Article 

    Google Scholar 
    Saad, O. A. O. & Hammad, A. M. M. Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and V.A mycorrhiza as alternate for ca–superphosphate. Ann. Agric. Sci. Cairo 43, 445–460 (1998).
    Google Scholar 
    Chabot, R. & Antoun, H. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum. Plant Soil. 184, 311–321 (1996).CAS 
    Article 

    Google Scholar 
    Kundu, B. S. & Gaur, A. C. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant Soil. 79, 227–234 (1984).CAS 
    Article 

    Google Scholar 
    Sharma, G. D., Thakur, R., Raj, S., Kauraw, D. L. & Kulhare, P. S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan 8, 1159–1164 (2013).CAS 

    Google Scholar 
    Afzal, A. & Asghari, B. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10, 85–88 (2008).CAS 

    Google Scholar 
    Jalili, G. et al. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere micro flora through organic and bio fertilizers. Ann. Microbiol. 57(2), 177–183 (2007).Article 

    Google Scholar 
    Sharma, S. N. & Prasad, R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J. Agric. Sci. 141, 359–369 (2003).CAS 
    Article 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mukherjee, P. K. & Rai, R. K. Sensitivity of P uptake to change in root growth and soil volume as influenced by VAM, PSB and P levels in wheat and chickpeas. Ann. Agric. Res. 20, 528–530 (1999).
    Google Scholar 
    Egamberdiyeva, D. Proc. Inst. Microbiol. Tashkent, Uzekistan (2004).Mihoub, A., Daddi Bouhoun, M., Naeem, A. & Saker, M. L. Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch. Agron. Soil Sci. 63, 1023–1034 (2017).CAS 
    Article 

    Google Scholar 
    Thakuria, D. et al. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 86, 978–985 (2004).
    Google Scholar 
    Mamta, P. et al. Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A content of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46, 222–229 (2010).Article 

    Google Scholar 
    Banik, S. B. K. Solubilization of inorganic phosphate and production of organic acids by micro-organisms isolated in sucrose tricalcium phosphate agar plate. Zentralblat. Bakterol. Parasilenkl. Infektionskr. Hyg. 136, 478–486 (1981).CAS 

    Google Scholar 
    Stevenson, F. J. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micro-nutrients (Wiley, 2005).
    Google Scholar 
    Ekin, Z. Performance of phosphorus solubilizing bacteria for improving growth and yield of sun flower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 9, 3794–3800 (2010).CAS 

    Google Scholar 
    Zabihi, H. R., Savaghebi, G. R., Khavazi, K., Ganjali, A. & Miransari, M. Pseudomonas bacteria and phosphorus fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under green house and field conditions. Acta Physiol. Plant 33, 145–152 (2010).Article 

    Google Scholar 
    Gulati, A., Rahi, P. & Vyas, P. Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56, 73–79 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kloepper, J. W., Lifshitz, R. & Zablotowicz, R. M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7, 39–44 (1989).Article 

    Google Scholar 
    Satchell, J. E. Ecology and environment in the United Arab Emirates. J. Arid. Environ. 1, 201–226 (1978).ADS 
    Article 

    Google Scholar 
    Biswas, D. R. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr. Cycl. Agroecosyst. 89, 15–30 (2011).Article 

    Google Scholar 
    Mitra, S. et al. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius). Indian J. Anim. Sci. 80(9), 801–804 (2010).
    Google Scholar 
    Laxminarayana, K. Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in Ultisols of Mizoram. J. Indian Soc. Soil Sci. 54, 120–123 (2006).
    Google Scholar 
    Sanyal, S. K. & De Datta, S. K. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16, 1–120 (1991).CAS 

    Google Scholar 
    Briedis, C. et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80–88 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Krieg, N. R. & Holt, J. G. Bergey’s Manual of Systemetic Bacteriology Vol. 1, 984 (Williams & Wilkin, 1984).
    Google Scholar 
    Holt, J. G. et al. (eds) Bergey’s Manual of Determinative Bacteriology 9th edn, 787 (The Williams & Wilkin, 1994).
    Google Scholar 
    Gordon, R. E., Haynes, W. C. & Pang, C. N. The Genus Bacillus. Agricultural Handbook. No. 427 283 (Department of Agriculture, 1973).
    Google Scholar 
    Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265–270 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 14 (ed. Page, A. L.) 961–1010 (Wiley, 1996).
    Google Scholar 
    Eivazi, F. & Tabatabai, M. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).CAS 
    Article 

    Google Scholar 
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45 (1991).CAS 
    Article 

    Google Scholar 
    Vincet, J. M. A. Manual for the Practical Study of the Root-Nodule Bacteria; IBPH and Book No. 15 (Blackwell Scientific Publication, 1970).
    Google Scholar 
    Alagawadi, A. R. & Gaur, A. C. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 105, 241–246 (1988).Article 

    Google Scholar 
    Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B. & Vani, S. S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 6, 2133–2144 (2017).CAS 
    Article 

    Google Scholar 
    Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. & Wong, M. H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125, 155–166 (2005).ADS 
    Article 

    Google Scholar 
    Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 475–490 (Wiley, 1996).
    Google Scholar 
    Rhoades, J. D. Salinity, electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 417–435 (Soil Science Society of America, 1996).
    Google Scholar 
    Bremner, J. M. & Breitenbeck, G. A. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 14, 905–913 (1983).CAS 
    Article 

    Google Scholar 
    Ryan, J., Estefan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual 2nd edn, 172 (The National Agricultural Research Center (NARC), 2001).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) (Department of Agriculture Circular, 1954).
    Google Scholar 
    Loeppert, R. H. & Suarez, D. L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 9 (eds Sparks, D. L. et al.) 181–197 (Soil Science Society of America, 1996).
    Google Scholar 
    Bahadur, L., Tiwari, D. D., Mishra, J. & Gupta, B. R. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J. Indian Soc. Soil Sci. 60(4), 326–329 (2012).CAS 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 9 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, 1996).
    Google Scholar 
    Richards, L. A. Diagnosis and improvement of saline and alkali soils. LWW 78(2), 154 (1954).
    Google Scholar 
    Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics, a Biometrical Approach 195–233 (McGraw Hill, 1996).MATH 

    Google Scholar  More

  • in

    Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons

    Climate and land cover dataOur study of tropical dry season dynamics required climatic variables with high temporal resolution (i.e., daily) and full coverage of tropic regions. To reduce uncertainties associated with the choice of precipitation (P) and evapotranspiration (Ep or E) datasets, we used an ensemble of eight precipitation products, three reanalysis-based products for Ep, and one satellite-based land E product. These precipitation datasets were derived four gauge-based or satellite observation (CHIRPS58, GPCC59, CPC-U60 and PERSIANN-CDR61), three reanalyses (ERA-562, MERRA-263, and PGF64) and a multi-source weighted ensemble product (MSWEP v2.865). The potential evapotranspiration (Ep) was calculated using the FAO Penman–Monteith equation66 (Eqs. (1, 2)), which requires meteorological inputs of wind speed, net radiation, air temperature, specific humidity, and surface pressure. We derived these meteorological variables from the three reanalysis products (ERA-5, MERRA-2, and GLDAS-2.067). Since PGF reanalysis lacked upward short- and long-wave radiation output and thus net radiation, we used available meteorological outputs from GLDAS-2.0 instead, which was forced entirely with the PGF input data.$${Ep}=frac{0.408cdot triangle cdot left({R}_{n}-Gright)+gamma cdot frac{900}{T+273}cdot {u}_{2}cdot left({e}_{s}-{e}_{a}right)}{triangle +{{{{{rm{gamma }}}}}}cdot left(1+0.34cdot {u}_{2}right)}$$
    (1)
    $${VPD}={e}_{s}-{e}_{a}=0.6108cdot {e}^{frac{17.27cdot T}{T+237.3}}cdot left(1-frac{{RH}}{100}right)$$
    (2)
    Where Ep is the potential evapotranspiration (mm day−1). Rn is net radiation at the surface (MJ m−2 day−1), T is mean daily air temperature at 2 m height (°C), ({u}_{2}) is wind speed at 2 m height (m s−1), ((,{e}_{s}-{e}_{a})) is the vapor pressure deficit of the air (kPa), ({RH}) is the relative air humidity near surface (%), ∆ is the slope of the saturation vapor pressure-temperature relationship (kPa °C−1), γ is the psychrometric constant (kPa °C−1), G is the soil heat flux (MJ m−2 day−1, is often ignored for daily time steps G ≈ 0).We derived the daily evapotranspiration data from the Global Land Evaporation Amsterdam Model (GLEAM v3.3a68), which is a set of algorithms dedicated to developing terrestrial evaporation and root-zone soil moisture data. GLEAM fully assimilated the satellite-based soil moisture estimates from ESA CCI, microwave L-band vegetation optical depth (VOD), reanalysis-based temperature and radiation, and multi-source precipitation forcings. The direct assimilation of observed soil moisture allowed us to detect true soil moisture dynamic and its impacts on evapotranspiration. Besides, the incorporation of VOD, which is closely linked to vegetation water content69,70, allowed us to detect the effect of water stress, heat stress, and vegetation phenological constraints on evaporation. Other observation-driven ET products from remote-sensing physical estimation and flux-tower are not included due to their low temporal resolution (i.e., monthly)71 or short duration72,73. ET outputs of reanalysis products are not considered in our analysis, because the assimilation systems lack explicit representation of inter-annual variability of vegetation activities and thus may not fully capture hydrological response to vegetation changes62,63,67.We used land cover maps for the year 2001 from the Moderate-Resolution Imaging Spectroradiometer (MODIS, MCD12C1 C574) based on the IGBP classification scheme to exclude water-dominated and sparely-vegetated pixels (like Sahara, Arabian Peninsula). All climate and land cover datasets mentioned above were remapped to a common 0.25° × 0.25° grid and unified to daily resolution. The main characteristics of the datasets mentioned above are summarized in Supplementary Table 1.Outputs of CMIP6 simulationsTo understand how modeled dry season changes compare with observed changes, we analyzed outputs from the “historical” (1983-2014) runs of 34 coupled models participating in the 6th Coupled Model Inter-comparison Project75 (CMIP6, Supplementary Table 3). We used these models because they offered daily outputs of all climatic variables needed for our analysis, including precipitation, latent heat (convert to E), and multiple meteorological variables for Ep (air temperature, surface specific humidity, wind speed, and net radiation). All outputs were remapped to a common 1.0° × 1.0° grid and unified to daily resolution.Defining dry season length and timingFor each grid cell and each dry season definition (P  More

  • in

    Evaluating the temporal and spatio-temporal niche partitioning between carnivores by different analytical method in northeastern Japan

    Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Amarasekare, P. Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett. 6, 1109–1122 (2003).Article 

    Google Scholar 
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).Article 

    Google Scholar 
    Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).PubMed 
    Article 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).Article 

    Google Scholar 
    Davis, C. L. et al. Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecol. Lett. 21, 1401–1412 (2018).PubMed 
    Article 

    Google Scholar 
    Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).Article 

    Google Scholar 
    Fedriani, J. M., Fuller, T. K., Sauvajot, R. M. & York, E. C. Competition and intraguild predation among three sympatric carnivores. Oecologia 125, 258–270 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kamler, J. F., Ballard, W. B., Gilliland, R. L. & Mote, K. Spatial relationships between swift foxes and coyotes in northwestern Texas. Can. J. Zool. 81, 168–172 (2003).Article 

    Google Scholar 
    Vanak, A. T. et al. Moving to stay in place: Behavioral mechanisms for coexistence of African large carnivores. Ecology 94, 2619–2631 (2013).PubMed 
    Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Tsunoda, H. et al. Food niche segregation between sympatric golden jackals and red foxes in central Bulgaria. J. Zool. 303, 64–71 (2017).Article 

    Google Scholar 
    Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Linnell, J. D. C. & Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 6, 169–176 (2000).Article 

    Google Scholar 
    Kamler, J. F., Stenkewitz, U., Klare, U., Jacobsen, N. F. & MacDonald, D. W. Resource partitioning among cape foxes, bat-eared foxes, and black-backed jackals in South Africa. J. Wildl. Manag. 76, 1241–1253 (2012).Article 

    Google Scholar 
    Di Bitetti, M. S., Di Blanco, Y. E., Pereira, J. A., Paviolo, A. & Pírez, I. J. Time Partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas Foxes (Lycalopex gymnocercus). J. Mammal. 90, 479–490 (2009).Article 

    Google Scholar 
    Lesmeister, D. B., Nielsen, C. K., Schauber, E. M. & Hellgren, E. C. Spatial and temporal structure of a mesocarnivore guild in Midwestern North America. Wildl. Monogr. 191, 1–61 (2015).Article 

    Google Scholar 
    Di Bitetti, M. S., De Angelo, C. D., Di Blanco, Y. E. & Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36, 403–412 (2010).ADS 
    Article 

    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).Article 

    Google Scholar 
    Tsunoda, H., Ito, K., Peeva, S., Raichev, E. & Kaneko, Y. Spatial and temporal separation between the golden jackal and three sympatric carnivores in a human-modified landscape in central Bulgaria. Zool. Ecol. 28, 172–179 (2018).Article 

    Google Scholar 
    Tsunoda, H. et al. Spatio-temporal partitioning facilitates mesocarnivore sympatry in the Stara Planina Mountains, Bulgaria. Zoology 141, 125801 (2020).PubMed 
    Article 

    Google Scholar 
    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287, 269–275 (2012).Article 

    Google Scholar 
    Gómez-Ortiz, Y., Monroy-Vilchis, O. & Castro-Arellano, I. Temporal coexistence in a carnivore assemblage from central Mexico: Temporal-domain dependence. Mammal Res. 64, 333–342 (2019).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. https://cran.r-project.org/web/packages/overlaphttps://cran.r-project.org/web/packages/overlap/index.html (2018).Marinho, P. H., Fonseca, C. R., Sarmento, P., Fonseca, C. & Venticinque, E. M. Temporal niche overlap among mesocarnivores in a Caatinga dry forest. Eur. J. Wildl. Res. 66, 1–13 (2020).Article 

    Google Scholar 
    Vilella, M., Ferrandiz-Rovira, M. & Sayol, F. Coexistence of predators in time: Effects of season and prey availability on species activity within a Mediterranean carnivore guild. Ecol. Evol. 10, 11408–11422 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, G. et al. Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob. Ecol. Conserv. 21, e00897 (2020).Article 

    Google Scholar 
    Farmer, M. J., Allen, M. L., Olson, E. R., Van Stappen, J. & Van Deelen, T. R. Agonistic interactions and island biogeography as drivers of carnivore spatial and temporal activity at multiple scales. Can. J. Zool. 99, 309–317 (2021).Article 

    Google Scholar 
    Watabe, R. & Saito, M. U. Diel activity patterns of three sympatric medium-sized carnivores during winter and spring in a heavy snowfall area in northeastern Japan. Mammal Study 46, 69–75 (2021).Article 

    Google Scholar 
    Lashley, M. A. et al. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 4173 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niedballa, J., Wilting, A., Sollmann, R., Hofer, H. & Courtiol, A. Assessing analytical methods for detecting spatiotemporal interactions between species from camera trapping data. Remote Sens. Ecol. Conserv. 5, 272–285 (2019).Article 

    Google Scholar 
    Karanth, K. U. et al. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Biol. Sci. 284, 20161860 (2017).Article 

    Google Scholar 
    Cusack, J. J. et al. Revealing kleptoparasitic and predatory tendencies in an African mammal community using camera traps: A comparison of spatiotemporal approaches. Oikos 126, 812–822 (2017).Article 

    Google Scholar 
    Balme, G. et al. Big cats at large: density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267 (2019).Article 

    Google Scholar 
    Li, Z. et al. Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia. Landsc. Ecol. 34, 291–305 (2019).Article 

    Google Scholar 
    Lahkar, D., Ahmed, M. F., Begum, R. H., Das, S. K. & Harihar, A. Inferring patterns of sympatry among large carnivores in Manas National Park: A prey-rich habitat influenced by anthropogenic disturbances. Anim. Conserv. 24, 589–601 (2021).Article 

    Google Scholar 
    Paúl, M. J., Layna, J. F., Monterroso, P. & Álvares, F. Resource partitioning of sympatric African Wolves (Canis lupaster) and side-striped jackals (Canis adustus) in an arid environment from West Africa. Diversity 12, 477 (2020).Article 

    Google Scholar 
    Prat-Guitart, M., Onorato, D. P., Hines, J. E. & Oli, M. K. Spatiotemporal pattern of interactions between an apex predator and sympatric species. J. Mammal. 101, 1279–1288 (2020).Article 

    Google Scholar 
    Stone, L. & Roberts, A. The checkerboard score and species distributions. Oecologia 85, 74–79 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in r. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Noor, A., Mir, Z. R., Veeraswami, G. G. & Habib, B. Activity patterns and spatial co-occurrence of sympatric mammals in the moist temperate forest of the Kashmir Himalaya, India. Folia Zool. 66, 231–241 (2017).Article 

    Google Scholar 
    de Satgé, J., Teichman, K. & Cristescu, B. Competition and coexistence in a small carnivore guild. Oecologia 184, 873–884 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kass, J. M., Tingley, M. W., Tetsuya, T. & Koike, F. Co-occurrence of invasive and native carnivorans affects occupancy patterns across environmental gradients. Biol. Invasions 22, 2251–2266 (2020).Article 

    Google Scholar 
    Louppe, V., Herrel, A., Pisanu, B., Grouard, S. & Veron, G. Assessing occupancy and activity of two invasive carnivores in two Caribbean islands: implications for insular ecosystems. J. Zool. 313, 182–194 (2020).Article 

    Google Scholar 
    Proulx, G. et al. World distribution and status of the genus Martes in 20. In Martens and Fishers (Martes) in Human-Altered Environments (eds Harrison, D. J. et al.) 21–76 (Springer, Berlin, 2005). https://doi.org/10.1007/b99487.Chapter 

    Google Scholar 
    Ohdachi, S. D., Ishibashi, Y., Iwasa, M., Fukuki, D. & Saitoh, T. The Wild Mammals of Japan 2nd edn. (Shokadoh Book Seller, Kyoto, 2015).
    Google Scholar 
    Kauhala, K. & Saeki, M. Nyctereutes procyonoides. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/species/14925/85658776 (2016).Yamamoto, Y. Comparative analyses on food habits of Japanese marten, red fox, badger and raccoon dog in the Mt. Nyugasa, Nagano Prefecture, Japan. Nat. Environ. Sci. Res. 7, 45–52 (1994) (in Japanese with English summary).
    Google Scholar 
    Hisano, M. et al. A comparison of visual and genetic techniques for identifying Japanese marten scats enabling diet examination in relation to seasonal food availability in a sub-alpine area of Japan. Zool. Sci. 34, 137–146 (2017).Article 

    Google Scholar 
    Lindstrom, E. R., Brainerd, S. M., Helldin, J. O. & Overskaug, K. Pine marten-red fox interactions: A case of intraguild predation?. Ann. Zool. Fenn. 32, 123–130 (1995).
    Google Scholar 
    Waggershauser, C. N., Ruffino, L., Kortland, K. & Lambin, X. Lethal interactions among forest-grouse predators are numerous, motivated by hunger and carcasses, and their impacts determined by the demographic value of the victims. Ecol. Evol. 11, 7164–7186 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watabe, R., Saito, M. U., Enari, H. S. & Enari, H. Mammalian fauna of the Kaminagawa Experimental Forest of Yamagata University detected by camera traps. Tohoku J. For. Sci. 25, 37–40 (2020) (in Japanese).
    Google Scholar 
    Hofmeester, T. R., Rowcliffe, J. M. & Jansen, P. A. A simple method for estimating the effective detection distance of camera traps. Remote Sens. Ecol. Conserv. 3, 81–89 (2017).Article 

    Google Scholar 
    Di Bitetti, M. S., Paviolo, A. & De Angelo, C. Camera trap photographic rates on roads vs. off roads: Location does matter. Mastozoología Neotrop. 21, 37–46 (2014).
    Google Scholar 
    Borcard, D. & Legendre, P. Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93, 1473–1481 (2012).PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. https://cran.r-project.org/web/packages/veganhttps://cran.r-project.org/web/packages/vegan/index.html (2019).R Core Team. R: a language environment for statistical computing. r foundation for statistical computing, Vienna, Austria. https://www.r-project.org/https://www.r-project.org/ (2021).Linkie, M. & Ridout, M. S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 284, 224–229 (2011).Article 

    Google Scholar 
    Watabe, R. & Saito, M. U. Effects of vehicle-passing frequency on forest roads on the activity patterns of carnivores. Landsc. Ecol. Eng. 17, 225–231 (2021).Article 

    Google Scholar 
    Furukawa, G. genkiFurukawa/rSetDayNightAttr documentation. https://rdrr.io/github/genkiFurukawa/rSetDayNightAhttps://rdrr.io/github/genkiFurukawa/rSetDayNightAttr/ (2019).Mielke, P. W., Berry, K. J. & Johnson, E. S. Multi-response permutation procedures for a priori classifications. Commun. Stat. Theory Methods 5, 1409–1424 (1976).MATH 
    Article 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).Article 

    Google Scholar 
    Hendrichsen, D. K. & Tyler, N. J. C. How the timing of weather events influences early development in a large mammal. Ecology 95, 1737–1745 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herfindal, I. et al. Weather affects temporal niche partitioning between moose and livestock. Wildlife Biol. https://doi.org/10.2981/wlb.00275 (2017).Article 

    Google Scholar 
    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: How mesopredators avoid costly interactions with apex predators. Oecologia 187, 573–583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barrull, J. et al. Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: An integrated study based on camera trapping and diet. Mamm. Biol. 79, 123–131 (2014).Article 

    Google Scholar 
    Tattersall, E. R., Burgar, J. M., Fisher, J. T. & Burton, A. C. Boreal predator co-occurrences reveal shared use of seismic lines in a working landscape. Ecol. Evol. 10, 1678–1691 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moll, R. J. et al. Humans and urban development mediate the sympatry of competing carnivores. Urban Ecosyst. 21, 765–778 (2018).Article 

    Google Scholar 
    McCreadie, J. W. & Bedwell, C. R. Patterns of co-occurrence of stream insects and an examination of a causal mechanism: Ecological checkerboard or habitat checkerboard?. Insect Conserv. Divers. 6, 105–113 (2013).Article 

    Google Scholar  More