More stories

  • in

    Development of microbial communities in biofilm and activated sludge in a hybrid reactor

    Bacterial community compositionIn order to study the microbial structure of the biofilm and activated sludge that were developing in the IFAS-MBSBBR reactor, a total of 15 samples were taken at intervals during an experiment lasting 573 days. The microbiome of both environments was described at the phylum and genus levels. A total of 26 bacterial phyla and 783 bacterial genera were identified. The most numerous phyla and genera in the biofim and activated sludge samples are presented in in Figs. 1 and 2. Both in the biofilm and the activated sludge, the most numerous phyla were Proteobacteria, with respective mean abundances of 39.3% ± 9.0 and 40.8% ± 8.2, and Bacteroidota, with respective mean abundances of 14.2% ± 4.9 and 26.1% ± 13.7. Additionally, the phylum Chloroflexi was rather abundant in the biofilm (with a mean abundance of 13.9 ± 8.1), while Actinobacteriota and Patescibacteria were relatively abundant in the activated sludge (with mean abundances of 9.0% ± 9.6 and 7.5% ± 8.1, respectively). STAMP analysis identified significant overrepresentations of Chloroflexi, Acidobacteriota, and Nitrospirota in biofilm and of Firmicutes in activated sludge.Figure 1Relative abundance (%) of the most prevalent phyla in the biofilm and activated sludge samples in general, as the mean values of relative abundance from all biofilm and activated sludge samples (A), and in each individual sample (B). The graph shows only phyla which contributed more than 0.5% to the total bacterial community in at least one sample. The abundance of the remaining phyla was summed and labelled as “other”.Full size imageFigure 2Relative abundance (%) of the most prevalent genera in the biofilm and activated sludge samples in general, as the mean values of relative abundance from all biofilm and activated sludge samples (A), and in each individual sample (B). The graph shows only genera which contributed more than 1.5% to the total bacterial community in at least one sample. The abundance of the remaining genera was summed and labelled as “other”.Full size imageIn both environments, the abundances of various groups of bacteria changed over time. In the biofilm, the abundance of Proteobacteria and Actinobacteria gradually decreased, while that of Chloroflexi increased. In the activated sludge, the changes in abundance were larger and more rapid, and the abundance of Bacteroidota changed to the largest extent, ranging from 12.7% after 42 days of reactor operation to 52.3% after 110 days, when it was the predominant phylum. The abundance of Patescibacteria also changed substantially: its abundance was highest on the 78th, 205th and 447th days of the process, reaching values of 20.1%, 11.0%, and 7.2%, respectively. Similar changes took place in the abundance of Armatimonadota, which reached 11.4% and 7.6% on the 547th and 573th day, but did not exceed 0.1% in the samples taken at other times.At the genus level, the less abundant genera (each  More

  • in

    Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goericke, R. & Welschmeyer, N. A. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Res. 40, 2283–2294 (1993).Article 

    Google Scholar 
    Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).Article 

    Google Scholar 
    Huang, S. et al. Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J. 6, 285–297 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barlow, A. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. Arctic 22, 63–74 (1985).
    Google Scholar 
    Yeh, S. W. et al. Role of phycoerythrin in marine picoplankton synechococcus spp. Science 234, 1422–1424 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Res. Part I Oceanogr. Res. Pap. 84, 1–17 (2014).Article 

    Google Scholar 
    Larkum, A. W. D. & Barrett, J. Light-harvesting processes in algae. Adv. Bot. Res. 10, 1–219 (1983).CAS 
    Article 

    Google Scholar 
    Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051–1054 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bibby, T. S., Nield, J., Chen, M., Larkum, A. W. D. & Barber, J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl Acad. Sci. USA 100, 9050–9054 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kana, T. M. & Glibert, P. M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 479–495 (1987).CAS 
    Article 

    Google Scholar 
    Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Perry, M. J., Talbot, M. C. & Alberte, R. S. Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62, 91–101 (1981).Mauzerall, D. & Greenbaum, N. L. The absolute size of a photosynthetic unit. BBA Bioenerg. 974, 119–140 (1989).CAS 
    Article 

    Google Scholar 
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keren, N. & Paltiel, Y. Photosynthetic energy transfer at the quantum/classical border. Trends Plant Sci. 23, 497–506 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodny, Y. et al. Marine cyanobacteria tune energy transfer efficiency in their light‐harvesting antennae by modifying pigment coupling. FEBS J. https://doi.org/10.1111/febs.15371 (2020).Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation the migration of LHCII from PSII to PSI has. J. Phys. Chem. B 117, 51 (2013).Article 
    CAS 

    Google Scholar 
    Chenu, A. et al. Light adaptation in phycobilisome antennas: influence on the rod length and structural arrangement. J. Phys. Chem. B 121, 9196–9202 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B Biol. Sci. 372, 2–8 (2017).Article 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 14, 367–393 (2021).
    Google Scholar 
    Govindjee, Hammond, J. H. & Merkelo, H. Primary events, energy transfer, and reactions in photosynthetic events: lifetime of the excited state in vivo: II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12, 809 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roach, T. & Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351–362 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Govindjee, U. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria (Springer Netherlands, 2014).
    Google Scholar 
    Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7–16 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).Croce, R. & Van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 104, 142–153 (2011).CAS 
    Article 

    Google Scholar 
    Rahav, E. et al. Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77 (2015).CAS 
    Article 

    Google Scholar 
    Reiss, Z. & Hottinger, L. The Gulf of Aqaba (Springer-Verlag, 1984).Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the red sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).CAS 
    Article 

    Google Scholar 
    Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).Article 

    Google Scholar 
    Zarubin, M., Lindemann, Y. & Genin, A. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).Article 

    Google Scholar 
    Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).Article 

    Google Scholar 
    Suggett, D. J. et al. Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba. Aquat. Microb. Ecol. 56, 227–239 (2009).Article 

    Google Scholar 
    Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherman, J., Gorbunov, M. Y., Schofield, O. & Falkowski, P. G. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnol. Oceanogr. 65, 2912–2925 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoo, Y. D. et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68, 105–117 (2017).PubMed 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brody, S. S. & Rabinowitch, E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1979).Article 

    Google Scholar 
    Six, C., Thomas, J. C., Brahamsha, B., Lemoine, Y. & Partensky, F. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat. Microb. Ecol. 35, 17–29 (2004).Article 

    Google Scholar 
    Krumova, S. B. et al. Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. Biophys. J. 99, 2006–2015 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhatti, A. F., Kirilovsky, D., van Amerongen, H. & Wientjes, E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol. 186, 569–580 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020).Anderson, J. M. & Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13, 351–355 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackey, K. R. M., Post, A. F., McIlvin, M. R. & Saito, M. A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13744 (2017).Article 
    PubMed 

    Google Scholar 
    Mendoza-Arenas, J. J. et al. Transport enhancement from incoherent coupling between one-dimensional quantum conductors. New J. Phys. 16, 053016 (2014).Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. & Quist, G. O. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth. Res. 133, 63–73 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolber, Z. S., Prášil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106 (1998).CAS 
    Article 

    Google Scholar 
    Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).CAS 
    Article 

    Google Scholar 
    Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).Article 

    Google Scholar 
    Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998-2015). Environ. Res. Lett. 14, 124011 (2019).Kulk, G. et al. Primary production, an index of climate change in the ocean: satellite-based estimates over two decades. Remote Sens. 12, 826 (2020).Van De Poll, W. H. et al. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240 (2013).Article 
    CAS 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 1–16 (2019).Article 

    Google Scholar 
    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, 1–23 (2012).Article 

    Google Scholar 
    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).Article 

    Google Scholar 
    Kolodny, Y. et al. Tuning quantum dots coupling using organic linkers with different vibrational modes. J. Phys. Chem. C 124, 16159–16165 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    A complex story of groundwater abstraction and ecological threats to the Doñana National Park World Heritage Site

    To the Editor — It is widely appreciated that the world’s wetlands provide important ecosystem services including critical biodiversity, stores of carbon and strong cultural links to people. Yet wetlands are disappearing at an alarming rate due to diversion and abstraction of water, to conversion to agricultural land and to pollution. In response, there has been a major commitment to conserve and restore wetlands worldwide, including more than 2,400 sites on the territories of 172 Contracting Parties of the Convention on Wetlands (Ramsar Sites), covering more than 2.5 million square kilometres. Some wetlands, such as Doñana in southern Spain, are also World Heritage sites to protect their natural and cultural values. The Ramsar Convention and UNESCO World Heritage Convention strongly support the rights of non-governmental organizations to appraise the status and management of designated sites and welcome reports of threats to site integrity. However, such claims should be substantiated by all the available scientific evidence. More

  • in

    Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations

    Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–30.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell CL, Noe JP. The spatial analysis of soilborne pathogens and root diseases. Annu Rev Phytopathol. 1985;23:129–48.Article 

    Google Scholar 
    Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol. 2012;50:67–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 
    Article 

    Google Scholar 
    Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J 2021;15:330–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu J, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ Microbiol. 2020;22:5005–18.PubMed 
    Article 

    Google Scholar 
    Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 2015;25:56–66.PubMed 
    Article 

    Google Scholar 
    Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, et al. The microbiome meets nanotechnology: opportunities and challenges in developing new diagnostic devices. Adv Mater. 2021;33:e2006104.PubMed 
    Article 
    CAS 

    Google Scholar 
    Schlaberg R. Microbiome diagnostics. Clin Chem. 2020;66:68–76.PubMed 
    Article 

    Google Scholar 
    Xiao Y, Yang C, Yu L, Tian F, Wu Y, Zhao J, et al. Human gut-derived B. longum subsp. longum strains protect against aging in a D-galactose-induced aging mouse model. Microbiome. 2021;9:180.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol. 2015;6:81.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Hu J, Gu Y, Yin S, Xu Y, Jousset A, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem. 2018;118:8–17.CAS 
    Article 

    Google Scholar 
    Gu S, Wei Z, Shao Z, Friman V-P, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li M, Pommier T, Yin Y, Wang J, Gu S, Jousset A, et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J 2022;16:868–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubinkina V, Fridman Y, Pandey PP, Maslov S. Multistability and regime shifts in microbial communities explained by competition for essential nutrients. Elife 2019;8:e49720.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 2015;21:1590–600.PubMed 
    Article 

    Google Scholar 
    Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15:848–64.PubMed 
    Article 

    Google Scholar 
    Elphinstone J, Hennessy J, Wilson J, Stead D. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 1996;26:663–78.Article 

    Google Scholar 
    Schonfeld J, Heuer H, van Elsas JD, Smalla K. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl Environ Microbiol. 2003;69:7248–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol. 2011;48:152–9.Article 

    Google Scholar 
    Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, et al. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol. 2010;76:6778–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu Y, Wei Z, Wang X, Friman V-P, Huang J, Wang X, et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils. 2016;52:997–1005.CAS 
    Article 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194–2200.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv. 2016. https://doi.org/10.1101/081257.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olsen SR, Cole CV, Watanabe FS, Dean L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ no. 939. Washington, DC: United States Department of Agriculture; 1954.Heuer H, Krsek M, Baker P, Smalla K, Wellington E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol. 1997;63:3233–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol package. 2007;10:719.
    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18.Article 

    Google Scholar 
    Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, et al. Bacterial seed endophyte shapes disease resistance in rice. Nat Plants. 2021;7:60–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bardgett RD, Caruso T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Proc R Soc Lond Ser B. 2020;375:20190112.CAS 

    Google Scholar 
    Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raaijmakers JM, Mazzola M. Soil immune responses. Science. 2016;352:1392–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu Y, Wang X, Yang T, Friman VP, Geisen S, Wei Z, et al. Chemical structure predicts the effect of plant-derived low molecular weight compounds on soil microbiome structure and pathogen suppression. Funct Ecol. 2020;34:2158–69.Article 

    Google Scholar 
    Burdon J, Chilvers G. Host density as a factor in plant disease ecology. Annu Rev Phytopathol. 1982;20:143–66.Article 

    Google Scholar 
    Rosenfeld M, Gibson RL, McNamara S, Emerson J, Burns JL, Castile R, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol. 2001;32:356–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li J-G, Ren G-D, Jia Z-J, Dong Y-H. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil. 2014;380:337–47.CAS 
    Article 

    Google Scholar 
    Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, et al. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep. 2016;6:36773.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Filion M, Hamelin RC, Bernier L, St-Arnaud M. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol. 2004;70:3541–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu Y, Dong K, Geisen S, Yang W, Yan Y, Gu D, et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil. 2020;452:105–17.CAS 
    Article 

    Google Scholar 
    Jiang G, Wang N, Zhang Y, Wang Z, Zhang Y, Yu J, et al. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol Lett. 2021;3:356–66.Article 

    Google Scholar 
    Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J 2015;9:1905–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhaouadi S, Rouissi W, Mougou-Hamdane A, Nasraoui B. Evaluation of biocontrol potential of Achromobacter xylosoxidans against Fusarium wilt of melon. Eur J Plant Pathol. 2018;154:179–88.Article 

    Google Scholar 
    Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, et al. Poly-beta-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol. 2007;60:363–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fujiwara K, Iida Y, Someya N, Takano M, Ohnishi J, Terami F, et al. Emergence of antagonism against the pathogenic fungus Fusarium oxysporum by interplay among non-antagonistic bacteria in a hydroponics using multiple parallel mineralization. J Phytopathol. 2016;164:853–62.CAS 
    Article 

    Google Scholar 
    Garbeva P, Silby MW, Raaijmakers JM, Levy SB, de Boer W. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 2011;5:973–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sato Y, Willis BL, Bourne DG. Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J. 2010;4:203–14.PubMed 
    Article 

    Google Scholar 
    Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem. 2013;288:4502–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    Swanson JK, Montes L, Mejia L, Allen C. Detection of Latent Infections of Ralstonia solanacearum Race 3 Biovar 2 in geranium. Plant Dis. 2007;91:828–34.PubMed 
    Article 

    Google Scholar  More

  • in

    Quantifying research waste in ecology

    Ioannidis, J. P. A., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hampton, S. E. et al. The Tao of open science for ecology. Ecosphere 6, art120 (2015).Article 

    Google Scholar 
    Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2005).Sutton, A. J. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) 435–452 (Russell Sage Foundation, 2009).Nakagawa, S., Koricheva, J., Macleod, M. & Viechtbauer, W. Introducing our series: research synthesis and meta-research in biology. BMC Biol. 18, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakagawa, S. et al. A new ecosystem for evidence synthesis. Nat. Ecol. Evol. 4, 498–501 (2020).PubMed 
    Article 

    Google Scholar 
    Coolidge, H. J. & Lord, R. H. in Archibald Cary Coolidge: Life and Letters 308 (Houghton Mifflin Harcourt, 1932).Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).Article 

    Google Scholar 
    Touchon, J. C. & McCoy, M. W. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere 7, e01394 (2016).Article 

    Google Scholar 
    Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aarts, A. A. et al. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).Article 
    CAS 

    Google Scholar 
    Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).PubMed 
    Article 

    Google Scholar 
    Fraser, H., Parker, T., Nakagawa, S., Barnett, A. & Fidler, F. Questionable research practices in ecology and evolution. PLoS ONE 13, e0200303 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. Camb. Philos. Soc. 77, 211–222 (2002).PubMed 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Cassey, P., Ewen, J. G., Blackburn, T. M. & Møller, A. P. A survey of publication bias within evolutionary ecology. Proc. Biol. Sci. 271, S451–S454 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kardish, M. R. et al. Blind trust in unblinded observation in ecology, evolution, and behavior. Front. Ecol. Evol. 3, 51 (2015).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proc. Biol. Sci. 269, 43–48 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalmers, I. & Glasziou, P. Avoidable waste in the production and reporting of research evidence. Lancet 374, 86–89 (2009).PubMed 
    Article 

    Google Scholar 
    Altman, D. G. The scandal of poor medical research. BMJ 308, 283–284 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glasziou, P. & Chalmers, I. Is 85% of health research really ‘wasted’? BMJ Opinion (14 January 2016).Glasziou, P. & Chalmers, I. Research waste is still a scandal. BMJ 363, k4645 (2018).Article 

    Google Scholar 
    Chalmers, I. et al. How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165 (2014).PubMed 
    Article 

    Google Scholar 
    Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, H. A. et al. Finding our way: on the sharing and reuse of animal telemetry data in Australasia. Sci. Total Environ. 534, 79–84 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koricheva, J. Non-significant results in ecology: a burden or a blessing in disguise? Oikos 102, 397–401 (2003).Article 

    Google Scholar 
    Bennett, L. T. & Adams, M. A. Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41, 585–598 (2004).Article 

    Google Scholar 
    Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2012).
    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behaviour. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Culina, A., Purgar, M. & Klanjscek, T. Datasets and codes for Purgar et al. 2022: quantifying research waste in ecology. Zenodo https://zenodo.org/record/6566100#.YrLWB-zMIqs (2022).Ferguson, C. et al. Europe PMC in 2020. Nucleic Acids Res. 49, D1507–D1514 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, C.-K. et al. Meta-Research: Evaluating the impact of open access policies on research institutions. eLife 9, e57067 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Hellauer, T. Open science, done wrong, will compound inequities. Nature 603, 363 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, A. C. et al. Assessing the effect of article processing charges on the geographic diversity of authors using Elsevier’s ‘Mirror journal’ system. Quant. Sci. Stud. 2, 1123–1143 (2021).Article 

    Google Scholar 
    Christie, A. P. et al. Reducing publication delay to improve the efficiency and impact of conservation science. PeerJ 9, e12245 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desjardins-Proulx, P. et al. The case for open preprints in biology. PLoS Biol. 11, e1001563 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Dea, R. E. et al. Towards open, reliable, and transparent ecology and evolutionary biology. BMC Biol. 19, 68 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A. et al. Navigating the unfolding open data landscape in ecology and evolution. Nat. Ecol. Evol. 2, 420–426 (2018).PubMed 
    Article 

    Google Scholar 
    Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P. & Visser, M. E. How to do meta-analysis of open datasets. Nat. Ecol. Evol. 2, 1053–1056 (2018).PubMed 
    Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Grainger, M. J., Bolam, F. C., Stewart, G. B. & Nilsen, E. B. Evidence synthesis for tackling research waste. Nat. Ecol. Evol. 4, 495–497 (2020).PubMed 
    Article 

    Google Scholar 
    Nørgaard, B. et al. Systematic reviews are rarely used to inform study design—a systematic review and meta-analysis. J. Clin. Epidemiol. 145, 1–13 (2022).PubMed 
    Article 

    Google Scholar 
    Webb, J. A. et al. Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis. Freshw. Sci. 36, 250–256 (2017).Article 

    Google Scholar 
    Collins, A., Coughlin, D., Miller, J. & Kirk, S. The Production of Quick Scoping Reviews and Rapid Evidence Assessments: A How to Guide (Joint Water Evidence Group, 2015).Carrick, J. et al. Is planting trees the solution to reducing flood risks? J. Flood Risk Manag. 12, e12484 (2019).Article 

    Google Scholar 
    Nuñez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol. 5, 264 (2021).PubMed 
    Article 

    Google Scholar 
    Morrison, A. et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28, 138–144 (2012).PubMed 
    Article 

    Google Scholar 
    Wu, T., Li, Y., Bian, Z., Liu, G. & Moher, D. Randomized trials published in some Chinese journals: how many are randomized? Trials 10, 46 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorobeichik, E. L. & Kozlov, M. V. Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors. Russ. J. Ecol. 43, 89–96 (2012).Article 

    Google Scholar 
    Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).PubMed 
    Article 

    Google Scholar 
    Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).MacCoun, R. & Perlmutter, S. Blind analysis: hide results to seek the truth. Nature 526, 187–189 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).PubMed 
    Article 

    Google Scholar 
    Announcement: reducing our irreproducibility. Nature 496, 398 (2013).Moher, D. et al. Increasing value and reducing waste in biomedical research: who’s listening? Lancet 387, 1573–1586 (2016).PubMed 
    Article 

    Google Scholar 
    Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vrieze, J. Landmark research integrity survey finds questionable practices are surprisingly common. ScienceInsider https://www.sciencemag.org/news/2021/07/landmark-research-integrity-survey-finds-questionable-practices-are-surprisingly-common (2021).Woolston, C. Impact factor abandoned by Dutch university in hiring and promotion decisions. Nature 595, 462 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Directorate-General for Research and Innovation (European Commission). Towards a Reform of the Research Assessment System. Scoping Report (Publications Office, 2021).Athena Research & Innovation Center, Directorate-General for Research and Innovation (European Commission), PPMI, UNU-MERIT. Monitoring the Open Access Policy of Horizon 2020. Final report (European Commission, 2021).Kwon, D. University of California and Elsevier forge open-access deal. TheScientist https://www.the-scientist.com/news-opinion/university-of-california-and-elsevier-forge-open-access-deal–68557 (2021).Vines, T. H. et al. Mandated data archiving greatly improves access to research data. FASEB J. 27, 1304–1308 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    NPQIP Collaborative Group. Did a change in Nature journals’ editorial policy for life sciences research improve reporting? BMJ Open Sci. 3, e000035 (2019).Article 

    Google Scholar 
    Glasziou, P. et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276 (2014).PubMed 
    Article 

    Google Scholar 
    Fecher, B. & Friesike, S. in Opening Science: the Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (eds Bartling, S. & Friesike, S.) 17–47 (Springer International Publishing, 2014).Hardwicke, T. E. et al. Calibrating the scientific ecosystem through meta-research. Annu. Rev. Stat. Appl. 7, 11–37 (2020).Article 

    Google Scholar 
    McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fidler, F. et al. Metaresearch for evaluating reproducibility in ecology and evolution. Bioscience 67, 282–289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).Article 

    Google Scholar 
    Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. & Thomason, N. Impact of criticism of null-hypothesis significance testing on statistical reporting practices in conservation biology. Conserv. Biol. 20, 1539–1544 (2006).PubMed 
    Article 

    Google Scholar 
    Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).PubMed 
    Article 

    Google Scholar 
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425 (2015).Article 

    Google Scholar 
    Haddaway, N. R., Styles, D. & Pullin, A. S. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environ. Evid. 3, 17 (2014).Article 

    Google Scholar 
    Heffner, R. A., Butler, M. J. & Reilly, C. K. Pseudoreplication revisited. Ecology 77, 2558–2562 (1996).Article 

    Google Scholar 
    Holman, L., Head, M. L., Lanfear, R. & Jennions, M. D. Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hurlbert, S. H. & White, M. D. Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses. Bull. Mar. Sci. 53, 128–153 (1993).
    Google Scholar 
    Johnson, W. T.3rd & Freeberg, T. M. Pseudoreplication in use of predator stimuli in experiments on antipredator responses. Anim. Behav. 119, 161–164 (2016).Article 

    Google Scholar 
    Kozlov, M. V. Pseudoreplication in ecological research: the problem overlooked by Russian scientists. Zh. Obshch. Biol. 64, 292–307 (2003).CAS 
    PubMed 

    Google Scholar 
    Kozlov, M. V. Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1–9 (2017).Article 

    Google Scholar 
    McDonald, S., Cresswell, T., Hassell, K. & Keough, M. Experimental design and statistical analysis in aquatic live animal radiotracing studies: a systematic review. Crit. Rev. Environ. Sci. Technol. 52, 2772–2801 (2021).Article 

    Google Scholar 
    Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    Mrosovsky, N. & Godfrey, M. H. The path from grey literature to Red Lists. Endang. Species Res. 6, 185–191 (2008).
    Google Scholar 
    O’Brien, C., van Riper, C.3rd & Myers, D. E. Making reliable decisions in the study of wildlife diseases: using hypothesis tests, statistical power, and observed effects. J. Wildl. Dis. 45, 700–712 (2009).PubMed 
    Article 

    Google Scholar 
    Parker, T. H. What do we really know about the signalling role of plumage colour in blue tits? A case study of impediments to progress in evolutionary biology. Biol. Rev. Camb. Philos. Soc. 88, 511–536 (2013).PubMed 
    Article 

    Google Scholar 
    Ramage, B. S. et al. Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. Conserv. Biol. 27, 364–372 (2013).PubMed 
    Article 

    Google Scholar 
    Sallabanks, R., Arnett, E. B. & Marzluff, J. M. An evaluation of research on the effects of timber harvest on bird populations. Wildl. Soc. Bull. 28, 1144–1155 (2000).
    Google Scholar 
    Sánchez-Tójar, A. et al. Meta-analysis challenges a textbook example of status signalling and demonstrates publication bias. eLife 7, e37385 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waller, B., Warmelink, L., Liebal, K., Micheletta, J. & Slocombe, K. Pseudoreplication: a widespread problem in primate communication research. Anim. Behav. 86, 483–488 (2013).Article 

    Google Scholar 
    Van Wilgenburg, E. & Elgar, M. A. Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals. PLoS ONE 8, e53548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoccoz, N. G. Use, overuse, and misuse of significance tests in evolutionary biology and ecology. Bull. Ecol. Soc. Am. 72, 106–111 (1991).
    Google Scholar 
    Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T. & Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 98, 261–271 (2016).Article 

    Google Scholar 
    Zvereva, E. L. & Kozlov, M. V. Biases in studies of spatial patterns in insect herbivory. Ecol. Monogr. 89, e01361 (2019).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar  More

  • in

    Wastewater is a robust proxy for monitoring circulating SARS-CoV-2 variants

    Our long-term surveillance of SARS-CoV-2 in Austria demonstrated that WBE alone yields a time-resolved map of the genetic dynamics during a pandemic. Yet one task of pathogenomic surveillance is to link genetic pathogen information with clinical manifestation and the immunological status of patients. WBE is limited in that regard since the available data are anonymized to start with. Nonetheless, WBE provides invaluable population-level guidance on epidemiological developments, which complements case-based surveillance and provides information for optimal resource allocation. This notion can also be transferred to a global perspective. WBE provides a tool to shed light on blind spots of pathogen surveillance in places and communities with poor healthcare accessibility. If carefully set up and used in respectful and coequal terms, WBE of infectious diseases could make an important contribution to global safety.To this end, several challenges must be overcome. Current WBE methods need to be expanded to other pathogens beyond SARS-CoV-2 and validated with case-based epidemiological data. Furthermore, current methods must be adapted and optimized to be applicable in locations without a centralized sewer infrastructure5. Finally, international sharing of wastewater-based pathogen sequencing data will be needed to unleash the full potential of WBE for global pathogen surveillance.We are confident that our study will support initiatives already working in these directions, as well as encouraging intensified efforts to exploit such population-level surveillance approaches in the global fight against infectious diseases.
    Fabian Amman
    1
    & Andreas Bergthaler
    2

    1
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

    2
    Medical University Vienna, Vienna, Austria More

  • in

    Bushmeat in Brazil

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Farm size affects the use of agroecological practices on organic farms in the United States

    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).PubMed 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krebs, A. V. The Corporate Reapers: The Book of Agribusiness (Essential Books, 1992).Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).Article 

    Google Scholar 
    2017 Census of Agriculture – 2019 Organic Survey (USDA NASS, 2020); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpFarms and Land in Farms 2019 Summary (USDA NASS, 2020); https://usda.library.cornell.edu/concern/publications/5712m6524Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).PubMed 
    Article 

    Google Scholar 
    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    USDA AMS. National Organic Program; Final Rule, 7 CFR Part 205. Fed. Regist. 65, 80547–80684 (2000).
    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29, 503–515 (2009).Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).PubMed 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 

    Google Scholar 
    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).
    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed 
    Article 

    Google Scholar 
    Faucon, M.-P., Houben, D. & Lambers, H. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385–394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Hose, T. et al. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189–198 (2014).Article 

    Google Scholar 
    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).CAS 
    Article 

    Google Scholar 
    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).Article 

    Google Scholar 
    Willekens, K., Vandecasteele, B., Buchan, D. & De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 82, 61–71 (2014).Article 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212 (2013).Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A. & Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 39, 76–84 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).Article 

    Google Scholar 
    Buck, D., Getz, C. & Guthman, J. From farm to table: the organic vegetable commodity chain of northern California. Sociol. Rural. 37, 3–20 (1997).Article 

    Google Scholar 
    Guthman, J. Raising organic: an agro-ecological assessment of grower practices in California. Agric. Hum. Values 17, 257–266 (2000).Article 

    Google Scholar 
    Guthman, J. The trouble with ‘organic lite’ in California: a rejoinder to the ‘conventionalisation’ debate. Sociol. Rural. 44, 301–316 (2004).Article 

    Google Scholar 
    Darnhofer, I., Lindenthal, T., Bartel-Kratochvil, R. & Zollitsch, W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 30, 67–81 (2010).Article 

    Google Scholar 
    Constance, D. H., Choi, J. Y. & Lyke-Ho-Gland, H. Conventionalization, bifurcation, and quality of life: certified and non-certified organic farmers in Texas. J. Rural Soc. Sci. 23, 208–234 (2008).
    Google Scholar 
    2017 Census of Agriculture – United States Summary and State Data (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php2017 Census of Agriculture: Characteristics of All Farms and Farms with Organic Sales (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpPonisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).Article 

    Google Scholar 
    Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).Article 

    Google Scholar 
    Tittonell, P. et al. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4, 584605 (2020).Article 

    Google Scholar 
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).PubMed 
    Article 

    Google Scholar 
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).PubMed 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 

    Google Scholar 
    Olimpi, E. M. et al. Evolving food safety pressures in California’s central coast region. Front. Sustain. Food Syst. 3, 102 (2019).Article 

    Google Scholar 
    Karp, D. S. et al. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 65, 1173–1183 (2015).Article 

    Google Scholar 
    Bovay, J., Ferrier, P. & Zhen, C. Estimated Costs for Fruit and Vegetable Producers To Comply With the Food Safety Modernization Act’s Produce Rule, EIB-195 (U.S. Department of Agriculture, Economic Research Service, 2018).Coombes, B. & Campbell, H. Dependent reproduction of alternative modes of agriculture: organic farming in New Zealand. Sociol. Rural. 38, 127–145 (1998).Article 

    Google Scholar 
    Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).Article 

    Google Scholar 
    Smith, E. & Marsden, T. Exploring the ‘limits to growth’ in UK organics: beyond the statistical image. J. Rural Stud. 20, 345–357 (2004).Article 

    Google Scholar 
    Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? (Bloomsbury, 2016).Arcuri, A. The transformation of organic regulation: the ambiguous effects of publicization. Regul. Gov. 9, 144–159 (2015).Article 

    Google Scholar 
    Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).Article 

    Google Scholar 
    Guthman, J. in Alternative Food Politics: From the Margins to the Mainstream (eds. Phillipov, M. & Kirkwood, K.) 23–36 (Routledge, 2019).Jaffee, D. & Howard, P. H. Corporate cooptation of organic and fair trade standards. Agric. Hum. Values 27, 387–399 (2010).Article 

    Google Scholar 
    Campbell, H. & Rosin, C. After the ‘organic industrial complex’: an ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 27, 350–361 (2011).Article 

    Google Scholar 
    Lockie, S. & Halpin, D. The ‘conventionalisation’ thesis reconsidered: structural and ideological transformation of Australian organic agriculture. Sociol. Rural. 45, 284–307 (2005).Article 

    Google Scholar 
    Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).Article 

    Google Scholar 
    Hill, S. B. Redesigning the food system for sustainability. Alternatives 12, 32–36 (1985).
    Google Scholar 
    Padel, S., Levidow, L. & Pearce, B. UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecol. Sustain. Food Syst. 44, 139–163 (2020).Article 

    Google Scholar 
    Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. 5, 734088 (2021).Article 

    Google Scholar 
    Brislen, L. Meeting in the middle: scaling-up and scaling-over in alternative food networks. Cult. Agric. Food Environ. 40, 105–113 (2018).Article 

    Google Scholar 
    De Master, K. New inquiries into the agri-cultures of the middle. Cult. Agric. Food Environ. 40, 130–135 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.4-1 https://CRAN.R-project.org/package=emmeans (2021).Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).Article 

    Google Scholar 
    Krueger, J. I. & Heck, P. R. Putting the P-value in its place. Am. Stat. 73, 122–128 (2019).Article 

    Google Scholar 
    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73(Suppl. 1), 1–19 (2019).Article  Google Scholar  Agresti, A. Categorical Data Analysis (Wiley, 2013). More