More stories

  • in

    Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).Soudzilovskaia, N. A. et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 24, 371–382 (2015).Article 

    Google Scholar 
    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 

    Google Scholar 
    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001).Article 

    Google Scholar 
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 
    Article 

    Google Scholar 
    Rodriguez, A. & Sanders, I. R. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9, 1053–1061 (2015).PubMed 
    Article 

    Google Scholar 
    Oviatt, P. & Rillig, M. C. Mycorrhizal technologies for an agriculture of the middle. Plants, People, Planet. https://doi.org/10.1002/ppp3.10177 (2020).Ryan, M. H. & Graham, J. H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107 (2018).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222, 543–555 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J. Ecol. 105, 921–929 (2017).CAS 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, A. & Bever, J. D. Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol. 180, 162–175 (2008).PubMed 
    Article 

    Google Scholar 
    Francis, R. & Read, D. J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73, 1301–1309 (1995).Article 

    Google Scholar 
    Thirkell, T. J., Pastok, D. & Field, K. J. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Change Biol. 26, 1725–1738 (2020).Article 

    Google Scholar 
    Lehmann, A., Barto, E. K., Powell, J. R. & Rillig, M. C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355, 231–250 (2012).CAS 
    Article 

    Google Scholar 
    Martín-Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed 
    Article 

    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, D. et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol. 204, 968–978 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bainard, L. D. et al. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agric. Ecosyst. Environ. 249, 187–195 (2017).Article 

    Google Scholar 
    Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. Ploughing up the wood-wide web? Nature 394, 431–431 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    CAS 

    Google Scholar 
    Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562 (2006).PubMed 
    Article 

    Google Scholar 
    Scheublin, T. R., Ridgway, K. P., Young, J. P. W. & van der Heijden, M. G. A. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 70, 6240–6246 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oehl, F. et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724–738 (2010).CAS 
    Article 

    Google Scholar 
    De Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verbruggen, E., Xiang, D., Chen, B., Xu, T. & Rillig, M. C. Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol. Biochem. 86, 1–4 (2015).CAS 
    Article 

    Google Scholar 
    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. iForest 13, 548–558 (2020).Article 

    Google Scholar 
    Öpik, M., Mari, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Groenigen, K. J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).Article 
    CAS 

    Google Scholar 
    Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human‐use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).Article 

    Google Scholar 
    Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213 (2015).CAS 
    Article 

    Google Scholar 
    Sawers, R. J. H. et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 214, 632–643 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweiger, P. F., Thingstrup, I. & Jakobsen, I. Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8, 207–213 (1999).CAS 
    Article 

    Google Scholar 
    Emmett, B. D., Lévesque-Tremblay, V. & Harrison, M. J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, F., Zhang, L., Zhou, J., George, T. S. & Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245 (2011).CAS 
    Article 

    Google Scholar 
    Cavagnaro, T. R., Smith, F. A., Smith, S. E. & Jakobsen, I. Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ. 28, 642–650 (2005).CAS 
    Article 

    Google Scholar 
    Jakobsen, I., Gazey, C. & Abbott, L. K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol. 149, 95–103 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 124, 489–494 (1993).CAS 
    Article 

    Google Scholar 
    Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. & Bucher, M. Erratum: mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol. 184, 1029 (2009).Article 

    Google Scholar 
    Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050–1057 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A., Manoharan, L., Rosenstock, N. P., Olsson, P. A. & Hedlund, K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213, 874–885 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The Vegetation N:P Ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441 (1996).Article 

    Google Scholar 
    Van Aarle, I. M., Olsson, P. A. & Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 155, 173–182 (2002).PubMed 
    Article 

    Google Scholar 
    Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).Article 

    Google Scholar 
    Peat, H. J. & Fitter, A. H. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125, 845–854 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-Paredes, C. et al. Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiol. Ecol. 95, fiz020 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jansa, J., Erb, A., Oberholzer, H.-R., Šmilauer, P. & Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23, 2118–2135 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, H. et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87, 70–77 (2011).CAS 
    Article 

    Google Scholar 
    Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06405 (2021).Pánková, H., Dostálek, T., Vazačová, K. & Münzbergová, Z. Slow recovery of arbuscular mycorrhizal fungi and plant community after fungicide application: an eight-year experiment. J. Veg. Sci. 29, 695–703 (2018).Article 

    Google Scholar 
    Ipsilantis, I., Samourelis, C. & Karpouzas, D. G. The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2011.08.007 (2012).Buysens, C., Dupré de Boulois, H. & Declerck, S. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza. https://doi.org/10.1007/s00572-014-0610-7 (2015).Lekberg, Y., Wagner, V., Rummel, A., McLeod, M. & Ramsey, P. W. Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecol. Appl. 27, 2359–2368 (2017).PubMed 
    Article 

    Google Scholar 
    Hage-Ahmed, K., Rosner, K. & Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 75, 583–590 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kjøller, R. & Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31, 361–365 (2000).Article 

    Google Scholar 
    Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7, 616 (1993).Article 

    Google Scholar 
    Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).CAS 
    Article 

    Google Scholar 
    Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. https://doi.org/10.1111/nph.17306 (2021).LUCAS 2018 Technical Reference Document C3 Classification (Land Cover and Land Use) (Eurostat, 2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158–159 (1984).
    Google Scholar 
    Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article 

    Google Scholar 
    Boden‐und Substratuntersuchungen zur Düngeberatung (Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, 1996).Berry, D., Mahfoudh, K., Ben, Wagner, M. & Loy, A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D. & Taylor, J. W. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180–190 (1991).CAS 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiore-Donno, A. M. et al. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol. Ecol. Resour. 18, 229–239 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helfenstein, J., Jegminat, J., McLaren, T. I. & Frossard, E. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences 15, 105–114 (2018).CAS 
    Article 

    Google Scholar 
    Thirkell, T. J. et al. Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 3, 553–566 (2021).Article 

    Google Scholar 
    Rodushkin, I., Ruth, T. & Huhtasaari, Å. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal. Chim. Acta 378, 191–200 (1999).CAS 
    Article 

    Google Scholar 
    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).CAS 
    Article 

    Google Scholar 
    Frossard, E. et al. in Phosphorus in Action (eds Bünemann, E. et al.) 59–91 (Springer, 2011).Sato, K., Suyama, Y., Saito, M. & Sugawara, K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 51, 179–181 (2005).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Calcagno, V. glmulti: Model Selection and Multimodel Inference Made Easy. R version 1.0.8 https://CRAN.R-project.org/package=glmulti (2020).Cade, B. S. Model averaging and muddled multimodel inferences. Ecology. https://doi.org/10.1890/14-1639.1 (2015).Barton, K. MuMIn: Multi-Model Inference. R version 1.43.17 https://CRAN.R-project.org/package=MuMIn (2020).Burnham, K. P. & Anderson, D. R. (eds) Model Selection and Multimodel Inference (Springer, 2002).Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012). More

  • in

    A global horizon scan of issues impacting marine and coastal biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. & Woodroof, H. J. The need for environmental horizon scanning. Trends Ecol. Evol. 24, 523–527 (2009).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. Ten years on: a review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2010. Trends Ecol. Evol. 25, 1–7 (2010).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2016. Trends Ecol. Evol. 31, 44–53 (2016).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scanning assessment of current and potential future threats facing migratory shorebirds. Ibis 154, 663–679 (2012).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, L. G. M. et al. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 26, 5345–5350 (2020).Article 

    Google Scholar 
    Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389 (2015).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate related temperature stress. Glob. Change Biol. 26, 1367–1373 (2021).Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Change Biol. 27, 5547–5563 (2021).Article 

    Google Scholar 
    Stewart, B. D. et al. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755, 143019 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, D. A. et al. Ocean acidification increases the toxicity of contaminated sediments. Glob. Change Biol. 19, 340–351 (2013).Article 

    Google Scholar 
    Hauton, C. et al. Identifying toxic impact of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colombo, S. M. et al. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 49, 865–880 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).Article 

    Google Scholar 
    Antacli, J. C. et al. Increase in unsaturated fatty acids in Antarctic phytoplankton under ocean warming and glacial melting scenarios. Sci. Total Environ. 790, 147879 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 18, 4132–4138 (2021).Article 
    CAS 

    Google Scholar 
    Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y. & Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 17, 467 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, N. et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 8, 702108 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vieira, H., Leal, M. C. & Calado, R. Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol. 38, 940–943 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Hasan, A. et al. China’s fish maw demand and its implications for fisheries in source countries. Mar. Policy 132, 104696 (2021).Article 

    Google Scholar 
    Sadovy de Mitcheson, Y., To, A. W. L., Wong, N. W., Kwan, H. Y. & Bud, W. S. Emerging from the murk: threats, challenges and opportunities for the global swim bladder trade. Rev. Fish. Biol. Fish. 29, 809–835 (2019).Article 

    Google Scholar 
    Brownell, R. L. Jr et al. Bycatch in gillnet fisheries threatens critically endangered small cetaceans and other aquatic megafauna. Endang. Species Res. 40, 285–296 (2019).Article 

    Google Scholar 
    Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).
    Google Scholar 
    Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roberts, C. M., Hawkins, J. P., Hindle, K., Wilson, R. W. & O’Leary, B. C. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes (Blue Marine Foundation, 2020)Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).Article 

    Google Scholar 
    Levin, L. A. et al. Climate change considerations are fundamental to management of deep‐sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).Article 

    Google Scholar 
    Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021).CAS 
    Article 

    Google Scholar 
    Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P.R. et al.) 437–550 (IPCC, 2019).Christie, N., Smyth, K., Barnes, R. & Elliott, M. Co-location of activities and designations: a means of solving or creating problems in marine spatial planning? Mar. Pol. 43, 254–261 (2014).Article 

    Google Scholar 
    Mayer-Pinto, M., Dafforn, K. A. & Johnston, E. L. A decision framework for coastal infrastructure to optimize biotic resistance and resilience in a changing climate. BioScience 69, 833–843 (2019).Article 

    Google Scholar 
    Wang, C. M. & Wang, B. T. in ICSCEA 2019 (eds Reddy, J. N. et al.) 3–29 (Springer, 2020).Ross, C. T. F. & McCullough, R. R. Conceptual design of a floating island city. J. Ocean Technol. 5, 120–121 (2010).
    Google Scholar 
    Dong, Y.-w, Huang, X.-w, Wang, W., Li, Y. & Wang, J. The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22, 731–744 (2016).Article 

    Google Scholar 
    Flikkema, M. M. B., Lin, F.-Y., van der Plank, P. P. J., Koning, J. & Waals, O. Legal issues for artificial floating islands. Front. Mar. Sci. 8, 619462 (2021).Article 

    Google Scholar 
    Richir, J., Bray, S., McAleese, T. & Watson, G. J. Three decades of trace element sediment contamination: the mining of governmental databases and the need to address hidden sources for clean and healthy seas. Environ. Int. 149, 106362 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).CAS 
    Article 

    Google Scholar 
    Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Adv. Mater. 32, 2002718 (2020).CAS 
    Article 

    Google Scholar 
    Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O. & Adib, F. in SIGCOMM ’20 Proc. 19th ACM Workshop on Hot Topics in Networks 125–131 (Association for Computing Machinery, 2020).Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).Article 

    Google Scholar 
    Davies, T. E. et al. Tracking data and the conservation of the high seas: opportunities and challenges. J. Appl. Ecol. 58, 2703–2710 (2021).Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. https://doi.org/10.1089/soro.2020.0011 (2021).Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Philamore, H., Ieropoulos, I., Stinchcombe, A. & Rossiter, J. Toward energetically autonomous foraging soft robots. Soft Robot. 3, 186–197 (2016).Article 

    Google Scholar 
    Manfra, L. et al. Biodegradable polymers: a real opportunity to solve marine plastic pollution? J. Hazard. Mater. 416, 125763 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Kim, H. & An, Y. J. Effects of synthetic and natural microfibers on Daphnia magna: are they dependent on microfiber type? Aquat. Toxicol. 240, 105968 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Degli-Innocenti, F., Bellia, G., Tosin, M., Kapanen, A. & Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 73, 101–106 (2001).CAS 
    Article 

    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).Article 

    Google Scholar 
    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).PubMed 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jefferson, R. L., McKinley, E., Griffin, H., Nimmo, A. & Fletcher, S. Public perceptions of the ocean: lessons for marine conservation from a global research review. Front. Mar. Sci. 8, 711245 (2021).Potts, T., Pita, C., O’Higgins, T. & Mee, L. Who cares? European attitudes towards marine and coastal environments. Mar. Pol. 72, 59–66 (2016).Article 

    Google Scholar 
    Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Zheng, Y. & Walsham, G. Inequality of what? An intersectional approach to digital inequality under Covid-19. Inf. Organ. 31, 100341 (2021).Article 

    Google Scholar 
    Blythe, J. L., Armitage, D., Bennett, N. J., Silver, J. J. & Song, A. M. The politics of ocean governance transformations. Front. Mar. Sci. 8, 634718 (2021).Article 

    Google Scholar 
    Brennan, C., Ashley, M. & Molloy, O. A system dynamics approach to increasing ocean literacy. Front. Mar. Sci. 6, 360 (2019).Article 

    Google Scholar 
    Stoll-Kleemann, S. Feasible options for behavior change toward more effective ocean literacy: a systematic review. Front. Mar. Sci. 6, 273 (2019).Article 

    Google Scholar 
    Bennett, N. J. et al. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8, 711538 (2021).Article 

    Google Scholar 
    Short, R. E. et al. Review of the evidence for oceans and human health relationships in Europe: a systematic map. Environ. Int. 146, 106275 (2021).PubMed 
    Article 

    Google Scholar 
    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).Article 

    Google Scholar 
    Sutherland, W. J. et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 36, 87–97 (2021).PubMed 
    Article 

    Google Scholar  More

  • in

    Biophysical impacts of northern vegetation changes on seasonal warming patterns

    Coupled model experiments for detecting vegetation-climate feedbackWe quantified changes of near-surface (2-m) air temperature (Ta) in response to the observed NH greening for all active growing seasons during 1982–2014 using IPSL-CM. We defined the three growing seasons (spring, summer, and autumn) across the entire NH domain as periods of March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. For each season, a pair of transient numerical experiments was performed by modifying LAI: a dynamic vegetation experiment (SCE) forced by annually and seasonally varying LAI from satellite observations36, and three seasonal control experiments (({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{MAM}}}}}}}), ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{JJA}}}}}}}), and ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{SON}}}}}}}) for MAM, JJA, and SON, respectively) forced by annually varying LAI for all seasons, except in the season of interest when the LAI was fixed to the climatological conditions observed during 1982–2014 (Fig. S1). For all experiments, other boundary conditions, including sea surface temperature (SST), sea ice fraction (SIC), and atmospheric CO2 concentrations, were kept consistent (Methods). Therefore, differences between SCE and the control experiments characterized the effects of the observed LAI changes on Ta (hereafter denoted as ΔTa), both intra- and inter-seasonally. Multimember paired ensembles were generated for each coupled model experiment by performing 30 repeated runs but with different initial conditions (see Methods).The capacity of the IPSL-CM GCM for simulating the seasonal variations and spatial patterns of Ta was assessed by comparing the SCE simulation results with the observation-based Ta data (Methods). Throughout most of the growing season (May to October), the SCE simulation well reproduced the increasing trend and interannual variability of the NH land mean Ta observed during 1982–2014 (Fig. S2). Observational data showed that the strongest NH warming occurred in early spring (March and April) and late autumn (November). However, the SCE simulation failed to capture the exceptionally strong warming during the transitional seasons, leading to the underestimation of the annual mean warming trend (SCE: 0.237 ± 0.024 °C decade−1; observed: 0.362 ± 0.048 °C decade−1). This underestimation stemmed from a negative bias in the increase of downwelling shortwave radiation, possibly due to an absence of short-lived forcing and bias in the cloud systems37. Overall, the SCE reproduced the geographical patterns of seasonal warming reasonably well (Fig. S3), which strengthened our confidence in the model projections. Notably, it successfully captured the observed amplified warming over pan-arctic and semi-arid regions, as well as the few cases of regional cooling, such as that over northwestern North America during MAM (Fig. S3).Intra-seasonal temperature responses to NH LAI changesFor the period from 1982 to 2014, satellite-retrieved LAI showed statistically significant increasing trends (p  0.1), strong and significant JJA cooling (−0.044 ± 0.008 °C decade−1, p  0.1) (intra-seasonal feedbacks shown in Fig. 1b). The LAI-induced JJA Ta trend was equivalent to cooling of −0.15 ± 0.03 °C in JJA over the study period, offsetting the overall SCE-simulated near-surface air warming over this period by ~12.5%. This strong JJA cooling was further supported by a significant negative correlation (r = −0.64, p  0.1) or SON (r = 0.07, p  > 0.1) (Fig. S4a, c), during which the LAI-induced changes accounted for only 1.3% (MAM) and −3.2% (SON) of the concurrent greenhouse warming. We also verified the robustness of our results by performing equilibrium experiments with an independent model, the NCAR Community Atmosphere Model coupled with Community Land Model (CAM-CLM, Methods). Indeed, this model generated a similarly strong LAI-induced cooling in JJA (−0.18 °C, p  0.1) and SON (−0.05 °C, p  > 0.1) (Fig. S5).Fig. 1: Intra- and inter-seasonal temperature responses to leaf area index (LAI) changes.a Monthly trends (shadings) of Northern Hemisphere (NH) mean LAI during 1982–2014 used as input to the seasonal simulations. The dashed curve and transparent bars indicate trends of monthly LAI and seasonally aggregated LAI values, respectively. b Linear trends of Ta driven by LAI changes within the same season (intra-seasonal) and other growing seasons (inter-seasonal). Error bars in a, b indicate uncertainty ranges [1 – standard deviation (SD)]. c Monthly trends of LAI-induced air temperature changes (ΔTa), with red and blue shadings representing positive and negative trends, respectively. The bottom panel shows the overall ΔTa trends induced by LAI changes in all growing seasons, calculated as the sum of ΔTa trends from the three seasonal runs shown separately in the above panels. ***p  More

  • in

    Return of large fin whale feeding aggregations to historical whaling grounds in the Southern Ocean

    Scott Baker, C. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371. https://doi.org/10.1016/j.tree.2004.05.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clapham, P. J. & Baker, C. S. in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsig, & J. G. M. Thewissen) Ch. Modern Whaling, 1328–1332 (Academic Press, 2002).International Whaling Commission. Twenty-Eighth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1978).International Whaling Commission. Thirty-Sixth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1986).Leaper, R. & Miller, C. Management of Antarctic baleen whales amid past exploitation, current threats and complex marine ecosystems. Antarct. Sci. 23, 503–529. https://doi.org/10.1017/s0954102011000708 (2011).ADS 
    Article 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Kemp, S. & Bennett, A. G. On the distribution and movements of whales on the South Georgia and South Shetland whaling grounds. Discov. Rep. 6, 165–190 (1932).
    Google Scholar 
    Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60°S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetac. Res. Manag. 3, 251–270 (2001).
    Google Scholar 
    Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep Sea Res. Part II 51, 1397–1409. https://doi.org/10.1016/s0967-0645(04)00087-6 (2004).ADS 
    Article 

    Google Scholar 
    Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species 2018, e.T2478A50349982. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en (2018).Santora, J. A., Schroeder, I. D. & Loeb, V. J. Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar. Biol. 161, 2293–2305. https://doi.org/10.1007/s00227-014-2506-7 (2014).Article 

    Google Scholar 
    Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269. https://doi.org/10.3354/meps08513 (2010).ADS 
    Article 

    Google Scholar 
    Burkhardt, E. et al. Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica. R Soc. Open Sci. 8, 201142. https://doi.org/10.1098/rsos.201142 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joiris, C. R. & Dochy, O. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol. 36, 1649–1658. https://doi.org/10.1007/s00300-013-1383-8 (2013).Article 

    Google Scholar 
    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: Evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818. https://doi.org/10.1007/s00300-016-1927-9 (2016).Article 

    Google Scholar 
    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. Endanger. Spec. Res. 32, 515–524. https://doi.org/10.3354/esr00832 (2017).Article 

    Google Scholar 
    Meyer, B. & Wessels, W. The Expedition PS112 of the Research Vessel POLARSTERN to the Antarctic Peninsula Region in 2018. 125 p. (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 2018). https://doi.org/10.2312/BzPM_0722_2018Knust, R. Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facil. JLSRF 3, A119. https://doi.org/10.17815/jlsrf-3-163 (2017).Article 

    Google Scholar 
    Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Herr, H. et al. Aerial surveys for Antarctic minke whales (Balaenoptera bonaerensis) reveal sea ice dependent distribution patterns. Ecol Evol 9, 5664–5682. https://doi.org/10.1002/ece3.5149 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorschel, B. et al. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. 39, 765–787. https://doi.org/10.1007/s00300-015-1861-2 (2015).Article 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A., Thomas, L. & Gimenez, O. Spatial models for distance sampling data: recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210x.12105 (2013).Article 

    Google Scholar 
    Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).Article 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.735770 (2021).Article 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling (Oxford University Press, 2007).
    Google Scholar 
    Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28. https://doi.org/10.18637/jss.v089.i01 (2019).Article 

    Google Scholar 
    Marques, F. F. C. & Buckland, S. T. in Advanced Distance Sampling (eds S. T. Buckland et al.) 31–47 (Oxford University Press, 2004).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).Article 
    MATH 

    Google Scholar 
    Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575. https://doi.org/10.1080/01621459.2016.1180986 (2016).CAS 
    Article 

    Google Scholar 
    Dorschel, B. et al. The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2). Scientific Data. https://doi.org/10.1038/s41597-022-01366-7 (2022).Article 

    Google Scholar 
    Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35. https://doi.org/10.1080/01490410701295962 (2007).Article 

    Google Scholar 
    raster: Geographic Data Analysis and Modelling. R package version 3.4–5 (2020).Shelton, A. O., Thorson, J. T., Ward, E. J., Feist, B. E. & Cooper, A. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. https://doi.org/10.1139/cjfas-2013-0508 (2014).CAS 
    Article 

    Google Scholar 
    Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Statiustics Comput. 15, 267–280 (2005).MathSciNet 
    Article 

    Google Scholar 
    Gu, C. & Wahba, G. Minimizing GCV/GML scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Stat. Comput. 12, 383–398. https://doi.org/10.1137/0912021 (1991).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Hobson, E. S. Feeding behaviour in three species of sharks. Pac. Sci. 17, 171–194 (1963).
    Google Scholar 
    Weeks, S., Magno-Canto, M., Jaine, F., Brodie, J. & Richardson, A. Unique sequence of events triggers manta ray feeding frenzy in the Southern Great Barrier Reef, Australia. Remote Sens. 7, 3138–3152. https://doi.org/10.3390/rs70303138 (2015).ADS 
    Article 

    Google Scholar 
    Montero-Quintana, A. N., Ocampo-Valdez, C. F., Vázquez-Haikin, J. A., Sosa-Nishizaki, O. & Osorio-Beristain, M. Whale shark (Rhincodon typus) predatory flexible feeding behaviors on schooling fish. J. Ethol. 39, 399–410. https://doi.org/10.1007/s10164-021-00717-y (2021).Article 

    Google Scholar 
    Findlay, K. P. et al. Humpback whale “super-groups”—A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshwat. Ecosyst. 31, 2412–2419. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Baines, M., Reichelt, M. & Griffin, D. An autumn aggregation of fin (Balaenoptera physalus) and blue whales (B. musculus) in the Porcupine Seabight, southwest of Ireland. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 168–177, https://doi.org/10.1016/j.dsr2.2017.03.007 (2017).Ladrón de Guevara P., P., Lavaniegos, B. E. & Heckel, G. Fin whales (Balaenoptera physalus) foraging on daytime surface swarms of the euphausiid Nyctiphanes simplex in Ballenas Channel, Gulf of California, Mexico. J. Mammal. 89, 559–566 (2008).Bruce, W. S. Some observations on Antarctic cetacea. In: Report on the Scientific results of the voyage of S.Y. ‘Scotia’ during the years 1902, 1903, and 1904, under the leadership of William S. Bruce, 491–505 (1915).Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Rep. I, 257–540 (1929).Jackson, J. A. et al. Have whales returned to a historical hotspot of industrial whaling? The pattern of southern right whale Eubalaena australis recovery at South Georgia. Endang. Spec. Res. 43, 323–339. https://doi.org/10.3354/esr01072 (2020).Article 

    Google Scholar 
    Goldbogen, J. A., Pyenson, N. D. & Shadwick, R. E. Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289–301. https://doi.org/10.3354/meps07066 (2007).ADS 
    Article 

    Google Scholar 
    Goldbogen, J. A. et al. Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226. https://doi.org/10.1111/j.1365-2435.2011.01905.x (2012).Article 

    Google Scholar 
    Acevedo-Gutierrez, A., Croll, D. A. & Tershy, B. R. High feeding costs limit dive time in the largest whales. J Exp Biol 205, 1747–1753. https://doi.org/10.1242/jeb.205.12.1747 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Keen, E. M. Aggregative and feeding thresholds of sympatric rorqual whales within a fjord system. Ecosphere 8, e01702. https://doi.org/10.1002/ecs2.1702 (2017).Article 

    Google Scholar 
    Veit, R. R. & Harrison, N. M. Positive interactions among foraging seabirds, marine mammals and fishes and implications for their conservation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00121 (2017).Article 

    Google Scholar 
    Laran, S. et al. A comprehensive survey of pelagic megafauna: their distribution, densities, and taxonomic richness in the tropical Southwest Indian Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00139 (2017).Article 

    Google Scholar 
    Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).ADS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. J. Cetac. Res. Manag. 10, 119–129 (2008).
    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for management. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 41–58. https://doi.org/10.1016/j.dsr2.2017.04.018 (2017).ADS 
    Article 

    Google Scholar 
    Forcada, J., Aguilar, A., Hammond, P., Pastor, X. & Aguilar, R. Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean sea during the summer. J. Zool. 238, 23–34. https://doi.org/10.1111/j.1469-7998.1996.tb05377.x (2009).Article 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201. https://doi.org/10.1111/j.1748-7692.2007.00175.x (2008).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Carroll, E. L. et al. Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Sci. Rep. 5, 16182. https://doi.org/10.1038/srep16182 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791. https://doi.org/10.1111/j.1365-294X.2008.04069.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J., Best, P. B., Carvalho, I. & Pomilla, C. Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a Southern Hemisphere coastal feeding ground. PLoS ONE 8, e81238. https://doi.org/10.1371/journal.pone.0081238 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richard, G. et al. Cultural transmission of fine-scale fidelity to feeding sites may shape humpback whale genetic diversity in Russian Pacific waters. J. Hered. 109, 724–734. https://doi.org/10.1093/jhered/esy033 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carroll, E. L. et al. Reestablishment of former wintering grounds by New Zealand southern right whales. Mar. Mamm. Sci. 30, 206–220. https://doi.org/10.1111/mms.12031 (2014).Article 

    Google Scholar 
    Calderan, S. V. et al. South Georgia blue whales five decades after the end of whaling. Endang. Spec. Res. 43, 359–373. https://doi.org/10.3354/esr01077 (2020).Article 

    Google Scholar 
    Santora, J. A. & Veit, R. R. Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 487, 287–304. https://doi.org/10.3354/meps10350 (2013).ADS 
    Article 

    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522. https://doi.org/10.1007/s00300-011-1010-5 (2011).Article 

    Google Scholar 
    Williams, R., Hedley, S. L. & Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity. Ecol. Soc. 11, [online] http://www.ecologyandsociety.org/vol11/iss11/art11/ (2006).Secchi, E. et al. Encounter rates of whales around the Antarctic peninsula with special reference to humpback whales, Megaptera novaeangliae, in the Gerlache Strait 1997–98 to 1999–2000. Mem. Qld. Mus. 47, 571–578 (2001).
    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Johnston, D. W., Friedlaender, A. S., Read, A. J. & Nowacek, D. P. Initial density estimates of humpback whales Megaptera novaeangliae in the inshore waters of the western Antarctic Peninsula during the late autumn. Endang. Spec. Res. 18, 63–71. https://doi.org/10.3354/esr00395 (2012).Article 

    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R Soc Open Sci 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mackintosh, N. A. The distribution of southern blue and fin whales, in Whales, dolphins, and porpoises. (ed K. S. Norris) Ch. 8, 125–144 (University of California Press, 1966).Schmitt, N. et al. Mixed-stock analysis of humpback whales (Megaptera novaeangliae) on Antarctic feeding grounds. J. Cetac. Res. Manag. 14, 141–157 (2014).
    Google Scholar 
    Schall, E. et al. Humpback whale song recordings suggest common feeding ground occupation by multiple populations. Sci. Rep. 11, 18806. https://doi.org/10.1038/s41598-021-98295-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archer, F. I. et al. Revision of fin whale Balaenoptera physalus (Linnaeus, 1758) subspecies using genetics. J. Mammal. 100, 1653–1670. https://doi.org/10.1093/jmammal/gyz121 (2019).Article 

    Google Scholar 
    Archer, F. I. et al. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): Genetic evidence for revision of subspecies. PLoS ONE 8, e63396. https://doi.org/10.1371/journal.pone.0063396 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cabrera, A. A. et al. Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135, 86–97. https://doi.org/10.1016/j.ympev.2019.02.003 (2019).Article 
    PubMed 

    Google Scholar 
    Edwards, E. F., Hall, C., Moore, T. J., Sheredy, C. & Redfern, J. V. Global distribution of fin whales Balaenoptera physalus in the post-whaling era (1980–2012). Mammal. Rev. 45, 197–214. https://doi.org/10.1111/mam.12048 (2015).Article 

    Google Scholar 
    Knox, G. A. The key role of krill in the ecosystem of the Southern Ocean with special reference to the Convention on the Conservation of Antarctic Marine Living Resources. Ocean Manag. 9, 113–156 (1984).Article 

    Google Scholar 
    Ducklow, H. W. et al. Marine pelagic ecosystems: the west Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 67–94. https://doi.org/10.1098/rstb.2006.1955 (2007).Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97–100. https://doi.org/10.1038/nature02950 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I Oceanogr. Res. Pap. 77, 63–74. https://doi.org/10.1016/j.dsr.2013.02.005 (2013).ADS 
    Article 

    Google Scholar 
    Siegel, V. & Watkins, L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba, in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed Volker Siegel) Ch. 2, 21–101 (Springer, 2016).Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).Article 

    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I Oceangr. Res. Pap. 56, 727–740. https://doi.org/10.1016/j.dsr.2008.12.007 (2009).ADS 
    Article 

    Google Scholar 
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x (2010).Article 

    Google Scholar 
    Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. 30, 888–904. https://doi.org/10.1111/mms.12108 (2014).CAS 
    Article 

    Google Scholar 
    Smetacek, V. Are declining Antarctic krill stocks a result of global warming or of the decimation of the whales? in Effects of global warming on polar ecosystems (ed Carlos M. Duarte) (Fundación BBVA, 2008).Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smetacek, V. A whale of an appetite revealed by analysis of prey consumption. Nature 599, 33–34. https://doi.org/10.1038/d41586-021-02951-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laws, R. M. Seals and whales of the Southern Ocean. Philios. Trans. R. Soc. Lond. B 279, 81–96 (1977).ADS 
    Article 

    Google Scholar 
    Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Biol. Sci. 277, 3527–3531. https://doi.org/10.1098/rspb.2010.0863 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, S. A. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res. https://doi.org/10.1029/2001jc001147 (2003).Article 

    Google Scholar 
    Frölicher, T. L. et al. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 28, 862–886. https://doi.org/10.1175/jcli-d-14-00117.1 (2015).ADS 
    Article 

    Google Scholar 
    Landschutzer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224. https://doi.org/10.1126/science.aab2620 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Warmth worries workers

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Adaptive response of Dongzhaigang mangrove in China to future sea level rise

    Historical changes and current status of the Dongzhaigang mangrove areaBased on the literature and remote sensing data, we calculated the changes in the area of mangrove forests in Dongzhaigang since the 1950s presented in Fig. 2. In the last 60 years, the area of mangrove forests in Dongzhaigang has experienced large fluctuations mainly due to human destruction and protection activities such as mariculture reclamation, cofferdams, and restoration: it decreased from 3416 hm2 in 195617 to 3213 hm2 in 195919,29 and then decreased sharply to 1733 hm2 in 1983 and to 1537 hm2 in 198720,30. Since the establishment of the national nature reserve in 1986, the decline in area of Dongzhaigang mangrove has stopped19, which are now protected and restored owing to the law and regulations that prohibit human activities from destroying the mangrove resource. In 1988, the area was restored to 1809 hm2, and since the 1990s, it has no longer decreased, remaining constant at approximately 1711 hm2 (in the range of 1575–1812 hm2) based on the literature)18,20,31,32,33,34 (Fig. 2). The area of the Dongzhaigang mangrove forest in 2019 was estimated to be 1842 hm2 based on the latest 2 m resolution remote sensing data21. Hence, we wonder how SLR has impacted Dongzhaigang mangrove in the past decades. However, it is very difficult to analyze how SLR has historically impacted the spatial changes in the Dongzhaigang mangrove; the same can be said regarding the influence of human activities, such as destruction before mid-1980s and protection after 1990s. However, the dynamic changes among low plant edges in the intertidal zone can be used to analyze the impact of natural driving forces such as SLR35, based on the latest remote sensing data for the period of 1986–2020. Thus, we analyzed the dynamic changes in low mangrove edges (hereafter, the edges), which are mainly impacted by natural impact drivers, as shown in Fig. 3. The dynamic low mangrove edges represented by 1986, 2000, and 2020 reveal the changes in spatial distribution of Dongzhaigang mangrove. As shown in Fig. 3. Most of the edges along the coast of Dongzhaigang between 1986 and 2020 migrated landward, but not significantly. However, if we look at the changes in detail, some edges such as those in Daoxue, Sanjiang (purple circles in Figs. 3a,b–d,e–g) more clearly retreated landward compared to other places. Besides, some edges of Luodou along the northeastern coast of Dongzhaigang outside the reserve and an unnamed small island (pruple circles in Fig. 3a,h–j) also migrated landward very distinctly. On the contrary, the two smaller shore lines (black circles) in the northern part of Yangfeng and Daxue districts showed seaward expansion (Fig. 3a).Figure 2Changes in the mangrove area in Dongzhaigang from 1956 to 2019. The equation in the upper-right-hand corner of the plot refers to the fitting equation of historical changes in the total area of Dongzhaigang mangrove.Full size imageFigure 3The dynamic changes in low mangrove edges in Dongzhaigang from 1986 to 2020. Maps generated in ArcMap v10.0 (https://www.esri.com/en-us/home).Full size imageVertical rate of sediment accretion in mangrove wetlandsThe vertical rate of sediment accumulation in mangrove wetlands can reflect whether the mangroves can adjust the soil surface elevation change through sediment trapping to adapt to SLR6,11. The vertical sediment accretion rates at two sites of Dongzhaigang mangrove (i.e., Linshi and Daoxue villages in Fig. 1b) can be obtained from historical documents, which are 0.41 cm year−1 at LS and 0.64 cm year−1 at DX, respectively27,28. Since historical data may not be enough to reflect the vertical sediment accretion rates in time and space, we conducted a supplementary investigation on the sediment accumulation rates at site HG in Yanfeng and SJ site in Sanjiang farms, respectively (Fig. 1b), based on the assumption that they can reflect the sediment supplies from main reivers such as Yanfeng West River and Yanzhou River, respectively. Sediment accretion rates measured using 210Pbex specific activity in the cores from sites HG and SJ showed that 210Pbex decayed exponentially with increasing depth, and the R2 values of both cores were approximately 0.80 after curve fitting. This analysis resulted in vertical sediment accretion rates of 0.53 and 0.40 cm year−1 at HG and SJ, respectively (Fig. 4). Therefore, the locations of sediment cores at sites LS, DX, HG, and SJ can basically represent the whole Dongzhaigang mangrove forest area.Figure 4210Pbex activity profiles in selected cores such as from (a) station HG and (b) station SJ.Full size imageRate of relative sea level rise in Dongzhaigang mangroveThe global mean sea level (GMSL) is accelerating due to global warming-induced thermal expansion of the oceans and melting of land-based glaciers and ice caps into the sea36. Between 1901 and 2010, the GMSL rose by 0.19 m9. Coastal China is among the regions that experience the highest levels of SLR23. The rate of RSLR along China’s coast from 1980 to 2019 was 3.4 mm year−1, higher than the global average23. In the future, under the premise of increasing anthropogenic GHG emissions, global sea levels will rise rapidly, and it is projected that the GMSL may rise by 0.84 m (0.61–1.10 m) relative to the current levels by the end of the twenty-first century9. Based on the observations from the tide gauge stations in the Haikou area and model data from the Coupled Model Intercomparison Projection 5 (CMIP5), the rate of RSLR around Dongzhaigang reached 4.6 mm year−1 from 1980 to 2018. This rate is much higher than the global and China’s average values23,25 and will likely accelerate further in the future. Based on the results of the CMIP5 model simulations under different GHG emission scenarios24, the RSLR in coastal Haikou waters, including in Dongzhaigang, is expected to be significant by 2030, 2050, and 2100 for the low, intermediate, and very high GHG emission scenarios RCPs 2.6, 4.5, and 8.5, respectively (Table 1, Fig. 5). Under RCPs 2.6, 4.5, and 8.5, the sea level will rise by 65 (42–90, likely range), 75 (51–102, likely range), and 96 (70–125, likely range) cm by 2100, respectively, with the average RSLR rates of 6.84 (4.42–9.47, likely range), 7.89 (5.37–10.74, likely range), and 10.1 (7.37–13.12, likely range) mm year−1, respectively.Table 1 Estimated coastal relative sea level rise (cm) and its rate (mm year−1) in the Haikou area under different GHG emission scenarios (data from Kopp et al.24).Full size tableFigure 5Historical and future relative sea level changes along coastal Dongzhaigang, Haikou City from 1980 to 2100; the 5–95% uncertainty ranges are shaded for RCPs 2.6, 4.5, and 8.5, respectively.Full size imageImpact of relative sea level rise on Dongzhaigang mangroveMangroves cannot easily adapt to rising sea levels if the rate of GMSL rise exceeds 6.1 mm year−1 ( > 90% probability, very likely), whereas the survival threshold for mangroves is extremely likely to be exceeded ( > 95% probability, extremely likely) when the rate of GMSL exceeds 7.6 mm year−17. Although these values are based on global levels7, they still reflect the threat of SLR to local mangroves. In view of this, we further analyzed the potential impact and risks to Dongzhaigang mangrove from future SLR under different climate scenarios.Based on the predicted future rates of SLR under RCPs 2.6, 4.5, and 8.5 and on the vertical sediment accretion rates of Dongzhaigang mangrove wetlands, the mangroves are likely to be affected by rising sea levels by 2030, 2050, and 2100, respectively (Table 2, Fig. 6). Under the low GHG emission scenario (RCP 2.6), the area of the Dongzhaigang mangrove forest will only experience a small reduction: 16.40% (1.20–16.95%, likely range), 302 hm2 (22–312 hm2, likely range); 16.73% (1.20–17.82%, likely range), 308 hm2 (22–328 hm2, likely range); and 17.60% (1.14–31.02%, likely range), 324 hm2 (21–571 hm2, likely range) by 2030, 2050, and 2100, respectively (Table 2, Fig. 6a). This is because the vertical sediment accretion rate of Dongzhaigang mangrove will remain largely constant with increasing RSLR rate. Moreover, it should be noted that compared with 2030, the increase areas of mangroves inundation caused by SLR will be small by 2050 under three RCPs scenarios (Table 2). In contrast, under the intermediate and very high GHG emission scenarios (RCPs 4.5 and 8.5), Dongzhaigang mangrove is expected to be more significantly affected by SLR. Under RCP 4.5, 26.56% (16.19–40.74%, likely range) or 489 hm2 (298–750 hm2, likely range) of mangrove forest will likely be lost by the end of the century (Table 3, Fig. 6b). Under RCP 8.5, it is projected that 31.99% (18.14–50.73%, likely range) or 589 hm2 (334–934 hm2, likely range) of mangrove forest will be lost by 2100 (Table 2, Fig. 6c). Therefore, under RCPs 4.5 and 8.5, the impact of SLR on mangrove wetlands by 2100 is much higher than that of RCP 2.6, and is likely to result in  > 26% of mangroves being lost, whereas under RCP 2.6, only 17% of mangroves are likely to be lost.Table 2 Area (hm2) and percentage of future mangrove loss in Dongzhaigang under different climate scenarios (RCPs 2.6, 4.5, and 8.5) (likely ranges).Full size tableFigure 6Potential loss of mangrove forests in Dongzhaigang under different climate scenarios (RCPs 2.6, 4.5, and 8.5). Maps generated in ArcMap v10.0 (https://www.esri.com/en-us/home).Full size imageTable 3 Core stations and depths.Full size tableUnder RCP 2.6, the rate of RSLR around Dongzhaigang will reach 0.72 cm year−1 in 2030 and then decrease in 2050 and 2080 to 0.69 and 0.68 cm year−1, respectively (Table 1). However, under RCP 4.5 (8.5), by 2030, 2050, and 2100, the rate of RSLR will reach 0.72 (0.72), 0.73 (0.80), and 0.79 (10.1) cm year−1, respectively. By 2100, some mangroves in the northern part of Tashi village, the eastern part of Yanfeng, the northern part of Daoxue Village, and the northeastern part of the Sanjiang farm will likely be lost owing to SLR, and other coastal wetlands will also be impacted. Since the rate of RSLR around Dongzhaigang is higher than the global average survival threshold for mangroves (i.e., the SLR rate exceeds 7.0 mm year−1), the Dongzhaigang mangrove will be significantly affected by SLR, with a potential loss of 31–32%; however, the survival threshold will not increase (Table 2, Fig. 6). More

  • in

    Food webs for three burn severities after wildfire in the Eldorado National Forest, California

    Site selectionOur study focused on the mixed-conifer zone of the Sierra Nevada which is dominated by Ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus jeffreyi), Incense cedar (Calocedrus decurrens), White fir (Abies concolor) and California black oak (Quercus kelloggii). Common shrubs include Deer brush (Caenothus integerrimus), Mountain whitethorn (Caenothus cordulatus), Greenleaf manzanita (Arctostaphylos patula) and Prostrate ceanothus (Caenothus prostrates). Study sites in the Eldorado National Forest near Placerville, CA (38°45′N 120°20′W), were in and near the area burned during the King Fire (Fig. 2).We sampled sites in the mixed-conifer zone between 4000–6000 ft in three burn categories: unburned, low-to-moderate severity and high severity. We selected sites that occurred in similar pre-burn habitat (moderate to dense conifer forest) based on remotely-sensed vegetation class data from the California Wildlife Habitat Relationships program (CWHR)16. No site experienced wildfire or controlled burns in the preceding century23. Burn categories were based on remote sensing relative differenced Normalized Burn Ratio (RdNBR) canopy cover calibrated for the Sierra Nevada24. We validated these burn categories as meaningful and discrete with remote sensing (immediately post fire) and field data (3 years post-fire). Monitoring Trends in Burn Severity (MTBS) maps classify burn severity with Landsat reflectance imagery of pre-fire and post-fire conditions at 30-m resolution25. MTBS assigns pixels a value based on burn severity: 0 = outside the burn boundary; 1 = unburned-low severity within the fire perimeter; 2 = low severity; 3 = moderate severity; 4 = high severity). At each site, we determined the mean MTBS value of pixels in the small-mammal trapping grid (90 × 90 m) and a 225 m buffer (the largest home range diameter for small mammals we captured)26 extended on all sides. Immediately after the fire, the three burn categories differed significantly in tree cover and remote sensing scores of burn severity25 and are still different in tree surveys three years later.We sampled 27 sites, each 4 ha in size. To minimize site-specific influences, we paired sites across treatments to account for elevation, slope, pre-burn vegetation characteristics, pre-burn forest management, ownership, and soil type. Each burn category received nine sites. We blocked sites across burn severities (one site in each burn category per block). Site locations were chosen for accessibility, but all sites were at least 50 m from access roads and at least 200 m apart (sites were >1 km apart on average). We also excluded areas that experienced or were scheduled to experience salvage logging post fire. Occasionally, field conditions at a site location did not align with remotely sensed data classifications, a site was not large enough for homogeneous sampling plots or was dominated by slopes >30 degrees. In these cases, sites were moved to nearby locations that satisfied the site selection criteria.Sampling designIn this study we report the body size, abundance and biomass density of plants and free-living animals using a variety of methods in three different fire severities. Each site consisted of a 200 m × 200 m plot (4 ha) around which sampling methods were organized (Fig. 3). We collected data for organisms with 19 different sampling methods that were scaled to the abundance and body size of targeted organisms. Some methods were not performed at all sites, and some methods were pooled across sites (within treatments) due to low sampling success. Below, we explain each sampling method and detail any variation in its application across sites. To minimize seasonal effects, we sampled all sites in a block at the same time, over 4–5 continuous days, between late June and early September 2017. Weather was consistently hot and dry during this period with no pronounced variation. All animal survey procedures were approved by UC Davis IACUC (protocol number CA-17-451736) and carried out under CDFW permit #SC-3638.Species inclusionTo evaluate the effects of wildfire-burn severity on community structure we assembled a list of organisms and life stages encountered during our sampling of the Eldorado National Forest. Every animal in our list was broken into ontogenetic life stages. Plants were broken into constituent parts (e.g. leaves, roots, seeds) rather than stages. Every organism in our lists had at least one life stage observed by this study in the Eldorado National Forest. Not all life stages in the list were directly observed, many were inferred. These life stages were suspected to occur in the habitat but were not observed (or quantified) because (1) it was impractical (e.g. mycorrhizae), (2) our sampling methods did not capture them (e.g. larval insects in plant tissues) or (3) they could not be identified to species (e.g. arthropod eggs). Stages (not species) were excluded when they did not occur in the terrestrial habitat (e.g. aquatic larvae). Stages (or parts) were lumped when they could not be distinguished in terms of their resources or consumers (e.g. parasitoid wasp eggs, larvae and pupae). Unobserved stages were omitted from a burn category community if they were feeding (e.g. not eggs) but did not have any resources. All life stages, observed or not, received a body size estimate.This approach has several benefits. First, it fills life-cycle gaps without artificially inflating species richness (e.g. having a node labelled “bird eggs”). Second, unobserved life stages may not be major biomass contributors, but they do make important contributions to food-web structure and population dynamics. Including life stages without abundance information is useful because it allows their inclusion in analyses of network structure, informs consumer-resource body-size ratios and allows comparisons to other food datasets organized around body size, but lacking abundance estimates.A comprehensive food web required the inclusion of non-living nodes like detritus which is an important resource for many consumers. Fire creates strong spatial structure in woody detritus, so we collected mass-density information on it and partitioned detritus into types (e.g., woody vs. leaf) and size classes. We did not collect mass-density information on carcasses but treated them similarly by partitioning them into logarithmic size classes to reflect their availability to different consumers (e.g., tick carcasses vs. deer carcasses). We have also included the biotic products honeydew and dung due to their importance to certain consumer groups in the system. We have not done so here but future efforts may wish to include nutrients as resources for plants to capture gradients and competition. Finally, analyses may wish to augment our lists by explicitly including fire as a consumer/herbivore as opposed to an external force shaping treatment effects.Below we describe the methods used to quantify the richness, abundance, and biomass density of these organisms in each of our burn categories. Unless noted, sampling effort did not vary with burn category.Species resolutionMost entries in the species list represent ontogenetic stages or constituent parts. With the exception of a few nodes (i.e. algae, moss, lichen, mycorrhizae, saprophytic bacteria, saprophytic fungi and nematodes) this ecological resolution is consistent throughout the list. Taxonomic information was assigned using the Global Biodiversity Information Facility database27, but taxonomic resolution varies. Vertebrates are identified at the species level. Invertebrates, while distinguished as morphospecies, were not identified below the family level in many cases. Despite not always being identified to the lowest taxonomic category, entries represent life stages of distinct species or groups, and are accompanied by all the taxonomic information we could provide at that level of resolution.Biomass density estimationEach species observed in our sampling methods received a biomass density estimate. Biomass density was estimated as the product of mean individual body mass and density. We estimated body-mass either by weighing individuals directly, or conservatively estimating their mass volumetrically. For the latter, we measured the length (tip of abdomen to tip of head), width (max width of body excluding appendages) and depth (max depth of body excluding appendages) of individual organisms and converted into an approximate volumetric shape (e.g. ellipsoid, cylinder, hemisphere, etc.)28,29. Mass was estimated by multiplying this volume by a tissue density of 1.1 g/mL30,31,32. Body sizes for stages that were not directly observed were inferred from published records and databases. Density estimates were derived from the sampling methods discussed below and varied with burn category. Mean and standard errors were derived from the nine replicate sites within each treatment, unless otherwise stated. Due to the brief sampling window at each site, these estimates should be regarded as point estimates rather than integrated over time.Plant samplingVegetation transectsTo estimate density and biomass of trees, shrubs, and ground cover, we conducted vegetation transects at each site. Transects were located within each 200 m × 200 m plot but were offset from other sampling methods by 10 m to avoid trampling. Transect direction was chosen at random and two transects were run in parallel. Each transect was 50 m in length but width (and distance between transects and sampling area) varied with sampling method as detailed below.Ground coverTo estimate plant ground cover, we surveyed 1 m2 quadrats at 5 m intervals on each 50 m transect. Summed, this gave a pooled ground cover sample area of 20 m2 at each site. Within each quadrat we estimated the percent cover and average height of grasses, forbs, woody litter, soft-loose and soft-rooted litter, shrubs, and trees. We identified small trees, shrubs and dominant forbs (i.e., forbs with the greatest cover at a site) to species. We then used cover area and height to estimate a volume for each species or group. Volumes were later multiplied by taxon-specific measurements of mass-to-volume ratios derived from vegetation box quadrats to obtain biomass estimates for each ground cover species or group.Canopy coverTo estimate canopy cover, above each of the 20 ground cover sampling locations, we identified each tree species overhead and estimated its absolute canopy cover. This gave a pooled canopy cover sample area of 20 m2 at each site. Canopy cover estimates were incorporated into arthropod biomass density estimates from fogging.TreesTo estimate tree density, we identified and measured all trees that exceeded 15 cm diameter-at-breast-height (DBH) within a 15 m wide band extending the length of each 50 m vegetation transect. Small trees (DBH 1 cm. We estimated shrub volume (length × width × height) and biomass density by combining volume and density estimates with taxon-specific measurements of mass-to-volume ratios derived from vegetation box quadrats. We estimated above ground biomass for small trees using species-specific DBH-to-biomass conversions33.

    Understory plants
    To estimate the volume and cover of understory vegetation we used three-dimensional box quadrats. These box quadrats consisted of a canvas-walled rectangular box with the floor panel removed, that was placed over the understory to be surveyed. The canvas walls prevent arthropods from escaping as they were also used in arthropod sampling. Each box quadrat measured 1 m × 0.5 m × 0.5 m, covering a ground area of 0.25 m2. At each site, we placed box quadrats at three locations representative of the dominant vegetation. This gave a pooled sample area of 0.75 m2 at each site. To generate a volume estimate, within each box we estimated the percent cover and maximum height of each plant species. Leaf litter was treated separately but also quantified. Then, using a Velcroed flap as access (designed to prevent bugs from escaping), we collected and weighed all the above ground plant biomass, separated by species and type (litter, branches, leaves, etc.). A subsample of material (up to 1 kg) from each plant species and type was retained and returned to the station to extract the associated arthropods via Berlese funnels (detailed below).
    For each plant species measured in the vegetation box samples, we estimated a mass-to-volume ratio. We estimated the biomass of understory plants by combining our mass-to-volume ratios with volume estimates from ground cover transects. For taxa present in ground cover transects but not vegetation boxes, or with fewer than three measurements of mass-to-volume ratio, we pooled measurements from higher taxonomic levels. For example, if there was only one measurement of species A, but two measurements for a congener, species B, we used measurements for both species A and B to represent the mass-to-volume ratio of each. In this way, we estimated mean mass-to-volume ratios for every species-type encountered in the shrub and cover transects.
    Coarse woody debrisTo estimate the mass density of woody detritus we quantified it according to the method detailed in Waddell (2002). Specifically, we used the center of the vegetation transect as a line-intercept for woody detritus. Woody debris was recorded if its longitudinal axis intersected the transect line, its diameter at the point of intersection was ≧ 12.5 cm; it was ≧ 1 m long and it was not decayed to the point of disintegration. For each piece of woody detritus, we measured the diameter at both ends, the length, and the stage of decay. Length was measured only for the portion exceeding 12.5 cm in diameter. We estimated the volume (m3) for each piece of debris:$$V{m}^{3}=left.frac{(pi /8)({D}_{s}^{2}+{D}_{L}^{2})l}{10,000}right)$$
    (4)
    ({D}_{S}^{2}) is small diameter (cm), ({D}_{L}^{2}) is the large diameter (cm) and l is the length (m)34. We converted this estimate to a volume-density (m3 ha−1) estimate:$${m}^{3}h{a}^{-1}=left(frac{pi }{2;{L}_{t}}right)left(frac{V{m}^{3}}{{l}_{i}}right)f$$
    (5)
    Lt is the combined transect length (100 m), lt is the length of the individual piece, f is a conversion for area (10,000 m3 ha−1)34. Finally, we converted this is a dry-weight biomass density (kg ha−1):$$kg;h{a}^{-1}=({m}^{3}h{a}^{-1})left(frac{1000,kg}{{m}^{3}}right)SpGast D$$
    (6)
    SpG is a specific gravity estimate and D is the correction for the state of decay34. Specific gravity can be a species-specific estimate. Woody debris is difficult to identify to species so we applied a single specific gravity estimate to all debris weighted by the relative abundance of tree species in our surveys. We used a weighted specific gravity of 0.382, estimated by multiplying the mean specific gravity of Pinaceae (0.372) by their relative abundance (0.947) and adding that to the specific gravity of Quercus (0.566) multiplied by their relative abundance (0.053). We applied the weighted means to the decay corrections in Waddell (2002).Species of uncertain identificationSome plant identifications were difficult, particularly at burned sites, where some individuals were identified to genus or family. To assign species identities to individuals classified a higher taxonomic rank at a focal site, we first randomly selected a proxy site from the nine unburned sites. This proxy approach is possible because the composition of burned and unburned sites was similar before the fire. Proxy sites were randomly selected from among all the unburned sites because the spatial grouping didn’t lend itself to maintaining distinctions between blocks. Using the species abundance distribution of the focal plant taxon at the proxy site, we randomly assigned (with replacement) plant species identities to unidentified individual plants at the focal site. We repeated this random sampling 999 times, then estimated the resulting mean species abundance and bootstrapped standard errors at the treatment level.Invertebrate samplingGiven the diversity of invertebrates in the ecosystem, and the biases associated with each invertebrate sampling method, we employed several methods to quantitatively survey the entire community.Arthropods on understory plantsTo estimate the density of arthropods on understory plants we collected them along with plant material in the box quadrats. Up to 1 kg of plant material of each species was bagged inside box quadrats and transported to the field station for processing. Insects were extracted from the plant material in Berlese funnels that were hung in the shade at ambient temperatures and powered with 60 W frosted-incandescent bulbs. All plant samples were processed in funnels for 72 hours, after which they were checked twice a day (collecting jars changed). After no additional arthropods had been collected for 24 hours samples were removed. Arthropods were placed in ethanol for later identification. After identification, arthropod densities were estimated as the product of the arthropod-to-volume ratio for each plant and the total volume of each plant estimated from transects. We collected 4543 individual arthropods from 170 morphospecies associated with plant material from box quadrats, processed in Berlese funnels.Soil-dwelling arthropodsTo estimate the density of soil-dwelling arthropods we collected soil cores. Alongside each box, we collected four cores, each 10 cm in diameter. Two shallow cores were sunk to a depth of 5 cm, giving a combined (6 replicates total) sample area of 0.0471 m2 at each site. Shallow cores, which targeted small arthropods (e.g. collembola, diplura, acari), were collected and transported back to the field station for processing in Berlese funnels. Soil samples were processed in Berlese funnels in the same manner as plant material. Two deep cores were sunk to a depth of 15 cm, giving a combined (6 replicates total) sample area of 0.0471 m2 at each site. Deep cores targeted large invertebrates (e.g. lumbricidae, myriapoda) and were processed by hand in the field. Any large invertebrates encountered were placed in ethanol for later identification. After identification, densities were estimated as the quotient of counts and area sampled. We collected 690 individual arthropods from 57 morphospecies from soil cores.Arthropods on hard substrateTo estimate the density of arthropods like wasps and spiders on tree trunks, rock and logs we visually surveyed these hard substrates. In three locations at each site, we surveyed all hard substrates within a cylinder 5 m in diameter and 2 m in height. The total sample area at each site was 58.9 m2. All invertebrates larger than 2 cm in length were collected and fixed in ethanol for later identification. After identification, hard substrate densities were estimated as the quotient of counts and sample area. Hard substrate surveys yielded 616 individual arthropods from 74 morphospecies.Understory arthropodsTo estimate the arthropod densities associated with understory shrubs at each site we supplemented box quadrats with sweep net surveys. We used nets with a 38 cm diameter opening (Bioquip) to sweep the same 5 m diameter area as the hard substrate surveys. Three replicates at each site gave a total sample area of 58.9 m2. Net sweeps were performed at a constant pace of 2 arcs per meter. All invertebrates collected were fixed in ethanol for later identification. After identification, arthropod densities were estimated as the quotient of counts and sample area. Sweep net surveys yielded 706 individual arthropods from 168 morphospecies.Canopy arthropodsTo survey arboreal arthropods, we used a thermal fogger to loft insecticidal fog into the tree canopy. While this method can sample a large area, we were hampered by permit and accessibility issues at some sites. As a result, we sampled a representative subset of 12 sites (6 unburned, 3 high severity, and 3 low-to-moderate severity) with canopy fogging. Chemical fogging remains the most widely used method for sampling canopy arthropods35,36,37. It is notoriously difficult to assess canopy arthropods with any other method35. We used an IGEBA TF-35 Thermal Fogger to disperse a pyrethrum-based insecticide (EverGreen Crop Protection EC 60-6) into the forest canopy. During each fog we dispersed 4 L of solution (a 7% concentration of insecticide in a water-based carrier-dispersant) in 10 minutes over two representative trees and one live shrub at each site. Live trees were sampled at unburned sites, dead trees were sampled at high severity sites, and one dead and one live tree were sampled at low-to-moderate severity sites. Fogging was done under low-wind conditions allowing the thermal fogger and temperature gradients to lift the fog into the canopy. White 2.25 m2 tarps were placed beneath the fogged area to collect insects. The number of tarps used varied with the size and shape of the canopy. After an optimal elapsed drop-time of 120 minutes37, arthropods were collected from tarps and placed in ethanol for later identification. To estimate site-level arthropod abundance using canopy fogging, we estimated the density per square meter of tarp for each morphospecies and habitat type (living tree, dead tree, or shrub), then multiplied these densities by the total area covered by each habitat type. The area covered by each fogged habitat type was obtained from canopy cover transects (trees) and shrub transects (shrubs). Mean and standard errors for density estimates were estimated using the 3 (or 6) sites per treatment. Canopy fogging yielded 16,353 individual arthropods from 489 morphospecies.Strong-flying insectsTo estimate the diversity and relative abundance of strong-flying arthropods, we utilized blacklight traps (Miniature Downdraft Blacklight (UV) Trap Model 912). We supplemented our sampling with blacklight traps, because strong flying arthropods (e.g. vespid wasps) may not be adequately sampled by fogging or sweep netting. Black lights were deployed at sites prior to dusk on the third night of bat acoustic surveys (see below). Each site received one trap and black lights were not deployed on rainy or windy nights. Samples were collected the following morning. To preserve their integrity for later identification, lepidoptera samples were removed and frozen, other flying insects were fixed in ethanol. Black light traps collected 5,508 individuals from 279 morphospecies.Black light samples were only used to estimate densities for those species not regularly captured with other methods. Two hundred fifteen morphospecies were only found in black light samples. Black light traps, which can sample large areas, are an efficient means of generating diversity estimates for nocturnal flying insects. However, black light traps generate activity densities rather than absolute densities, over sample areas that vary within and between nights. To convert counts to density estimates for morphospecies collected only in black lights we paired them with an analogous species (based on taxonomy and body size). These density analogues were captured at the same site in both black lights and at least one other method with explicit absolute densities. We estimated the mean relative abundance ratios of these species in black lights across all sites in which they co-occurred. We then multiplied the density of the ecological analog by these abundance ratios to estimate densities of all species that were collected only in the black light traps.Larval biomass densityTo estimate the density of larval Formicidae, lepidoptera and coleoptera, we partitioned them according to the relative abundance of their adults present in the same treatments. Larvae for many hemimetabolous invertebrates can be difficult to identify without molecular methods. When larvae could not be identified to species, they were binned into categories of Formicidae, lepidoptera and coleoptera. We then collected body size information and density estimates for these stages. Larval densities were then partitioned according to the relative abundance of adults within each treatment. Adults were eligible to receive larvae if (1) they belonged to the same taxonomic rank as the larvae, (2) they did not already have any observed larval stages, (3) there were available resources for their larvae in the treatment.Vertebrate samplingSmall mammalsTo estimate the density of mammals less than 2.5 kg we used live traps uniformly distributed over a 90 m × 90 m grid38. We placed 100 traps 10 m apart, alternating between large (7.5 cm × 9 cm × 23 cm) and extra-large Sherman traps (10 cm × 11.5 cm × 38 cm)39. Traps were baited (a mix of oats, peanut butter, bird seed and molasses) and covered with natural materials for insulation. Traps were locked open and pre-baited for three days and then operated for three consecutive nights. Traps were closed during the day due to high daytime temperatures and lack of shade, particularly in the high severity burn areas. Traps were re-opened in the late afternoon. Captured mammals were identified to species (or individuals during recaptures), weighed, measured and fit with ear tags for future identification, then released. In 7,906 trap nights (adjusted for trap failures), we had 988 captures of 11 species of small mammals.Live-trapping and marking of small mammals allowed us to estimate their abundance using spatial capture-recapture (SCR) models40. These models use individual detections in combination with detection locations (here, location of a given live trap within the grid) to estimate density while accounting for imperfect detection and variation in detection due to variability in individual exposure to the trapping grid. When data are collected across several trapping grids, as in the present study, the joint modeling of all data allows estimation of grid-level covariate effects on density41. We used this framework to analyze data from all 27 plots jointly and allowed for density to vary according to burn category of a site (unburned, low-to-moderate severity or high severity), so that, for example, all unburned sites had the same density of a given species. If a species was never caught in a burn category, we fixed its density (and consequently, its biomass) to 0 for all sites in that burn category.Because trapping data for most species was too sparse to fit species-specific models, we grouped ecologically similar species and built models that shared parameters among grouped species. In this manner, we analyzed the joint data of mice and chipmunks: Brush mouse (Peromyscus boylii), Deer mouse (Peromyscus maniculatus), Pinyon mouse (Peromyscus truei) and Western harvest mouse (Reithrodontomys megalotis), Yellow-pine chipmunks (Tamias amoenus), Long-eared chipmunks (Tamias quadrimaculatus) and Shadow chipmunks (Tamias senex).In the mouse model, Brush mouse and Pinyon mouse densities were assumed to have the same response to burn category (but not the same densities), whereas Deer mice were allowed a different response to burn category. This choice was made based on capture frequencies of species in the different burn categories. Pinyon mice and Western harvest mice had a fixed density of 0 in low-to-moderate and high severity burn sites. All species shared the same detection parameters.Even combined, the chipmunk data captures were too sparse to estimate species specific densities. We therefore treated all chipmunks like a single species to estimate overall chipmunk density, then calculated species specific densities by multiplying overall density with the proportion of individuals of a given species in the data. For example, if species A made up 50% of all individuals in the data, we would calculate density for species A by multiplying overall chipmunk density by 0.5. This model entails the assumption that the effect of burn category on density was the same for all chipmunks, which seems reasonable based on capture frequencies.We built species-specific SCR models for California ground squirrels (Otospermophilus beecheyi) and Dusky-footed woodrats (Neotoma fuscipes); for the latter we fixed density to 0 in high severity sites. Northern flying squirrels were only caught 3 times at unburned sites, so we set its density to 0 in low-to-moderate and high severity sites, and used a published density estimate from a Sierra Nevada site42 for unburned sites. Because individuals of Trowbridge’s shrew (Sorex trowbridgii) were never recaptured and had high rates of trap mortality, we estimated their abundance using non-spatial removal models43 for unburned and moderately burned sites and set their abundance to 0 at high severity sites. We transformed abundance to density by dividing it by the 8100 m2 area (90 × 90 m) of the live trapping grid.We fit SCR models in R using the package “secr” ver. 3.1.344, and removal models using the package RMark ver. 2.2.445.BirdsTo estimate the diversity and density of birds, we conducted point count surveys46. Each site had two point-count stations, spaced at least 200 m apart, that were surveyed on the same day. Counts were conducted at each site on three different days per season. To mitigate migration effects all counts were conducted between mid-June and mid-July. Bird surveys did not take place when it was raining, extremely cold (20 kmh). Wind speeds were obtained with handheld anemometers. Point counts began 15 minutes after sunrise and were completed by 10:00 AM, corresponding to when passerine birds are most active. Each survey consisted of one ten-minute count, split into two five-minute periods. Each individual bird was recorded only once over the entire count. Trained observers identified all birds to species by sight or sound and estimated the number of individuals of each species within 100 m of the sampling point. This gave us a sample area of 15,708 m2 at each site. Birds that flew through or were detected outside of the survey area or survey time were documented but not included in richness or density estimates. During 162 point-surveys we observed 1,039 birds from 52 species (107 individuals could not be identified).The repeated point counts allowed us to estimate bird abundance and density using N-mixture models47. These models use repeated counts of individuals to estimate abundance within a sampling unit (in this case, the 100 m radius point count) while accounting for imperfect detection. Because abundance estimates refer to a set area, these can be converted to densities. Because data for some bird species were sparse, we fit data of all species jointly in a community model48. In community models, each species has its own set of parameters, but species-specific parameters are modeled as coming from a common underlying distribution that is shared by the community of species (essentially, a species-level random effect). This constitutes a form of information sharing, which improves parameter estimates for data-sparse species. In our community N-mixture model, we allowed for species-specific detection probabilities, as well as species-specific effects of burn category on abundance. We further included a fixed (across species) effect of the amount of wind during a given survey on detection, as wind can impair auditory detection of birds. We implemented the community N-mixture model in a Bayesian framework using the program JAGS ver. 4.2.049 accessed through R with the package jagsUI ver. 1.5.050. JAGS fits models using Markov chain Monte Carlo (MCMC) algorithms; we ran 100,000 MCMC iterations and discarded the first 50,000 as burn-in. We checked for chain convergence using the Gelman-Rubin statistic51; all parameters had a value 2.5 kg we used camera traps. At each site, we deployed two Reconyx HC600 Hyperfire cameras, which have a no-glow infrared flash, preventing disturbance to wildlife and detection by humans. To reduce false triggers, we set cameras in shaded locations and cleared vegetation in front. Cameras were deployed along landscape features that suggested animal movement: game trails, forest openings, abandoned dirt roads, etc. Cameras were set at least 50 m apart and strapped to trees 40 cm above the ground and 1–2 m away from the edge of a trail or opening. Cameras were operated for 24 hours a day, with 3 consecutive pictures per trigger and no time lapse between triggers. All 54 camera traps were installed by early-July and retrieved in mid-September. Cameras were checked after four to six weeks for SD card and battery replacement. All pictures were reviewed manually for species identification; identified pictures of animals were organized into camera and species-specific folders for post-processing in the R computing environment ver. 3.4.352 using the package camtrapR ver. 0.99.553. Even though some bird and small mammal species were occasionally photographed by camera traps, we excluded their photo-records from further analysis. After adjusting for malfunction, cameras operated for 4,238 trapping nights over which they assembled 12,243 independent records (detections that were at least one hour apart if of the same species at the same camera) comprising 10 species of mammals >2.5 kg.Because camera-trap images do not allow identification or counting of individuals for analysis with SCR or N-mixture models, we used the Royle-Nichols (RN) occupancy modeling framework54 to estimate abundance of medium/large mammal species. Occupancy models55 use repeated species detection/non-detection data from a collection of sampling locations to estimate species occurrence probability while accounting for imperfect detection. The RN model makes use of the fact that the probability of detecting a species at a site increases with the abundance of that species at that site, allowing estimation of site-level abundance from species level detection/non-detection data. We used the R package camtrapR53 to convert raw camera trap data for each species into a binary (detected = 1, not detected = 0) location-by-occasion format. Because of their proximity, we considered both cameras at a given plot to constitute a single sampling location. We defined an occasion as 10 consecutive days of sampling. To account for malfunctioning of some cameras, we calculated effort as the number of days per occasion that each pair of cameras was functional.Because data for some species were sparse, we jointly analyzed data for all species in a community RN model (see Birds for a description of community models); we allowed for species-specific detection probabilities as well as species-specific effects of burn category on species abundance and included a fixed effect (across species) of effort on detection. The RN model returns sampling location level estimates of abundance, but in contrast to bird and reptile surveys, which were explicitly linked to a specific sampled area, the area sampled by a camera trap is not easily defined. Mammals recorded in the relatively small detection zone of a camera use much larger areas. We calculated densities of large mammals by dividing the abundance estimates from the RN model by the average home ranges of the recorded species. We fit the community RN model in a Bayesian framework as described for birds, running 30,000 MCMC iterations and discarding the first 15,000 as burn-in. All chains converged, according to the Gelman-Rubin statistic.To obtain estimates for home range size and individual mass of large mammals, we searched the scientific literature for studies conducted in similar habitat (temperate coniferous forests) and for home ranges, during the summer and fall seasons. When no information from a similar habitat was available, we used studies from forested areas. When no information for target species was available, we used information from congeners. When multiple studies were available, we calculated the mean across studies, weighted by sample size if provided. Similarly, when studies provided information separately for males and females, we calculated a weighted mean. For some large mammal species, we only found information on annual home ranges, and to approximate a summer/fall home range, we multiplied these annual ranges by 0.67.BatsTo survey bat community composition and abundance, we conducted acoustic sampling at each site. We placed a Wildlife Acoustics Songmeter SM4BAT FS echolocation detector at each site for a minimum of three consecutive nights. The detectors were set to record from sunset to sunrise when bats are most active. We attached microphones to t-posts placed in open areas, elevating them 2.5 meters from the ground to minimize signal attenuation from nearby vegetation and canopy. Bat calls were analyzed using SonoBat software to assess likely species for each file. These identifications were vetted by an experienced bat researcher, Ted Weller (USDA Forest Service). One site (B3U1) was not sampled with bat detectors, whereas two sites had one and two additional nights sampled, respectively. During 81 recorder nights, acoustic recorders captured 17,484 calls, of which 7348 were identified to 17 species.Similar to camera traps, bat calls recorded by acoustic recorders do not allow counting or identifying individuals. Therefore, we built a community RN model to estimate abundance for bats. The model structure was identical to that described for medium/large mammals, except that it did not include any covariate on detection probability. Analogous to our medium/large mammal analysis, we used literature information on average home range size to convert bat abundance to bat density. We ran the bat model for 150,000 iterations and discarded the first 75,000 iterations as burn-in. All chains converged according to the Gelman-Rubin statistic.ReptilesTo estimate community composition and density of reptiles, we conducted timed searches within the 90 m × 90 m small mammal trapping grids at each site. This gave us a sample area of 8100 m2 at each site. Reptile surveys were conducted either prior to small mammal trapping or two weeks post to minimize impacts from sampling disturbance. Reptile surveys were conducted between 8:00 am and 10:00 am by teams of two to four, for a total of one person-hour. We performed reptile surveys three times at each site, with at least one week between surveys. During searches, all refugia (i.e., rocks, logs) within the plot were carefully overturned and then replaced. In addition to reptile species, we documented time of day and weather, as well as cover type and cover length if applicable. Our reptile surveys yielded 145 records of two snake species and four lizard species. Two additional snake species were observed incidentally during other sampling methods.Repeated counts of reptiles allowed us to use N-mixture models47 to estimate abundance and density. However, reptile data were extremely sparse and contained few species, precluding the use of a full community model as fit for birds. Instead, we structured reptile data into three groups: snakes (Western terrestrial garter snake (Thamnophis elegans) and Yellow-bellied racer (Coluber constrictor)), Alligator lizards (Elgaria coerulea and E. multicarinata) and Western fence lizards (Sceloporus occidentalis). We then combined data from all groups in a single N-mixture model, allowing for group-specific abundances. Due to sparse data, we only estimated an effect of burn category on abundance for fence lizards. Abundance for other species groups was assumed to be constant across burn categories in the model. To obtain species and burn category specific estimates of abundance, we combined model estimates of abundance with raw counts of individuals. For the two snakes, we calculated species level abundance by burn category by multiplying overall model-estimated snake abundance with the proportion of individuals made up by each species in each burn category. Because some Elgaria sp. observations could not be identified to species level, we did not attempt to calculate species specific abundances (but we note that the majority of observations was of E. coerula). We calculated species/group density by dividing abundance by the size of the sampling unit, in this case, a 90 × 90 m square. We fit the N-mixture model in R using the package unmarked ver. 0.12.256.Species identificationVertebrates were identified in the field or from photographs. Invertebrate specimens were collected and fixed in the field for identification in the lab where they were split into morphospecies using published keys57,58 and consultation with experts at the UC Davis Bohart Museum. Morphospecies were not always identified to lower taxonomic levels but were distinguished from similar species by coarse morphological characters. Prior to density estimation some morphospecies were aggregated based on taxonomy, body size, sample methodology, co-occurrence patterns and the difficulty in distinguishing members of the group. The rationales behind aggregations are documented in the raw invertebrate sampling data.Body size estimationFood webs are commonly organized around body size59,60,61,62,63 and we include length and mass estimates for all life stages in our data set. We assume mean body size does not change substantially across burn severities and use a single estimate for all life stages regardless of treatment. When possible, we measured 10 individuals for each morphospecies and life stage (for invertebrates and small mammals only, as individuals from other taxonomic groups were not handled). Body mass for small mammals was measured directly with a Pesola scale. Body length estimates for invertebrates were derived from the longest measurement. Volumetric estimates were derived by applying the measured length, height and width to the three-dimensional shape that most closely approximates that of the organism (e.g. ellipsoid, rectangular prism, cylinder, hemisphere, cone). We estimated biomass by multiplying these volumetric estimates by a tissue density of 1.1 g/mL30.Body sizes for organismal life stages observed but not captured (e.g. adult birds and large mammals) were estimated from the literature. Life stages for many organisms were not directly observed (e.g. lepidoptera eggs) but are almost certainly present. For these stages we again used the literature to estimate the body sizes. For example, we used a data set of egg sizes from 6,700 insect species to inform estimates for the species in our study64. The species list indicates the estimation method and literature source used to estimate the body size of each individual life stage is included in the species list.LinksEcological networks can be broken into two types: Undirected and directed. Undirected networks include bipartite networks (e.g. plant-pollinator, host-parasite) and social-networks. In undirected networks, interactions (links) and their participants (nodes) are observed at the same time. Links are not inferred in undirected ecological networks (unless false-negatives due to sampling error are taken into account) because they are directly observed (e.g. tick removed from a lizard). Undirected links can be weighted (interaction strength) by counting observations.Directed networks include food webs. Most food web links are inferred because it is not feasible to evaluate all possible consumer-resource interactions in a system through direct observation. The number of possible consumer-resource interactions in a food web is equivalent to the number of nodes squared. There were 3,084 nodes in the Eldorado National Forest, resulting in 9,511,056 potential consumer-resource interactions. In the scope of an ecological study, it is rarely feasible to directly observe most feeding links for most species15, much less an entire web, though molecular methods are bringing this closer to possibility for some guilds (e.g. large mammalian herbivores)65. While often detailed for birds and mammals, published accounts of direct observations of diets are often general (e.g. “Species A eats organic matter”) or entirely lacking for other groups. Restricting link assignments only to those that are directly observed will not create an accurate or unbiased food web.To assign resources to consumers we supplemented our own field observations with published diet records, expert opinion and rule-based filters. In the absence of direct observation, rule-based filters are an important tool for sorting through the huge number of potential feeding interactions. Filters varied with the species and ontogenetic stages to which they were applied but consisted of two main types: Encounter and compatibility. Encounter filters determine the potential for consumers to interact with resources. Encounter filters are based on habitat co-occurrence, forging strategy and diel activity patterns. Applied to links that have passed through encounter filters, compatibility filters determine the outcome of a potential encounter. Compatibility filters are based on consumer diet information, consumer diet breadth, resource palatability, and consumer-resource body size ratios. For inclusion in the food web, a link must pass through both filters.Link assignmentAll species were considered potential resources. For feasibility and reproducibility, species were broken into groups of encounter filters. First, we separated plants, fungi and detritus from other metazoans.Fig. 2Sampling sites map and King Fire perimeter. We sampled 27 sites total in the Eldorado National Forest, California, three years after the King Fire, nine in each burn category: Unburned, moderate severity, and high severity. Features not indicated in legend are typical of topological maps.Full size imageFig. 3Representative map of sampling design. We employed 19 different methods to estimate the richness and biomass density of organisms in the Eldorado National Forest, California, three years after the King Fire. Methods were conducted entirely within or centered within the 200 × 200 m site perimeter. Methods were paired in space and time when useful (e.g. black lights and acoustic bat surveys), and separated when necessary to avoid interference (e.g. small mammal trapping grid and vegetation transects). All methods at a site were conducted over 4–5 consecutive days.Full size imageThe first encounter filter was a loose group consisting of primary producers, non-living resources (e.g. detritus, carcasses), and saprophytes. In this first filter, primary producers were broken into parts (e.g. root, seed, leaves, etc). With few exceptions (i.e. moss, lichens, algae) primary producers in this filter group were evaluated as families or species. Saprophytes were evaluated as spores or adults. These groups served as the encounter filter for primary consumers and fungivores.Next, we partitioned all other metazoans into smaller encounter filters based on phylogeny, behavior, activity, habitat and palatability. A species’ life stage can be a member of multiple resource groups. These groups served as the encounter filter for most predatory or omnivorous organism stages. These encounter filters included:

    Flying invertebrates

    Nocturnal flying invertebrates

    Diurnal flying invertebrates

    Non-flying invertebrates

    Ground-dwelling invertebrates

    Ground-dwelling invertebrates excluding spider eggs

    Soft-bodied ground dwelling invertebrates

    Invertebrates on plants

    Invertebrates on plants excluding spider eggs

    Soft-bodied invertebrates on plants

    Invertebrates on trees

    Reptiles

    Birds

    Small mammals

    Large mammals

    Encounter filter exposure was tailored to consumer type. For consistency, consumers were broken into phylogenetic and ontogenetic guilds (e.g. lepidoptera larvae). For example, web-building spiders were exposed to flying insects, but not small-mammals encounter filters. Compatibility filters are specific to species and stage. For example, while both are exposed to the flying-insects encounter filter, adult and juvenile web-building spiders will have different compatibility filters because they have different consumer-resource body size ratios. Phylogenetic and ontogenetic consumer guilds are detailed below, but the decisions for each of the 178,655 links assignments in the food web can be found in and reproduced with the R code accompanying this manuscriptSpidersAs common, generalist insectivores, spiders are important consumers in the network66. To assign them resource links, spiders were broken into three ontogenetic stages: adult, egg, juvenile. Spiders were then separated into 17 consumer guilds by Family. The 87 spider species that could not be identified at the family level were assumed to be web-building spiders. To assign feeding interactions, we applied one or more invertebrate resource group filters (see above) to the members (species and stages) of each spider guild. Next, each link passed through a consumer-resource body size filter before being included in the network. For example, web-building spiders were assigned to capture flying insects and consume insects larger than 20% of their own body-length (as mesh size sets a lower limit of prey size) and less than 200% of their own body length67. Because of the generality of their filter-feeding hunting strategy, web-building spiders accounted for nearly half (32,663) of interactions with spiders as consumers. Additionally, when it was reported in the literature, adult members of a guild were assigned to consume nectar.Herbivorous beetlesTo assign consumer links to non-predatory beetles, their larval and adult stages were separated into Family-level feeding guilds. When information was available, links were evaluated at the species-stage level rather than the Family level. Resource links containing primary producers and non-living resources (detritus, carcasses, dung, etc) were assessed based on direct observation, published reports and expert opinions. When feeding on living plants, beetles were assigned to specific tissue types (e.g. flower, leaves, roots). For example, Cerambycidae_sp_2 was assigned to feed on the stems of Arctostaphylos patula as well as stems of plants from the family Rhamnaceae. This assigned 10,289 consumer links to herbivorous beetles.Larval lepidopteraCaterpillars were the most speciose herbivore group in the network. Larval lepidoptera vary greatly in host plant range and the quantity of information on their feeding habitats and were not lumped into guilds whenever possible. Microlepidoptera were not identified below the order level and were assumed to feed like Gelechiidae caterpillars (many species of which have been documented in Eldorado National Forest). We assigned links to caterpillars with resource filters of host plants and parts based on published diet records, palatability, expert opinion and observed co-occurrence between potential hosts and adults. This assigned 2,434 consumer links to caterpillars.Adult lepidopteraAdult lepidoptera feed primarily or exclusively on nectar from flowering plants. The host ranges for most adult lepidoptera are not well described. To assign nectar links, adult lepidoptera were grouped into families and passed through resource filters based on published records, co-occurrence, and expert opinion. Non-feeding adult moths were removed from link consideration. These filters assigned 5,854 nectar links to adult lepidoptera.Adult hymenoptera as herbivoresMost species of hymenoptera are parasitoids as larvae and free-living as adults (eusocial hymenoptera are a notable exception). Many adult parasitic wasps supplement their protein intake with nectar and pollen. The plant host ranges for solitary adult wasps are not well known. We applied nectar and pollen resource filters to adult hymenoptera based on published records, co-occurrence and expert opinion. These filters assigned 4,880 links to adult hymenoptera.Predatory beetlesPredatory and scavenging beetles are important consumers in terrestrial ecosystems. At the family level, the diets of predatory beetles are well-described relative to other arthropods. We grouped predatory and scavenging beetles into family guilds. We applied resource filters to predatory and scavenging beetles based on published records and expert opinion, habitat overlap, foraging strategy, palatability, and body size. These filters assigned 10,320 resource links to predatory beetles.FliesFlies in the Eldorado National Forest are a speciose group with diverse consumer strategies: herbivores, predators, scavengers, detritivores, parasitoids, and micropredators. Because of their trophic diversity each dipteran family was treated as its own guild, even then there were often large ontogenetic diet shifts across stages within a guild. We applied resource filters to dipterans based on published records and expert opinion of their diet. These filters were based on habitat overlap, palatability, and for predatory stages consumer-resource body size ratios. These filters assigned 9,541 resource links to flies.Hymenopteran parasitoidsParasitoid wasps are a diverse group that can have strong, even regulatory, effects on their host populations. We applied resource filters to hymenopteran parasitoid larvae in a three-step process. First, we used published records and expert opinion to establish their host range and host specificity. Next, we looked for the subset of potential hosts that co-occured with adult parasitoids across the most sites. Finally, we retained the subset of those host species whose adult body sizes were equivalent to or slightly larger than adult parasitoids. These filters assigned 4,695 host links to parasitoid wasps.Other hymenopteraThe remaining hymenoptera were composed of wood wasps and gall wasps, as well as bees, predatory wasps and ants. Host plant links were assigned to wood wasps and gall wasps in the same way as larval lepidoptera. Nectar links were assigned to bees in the same way as adult lepidoptera. Prey links were assigned to solitary and eusocial wasps in the same way as insectivorous gleaning birds. Ants were treated as generalist omnivores whose links were assigned links in a manner similar to all of the above.HemipteraHemiptera were the most abundant consumer group in the Eldorado National Forest. Hemiptera use their proboscis to feed on fluids, either as herbivores or predators. To accommodate this variation in consumer strategies resource filters were assigned to individual hemiptera species based on phylogeny. Host plants were assigned to herbivores based on field observations, published records and expert opinion. Plant fluids (with the exception of sap from soft woods) were not included in the node list, so herbivores were assigned feeding links based on the plant tissues that they pierced (i.e. stem or leaves). Predatory hemiptera were assigned insects on plants passed through consumer-resource body size filters. When more specific dietary information was available resource filters were further refined. These filters assigned 3,177 links to the hemipteraCollembolaFrom soil to canopy, springtails were widely distributed across Eldorado National Forest habitats and are important resources for arthropod secondary consumers. Collembola are herbivores, detritivores and fungivores. Little diet information is available for collembola, which were assigned resource filters based on habitat and phylogeny (order). Habitat was determined by collection method, and resource availability was determined by habitat. These, phylogenetic-habitat-resource filters assigned 140 links to the collembola.Bark licePsocoptera were common on plants in the Eldorado National Forest, feeding on algae, lichen, moss, fungi and detritus. They exhibit little variation in diet and were assigned resource filters as a group at the Order level. This small set of resource filters assigned 120 links to the psocoptera.ThripsThysanoptera were common and abundant consumers in the Eldorado National Forest, whose diets can range from herbivory to facultative predation and predation. To accommodate this variation in consumer strategy, resource filters were assigned to individual thysanoptera species based on phylogeny. Host plants for herbivores were based on field observations, supplemented with published records and expert opinion. Thysanoptera predators were assigned soft-bodied insects on plants passed through consumer-resource body size ratio filters. These resource filters assigned 924 links to thysanoptera.BatsBats are important consumers of arthropods. Arthropod encounter filters were determined by bat foraging strategies reported in the literature. Juvenile bats were treated separately. Aerial hawking bats capture nocturnal flying insects. Gleaning bats capture insects on plants. Pallid bats (Antrozous pallidus) which fly close to the ground, capture arthropods on the ground and understory plants. These arthropod filters then passed through consumer-resource body size ratio filters, which assigned 4,621 links to adult bats.BirdsBirds were the most speciose vertebrate group in the Eldorado National Forest. This diversity is reflected in their diets. Bird resource filters were based on published records and expert opinion. Herbivorous birds that were reported to feed on a type of plant tissue were assumed to feed on all tissues of that type, unless the literature indicated resource specialization. For example, if a bird was reported to feed on a fruit, it was assumed to feed on all fruit in the system. Resource links for predatory and omnivorous birds were passed through consumer-resource body size ratio filters. These filters assigned 56,584 links to birds as consumers.Small mammalsMammals 2.5 kg were comparatively uncommon but important consumers in the Eldorado National Forest. Large mammal resource filters were based on published records and expert opinion. Herbivorous large mammals that were reported to feed on a type of plant tissue were assumed to feed on all tissues of that type, unless the literature indicated resource specialization. Resource links for omnivorous and predatory large mammals were passed through consumer-resource body size ratio filters. These filters assigned 840 links to large mammals as consumers.Juvenile mammalsJuvenile mammals were considered unweaned. Nursing mammals were included in the species list because they are more vulnerable than adults and are potential resources to different consumers as a result. Unweaned mammals “feed” on their mothers, who are considered their only resource link. Nursing filters assigned 38 links to juvenile mammals.ReptilesWhile not diverse or common, reptiles on the mountain slopes of Eldorado National Forest are potentially important consumers for many groups. Reptile resource filters were assigned based on published records and expert opinion. All resource links were passed through consumer-resource body size ratio filters. These filters assigned 1,487 links to reptiles.MitesMites are ubiquitous and important consumers in many habitats but are often overlooked because of their small size and taxonomic difficulty. Mites were treated as consumer groups based on taxonomy. Resources for predatory mites were based on habitat and passed through consumer-resource body size ratios filters. Resource filters assigned 2,971 links to mites.Miscellaneous arthropodsA few arthropods not discussed above were not speciose enough to be dealt with separately here. These remaining miscellaneous arthropods were treated as groups at various taxonomic levels. Encounter and compatability filters for these groups were based on published records. Encounter filters for predatory (centipedes, odonates, pseudoscorpions, solfugids, mantids, opiliones, neuroptera, embioptera, pauropoda, eusocial wasps) and omnivorous (dermaptera) groups were based on habitat and passed through consumer-resource body size filters. Encounter filters were assigned by habitat for detritivores, herbivores and fungivores (archeognatha and isopods). These filters assigned 3,157 links to miscellaneous arthropods as consumers. More

  • in

    Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation

    Phycosphere pH of single phytoplankton cellsThe pH in the phycosphere of a single cell Chlamydomonas concordia (~5 µm diameter) exposed to 140 μmol photons m−2 s−1 was 8.27 ± 0.01 (179 measurements), while the pH of bulk seawater was 8.01 ± 0.01 (160 measurements) (Fig. 1c). The observed pH variation near the cell surface was 150 µmol m−2 s−1 [33]. At light intensities More