More stories

  • in

    A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

    Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104, 18866–18870 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beer, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global. Change. Biol. 25, 2382–2395 (2019).ADS 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 

    Google Scholar 
    Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global. Biogeochem. Cy 26, GB1019 (2012).ADS 

    Google Scholar 
    De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).
    Google Scholar 
    Zhang, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agr. Forest. Meteorol. 223, 116–131 (2016).ADS 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 281, 277–294 (1977).ADS 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience. 54, 547–560 (2004).
    Google Scholar 
    Yuan, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114, 1416–1431 (2010).ADS 

    Google Scholar 
    Ruimy, A., Dedieu, G. & Saugier, B. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global. Biogeochem. Cy 10, 269–285 (1996).ADS 
    CAS 

    Google Scholar 
    Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 190076 (2019).
    Google Scholar 
    Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. & Reichstein, M. Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data 10, 1327–1365 (2018).ADS 

    Google Scholar 
    Joiner, J. et al. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 10, 1346 (2018).ADS 

    Google Scholar 
    Xiao, J. et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agr. Forest. Meteorol. 197, 142–157 (2014).ADS 

    Google Scholar 
    Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).CAS 

    Google Scholar 
    Cai, W. et al. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 119, 110–123 (2014).
    Google Scholar 
    Ma, J., Yan, X., Dong, W. & Chou, J. Gross primary production of global forest ecosystems has been overestimated. Sci. Rep. 5, 10820 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, W. et al. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. Remote Sens. 6, 8945–8965 (2014).ADS 

    Google Scholar 
    Jung, M. et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global. Biogeochem. Cy 21, GB4021 (2007).ADS 

    Google Scholar 
    Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agr. Forest. Meteorol. 192-193, 108–120 (2014).ADS 

    Google Scholar 
    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).ADS 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6, 2803–2823 (2013).
    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).ADS 

    Google Scholar 
    Joiner, J. et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT. Atmos Meas Tech 5, 809–829 (2012).CAS 

    Google Scholar 
    Köhler, P. et al. Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO‐2. Geophys. Res. Lett. 45, 10,456–410,463 (2018).
    Google Scholar 
    Joiner, J. et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).ADS 
    CAS 

    Google Scholar 
    Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).ADS 

    Google Scholar 
    Du, S. et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 63, 1502–1512 (2018).
    Google Scholar 
    Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Drusch, M. et al. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. Ieee. T. Geosci. Remote 55, 1273–1284 (2017).ADS 

    Google Scholar 
    Guanter, L. et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data, 13, 5423–5440 (2021).Roesch, A. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res. 109 (2004).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).ADS 

    Google Scholar 
    Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 222, 183–194 (2019).ADS 

    Google Scholar 
    Su, W., Charlock, T. P., Rose, F. G. & Rutan, D. Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J. Geophys. Res. 112 (2007).Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. Global distribution of C3and C4vegetation: Carbon cycle implications. Global. Biogeochem. Cy 17, 6-1-6-14 (2003).Zhang, Y. et al. Spatio‐temporal convergence of maximum daily light‐use efficiency based on radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519 (2018).ADS 

    Google Scholar 
    Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).ADS 

    Google Scholar 
    Baker, N. R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant. Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Du, S., Liu, L., Liu, X. & Hu, J. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens. 9, 911 (2017).ADS 

    Google Scholar 
    Rossini, M. et al. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data. Remote Sens. 8, 412 (2016).ADS 

    Google Scholar 
    Verrelst, J. et al. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 166, 8–21 (2015).ADS 

    Google Scholar 
    Zhang, Q. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).ADS 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).ADS 
    CAS 

    Google Scholar 
    Li, X. & Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 11, 517 (2019).ADS 

    Google Scholar 
    Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High‐Resolution Global Contiguous SIF of OCO‐2. Geophys. Res. Lett. 46, 1449–1458 (2019).ADS 

    Google Scholar 
    Ma, Y., Liu, L., Chen, R., Du, S. & Liu, X. Generation of a Global Spatially Continuous TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity. Remote Sens. 12, 2167 (2020).ADS 

    Google Scholar 
    Gentine, P. & Alemohammad, S. H. Reconstructed Solar‐Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME‐2 Solar‐Induced Fluorescence. Geophys. Res. Lett. 45, 3136–3146 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wen, J. et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 239, 111644 (2020).ADS 

    Google Scholar 
    Yang, X. et al. Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).ADS 
    CAS 

    Google Scholar 
    Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C. & Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 116, D15107 (2011).ADS 

    Google Scholar 
    Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A. & Kustas, W. P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. 112, D11112 (2007).ADS 

    Google Scholar 
    Scherrer, D., Bader, M. K.-F. & Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agr. Forest. Meteorol. 151, 1632–1640 (2011).ADS 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).ADS 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794 (Association for Computing Machinery).Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Li, M., Li, C. & Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, W., Wei, C., Lu, Y. & Xue, D. Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach. Remote Sens. 13, 4723 (2021).ADS 

    Google Scholar 
    Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, X. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. figshare https://doi.org/10.6084/m9.figshare.19336346.v2 (2022).Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierrat, Z. et al. Diurnal and seasonal dynamics of solar‐induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. J. Geophys. Res. Biogeosci., e2021JG006588 (2022).Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 116, 11640–11645 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossmann, K. et al. PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 216, 311–327 (2018).ADS 

    Google Scholar 
    Li, Z. et al. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 236, 111420 (2020).ADS 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 201900278 (2019).Wei, X., Wang, X., Wei, W. & Wan, W. Use of Sun-Induced Chlorophyll Fluorescence Obtained by OCO-2 and GOME-2 for GPP Estimates of the Heihe River Basin, China. Remote Sens. 10, 2039 (2018).ADS 

    Google Scholar 
    Walther, S. et al. Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global. Change. Biol. 22, 2979–2996 (2016).ADS 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).
    Google Scholar 
    Parazoo, N. C. et al. Towards a Harmonized Long‐Term Spaceborne Record of Far‐Red Solar‐Induced Fluorescence. J. Geophys. Res. Biogeosci. 124, 2518–2539 (2019).
    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7 (2020).Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global. Change. Biol. 11, 1424–1439 (2005).ADS 

    Google Scholar 
    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global. Change. Biol. 16, 187–208 (2010).ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global. Change. Biol. 17, 2261–2270 (2011).ADS 

    Google Scholar 
    De, S. V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).ADS 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).ADS 

    Google Scholar 
    Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. ISLSCP II C4 Vegetation Percentage, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/932 (2009).Pierrat, Z. & Stutz, J. Tower-based solar-induced fluorescence and vegetation index data for Southern Old Black Spruce forest, Zenodo, https://doi.org/10.5281/ZENODO.5884643 (2022).Magney, T. et al. Canopy and needle scale fluorescence data from Niwot Ridge, Colorado 2017-2018, CaltechDATA, https://doi.org/10.22002/D1.1231 (2019).Wan, Z., Hook, S. & Hulley, G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD11C1.006 (2015).Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006 (2015).Schaaf, C. & Wang, Z. MCD43C4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C4.006 (2015).Doelling, D. CERES Level 3 SYN1DEG-DAYTerra+Aqua HDF4 file – Edition 4A, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGDAY_L3.004A (2017). More

  • in

    STEM learning communities promote friendships but risk academic segmentation

    Xie, Y., Fang, M. & Shauman, K. STEM education. Annu. Rev. Sociol. 41, 331–357 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X. STEM attrition: College students’ paths into and out of STEM fields. National Center for Education Statistics. Retrieved from http://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=2014001rev. Accessed 22 September 2021.Huang G, Taddese N, Walter E (2000) Entry and persistence of women and minorities in college science and engineering education. National Center for Education Statistics. Retrieved from https://eric.ed.gov/?id=ED566411. Accessed 22 September 2021.Hurtado, S., Eagan, K., & Chang, M. Degrees of Success: Bachelor’s Degree Completion Rates among Initial STEM Majors (Higher Education Research Institute, Los Angeles, CA) (2010).National Science Foundation, Broadening Participation Working Group (2014) Pathways to broadening participation in response to the CEOSE 2011–2012 recommendation. National Science Foundation. Retrieved from https://www.nsf.gov/pubs/2015/nsf15037/nsf15037.pdf. Accessed 22 Sep 2021.James, S. M. & Singer, S. R. From the NSF: The National Science Foundation’s investments in broadening participation in science, technology, engineering, and mathematics education through research and capacity building. CBE Life Sci. Educ. 15(3), 1–8 (2016).Article 

    Google Scholar 
    Smith, B. L., MacGregor, J., Matthews, R. & Gabelnick, F. Learning communities: Reforming undergraduate education (Jossey-Bass, 2004).
    Google Scholar 
    Andrade, M. S. Learning communities: Examining positive outcomes. J. Coll. Stud. Ret. 9(1), 1–20 (2007).Article 

    Google Scholar 
    Maton, K. I., Pollard, S. A., McDougall Weise, T. V. & Hrabowski, F. A. Meyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics. Mt Sinai J. Med. 79(5), 610–623 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dagley, M., Georgiopoulos, M., Reece, A. & Young, C. Increasing retention and graduation rates through a STEM learning community. J. Coll. Stud. Ret. 18(2), 167–182 (2016).Article 

    Google Scholar 
    National Survey of Student Engagement (2015) Engagement Insights: Survey Findings on the Quality of Undergraduate Education—Annual Results 2015 (Bloomington, IN).Tinto, V. Leaving college: Rethinking the causes and cures of student attrition (University of Chicago Press, 1987).
    Google Scholar 
    Tinto, V. Learning better together: The impact of learning communities on student success. Higher Educ. Monogr. Ser. 1(8), 1–8 (2003).
    Google Scholar 
    Otto, S., Evins, M. A., Boyer-Pennington, M. & Brinthaupt, T. M. Learning communities in higher education: Best practices. Journal of Student Success and Retention 2(1), 1–20 (2015).
    Google Scholar 
    Boda, Z., Elmer, T., Vörös, A. & Stadtfeld, C. Short-term and long-term effects of a social network intervention on friendships among university students. Sci. Rep. 10(1), 1–2 (2020).Article 
    CAS 

    Google Scholar 
    Hotchkiss, J. L., Moore, R. E. & Pitts, M. M. Freshman learning communities, college performance, and retention. Educ. Econ. 14(2), 197–210 (2006).Article 

    Google Scholar 
    Whalen, D. F. & Shelley, M. C. Academic success for STEM and non-STEM majors. J. STEM Educ. 11(1), 45–60 (2010).
    Google Scholar 
    Xu, D., Solanki, S., McPartlan, P. & Sato, B. EASEing students into college: The impact of multidimensional support for underprepared students. Educ. Res. 47(7), 435–450 (2018).Article 

    Google Scholar 
    Jaffee, D., Carle, A., Phillips, R. & Paltoo, L. Intended and unintended consequences of first-year learning communities: An initial investigation. J. First-Year Exp. Stud. Trans. 20(1), 53–70 (2008).
    Google Scholar 
    Tinto, V. & Goodsell, A. Freshman interest groups and the first-year experience: Constructing student communities in a large university. J. First Year Exp. Stud. Trans. 6(1), 7–28 (1994).
    Google Scholar 
    Domizi, D. Student perceptions about their informal learning experiences in a first-year residential learning community. J. First Year Exp. Stud. Transit. 20(1), 97–110 (2008).
    Google Scholar 
    Lee, D. S. & Lemieux, T. Regression discontinuity designs in economics. J. Econ. Lit. 2, 281–355 (2010).Article 

    Google Scholar 
    Jacob, R., Zhu, P., Somers, M.A., & Bloom, H. A Practical Guide to Regression Discontinuity (MDRC, New York, NY, 2012).Hays, R. B. & Oxley, D. Social network development and functioning during a life transition. J. Pers. Soc. Psychol. 50(2), 305–313 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, T. M., Anderman, L. H. & Jensen, J. M. Sense of belonging in college freshmen at the classroom and campus levels. J. Exp. Educ. 75(3), 203–220 (2007).Article 

    Google Scholar 
    Zumbrunn, S., McKim, C., Buhs, E. & Hawley, L. R. Support, belonging, motivation, and engagement in the college classroom: A mixed method study. Instr. Sci. 42(5), 661–684 (2014).Article 

    Google Scholar 
    Hasan, S. & Bagde, S. The mechanics of social capital and academic performance in an Indian college. Am. Sociol. Rev. 78(6), 1009–1032 (2013).Article 

    Google Scholar 
    Stadtfeld, C., Vörös, A., Elmer, T., Boda, Z. & Raabe, I. J. Integration in emerging social networks explains academic failure and success. Proc. Natl. Acad. Sci. USA 116(3), 792–797 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer, B. A. The academic and social integration of Hispanic students into college. Rev. High Educ. 20(2), 163–179 (1997).Article 

    Google Scholar 
    Nora, A. Two-year colleges and minority students’ educational aspirations: Help or hindrance. Higher Educ. Handb. Theory Res. 9(3), 212–247 (1993).
    Google Scholar 
    McCabe, J.M. Connecting in College: How Friendship Networks Matter for Academic and Social Success (University of Chicago Press, Chicago, IL, 2016).Felten, P., & Lambert, L. M. Relationship-rich Education: How Human Connections Drive Success in College (Johns Hopkins University Press, Baltimore, MD, 2020).Hallinan, M. T. The peer influence process. Stud. Educ. Eval. 7(3), 285–306 (1981).Article 

    Google Scholar 
    Thomas, S. L. Ties that bind: A social network approach to understanding student integration and persistence. J. Higher Educ. 71(5), 591–615 (2000).
    Google Scholar 
    Turetsky, K. M., Purdie-Greenaway, V., Cook, J. E., Curley, J. P. & Cohen, G. L. A psychological intervention strengthens students’ peer social networks and promotes persistence in STEM. Sci. Adv. 6(45), 1–10 (2020).Article 

    Google Scholar 
    Dokuka, S., Valeeva, D. & Yudkevich, M. How academic achievement spreads: The role of distinct social networks in academic performance diffusion. PLoS ONE 15(7), 1–16 (2020).Article 
    CAS 

    Google Scholar 
    Epstein, J. L. & Karweit, N. (eds) Friends in school: Patterns of selection and influence in secondary schools (Academic Press, 1983).
    Google Scholar 
    Feld, S. L. The focused organization of social ties. AJS 86(5), 1015–1035 (1981).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).Article 

    Google Scholar 
    Mollenhorst, G., Volker, B. & Flap, H. Changes in personal relationships: How social contexts affect the emergence and discontinuation of relationships. Soc. Netw. 37, 65–80 (2014).Article 

    Google Scholar 
    Thomas, R. J. Sources of friendship and structurally induced homophily across the life course. Sociol Perspect 62(6), 822–843 (2019).Article 

    Google Scholar 
    Kubitschek, W. N. & Hallinan, M. T. Tracking and students’ friendships. Soc. Psychol. Q 46, 1–5 (1998).Article 

    Google Scholar 
    Frank, K. A., Muller, C. & Mueller, A. S. The embeddedness of adolescent friendship nominations: The formation of social capital in emergent network structures. AJS 119(1), 216–253 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social network. AJS 115(2), 405–450 (2009).
    Google Scholar 
    Wimmer, A. & Lewis, K. Beyond and below racial homophily: ERG models of a friendship network documented on Facebook. AJS 116(2), 583–642 (2010).PubMed 

    Google Scholar 
    Hallinan, M. T. & Sørensen, A. B. Ability grouping and student friendships. Am. Educ. Res. J. 51, 485–499 (1985).Article 

    Google Scholar 
    Leszczensky, L. & Pink, S. Ethnic segregation of friendship networks in school: Testing a rational-choice argument of differences in ethnic homophily between classroom-and grade-level networks. Soc. Netw. 42, 18–26 (2015).Article 

    Google Scholar 
    DiMaggio, P. & Garip, F. Network effects and social inequality. Annu. Rev. Sociol. 54, 93–118 (2012).Article 

    Google Scholar 
    Johnson, A. M. ‘“I can turn it on when i need to”’: Pre-college Integration, culture, and peer academic engagement among black and Latino/a engineering Students. Sociol. Educ. 56, 1–20 (2019).Article 

    Google Scholar 
    Perry, B. L., Pescosolido, B. A. & Borgatti, S. P. Egocentric network analysis: Foundations, methods, and models (Cambridge University Press, 2018).Book 

    Google Scholar 
    Wasserman, S. & Faust, K. Social network analysis: Methods and applications (Cambridge University Press, 1994).MATH 
    Book 

    Google Scholar 
    Hartup, W. W. & Stevens, N. Friendships and adaptation in the life course. Psychol. Bull. 121(3), 355 (1997).Article 

    Google Scholar 
    Vaquera, E. & Kao, G. Do you like me as much as I like you? Friendship reciprocity and its effects on school outcomes among adolescents. Soc. Sci. Res. 37(1), 55–72 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imbens, G. W. & Lemieux, T. Regression discontinuity designs: A guide to practice. J. Econom. 142(2), 615–635 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Imbens, G. W. & Angrist, J. D. Identification and estimation of local average treatment effects. Econometrica 62(2), 467–475 (1994).MATH 
    Article 

    Google Scholar 
    Robins, G., Pattison, P., Kalish, Y. & Lusher, D. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007).Article 

    Google Scholar 
    Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: Software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24(1), 1548–7660 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calonico, S., Cattaneo, M. D. & Titiunik, R. Optimal data-driven regression discontinuity plots. J. Am. Stat. Assoc. 110(512), 1753–1769 (2015).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Duxbury, S. W. The problem of scaling in exponential random graph models. Sociol. Methods Res. https://doi.org/10.1177/0049124120986178:1-39 (2021).MathSciNet 
    Article 

    Google Scholar 
    McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001).Article 

    Google Scholar 
    Kadushin, C. Understanding social networks: Theories, concepts, and findings (Oxford University Press, 2012).
    Google Scholar 
    Flashman, J. Academic achievement and its impact on friend dynamics. Sociol. Educ. 85(1), 61–80 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrell, S. E., Sacerdote, B. I. & West, J. E. From natural variation to optimal policy? The importance of endogenous peer group formation. Econometrica 81(3), 855–882 (2013).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Cox, A. B. Cohorts, ‘“siblings”,’ and mentors: Organizational structures and the creation of social capital. Sociol. Educ. 90(1), 47–63 (2017).Article 

    Google Scholar 
    Valente, T. W. Network interventions. Science 337(6090), 49–53 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunn, L. M. College belonging: How first-year and first-generation students navigate campus life (Rutgers University Press, 2021).Book 

    Google Scholar 
    Garlick, R. Academic peer effects with different group assignment policies: Residential tracking versus random assignment. Am. Econ. J. Appl. Econ. 10(3), 345–369 (2018).Article 

    Google Scholar 
    Carrell, S. E., Fullerton, R. L. & West, J. E. Does your cohort matter? Measuring peer effects in college achievement. J. Labor. Econ. 27(3), 439–464 (2009).Article 

    Google Scholar 
    Lomi, A., Snijders, T. A., Steglich, C. E. & Torló, V. J. Why are some more peer than others? Evidence from a longitudinal study of social networks and individual academic performance. Soc. Sci. Res. 40(6), 1506–1520 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poldin, O., Valeeva, D. & Yudkevich, M. Which peers matter: How social ties affect peer-group effects. Res. High Educ. 57(4), 448–468 (2016).Article 

    Google Scholar 
    Raabe, I. J., Boda, Z. & Stadtfeld, C. The social pipeline: How friend influence and peer exposure widen the STEM gender gap. Sociol. Educ. 92(2), 105–123 (2019).Article 

    Google Scholar 
    Burt, R. S. Structural holes and good ideas. AJS 110(2), 349–399 (2004).
    Google Scholar 
    Oakes, J. Keeping track: How schools structure inequality (Yale University Press, 2005).
    Google Scholar 
    Park JJ et al. (2021) Who are you studying with? The role of diverse friendships in STEM and corresponding inequality. Res. High Educ. https://doi.org/10.1007/s11162-021-09638-8.Marsden, P. V. & Campbell, K. E. Measuring tie strength. Soc. Forces 63(2), 482–501 (1984).Article 

    Google Scholar 
    Mattie, H., Engø-Monsen, K., Ling, R. & Onnela, J. P. Understanding tie strength in social networks using a local “bow tie” framework. Sci. Rep. 8(1), 1–9 (2018).CAS 
    Article 

    Google Scholar 
    Sørensen, A. B. Organizational differentiation of students and educational opportunity. Sociol. Educ. 43(4), 355–376 (1970).Article 

    Google Scholar  More

  • in

    Drivers and trends of global soil microbial carbon over two decades

    Predictors of microbial carbon stocksWe used a machine learning modeling approach to predict soil microbial carbon from a set of environmental covariates. To account for stochastic variability, we ran a set of models to assess the importance of environmental factors, which showed that the contribution of each variable to the model fit differed between runs, with some overlap between a number of them (Fig. 2b). Mean annual temperature was always the most important variable, with soil organic carbon and soil pH following. Clay content, precipitation, land-cover type, nitrogen content, and sand content contributed roughly equally to explaining variations in microbial carbon. Finally, NDVI and elevation had the lowest variable importance. Coniferous forests had the highest and most variable predicted values of microbial carbon (Supplementary Figs. 1, 2), which can be explained by high soil organic matter and a thick litter layer26. Tropical forests also had fairly high values of microbial carbon, while shrublands and croplands had the lowest values26. We used partial prediction response curves to evaluate the direction and range of effect of the predictor variables (Supplementary Figs. 1, 2). In agreement with the variable importance measure, variables that scored high often showed strong effects on the predicted microbial carbon values, while variables with a low variable importance score (e.g., elevation, NDVI, and sand content) only showed smaller responses. The only exception was for precipitation, which had a relatively high variable importance, although the response curves only showed a weak effect of precipitation for forests and grasslands, with limited effect on other land-cover types (Supplementary Fig. 2). The importance of precipitation might also indicate that this relationship involves interactions with other variables7,28. Overall, the differences in microbial carbon between land-cover types showed mostly similar patterns across the range of variables. Soil organic carbon and nitrogen content had a positive and mostly linear effect on microbial carbon (Supplementary Fig. 1). In contrast, clay content, soil pH, and mean temperature had non-linear relationships, with high microbial carbon in the low range of these variables and a rapid decrease that reached an asymptote at low microbial carbon values for the higher portion of the range. Soil pH patterns showed a decrease in microbial carbon for values between 4.1 and 5.8, and a constant pattern between 5.8 and 8.6. Contrary to our expectations, we did not find a parabolic effect of soil pH on microbial carbon26. Instead, our model predicted higher values in very acidic soils with a pH below 5.2, which are rare globally and almost only found in central Amazonia. Similarly, locations with a clay content lower than 16.9% had higher values in microbial carbon, and then stabilized until 51.0%.Fig. 2: Microbial carbon stock spatial predictions and temporal trends.a Microbial carbon stock predictions for 2013. b Variable importance from 100 random forest model runs, calculated by the mean decrease in accuracy after variable permutation. Variables were ordered by the median variable importance. SOC soil organic carbon, NDVI normalized difference vegetation index. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. c Relative microbial carbon stocks rate of change in percentage per year.Full size imageMean temperature showed an interesting shift with much higher microbial carbon values with a mean annual temperature below zero, but had otherwise a limited effect on microbial carbon values in the rest of the range above zero up to 28.9 °C. Based on partial predictions (Supplementary Figs. 1–2), microbial carbon decreased monotonically with an increase in temperature (with all other variables fixed to their median), with the relationship being mostly stable for parts of the range. We observed an especially sharp decrease at around 0°C, which is in agreement with the patterns observed in the data. The reason for sites with a mean annual temperature below the freezing point to have higher microbial carbon stocks is not fully understood. This could be due to a regime shift in which microbial communities are in a semi-dormant state for a major part of the year35. Moreover, it could also be in part explained by the soil organic carbon content that follows a similar trend and accumulates in higher latitude soils9, thus promoting higher microbial carbon stocks. Within these cold, high organic carbon soils, large microbial populations can be maintained, due to the low temperature that reduces metabolic requirements35. In contrast, at higher temperatures, metabolic activity increases and requires more resources and nutrients to maintain microorganisms alive. Experimental evidence is divided about the effects of warming on microbial carbon18,36, highlighting the strong context-dependency of this relationship, although global observations show a clear pattern, where low-temperature sites have higher soil microbial carbon stocks. Despite this uncertainty, there is a strong indication that a warming soil would tend to lose organic carbon17,37, and subsequent patterns in microbial carbon can also be expected, because of the dependency on organic substrate9,26,38. These dynamics were observed in Melillo et al.39, where the warming of sites in a mid-latitude forest ecosystem led to a decrease in soil carbon, followed by a decrease in microbial carbon12.Even with predictions being made for each grid location separately, microbial carbon values showed distinctive patterns and transitions over the globe (Fig. 2a). While temporal changes took place, broad spatial patterns were relatively constant over the range of years studied (Supplementary Movie 1). The highest microbial carbon stock values ranging from 1.50 to 7.00 t ha−1 were found at high latitudes in the Northern Hemisphere in areas of coniferous forest. Tropical humid regions also showed high microbial carbon values between 0.50 and 1.50 t ha−1 in the Amazon Rainforest and Central Africa. The main regions with low microbial carbon below 0.30 t ha−1 were in Eastern South America, areas directly south of the Sahara Desert, East Africa, and most of Australia, all of which mostly correspond to shrublands. Cropland areas as seen in India were also predicted with low microbial carbon values ranging from 0.06 to 0.38 t ha−1. A strong latitudinal gradient was visible for North America and Eurasia, with the highest microbial carbon stocks at high latitude, medium values in temperate ecosystems, and decreasing values towards the Equator. Positive coastal effects can also be observed, mostly on the Eastern South American and Australian coasts. In total, we estimated that there is 4.34 Gt of microbial carbon in the 5 to 15 cm layer for the predicted areas. Using the coefficient of variation calculated from the variability assessment set of models, we found that predictions made for the Amazon Basin, Northern Canada, and South-East Russia were more variable than for other regions (Supplementary Fig. 3a). Especially Western Europe, Central North America, and South-East Asia, however, showed high stability in the predictions between model runs.Drivers of changeThe analysis of the rate of change of microbial carbon stocks over time revealed that large regions of the globe experienced important changes in soil microbial carbon stocks between 1992 and 2013, with contrasting patterns across areas, and overall larger regions showed a decrease rather than an increase in microbial carbon stocks (Fig. 2c and Supplementary Fig. 3b). To account for spatial differences in microbial carbon stocks, we calculated the relative rate of change in percentage for each location (Fig. 2c). When considering all predictable regions together, microbial carbon stocks in the 5–15 cm layer showed a decrease of 7.09 Mt per year, summing to 148.80 Mt between 1992 and 2013, or 3.4% of the global microbial carbon pool predicted (Supplementary Fig. 4a; p = 0.038). The main regions with a microbial carbon loss higher than 0.7 kg ha−1 y−1 were in Northern Canada and a large continuous region in North-Eastern Europe. These northern regions accounted for an important part of the global loss in microbial carbon stocks, with large areas that had both a high soil microbial carbon stock and a fast decrease (Figs. 3 and 4). Other areas of high loss were in the Amazon basin, Western Argentina, the USA East Coast, Southern South Africa, and South-East Russia. The main continuous region of microbial carbon increase above 0.7 kg ha−1 y−1 was in central Russia, with smaller regions present in India, Europe, Central North America, and parts of Africa. Besides these general patterns, predictions vary at the local scale, and they consider the effects of parameters including soil properties, elevation, and land-cover type, which change between neighbor locations and affect the observed patterns. This is especially visible in the Americas, where both increases and decreases happen side-by-side.Fig. 3: Status of microbial carbon stocks between 1992 and 2013.Bivariate plot comparing the relative microbial carbon stock rate of change (% per year) with the amount of microbial carbon stock. The status groups were allocated using quantile distributions.Full size imageFig. 4: Distribution and classification of point values from the locations in Fig. 3.The assignment of points into the 9 groups was performed using quantile distributions. Areas in dark red are especially vulnerable to climate and land-cover change.Full size imagePatterns in the relative rate of change have a lot in common with that of absolute change, with a few notable differences (Fig. 2c and Supplementary Fig. 3b). Both positive and negative stock changes in tropical and subtropical regions are more prominent in relative terms, as these regions typically have low microbial carbon stocks. Similarly, regions in Central Russia with high microbial carbon stocks show less decrease in relative terms. To assess how stable these trends are over time, we show the p values of the rate of change for the 22 years (Supplementary Fig. 3c). The largest region with low p values is associated with more significant trends in Western Russia, and corresponds to an area with a fast loss of microbial carbon. India and Central Russia show high p values, and are informative of high variability compared to the strength of the signal. Considering that only up to 22 data points are available for each grid location and that especially climatic conditions vary considerably from year to year, p values are only provided as a complementary assessment. We can summarize the global situation by combining the two maps of microbial carbon stocks and relative rate of change to categorize and define vulnerable locations that experienced a high loss of microbial carbon (Figs. 3 and 4), and where the provision of soil functions is potentially at risk.It is informative to look at regional trends, by grouping grid locations using the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) sub-regions, and assessing regional-scale changes in microbial carbon stocks (Fig. 5, Supplementary Table 1). The main regions that contributed to microbial carbon loss were North America with a decrease of 62.49 Mt of microbial carbon and Eastern Europe with 60.88 Mt over the studied period, although both trends had high yearly variability and were non-significant. The region with the highest increase was North-East Asia with a gain of 4.49 Mt, but this change was also non-significant. The Caribbean was the only region to show a significant increase in soil microbial carbon stocks over time (+2.1% over 22 y, p = 0.017), while significant decreases in stocks were found in North Africa (−4.1%, p  More

  • in

    Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species

    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.PubMed 
    Article 

    Google Scholar 
    Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.CAS 
    Article 

    Google Scholar 
    O’Neil J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance. 2014. https://amr-review.org/sites/default/files/AMRReviewPaper-Tacklingacrisisforthehealthandwealthofnations_1.pdf.Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vandeplassche E, Tavernier S, Coenye T, Crabbé A. Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens. Eur Respir Rev. 2019;28:190041.PubMed 
    Article 

    Google Scholar 
    Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, Quinn A, et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat Commun. 2021;12:2460.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allison DG, Matthews MJ. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 1992;73:484–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. Npj Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, Friman V-P. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 2022;16:812–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffman LR, Deziel E, D’Argenio DA, Lepine F, Emerson J, McNamara S, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2006;103:19890–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos J-L. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance: Antibiotic resistance. Environ Microbiol. 2014;16:1267–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17. https://doi.org/10.1128/mBio.00873-17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B Biol Sci. 2009;276:3759–68.CAS 
    Article 

    Google Scholar 
    Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol. 2008;68:75–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherrard LJ, McGrath SJ, McIlreavey L, Hatch J, Wolfgang MC, Muhlebach MS, et al. Production of extended-spectrum β -lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. Int J Antimicrob Agents. 2016;47:140–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, et al. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. 2017;11:2233–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Muza M, Chacón JM, Harcombe WR. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLOS Pathog. 2020;16:e1008700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Klümper U, Recker M, Zhang L, Yin X, Zhang T, Buckling A, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019;13:2927–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sorg RA, Lin L, van Doorn GS, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kulczycki LL, Kostuch M, Bellanti JA. A clinical perspective of cystic fibrosis and new genetic findings: relationship of CFTR mutations to genotype-phenotype manifestations. Am J Med Genet. 2003;116A:262–7.PubMed 
    Article 

    Google Scholar 
    Flume PA, Mogayzel PJ, Robinson KA, Rosenblatt RL, Quittell L, Marshall BC. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182:298–306.PubMed 
    Article 

    Google Scholar 
    Belkin RA, Henig NR, Singer LG, Chaparro C, Rubenstein RC, Xie SX, et al. Risk factors for death of patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med. 2006;173:659–66.PubMed 
    Article 

    Google Scholar 
    Martin C, Hamard C, Kanaan R, Boussaud V, Grenet D, Abély M, et al. Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies! J Cyst Fibros. 2016;15:204–12.PubMed 
    Article 

    Google Scholar 
    Döring G, Conway SP, Heijerman HGM, Hodson ME, Høiby N, Smyth A, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16:749.PubMed 
    Article 

    Google Scholar 
    Marshall B, Faro A, Brown W, Elbert A, Fink A, Cromwell E, et al. Patient registry, annual data report. Bethesda, Maryland: Cystic Fibrosis Foundation; 2020. https://www.cff.org/sites/default/files/2021-11/Patient-Registry-Annual-Data-Report.pdf.Vongthilath R, Richaud Thiriez B, Dehillotte C, Lemonnier L, Guillien A, Degano B, et al. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: analysis of the French CF registry. PLOS ONE. 2019;14:e0210201.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zolin A, Orenti A, Jung A, van Rens J. ECFSPR annual report 2019. Denmark: European Cystic Fibrosis Society Patient Registry; 2021. https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2019_v1_16Feb2022.pdf.Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a community ecology perspective. Am J Respir Cell Mol Biol. 2013;48:150–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol. 2015;197:2252–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ballestero S, Vírseda I, Escobar H, Suárez L, Baquero F. Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1995;14:728–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gladman G, Connor PJ, Williams RF, David TJ. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child. 1992;67:192–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goss CH. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14:293–304.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goss CH, Otto K, Aitken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med. 2002;166:356–61.PubMed 
    Article 

    Google Scholar 
    Alonso A, Martínez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1997;41:1140–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother. 2000;44:287–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abda EM, Krysciak D, Krohn-Molt I, Mamat U, Schmeisser C, Förstner KU, et al. Phenotypic heterogeneity affects Stenotrophomonas maltophilia K279a colony morphotypes and β-lactamase expression. Front Microbiol. 2015;6:1373.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP, et al. Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta. 1994;1218:199–201.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang Z, Liu W, Cui Q, Niu W, Li H, Zhao X, et al. Prevalence and detection of Stenotrophomonas maltophilia carrying metallo-I2-lactamase blaL1 in Beijing, China. Front Microbiol. 2014;5:692.Kataoka D, Fujiwara H, Kawakami T, Tanaka Y, Tanimoto A, Ikawa S, et al. The indirect pathogenicity of Stenotrophomonas maltophilia. Int J Antimicrob Agents. 2003;22:601–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24:327–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol. 2015;17:16–28.PubMed 
    Article 

    Google Scholar 
    Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, et al. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol. 2021;5:1233–1242.Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, et al. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol. 2021;35:2138–55.Article 

    Google Scholar 
    Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souza Barbosa F, Capra Pezzi L, Tsao M, Oliveira TF, Manoela Dias Macedo S, Schapoval EES, et al. Stability and degradation products of imipenem applying High‐Resolution Mass Spectrometry: an analytical study focused on solutions for infusion. Biomed Chromatogr. 2018;33:4471.Verpooten G, Verbist L, Buntinx A, Entwistle L, Jones K, Broe M. The pharmacokinetics of imipenem (thienamycin-formamidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. Br J Clin Pharmacol. 1984;18:183–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Luo Y-F, Williams BJ, Blackwell TS, Xie C-M. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302:63–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kousser C, Clark C, Sherrington S, Voelz K, Hall RA. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep. 2019;9:5714.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis: pyoverdine biosynthesis. Environ Microbiol. 2013;15:1661–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan X, Pan Y, Cai Z, Liu Y, Zhang Y, Liu M, et al. rpoS-mutation variants are selected in Pseudomonas aeruginosa biofilms under imipenem pressure. Cell Biosci. 2021;11:138.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu K, Chen S, Sysoeva TA, You L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLOS Biol. 2019;17:e3000573.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Fouly MZ, Sharaf AM, Shahin AAM, El-Bialy HA, Omara AMA. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci. 2015;8:36–48.CAS 
    Article 

    Google Scholar 
    Baron SS, Rowe JJ. Antibiotic action of pyocyanin. Antimicrob Agents Chemother. 1981;20:814–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kimura M, Ohta T. The average number of generations until fixation of a mutant gene in a finite population. Genetics. 1969;61:763–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meirelles LA, Perry EK, Bergkessel M, Newman DK. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLOS Biol. 2021;19:e3001093.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abiotic adaptation in a bacterial soil community. Evol Lett. 2018;2:580–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlan PD, Hall AR, Blackshields G, Friman V-P, Davis MR, Goldberg JB, et al. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol. 2015;32:1425–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol. 2006;4:113–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gefen O, Fridman O, Ronin I, Balaban NQ. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc Natl Acad Sci. 2014;111:556–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang Z, Zhang L, Huang Y, Qing Y, Cao K, Tian G, et al. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol. 2014;21:124–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, et al. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol. 2017;66:1562–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang H, Jeanteur D, Pattus F, Hancock REW. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol. 1995;16:931–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C, Plésiat P, et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68:1772–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kao C-Y, Chen S-S, Hung K-H, Wu H-M, Hsueh P-R, Yan J-J, et al. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol. 2016;16:107.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012;56:1703–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu J-C, Kuo A-J, Su L-H, Liu T-P, Lee M-H, Su I-N, et al. Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. J Antimicrob Chemother. 2017;72:2489–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pernet E, Guillemot L, Burgel P-R, Martin C, Lambeau G, Sermet-Gaudelus I, et al. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun. 2014;5:5105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F, Moreau K. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep. 2019;9:16564.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khare A, Tavazoie S. Multifactorial competition and resistance in a two-species bacterial system. PLOS Genet. 2015;11:e1005715.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mashburn LM, Jett AM, Akins DR, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol. 2005;187:554–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. 2006;188:7101–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J. 2015;9:115–25.PubMed 
    Article 
    CAS 

    Google Scholar 
    Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017;7:39.Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, et al. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect Immun. 2011;79:4094–104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol. 1989;18:223–30.CAS 
    Article 

    Google Scholar 
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora MÁ, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1348.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontoura R, Spada JC, Silveira ST, Tsai SM, Brandelli A. Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J Microbiol Biotechnol. 2009;25:205–13.CAS 
    Article 

    Google Scholar 
    Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980;141:156–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, et al. Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an antistaphylococcal substance. J Med Microbiol. 1991;34:213–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raji El Feghali PA, Nawas T. Pyocyanin: a powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud. 2018;3:101–7.Article 

    Google Scholar 
    Saha S, Thavasi R, Jayalakshmi S. Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol. 2008;3:122–8.CAS 
    Article 

    Google Scholar 
    Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun. 2019;10:762.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jagmann N, Brachvogel H-P, Philipp B. Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila: parasitic growth of Pseudomonas aeruginosa. Environ Microbiol. 2010;12:1787–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noto MJ, Burns WJ, Beavers WN, Skaar EP. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J Bacteriol. 2017;199:00221–17.Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci. 2011;4:4550.CAS 
    Article 

    Google Scholar 
    Waite RD, Qureshi MR, Whiley RA. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLOS ONE. 2017;12:e0173741.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Whooley MA, McLoughlin AJ. The regulation of pyocyanin production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol. 1982;15:161–6.CAS 
    Article 

    Google Scholar 
    Elbargisy RM. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. Saudi J Biol Sci. 2021;28:993–1000.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta S, Laskar N, Kadouri DE. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights. 2016;9. https://doi.org/10.4137/MBI.S40767.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Investig. 2002;109:317–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Skurnik D, Roux D, Cattoir V, Danilchanka O, Lu X, Yoder-Himes DR, et al. Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc Natl Acad Sci USA. 2013;110:20747–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P, Cámara M. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol. 2018;8:252.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dragoš A, Martin M, Falcón García C, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8:45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol. 2004;42:5176–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, et al. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS ONE. 2013;8:e60225.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valdezate S. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-8. Emerg Infect Dis. 2001;7:113–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    Jeon YD, Jeong WY, Kim MH, Jung IY, Ahn MY, Ann HW, et al. Risk factors for mortality in patients with Stenotrophomonas maltophilia bacteremia. Medicine. 2016;95:e4375.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet Lond Engl. 2014;384:703–13.CAS 
    Article 

    Google Scholar 
    Choi K-H, Schweizer HP. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jelsbak L, Johansen HK, Frost A-L, Thøgersen R, Thomsen LE, Ciofu O, et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;75:2214–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeung ATY, Parayno A, Hancock REW. Mucin promotes rapid surface motility in Pseudomonas aeruginosa. mBio. 2012;3:300073–12.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:3857.Hill DB, Long RF, Kissner WJ, Atieh E, Garbarine IC, Markovetz MR, et al. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH. Eur Respir J. 2018;52:1801297.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benoni G, Cuzzolin L, Bertrand C, Puchetti V, Velo G. Imipenem kinetics in serum, lung tissue and pericardial fluid in patients undergoing thoracotomy. J Antimicrob Chemother. 1987;20:725–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Radhakrishnan M, Jaganath A, Rao GSU, Kumari HBV. Nebulized imipenem to control nosocomial pneumonia caused by Pseudomonas aeruginosa. J Crit Care. 2008;23:148–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29:581–632.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 12.0, 2022. http://www.eucast.org.Kang D, Revtovich AV, Chen Q, Shah KN, Cannon CL, Kirienko NV. Pyoverdine-dependent virulence of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Front Microbiol. 2019;10:2048.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin LW, Reid DW, Sharples KJ, Lamont IL. Pseudomonas siderophores in the sputum of patients with cystic fibrosis. BioMetals. 2011;24:1059–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol. 2009;175:2473–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA. 2013;110:17981–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200:00345–17.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. In: Sun L, Shou W, editors. Engineering and Analyzing Multicellular Systems. New York, NY: Springer New York; 2014. p. 165–88.Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Comparing N-mixture models and GLMMs for relative abundance estimation in a citizen science dataset

    All figures were produced using the R package ggplot2 v3.3.534.eBird and covariate dataeBird data are structured as follows. Birders submit observations as species checklists with counts of each species they identify. They report associated metadata, such as location, date and time, duration of the observation period, number of observers, and sampling protocol25,26,31. The birder indicates whether their checklist is “complete”; complete checklists yield inferred zeroes for all species not reported on a checklist.We retrieved the eBird Basic Dataset containing all eBird observations and sampling metadata. We extracted all complete checklists that occurred within the U.S. state of California between April 1 and June 30, 2019. Four survey-level covariates were retrieved from eBird checklist metadata as detection covariates: number of observers, checklist duration, date of year, and time of day; any checklist that failed to report one or more of these variables was dropped. Corresponding to best practices for use of eBird data, we filtered the data for quality according to the following criteria: we discarded checklists other than those following the “Stationary” survey protocol (observations made at a single spatial location) with duration shorter than 4 hours and at most 10 observers in the group31,35.We selected twenty circular regions of high sampling intensity with 10 km radii across California (Supplemental Fig. 1). These spanned the state’s many habitats including coastal, agricultural, wetland, and mountain areas, and contained active birding areas such as parks and human population centers. In each subregion, we selected 10 species with the highest reporting rate (proportion of checklists including that species) and 10 representing an intermediate reporting rate. An additional 10 species were selected that were detected in many regions to enable cross-region comparisons, yielding 407 species-subregion (SSR) datasets (with overlaps between the two species selection protocols; see Supplemental Section 2 for the full algorithm). Across 20 subregions, we accepted 6094 eBird checklists for analysis, each with an associated count (potentially zero) for each species. Observations were aggregated to sampling sites defined by a 50 m spatial grid. The 50 m grid was chosen to conservatively identify related surveys and was not motivated by biological processes, nor does it represent the sampling area of each survey. In this context, the concept of “closure” in the latent state is already suspect due to the fact that eBird checklist sampling areas are inconsistent. Data were processed in R using the ‘auk’ package36,37.An elevation surface for the state of California was retrieved from WorldClim at (8.3 times 10^{-3}) decimal degrees resolution using the R package raster38,39. This commonly used covariate was included as a baseline spatial covariate to enable comparison of estimation properties across sites, but its biological relevance to abundance is not crucial to our analysis31. Land cover data were retrieved from the LandFire GIS database’s Existing Vegetation Type layer40. For each unique survey location, a 500 m buffer was calculated around the reported location, and the percent of the buffer which was water, tree cover, agriculture or other vegetation (shrub or grassland) was calculated. We used the following five site-level covariates: elevation, and percent of the landscape within a 500 m buffer of the site that was water, trees, agricultural land, or other vegetation. We included six checklist-level covariates: duration, number of observers, time of day, time of day squared, Julian date, and Julian date squared. Covariates were dropped in datasets where only a single unique value was observed for that covariate.Model implementation and selectionWe considered four variants of the N-mixture model and two variants of the GLMM comprising a total of 6 distinct models, defined by the distributions used in the model or sub-model.The GLMM for count data that we considered is defined as$$begin{array}{*{20}l} {y_{{ij}} sim D(mu _{{ij}} ,[theta ])} hfill \ {log (mu _{{ij}} ) = beta _{0} + {mathbf{x}}_{{ij}}^{T} user2{beta } + alpha _{i} } hfill \ {alpha _{i} sim {mathcal{N}}(0,sigma _{alpha } )} hfill \ end{array}$$where (y_{ij}) is th jth observation at site i, D is a probability distribution (which may contain an extra parameter (theta) to account for overdispersion), (mu _{ij}) represents the mean expected count and is a logit-linear combination of observed site- and observation-level covariates (x_{ij}), (beta) are coefficients representing the effect of those covariates, (beta _0) is a log-scale intercept corresponding to the expected log count at the mean site (i.e. with all centered covariates set to 0), and (alpha _i) is the random effect of site i following a normal distribution. Due to the right skew of (exp (y_{ij})), by log-normal distribution theory the log of the expected count at the mean site is (beta _0 + 0.5 sigma _{alpha }^2). We considered two forms of this model, where D was either a Poisson or a negative binomial distribution, in the latter case with the extra parameter (theta).The N-mixture model is defined as$$begin{array}{*{20}l} {y_{{ij}} sim D_{w} (N_{i} ,p_{{ij}} ,[theta _{w} ])} hfill \ {N_{i} sim D_{b} (lambda _{i} ,[theta _{b} ])} hfill \ {{text{logit}}(p_{{ij}} ) = {text{}}{text{logit}}(p_{0} ) + {mathbf{x}}_{{ij(w)}} {mathbf{beta }}_{w} } hfill \ {log (lambda _{i} ) = log (lambda _{0} ) + {mathbf{x}}_{{i(b)}} {mathbf{beta }}_{b} } hfill \ {p_{0} = e^{{frac{{phi _{1} + phi _{2} }}{2}}} } hfill \ {lambda _{0} = e^{{frac{{phi _{1} – phi _{2} }}{2}}} } hfill \ end{array}$$where (D_b) and (D_w) are probability distributions representing between- and within-site variation, respectively; (N_i) is a site-level latent variable normally representing the “true” abundance at site i; (p_{ij}) is the detection probability of each individual on the jth observation event at site i; (lambda _i) is the mean abundance at site i; and (x_{(w)}) and (x_{(b)}) are covariate vectors for detection and abundance, respectively, with corresponding coefficients (beta _w) and (beta _b). For reasons described below, we reparameterize the intercept parameters of the N-mixture submodels, (log (lambda _0)) and (text{ logit }(p_0)), in terms of two orthogonal parameters (phi _1 = log (lambda _0 p_0)) and (phi _2=log (p_0 / lambda _0)). Now (phi _1) and (phi _2) represent the expected log count and the contrast between detection and abundance, respectively, at the mean site. This parameterization allows us to investigate stability of parameter estimation. The log-scale expected count of the N-mixture model is (phi _1 = log (lambda _0 p_0)), analogous to (beta _0 + 0.5 sigma _{alpha }^2) in the GLMM (see Supplemental Section 6). Each submodel distribution D could include or not include an overdispersion parameter ((theta _w) and (theta _b)), yielding four possible N-mixture model variants: binomial-Poisson (B-P), binomial-negative binomial (B-NB), beta-binomial-Poisson (BB-P), and beta-binomial-negative binomial (BB-NB)8,11.We chose to fit models with maximum likelihood estimation (MLE) for computational feasibility and because key diagnostic tools, such as AIC and methods for checking goodness-of-fit and autocorrelation, were best suited to MLE estimation15. We fit N-mixture models with the nimble and nimbleEcology R packages starting with a conservatively large choice of K, the truncation value of the infinite sum in the N-mixture likelihood calculation33,41 (see Supplemental Section 4 for a discussion of maximum likelihood estimation with NIMBLE). We fit GLMMs with the R package glmmTMB42. We applied forward AIC selection to choose the best covariates for each model with each dataset (illustrated in Fig. S1). One spatial covariate (elevation) and two checklist metadata covariates (duration and number of observers) were treated as a priori important and were included in all models. In the N-mixture model, checklist-specific sampling metadata were only allowed in the detection submodel, while land cover covariates and the interactions between them were allowed in both the detection and abundance submodels. Interactions were dropped in datasets when interaction values showed a correlation of > 0.8 with one of their first-order terms. In N-mixture models, additions to both submodels were considered simultaneously during forward AIC selection.For comparisons between models, we selected a heuristic threshold of (Delta text {AIC} > 2) to say that one model is supported over another30.Fit, estimation, and computationGoodness-of-fitWe used the Kolmogorov-Smirnov (KS) test, a p-value based metric, to evaluate goodness-of-fit on each selected model. For GLMMs, residuals were obtained using the DHARMa R package’s ‘simulateResiduals’ and the KS test was applied using the ‘testUniformity’ function43. For N-mixture models, we considered the site-sum randomized quantile (SSRQ) residuals described by Knape et al.15, computing these for each N-mixture model and running a KS test against the normal CDF. We assumed that covariate effects did not vary by space within subregions and chose not to use spatially explicit models31,44. To test this assumption, we applied Moran’s I test to the SSRQ or DHARMa-generated residuals for each site or observation.Parameter estimationWe compared two abundance parameters of interest across models: coefficients for elevation and log expected count at a standard site (in the GLMM, (beta _0 + 0.5 sigma _alpha ^2); in the N-mixture model, (log (lambda _0 p_0))). We examined absolute differences in point estimates and the log-scale ratios between their standard errors.Stability of estimated parametersAttempting to decompose the expected value of observed data into within- and between-site components can lead to ridged likelihood surfaces with difficult-to-estimate optima. Kéry found that instability of model estimates with increasing K occurred when there was a likelihood tradeoff between detection and abundance, resulting in a tendency in abundance toward positive infinity restrained only by K10. Dennis et al. showed that N-mixture models could in fact yield estimates of absolute abundance at infinity18. We interpreted this as a case of a boundary parameter estimate rather than non-identifiability and explored it by reparametrizing as follows. We estimated the intercepts for detection and abundance with two orthogonal parameters (rotated in log space) (phi _1 = log (lambda _0 p_0)) and (phi _2 = log (p_0 / lambda _0)), where (lambda _0) and (p_0) are real-scale abundance and detection probability at the mean site. We hypothesized that in unstable cases, (phi _1), log expected count, is well-informed by the data, but (phi _2), the contrast between abundance and detection, is not well-informed, corresponding to a likelihood ridge as (phi _2 rightarrow -infty) due to detection probability approaching 0 and abundance approaching infinity. This reparameterization isolates the likelihood ridge to one parameter direction, similar to a boundary estimate as (exp (phi _2) rightarrow 0). Boundary estimates occur in many models and are distinct from non-identifiability in that they result from particular datasets. Confidence regions extending from a boundary estimate may include reasonable parameters, reflecting that there is information in the data. We defined a practical lower bound for (phi _2). When (phi _2) was estimated very near that bound, we conditioned on that boundary for (phi _2) when estimating confidence regions for other parameters.In the N-mixture case, diagnosing a boundary estimate for (phi _2) is made more difficult by the need to increase K for large negative (phi _2) to calculate the likelihood accurately. We used an approach like that of Dennis et al.18 to numerically diagnose unstable cases. For each N-mixture variant in each SSR, the final model was refitted twice, using values of K 2000 and 4000 greater than the initial choice. Estimates were considered unstable if the absolute value of the difference in AIC between these two large-K refits was above a tolerance of 0.1. We monitored whether MLE estimates of (phi _1) and (phi _2) also varied with increasing K.Evaluating the fast N-mixture calculationWe extended previous work by Meehan et al. to drastically improve the efficiency of N-mixture models using negative binomial or beta-binomial distributions in submodels45 (see Supplemental Section 3).We ran benchmarks of this likelihood calculation for a single site against the traditional algorithm, which involves iterating over values of N to compute a truncated infinite sum. We calculated the N-mixture likelihood at 5,000 sites and compared the computation time between the two methods for all four N-mixture model variations. We ran benchmarks along gradients of (text {length}(y_i)) (number of replicate observations at the simulated site) and K (the upper bound of the truncated infinite sum) for each variant. More

  • in

    Himalayas: create an international peace park

    After the successful protection of Himalayan areas on the border of China and Nepal, we propose that the two nations should create the world’s highest international peace park by combining the Qomolangma and Sagarmatha national parks. This would align with United Nations Sustainable Development Goal 17, to achieve sustainable development through international cooperation (see go.nature.com/3ixmini).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Temporal variation in climatic factors influences phenotypic diversity of Trochulus land snails

    Temporal differentiation of wild populations of T. hispidus and climatic parametersComparison of morphometric features of T. hispidus shells collected in different years in two geographic regions, i.e., Wrocław and Lubawka, showed significant differences depending on the year of collection. The largest number of differences was revealed in shells from Wrocław (Figs. 1 and 2A; Additional file 2: Table S1). Out of 210 comparisons (15 pairs of collection years × 14 features), 84 were statistically significant (Additional file 2: Table S2), e.g., shell diameter (D) was significantly different in 11 cases, shell height (H) and shell width (W) in 10 cases, body whorl height (bwH), the number of whorls (whl), umbilicus major (U) and minor (u) diameters in 9 cases and aperture height/width ratio (h/w) in 7 cases. Nine features obtained more than 10% difference between shells in at least one comparison of mean values, e.g., U 24%, u 19%, H 16% and D 15% (Additional file 2: Table S2). Umbilicus major (U) and minor (u) diameters showed the largest average percentage difference, i.e., 12% and 10%, respectively, in comparisons of all years.Figure 1Shells of Trochulus hispidus collected in different years in Wrocław.Full size imageFigure 2Changes in: mean values of selected morphometric features of shells collected in various years in Wrocław (A) as well as the mean temperature (B) and the relative humidity (C) recorded in four seasons in Wrocław in eight-year period. Abbreviations: D—shell diameter (in mm), H—shell height (in mm), h/w—aperture height/width ratio, whl—number of whorls. The summary statistics for A is included in Table S1 and original data in Table S10 in Additional file 2.Full size imageFor snails from Lubawka, out of 84 comparisons (6 pairs of collection years × 14 features) only 8 were statistically significant (Additional file 2: Table S3). The shells differed significantly in their aperture height (h) and width (w) in 3 comparisons. The h feature showed the percentage difference up to 9% (Additional file 2: Table S3) and the largest average difference was 4.5%.Besides the phenotypic variation, climatic parameters also showed high fluctuations in the studied period (Fig. 2B,C, Additional file 2: Table S4). The maximum difference reported between temperature parameters in some years prior to sample collection in Wrocław was up to 3.7 °C for the maximum winter temperature, while the maximum difference in the relative humidity was up to 11% for autumn. The maximum temperature difference in Jelenia Góra close to Lubawka was up to 3.5 °C for the minimum winter temperature, while the relative humidity differed at most by up to 8% in summer.Differences in shell morphometry under various climatic conditionsThe distinction between shells collected in individual years and changes in climatic parameters along the same period suggest that these differences can be associated with the climate. Therefore, we calculated the average value of a given climatic parameter for each season and studied region and next divided the collected shell data into two groups according to this value. The first group included the shells that developed in conditions above this average and the second below this average (Additional file 2: Table S5). The differences between these groups were statistically significant for 15 out of 16 considered climatic parameters for at least two shell features (Fig. 3). Similarly, each of 14 features significantly separated the groups based on at least two climatic conditions. The results demonstrated that the mean winter temperature substantially influenced nine morphometric shell features, whereas eight characters were changed due to the maximum winter temperature as well as the mean and minimum temperatures in spring, summer and autumn. Umbilicus major (U) and minor (u) diameters as well as umbilicus relative diameter (U/D) were significantly different in 14 pairs of groups characterized by various climatic parameters. In 11 pairs, the height/width ratio (H/W) was significantly different and shell height (H) in 10 pairs.Figure 3Mean percentage differences in morphometric features between shells that were grown in different conditions. The shells were divided into two groups according to the average value of a given climatic parameter for each season and studied region. The first group included the shells that developed in conditions above this average and the second below this average. Positive values indicate that the given feature was greater in the first group, whereas negative values indicate that this feature was greater in the second group. Dendrograms cluster the features and the parameters according to their similarity in the percentage differences. Values marked in bold indicate statistically significant differences between the compared groups of shells. Values at the dendrogram nodes indicate significance assessed according to approximately unbiased test (au) and bootstrap resampling (bp).Full size imageThe umbilicus diameters (u and U) as well as umbilicus relative diameter (U/D) clustered together in the dendrogram based on the mean percentage difference, which indicates that they similarly responded to climatic conditions (Fig. 3). The features u and U revealed the strongest average increase of all features, from 4.1 to 10.5% in shells developed in higher temperatures in all seasons. The largest percentage difference exceeding 10% was recorded for groups separated according to the mean summer and autumn temperatures as well as the maximum summer and minimum autumn temperatures. The U/D ratio was also significantly greater with the mean percentage difference of 2.8–7.6% in shells grown under high temperatures for all seasons and almost all temperature types. On the other hand, the u and U diameters as well as the U/D ratio were on average by 3.7–6.0% significantly smaller in shells developed under higher humidity in summer and winter.The height/width shell ratio (H/W) was grouped with H and bwH features in the dendrogram and was on average by up to 3.6% significantly smaller in shells grown under higher temperatures in all seasons for almost all types of parameters. The maximum winter temperature caused a significant increase, on average by ca. 3%, in shell height (H) and body whorl height (bwH), whereas higher temperatures in other seasons led to their decrease by up to 3.4% (Fig. 3).The shells that were grown in autumn with a relatively high maximum temperature were characterized by ca. 3% significantly smaller aperture height (h) and aperture height/width ratio (h/w), which were clustered together in the dendrogram (Fig. 3).Other four features, shell diameter (D), number of whorls (whl) as well as shell (W) and aperture width (w), formed an additional cluster in the dendrogram (Fig. 3). All of them were on average significantly greater in shells collected one year after winter that was characterized by relatively higher mean and maximum temperatures. The percentage difference was greater, with 3.6–3.9% for W and D.In the dendrogram, the climatic parameters were clustered in several groups indicating their similar influence on the morphometric features of shells (Fig. 3). There are separate clusters for temperature and humidity parameters with the exception of the autumn maximum temperature and autumn humidity, which are grouped together. The other temperature parameters for warmer seasons are separated from those for winter, which indicates that they differently influenced the shell morphometry.Correlations between morphometric shell features and climatic parametersThe influence of climatic conditions on the shells collected in individual years was also assessed using Spearman’s correlation coefficient between the morphometric features and climatic parameters (Fig. 4). Of 224 potential relationships 113 were statistically significant. The spring mean temperature was significantly correlated with 10 morphometric features. Summer humidity and six temperature parameters, i.e., the minimum temperatures as well as the spring and winter maximum temperatures, significantly correlated with eight shell features. Minor umbilicus diameter (u) and umbilicus relative diameter (U/D) were significantly correlated with almost all climatic parameters, i.e., 15, umbilicus major diameter (U) and height/width ratio (H/W) with 13 and the ratio of umbilicus minor to its major diameter (u/U) with 11.Figure 4Spearman’s correlation coefficients between morphometric features of shells with climatic parameters under which the snails were grown. Dendrograms cluster the features and the parameters according to their similarity in the coefficients. Values marked in bold are statistically significant. Values at the dendrogram nodes indicate significance assessed according to approximately unbiased test (au) and bootstrap resampling (bp).Full size imageAs in the case of percentage difference, we can also recognize groups of morphometric features that were similarly correlated with climatic parameters (Fig. 4). Features U/D, U and u were significantly positively correlated with all or almost all temperature parameters for four seasons with the coefficients up to 0.34, 0.30 and 0.36, respectively. On the other hand, the significant correlation coefficients between these features and the humidity in spring, summer and winter were negative and reached − 0.34.Another group of features included shell height/width ratio (H/W), shell height (H) and body whorl height (bwH) (Fig. 4). All of them showed significant negative correlations with all temperature parameters for spring and summer as well as the minimum autumn temperature, and H/W also with the mean and maximum autumn temperatures as well as the mean and minimum winter temperatures. The correlation coefficients reached − 0.28, − 0.27 and − 0.28, respectively. These three features significantly correlated with summer and spring humidity, at up to 0.23.The number of whorls (whl), shell width (W), shell diameter (D), demonstrated a similar correlation with climatic parameters (Fig. 4). They showed the largest and significant correlation coefficients with winter temperatures: up to 0.24, 0.22 and 0.22, respectively. The ratio of umbilicus minor to its major diameter (u/U) showed significant positive correlation up to 0.22 with temperature of warmer seasons.The climatic parameters were grouped into several clusters indicating their similar relationships with morphometric features (Fig. 4). Humidity parameters of warmer seasons formed a separate cluster and temperature parameters were grouped according to seasons. The winter parameters were connected with autumn humidity and separated from temperatures for warmer seasons.Modelling relationships between morphometric shell features and climatic parametersThe joint influence of many climatic parameters on morphometry of shells collected in individual years was studied using a linear mixed-effects (LME) model after exclusion of correlated parameters and a linear ridge regression (LRR) model including all climatic parameters. The latter allows for the inclusion of correlated variables. We separately investigated the seasonal maximum, mean and minimum temperature parameters in combination with seasonal humidity parameters (Additional file 2: Table S6) because they are obviously correlated.Umbilicus minor (u) and major (U) diameters as well as umbilicus relative diameter (U/D) turned out best explained by the climatic parameters (with R2  > 0.15) in two models (Additional file 2: Table S6). Moreover, u, U and U/D were described in LME models by the largest number of significant climatic parameters, i.e., 15. The features u and U had also the largest number of significant parameters in LRR models, i.e., 18 out of 24 possibilities. The largest average values of temperature coefficients for the LRR models were 0.66 for D, 0.58 for W, 0.32 for H, 0.26 for U and 0.22 for u. Thus, all the above-mentioned features were under the strongest influence of the climatic conditions.In the case of LRR models, the coefficients at the winter mean temperature were most often selected as significant, in 12 out of 14 possibilities (Additional file 2: Table S6). The humidity coefficients for autumn were significant in 30 cases of 42 possibilities. The highest average absolute values of coefficients in climatic variables were those for the summer (0.63), spring (0.31) and autumn (0.24) minimum temperatures as well as the summer mean temperature (0.31). Thus, the temperatures of warmer seasons were more important for developing shell morphology. Seasonal humidity coefficients showed similar values compared to each other.Comparison of shell morphometry of T. hispidus and T. sericeus kept under various conditionsIn order to verify the influence of different climatic parameters on Trochulus shell morphometry in selected conditions, we compared shells from three groups of T. hispidus, which represented several subsequent generations: (1) parental snails collected in the wild in Wrocław-Jarnołtów, (2) their offspring bred in the laboratory for two generations and (3) offspring of the second laboratory-bred generation transplanted again into a garden in Wrocław (Fig. 5A–C). The comparison of the group 2 and 1 was to verify if laboratory conditions with controlled temperature and humidity can influence the shell morphometry within only one generation, whereas including the group 3 in the comparison, we wanted to check if snails raised in wild garden conditions can recover the original phenotype. Furthermore, we transplanted into the same garden conditions T. sericeus, which was collected in the wild in Muszkowice (Fig. 5D,E). In this case, we verified if two originally different ecophenotypes T. hispidus and T. sericeus, develop the same shell morphometry under the same conditions.Figure 5Shells of two Trochulus ecophenotypes: parental T. hispidus from wild habitat in Wrocław (A), the first generation of T. hispidus raised in laboratory (B); T. hispidus reared in garden in Wrocław (C); T. sericeus from wild habitat in Muszkowice (D); T. sericeus reared in garden in Wrocław (E).Full size imageConditions in which these snails developed were different. According to WorldClim, the wild environment of T. hispidus in Wrocław was generally warmer than that of T. sericeus in Muszkowice (Additional file 2: Table S7). The largest difference was 1.4 °C for the maximum summer temperature. Relative humidity was lower in Wrocław by up to 2% for warmer seasons but was higher in winter by 1.6%. The difference between the wild and garden localities in Wrocław was much smaller and did not exceed 0.41 °C. The garden conditions were less humid, by up to 2%. However, data from WorldClim are generalized over a longer period and wider regions, so may not well reflect local conditions in the studied places. Actually, the Wrocław site was an open habitat covered with a nettle community like a garden patch, while the Muszkowice site was overgrown by a beech forest, which most likely maintained a higher humidity and a more stable temperature.Laboratory temperatures were substantially different from those in the field, especially for winter (by 18–19.7 °C) as well as for spring and autumn (by 8.2–12 °C). Laboratory humidity was by up to 4.5% lower compared to winter and 5.9–9.9% higher than in spring and summer.A discriminant function analysis (DFA) for the defined groups of snails provided their interesting grouping and separation (Fig. 6). The analysis identified three significant discriminant functions (p  More

  • in

    A global, historical database of tuna, billfish, and saury larval distributions

    FAO. The State of World Fisheries and Aquaculture 2020., https://doi.org/10.4060/ca9229en (FAO, 2020).Watson, J. W. & Kerstetter, D. W. Pelagic Longline Fishing Gear: A Brief History and Review of Research Efforts to Improve Selectivity. Mar. Technol. Soc. J. 40, 6–11 (2006).Article 

    Google Scholar 
    Hare, S. R. et al. The western an our d central Pacific tuna fishery: 2019 overview and status of stocks. (SPC, 2020).Wang, S.-P. Stock assessment of blue marlin in the Indian Ocean using Stock Synthesis. (IOTC, 2019).Ohshimo, S. et al. Horizontal distribution and habitat of Pacific bluefin tuna, Thunnus orientalis, larvae in the waters around Japan. Bull. Mar. Sci. 93, 769–787 (2017).ADS 
    Article 

    Google Scholar 
    Margulies, D., Scholey, V. P., Wexler, J. B. & Stein, M. S. Chapter 5 – Research on the Reproductive Biology and Early Life History of Yellowfin Tuna Thunnus albacares in Panama. In Advances in Tuna Aquaculture: From Hatchery to Market (eds. Benetti, D. D., Partridge, G. J. & Buentello, A.) 77–114, https://doi.org/10.1016/B978-0-12-411459-3.00004-7 (Academic Press, 2016).Madigan, D. J. et al. Intrinsic tracers reveal recent foraging ecology of giant Pacific bluefin tuna at their primary spawning grounds. Mar. Ecol. Prog. Ser. 553, 253–266 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Ward, T. M., Staunton-Smith, J., Hoyle, S. & Halliday, I. A. Spawning patterns of four species of predominantly temperate pelagic fishes in the sub-tropical waters of southern Queensland. Estuar. Coast. Shelf Sci. 56, 1125–1140 (2003).ADS 
    Article 

    Google Scholar 
    Kiyofuji, H. & Ochi, D. Proposal of alternative spatial structure for skipjack stock assessment in the WCPO. (WCPFC, 2016).Reglero, P., Tittensor, D., Álvarez-Berastegui, D., Aparicio-González, A. & Worm, B. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 501, 207–224 (2014).ADS 
    Article 

    Google Scholar 
    Schilling, H. T. et al. Multiple spawning events promote increased larval dispersal of a predatory fish in a western boundary current. Fish. Oceanogr. 29, 309–323 (2020).Article 

    Google Scholar 
    Richardson, D. E., Hare, J. A., Overholtz, W. J. & Johnson, D. L. Development of long-term larval indices for Atlantic herring (Clupea harengus) on the northeast US continental shelf. ICES J. Mar. Sci. 67, 617–627 (2010).Article 

    Google Scholar 
    Muhling, B. A. et al. Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico. Mar. Pollut. Bull. 64, 679–687 (2012).CAS 
    Article 

    Google Scholar 
    Brown, S. K., Buja, K. R., Jury, S. H., Monaco, M. E. & Banner, A. Habitat Suitability Index Models for Eight Fish and Invertebrate Species in Casco and Sheepscot Bays, Maine. North Am. J. Fish. Manag. 20, 408–435 (2000).Article 

    Google Scholar 
    Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Janßen, H. et al. Integration of fisheries into marine spatial planning: Quo vadis? Estuar. Coast. Shelf Sci. 201, 105–113 (2018).ADS 
    Article 

    Google Scholar 
    Richardson, A. J. et al. Residency and reproductive status of yellowfin tuna in a proposed large-scale pelagic marine protected area. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1308–1316 (2018).Article 

    Google Scholar 
    CBD. Protected areas and other effective area-based conservation measures (Decision 14/8). https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-08-en.pdf (2018).Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hiltz, E., Fuller, S. & Mitchell, J. Disko Fan Conservation Area: a Canadian case study. Parks 24, 17–30 (2018).Article 

    Google Scholar 
    IUCN-WCPA Task Force on OECMs. Recognising and reporting other effective area-based conservation measures. https://portals.iucn.org/library/sites/library/files/documents/PATRS-003-En.pdf (2019).Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries Sustainability via Protection of Age Structure and Spatial Distribution of Fish Populations. Fisheries 29, 23–32 (2004).Article 

    Google Scholar 
    Hall, S. In A Fishery manager’s guidebook – Second Edition (eds. Garcia, S. M. & Cochrane, K. L.) 196–219 Ch.8 – Area and time restrictions. (Wiley-Blackwell, 2009).Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. New steps of change: looking beyond protected areas to consider other effective area-based conservation measures. Parks 20, 111–128 (2014).Article 

    Google Scholar 
    Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl. Acad. Sci. 113, 668–673 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Le Quesne, W. J. F. & Codling, E. A. Managing mobile species with MPAs: the effects of mobility, larval dispersal, and fishing mortality on closure size. ICES J. Mar. Sci. 66, 122–131 (2009).Article 

    Google Scholar 
    Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. 113, 3299–3304 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Dueri, S., Bopp, L. & Maury, O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Glob. Change Biol. 20, 742–753 (2014).ADS 
    Article 

    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mountain, D. G. & Murawski, S. A. Variation in the distribution of fish stocks on the northeast continental shelf in relation to their environment, 1980–1989. ICES mar. Sci. Symp. 195, 424–432.Muhling, B. A. et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148, 1–13 (2015).Article 

    Google Scholar 
    Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).ADS 
    Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).CAS 
    Article 

    Google Scholar 
    Lehodey, P., Senina, I., Nicol, S. & Hampton, J. Modelling the impact of climate change on South Pacific albacore tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 246–259 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Muhling, B. A. et al. Collection of Larval Bluefin Tuna (Thunnus Thynnus) Outside Documented Western Atlantic Spawning Grounds. Bull. Mar. Sci. 87, 687–694 (2011).Article 

    Google Scholar 
    Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average Distribution of Larvae of Oceanic Species of Scombroid Fishes, 1956–1981. (Far Seas Fisheries Research Laboratory, 1985).Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).Article 

    Google Scholar 
    Collette, B. B. In Annotated Checklist of Fishes Vol. 19 Family Scombridae Rafinesque 1815 – mackerels, tunas, and bonitos. (California Academy of Sciences, 2003).Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s catalog of fishes; Genera, species, references. Electronic version. (California Academy of Sciences, 2022).R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).Buenafe, KCV. tinbuenafe/DigitizingNishikawa: Digitizing Nishikawa v3.0, Zenodo, https://doi.org/10.5281/zenodo.6592148 (2022).Hijmans, R. J. et al. terra: Spatial Data Analysis. (2022).Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    Blondel, E. & Billet, N. RFigisGeo: A R package to handle utilities for geospatial processing. (2022).FAO. FAO Major Fishing Areas. https://www.fao.org/fishery/en/area/search (2022).Richards, W. J. & Potthoff, T. Analysis of the Taxonomic Characters of Young Scombrid Fishes, Genus Thunnus. In The Early life history of Fish (ed. Blaxter, J. H. S.) 623–648, https://doi.org/10.1007/978-3-642-65852-5_50 (Springer, 1974).Luthy, S. A., Cowen, R. K., Serafy, J. E. & McDowell, J. R. Toward identification of larval sailfish (Istiophorus platypterus), white marlin (Tetrapturus albidus), and blue marlin (Makaira nigricans) in the western North Atlantic Ocean. Fish. Bull. 103 (2004). More