More stories

  • in

    Towards 3D basic theories of plant forms

    Cremers, G. Presence of 10 models of plant architecture in Euphorbes-Malgaches. Comptes Rendus Hebd. des. Seances de. L Academie des. Sci. Ser. D. 281, 1575–1578 (1975).
    Google Scholar 
    Balduzzi, M. et al. Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Front. Plant Sci. 8, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).Article 

    Google Scholar 
    Farnsworth, K. D. & Niklas, K. J. Theories of optimization, form and function in branching architecture in plants. Funct. Ecol. 9, 355–363 (1995).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research (eds Pawar, S.et al.), 249–318 (Academic Press, 2015).Niklas, K. J. & Spatz, H. C. Allometric theory and the mechanical stability of large trees: proof and conjecture. Am. J. Bot. 93, 824–828 (2006).PubMed 
    Article 

    Google Scholar 
    Price, C. A. et al. The metabolic theory of ecology: prospects and challenges for plant biology. N. Phytol. 188, 696–710 (2010).Article 

    Google Scholar 
    Martone, P. T. et al. Mechanics without muscle: biomechanical inspiration from the plant world. Integr. Comp. Biol. 50, 888–907 (2010).PubMed 
    Article 

    Google Scholar 
    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).PubMed 
    Article 

    Google Scholar 
    Enquist, B. J. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).PubMed 
    Article 

    Google Scholar 
    Anfodillo, T. et al. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122375 (2013).
    Google Scholar 
    Duncanson, L. I., Dubayah, R. O. & Enquist, B. J. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Glob. Ecol. Biogeogr. 24, 1465–1475 (2015).Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winter, C. L. & Tartakovsky, D. M. Theoretical foundation for conductivity scaling. Geophys. Res. Lett. 28, 4367–4369 (2001).Article 

    Google Scholar 
    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, S. et al. Application of the metabolic scaling theory and water–energy balance equation to model large‐scale patterns of maximum forest canopy height. Glob. Ecol. Biogeogr. 25, 1428–1442 (2016).Article 

    Google Scholar 
    Osler, G. H. R., West, P. W. & Downes, G. M. Effects of bending stress on taper and growth of stems of young Eucalyptus regnans trees. Trees 10, 239–246 (1996).
    Google Scholar 
    Berthier, S. et al. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87, 19–25 (2001).Article 

    Google Scholar 
    Fournier, M. et al. Integrative biomechanics for tree ecology: beyond wood density and strength. J. Exp. Bot. 64, 4793–4815 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, K., Noguchi, K. & Terashima, I. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation. Tree Physiol. 25, 39–48 (2005).PubMed 
    Article 

    Google Scholar 
    Anten, N. P. & Schieving, F. The role of wood mass density and mechanical constraints in the economy of tree architecture. Am. Nat. 175, 250–260 (2010).PubMed 
    Article 

    Google Scholar 
    Jelonek, T. et al. The biomechanical formation of trees (Prace Naukowe, Doniesienia, Komunikaty, 2019).Muller‐Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed 
    Article 

    Google Scholar 
    McMahon, T. A. & Kronauer, R. E. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alméras, T. & Fournier, M. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol. 256, 370–381 (2009).PubMed 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mäkelä, A. & Valentine, H. T. Crown ratio influences allometric scaling in trees. Ecol 87, 2967–2972 (2006).Article 

    Google Scholar 
    Duursma, R. A. et al. Self‐shading affects allometric scaling in trees. Funct. Ecol. 24, 723–730 (2010).Article 

    Google Scholar 
    Pretzsch, H. & Dieler, J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169, 637–649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, Y. et al. Plant interactions alter the predictions of metabolic scaling theory. PloS One 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, D. et al. Scaling relationship between tree respiration rates and biomass. Biol. Lett. 6, 715–717 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogawa, K. Scaling relations based on the geometric and metabolic theories in woody plant species: A review. Perspect. Plant Ecol. Evol. Syst. 40, 125480 (2019).Article 

    Google Scholar 
    Risto, S. et al. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).Article 

    Google Scholar 
    Jackson, T. et al. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agric. Meteorol. 265, 137–144 (2019).Article 

    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three‐dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).Article 

    Google Scholar 
    Malhi, Y. et al. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8, 20170052 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27, 1035–1047 (2013).Article 

    Google Scholar 
    Lin, Y. & Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. Meteorol. 216, 105–114 (2016).Article 

    Google Scholar 
    Tanago, J. G. et al. Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).Article 

    Google Scholar 
    Takoudjou, S. M. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9, 905–916 (2018).Article 

    Google Scholar 
    Dassot, M., Fournier, M. & Deleuze, C. Assessing the scaling of the tree branch diameters frequency distribution with terrestrial laser scanning: methodological framework and issues. Ann. Sci. 76, 66 (2019).Article 

    Google Scholar 
    Klockow, P. A. et al. Allometry and structural volume change of standing dead southern pine trees using non-destructive terrestrial LiDAR. Remote Sens. Environ. 241, 111729 (2020).Article 

    Google Scholar 
    Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Ecol. Manag. 427, 217–229 (2018).Article 

    Google Scholar 
    Dai, J. et al. Drought-modulated allometric patterns of trees in semi-arid forests. Commun. Biol. 3, 1–8 (2020).Article 

    Google Scholar 
    Ogawa, K., Hagihara, A. & Hozumi, K. Growth analysis of a seedling community of Chamaecyparis obtusa. VI. Estimation of individual gross primary production by the summation method. In Transactions of the 30th Meeting of Chubu Branch of Japanese Forestry Society, 179–181 (Honda Kiyoshi, 1985).Yokota, T. & Hagihara, A. Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamaecyparis obtusa). J. Plant Res. 109, 177–184 (1996).Article 

    Google Scholar 
    Enquist, B. J. et al. Biological scaling: does the exception prove the rule? Nature 445, E9–E10 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lau, A. et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Ecol. Manag. 439, 132–145 (2019).Article 

    Google Scholar 
    Li, Y. et al. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agric. Meteorol. 284, 107874 (2020).Article 

    Google Scholar 
    Noyer, E. et al. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground‐truth data using terrestrial LiDAR. Am. J. Bot. 106, 187–198 (2019).PubMed 
    Article 

    Google Scholar 
    Jackson, T. et al. A new architectural perspective on wind damage in a natural forest. Front. Glob. Chang. 1, 13 (2019).Article 

    Google Scholar 
    Jackson, T. Strain Measurements on 21 Trees in Wytham Woods, UK. NERC Environmental Information Data Centre. https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-fda273ab45bc (2018).Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hay, M. J. M. et al. Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation. Oecologia 127, 185–190 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordero, R. A., Fetcher, N. & Voltzow, J. Effects of wind on the allometry of two species of plants in an elfin cloud forest. Biotropica 39, 177–185 (2010).Article 

    Google Scholar 
    Anfodillo, T. et al. Allometric trajectories and “stress”: a quantitative approach. Front. Plant Sci. 7, 1681 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louarn, G. & Song, Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, S. C. Reproductive allometry in Malaysian rain forest trees: biomechanics versus optimal allocation. Evol. Ecol. 10, 517–530 (1996).Article 

    Google Scholar 
    Kempes, C. P. et al. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One 6, e20551 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, E. et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30, 1953–1968 (2016).Article 

    Google Scholar 
    Swetnam, T. L., O’Connor, C. D. & Lynch, A. M. Tree morphologic plasticity explains deviation from metabolic scaling theory in semi-arid conifer forests, southwestern USA. PLoS One 11, e0157582 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Loehle, C. Biomechanical constraints on tree architecture. Trees 30, 2061–2070 (2016).Article 

    Google Scholar 
    Guillon, T., Dumont, Y. & Fourcaud, T. Numerical methods for the biomechanics of growing trees. Comput. Math. Appl. 64, 289–309 (2012).Article 

    Google Scholar 
    Olson, M. E., Rosell, J. A., Muñoz, S. Z. & Castorena, M. Carbon limitation, stem growth rate and the biomechanical cause of Corner’s rules. Ann. Bot. 122, 583–592 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Enquist, B. J. & Brown, J. H. A general quantitative theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 106, 7040–7045 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Struggling to keep pace

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES, 2019).Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Proc. Natl Acad. Sci. USA 106(Suppl 2), 19637–19643 (2009).CAS 
    Article 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 
    Article 

    Google Scholar 
    Senior, R. A., Hill, J. K. & Edwards, D. P. Nat. Clim. Chang. 9, 623–626 (2019).Article 

    Google Scholar 
    Viana, D. S. & Chase, J. M. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01814-y (2022).Article 

    Google Scholar 
    Sauer, J. R. et al. Condor 119, 576–593 (2017).Article 

    Google Scholar 
    Nowak, L., Schleuning, M., Bender, I. M. A., Kissling, W. D. & Fritz, S. A. Divers. Distrib. https://doi.org/10.1111/ddi.13518 (2022).Article 

    Google Scholar 
    Allen, C. D. et al. For. Ecol. Manage. 259, 660–684 (2010).Article 

    Google Scholar 
    Janis, C. M., Damuth, J. & Theodor, J. M. Proc. Natl Acad. Sci. USA 97, 7899–7904 (2000).CAS 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Nat. Ecol. Evol. 5, 656–662 (2021).Article 

    Google Scholar 
    Watanabe, Y. Y. Ecol. Lett. 19, 907–914 (2016).Article 

    Google Scholar 
    Bladon, A. J. et al. J. Anim. Ecol. 89, 2440–2450 (2020).Article 

    Google Scholar 
    Claramunt, S., Hong, M. & Bravo, A. Biotropica https://doi.org/10.1111/btp.13109 (2022).Article 

    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. J. Anim. Ecol. 87, 1034–1045 (2018).Article 

    Google Scholar 
    Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. Trends Ecol. Evol. 29, 572–580 (2014).Article 

    Google Scholar 
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Proc. R. Soc. Lond. B. Biol. Sci. 283, 20152458 (2016).
    Google Scholar 
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Bioscience 66, 393–400 (2016).Article 

    Google Scholar 
    Rosenberg, K. V. et al. Science 366, 120–124 (2019).CAS 
    Article 

    Google Scholar 
    Howard, C. et al. Divers. Distrib. 26, 1442–1455 (2020).Article 

    Google Scholar  More

  • in

    Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons

    Climate and land cover dataOur study of tropical dry season dynamics required climatic variables with high temporal resolution (i.e., daily) and full coverage of tropic regions. To reduce uncertainties associated with the choice of precipitation (P) and evapotranspiration (Ep or E) datasets, we used an ensemble of eight precipitation products, three reanalysis-based products for Ep, and one satellite-based land E product. These precipitation datasets were derived four gauge-based or satellite observation (CHIRPS58, GPCC59, CPC-U60 and PERSIANN-CDR61), three reanalyses (ERA-562, MERRA-263, and PGF64) and a multi-source weighted ensemble product (MSWEP v2.865). The potential evapotranspiration (Ep) was calculated using the FAO Penman–Monteith equation66 (Eqs. (1, 2)), which requires meteorological inputs of wind speed, net radiation, air temperature, specific humidity, and surface pressure. We derived these meteorological variables from the three reanalysis products (ERA-5, MERRA-2, and GLDAS-2.067). Since PGF reanalysis lacked upward short- and long-wave radiation output and thus net radiation, we used available meteorological outputs from GLDAS-2.0 instead, which was forced entirely with the PGF input data.$${Ep}=frac{0.408cdot triangle cdot left({R}_{n}-Gright)+gamma cdot frac{900}{T+273}cdot {u}_{2}cdot left({e}_{s}-{e}_{a}right)}{triangle +{{{{{rm{gamma }}}}}}cdot left(1+0.34cdot {u}_{2}right)}$$
    (1)
    $${VPD}={e}_{s}-{e}_{a}=0.6108cdot {e}^{frac{17.27cdot T}{T+237.3}}cdot left(1-frac{{RH}}{100}right)$$
    (2)
    Where Ep is the potential evapotranspiration (mm day−1). Rn is net radiation at the surface (MJ m−2 day−1), T is mean daily air temperature at 2 m height (°C), ({u}_{2}) is wind speed at 2 m height (m s−1), ((,{e}_{s}-{e}_{a})) is the vapor pressure deficit of the air (kPa), ({RH}) is the relative air humidity near surface (%), ∆ is the slope of the saturation vapor pressure-temperature relationship (kPa °C−1), γ is the psychrometric constant (kPa °C−1), G is the soil heat flux (MJ m−2 day−1, is often ignored for daily time steps G ≈ 0).We derived the daily evapotranspiration data from the Global Land Evaporation Amsterdam Model (GLEAM v3.3a68), which is a set of algorithms dedicated to developing terrestrial evaporation and root-zone soil moisture data. GLEAM fully assimilated the satellite-based soil moisture estimates from ESA CCI, microwave L-band vegetation optical depth (VOD), reanalysis-based temperature and radiation, and multi-source precipitation forcings. The direct assimilation of observed soil moisture allowed us to detect true soil moisture dynamic and its impacts on evapotranspiration. Besides, the incorporation of VOD, which is closely linked to vegetation water content69,70, allowed us to detect the effect of water stress, heat stress, and vegetation phenological constraints on evaporation. Other observation-driven ET products from remote-sensing physical estimation and flux-tower are not included due to their low temporal resolution (i.e., monthly)71 or short duration72,73. ET outputs of reanalysis products are not considered in our analysis, because the assimilation systems lack explicit representation of inter-annual variability of vegetation activities and thus may not fully capture hydrological response to vegetation changes62,63,67.We used land cover maps for the year 2001 from the Moderate-Resolution Imaging Spectroradiometer (MODIS, MCD12C1 C574) based on the IGBP classification scheme to exclude water-dominated and sparely-vegetated pixels (like Sahara, Arabian Peninsula). All climate and land cover datasets mentioned above were remapped to a common 0.25° × 0.25° grid and unified to daily resolution. The main characteristics of the datasets mentioned above are summarized in Supplementary Table 1.Outputs of CMIP6 simulationsTo understand how modeled dry season changes compare with observed changes, we analyzed outputs from the “historical” (1983-2014) runs of 34 coupled models participating in the 6th Coupled Model Inter-comparison Project75 (CMIP6, Supplementary Table 3). We used these models because they offered daily outputs of all climatic variables needed for our analysis, including precipitation, latent heat (convert to E), and multiple meteorological variables for Ep (air temperature, surface specific humidity, wind speed, and net radiation). All outputs were remapped to a common 1.0° × 1.0° grid and unified to daily resolution.Defining dry season length and timingFor each grid cell and each dry season definition (P  More

  • in

    Urban tropical forest islets as hotspots of ants in general and invasive ants in particular

    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).Article 

    Google Scholar 
    Frizzo, T. L., Souza, L. M., Sujii, E. R. & Togni, P. H. Ants provide biological control on tropical organic farms influenced by local and landscape factors. Biol. Control 151, 104378 (2020).CAS 
    Article 

    Google Scholar 
    Elizalde, L. et al. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 95, 1418–1441 (2020).PubMed 
    Article 

    Google Scholar 
    Zhong, Z. et al. Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology 102, e03312 (2021).PubMed 
    Article 

    Google Scholar 
    Ortiz, D. P., Elizalde, L. & Pirk, G. I. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecol. Entomol. 46, 626–636 (2021).Article 

    Google Scholar 
    Li, X. et al. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct. Ecol. 35, 1822–1832 (2021).Article 

    Google Scholar 
    Wendt, C. F. et al. Local environmental variables are key drivers of ant taxonomic and functional beta-diversity in a Mediterranean dryland. Sci. Rep. 11, 1–10 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Lach, L. Invasive ant establishment, spread, and management with changing climate. Curr. Opin. Insect Sci. 47, 119–124 (2021).PubMed 
    Article 

    Google Scholar 
    Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    Miguelena, J. G. & Baker, P. B. Effects of urbanization on the diversity, abundance, and composition of ant assemblages in an arid city. Environ. Entomol. 48, 836–846 (2019).PubMed 
    Article 

    Google Scholar 
    Nielsen, A. B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).Article 

    Google Scholar 
    Peng, M.-H., Hung, Y.-C., Liu, K.-L. & Neoh, K.-B. Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Sci. Rep. 10, 16043 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos, M. N., Delabie, J. H. & Queiroz, J. M. Biodiversity conservation in urban parks: A study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B Biol. Sci. 285, 20180643 (2018).Article 
    CAS 

    Google Scholar 
    Abdel-Dayem, M. S. et al. Ant diversity and composition patterns along the urbanization gradients in an arid city. J. Nat. Hist. 55, 2521–2547 (2021).Article 

    Google Scholar 
    Nooten, S. S., Lee, R. H. & Guénard, B. Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biol. Conserv. 261, 109286 (2021).Article 

    Google Scholar 
    Bhagwat, S. A. & Rutte, C. Sacred groves: Potential for biodiversity management. Front. Ecol. Environ. 4, 519–524 (2006).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Rajesh, T. P., Unni, A. P., Ballullaya, U. P., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves–an island habitat–using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90 (2021).Article 

    Google Scholar 
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    Plowes, R. M., Dunn, J. G. & Gilbert, L. E. The urban fire ant paradox: Native fire ants persist in an urban refuge while invasive fire ants dominate natural habitats. Biol. Invasions 9, 825–836 (2007).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Surendran, P. & Sinu, P. A. Ants indicate urbanization pressure in sacred groves of southwest India: A pilot study. Curr. Sci. 113, 317–322 (2017).Article 

    Google Scholar 
    Wetterer, J. K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 77–97 (2005).
    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. A landscape approach to biodiversity conservation of sacred groves in the Western Ghats of India. Conserv. Biol. 19, 1853–1862 (2005).Article 

    Google Scholar 
    Chandrashekara, U. M. & Sankar, S. Ecology and management of sacred groves in Kerala, India. For. Ecol. Manag. 112, 165–177 (1998).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Manoj, K. et al. Diversity of Platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats Biodiversity Hotspot, India. Environ. Entomol. 46, 685–692 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hariraveendra, M., Rajesh, T. P., Unni, A. P. & Sinu, P. A. Prey–predator interaction suggests sacred groves are not functionally different from neighbouring used lands. J. Trop. Ecol. 36, 220–224 (2020).Article 

    Google Scholar 
    Bingham, C. T. The fauna of British India, including Ceylon and Burma. Hymenoptera, Vol. II. Ants and Cuckoo-wasps. (1903).Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, 1994).
    Google Scholar 
    Bellow, J. G. & Nair, P. K. R. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. For. Meteorol. 114, 197–211 (2003).ADS 
    Article 

    Google Scholar 
    Dobson, A. J. & Barnett, A. G. An Introduction to Generalized Linear Models (Chapman and Hall/CRC, 2018).MATH 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Kim, T. N., Savannah, B., Bill, D. W., Douglas, A. L. & Claudio, G. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).Article 

    Google Scholar 
    Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Nash, J. C. On best practice optimization methods in R. J. Stat. Softw. 60, 1–14 (2014).Article 

    Google Scholar 
    Berman, M., Andersen, A. N. & Ibanez, T. Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biol. Invasions 15, 2311–2331 (2013).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H.-P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guénard, B., Cardinal-De Casas, A. & Dunn, R. R. High diversity in an urban habitat: Are some animal assemblages resilient to long-term anthropogenic change?. Urban Ecosyst. 18, 449–463 (2015).Article 

    Google Scholar 
    Slipinski, P., Zmihorski, M. & Czechowski, W. Species diversity and nestedness of ant assemblages in an urban environment. Eur. J. Entomol. 109, 197 (2012).Article 

    Google Scholar 
    Heterick, B. E., Lythe, M. & Smithyman, C. Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: Two case studies. Urban Ecosyst. 16, 145–173 (2013).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Goodman, M. & Warren, R. J. II. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol. Invasions 21, 2713–2722 (2019).Article 

    Google Scholar 
    Philpott, S. M. & Armbrecht, I. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31, 369–377 (2006).Article 

    Google Scholar 
    Philpott, S. M., Perfecto, I. & Vandermeer, J. Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. Biodivers. Conserv. 15, 139–155 (2006).Article 

    Google Scholar 
    García-Cárdenas, R., Montoya-Lerma, J. & Armbrecht, I. Ant diversity under three coverages in a Neotropical coffee landscape. Rev. Biol. Trop. 66, 1373–1389 (2018).Article 

    Google Scholar 
    Sinu, P. A. et al. Invasive ant (Anoplolepis gracilipes) disrupts pollination in pumpkin. Biol. Invasions 19, 2599–2607 (2017).Article 

    Google Scholar 
    Tsang, T. P., Dyer, E. E. & Bonebrake, T. C. Alien species richness is currently unbounded in all but the most urbanized bird communities. Ecography 42, 1426–1435 (2019).Article 

    Google Scholar 
    D’ettorre, P. Invasive eusocieties: commonalities between ants and humans. In Human Dispersal and Species Movement (eds Boivin, N. et al.) (Cambridge University Press, 2017).
    Google Scholar 
    Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    Lizon à l’Allemand, S. & Witte, V. sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biol. invasions 12, 3551–3561 (2010).Article 

    Google Scholar 
    Silverman, J. & Buczkowski, G. Behaviours mediating ant invasions. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) (Cambridge University Press, 2016).
    Google Scholar  More

  • in

    Guiding large-scale management of invasive species using network metrics

    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
    Google Scholar 
    Epanchin-Niell, R. et al. Controlling invasive species in complex social landscapes. Front. Ecol. Environ. 8, 210–216 (2009).
    Google Scholar 
    Charles, H. & Dukes, J. S. in Biological Invasions (ed. Nentwig, W.) 217–237 (Springer, 2007). https://doi.org/10.1007/978-3-540-36920-2_13Gallardo, B., Clavero, M., Sánchez, M. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).
    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).CAS 

    Google Scholar 
    Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).
    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).
    Google Scholar 
    Chades, I. et al. General rules for managing and surveying networks of pests, diseases, and endangered species. Proc. Natl. Acad. Sci. USA 108, 8323–8328 (2011).CAS 

    Google Scholar 
    Epanchin-Niell, R. S. & Wilen, J. E. Optimal spatial control of biological invasions. J. Environ. Econ. Manag. 63, 260–270 (2012).
    Google Scholar 
    Epanchin-Niell, R. S. & Wilen, J. E. Individual and cooperative management of invasive species in human-mediated landscapes. Am. J. Agric. Econ. 97, 180–198 (2015).
    Google Scholar 
    Aadland, D., Sims, C. & Finnoff, D. Spatial dynamics of optimal management in bioeconomic systems. Comput. Econ. 45, 545–577 (2015).
    Google Scholar 
    Baker, C. M. Target the source: optimal spatiotemporal resource allocation for invasive species control. Conserv. Lett. 10, 41–48 (2017).
    Google Scholar 
    Bushaj, S., Büyüktahtakın, İ. E., Yemshanov, D. & Haight, R. G. Optimizing surveillance and management of emerald ash borer in urban environments. Nat. Res. Model. 34, e12267 (2021).
    Google Scholar 
    Fischer, S. M., Beck, M., Herborg, L.-M. & Lewis, M. A. Managing aquatic invasions: optimal locations and operating times for watercraft inspection stations. J. Environ. Manag. 283, 111923 (2021).
    Google Scholar 
    Büyüktahtakın, İ. E. & Haight, R. G. A review of operations research models in invasive species management: state of the art, challenges, and future directions. Ann. Oper. Res. 271, 357–403 (2018).
    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).
    Google Scholar 
    Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).CAS 

    Google Scholar 
    Nowzari, C., Precaido, V. M. & Pappas, G. J. Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36, 26–46 (2016).
    Google Scholar 
    Newman, M. E. J. Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002).CAS 

    Google Scholar 
    Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence through a social network. In Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 137–146 (ACM Press, 2003).Pastor-Satorras, R. & Vespignani, A. Immunization of complex networks. Phys. Rev. E 65, 036104 (2002).
    Google Scholar 
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).
    Google Scholar 
    Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).
    Google Scholar 
    Muirhead, J. R. & Macisaac, H. J. Development of inland lakes as hubs in an invasion network. J. Appl. Ecol. 42, 80–90 (2005).
    Google Scholar 
    de la Fuente, B., Saura, S. & Beck, P. S. Predicting the spread of an invasive tree pest: the pine wood nematode in southern europe. J. Appl. Ecol. 55, 2374–2385 (2018).
    Google Scholar 
    Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).
    Google Scholar 
    Morel-Journel, T., Assa, C. R., Mailleret, L. & Vercken, E. Its all about connections: hubs and invasion in habitat networks. Ecol. Lett. 22, 313–321 (2019).
    Google Scholar 
    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).
    Google Scholar 
    Kvistad, J. T., Chadderton, W. L. & Bossenbroek, J. M. Network centrality as a potential method for prioritizing ports for aquatic invasive species surveillance and response in the Laurentian Great Lakes. Manag. Biol. Invasions 10, 403 (2019).
    Google Scholar 
    Haight, R. G., Kinsley, A. C., Kao, S.-Y., Yemshanov, D. & Phelps, N. B. Optimizing the location of watercraft inspection stations to slow the spread of aquatic invasive species. Biol. Invasions 23, 3907–3919 (2021).
    Google Scholar 
    McEachran, M. C. et al. Stable isotopes indicate that zebra mussels (Dreissena polymorpha) increase dependence of lake food webs on littoral energy sources. Freshw, Biol. 64, 183–196 (2019).CAS 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management (eds Leppäkoski, E. et al.) 433–446 (Springer, 2002).Prescott, T. H., Claudi, R. & Prescott, K. L. Impact of Dreissenid mussels on the infrastructure of dams and hydroelectric power plants. In Quagga and Zebra Mussels (eds Nalepa, T. F. & Schloesser, D. W.) 243–258 (CRC Press, 2013).Invasive Species of Aquatic Plants and Wild Animals in Minnesota: Annual Report for 2020 (Minnesota Department of Natural Resources, 2020).Kanankege, K. S., Alkhamis, M. A., Phelps, N. B. & Perez, A. M. A probability co-kriging model to account for reporting bias and recognize areas at high risk for zebra mussels and eurasian watermilfoil invasions in Minnesota. Front. Vet. Sci. 4, 231 (2018).
    Google Scholar 
    Mallez, S. & McCartney, M. Dispersal mechanisms for zebra mussels: population genetics supports clustered invasions over spread from hub lakes in Minnesota. Biol. Invasions 20, 2461–2484 (2018).
    Google Scholar 
    Kao, S.-Y. Z. et al. Network connectivity of Minnesota waterbodies and implications for aquatic invasive species prevention. Biol. Invasions 23, 3231–3242 (2021).
    Google Scholar 
    Kleinberg, J. M. Authoritative sources in a hyperlinked environment. In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms 668–677 (1998).McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).CAS 

    Google Scholar 
    Bossenbroek, J. M., Kraft, C. E. & Nekola, J. C. Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol. Appl. 11, 1778–1788 (2001).
    Google Scholar 
    Leung, B., Bossenbroek, J. M. & Lodge, D. M. Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol. Invasions 8, 241–254 (2006).
    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).Runting, R. K. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2, 53–61 (2019).
    Google Scholar 
    Kinsley, A. C. et al. AIS Explorer: prioritization for watercraft inspections. A decision-support tool for aquatic invasive species management. J. Environ. Manage. 314, 115037 (2022).
    Google Scholar 
    Vander Zanden, M. J. & Olden, J. D. A management framework for preventing the secondary spread of aquatic invasive species. Can. J. Fish. Aquat. Sci. 65, 1512–1522 (2008).
    Google Scholar 
    Kanankege, K. S. et al. Lessons learned from the stakeholder engagement in research: application of spatial analytical tools in one health problems. Front. Vet. Sci. 7, 254 (2020).
    Google Scholar 
    Kroetz, K. & Sanchirico, J. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).
    Google Scholar 
    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).
    Google Scholar 
    Koenker, R. in Asymptotic Statistics (eds Mandl, P. & Hušková, M.) 349–359 (Springer, 1994).Ashander, J. Analysis code and data for ‘Guiding large-scale management of invasive species using network metrics’. figshare https://doi.org/10.6084/m9.figshare.14402447 (2021). More

  • in

    Gentrified gardens

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields

    Webb, T. J., vanden Berghe, E. & O’Dor, R. Biodiversity’s big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, https://doi.org/10.1371/journal.pone.0010223 (2010).Drazen, J. C. & Sutton, T. T. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes. Annual Review of Marine Science 9, 337–366, https://doi.org/10.1146/annurev-marine-010816-060543 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Current Biology 24, R1074–R1076, https://doi.org/10.1016/j.cub.2014.08.054 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5, 10, https://doi.org/10.1038/ncomms4271 (2014).CAS 
    Article 

    Google Scholar 
    Anderson, T. R. et al. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES Journal of Marine Science 76, 690–701, https://doi.org/10.1093/icesjms/fsx234 (2018).Article 

    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnology and Oceanography 66, 1639–1664, https://doi.org/10.1002/lno.11709 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Koslow, J. A., Kloser, R. J. & Williams, A. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Marine Ecology Progress Series 146, 21–35, https://doi.org/10.3354/meps146021 (1997).ADS 
    Article 

    Google Scholar 
    Kaartvedt, S., Staby, A. & Aksnes, D. L. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series 456, 1–6, https://doi.org/10.3354/meps09785 (2012).ADS 
    Article 

    Google Scholar 
    Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Progress in Oceanography 84, 69–84, https://doi.org/10.1016/j.pocean.2009.09.008 (2010).ADS 
    Article 

    Google Scholar 
    Van de Putte, A., Flores, H., Volckaert, F. & van Franeker, J. A. Energy content of Antarctic mesopelagic fishes: Implications for the marine food web. Polar Biology 29, 1045–1051, https://doi.org/10.1007/s00300-006-0148-z (2006).Article 

    Google Scholar 
    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 208–221, https://doi.org/10.1016/j.dsr2.2011.08.004 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    McCormack, S. A. et al. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecology and Evolution 11, 227–241, https://doi.org/10.1002/ece3.7017 (2021).Article 
    PubMed 

    Google Scholar 
    Griffiths, S. P., Olson, R. J. & Watters, G. M. Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean. Reviews in Fish Biology and Fisheries 23, 459–475, https://doi.org/10.1007/s11160-012-9301-7 (2013).Article 

    Google Scholar 
    Saunders, R. A., Hill, S. L., Tarling, G. A. & Murphy, E. J. Myctophid Fish (Family Myctophidae) Are Central Consumers in the Food Web of the Scotia Sea (Southern Ocean). Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00530 (2019).Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proceedings of the Royal Society B-Biological Sciences 286, 8, https://doi.org/10.1098/rspb.2019.0353 (2019).Article 

    Google Scholar 
    Freer, J. J., Tarling, G. A., Collins, M. A., Partridge, J. C. & Genner, M. J. Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Diversity and Distributions 25, 1259–1272, https://doi.org/10.1111/ddi.12934 (2019).Article 

    Google Scholar 
    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources Introduction. ICES Journal of Marine Science 76, 609–615, https://doi.org/10.1093/icesjms/fsz067 (2019).Article 

    Google Scholar 
    Proud, R. et al. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES Journal of Marine Science 76, 718–733, https://doi.org/10.1093/icesjms/fsy037 (2019).Article 

    Google Scholar 
    Caccavo, J. A. et al. Productivity and Change in Fish and Squid in the Southern Ocean. Frontiers in Ecology and Evolution 9, https://doi.org/10.3389/fevo.2021.624918 (2021).Davison, P., Lara-Lopez, A. & Anthony Koslow, J. Mesopelagic fish biomass in the southern California current ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography 112, 129–142, https://doi.org/10.1016/j.dsr2.2014.10.007 (2015).ADS 
    Article 

    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. Tech. Rep., PICES (2010).Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10, 235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x (2009).Article 

    Google Scholar 
    Saunders, R. A. & Tarling, G. A. Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule. American Naturalist 191, 343–351, https://doi.org/10.1086/695767 (2018).Article 

    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the Global Ocean’s Mesopelagic Zone. Current Biology 27, 113–119, https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robison, B. H. Conservation of Deep Pelagic Biodiversity. Conservation Biology 23, 847–858, https://doi.org/10.1111/j.1523-1739.2009.01219.x (2009).Article 
    PubMed 

    Google Scholar 
    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables” – eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems 161, 26–41, https://doi.org/10.1016/j.jmarsys.2016.05.003 (2016).ADS 
    Article 

    Google Scholar 
    St John, M. A. et al. A Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Frontiers in Marine Science 3, 6, https://doi.org/10.3389/fmars.2016.00031 (2016).Article 

    Google Scholar 
    Newman, L. et al. Delivering Sustained, Coordinated, and Integrated Observations of the Southern Ocean for Global Impact. Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00433 (2019).Costello, M. J. & Vanden Berghe, E. ‘Ocean biodiversity informatics’: a new era in marine biology research and management. Marine Ecology Progress Series 316, 203–214, https://doi.org/10.3354/meps316203 (2006).ADS 
    Article 

    Google Scholar 
    Van de Putte, A. et al. From data to marine ecosystem assessments of the Southern Ocean, achievements, challenges, and lessons for the future. Frontiers in Marine Science 8, https://doi.org/10.3389/fmars.2021.637063 (2021).Duhamel, G. et al. Biogeographic Patterns of Fish. In Biogeographic Atlas of the Southern Ocean, 328–362 (Scientific Committee of Antarctic Research, Cambridge, UK, 2014).Piatkowski, U., Rodhouse, P. G., White, M. G., Bone, D. G. & Symon, C. Nekton community of the Scotia Sea as sampled by the RMT-25 during the austral summer. Marine Ecology Progress Series 112, 13–28, https://doi.org/10.3354/meps112013 (1994).ADS 
    Article 

    Google Scholar 
    Collins, M. A. et al. Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biology 31, 837–851, https://doi.org/10.1007/s00300-008-0423-2 (2008).Article 

    Google Scholar 
    Collins, M. A. et al. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 189–198, https://doi.org/10.1016/j.dsr2.2011.07.003 (2012).ADS 
    Article 

    Google Scholar 
    Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Science 21, 135–148, https://doi.org/10.1017/s0954102008001636 (2009).ADS 
    Article 

    Google Scholar 
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Marine Ecology Progress Series 568, 1–16, https://doi.org/10.3354/meps12099 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Flores, H. et al. Distribution, abundance and ecological relevance of pelagic fishes in the Lazarev Sea, Southern Ocean. Marine Ecology Progress Series 367, 271–282, https://doi.org/10.3354/meps07530 (2008).ADS 
    Article 

    Google Scholar 
    Flores, H. et al. Seasonal changes in the vertical distribution and community structure of Antarctic macrozooplankton and micronekton. Deep-Sea Research Part I-Oceanographic Research Papers 84, 127–141, https://doi.org/10.1016/j.dsr.2013.11.001 (2014).ADS 
    Article 

    Google Scholar 
    Duhamel, G. The Pelagic Fish Community of the Polar Frontal Zone off the Kerguelen Islands. In Fishes of Antarctica, 63–74, https://doi.org/10.1007/978-88-470-2157-0_5 (Springer, Milano, 1998).Duhamel, G., Koubbi, P. & Ravier, C. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23, 106–112, https://doi.org/10.1007/s003000050015 (2000).Article 

    Google Scholar 
    Duhamel, G., Gasco, N. & Davaine, P. Poissons des îles Kerguelen et Crozet: Guide régional de l’océan Austral (Muséum national d’Histoire naturelle, Paris, 2005).Trebilco, R. et al. Mesopelagic community struture on the southern Kerguelen Axis. In The Kerguelen Plateau: Marine Ecosystem and Fisheries, 49–54 (Australian Antarctic Division, Kingston, Tasmania, 2019).Constable, A. J. & Swadling, K. M. Ecosystem drivers of food webs on the Kerguelen Axis of the Southern Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography 174, 6, https://doi.org/10.1016/j.dsr2.2020.104790 (2020).Article 

    Google Scholar 
    Van de Putte, A. P., Jackson, G. D., Pakhomov, E., Flores, H. & Volckaert, F. A. M. Distribution of squid and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-West campaign. Deep-Sea Research Part II-Topical Studies in Oceanography 57, 956–967, https://doi.org/10.1016/j.dsr2.2008.02.015 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Flynn, A. J. & Williams, A. Lanternfish (Pisces: Myctophidae) biomass distribution and oceanographic-topographic associations at Macquarie Island, Southern Ocean. Marine and Freshwater Research 63, 251–263, https://doi.org/10.1071/mf11163 (2012).Article 

    Google Scholar 
    Sutton, C. A., Kloser, R. J. & Gershwin, L. A. Micronekton in southeastern Australian and the Southern Ocean; A collation of the biomass, abundance, biodiversity and distribution data from CSIRO’s historical mesopelagic depth stratified new samples. CSIRO, Aust. http://hdl.handle.net/102.100.100/365479?index=1 (2018).Gon, O. & Heemstra, P. C. Fishes of the Southern Ocean (J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990).Darwin Core Maintenance Group. List of Darwin Core terms (2021).R Core Team. R: A language and environment for statistical computing (2021).Holstein, J. worms: Retrieving Aphia Information from World Register of Marine Species (2018).Bivand, R. et al. maptools: Tools for handling spatial objects. R package version 1.1-1 (2021).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research Part I-Oceanographic Research Papers 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-w (1995).ADS 
    Article 

    Google Scholar 
    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology 20, 3004–3025, https://doi.org/10.1111/gcb.12623 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Woods, B. et al. Myctobase. Zenodo https://doi.org/10.5281/zenodo.5590999 (2021).Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Marine Ecology Progress Series 569, 173–185, https://doi.org/10.3354/meps12093 (2017).ADS 
    Article 

    Google Scholar 
    Provoost, P. & Bosch, S. obistools: Tools for data enhancement and quality control (2021).Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change, https://doi.org/10.1098/rspb.2016.1646 (2016).McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Blanchard, J. L. & Constable, A. Alternative energy pathways in Southern Ocean food webs: Insights from a balanced model of Prydz Bay, Antarctica. Deep-Sea Research Part II-Topical Studies in Oceanography 174, https://doi.org/10.1016/j.dsr2.2019.07.001 (2020).Rodhouse, P. G. K. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep-Sea Research Part II-Topical Studies in Oceanography 95, 129–138, https://doi.org/10.1016/j.dsr2.2012.07.001 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    The MathWorks Inc., V.. MATLAB (2019).Potter, D. C., Lough, R. G., Perry, R. I. & Neilson, J. D. Comparison of the mocness and iygpt pelagic samplers for the capture of 0-group cod (gadus morhua) on georges bank. ICES Journal of Marine Science 46, https://doi.org/10.1093/icesjms/46.2.121 (1990).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813, https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation 156, https://doi.org/10.1016/j.biocon.2011.11.013 (2012).McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fisheries Research 47, 173–191, https://doi.org/10.1016/s0165-7836(00)00168-5 (2000).Article 

    Google Scholar 
    Collins, M., Piatkowski, U. & Saunders, R. A. Distribution of mesopelagic fish in the Scotia Sea from RMT25 and pelagic trawls deployed from RRS James Clark Ross and RRS John Biscoe, UK Polar Data Centre https://doi.org/10.5285/f4dfc0ee-4f61-47c5-a5a8-238e02ff2fdd (2021).Hoddell, R. J., Crossley, C., Hosie, G. & Williams, D. Fish and zooplankton from RMT-8 net hauls on the BROKE voyage. Australian Antarctic Data Centre https://doi.org/10.4225/15/57BA97EA8A22D (2016).Constable, A., Williams, D. & Lamb, T. Heard Island and McDonald Islands (HIMI) Marine Ecosystem. Australian Antarctic Data Centre https://doi.org/10.4225/15/5b31be45e8977 (2018).Van de Putte, A. Fish catches from Rectangular Midwater Trawl – data collected from the BROKE-West voyage of the Aurora Australis, 2006. Australian Antarctic Data Centre https://doi.org/10.4225/15/598d453109182 (2010).Flynn, A. J., Kloser, R. J. & Sutton, C. Micronekton assemblages and bioregional setting of the Great Australian Bight: A temperate northern boundary current system. Deep-Sea Research Part II: Topical Studies in Oceanography 157–158, https://doi.org/10.1016/j.dsr2.2018.08.006 (2018).Oozeki, Y., Hu, F., Tomatsu, C. & Kubota, H. Development of a new multiple sampling trawl with autonomous opening/closing net control system for sampling juvenile pelagic fish. Deep-Sea Research Part I-Oceanographic Research Papers 61, https://doi.org/10.1016/j.dsr.2011.12.001 (2012). More

  • in

    The Campsis-Icterus association as a model system for avian nectar-robbery studies

    Darwin, C. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the good effects of Intercrossing. (John Murray, 1862).Darwin, C. The various Contrivances by which Orchids are Fertilised by Insects. Second edition, revised., (D. Appleton and Company, 1877).Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).Müller, H. Befruchtung der Blumen durch Insekten (Verlag Von Wilhelm Englemann, 1873).Book 

    Google Scholar 
    Riley, C. V. The yucca moth and yucca pollination. Rep. Missouri Botan. Garden 3, 99–159 (1892).Article 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology 3rd edn. (Pergamon, Berlin, 1979).
    Google Scholar 
    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 (2004).Article 

    Google Scholar 
    Inouye, D. W. In The Biology of Nectaries (eds Elias, T. S. & Bentley, B. L.) 153–173 (Columbia University Press, 1983).
    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. https://doi.org/10.1146/annurev.ecolsys.110308.120330 (2010).Article 

    Google Scholar 
    Irwin, R. E. & Maloof, J. E. Variation in nectar robbing over time, space, and species. Oecologia 133, 525–533. https://doi.org/10.1007/s00442-002-1060-z (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661. https://doi.org/10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2 (2000).Article 

    Google Scholar 
    Inouye, D. W. The terminology of floral larceny. Ecology 61, 1251–1253. https://doi.org/10.2307/1936841 (1980).Article 

    Google Scholar 
    Lyon, D. L. & Chadek, C. Exploitation of nectar resources by hummingbirds, bees (Bombus), and Diglossa baritula and Its role in the evolution of Penstemon kunthii. Condor 73, 246–248. https://doi.org/10.2307/1365847 (1971).Article 

    Google Scholar 
    Colwell, R. K., Betts, B. J., Bunnell, P., Carpenter, F. L. & Feinsinger, P. Competition for the nectar of Centropogon valerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and Its evolutionary implications. Condor 76, 447–452. https://doi.org/10.2307/1365817 (1974).Article 

    Google Scholar 
    Arizmendi, M. C., Dominguez, C. A. & Dirzo, R. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10, 119–127. https://doi.org/10.2307/2390270 (1996).Article 

    Google Scholar 
    Arizmendi, M. C. Multiple ecological interactions: Nectar robbers and hummingbirds in a highland forest in Mexico. Can. J. Zool. 79, 997–1006. https://doi.org/10.1139/z01-066 (2001).Article 

    Google Scholar 
    Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae)1. Biotropica 31, 618–625. https://doi.org/10.1111/j.1744-7429.1999.tb00410.x (1999).Article 

    Google Scholar 
    Traveset, A., Willson, M. F. & Sabag, C. Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Funct. Ecol. 12, 459–464. https://doi.org/10.1046/j.1365-2435.1998.00212.x (1998).Article 

    Google Scholar 
    Skutch, A. F. Life histories of Central American birds. Families Fringillidae, Thraupidae Parulidae and Coerebidae. Pacific Coast Avifauna 31, 1–448 (1954).
    Google Scholar 
    Vuilleumier, F. Systematics and evolution in Diglossa (Aves, Coerebidae). Am. Mus. Novit. 2381, 1–44 (1969).
    Google Scholar 
    Graves, G. R. Pollination of a Tristerix mistletoe (Loranthaceae) by Diglossa (Aves: Thraupidae). Biotropica 14, 315–317. https://doi.org/10.2307/2388094 (1982).Article 

    Google Scholar 
    Hernández, H. M. & Toledo, V. M. The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann. Mo. Bot. Gard. 66, 512–520. https://doi.org/10.2307/2398843 (1979).Article 

    Google Scholar 
    Neill, D. A. Trapliners in the trees: Hummingbird pollination of Erythrina Sect Erythrina (Leguminosae: Papilionoideae). Ann. Missouri Botan. Garden 74, 27–41. https://doi.org/10.2307/2399259 (1987).Article 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125, 1668–1676. https://doi.org/10.1111/oik.03195 (2016).CAS 
    Article 

    Google Scholar 
    Cuta-Pineda, J. A., Arias-Sosa, L. A. & Pelayo, R. C. The flowerpiercers interactions with a community of high Andean plants. Avian Res. 12, 22. https://doi.org/10.1186/s40657-021-00256-7 (2021).Article 

    Google Scholar 
    Askins, R. A., Karen, M. E. & Jeffrey, D. W. Flower destruction and nectar depletion by avian nectar robbers on a tropical tree, Cordia sebestena. J. Field Ornithol. 58, 345–349 (1987).
    Google Scholar 
    McDade, L. A. & Kinsman, S. The impact of floral parasitism in two Neotropical hummingbird-pollinated plant species. Evolution 34, 944–958. https://doi.org/10.2307/2408000 (1980).Article 
    PubMed 

    Google Scholar 
    Ingels, J. Observations of the hummingbirds Orthorhynchus cristatus and Eulampis jugularis of Martinique (West Indies). Gerfaut 66, 129–132 (1976).
    Google Scholar 
    Feinsinger, P., Beach, J. H., Linhart, Y. B., Busby, W. H. & Murray, K. G. Disturbance, pollinator predictability, and pollination success among Costa Rican cloud forest plants. Ecology 68, 1294–1305. https://doi.org/10.2307/1939214 (1987).Article 

    Google Scholar 
    Kodric-Brown, A., Brown, J. H., Byers, G. S. & Gori, D. F. Organization of a tropical island community of hummingbirds and flowers. Ecology 65, 1358–1368. https://doi.org/10.2307/1939116 (1984).Article 

    Google Scholar 
    Lara, C. & Ornelas, J. F. Preferential nectar robbing of flowers with long corollas: Experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273. https://doi.org/10.1007/s004420100640 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Impacts of nectar robbing on the foraging ecology of a territorial hummingbird. Behav. Proc. 149, 27–34. https://doi.org/10.1016/j.beproc.2018.01.001 (2018).Article 

    Google Scholar 
    Boehm, M. A. Biting the hand that feeds you: Wedge-billed hummingbird is a nectar robber of a sicklebill-adapted Andean bellflower. Acta Amazon. 48, 146–150. https://doi.org/10.1590/1809-4392201703932 (2018).Article 

    Google Scholar 
    Igić, B., Nguyen, I. & Fenberg, P. B. Nectar robbing in the trainbearers (Lesbia, Trochilidae). PeerJ 8, e9561. https://doi.org/10.7717/peerj.9561 (2020).Article 

    Google Scholar 
    Lunardi, V. D. O., Silva, É. E., Silva, S. T. A. & Lunardi, D. G. Handroanthus impetiginosus (Bignoniaceae) as an important floral resource for synanthropic birds in the Brazilian semiarid. Oecol. Austr. https://doi.org/10.4257/oeco.2019.2301.12 (2019).Article 

    Google Scholar 
    Almeida, J. M., Missagia, C. C. C. & Alves, M. A. S. Effects of the availability of floral resources and neighboring plants on nectar robbery in a specialized pollination system. Curr. Zool. https://doi.org/10.1093/cz/zoab083 (2021).Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. C. & Valido, A. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am. J. Bot. 95, 1408–1415. https://doi.org/10.3732/ajb.0800055 (2008).Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am. J. Bot. 93, 304–318. https://doi.org/10.3732/ajb.93.2.304 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O. & Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731–1743. https://doi.org/10.3732/ajb.0900004 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. & Taylor, C. M. A new generic classification of tribe Bignonieae (Bignoniaceae). Ann. Mo. Bot. Gard. 99, 348–489. https://doi.org/10.3417/2003187 (2014).Article 

    Google Scholar 
    Gentry, A. H. Coevolutionary patterns in Central American bignoniaceae. Ann. Mo. Bot. Gard. 61, 728–759. https://doi.org/10.2307/2395026 (1974).Article 

    Google Scholar 
    Bertin, R. I. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134. https://doi.org/10.2307/2442837 (1982).Article 

    Google Scholar 
    Bertin, R. I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119, 694–709. https://doi.org/10.1086/283943 (1982).Article 

    Google Scholar 
    Bertin, R. I. & Sullivan, M. Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75, 1140–1147. https://doi.org/10.1002/j.1537-2197.1988.tb08827.x (1988).Article 

    Google Scholar 
    Bertin, R. I. Paternal success following mixed pollinations of Campsis radicans. Am. Midl. Nat. 124, 153–163. https://doi.org/10.2307/2426088 (1990).Article 

    Google Scholar 
    Bertin, R. I. Effects of pollination intensity in Campsis radicans. Am. J. Bot. 77, 178–187. https://doi.org/10.1002/j.1537-2197.1990.tb13544.x (1990).Article 
    PubMed 

    Google Scholar 
    Bertin, R. I. & Peters, P. J. Paternal effects on offspring quality in Campsis radicans. Am. Nat. 140, 166–178. https://doi.org/10.1086/285408 (1992).Article 

    Google Scholar 
    Kartesz, J. T. Campsis radicans. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP) http://bonap.net/MapGallery/County/Campsis%20radicans.png. (2015).Kolodziejska-Degorska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans [L.] Seem in Poland. Acta Soc. Botanicorum Poloniae 75, 79–85 (2006).Article 

    Google Scholar 
    Catesby, M. The Natural History of Carolina, Florida and the Bahama islands. Volume 1. (Published by the author, 1731).Audubon, J. J. Ornithological Biography Vol. 3, 638 (Adam and Charles Black, 1835).
    Google Scholar 
    Audubon, J. J. Ruby-throated Hummingbird, plate CCLIII, The Birds of America Vol. 3 (Havell, 1835).
    Google Scholar 
    Nuttall, T. Manual of the Ornithology of the United States and of Canada. The Land Birds (Hilliard and Brown, 1832).
    Google Scholar 
    Stiles, F. G. & Freeman, C. E. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25, 191–205. https://doi.org/10.2307/2389183 (1993).Article 

    Google Scholar 
    Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301. https://doi.org/10.2307/1934961 (1975).Article 

    Google Scholar 
    McDade, L. A. & Weeks, J. A. Nectar in hummingbird-pollinated Neotropical plants I: Patterns of production and variability in 12 species. Biotropica 36, 196–215. https://doi.org/10.1111/j.1744-7429.2004.tb00312.x (2004).Article 

    Google Scholar 
    Wunderle, J. M. Jr. Nectar robbing by Orchard Orioles. Chat 44, 107–108 (1980).
    Google Scholar 
    Tyler, W. M. in Life histories of North American blackbirds, orioles, tanagers, and allies. Order Passeriformes: Families Ploceidae, Icteridae, and Thraupidae. United States National Museum Bulletin 211 (ed Arthur Cleveland Bent) 247–270 (United States Government Printing Office, 1958).George, F. W. Baltimore Orioles destroying trumpet vine blossoms. Wilson Bull. 46, 64 (1934).
    Google Scholar 
    Ridgway, R. The birds of North and Middle America, Part 2. Bull. U.S. Natl. Mus. 50, 1–834 (1902).
    Google Scholar 
    Scharf, W. C. & Kren, J. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Morton, E. S. Effective pollination of Erythrina fusca by the Orchard Oriole (Icterus spurius): Coevolved behavioral manipulation?. Ann. Mo. Bot. Gard. 66, 482–489. https://doi.org/10.2307/2398840 (1979).Article 

    Google Scholar 
    Dickey, D. R. & van Rossem, A. J. The birds of El Salvador. Field Mus. Publ. Zool. 23, 1–609 (1938).
    Google Scholar 
    Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C. (eds). Handbook of Avian Anatomy: Nomina Anatomica Avium, Second Edition. Publications of the Nuttall Ornithological Club no. 23 (Nuttall Ornithological Club, 1993).Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440. https://doi.org/10.2307/4080840 (1951).Article 

    Google Scholar 
    Zusi, R. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Natl. Mus. 123, 1–28 (1967).Article 

    Google Scholar 
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 
    Skutch, A. F. Orioles, Blackbirds, and Their Kin (University of Arizona Press, 1996).
    Google Scholar 
    Hansell, M. P. Bird nests and Construction Behaviour 294 (Cambridge University Press, 2000).Book 

    Google Scholar 
    Bent, A. C. Life histories of North American blackbirds, orioles, tanagers, and allies. Bull. U.S. Natl. Museum 211, 1–531 (1958).
    Google Scholar 
    Dennis, J. V. Observations on the orchard oriole in lower Mississippi Delta. Bird-Banding 19, 12–21. https://doi.org/10.2307/4509997 (1948).Article 

    Google Scholar 
    Wunderle, J. M. & Lodge, D. J. The effect of age and visual cues on floral patch use by bananaquits (Aves: Emberizidae). Anim. Behav. 36, 44–54. https://doi.org/10.1016/S0003-3472(88)80248-3 (1988).Article 

    Google Scholar 
    Edge, A. A. Characteristics of nectar production and standing crop in Campsis radicans (Bignoniaceae). MSc thesis. (East Tennessee State University, 2010).Galetto, L. Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst. Evol. 196, 99–121. https://doi.org/10.1007/BF00985338 (1995).Article 

    Google Scholar 
    Elias, T. S. & Gelband, H. Nectar: Its production and functions in trumpet creeper. Science 189, 289–291. https://doi.org/10.1126/science.189.4199.289 (1975).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, T. S. & Gelband, H. Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am. J. Bot. 63, 1349–1353. https://doi.org/10.1002/j.1537-2197.1976.tb13220.x (1976).Article 

    Google Scholar 
    Hermans, M. & Rasson, J. P. A new Sobolev test for uniformity on the circle. Biometrika 72, 698–702. https://doi.org/10.2307/2336748 (1985).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Landler, L., Ruxton, G. D. & Malkemper, E. P. The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol. 19, 30. https://doi.org/10.1186/s12898-019-0246-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. PBC, Boston, MA http://www.rstudio.com/. (RStudio 2020).Beecher, W. J. Convergent evolution in the American orioles. Wilson Bulletin 62, 50–86 (1950).
    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Stiles, F. G. Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176, 1351–1352. https://doi.org/10.1126/science.176.4041.1351 (1972).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Gill, F. B. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128. https://doi.org/10.2307/1935304 (1975).Article 

    Google Scholar 
    Alcantara, S. & Lohmann, L. G. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am. J. Bot. 97, 782–796. https://doi.org/10.3732/ajb.0900182 (2010).Article 
    PubMed 

    Google Scholar 
    Gentry, A. H. Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotrop. 25, 1–370 (1992).
    Google Scholar 
    Grant, V. Historical development of ornithophily in the western North American flora. Proc. Natl. Acad. Sci. 91, 10407–10411. https://doi.org/10.1073/pnas.91.22.10407 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, R. L. Some hummingbird flowers east of the Mississippi. Castanea 13, 97–109 (1948).
    Google Scholar 
    Van Nest, B. N., Edge, A. A., Feathers, M. V., Worley, A. C. & Moore, D. Bees provide pollination service to Campsis radicans (Bignoniaceae), a primarily ornithophilous trumpet flowering vine. Ecol. Entomol. 46, 117–127. https://doi.org/10.1111/een.12947 (2021).Article 

    Google Scholar 
    Patuxent Wildlife Research Center. Orchard oriole Icterus spurius. BBS summer distribution map, 2011–2015 (relative abundance map). https://www.mbr-pwrc.usgs.gov/bbs/ra2015/ra2015_red_v3.shtml (accessed 7 March 2021) (2021). More