More stories

  • in

    Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 
    PubMed 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology. Ibis 150, 447–461 (2008).Article 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 
    Article 

    Google Scholar 
    Olive, P. J. W., Pinnegar, J. K., Polunin, N. V. C., Richards, G. & Welch, R. Isotope trophic-step fractionation: A dynamic equilibrium model. J. Anim. Ecol. 72, 608–617 (2003).Article 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18. https://doi.org/10.1007/s12520-015-0309-5 (2016).Article 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fisher. Res. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 
    PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jim, S., Jones, V., Ambrose, S. H. & Evershed, R. P. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br J. Nutr. 95, 1055–1062. https://doi.org/10.1079/bjn20051685 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Griffiths, H. Applications of stable isotope technology in physiological ecology. Funct. Ecol. 5, 254–269 (1991).Article 

    Google Scholar 
    Lorrain, A. et al. Differential δ13C and δ15N signatures among scallop tissues: Implications for ecology and physiology. J. Exp. Mar. Biol. Ecol. 275, 47–61 (2002).CAS 
    Article 

    Google Scholar 
    Li, P., Mai, K., Trushenski, J. & Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440. https://doi.org/10.1146/annurev-ecolsys-102209-144726 (2011).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. “Are fish what they eat” all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sponheimer, M. et al. Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Commun. Mass Spectrom. 20, 1395–1399. https://doi.org/10.1002/rcm.2454 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Logan, J. M. & Lutcavage, M. E. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244. https://doi.org/10.1007/s10750-010-0120-3 (2010).CAS 
    Article 

    Google Scholar 
    Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis). PLoS ONE 7, e49220. https://doi.org/10.1371/journal.pone.0049220 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skinner, M. M., Cross, B. K. & Moore, B. C. Estimating in situ isotopic turnover in Rainbow Trout (Oncorhynchus mykiss) muscle and liver tissue. J. Freshw. Ecol. 32, 209–217. https://doi.org/10.1080/02705060.2016.1259127 (2016).CAS 
    Article 

    Google Scholar 
    Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).CAS 
    Article 

    Google Scholar 
    Hou, Y., Hu, S., Li, X., He, W. & Wu, G. Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance. Vol. 1265 (2020).Gannes, L. Z., O’Brien, D. M. & Del Rio, C. M. Stable isotopes in animal ecology: Assumptions, caveats and a call for more laboratory experiments. Ecology 78, 1271–1276 (1997).Article 

    Google Scholar 
    Martinez del Rio, C. M., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. Camb. Philos Soc. 84, 91–111. https://doi.org/10.1111/j.1469-185X.2008.00064.x (2009).Article 

    Google Scholar 
    Hendry, A. P., Peichel, C. L., Boughman, J. W., Matthews, B. & Nosil, P. Stickleback research: The now and the next. Evol. Ecol. Res. 15, 111–141 (2013).
    Google Scholar 
    Fang, B., Merila, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol Phylogenet Evol 127, 613–625. https://doi.org/10.1016/j.ympev.2018.06.008 (2018).Article 
    PubMed 

    Google Scholar 
    Kume, M. & Kitano, J. Genetic and stable isotope analyses of threespine stickleback from the Bering and Chukchi seas. Ichthyol. Res. 64, 478–480. https://doi.org/10.1007/s10228-017-0580-9 (2017).Article 

    Google Scholar 
    Reimchen, T. E., Ingram, T. & Hansen, S. C. Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour 145, 561–577 (2008).Article 

    Google Scholar 
    Pinnegar, J. Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J. Fish Biol. 59, 494–503. https://doi.org/10.1006/jfbi.2001.1660 (2001).Article 

    Google Scholar 
    Power, M. & Klein, G. M. Fish host-cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from northern Canada. Isotopes Environ. Health Stud. 40, 257–266 (2004).CAS 
    Article 

    Google Scholar 
    Li, X., Zheng, S. & Wu, G. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52, 671–691. https://doi.org/10.1007/s00726-020-02851-2 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182. https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436. https://doi.org/10.1890/060150.01 (2007).Article 

    Google Scholar 
    Voigt, C. C., Rex, K., Michener, R. H. & Speakman, J. R. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 157, 31–40. https://doi.org/10.1007/s00442-008-1057-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 21–37 (1983).Article 

    Google Scholar 
    Cerling, T. E. et al. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 151, 175–189. https://doi.org/10.1007/s00442-006-0571-4 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues: Fig. 1. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-mamm-s-165.1 (2012).Article 

    Google Scholar 
    McCullagh, J. S., Juchelka, D. & Hedges, R. E. Analysis of amino acid 13C abundance from human and faunal bone collagen using liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2761–2768. https://doi.org/10.1002/rcm.2651 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Wolf, N., Peters, J. & Fogel, M. L. Amino acid δ13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore. Integr. Comp. Biol. 54, 890–902. https://doi.org/10.1093/icb/icu106 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walton, M. J. & Cowey, C. B. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. 73B, 59–79 (1982).CAS 

    Google Scholar 
    Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301. https://doi.org/10.1007/s12520-012-0102-7 (2012).Article 

    Google Scholar 
    Ohkouchi, N., Ogawa, N. O., Chikaraishi, Y., Tanaka, H. & Wada, E. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies. Prog. Earth Planet Sci. 2, 1–17. https://doi.org/10.1186/s40645-015-0032-y (2015).ADS 
    Article 

    Google Scholar 
    Wu, G. & Morris, M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).CAS 
    Article 

    Google Scholar 
    Metges, C. C., Petzke, K. J. & Henning, U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples : A pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J. Mass Spectrom. 31, 367–376 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can (13)C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayayee, P. A., Larsen, T. & Sabree, Z. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions. PeerJ 4, e2046. https://doi.org/10.7717/peerj.2046 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larsen, T. et al. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts. J. Anim. Ecol. 85, 1275–1285. https://doi.org/10.1111/1365-2656.12563 (2016).Article 
    PubMed 

    Google Scholar 
    Romero-Romero, S., Miller, E. C., Black, J. A., Popp, B. N. & Drazen, J. C. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci. Rep. 11, 12594. https://doi.org/10.1038/s41598-021-91927-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tsai, Y. et al. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem. 98, 64–70. https://doi.org/10.1016/j.foodchem.2005.04.036 (2006).CAS 
    Article 

    Google Scholar 
    Landete, J. M., De Las Rivas, B., Marcobal, A. & Munoz, R. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit. Rev. Food Sci. Nutr. 48, 697–714. https://doi.org/10.1080/10408390701639041 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kanki, M., Yoda, T., Tsukamoto, T. & Baba, E. Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl. Environ. Microbiol. 73, 1467–1473. https://doi.org/10.1128/AEM.01907-06 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Salguero, J. & Mackie, I. M. Histidine metabolism in mackerel (Scomber scombrus). Studies on histidine decarboxylase activity and histamine formation during storage of flesh and liver under sterile and non-sterile conditions. J. Fd Technol. 14, 131–139 (1979).CAS 
    Article 

    Google Scholar 
    Sánchez-Muros, M.-J., Barroso, F. G. & Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 65, 16–27. https://doi.org/10.1016/j.jclepro.2013.11.068 (2014).CAS 
    Article 

    Google Scholar 
    Khan, M. A. Histidine requirement of cultivable fish species: A review. Oceanogr Fish Open Access J. 8, 1–7. https://doi.org/10.19080/ofoaj.2018.08.555746 (2018).Article 

    Google Scholar 
    Hatch, K. A. in Comparative Physiology of Fasting, Starvation, and Food Limitation Ch. Chapter 20, 337–364 (2012).Bertinetto, C., Engel, J. & Jansen, J. ANOVA simultaneous component analysis: A tutorial review. Anal. Chim. Acta X 6, 100061. https://doi.org/10.1016/j.acax.2020.100061 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nogales-Mérida, S. et al. Insect meals in fish nutrition. Rev. Aquac. 11, 1080–1103. https://doi.org/10.1111/raq.12281 (2018).Article 

    Google Scholar 
    Thongprajukaew, K., Pettawee, S., Muangthong, S., Saekhow, S. & Phromkunthong, W. Freeze-dried forms of mosquito larvae for feeding of Siamese fighting fish (Betta splendens Regan, 1910). Aquac. Res. 50, 296–303. https://doi.org/10.1111/are.13897 (2018).CAS 
    Article 

    Google Scholar 
    Jackson, G. P., An, Y., Konstantynova, K. I. & Rashaid, A. H. Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Sci. Justice 55, 43–50. https://doi.org/10.1016/j.scijus.2014.07.002 (2015).Article 
    PubMed 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid. Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─a proof-of-concept study. Anal. Chem. 94, 2981–2987 (2022).CAS 
    Article 

    Google Scholar 
    Lynch, A. H., McCullagh, J. S. & Hedges, R. E. Liquid chromatography/isotope ratio mass spectrometry measurement of δ13C of amino acids in plant proteins. Rapid Commun. Mass Spectrom. 25, 2981–2988. https://doi.org/10.1002/rcm.5142 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Falco, F., Stincone, P., Cammarata, M. & Brandelli, A. Amino acids as the main energy source in fish tissues. Aquac. Fish Stud. 3, 1–11 (2020).
    Google Scholar  More

  • in

    A dynamically structured matrix population model for insect life histories observed under variable environmental conditions

    Renewal processes represent development under variable conditionsThe consequence of a drastic environmental change can be demonstrated by introducing a shift in development time during the process. For demonstration, we consider a scenario where a group of individuals enter into a favourable environment reducing development time from (40pm 5) time units to (20pm 5).We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with an average development time of approximately (30pm 5) steps (solid dark lines) when conditions shift at ({tau }=20) (each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift are shown as dashed gray lines. The snapshots of the population structure, represented by the development indicator q, taken at each time step, show that half of the development is complete at the time of the switch and the switch accelerates the accumulation of q (Fig. S1).Figure 1Response to change in development time. The number of developing individuals is simulated by using the cumulative development process and compared to (a) the age-dependent development process, (b) an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target trajectories before and after the shift in development time (marked with red crosses).Full size imageIn age-dependent development, a sharp transition, instead of a gradual one, is observed at the (20^{th}) step (Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range of these models.We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development time and a shift in rate at (t=20). The LCT extension to the framework helps to incorporate time dependence and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates change in the rate parameter (gamma ) (Eq. 8), e.g doubling of (gamma ) changes development time from (40pm 5) to (20pm 2.5). However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a significant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). However, the distribution tends towards the longer development trajectory compared to the one achieved with cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions within a single generation if all individuals are introduced at the same time. As a potential workaround, it has been proposed to generate a plausible population history, through variable entry times, until the required (or observed) developmental variation builds up31,32. Variation in development rates then acts upon the population and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing development rates within a single stage; however, it has not yet been employed at this scale.Cumulative development is in agreement with the widely known degree-day (DD) framework, where development time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response to environmental conditions varies considerably, the DD framework implies that the combination of two different rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental evaluation of this will be the topic of future research.It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and is known to impact population dynamics and species interactions34,66,67. Future development of our framework will consider improving upon this limitation.Environmental variation transformed into development timesSeveral non-linear relationships have been proposed to represent the temperature dependence of insect development68. A common feature is the presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there exists an optimum between the thresholds where the process is most efficient. A typical relationship between temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.Figure 2Development under environmental variation. In (a), development rate (Eq. 9) is shown with (alpha =1.5times 10^{-5}), (T_L=0^oC), and (T_H=50^oC). In (b), mean development time is shown together with the probability densities of three temperature regimes ((rho _L), (rho _M), and (rho _H)). In (c), the number of individuals completing development at each step are shown with respect to the three temperature regimes. Solid lines indicate the median, shaded areas indicate the (90%) range of 1000 simulations, and thick lines indicate simulations with the expected values of each regime.Full size imageTo investigate how temperature variation is transformed into cumulative development time, we assumed three variation regimes at relatively low, medium, and high temperatures ((rho _L), (rho _M), and (rho _H), respectively). Densities of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time distributions emerge as shown in Fig. 2c.We found that the output of (rho _H) is skewed towards longer durations compared to what we would otherwise obtain if we simulated the process under constant conditions with the mean of (rho _H). The impact of variation in the middle range, (rho _M), is similar to that of (rho _H), but less pronounced. Conversely, the output of (rho _L) is skewed towards shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters of relatively short durations—especially as the process approaches its optimum duration—triggers completion earlier than in the case of no variation.Overall, our model predictions are in agreement with the rate summation effect, which states that the different outcomes obtained under constant and varying temperatures is due to the non-linear relationship between temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of development time in the linear range of the rate curve have been widely discussed69. Several groups have reported evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean constant temperatures70. However, observations of this phenomenon might result in different responses for different species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature range may facilitate comparison. For instance, Carrington et al. (2013) assumed (26^oC) as optimum based on the high dengue incidence in Thailand, and showed that large variations around (26^oC) increases development time for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around (26^oC) compared to (23^oC) for the fly, Megaselia scalaris, and found that varying temperatures at around (23^oC) accelerates the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal temperature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a decrease in development time is expected in response to varying temperatures according to our results.We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity to demonstrate the impact of (rho ) in isolation. The deterministic setup removes the upper limit in the number of distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each (rho ). Since the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 100(^{th}) decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.Environmental dependency extracted from life tables under constant conditionsHaving discussed the importance of environmental variability in development, in this section, we employ a well-established experimental method to unravel the relationship between temperature and development time in a common mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipiens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefasciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics and sub-tropics73,74.To infer the dependencies, we used a generic temperature-driven insect development model, described in Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and (30,^{circ })C) under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present a comparison of observed and simulated maximum production and the stage-emergence times for pupae and adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we present the comparison of time trajectories separately for each temperature.Figure 3Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times is given in (a). Observations are represented with dots and simulations with box plots. The environmental dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample (Theta _q), is shown in (b,c). Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the generic model faithfully replicates the observed development times of larvae and pupae. On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or (27,^{circ })C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation (Eq. 11). Optimum survival seen at (27,^{circ })C suggests that the relationship might be non-symmetrical or multimodal. In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental error or the intrinsic stochasticity of the biological processes.We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, and found that the data inform the model as expected within the temperature range of the experiments ((15{-}30,^{circ })C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which is much shorter than the larva development time (between 10 and 20 days above (20,^{circ })C). The model predicts that the minimum temperature at which development occurs (from the larva stage) is (10.5,^{circ })C, which is close to (10.9,^{circ })C, reported in Grech et al.75.The observed variability in pupa and adult production suggests that survival is a highly stochastic process regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, represents the mean of such processes but does not capture their variability. The simulated variability is a result of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the model structure and the functional forms of temperature dependence, and the data inform certain parameters better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences as development time increases.We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can be used to derive biologically meaningful inferences and to help improve the understanding of the temperature dependence of Cx. quinquefasciatus.Greater information content of semi-field experimentsThe number of experiments required to test a range of conditions, including different combinations of multiple drivers, may quickly exhaust available resources. Moreover, variable conditions may have a previously unaccounted impact on development and mortality. In this section, we demonstrate that observations performed under variable conditions are valuable sources of information for our modelling framework, which is capable of representing the dynamics under such conditions.Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the temperate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures during development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults observed in different experimental batches are given in Fig. S4. We employed the extended model with both temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the observed and simulated adult emergence times are less than a week apart (Table 1).Table 1 Comparison of observed and simulated adult emergence time and the total number of adults produced. Simulation output is given in terms of the median and (90%) range.Full size tableOn the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn (especially in May, September, and October). Despite this variability, the difference between the predicted and observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly yielded only one pupa and no adults.We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as the source of eggs.In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their impacts on life processes. As a potential improvement, we recommend that the experiments are performed in overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different times during development. We note that the early decline in larva abundance seen in Autumn could be a result of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation for diapause, the state where adult females endure several months without feeding. This implies that development takes longer than it would at long photoperiods when subjected to similar temperature regimes.Using the extended model and the semi-field data, we identified the environmental dependencies shown in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a significant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. As expected, the temperature dependency of egg development was not well informed by the data in the current configuration of the model and the functional forms of environmental dependence.Figure 4Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life table experiments. Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season (Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva development time from 15 to 12 hours of daylight (Fig. 4c).Risk assessment with annual development profilesWe extrapolated the development dynamics of Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We simulated the subsequent development dynamics and obtained the annual development profile as shown in Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in May (adults emerging late in May start developing in the experiments set up late in March). The profile is consistent with the regular Cx. pipiens high season in the region.Figure 5Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are plotted together with the model predictions. The time points marked with circles indicate the experiments used to calibrate the model. Estimated time of first adult emergence is given in the inset.Full size imageAs seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high season. However, there is a greater variation in the maximum number of adults than the times of emergence (extending to almost (40%) of the possible outcomes in early August). A greater variability (almost (80%) in August) is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults (where available) to facilitate comparison. According to the model, variation in adult production is associated with the variation in both development times and mortality during immature stages. We recall that the uncertainty in the informed environmental dependencies is high around relatively less frequently encountered values—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, we found that frequent exposure to temperatures outside the well-informed range have a significant impact on the variation in adult production (Fig. S9).We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. According to our model, early adult emergence is a result of shorter development times and higher success rates, which indicates that the temperature conditions allow for an early first generation of adults. An early first generation greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillover to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout Europe (more than the total of the previous seven years together)88,89.In summary, our results showed that the semi-field experiments, when used in combination with our dynamic pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory data. We used life history observations from 7 experiments performed under semi-field conditions and employed a generic model structure, largely uninformed on the specific environmental dependencies of the species. The cumulative development framework we introduced applies broadly to poikilotherms subjected to highly variable environmental conditions. Although the generic model structure helps to develop exploratory models and identify potential environmental dependencies, accuracy can be improved by customising the models for the known dependencies of particular species. With a straightforward extension of the development model to cover the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations of eggs or adult mosquitoes, and develop an environment-driven population dynamics model. More

  • in

    Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system

    Gattuso JP, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 1998;29:405–34.Article 

    Google Scholar 
    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science.1998;280:694–96.CAS 
    Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjoqvist C, Godhe A, et al. Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom. Front Microbiol. 2016;7:517.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor JD, Cottingham SD, Billinge J, Cunliffe M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 2014;8:245–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science.2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off galicia (NW Spain). Microb Ecol. 2018;76:866–84.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110:E488–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R 3rd, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol. 2015;17:3466–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi Y, McCarren J, DeLong EF. Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol. 2012;14:191–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol. 2018;20:3012–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 2007;73:4559–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol. 2012;14:228–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol. 2013;16:2815–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci USA. 2021;118:e2101178118.McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sosa OA, Gifford SM, Repeta DJ, DeLong EF. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 2015;9:2725–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:588778.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, et al. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J. 2017;11:2781–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joglar V, Prieto A, Barber-Lluch E, Hernández-Ruiz M, Fernández E, Teira E. Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences.2020;17:2807–23.Article 

    Google Scholar 
    Martínez-García S, Fernández E, Álvarez-Salgado XA, González J, Lønborg C, Marañón E, et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser. 2010;416:17–33.Article 
    CAS 

    Google Scholar 
    Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    Parsons TR, Maita Y, Lalli CM. Fluorometric determination of chlorophylls. A manual of chemical & biological methods for seawater analysis: Oxford, UK: Pergamon Press; 1984. p. 107–09.Hansen H, Grasshoff K. Automated chemical analysis. Methods of seawater analysis. 2nd ed: Verlag Chemie, Weinheim; 1983. p. 347–95.Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem. 1998;62:325–33.Article 

    Google Scholar 
    Calvo-Díaz A, Morán XAG. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Micro Ecol. 2006;42:159–74.Article 

    Google Scholar 
    Smith DC, Farooq A. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Micro Food Webs. 1992;6:107–14.
    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp. 2009;24:1–6.
    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. https://github.com/najoshi/sickle.Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:1–13.
    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ.2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:1–12.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–9.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 4.1.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2021.Cottrell MT, Kirchman DL. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl Environ Microbiol. 2016;82:6010–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed 
    Article 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allers E, Gomez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Pernthaler J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol. 2006;8:2022–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noell SE, Giovannoni SJ. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ Microbiol. 2019;21:2559–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chenard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al. Temporal and spatial dynamics of bacteria, archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:16390.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pajares S, Varona-Cordero F, Hernández-Becerril DU. Spatial distribution patterns of bacterioplankton in the oxygen minimum zone of the tropical mexican pacific. Micro Ecol. 2020;80:519–36.CAS 
    Article 

    Google Scholar 
    Signori CN, Pellizari VH, Enrich-Prast A, Sievert SM. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Res Pt Ii. 2018;149:150–60.Article 

    Google Scholar 
    Ling SK, Xia J, Liu Y, Chen GJ, Du ZJ. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol. 2017;67:3778–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int J Syst Evol Microbiol. 2015;65:562–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol. 2004;70:4129–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Ann Rev Mar Sci. 2016;8:285–309.PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS 
    PubMed 
    Article 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME J. 2018;12:981–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol. 2004;70:6753–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66:578–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.PubMed 
    Article 
    CAS 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4(T), Isosphaera pallida IS1B(T), Singulisphaera acidiphila DSM 18658(T), and Strain SH-PL62. Front Microbiol. 2017;8:412.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.Bode A, Estévez MG, Varela M, Vilar JA. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar Environ Res. 2015;110:81–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuar Coast Shelf Sci. 2006;67:251–66.Article 

    Google Scholar 
    Nogueira E, Pérez FF, Rı́os AF. Modelling thermohaline properties in an estuarine upwelling ecosystem (Rı́a de Vigo: NW Spain) using box-jenkins transfer function models. Estuar Coast Shelf Sci. 1997;44:685–702.Article 

    Google Scholar 
    Broullón E, López-Mozos M, Reguera B, Chouciño P, Doval MD, Fernández-Castro B, et al. Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Prog Oceanogr. 2020;189:102449.Fraga F. Upwelling off the Galician Coast, Northwest Spain. In: Richards FA, editor. Coastal Upwelling. Washington: American Geophysical Union; 1981. p. 176–82.Nogueira E, Figueiras FG. The microplankton succession in the Ría de Vigo revisited: species assemblages and the role of weather-induced, hydrodynamic variability. J Mar Syst. 2005;54:139–55.Article 

    Google Scholar 
    Pitcher GC, Walker DR, Mitchellinnes BA, Moloney CL. Short-term variability during an anchor station study in the southern Benguela Upwelling System – phytoplankton dynamics. Prog Oceanogr. 1991;28:39–64.Article 

    Google Scholar 
    Smayda TJ, Trainer VL. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr. 2010;85:92–107.Article 

    Google Scholar 
    Wilkerson FP, Lassiter AM, Dugdale RC, Marchi A, Hogue VE. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Res Pt Ii. 2006;53:3023–48.Article 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats

    Ottenburghs, J. et al. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol. Biol. 17, 14 (2017).Article 

    Google Scholar 
    Baiz, M. D., Tucker, P. K. & Cortés-Ortiz, L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol. Ecol. 28, 1056–1069 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Slager, D. L. et al. Cryptic and extensive hybridization between ancient lineages of American crows. Mol. Ecol. 29, 956–969 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Introgressive hybridization and natural selection in Darwin’s finches. Biol. J. Linnean Soc. 117, 812–822 (2016).Article 

    Google Scholar 
    Pauquet, G., Salzburger, W. & Egger, B. The puzzling phylogeography of the haplochromine cichlid fish Astatotilapia burtoni. Ecol. Evol. 8, 5637–5648 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, R. P., Peterson, A. T. & Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16 (2002).Article 

    Google Scholar 
    Gramlich, S., Wagner, N. D. & Horandl, E. RAD-seq reveals genetic structure of the F-2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 18, 12 (2018).Article 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou, L. et al. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3, e2172 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Enciso-Romero, J. et al. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol. Ecol. 26, 5160–5172 (2017).PubMed 
    Article 

    Google Scholar 
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D. & Rhodes, J. R. Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J. Wildl. Manag. 70, 485–492 (2006).Article 

    Google Scholar 
    Oliveira, R., Godinho, R., Randi, E. & Alves, P. C. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 2953–2961 (2008).Article 

    Google Scholar 
    Nichols, P. et al. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B Biol. Sci. 282, 8 (2015).
    Google Scholar 
    Yang, W. Z. et al. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol. Ecol. 27, 4213–4224 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boratyński, Z. et al. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evol. Biol. 11, 355 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M. & Streelman, J. T. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).PubMed 
    Article 

    Google Scholar 
    Salazar, C. et al. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet. 6, e1000930 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Naisbit, R. E., Jiggins, C. D. & Mallet, J. Mimicry: developmental genes that contribute to speciation. Evol. Dev. 5, 269–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R. P. & Kronforst, M. R. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 15 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, W., Kunte, K. & Kronforst, M. R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using De Novo transcriptome assemblies. Genome Biol. Evol. 5, 1233–1245 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science (New York, NY). 360, 1355–1358 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melville, J. Competition and character displacement in two species of scincid lizards. Ecol. Lett. 5, 386–393 (2002).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evol. Int. J. Org. Evol. 71, 1205–1221 (2017).CAS 
    Article 

    Google Scholar 
    Adams, D. C. & Rohlf, F. J. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. 97, 4106–4111 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science (New York, NY) 313, 224–226 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. Character displacement in polyphenic tadpoles. Evol. Int. J. Org. Evol. 54, 1738–1749 (2000).CAS 
    Article 

    Google Scholar 
    Jones, G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv. Study Behav. 26, 317–354 (1997).Article 

    Google Scholar 
    Marsteller, S., Adams, D. C., Collyer, M. L. & Condon, M. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecol. Entomol. 34, 66–73 (2009).Article 

    Google Scholar 
    Tene Fossog, B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 8, 326–345 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8, 277–297 (2006).Article 

    Google Scholar 
    Juste, J. et al. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreber J. Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen. Erlangen – Expedition des Schreber’schen säugthier- und des Esper’schen Schmetterlingswerkes. Ernst Mayr Library of the MCZ, 1774–1855 (Harvard, 1774).Temminck, C. J. Monographies de Mammologie, ou description de quelques genres de Mammifères, dont les espèces ont été observes dans les différens Musées de l’Europe, Vol. 2, No. 302, 26–70 (G. Dufour et Ed. D’Ocagne, 1840).Centeno-Cuadros, A. et al. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J. Zool. Syst. Evol. Res. 57, 1004–1018 (2019).Article 

    Google Scholar 
    Santos, H. et al. Shaping of bat cryptic distribution in Iberia. Biol. J. Linnean Soc. 112, 150–162 (2014).Article 

    Google Scholar 
    Novella-Fernandez, R. et al. Broad-scale patterns of geographic avoidance between species emerge in the absence of fine-scale mechanisms of coexistence. Divers. Distrib. 27, 1606–1618 (2021).Article 

    Google Scholar 
    Neubaum, M. A., Douglas, M. R., Douglas, M. E. & O’Shea, T. J. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88, 1230–1238 (2007).Article 

    Google Scholar 
    Worthington-Wilmer, J. & Barratt, E. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News 37(1), 1–4 (1996).
    Google Scholar 
    Illumination, I.C.o. A colour appearance model for colour management systems: CIECAM02. Technical Report No CIE 159, 2004 (2004).Maroco, J. Análise estatística com utilização do SPSS. 3ª edição. Edições Silabo (2010).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).Article 

    Google Scholar 
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://cran.r-project.org/web/packages/e1071/index.html (2012).Redgwell, R. D., Szewczak, J. M., Jones, G. & Parsons, S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms 2, 907–924 (2009).Article 

    Google Scholar 
    Ochoa-López, S. et al. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 226, 1480–1491 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Phenotypic and genetics effects of hybridization in Darwin’s finches. Evol. Int. J. Org. Evol. 48, 297–316 (1994).Article 

    Google Scholar 
    Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science (New York, NY). 305, 1462–1465 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    von Holdt, B. M., Kays, R., Pollinger, J. P. & Wayne, R. K. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25, 2443–2453 (2016).Article 

    Google Scholar 
    Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).Article 

    Google Scholar 
    Kalcounis, M. C. & Brigham, R. M. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95 (1995).Article 

    Google Scholar 
    Muijres, F. T., Johansson, L. C., Winter, Y. & Anders, H. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8, 1418–1428 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. J. & Mundy, N. I. The primate palette: the evolution of primate coloration. Evol. Anthropolo. Issues News Rev. 17, 97–111 (2008).Article 

    Google Scholar 
    Müller, B. & Peichl, L. Retinal cone photoreceptors in microchiropteran bats. Investig. Ophthalmol. Vis. Sci. 46, 2259–2259 (2005).
    Google Scholar 
    Winter, Y., López, J. & von Helversen, O. Ultraviolet vision in a bat. Nature 425, 612–614 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).Article 

    Google Scholar 
    Chaverri, G., Ancillotto, L. & Russo, D. Social communication in bats. Biol. Rev. 93, 1938–1954 (2018).PubMed 
    Article 

    Google Scholar 
    Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe and Northwest Africa 320–333 (A&C Black Publishers Ltd, 2009).
    Google Scholar 
    Martinoli, A., Mazzamuto, M.V. & Spada, M. Serotine Eptesicus serotinus (Schreber, 1774). In Handbook of the Mammals of Europe, 1–17 (2020).Dinger, G. Winternachweise von Breitflügelfledermaus (Eptesicus serotinus) in Kirchen. Nyctalus (N.F.) 7, 614–616 (1991).
    Google Scholar 
    Kowalski, K. & Rzebik-Kowalska, B. Mammals of algeria (1991).Novella-Fernandez, R. et al. Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecol. Evol. 10(24), 14122–14136 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galván, I., Vargas-Mena, J. C. & Rodríguez-Herrera, B. Tent-roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J. Zool. Syst. Evol. Res. 58, 519–527 (2020).Article 

    Google Scholar 
    Wang, Z. L., Zhang, D. Y. & Wang, G. Does spatial structure facilitate coexistence of identical competitors. Ecol. Model. 181, 17–23 (2005).Article 

    Google Scholar 
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (New York, NY). 323, 1339–1343 (2009).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mingo-Casas, P. et al. First cases of European bat lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl. Trop. Dis. 12(4), e0006290 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vázquez-Moron, S., Juste, J., Ibáñez, C., Berciano, J. M. & Echevarria, J. E. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerg. Infect. Dis. 17, 520–523 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burgarella, C. et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102, 442–452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abrams, P. A. Character displacement and niche shift analyzed using consumer-resource models of competition. Theor. Popul. Biol. 29, 107–160 (1986).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–1257594.PubMed 
    Article 
    CAS 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol. 2016;19:47–58.Article 

    Google Scholar 
    Alacid E, Reñé A, Garcés E. New Insights into the Parasitoid Parvilucifera sinerae Life Cycle: The Development and Kinetics of Infection of a Bloom-forming Dinoflagellate Host. Protist. 2015;166:677–99.PubMed 
    Article 

    Google Scholar 
    Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol. 2007;9:1233–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Siano R, Alves-De-Souza C, Foulon E, Bendif M, Simon E, Guillou NL. et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    Coats DW. Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol. 1999;46:402–9.Article 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5:1–12.Article 
    CAS 

    Google Scholar 
    McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sibbald SJ, Archibald JM. Genomic Insights into Plastid Evolution. Genome Biol Evol. 2020;12:978–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Not F, Probert I, Ribeiro CG, Crenn K, Guillou L, Jeanthon C, et al. Photosymbiosis in Marine Pelagic Environments. In: M. S. Cretoiu (ed). The Marine Microbiome. 2016. New York, NY: Springer International Publishing, pp 305–32.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:1–11.Article 
    CAS 

    Google Scholar 
    Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate Host Chloroplasts and Mitochondria Remain Functional During Amoebophrya Infection. Front Microbiol. 2020;11:1–11.Article 

    Google Scholar 
    Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its Changes during the Course of Infection. Protist. 2012;163:720–45.PubMed 
    Article 

    Google Scholar 
    Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, et al. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol. 2019;29:968–978.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, et al. Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci USA 2021;118.Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J, et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun. 2021;12:1049.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60:91–110.Article 

    Google Scholar 
    Hennies J, Lleti JMS, Schieber NL, Templin RM, Steyer AM, Schwab Y. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci Rep. 2020;10:1–10.Article 
    CAS 

    Google Scholar 
    Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging and Image-Guided Therapy. 2014. Springer New York, New York, NY, pp 277–89.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci. 2017;8:1–18.
    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Front Microbiol. 2018;9:1–19.Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.CAS 
    Article 

    Google Scholar 
    Cachon J. Contribution à l’étude des péridiniens parasites. Cytologie, cycles évolutifs Ann Sci Nat Zool. 1964;6:1–158.
    Google Scholar 
    Van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57:405–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tyler KM, Matthews KR, Gull K. Anisomorphic cell division by African trypanosomes. Protist. 2001;152:367–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep. 2016;6:1–13.Article 
    CAS 

    Google Scholar 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130:637–47.CAS 
    PubMed 

    Google Scholar 
    Ovciarikova J, Lemgruber L, Stilger KL, Sullivan WJ, Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    Nishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008;121:1559–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 2021;1:34.Article 

    Google Scholar 
    Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in. Dictyostelium J Cell Sci. 2001;114:3035–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochim Biophys Acta – Bioenerg. 2014;1837:857–79.CAS 
    Article 

    Google Scholar 
    Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA. 2000;97:680–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vines JH, King JS. The endocytic pathways of Dictyostelium discoideum. Int J Dev Biol. 2019;63:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol. 2021;23:6569–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sigee DC, Kearns LP. Levels of dinoflagellate chromosome-bound metals in conditions of low external ion availability: An X-ray microanalytical study. Tissue Cell. 1981;13:441–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol. 2008;74:1198–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caffaro CE, Boothroyd JC. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells. Eukaryot Cell. 2011;10:1095–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, et al. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep. 2015;13:2273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, et al. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem. 2016;291:3725–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019; 10:e00589-19.Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell. 2017;171:148–162.e19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, et al. Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci USA. 2009;106:12998–3003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335:207–11.CAS 
    Article 

    Google Scholar 
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.e12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep. 2020;30:3778–3792.e9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292:11009–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 2016;32:56–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30:170–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Gómez SA, Wideman JG, Roger AJ, Slamovits CH, Agashe D. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017;34:943–56.PubMed 

    Google Scholar 
    Evers F, Cabrera-Orefice A, Elurbe DM, Kea-te Lindert M, Boltryk SD, Voss TS, et al. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun. 2021;12:1–17.Article 
    CAS 

    Google Scholar 
    Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7:19–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004;129:511–524. https://doi.org/10.1017/S0031182004005888.Lee JW. Protonic capacitor: elucidating the biological significance of mitochondrial cristae formation. Sci Rep. 2020;10:1–14.Article 
    CAS 

    Google Scholar 
    Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:1–24.Article 
    CAS 

    Google Scholar 
    Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol. 2020;30:R575–R588.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta – Mol Cell Biol Lipids. 2016. Elsevier B.V., 1861: 900-12.Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12:120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32:1115–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida T, Hatama S, Ishikawa Y, Kadota K. Intranuclear coccidiosis in a calf. J Vet Med Sci. 2009;71:1109–13.PubMed 
    Article 

    Google Scholar 
    Pecka Z. Life cycle and ultrastructure of Eimeria stigmosa, the intranuclear coccidian of the goose (Anser anser domesticus). Folia Parasitol (Praha). 1992;39:105–14.CAS 

    Google Scholar 
    Voleman L, Doležal P. Mitochondrial dynamics in parasitic protists. PLoS Pathog. 2019;15:e1008008.Bílý T, Sheikh S, Mallet A, Bastin P, Pérez‐Morga D, Lukeš J, et al. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 2021;68:e12846.Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008;105:2463–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Cumulative effects of widespread landscape change alter predator–prey dynamics

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article 

    Google Scholar 
    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS 
    Article 

    Google Scholar 
    Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article 

    Google Scholar 
    Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article 

    Google Scholar 
    Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article 

    Google Scholar 
    Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article 

    Google Scholar 
    Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article 

    Google Scholar 
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article 

    Google Scholar 
    Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article 

    Google Scholar 
    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
    Google Scholar 
    Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article 

    Google Scholar 
    Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article 

    Google Scholar 
    James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article 

    Google Scholar 
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article 

    Google Scholar 
    Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article 

    Google Scholar 
    Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article 

    Google Scholar 
    Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article 

    Google Scholar 
    Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article 

    Google Scholar 
    Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article 

    Google Scholar 
    Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article 

    Google Scholar 
    Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
    Google Scholar 
    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article 

    Google Scholar 
    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article 

    Google Scholar 
    Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article 

    Google Scholar 
    Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article 

    Google Scholar 
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article 

    Google Scholar 
    Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article 

    Google Scholar 
    Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article 

    Google Scholar 
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article 

    Google Scholar 
    Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article 

    Google Scholar 
    Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article 
    PubMed 

    Google Scholar 
    Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article 

    Google Scholar 
    Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article 

    Google Scholar 
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article 

    Google Scholar  More

  • in

    Return of large fin whale feeding aggregations to historical whaling grounds in the Southern Ocean

    Scott Baker, C. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371. https://doi.org/10.1016/j.tree.2004.05.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clapham, P. J. & Baker, C. S. in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsig, & J. G. M. Thewissen) Ch. Modern Whaling, 1328–1332 (Academic Press, 2002).International Whaling Commission. Twenty-Eighth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1978).International Whaling Commission. Thirty-Sixth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1986).Leaper, R. & Miller, C. Management of Antarctic baleen whales amid past exploitation, current threats and complex marine ecosystems. Antarct. Sci. 23, 503–529. https://doi.org/10.1017/s0954102011000708 (2011).ADS 
    Article 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Kemp, S. & Bennett, A. G. On the distribution and movements of whales on the South Georgia and South Shetland whaling grounds. Discov. Rep. 6, 165–190 (1932).
    Google Scholar 
    Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60°S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetac. Res. Manag. 3, 251–270 (2001).
    Google Scholar 
    Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep Sea Res. Part II 51, 1397–1409. https://doi.org/10.1016/s0967-0645(04)00087-6 (2004).ADS 
    Article 

    Google Scholar 
    Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species 2018, e.T2478A50349982. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en (2018).Santora, J. A., Schroeder, I. D. & Loeb, V. J. Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar. Biol. 161, 2293–2305. https://doi.org/10.1007/s00227-014-2506-7 (2014).Article 

    Google Scholar 
    Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269. https://doi.org/10.3354/meps08513 (2010).ADS 
    Article 

    Google Scholar 
    Burkhardt, E. et al. Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica. R Soc. Open Sci. 8, 201142. https://doi.org/10.1098/rsos.201142 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joiris, C. R. & Dochy, O. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol. 36, 1649–1658. https://doi.org/10.1007/s00300-013-1383-8 (2013).Article 

    Google Scholar 
    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: Evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818. https://doi.org/10.1007/s00300-016-1927-9 (2016).Article 

    Google Scholar 
    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. Endanger. Spec. Res. 32, 515–524. https://doi.org/10.3354/esr00832 (2017).Article 

    Google Scholar 
    Meyer, B. & Wessels, W. The Expedition PS112 of the Research Vessel POLARSTERN to the Antarctic Peninsula Region in 2018. 125 p. (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 2018). https://doi.org/10.2312/BzPM_0722_2018Knust, R. Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facil. JLSRF 3, A119. https://doi.org/10.17815/jlsrf-3-163 (2017).Article 

    Google Scholar 
    Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Herr, H. et al. Aerial surveys for Antarctic minke whales (Balaenoptera bonaerensis) reveal sea ice dependent distribution patterns. Ecol Evol 9, 5664–5682. https://doi.org/10.1002/ece3.5149 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorschel, B. et al. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. 39, 765–787. https://doi.org/10.1007/s00300-015-1861-2 (2015).Article 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A., Thomas, L. & Gimenez, O. Spatial models for distance sampling data: recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210x.12105 (2013).Article 

    Google Scholar 
    Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).Article 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.735770 (2021).Article 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling (Oxford University Press, 2007).
    Google Scholar 
    Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28. https://doi.org/10.18637/jss.v089.i01 (2019).Article 

    Google Scholar 
    Marques, F. F. C. & Buckland, S. T. in Advanced Distance Sampling (eds S. T. Buckland et al.) 31–47 (Oxford University Press, 2004).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).Article 
    MATH 

    Google Scholar 
    Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575. https://doi.org/10.1080/01621459.2016.1180986 (2016).CAS 
    Article 

    Google Scholar 
    Dorschel, B. et al. The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2). Scientific Data. https://doi.org/10.1038/s41597-022-01366-7 (2022).Article 

    Google Scholar 
    Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35. https://doi.org/10.1080/01490410701295962 (2007).Article 

    Google Scholar 
    raster: Geographic Data Analysis and Modelling. R package version 3.4–5 (2020).Shelton, A. O., Thorson, J. T., Ward, E. J., Feist, B. E. & Cooper, A. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. https://doi.org/10.1139/cjfas-2013-0508 (2014).CAS 
    Article 

    Google Scholar 
    Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Statiustics Comput. 15, 267–280 (2005).MathSciNet 
    Article 

    Google Scholar 
    Gu, C. & Wahba, G. Minimizing GCV/GML scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Stat. Comput. 12, 383–398. https://doi.org/10.1137/0912021 (1991).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Hobson, E. S. Feeding behaviour in three species of sharks. Pac. Sci. 17, 171–194 (1963).
    Google Scholar 
    Weeks, S., Magno-Canto, M., Jaine, F., Brodie, J. & Richardson, A. Unique sequence of events triggers manta ray feeding frenzy in the Southern Great Barrier Reef, Australia. Remote Sens. 7, 3138–3152. https://doi.org/10.3390/rs70303138 (2015).ADS 
    Article 

    Google Scholar 
    Montero-Quintana, A. N., Ocampo-Valdez, C. F., Vázquez-Haikin, J. A., Sosa-Nishizaki, O. & Osorio-Beristain, M. Whale shark (Rhincodon typus) predatory flexible feeding behaviors on schooling fish. J. Ethol. 39, 399–410. https://doi.org/10.1007/s10164-021-00717-y (2021).Article 

    Google Scholar 
    Findlay, K. P. et al. Humpback whale “super-groups”—A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshwat. Ecosyst. 31, 2412–2419. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Baines, M., Reichelt, M. & Griffin, D. An autumn aggregation of fin (Balaenoptera physalus) and blue whales (B. musculus) in the Porcupine Seabight, southwest of Ireland. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 168–177, https://doi.org/10.1016/j.dsr2.2017.03.007 (2017).Ladrón de Guevara P., P., Lavaniegos, B. E. & Heckel, G. Fin whales (Balaenoptera physalus) foraging on daytime surface swarms of the euphausiid Nyctiphanes simplex in Ballenas Channel, Gulf of California, Mexico. J. Mammal. 89, 559–566 (2008).Bruce, W. S. Some observations on Antarctic cetacea. In: Report on the Scientific results of the voyage of S.Y. ‘Scotia’ during the years 1902, 1903, and 1904, under the leadership of William S. Bruce, 491–505 (1915).Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Rep. I, 257–540 (1929).Jackson, J. A. et al. Have whales returned to a historical hotspot of industrial whaling? The pattern of southern right whale Eubalaena australis recovery at South Georgia. Endang. Spec. Res. 43, 323–339. https://doi.org/10.3354/esr01072 (2020).Article 

    Google Scholar 
    Goldbogen, J. A., Pyenson, N. D. & Shadwick, R. E. Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289–301. https://doi.org/10.3354/meps07066 (2007).ADS 
    Article 

    Google Scholar 
    Goldbogen, J. A. et al. Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226. https://doi.org/10.1111/j.1365-2435.2011.01905.x (2012).Article 

    Google Scholar 
    Acevedo-Gutierrez, A., Croll, D. A. & Tershy, B. R. High feeding costs limit dive time in the largest whales. J Exp Biol 205, 1747–1753. https://doi.org/10.1242/jeb.205.12.1747 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Keen, E. M. Aggregative and feeding thresholds of sympatric rorqual whales within a fjord system. Ecosphere 8, e01702. https://doi.org/10.1002/ecs2.1702 (2017).Article 

    Google Scholar 
    Veit, R. R. & Harrison, N. M. Positive interactions among foraging seabirds, marine mammals and fishes and implications for their conservation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00121 (2017).Article 

    Google Scholar 
    Laran, S. et al. A comprehensive survey of pelagic megafauna: their distribution, densities, and taxonomic richness in the tropical Southwest Indian Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00139 (2017).Article 

    Google Scholar 
    Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).ADS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. J. Cetac. Res. Manag. 10, 119–129 (2008).
    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for management. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 41–58. https://doi.org/10.1016/j.dsr2.2017.04.018 (2017).ADS 
    Article 

    Google Scholar 
    Forcada, J., Aguilar, A., Hammond, P., Pastor, X. & Aguilar, R. Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean sea during the summer. J. Zool. 238, 23–34. https://doi.org/10.1111/j.1469-7998.1996.tb05377.x (2009).Article 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201. https://doi.org/10.1111/j.1748-7692.2007.00175.x (2008).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Carroll, E. L. et al. Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Sci. Rep. 5, 16182. https://doi.org/10.1038/srep16182 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791. https://doi.org/10.1111/j.1365-294X.2008.04069.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J., Best, P. B., Carvalho, I. & Pomilla, C. Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a Southern Hemisphere coastal feeding ground. PLoS ONE 8, e81238. https://doi.org/10.1371/journal.pone.0081238 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richard, G. et al. Cultural transmission of fine-scale fidelity to feeding sites may shape humpback whale genetic diversity in Russian Pacific waters. J. Hered. 109, 724–734. https://doi.org/10.1093/jhered/esy033 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carroll, E. L. et al. Reestablishment of former wintering grounds by New Zealand southern right whales. Mar. Mamm. Sci. 30, 206–220. https://doi.org/10.1111/mms.12031 (2014).Article 

    Google Scholar 
    Calderan, S. V. et al. South Georgia blue whales five decades after the end of whaling. Endang. Spec. Res. 43, 359–373. https://doi.org/10.3354/esr01077 (2020).Article 

    Google Scholar 
    Santora, J. A. & Veit, R. R. Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 487, 287–304. https://doi.org/10.3354/meps10350 (2013).ADS 
    Article 

    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522. https://doi.org/10.1007/s00300-011-1010-5 (2011).Article 

    Google Scholar 
    Williams, R., Hedley, S. L. & Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity. Ecol. Soc. 11, [online] http://www.ecologyandsociety.org/vol11/iss11/art11/ (2006).Secchi, E. et al. Encounter rates of whales around the Antarctic peninsula with special reference to humpback whales, Megaptera novaeangliae, in the Gerlache Strait 1997–98 to 1999–2000. Mem. Qld. Mus. 47, 571–578 (2001).
    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Johnston, D. W., Friedlaender, A. S., Read, A. J. & Nowacek, D. P. Initial density estimates of humpback whales Megaptera novaeangliae in the inshore waters of the western Antarctic Peninsula during the late autumn. Endang. Spec. Res. 18, 63–71. https://doi.org/10.3354/esr00395 (2012).Article 

    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R Soc Open Sci 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mackintosh, N. A. The distribution of southern blue and fin whales, in Whales, dolphins, and porpoises. (ed K. S. Norris) Ch. 8, 125–144 (University of California Press, 1966).Schmitt, N. et al. Mixed-stock analysis of humpback whales (Megaptera novaeangliae) on Antarctic feeding grounds. J. Cetac. Res. Manag. 14, 141–157 (2014).
    Google Scholar 
    Schall, E. et al. Humpback whale song recordings suggest common feeding ground occupation by multiple populations. Sci. Rep. 11, 18806. https://doi.org/10.1038/s41598-021-98295-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archer, F. I. et al. Revision of fin whale Balaenoptera physalus (Linnaeus, 1758) subspecies using genetics. J. Mammal. 100, 1653–1670. https://doi.org/10.1093/jmammal/gyz121 (2019).Article 

    Google Scholar 
    Archer, F. I. et al. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): Genetic evidence for revision of subspecies. PLoS ONE 8, e63396. https://doi.org/10.1371/journal.pone.0063396 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cabrera, A. A. et al. Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135, 86–97. https://doi.org/10.1016/j.ympev.2019.02.003 (2019).Article 
    PubMed 

    Google Scholar 
    Edwards, E. F., Hall, C., Moore, T. J., Sheredy, C. & Redfern, J. V. Global distribution of fin whales Balaenoptera physalus in the post-whaling era (1980–2012). Mammal. Rev. 45, 197–214. https://doi.org/10.1111/mam.12048 (2015).Article 

    Google Scholar 
    Knox, G. A. The key role of krill in the ecosystem of the Southern Ocean with special reference to the Convention on the Conservation of Antarctic Marine Living Resources. Ocean Manag. 9, 113–156 (1984).Article 

    Google Scholar 
    Ducklow, H. W. et al. Marine pelagic ecosystems: the west Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 67–94. https://doi.org/10.1098/rstb.2006.1955 (2007).Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97–100. https://doi.org/10.1038/nature02950 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I Oceanogr. Res. Pap. 77, 63–74. https://doi.org/10.1016/j.dsr.2013.02.005 (2013).ADS 
    Article 

    Google Scholar 
    Siegel, V. & Watkins, L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba, in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed Volker Siegel) Ch. 2, 21–101 (Springer, 2016).Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).Article 

    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I Oceangr. Res. Pap. 56, 727–740. https://doi.org/10.1016/j.dsr.2008.12.007 (2009).ADS 
    Article 

    Google Scholar 
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x (2010).Article 

    Google Scholar 
    Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. 30, 888–904. https://doi.org/10.1111/mms.12108 (2014).CAS 
    Article 

    Google Scholar 
    Smetacek, V. Are declining Antarctic krill stocks a result of global warming or of the decimation of the whales? in Effects of global warming on polar ecosystems (ed Carlos M. Duarte) (Fundación BBVA, 2008).Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smetacek, V. A whale of an appetite revealed by analysis of prey consumption. Nature 599, 33–34. https://doi.org/10.1038/d41586-021-02951-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laws, R. M. Seals and whales of the Southern Ocean. Philios. Trans. R. Soc. Lond. B 279, 81–96 (1977).ADS 
    Article 

    Google Scholar 
    Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Biol. Sci. 277, 3527–3531. https://doi.org/10.1098/rspb.2010.0863 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, S. A. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res. https://doi.org/10.1029/2001jc001147 (2003).Article 

    Google Scholar 
    Frölicher, T. L. et al. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 28, 862–886. https://doi.org/10.1175/jcli-d-14-00117.1 (2015).ADS 
    Article 

    Google Scholar 
    Landschutzer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224. https://doi.org/10.1126/science.aab2620 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    Data collectionThe present dataset was collected within the framework of the Atlantic Lobster Moult and Quality (ALMQ) project originally managed and implemented by the Atlantic Veterinary College Lobster Science Centre at the University of Prince Edward Island in collaboration with the Fishermen and Scientists Research Society. The Atlantic Lobster Moult and Quality project was initially funded through the Atlantic Innovation Fund program from the Atlantic Canada Opportunities Agency (ACOA) and transferred to the Fishermen and Scientists Research Society (FSRS) in 2012.Sampling took place every 2–3 weeks in eight lobster fishing areas (LFA) in Atlantic Canada from 2004 to 2014 (see Fig. 1, Table 1). The sampling followed the FSRS Lobster Moult and Quality sampling protocol and was conducted by technicians from the Atlantic Veterinary College and the Fishermen and Scientists Research Society in fixed locations from traps set the day before2. Locations based on targeted sampling (LFA 33 and 34) were chosen according to the fishing efforts in the respective areas and selected by a lobster science committee consisting of members from industry, academia, research and federal and provincial representatives. Other locations (LFA 24, 25, 26A, 35) were chosen based on proximity to the Atlantic Veterinary College and other projects with commercial fishers which allowed sampling.Table 1 Overview of sampling locations, surface areas (km2) and number of lobsters (N) sampled for the Atlantic Lobster Moult and Quality Project by AVC Lobster Science Centre from 2004–2015 in Atlantic Canada. (PEI = Prince Edward Island, NS = Nova Scotia).Full size tableFig. 1(a) Map of the lobster fishing areas (LFAs) in the Maritime Provinces in eastern Canada with the sampling locations (red) recorded by the AVC Lobster Science Centre for the Atlantic Lobster Moult and Quality project. (b) Enlarged map of LFA 33. (c) Enlarged map of LFAs on Prince Edward Island. The maps were created using QGIS (v. 3.18; https://qgis.org). Contours depict water depths in meters.Full size imageFor each sampling event, 40 commercial lobster traps with escape vents for lobsters below the minimum legal size were used. Legal sizes depend on size-at-maturity (size at which 50% of the population reach maturity) which differs between LFAs due to regional differences in water temperature that influence lobster growth. There were some differences in sampling procedure between lobster fishing season and off-season. During lobster fishing season sampling took place within 48 h post landing and only legal-sized lobsters were assessed. During off season, lobsters were sampled directly on board chartered boats and were returned to sea immediately after sampling. During non-fishing season sampling, lobsters below minimum legal size were also sampled but no egg-bearing females were targeted to minimize negative handling effects. Targeted sample size was 200 lobsters per sampling event before 2009 and 125 lobsters after 2009 due to budget constraints.On average, 3–4 lobsters of each sex were sampled in every 2 mm lobster size grouping. Lobster size was recorded as the carapace length in mm and determined using calipers rounding down to the nearest mm. The size distribution of sampled lobsters is presented in Fig. 2. Lobsters were assessed for general health (lesions, shell damage, liveliness/vigour) and shell hardness. Shell hardness was recorded as soft, medium or hard. A carapace of a soft-shelled lobster would be compressible at the ventral and dorsal (anterior and posterior) carapace, a medium-shelled lobster would only be compressible at the ventral carapace and a hard-shelled lobster would not be compressible at any carapace location.Fig. 2Lobster size (as carapace length in mm) distribution for all lobsters sampled during the sampling period (15 missing values).Full size imageTo estimate hemolymph protein levels, the ventral abdomen between the first pair of walking legs was sprayed with 70% ethanol and 3 ml of hemolymph were extracted with a 22 gauge needle and a 3 ml syringe. A few drops of hemolymph were placed on a handheld refractometer and the refractive index (“°Brix” value) was recorded and used as a proxy for total hemolymph levels. The distribution of hemolymph protein level is shown in Fig. 3. The moult stages were determined by pleopod stages under a stereomicroscope and recorded in pleopod stages (see Table 2). The stage determinations are shown in Table 2 and Fig. 46.Fig. 3Distribution of hemolymph protein level (measured in °Brix) for all lobsters sampled in the dataset (892 missing values).Full size imageTable 2 Description of premoult stages and pleopod stages in adult American lobster based on Aiken6. C: Intermoult, D: Premoult.Full size tableFig. 4Pleopod stages of lobsters at different times in their moult cycle. Illustrations by Lavallée et al.2.Full size imageIn total, 141,659 lobsters were sampled from 2004–2015 over 1,195 sampling events. Data were recorded manually on data sheets and re-checked before being entered into an Excel data sheet (Excel, Microsoft). More