More stories

  • in

    Increasing climatic decoupling of bird abundances and distributions

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. IPBES (2019): Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).CAS 
    PubMed 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270, 467–473 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, J. K. et al. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 4, 313–321 (2001).
    Google Scholar 
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).
    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
    Google Scholar 
    Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).
    Google Scholar 
    Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).PubMed 

    Google Scholar 
    McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).PubMed 

    Google Scholar 
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111–113 (2006).PubMed 

    Google Scholar 
    Partners in Flight. Avian Conservation Assessment Database Version 2021 (accessed 5 February 2021); http://pif.birdconservancy.org/ACADHill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sens. (Basel) 12, 406 (2020).
    Google Scholar 
    Wiebe, K. L. & Gerstmar, H. Influence of spring temperatures and individual traits on reproductive timing and success in a migratory woodpecker. Auk 127, 917–925 (2010).
    Google Scholar 
    Viana, D. S. & Chase, J. M. Ecological traits underlying interspecific variation in climate matching of birds. Glob. Ecol. Biogeogr. 31, 1021–1034 (2022).
    Google Scholar 
    Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).CAS 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    Google Scholar 
    Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).
    Google Scholar 
    Coyle, J. R., Hurlbert, A. H. & White, E. P. Opposing mechanisms drive richness patterns of core and transient bird species. Am. Nat. 181, E83–E90 (2013).PubMed 

    Google Scholar 
    Valiela, I. & Martinetto, P. Changes in bird abundance in eastern North America: urban sprawl and global footprint? BioScience 57, 360–370 (2007).
    Google Scholar 
    Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).
    Google Scholar 
    Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).
    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnagaud, J.-Y. et al. Relating habitat and climatic niches in birds. PLoS ONE 7, e32819 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).
    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).
    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 

    Google Scholar 
    Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390–1399 (2017).
    Google Scholar 
    Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).PubMed 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).
    Google Scholar 
    van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).
    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87, 1034–1045 (2018).PubMed 

    Google Scholar 
    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).
    Google Scholar 
    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pardieck, K. L., Ziolkowski, D. J. Jr, Lutmerding, M., Aponte, V. & Hudson, M.-A. R. North American Breeding Bird Survey Dataset 1966–2018 Version 2018.0. (US Geological Survey, 2019); https://www.sciencebase.gov/catalog/item/5d65256ae4b09b198a26c1d7Harris, D. J., Taylor, S. D. & White, E. P. Forecasting biodiversity in breeding birds using best practices. PeerJ 6, e4278 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: a Grammar of Data Manipulation. R package version 1.0.0 https://cran.r-project.org/web/packages/dplyr/index.html (2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.1.0 https://cran.r-project.org/web/packages/tidyr/index.html (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-12 https://cran.r-project.org/web/packages/raster/index.html (2015).Bivand, R., Pebesma, E. J. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5–10 https://cran.r-project.org/web/packages/geosphere/index.html (2019).Hart, E. M. & Bell, K. prism. R package version 0.0.6 https://github.com/ropensci/prism (2015).Senyondo, H. et al. rdataretriever: R interface to the data retriever. J. Open Source Softw. 6, 2800 (2021).
    Google Scholar 
    Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological data. PLoS ONE 8, e65848 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Senyondo, H. et al. Retriever: data retrieval tool. J. Open Source Softw. 2, 451 (2017).
    Google Scholar 
    Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).
    Google Scholar 
    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).
    Google Scholar 
    Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).PubMed 

    Google Scholar 
    Sauer, J. R. & Link, W. A. Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128, 87–98 (2011).
    Google Scholar 
    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    Krenek, S., Berendonk, T. U. & Petzoldt, T. Thermal performance curves of Paramecium caudatum: a model selection approach. Eur. J. Protistol. 47, 124–137 (2011).PubMed 

    Google Scholar 
    Bahn, V. & McGill, B. J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16, 733–742 (2007).
    Google Scholar 
    Dobson, L. L., La Sorte, F. A., Manne, L. L. & Hawkins, B. A. The diversity and abundance of North American bird assemblages fail to track changing productivity. Ecology 96, 1105–1114 (2015).PubMed 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.5 https://cran.r-project.org/web/packages/gbm/index.html (2019).Wood, S. N. Generalized Additive Models: an Introduction with R (CRC Press/Taylor & Francis Group, 2017).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Stan Development Team. Stan Modeling Language Users Guide and Reference Manual (2020); https://mc-stan.org/users/documentation/ More

  • in

    Towards 3D basic theories of plant forms

    Cremers, G. Presence of 10 models of plant architecture in Euphorbes-Malgaches. Comptes Rendus Hebd. des. Seances de. L Academie des. Sci. Ser. D. 281, 1575–1578 (1975).
    Google Scholar 
    Balduzzi, M. et al. Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Front. Plant Sci. 8, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).Article 

    Google Scholar 
    Farnsworth, K. D. & Niklas, K. J. Theories of optimization, form and function in branching architecture in plants. Funct. Ecol. 9, 355–363 (1995).Article 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research (eds Pawar, S.et al.), 249–318 (Academic Press, 2015).Niklas, K. J. & Spatz, H. C. Allometric theory and the mechanical stability of large trees: proof and conjecture. Am. J. Bot. 93, 824–828 (2006).PubMed 
    Article 

    Google Scholar 
    Price, C. A. et al. The metabolic theory of ecology: prospects and challenges for plant biology. N. Phytol. 188, 696–710 (2010).Article 

    Google Scholar 
    Martone, P. T. et al. Mechanics without muscle: biomechanical inspiration from the plant world. Integr. Comp. Biol. 50, 888–907 (2010).PubMed 
    Article 

    Google Scholar 
    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).PubMed 
    Article 

    Google Scholar 
    Enquist, B. J. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).PubMed 
    Article 

    Google Scholar 
    Anfodillo, T. et al. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122375 (2013).
    Google Scholar 
    Duncanson, L. I., Dubayah, R. O. & Enquist, B. J. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Glob. Ecol. Biogeogr. 24, 1465–1475 (2015).Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winter, C. L. & Tartakovsky, D. M. Theoretical foundation for conductivity scaling. Geophys. Res. Lett. 28, 4367–4369 (2001).Article 

    Google Scholar 
    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, S. et al. Application of the metabolic scaling theory and water–energy balance equation to model large‐scale patterns of maximum forest canopy height. Glob. Ecol. Biogeogr. 25, 1428–1442 (2016).Article 

    Google Scholar 
    Osler, G. H. R., West, P. W. & Downes, G. M. Effects of bending stress on taper and growth of stems of young Eucalyptus regnans trees. Trees 10, 239–246 (1996).
    Google Scholar 
    Berthier, S. et al. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87, 19–25 (2001).Article 

    Google Scholar 
    Fournier, M. et al. Integrative biomechanics for tree ecology: beyond wood density and strength. J. Exp. Bot. 64, 4793–4815 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, K., Noguchi, K. & Terashima, I. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation. Tree Physiol. 25, 39–48 (2005).PubMed 
    Article 

    Google Scholar 
    Anten, N. P. & Schieving, F. The role of wood mass density and mechanical constraints in the economy of tree architecture. Am. Nat. 175, 250–260 (2010).PubMed 
    Article 

    Google Scholar 
    Jelonek, T. et al. The biomechanical formation of trees (Prace Naukowe, Doniesienia, Komunikaty, 2019).Muller‐Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed 
    Article 

    Google Scholar 
    McMahon, T. A. & Kronauer, R. E. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alméras, T. & Fournier, M. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol. 256, 370–381 (2009).PubMed 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mäkelä, A. & Valentine, H. T. Crown ratio influences allometric scaling in trees. Ecol 87, 2967–2972 (2006).Article 

    Google Scholar 
    Duursma, R. A. et al. Self‐shading affects allometric scaling in trees. Funct. Ecol. 24, 723–730 (2010).Article 

    Google Scholar 
    Pretzsch, H. & Dieler, J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169, 637–649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, Y. et al. Plant interactions alter the predictions of metabolic scaling theory. PloS One 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, D. et al. Scaling relationship between tree respiration rates and biomass. Biol. Lett. 6, 715–717 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogawa, K. Scaling relations based on the geometric and metabolic theories in woody plant species: A review. Perspect. Plant Ecol. Evol. Syst. 40, 125480 (2019).Article 

    Google Scholar 
    Risto, S. et al. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).Article 

    Google Scholar 
    Jackson, T. et al. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agric. Meteorol. 265, 137–144 (2019).Article 

    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three‐dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).Article 

    Google Scholar 
    Malhi, Y. et al. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8, 20170052 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27, 1035–1047 (2013).Article 

    Google Scholar 
    Lin, Y. & Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. Meteorol. 216, 105–114 (2016).Article 

    Google Scholar 
    Tanago, J. G. et al. Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).Article 

    Google Scholar 
    Takoudjou, S. M. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9, 905–916 (2018).Article 

    Google Scholar 
    Dassot, M., Fournier, M. & Deleuze, C. Assessing the scaling of the tree branch diameters frequency distribution with terrestrial laser scanning: methodological framework and issues. Ann. Sci. 76, 66 (2019).Article 

    Google Scholar 
    Klockow, P. A. et al. Allometry and structural volume change of standing dead southern pine trees using non-destructive terrestrial LiDAR. Remote Sens. Environ. 241, 111729 (2020).Article 

    Google Scholar 
    Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Ecol. Manag. 427, 217–229 (2018).Article 

    Google Scholar 
    Dai, J. et al. Drought-modulated allometric patterns of trees in semi-arid forests. Commun. Biol. 3, 1–8 (2020).Article 

    Google Scholar 
    Ogawa, K., Hagihara, A. & Hozumi, K. Growth analysis of a seedling community of Chamaecyparis obtusa. VI. Estimation of individual gross primary production by the summation method. In Transactions of the 30th Meeting of Chubu Branch of Japanese Forestry Society, 179–181 (Honda Kiyoshi, 1985).Yokota, T. & Hagihara, A. Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamaecyparis obtusa). J. Plant Res. 109, 177–184 (1996).Article 

    Google Scholar 
    Enquist, B. J. et al. Biological scaling: does the exception prove the rule? Nature 445, E9–E10 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lau, A. et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Ecol. Manag. 439, 132–145 (2019).Article 

    Google Scholar 
    Li, Y. et al. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agric. Meteorol. 284, 107874 (2020).Article 

    Google Scholar 
    Noyer, E. et al. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground‐truth data using terrestrial LiDAR. Am. J. Bot. 106, 187–198 (2019).PubMed 
    Article 

    Google Scholar 
    Jackson, T. et al. A new architectural perspective on wind damage in a natural forest. Front. Glob. Chang. 1, 13 (2019).Article 

    Google Scholar 
    Jackson, T. Strain Measurements on 21 Trees in Wytham Woods, UK. NERC Environmental Information Data Centre. https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-fda273ab45bc (2018).Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hay, M. J. M. et al. Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation. Oecologia 127, 185–190 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordero, R. A., Fetcher, N. & Voltzow, J. Effects of wind on the allometry of two species of plants in an elfin cloud forest. Biotropica 39, 177–185 (2010).Article 

    Google Scholar 
    Anfodillo, T. et al. Allometric trajectories and “stress”: a quantitative approach. Front. Plant Sci. 7, 1681 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louarn, G. & Song, Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, S. C. Reproductive allometry in Malaysian rain forest trees: biomechanics versus optimal allocation. Evol. Ecol. 10, 517–530 (1996).Article 

    Google Scholar 
    Kempes, C. P. et al. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One 6, e20551 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, E. et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30, 1953–1968 (2016).Article 

    Google Scholar 
    Swetnam, T. L., O’Connor, C. D. & Lynch, A. M. Tree morphologic plasticity explains deviation from metabolic scaling theory in semi-arid conifer forests, southwestern USA. PLoS One 11, e0157582 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Loehle, C. Biomechanical constraints on tree architecture. Trees 30, 2061–2070 (2016).Article 

    Google Scholar 
    Guillon, T., Dumont, Y. & Fourcaud, T. Numerical methods for the biomechanics of growing trees. Comput. Math. Appl. 64, 289–309 (2012).Article 

    Google Scholar 
    Olson, M. E., Rosell, J. A., Muñoz, S. Z. & Castorena, M. Carbon limitation, stem growth rate and the biomechanical cause of Corner’s rules. Ann. Bot. 122, 583–592 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Enquist, B. J. & Brown, J. H. A general quantitative theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 106, 7040–7045 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The Campsis-Icterus association as a model system for avian nectar-robbery studies

    Darwin, C. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the good effects of Intercrossing. (John Murray, 1862).Darwin, C. The various Contrivances by which Orchids are Fertilised by Insects. Second edition, revised., (D. Appleton and Company, 1877).Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).Müller, H. Befruchtung der Blumen durch Insekten (Verlag Von Wilhelm Englemann, 1873).Book 

    Google Scholar 
    Riley, C. V. The yucca moth and yucca pollination. Rep. Missouri Botan. Garden 3, 99–159 (1892).Article 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology 3rd edn. (Pergamon, Berlin, 1979).
    Google Scholar 
    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 (2004).Article 

    Google Scholar 
    Inouye, D. W. In The Biology of Nectaries (eds Elias, T. S. & Bentley, B. L.) 153–173 (Columbia University Press, 1983).
    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. https://doi.org/10.1146/annurev.ecolsys.110308.120330 (2010).Article 

    Google Scholar 
    Irwin, R. E. & Maloof, J. E. Variation in nectar robbing over time, space, and species. Oecologia 133, 525–533. https://doi.org/10.1007/s00442-002-1060-z (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661. https://doi.org/10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2 (2000).Article 

    Google Scholar 
    Inouye, D. W. The terminology of floral larceny. Ecology 61, 1251–1253. https://doi.org/10.2307/1936841 (1980).Article 

    Google Scholar 
    Lyon, D. L. & Chadek, C. Exploitation of nectar resources by hummingbirds, bees (Bombus), and Diglossa baritula and Its role in the evolution of Penstemon kunthii. Condor 73, 246–248. https://doi.org/10.2307/1365847 (1971).Article 

    Google Scholar 
    Colwell, R. K., Betts, B. J., Bunnell, P., Carpenter, F. L. & Feinsinger, P. Competition for the nectar of Centropogon valerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and Its evolutionary implications. Condor 76, 447–452. https://doi.org/10.2307/1365817 (1974).Article 

    Google Scholar 
    Arizmendi, M. C., Dominguez, C. A. & Dirzo, R. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10, 119–127. https://doi.org/10.2307/2390270 (1996).Article 

    Google Scholar 
    Arizmendi, M. C. Multiple ecological interactions: Nectar robbers and hummingbirds in a highland forest in Mexico. Can. J. Zool. 79, 997–1006. https://doi.org/10.1139/z01-066 (2001).Article 

    Google Scholar 
    Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae)1. Biotropica 31, 618–625. https://doi.org/10.1111/j.1744-7429.1999.tb00410.x (1999).Article 

    Google Scholar 
    Traveset, A., Willson, M. F. & Sabag, C. Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Funct. Ecol. 12, 459–464. https://doi.org/10.1046/j.1365-2435.1998.00212.x (1998).Article 

    Google Scholar 
    Skutch, A. F. Life histories of Central American birds. Families Fringillidae, Thraupidae Parulidae and Coerebidae. Pacific Coast Avifauna 31, 1–448 (1954).
    Google Scholar 
    Vuilleumier, F. Systematics and evolution in Diglossa (Aves, Coerebidae). Am. Mus. Novit. 2381, 1–44 (1969).
    Google Scholar 
    Graves, G. R. Pollination of a Tristerix mistletoe (Loranthaceae) by Diglossa (Aves: Thraupidae). Biotropica 14, 315–317. https://doi.org/10.2307/2388094 (1982).Article 

    Google Scholar 
    Hernández, H. M. & Toledo, V. M. The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann. Mo. Bot. Gard. 66, 512–520. https://doi.org/10.2307/2398843 (1979).Article 

    Google Scholar 
    Neill, D. A. Trapliners in the trees: Hummingbird pollination of Erythrina Sect Erythrina (Leguminosae: Papilionoideae). Ann. Missouri Botan. Garden 74, 27–41. https://doi.org/10.2307/2399259 (1987).Article 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125, 1668–1676. https://doi.org/10.1111/oik.03195 (2016).CAS 
    Article 

    Google Scholar 
    Cuta-Pineda, J. A., Arias-Sosa, L. A. & Pelayo, R. C. The flowerpiercers interactions with a community of high Andean plants. Avian Res. 12, 22. https://doi.org/10.1186/s40657-021-00256-7 (2021).Article 

    Google Scholar 
    Askins, R. A., Karen, M. E. & Jeffrey, D. W. Flower destruction and nectar depletion by avian nectar robbers on a tropical tree, Cordia sebestena. J. Field Ornithol. 58, 345–349 (1987).
    Google Scholar 
    McDade, L. A. & Kinsman, S. The impact of floral parasitism in two Neotropical hummingbird-pollinated plant species. Evolution 34, 944–958. https://doi.org/10.2307/2408000 (1980).Article 
    PubMed 

    Google Scholar 
    Ingels, J. Observations of the hummingbirds Orthorhynchus cristatus and Eulampis jugularis of Martinique (West Indies). Gerfaut 66, 129–132 (1976).
    Google Scholar 
    Feinsinger, P., Beach, J. H., Linhart, Y. B., Busby, W. H. & Murray, K. G. Disturbance, pollinator predictability, and pollination success among Costa Rican cloud forest plants. Ecology 68, 1294–1305. https://doi.org/10.2307/1939214 (1987).Article 

    Google Scholar 
    Kodric-Brown, A., Brown, J. H., Byers, G. S. & Gori, D. F. Organization of a tropical island community of hummingbirds and flowers. Ecology 65, 1358–1368. https://doi.org/10.2307/1939116 (1984).Article 

    Google Scholar 
    Lara, C. & Ornelas, J. F. Preferential nectar robbing of flowers with long corollas: Experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273. https://doi.org/10.1007/s004420100640 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Impacts of nectar robbing on the foraging ecology of a territorial hummingbird. Behav. Proc. 149, 27–34. https://doi.org/10.1016/j.beproc.2018.01.001 (2018).Article 

    Google Scholar 
    Boehm, M. A. Biting the hand that feeds you: Wedge-billed hummingbird is a nectar robber of a sicklebill-adapted Andean bellflower. Acta Amazon. 48, 146–150. https://doi.org/10.1590/1809-4392201703932 (2018).Article 

    Google Scholar 
    Igić, B., Nguyen, I. & Fenberg, P. B. Nectar robbing in the trainbearers (Lesbia, Trochilidae). PeerJ 8, e9561. https://doi.org/10.7717/peerj.9561 (2020).Article 

    Google Scholar 
    Lunardi, V. D. O., Silva, É. E., Silva, S. T. A. & Lunardi, D. G. Handroanthus impetiginosus (Bignoniaceae) as an important floral resource for synanthropic birds in the Brazilian semiarid. Oecol. Austr. https://doi.org/10.4257/oeco.2019.2301.12 (2019).Article 

    Google Scholar 
    Almeida, J. M., Missagia, C. C. C. & Alves, M. A. S. Effects of the availability of floral resources and neighboring plants on nectar robbery in a specialized pollination system. Curr. Zool. https://doi.org/10.1093/cz/zoab083 (2021).Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. C. & Valido, A. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am. J. Bot. 95, 1408–1415. https://doi.org/10.3732/ajb.0800055 (2008).Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am. J. Bot. 93, 304–318. https://doi.org/10.3732/ajb.93.2.304 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O. & Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731–1743. https://doi.org/10.3732/ajb.0900004 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. & Taylor, C. M. A new generic classification of tribe Bignonieae (Bignoniaceae). Ann. Mo. Bot. Gard. 99, 348–489. https://doi.org/10.3417/2003187 (2014).Article 

    Google Scholar 
    Gentry, A. H. Coevolutionary patterns in Central American bignoniaceae. Ann. Mo. Bot. Gard. 61, 728–759. https://doi.org/10.2307/2395026 (1974).Article 

    Google Scholar 
    Bertin, R. I. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134. https://doi.org/10.2307/2442837 (1982).Article 

    Google Scholar 
    Bertin, R. I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119, 694–709. https://doi.org/10.1086/283943 (1982).Article 

    Google Scholar 
    Bertin, R. I. & Sullivan, M. Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75, 1140–1147. https://doi.org/10.1002/j.1537-2197.1988.tb08827.x (1988).Article 

    Google Scholar 
    Bertin, R. I. Paternal success following mixed pollinations of Campsis radicans. Am. Midl. Nat. 124, 153–163. https://doi.org/10.2307/2426088 (1990).Article 

    Google Scholar 
    Bertin, R. I. Effects of pollination intensity in Campsis radicans. Am. J. Bot. 77, 178–187. https://doi.org/10.1002/j.1537-2197.1990.tb13544.x (1990).Article 
    PubMed 

    Google Scholar 
    Bertin, R. I. & Peters, P. J. Paternal effects on offspring quality in Campsis radicans. Am. Nat. 140, 166–178. https://doi.org/10.1086/285408 (1992).Article 

    Google Scholar 
    Kartesz, J. T. Campsis radicans. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP) http://bonap.net/MapGallery/County/Campsis%20radicans.png. (2015).Kolodziejska-Degorska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans [L.] Seem in Poland. Acta Soc. Botanicorum Poloniae 75, 79–85 (2006).Article 

    Google Scholar 
    Catesby, M. The Natural History of Carolina, Florida and the Bahama islands. Volume 1. (Published by the author, 1731).Audubon, J. J. Ornithological Biography Vol. 3, 638 (Adam and Charles Black, 1835).
    Google Scholar 
    Audubon, J. J. Ruby-throated Hummingbird, plate CCLIII, The Birds of America Vol. 3 (Havell, 1835).
    Google Scholar 
    Nuttall, T. Manual of the Ornithology of the United States and of Canada. The Land Birds (Hilliard and Brown, 1832).
    Google Scholar 
    Stiles, F. G. & Freeman, C. E. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25, 191–205. https://doi.org/10.2307/2389183 (1993).Article 

    Google Scholar 
    Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301. https://doi.org/10.2307/1934961 (1975).Article 

    Google Scholar 
    McDade, L. A. & Weeks, J. A. Nectar in hummingbird-pollinated Neotropical plants I: Patterns of production and variability in 12 species. Biotropica 36, 196–215. https://doi.org/10.1111/j.1744-7429.2004.tb00312.x (2004).Article 

    Google Scholar 
    Wunderle, J. M. Jr. Nectar robbing by Orchard Orioles. Chat 44, 107–108 (1980).
    Google Scholar 
    Tyler, W. M. in Life histories of North American blackbirds, orioles, tanagers, and allies. Order Passeriformes: Families Ploceidae, Icteridae, and Thraupidae. United States National Museum Bulletin 211 (ed Arthur Cleveland Bent) 247–270 (United States Government Printing Office, 1958).George, F. W. Baltimore Orioles destroying trumpet vine blossoms. Wilson Bull. 46, 64 (1934).
    Google Scholar 
    Ridgway, R. The birds of North and Middle America, Part 2. Bull. U.S. Natl. Mus. 50, 1–834 (1902).
    Google Scholar 
    Scharf, W. C. & Kren, J. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Morton, E. S. Effective pollination of Erythrina fusca by the Orchard Oriole (Icterus spurius): Coevolved behavioral manipulation?. Ann. Mo. Bot. Gard. 66, 482–489. https://doi.org/10.2307/2398840 (1979).Article 

    Google Scholar 
    Dickey, D. R. & van Rossem, A. J. The birds of El Salvador. Field Mus. Publ. Zool. 23, 1–609 (1938).
    Google Scholar 
    Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C. (eds). Handbook of Avian Anatomy: Nomina Anatomica Avium, Second Edition. Publications of the Nuttall Ornithological Club no. 23 (Nuttall Ornithological Club, 1993).Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440. https://doi.org/10.2307/4080840 (1951).Article 

    Google Scholar 
    Zusi, R. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Natl. Mus. 123, 1–28 (1967).Article 

    Google Scholar 
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 
    Skutch, A. F. Orioles, Blackbirds, and Their Kin (University of Arizona Press, 1996).
    Google Scholar 
    Hansell, M. P. Bird nests and Construction Behaviour 294 (Cambridge University Press, 2000).Book 

    Google Scholar 
    Bent, A. C. Life histories of North American blackbirds, orioles, tanagers, and allies. Bull. U.S. Natl. Museum 211, 1–531 (1958).
    Google Scholar 
    Dennis, J. V. Observations on the orchard oriole in lower Mississippi Delta. Bird-Banding 19, 12–21. https://doi.org/10.2307/4509997 (1948).Article 

    Google Scholar 
    Wunderle, J. M. & Lodge, D. J. The effect of age and visual cues on floral patch use by bananaquits (Aves: Emberizidae). Anim. Behav. 36, 44–54. https://doi.org/10.1016/S0003-3472(88)80248-3 (1988).Article 

    Google Scholar 
    Edge, A. A. Characteristics of nectar production and standing crop in Campsis radicans (Bignoniaceae). MSc thesis. (East Tennessee State University, 2010).Galetto, L. Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst. Evol. 196, 99–121. https://doi.org/10.1007/BF00985338 (1995).Article 

    Google Scholar 
    Elias, T. S. & Gelband, H. Nectar: Its production and functions in trumpet creeper. Science 189, 289–291. https://doi.org/10.1126/science.189.4199.289 (1975).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, T. S. & Gelband, H. Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am. J. Bot. 63, 1349–1353. https://doi.org/10.1002/j.1537-2197.1976.tb13220.x (1976).Article 

    Google Scholar 
    Hermans, M. & Rasson, J. P. A new Sobolev test for uniformity on the circle. Biometrika 72, 698–702. https://doi.org/10.2307/2336748 (1985).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Landler, L., Ruxton, G. D. & Malkemper, E. P. The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol. 19, 30. https://doi.org/10.1186/s12898-019-0246-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. PBC, Boston, MA http://www.rstudio.com/. (RStudio 2020).Beecher, W. J. Convergent evolution in the American orioles. Wilson Bulletin 62, 50–86 (1950).
    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Stiles, F. G. Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176, 1351–1352. https://doi.org/10.1126/science.176.4041.1351 (1972).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Gill, F. B. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128. https://doi.org/10.2307/1935304 (1975).Article 

    Google Scholar 
    Alcantara, S. & Lohmann, L. G. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am. J. Bot. 97, 782–796. https://doi.org/10.3732/ajb.0900182 (2010).Article 
    PubMed 

    Google Scholar 
    Gentry, A. H. Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotrop. 25, 1–370 (1992).
    Google Scholar 
    Grant, V. Historical development of ornithophily in the western North American flora. Proc. Natl. Acad. Sci. 91, 10407–10411. https://doi.org/10.1073/pnas.91.22.10407 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, R. L. Some hummingbird flowers east of the Mississippi. Castanea 13, 97–109 (1948).
    Google Scholar 
    Van Nest, B. N., Edge, A. A., Feathers, M. V., Worley, A. C. & Moore, D. Bees provide pollination service to Campsis radicans (Bignoniaceae), a primarily ornithophilous trumpet flowering vine. Ecol. Entomol. 46, 117–127. https://doi.org/10.1111/een.12947 (2021).Article 

    Google Scholar 
    Patuxent Wildlife Research Center. Orchard oriole Icterus spurius. BBS summer distribution map, 2011–2015 (relative abundance map). https://www.mbr-pwrc.usgs.gov/bbs/ra2015/ra2015_red_v3.shtml (accessed 7 March 2021) (2021). More

  • in

    Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots

    Palaeogeographical modelWe use palaeogeographical reconstructions describing Earth’s palaeotopography and palaeobathymetry for a series of time slices from 541 Ma to the present day. The reconstructions merge existing models from two published global reconstruction datasets—those of ref. 32 and ref. 33 (https://doi.org/10.5281/zenodo.5348492), which themselves are syntheses of a wealth of previous work.For continental regions, estimates of palaeoelevation and continental flooding rely on a diverse range of geological evidence, such as sedimentary depositional environments and the spatiotemporal distribution of volcanic activity. For a full description, see a recent review34. Together, these data can be used to define the past locations of mountain ranges and palaeoshorelines34. For this part of our reconstruction, we used the compilation of ref. 33 with updated palaeoshorelines based on depositional environment information in current fossil databases35. This compilation comprises 82 palaeotopography maps covering the entire Phanerozoic. Note that each palaeogeographical map is a time slice representing the concatenation of geological data over several million years36.We quantified the impact of using the original compilation of ref. 33 on our model results and found only small changes with respect to using the reconstructions with updated palaeoshorelines (Extended Data Fig. 3a–c). Similarly, eustatic sea level is thought to have varied by around 100 m at timescales much shorter than the duration of the time-slices throughout the Phanerozoic37, such that the extent of continental flooding could have varied within each time slice by an amount significant for our analysis. For this reason, and to assess the uncertainty of our results to continental palaeogeography in general, we computed additional maps of continental flooding in which the sea level is raised or lowered by 100 m compared with the original palaeo–digital elevation model grids of ref. 33 (Extended Data Fig. 3d–f).For deep-ocean regions, the primary control on seafloor depth is the age of the seafloor, so reconstructing palaeobathymetry relies on constructing maps of seafloor age back in time38. As a consequence, we rely on reconstruction models that incorporate a continuous network of plate boundaries. For this part, we used the reconstruction of ref. 32 and derived maps of seafloor age from the plate tectonic model using the method of ref. 39 for which source code is available at GitHub (https://github.com/siwill22/agegrid-0.1). Palaeobathymetry is derived from the seafloor age maps following the steps outlined in ref. 38. It is important to note that seafloor age maps for most of the Phanerozoic (that is, pre-Pangaea times) are not directly constrained by data due to recycling of oceanic crust at subduction zones. Rather, they are model predictions generated by constructing plate motions and plate boundary configurations from the geological and palaeomagnetic record of the continents. Nonetheless, the first-order trends in ocean-basin volume and mean seafloor age are consistent with independent estimates for at least the last 410 million years (Myr)39.The reconstructions of refs. 32,33 differ in the precise locations of the continents through time. To resolve this discrepancy, we reverse reconstructed the continental palaeoelevation model of ref. 33 to present-day coordinates using their rotation parameters, then reconstructed them back in time using the rotations of ref. 32. Owing to the differences in how the continents are divided into different tectonic units, this process leads to some gaps and overlaps in the results40, which we resolved primarily through a combination of data interpolation and averaging. Manual adjustments were made to ensure that the flooding history remained consistent with the original palaeotopography in areas in which interpolation gives a noticeably different history of seafloor ages. The resulting palaeotopography maps are therefore defined in palaeomagnetic reference frame32 appropriate for use in Earth system models.For the biodiversity modelling, we generate estimates of the age of the seafloor for discrete points within the oceans and flooded continents, and track these ages through the lifetime of each point (Supplementary Video 5). For the oceans, this is achieved using the method described in ref. 39 in which the seafloor is represented by points that are incrementally generated at the mid-ocean ridges for a series of time steps 1 Myr apart, with each point tracked through subsequent time steps based on Euler poles of rotation until either the present-day is reached, or they arrive at a subduction zone and are considered to be destroyed.For the continents, tracking the location of discrete points is generally simpler as most crust is conserved throughout the timespan of the reconstruction. In contrast to the deep oceans (where we assume that crust is at all times submerged), we model the ‘age’ of the seafloor from the history of continental flooding and emergence within the palaeogeographical interpretation33. The continents are seeded with uniformly distributed points at the oldest timeslice (541 Ma) at which they are assigned an age of zero. These points are tracked to subsequent time slices of which the palaeogeography is used to determine whether the point lies within a flooded or emergent region. Points within flooded regions of continents are considered to be seafloor, and the age of this seafloor is accumulated across consecutive time slices where a given point lies within a flooded region. When a point is within an emergent region, the seafloor age is reset to zero. Following this approach, individual points within stable continents may undergo several cycles of seafloor age increasing from zero before being reset. At the continental margins formed during the Pangaea breakup, the age of the seafloor continuously grows from the onset of rifting. Intraoceanic island arcs represent an additional case, which can appear as new tectonic units with the reconstructions at various times. In these cases, we assume that the seafloor has a zero-age at the time at which the intraoceanic arc first develops, then remains predominantly underwater for the rest of its lifetime.Thus, for each of the 82 palaeogeographical reconstructions, we annotate 0.5° by 0.5° grids as continental, flooded continental shelf or oceanic for later use in model coupling and production of regional diversity maps.Palaeoenvironmental conditions under the cGENIE Earth system modelWe use cGENIE41, an Earth system model of intermediate complexity, to simulate palaeoenvironmental conditions of seawater temperature and organic carbon export production (as a surrogate for food supply) throughout the Phanerozoic (from 541 Ma to the present day).cGENIE is based on a three-dimensional (3D) ocean circulation model coupled to a 2D energy–moisture balance atmospheric component and a sea-ice module. We configured the model on a 36 × 36 (latitude, longitude) equal area grid with 17 unevenly spaced vertical levels in depth, down to a maximum ocean depth of 5,900 m. The cycling of carbon and associated tracers in the ocean is based on a size-structured plankton ecosystem model with a single (phosphate) nutrient42,43, and adopts an Arrhenius-type temperature-dependent scheme for the remineralization of organic matter exported to the ocean interior44.cGENIE provides a spatially resolved representation of ocean physics and biogeochemistry, which is a prerequisite for the present study to be able to reconstruct the spatial patterns of biodiversity in deep time. However, owing to the computational impracticality of generating a single transient simulation of physics (that is, temperature) and biogeochemistry (that is, export production) over the entire Phanerozoic, we therefore generate 30 model equilibria at regular time intervals throughout the Phanerozoic that are subsequently used as inputs for the regional diversification model (see the ‘Model coupling’ section).We used 30 Phanerozoic palaeogeographical reconstructions through time (~20 Myr evenly spaced time intervals) to represent key time periods. For each continental configuration corresponding to a given age in Earth history, we generate idealized 2D (but zonally averaged) wind speed and wind stress, and 1D zonally averaged albedo forcing fields45 required by the cGENIE model using the ‘muffingen’ open-source software (see the ‘Code availability’ section). For each palaeogeographical reconstruction, the climatic forcing (that is, solar irradiance and carbon dioxide concentration) is adapted to match the corresponding geological time interval. The partial pressure of CO2 is taken from the recent update of the GEOCARB model46. Solar luminosity is calculated using the model of stellar physics of ref. 47. We impose modern-day orbital parameters (obliquity, eccentricity and precession). The simulations are initialized with a sea-ice-free ocean, homogeneous oceanic temperature (5 °C) and salinity (34.9‰). As variations in the oceanic concentration of bio-available phosphate remain challenging to reconstruct in the geological past48,49, we impose a present-day mean ocean phosphate concentration (2.159 μmol kg−1) in our baseline simulations. We quantify the impact of this uncertainty on our model results by conducting additional simulations using half and twice the present-day ocean phosphate concentration (Extended Data Fig. 3g–i). For each ocean phosphate scenario (that is, 0.5×, 1× and 2× the present-day value), each of the 30 model simulations is then run for 20,000 years, a duration ensuring that deep-ocean temperature and geochemistry reach equilibrium. For each model simulation, the results of the mean annual values of the last simulated year are used for the analysis. Note that, although cGENIE makes projections of the distribution of dissolved oxygen ([O2]) in the ocean, our diversification model does not currently consider oxygenation to be a limit on diversity. Thus, we assumed a modern atmospheric partial pressure of O2 in all 30 palaeo simulations and did not use the resulting projected [O2] fields.Regional diversification modelWe tested two models of diversification—the logistic model and the exponential model—describing the dynamics of regional diversity over time. In both models, the net diversification rate (ρ), with units of inverse time (Myr−1), varies within a pre-fixed range of values as a function of seawater temperature and food availability. The net diversification rate is then calculated for a given location and time according to the following equation:$$rho ={rho }_{max }-({rho }_{max }-{rho }_{min })(1-{Q}_{{rm{temp}}}{Q}_{{rm{food}}})$$
    (1)
    where ρmin and ρmax set the lower and upper net diversification rate limits within which ρ is allowed to vary, and Qtemp and Qfood are non-dimensional limitation terms with values between 0 and 1 that define the dependence of ρ on temperature and food, respectively (Extended Data Table 1).The model considers a direct relationship between seawater temperature, food supply and the rate of net diversification on the basis of the theoretical control that temperature and food supply exert on the rates of origination and extinction (Supplementary Fig. 1). Temperature rise is expected to accelerate the biochemical kinetics of metabolism50 and shorten the development times of individuals51, leading to higher rates of mutation and origination. Greater food availability increases population sizes, which increases the rates of mutation and reduces the probability of extinction52. Furthermore, a large body of observations shows the existence of a positive relationship between resource availability (that is, food supply) and the standing stock of species in marine and terrestrial communities53,54. A larger food supply would support a greater number of individuals. A greater diversity of food resources could also lead to a finer partitioning of available resources55.The temperature dependence of ρ is calculated using the following equation:$${Q}_{{rm{temp}}}=frac{{Q}_{10}^{frac{T-Tmin }{10}}}{{Q}_{10}^{frac{Tmax -Tmin }{10}}}$$
    (2)
    where the Q10 coefficient measures the temperature sensitivity of the origination rate. In equation (2) above, T is the seawater temperature (in °C) at a given location and time, and Tmin and Tmax are the 0.01 percentile and the 0.99 percentile, respectively, of the temperature frequency distribution in each time interval. In the model, the values of Tmin and Tmax used to calculate Qtemp are therefore recomputed for every time interval (~5 Myr) according to the temperature frequency distribution of the corresponding time interval. This enables us to use updated Tmin and Tmax values in each Phanerozoic time interval and to account for the thermal adaptation of organisms to ever changing climate conditions.The food limitation term is parameterized using a Michaelis–Menten formulation as follows:$${Q}_{{rm{food}}}=frac{text{POC flux}}{left({K}_{{rm{food}}},+,text{POC flux}right)}$$
    (3)
    where POC flux (mol m−2 yr−1) is the particulate organic carbon export flux, which is used as a surrogate for food availability, at a given location and time of the simulated seafloor. The parameter Kfood (mol m−2 yr−1) in equation (3) is the half-saturation constant, that is, the POC flux at which the diversification rate is half its maximum value, provided that other factors were not limiting. These temperature and food supply limitation terms vary in space and time as a result of changes in seawater temperature and particulate organic carbon export rate, respectively, thereby controlling the spatial and temporal variability of ρ (Supplementary Video 6).The net diversification rate becomes negative (1) in the event of mass extinctions or (2) in response to regional-scale processes, such as sea-level fall and/or seafloor deformation along convergent plate boundaries. Mass extinction events are imposed as external perturbations to the diversification model by imputing negative net diversification rates to all active seafloor points (ocean points and flooded continental points) and assuming non-selective extinction. The percentage of diversity loss as well as the starting time and duration of mass extinctions are extracted from three fossil diversity curves of reference20,21,22 (Source Data for Fig. 1). Each of these fossil diversity curves provides different insights into the Phanerozoic history of marine animal diversity based on uncorrected range-through genus richness estimates20,22 and sampling standardized estimates21. Regional-scale processes—such as sea level fall during marine regressions and/or seafloor destruction at plate boundaries, either by subduction or uplift—are simulated by the combined plate tectonic–palaeoelevation model, and constrain the time that seafloor habitats have to accumulate diversity.The model assumes non-selective extinction during mass extinction events (that is, the field of bullets model of extinction; everything is equally likely to die, no matter the age of the clade and regardless of adaptation)56. However, there is much fossil evidence supporting extinction selectivity57,58. It could be argued that higher extinction rates at diversity hotspots would have delayed their subsequent recovery, flattening global diversity trends. This argument is difficult to reconcile with Sepkoski’s genus-level global diversity curve but could be consistent with the standardized diversity curve of ref. 21. Similarly, the model is also not suitable for reproducing the explosive radiations of certain taxonomic groups after mass extinctions, which could explain the offset between the model and fossil observations in the early Mesozoic (Fig. 1).Letting D represent regional diversity (number of genera within a given seafloor point) and t represent time, the logistic model is formalized by the following differential equation:$$frac{partial Dleft(tright)}{partial t}=rho Dleft[1-frac{D}{{K}_{{rm{eff}}}}right]$$
    (4)
    where D(t) is the number of genera at time t and Keff is the effective carrying capacity or maximum number of genera that a given seafloor point (that is, grid cell area after gridding) can carry at that time, t. In our logistic model, Keff is allowed to vary within a fixed range of values (from Kmin to Kmax) as a positive linear function of the POC flux at a given location and time as follows:$${K}_{{rm{eff}}}={K}_{max }-left({K}_{max }-{K}_{min }right)frac{{text{POC flux}}_{max }-text{POC flux}}{{text{POC flux}}_{max }-{text{POC flux}}_{min }}$$
    (5)
    where POC fluxmin and POC fluxmax correspond to the 0.01 and 0.99 quantiles of the POC flux range in the whole Phanerozoic dataset.In the logistic model, the net diversification rate decreases as regional diversity approaches its Keff. The exponential model is a particular case of the logistic model when Keff approaches infinity and, therefore, neither the origination rate nor the extinction rate depend on the standing diversities. In this scenario, diversity grows in an unlimited manner over time only truncated by the effect of mass extinctions and/or by the dynamics of the seafloor (creation versus destruction). Thus, the exponential model is as follows:$$frac{partial Dleft(tright)}{partial t}=rho D$$
    (6)
    where the rate of change of diversity (the time derivative) is proportional to the standing diversity D such that the regional diversity will follow an exponential increase in time at a speed controlled by the temperature- and food-dependent net diversification rate. Even if analytical solutions exist for the steady-state equilibrium of the logistic and exponential functions, we solved the ordinary differential equations (4) and (6) using numerical methods with a time lag of 1 Myr to account for the spatially and temporally varying environmental constraints, seafloor dynamics and mass extinction events.As the analysis of global fossil diversity curves is unable to discern the causes of diversity loss during mass extinctions, our imputation of negative diversification rates could have overestimated the loss of diversity in those cases in which sea level fall, a factor already accounted for by our model, contributed to mass extinction. This effect was particularly recognizable across the Permian–Triassic mass extinction (Extended Data Fig. 6d–f), and supports previous claims that the decline in the global area of the shallow water shelf exacerbated the severity of the end-Permian mass extinction34.Model couplingAs stated above, the coupled plate tectonic–palaeoelevation (palaeogeographical) model corresponds to a tracer-based model (a Lagrangian-based approach) that simulates and tracks the spatiotemporal dynamics of ocean and flooded continental points. The diversification models start at time 541 Ma with all active points having a D0 = 1 (one single genus everywhere) and we let points accumulate diversity heterogeneously with time according to seafloor age distributions (for ocean points) and the time that continents have been underwater (for flooded continental points). The ocean points are created at mid-ocean ridges and disappear primarily at subduction zones. Between their origin and demise, the points move following plate tectonic motions and we trace their positions while accumulating diversity. The flooded continental points begin to accumulate diversity from the moment that they are submerged, starting with a D value equal to the nearest neighbour flooded continental point with D  > 1, thereby simulating a process of coastal recolonization (or immigration). The diversification process remains active while the seafloor points remain underwater, but it is interrupted, and D set to 0, in those continental points that emerge above sea level. Similarly, seafloor points corresponding to ocean domains disappear in subduction zones, and their diversity is lost. We track the geographical position of the ocean and flooded continental points approximately every 5 Myr, from 541 Ma to the present. Each and every one of the tracked points accumulates diversity over time at a different rate, which is modulated by the environmental history (seawater temperature and food availability) of each point, as described in equations (1)–(3). When a point arrives in an environment with a carrying capacity lower than the diversity it has accumulated through time, we reset the diversity of the point to the value of the carrying capacity, thereby simulating local extinction.Seawater temperature (T) and food availability (POC flux) are provided by the cGENIE model, which has a spatial and temporal resolution coarser than the palaeogeographical model. The cGENIE model provides average seawater T and POC flux values in a 36 × 36 equal area grid (grid cell area equivalent to 2° latitude by 10° longitude at the equator) and 30 time slices or snapshots (from 541 Ma to the present: each ~20 Myr time intervals). To have environmental inputs for the 82 time slices of the plate tectonic–palaeoelevation model, we first interpolate the cGENIE original model output data on a 0.5° by 0.5° grid to match the annotated grids provided by the plate tectonic–palaeoelevation model. As the relatively coarse spatial resolution of the cGENIE model prevents rendering the coast–ocean gradients, we assign surface T and POC flux at the base of the euphotic zone to the flooded continental shelf grid cells, and deep ocean T and POC flux at the bottom of the ocean to the ocean grid cells. As there are time slices without input data of seawater T and POC flux, we interpolate/extrapolate seawater T and POC flux values into the 0.5° by 0.5° flooded continental shelf and ocean grids independently. Finally, we interpolate values from these 0.5° by 0.5° flooded continental shelf and ocean grids into the exact point locations in each time frame. Thus, each active point is tracked with its associated time-varying T and POC flux values throughout its lifetime. On average, 6,000 flooded continental points and 44,000 oceanic points were actively accumulating diversity in each time frame. The model cannot simulate the singularities of relatively small enclosed seas for which the spatial resolution of the palaeogeographical and Earth system models is insufficient to capture relevant features (such as palaeobathymetry, seawater temperature) in detail. The method is also likely to underestimate the diversity of epeiric (inland) seas due to the difficulty of simulating immigration, a process that is strongly influenced by the effect of surface ocean currents and is not considered here. However, as stated above, the model considers recolonization of recently submerged areas by marine biota from nearby coastal environments, which partially explains coastal immigration.Estimation of global diversity from regional diversityOur regional diversity maps are generated by separately interpolating ocean point diversity and flooded continental point diversity into the 0.5° by 0.5° annotated grids provided by the palaeogeographical model. We calculate global diversity at each time step from each of the regional diversity maps following a series of steps to integrate diversity along line transects from diversity peaks (maxima) to diversity troughs (minima) (Extended Data Fig. 1). To select the transects, first, we identify on each of the regional diversity maps the geographical position of the diversity peaks. We identify local maxima (that is, grid cells with diversity greater than their neighbour cells), and define the peaks as those local maxima with diversity greater than the 0.75 quantile of diversity values in all local maxima in the map. In the case of grid cells with equal neighbour diversity, the peak is assigned to the grid cell in the middle. We subsequently identify the geographical position of the diversity troughs, which are defined as newly formed ocean grid cells (age = 0 Myr) and, therefore, with diversities equal to one. The troughs are mostly located at mid-ocean ridges.On each of the 82 spatial diversity maps, we trace a line transect from each diversity peak to its closest trough, provided that the transect does not cross land in more than 20% of the grid cells along the linear path (Supplementary Video 7). On average, for each spatial diversity map, we trace 400 (σ = ±75) linear transects. This sampling design gives rise to transects of different lengths, which may bias the estimates of global diversity. To minimize this bias, we cut the tail of the transects to have a length of 555 km equivalent to 5° at the equator. We tested an alternative cut-off threshold, 1,110 km, and the results do not alter the study’s conclusions.We apply Bresenham’s line algorithm59 to detect the grid cells crossed by the transects and annotate their diversity. To integrate regional diversity along the transects, we developed a method to simplify the scenario of peaks and troughs heterogeneously distributed on the 2D diversity maps. The method requires (1) a vector (the transect) of genus richness (αn) at n different locations (grids) arranged in a line (1D) of L grids, and (2) a coefficient of similarity (Vn,n + 1) between each two neighbouring locations, n and n + 1. Vn,n + 1, the coefficient of similarity, follows a decreasing exponential function with distance between locations. The number of shared genera between n and n + 1 is Vn,n + 1 × min(αn; αn + 1). We integrate diversity from peaks to troughs and assume that, along the transect, αn + 1 is lower than αn. We further assume that the genera present in n and n + 2 cannot be absent from n + 1. Using this method, we integrate the transect’s diversity (γi) using the following equation:$${gamma }_{i}={ {mathbf{upalpha}}}_{1}+{sum }_{n=1}^{L-1}left(1-{V}_{n,n+1}right){ {mathbf{upalpha}}}_{n+1}$$
    (7)
    To integrate the diversity of all transects (γi) on each 2D diversity map (or time slice), we apply the same procedure as described above (Extended Data Fig. 1). We first sort the transects in descending order from the highest to the lowest diversity. We then assume that the number of shared genera between transect i and the rest of the transects with greater diversity {1, 2, …, i − 1} is given by the distance of its peak to the nearest neighbour peak (NN(i)) of those already integrated {1, 2, …, i − 1}. Thus, we perform a zigzag integration of transects’ diversities down gradient, from the greatest to the poorest, weighted by the nearest neighbour distance among the peaks already integrated. As a result, the contribution of each transect to global diversity will depend on its diversity and its distance to the closest transect out of all those transects already integrated. Using this method, we linearize the problem to simplify the cumbersome procedure of passing from a 2D regional diversity map to a global diversity estimate without knowing the identity (taxonomic affiliation) of the genera. If γtotal is the global diversity at time t:$${gamma }_{{rm{total}}}={gamma }_{1}+{sum }_{i=2}^{j}left(1-{V}_{{rm{NN}}left(iright),i}right){gamma }_{i}$$
    (8)
    Finally, the resulting global estimates are plotted against the midpoint value of the corresponding time interval to generate a synthetic global diversity curve. To compare the global diversity curves produced by the diversification models with those composed from the fossil record, Lin’s CCC60 is applied to the data normalized to the min–max values of each time series (that is, rescaled within the range 0–1). Lin’s CCC combines measures of both precision and accuracy to determine how far the observed data deviate from the line of perfect concordance (that is, the 1:1 line). Lin’s CCC increases in value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance (the accuracy of the data) and of the tightness of the data around its reduced major axis (the precision of the data).The time series of global diversity generated from the fossil record and from the diversification model exhibit serial correlation and the resulting CCCs are therefore inflated. The use of methods for analysing non-zero autocorrelation time series data, such as first differencing or generalised least squares regression, enables high-frequency variations along the time series to be taken into account. However, the relative simplicity of our model, which was designed to reproduce the main Phanerozoic trends in global diversity, coupled with the fact that biases in the fossil data would introduce uncertainty into the analysis, leads us to focus our analysis on the long-term trends, obviating the effect of autocorrelation.Model parameterization and calibrationThe diversification models are parameterized assuming a range of values that constrain the lower and upper limits of the genus-level net diversification rate (ρmin and ρmax, respectively) (Extended Data Table 1) according to previously reported estimates from fossil records (figures 8 and 11 of ref. 5). A range of realistic values is assigned for the parameters Q10 and Kfood, determining, respectively, the thermal sensitivity and food dependence of the net diversification rate. We test a total of 40 different parameter combinations (Extended Data Table 2). The resulting estimates of diversity are then compared against the fossil diversity curves of ref. 20, ref. 21 or ref. 22, and the 15 parameter combinations providing the highest CCCs are selected.The results of the logistic diversification model rely on the values of the minimum and maximum carrying capacities (Kmin and Kmax, respectively) within which the spatially resolved effective carrying capacities (Keff) are allowed to vary. The values of Kmin and Kmax are therefore calibrated by running 28 simulations of pair-wise Kmin and Kmax combinations increasing in a geometric sequence of base 2, from 2 to 256 genera (Extended Data Fig. 4). We perform these simulations independently for each of the 15 parameter settings selected previously (Extended Data Fig. 4 and Extended Data Table 2). Each combination of Kmin and Kmax produces a global diversity curve, which is evaluated as described above using Lin’s CCC.Calculating estimates of global diversity from regional diversity maps in the absence of information on genus-level taxonomic identities requires that we assume a spatial turnover of taxa with geographical distance (Extended Data Fig. 1). Distance-decay curves are routinely fitted by calculating the ecological similarity (for example, the Jaccard similarity index) between each pair of sampling sites, and fitting an exponential decay function to the points on a scatter plot of similarity (y axis) versus distance (x axis). Following this method, we fit an exponential decay function to the distance–decay curves reported in ref. 61, depicting the decrease in the Jaccard similarity index (J) of fossil genera with geographical distance (great circle distance) at different Phanerozoic time intervals:$$J={J}_{{rm{o}}{rm{f}}{rm{f}}}+(,{J}_{max}text{-}{J}_{{rm{o}}{rm{f}}{rm{f}}}){{rm{e}}}^{-lambda times {rm{d}}{rm{i}}{rm{s}}{rm{t}}{rm{a}}{rm{n}}{rm{c}}{rm{e}}}$$
    (9)
    where Joff = 0.06 (n.d.) is a small offset, Jmax = 1.0 (n.d.) is the maximum value of the genus-based Jaccard similarity index and λ = 0.0024 (km−1) is the distance-decay rate.The Jaccard similarity index (J) between consecutive points n and n + 1 is bounded between 0 and min(αn; αn + 1)/max(αn; αn + 1). A larger value for J would mean that there are more shared genera between the two communities than there are genera within the least diverse community, which is ecologically absurd. However, using a single similarity decay function can lead the computed value of J to be locally larger than min(αn; αn + 1)/max(αn; αn + 1). To prevent this artefact, we use the Simpson similarity index or ‘overlap coefficient’ (V) instead of J. V corresponds to the percentage of shared genera with respect to the least diverse community (min(αn ; αn + 1)). V is bounded between 0 and 1, whatever the ratio of diversities. As the pre-existing estimates of similarity are expressed using J (ref. 61), we perform the conversion from J to V using the algebraic expression V = (1 + R) × J/(1 + J) where R = max(αn; αn + 1)/min(αn; αn + 1) (Supplementary Note 1). In the cases in which J exceeds the min(αn; αn + 1)/max(αn; αn + 1), V becomes >1 and, in those cases, we force V to be More

  • in

    European primary datasets of alien bacteria and viruses

    Brandes, N. & Linial, M. Giant viruses—big surprises. Viruses 11, 404 (2019).CAS 
    Article 

    Google Scholar 
    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS 
    Article 

    Google Scholar 
    Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. opinion biotechnology 22, 456–464 (2011).CAS 
    Article 

    Google Scholar 
    Gummow, B. Challenges posed by new and re-emerging infectious diseases in livestock production, wildlife and humans. Livest. Sci. 130, 41–46 (2010).CAS 
    Article 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. letters 18, 483–495 (2015).Article 

    Google Scholar 
    Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. infectious diseases 11, 1842 (2005).Article 

    Google Scholar 
    Foster, R. et al. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NeoBiota 69, 79–102 (2021).Article 

    Google Scholar 
    Brasier, C. The biosecurity threat to the uk and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).Article 

    Google Scholar 
    Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Essl, F. et al. Which taxa are alien? criteria, applications, and uncertainties. BioScience 68, 496–509 (2018).Article 

    Google Scholar 
    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019).Article 

    Google Scholar 
    Hawkins, C. L. et al. Framework and guidelines for implementing the proposed iucn environmental impact classification for alien taxa (eicat). Divers. Distributions 21, 1360–1363 (2015).Article 

    Google Scholar 
    Corrales, X. et al. Advances and challenges in modelling the impacts of invasive alien species on aquatic ecosystems. Biol. Invasions 22, 907–934 (2020).Article 

    Google Scholar 
    Regulation, E. Regulation (eu) no 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 57, 35–55 (2014).
    Google Scholar 
    EU. Regulation (eu) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending regulations (eu) 228/2013,(eu) 652/2014 and (eu) 1143/2014 and repealing council directives 69/464/eec, 74/647/eec, 93/85/eec, 98/57/ec, 2000/29/ec, 2006/91/ec and 2007/33/ec. Off. J. 317, 4–104 (2016).
    Google Scholar 
    Murtaugh, M. P. et al. The science behind one health: at the interface of humans, animals, and the environment. Tech. Rep. (2017).Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. Royal Soc. open science 6, 181577 (2019).ADS 
    Article 

    Google Scholar 
    Roy, H. E. et al. Alien pathogens on the horizon: Opportunities for predicting their threat to wildlife. Conserv. Lett. 10, 477–484 (2017).Article 

    Google Scholar 
    Ikner, L. A., Gerba, C. P. & Bright, K. R. Concentration and recovery of viruses from water: a comprehensive review. Food Environ. Virol. 4, 41–67 (2012).
    Google Scholar 
    Taylor, M. W. Introduction: A short history of virology. In Viruses and Man: A History of Interactions, 1–22 (Springer, 2014).Thakur, M. P., Van der Putten, W. H., Cobben, M. M., van Kleunen, M. & Geisen, S. Microbial invasions in terrestrial ecosystems. Nat. Rev. Microbiol. 17, 621–631 (2019).CAS 
    Article 

    Google Scholar 
    Desprez-Loustau, M.-L. et al. The fungal dimension of biological invasions. Trends ecology & evolution 22, 472–480 (2007).Article 

    Google Scholar 
    Rivett, D. W. et al. Elevated success of multispecies bacterial invasions impacts community composition during ecological succession. Ecol. Lett. 21, 516–524 (2018).Article 

    Google Scholar 
    Dunn, A. M. & Hatcher, M. J. Parasites and biological invasions: parallels, interactions, and control. TRENDS Parasitol. 31, 189–199 (2015).Article 

    Google Scholar 
    Pyšek, P. et al. Macroecological framework for invasive aliens (mafia): disentangling large-scale context dependence in biological invasions. (2020).Hulme, P. E. et al. Blurring alien introduction pathways risks losing the focus on invasive species policy. Conserv. Lett. 10, 265–266 (2017).Article 

    Google Scholar 
    Gilroy, J. J., Avery, J. D. & Lockwood, J. L. Seeking international agreement on what it means to be “native”. Conserv. Lett. 10, 238–247 (2017).Article 

    Google Scholar 
    Webber, B. L. & Scott, J. K. Rapid global change: implications for defining natives and aliens. Glob. Ecol. Biogeogr. 21, 305–311 (2012).Article 

    Google Scholar 
    CBD Secretariat. Decision VI/23: Alien species that threaten ecosystems, habitats and species. Document UNEP/CBD/COP/6/23 (2002).World Health Organization. A brief guide to emerging infectious diseases and zoonoses. Tech. Rep. https://apps.who.int/iris/handle/10665/204722 (2014).Firrao, G. et al. Candidatus phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243–1255 (2004).CAS 
    Article 

    Google Scholar 
    CBD. Pathways of introduction of invasive species, their prioritization and management (Secretariat of the Convention on Biological Diversity Montreal, 2014).OIE. Terrestrial Animal Health Code 2021 (OIE, 2021).Magliozzi, C. et al. bacteria and viruses traits and species-related factors. figshare https://doi.org/10.6084/m9.figshare.18550907.v2 (2022).Katsanevakis, S. et al. Implementing the European policies for alien species: networking, science, and partnership in a complex environment. Manag. Biol. Invasions 4, 3–6 (2013).Article 

    Google Scholar 
    Tsiamis, K. et al. The EASIN Editorial Board: quality assurance, exchange and sharing of alien species information in europe. Manag. Biol. invasions 7, 321–328 (2016).Article 

    Google Scholar 
    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PloS one 7, e29715 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Darwin Core. Darwin Core quick reference guide. https://dwc.tdwg.org/terms/ (2018).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis, https://ggplot2.tidyverse.org (Springer-Verlag New York, 2016).Schwarzl, T. ggBubbles: Mini Bubble Plots for Comparison of Discrete Data with ‘ggplot2’ R package version 0.1.4 (2019).Moon, K. R statistics and graphs for medical papers (Hannarae Seoul, 2015).Current, C. Invasive species compendium. Wallingford, UK: CAB Int. Available online: www.cabi.org/isc (accessed on 19 August 2020) (2011).Adams, M. J. & Antoniw, J. F. Dpvweb: An open access internet resource on plant viruses and virus diseases. Outlooks on Pest Manag. 16, 268 (2005).Article 

    Google Scholar 
    Adams, M. J. & Antoniw, J. F. Dpvweb: a comprehensive database of plant and fungal virus genes and genomes. Nucleic acids research 34, D382–D385 (2006).CAS 
    Article 

    Google Scholar 
    Benson, D. A. et al. Genbank. Nucleic acids research 41, D36–D42 (2012).Article 

    Google Scholar  More

  • in

    Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling

    Giorgi, A., Pentimalli, D., Giupponi, L. & Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2(1), 52–57 (2017).Article 

    Google Scholar 
    Winterhalter, P. & Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Intl. 16(1), 39–59 (2000).CAS 
    Article 

    Google Scholar 
    Schmidt, M., Betti, G. & Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med. Wochenschr. 157, 315–319 (2007).PubMed 
    Article 

    Google Scholar 
    Siddique, H. R., Fatma, H. & Khan, M. A. Medicinal properties of saffron with special reference to cancer—A review of preclinical studies. in Saffron: The Age-Old Panacea in a New Light (ed. Sarwat,
    M. & Sumaiya, S.) 233–244 (Academic Press, 2020).Chapter 

    Google Scholar 
    Abdullaev, F. I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227(1), 20–25 (2002).CAS 
    Article 

    Google Scholar 
    Kafi, M., Koocheki, A. & Rashed, M. H. Saffron (Crocus sativus): Production and Processing (Science Publishers, 2006).Book 

    Google Scholar 
    Mir, G.M. Saffron Agronomy in Kashmir (1992).Melnyk, J. P., Wang, S. & Marcone, M. F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43(8), 1981–1989 (2010).CAS 
    Article 

    Google Scholar 
    Menia, M. et al. Production technology of saffron for enhancing productivity. J. Pharmacognosy Phytochem. 7(1), 1033–1039 (2018).
    Google Scholar 
    Tanra, M. A., Dar, B. A. & Sing, S. Economic analysis of Production and Marketing of saffron in Jammu and Kashmir. J. Social Relevance Concern 5(10), 12–19 (2017).
    Google Scholar 
    Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A. & Kirmani, N. A. saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Sci. Biotechnol. 4(2), 108–115 (2010).
    Google Scholar 
    Amirnia, R., Bayat, M. & Tajbakhsh, M. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crops. 19(2), 158–168 (2014).Article 

    Google Scholar 
    Kumar, R. et al. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 25(1), 44–85 (2009).Article 

    Google Scholar 
    Dhar, A. K. Saffron breeding and agrotechnology. Status Rep. PAFAI J. 12, 18–22 (1990).
    Google Scholar 
    Ehsanzadeh, P., Yadollahi, A. A. & Maibodi, A. M. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Int. Symp. Saffron Biol. Biotechnol. 650, 183–188 (2003).
    Google Scholar 
    Duke, J. A. Ecosystematic data on economic plants. Quart. J. Crude Drug Res. 17(3–4), 91–109 (1979).Article 

    Google Scholar 
    Kanth, R.H., Khanday, B.A. & Tabassum, S. Crop weather relationship for saffron production. Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India 170–188 (2008).Shinde, D. A., Talib, A. R. & Gorantiwar, S. M. Composition and classification of some typical soils of saffron growing areas of Jammu and Kashmir. J. Indian Soc. Soil Sci. 32(3), 473–477 (1984).CAS 

    Google Scholar 
    Nazir, N. A., Khitrov, N. B. & Chizhikova, N. P. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci. 28(4), 120–138 (1996).
    Google Scholar 
    Ganai, M. R., Wani, M. A. & Zargar, G. H. Characterization of saffron growing soils of Kashmir. Appl. Biol. Res. 2(1/2), 27–30 (2000).
    Google Scholar 
    Ganai, M.R.D. Nutrient status of saffron soils and their management. in Proceedings of Seminar-cum-Workshop on saffron (Crocus sativus) 51–54 (2001).Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). ScientiaHorticulturae 103(3), 361–379 (2005).
    Google Scholar 
    Galavi, M., Soloki, M., Mousavi, S. R. & Ziyaie, M. Effect of planting depth and soil summer temperature control on growth and yield of saffron (Crocus sativus L.). Asian J. Plant Sci. 7(8), 747 (2008).Article 

    Google Scholar 
    Kamyabi, S., Habibi Nokhandan, M. & Rouhi, A. Effect of climatic factors affecting saffron using analytic hierarchy process (AHP); Case Study Roshtkhar Region, Iran. (2014).Gupta, R. K. Saffron status and cultivation in northwestern Himalayas. Vegetos 20(1), 1–7 (2007).
    Google Scholar 
    Qin, A. et al. Maxent modelling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evaluat. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Hao, T., Elith, J., Arroita, G. G. & Monfort, J. J. L. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25(5), 839–852 (2019).Article 

    Google Scholar 
    Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Mykhailenko, O., Desenko, V., Ivanauskas, L. & Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according to with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 151, 112376. https://doi.org/10.1016/j.indcrop.2020.112376 (2020).CAS 
    Article 

    Google Scholar 
    Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 12, 657819. https://doi.org/10.3389/fpls.2021.657819 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mir, J. I., Ahmed, N., Wafai, A. H. & Qadri, R. A. Variability in stigma length and apocarotenoid content in Crocus sativus L. selections of Kashmir. J. Spices Aromatic Crops. 21(2), 169–171 (2012).
    Google Scholar 
    Nehvi, F. A. et al. New emerging trends on production technology of saffron. II Int. Symp. Saffron Biol. Technol. 739, 375–381 (2006).
    Google Scholar 
    Golmohammadi, F. Sustainable agriculture and rural development in Iran, Some modern issues in sustainable agriculture and rural development in Iran Germany, LAP LAMBERT Academic Publishing GmbH & Co. LAP Lambert Academic Publishing. Germany. ISBN-13, 978-3 (2012).Golmohammadi, F. Saffron and its importance, medical uses and economical export situation in Iran. in Oral Article Presented in: International Conference on Advances in Plant Sciences 14–18 (2012).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Wisz, M. S. et al. NCEAS Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diversity Distributions. 14(5), 763–773 (2008).Article 

    Google Scholar 
    Rebelo, H. & Jones, G. Ground validation of presence only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47(2), 410–420 (2010).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Palomera, S. et al. Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity Conservation 21(11), 2927–2948 (2012).Article 

    Google Scholar 
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166, 221–230 (2013).Article 

    Google Scholar 
    Phillips, S.J., Dudík, M. & Schapire, R.E. A maximum entropy approach to species distribution modelling. in Proceedings of the Twenty-First International Conference on Machine Learning 83 (2004).Baldwin, R. A. Use of maximum entropy modelling in wildlife research. Entropy 11(4), 854–866 (2009).ADS 
    Article 

    Google Scholar 
    Izadpanah, F., Kalantari, S., Hassani, M. E., Naghavi, M. R. & Shokrpour, M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst. Evolut. 300, 1941–1944 (2014).Article 

    Google Scholar 
    Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).PubMed 
    Article 

    Google Scholar 
    Proosdij, A. S. J. V., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar  More

  • in

    Phase synchronization of chlorophyll and total phosphorus oscillations as an indicator of the transformation of a lake ecosystem

    Sakamoto, M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobilogie. 62, 1–28 (1966).
    Google Scholar 
    Vollenweider, R. A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (Organisation for Economic Co-operation and Development, 1968).
    Google Scholar 
    Edmondson, W. T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169, 690–691 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Dillon, P. J. & Rigler, F. H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19, 767–773 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J. R. & Bachmann, R. W. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Feder. 48, 2176–2182 (1976).CAS 

    Google Scholar 
    Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Filstrup, C. T. & Downing, J. A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 7, 385–400 (2017).CAS 
    Article 

    Google Scholar 
    Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).ADS 
    Article 

    Google Scholar 
    Quinlan, R. et al. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 66, 392–404 (2020).ADS 
    Article 

    Google Scholar 
    Yuan, L. L. & Jones, J. R. Rethinking phosphorus–chlorophyll relationships in lakes. Limnol. Oceanogr. 65, 1847–1857 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 11, 361–369 (1977).ADS 
    Article 

    Google Scholar 
    Neveux, J. et al. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. Microb. Food Webs 4, 217–238 (1990).
    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecology (Oxford University, 2007).
    Google Scholar 
    Kovalevskaya, R. Z., Zhukava, H. A. & Adamovich, B. V. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies. J. Appl. Spectrosc. 87, 72–78 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35–48 (2017).Article 

    Google Scholar 
    Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller. P. H. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosyst. Health Manag. 5(1), 19–29 (2002).Magumba, D., Atsushi, M., Michiko, T., Akira, K. & Masao, K. Relationships between Chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control. Biol. 51(4), 179–185 (2013).CAS 
    Article 

    Google Scholar 
    Smith, V. H. & Shapiro, J. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environ. Sci. Technol. 15(4), 444–451 (1981).Pothoven, S. A. & Vanderploeg, H. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 46, 519–527 (2020).CAS 
    Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Lake Søbygaard, Denmark: phosphorus dynamics during the first 35 years after an external loading reduction. In: Internal Phosphorus Loading: Causes, Case Studies, and Management (ed. Steinman, A.D. & Spears, B. M.) 285–299 (J. Ross, Plantation, 2020).Guildford, S. J. & Hecky, R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnol. Oceanogr. 45, 1213–1223 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J.R. et al. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes. An analysis of regional limnology. Lake Reser. Manag. 24, 155–180 (2008).Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A universal concept in nonlinear sciences (Cambridge University, 2001).Book 

    Google Scholar 
    Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).Book 

    Google Scholar 
    Sazonov, A. V. et al. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 100, 129–146 (2009).Article 

    Google Scholar 
    Medvinsky, A. B. et al. Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017).Article 

    Google Scholar 
    Zhukova, T. V. & Ostapenya, A. P. Estimation of efficiency of nature protection measures in water catchment area of the Naroch lakes. Natural Resources. 3, 68–73 (2000) ((in Russian)).
    Google Scholar 
    Burlakova, L. E., Karatayev, A. Y. & Padilla, D. K. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571, 133–146 (2006).Article 

    Google Scholar 
    Ostapenia, A. P. et al. Bentification of lake ecosystem: causes, mechanisms, possible consequences, prospect for future research. Trudy BGU. 7, 135–148 (2012) ((in Russian)).
    Google Scholar 
    Karatayev, A.Y., Burlakova, L.E. & Padilla, D.K. Impacts of Zebra Mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E., Gollasch, S., Olenin, S. (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management (Springer, Dordrecht, 2002).Adamovich, B. V. et al. The divergence of chlorophyll dynamics in the Naroch Lakes. Biophysics 60, 632–638 (2015).CAS 
    Article 

    Google Scholar 
    Zhukova, T. V. et al. Long-term dynamics of suspended matter in Naroch Lakes: Trend or intervation. Inland Water Biol. 10, 250–257 (2017).Article 

    Google Scholar 
    Adamovich, B. V. et al. Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring. J. Siber. Federal Univ. Biol. 10, 379–394 (2017).Article 

    Google Scholar 
    Ostapenya A.P. et al. Ecological passport of Lake Myastro (EcoMir, Minsk, 1994) (in Russian).Kantz, H. & Schreiber, T. Nonlinear time series analysis (Cambridge University, 1997).MATH 

    Google Scholar 
    Kot, M. Elements of mathematical ecology (Cambridge University, 2001).Book 

    Google Scholar 
    Turchin, P. Complex population dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003).MATH 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. & Padilla, D. K. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J. Shellfish Res. 16, 187–203 (1997).
    Google Scholar 
    Lia, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. PNAS 118(6), e2008223118. https://doi.org/10.1073/pnas.2008223118 (2021).CAS 
    Article 

    Google Scholar 
    Mikheyeva, T. M. et al. The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus). Ecol. Ind. 81, 481–490 (2017).Article 

    Google Scholar 
    Harris, P. H. Phytoplankton ecology. Structure, functioning and flucttuation (Chapman & Hall, London, New York, 1986).Jeppesen, E., Jensen, J. P., Søndergaard, M. & Lauridsen, T. L. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshw. Biol. 50, 1616–1627 (2005).CAS 
    Article 

    Google Scholar 
    Nezlin, N.P. & Li, B-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 39, 185–202 (2003).French, T. D. & Petticrew, E. L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299 (2007).CAS 
    Article 

    Google Scholar 
    SCOR-UNESCO Working Group no. 17. Determination of photosynthetic pigments in sea-water. Monographs on Oceanologic Methodology 9–18 (UNESSCO, Paris, 1966).Semenov, A. D. Guide on the chemical analysis of continental surface waters (Gidrometeoizdat, 1977) ((in Russian)).
    Google Scholar 
    Wetzel, R. G. & Likens, G. E. Limnological analysis (Springer, 2000).Book 

    Google Scholar 
    Steffen, M. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R J. 9(1), 207–218 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020). More

  • in

    Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae)

    Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article 

    Google Scholar 
    Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article 

    Google Scholar 
    Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article 

    Google Scholar 
    Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article 

    Google Scholar 
    Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article 

    Google Scholar 
    Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS 
    Article 

    Google Scholar 
    Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
    Google Scholar 
    Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 
    Article 

    Google Scholar 
    Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
    Google Scholar 
    IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article 
    CAS 

    Google Scholar 
    Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS 

    Google Scholar 
    CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article 

    Google Scholar 
    Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article 
    CAS 

    Google Scholar 
    Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
    Google Scholar 
    Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article 

    Google Scholar 
    Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS 
    Article 

    Google Scholar 
    La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article 

    Google Scholar 
    Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article 
    CAS 

    Google Scholar 
    Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article 
    CAS 

    Google Scholar 
    Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article 

    Google Scholar 
    Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article 

    Google Scholar 
    Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article 

    Google Scholar 
    Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
    Google Scholar 
    Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
    Google Scholar 
    Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
    Google Scholar 
    Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article 

    Google Scholar 
    Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article 

    Google Scholar 
    Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed 

    Google Scholar 
    Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article 
    CAS 

    Google Scholar 
    Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS 
    Article 

    Google Scholar 
    Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed 
    Article 

    Google Scholar 
    Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
    Google Scholar 
    Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article 

    Google Scholar 
    Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
    Google Scholar 
    Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article 

    Google Scholar 
    Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS 
    Article 

    Google Scholar 
    Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article 

    Google Scholar 
    Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS 
    Article 

    Google Scholar 
    Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar  More