More stories

  • in

    Emerging signals of declining forest resilience under climate change

    Climate driversTo explore the impact of climate on forest resilience (see the following sections), we used monthly averaged total precipitation, 2-m air temperature, evapotranspiration deficit and surface solar radiation downwards acquired from the ERA5-Land reanalysis product at 0.1° spatial resolution for the 2000–2020 period (https://cds.climate.copernicus.eu/cdsapp#!/home). Evapotranspiration deficit was quantified as the total precipitation minus evapotranspiration. In this study, we referred to climate regions as defined by the Köppen–Geiger world map of climate classification51 (http://koeppen-geiger.vu-wien.ac.at/present.htm). The original 31 climatic zones were merged into major zones and only those characterized by vegetation cover were included in our study (tropical, arid, temperate and boreal; Extended Data Fig. 8).Vegetation dynamicsNDVI data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite was used to derive changes in global vegetation for the period 2000–2020. We used cloud-free spatial composites provided at 16-day temporal resolution and 0.05° spatial resolution (MOD13C1 Version 6; https://lpdaac.usgs.gov/products/mod13c1v006/) and retained only pixels with good and marginal overall quality. The MODIS-derived NDVI dataset represents a state-of-the-art product of vegetation state whose retrieval algorithm is constantly improved52, and being derived from a unique platform and sensor, it is temporally and spatially consistent. Vegetation dynamics were analysed in terms of kNDVI, a nonlinear generalization of the NDVI based on ref. 22 and derived as follows:$$text{kNDVI=}tanh left({text{NDVI}}^{2}right)$$
    (1)
    kNDVI has recently been proposed as a strong proxy for ecosystem productivity that shows high correlations with both plot level measurements of primary productivity and satellite retrievals of sun-induced fluorescence22. In addition, kNDVI has been documented to be more closely related to primary productivity, to be resistant to saturation, bias and complex phenological cycles, and to show enhanced robustness to noise and stability across spatial and temporal scales compared to alternative products (for example, NDVI and near-infrared reflectance of vegetation). For these reasons, it has been retained in this study as the preferred metric to describe the state of the forest ecosystem.To obtain an accurate estimate of resilience indicators, vegetation time series need to be stationary without seasonal periodic patterns or long-term trends53. To this aim, vegetation anomalies were obtained from kNDVI data by first subtracting the multi-year 16-day sample mean and then removing linear trends from the resulting time series. Missing data, due for instance to snow cover affecting the retrieval of reflectance properties, have been gap-filled by climatological kNDVI values. The time series of kNDVI-based vegetation anomalies was used to derive resilience indicators and assess their spatial and temporal variations (see next sections).Interannual changes in vegetation were assessed in terms of growing-season-averaged kNDVI. To this end, a climatological growing season that spanned months with at least 75% of days in the greenness phase was derived from the Vegetation Index and Phenology satellite-based product54 (https://vip.arizona.edu/) and acquired for the 2000–2016 period at 0.05° spatial resolution. In addition, forest cover (FC) fraction was derived from the annual land-cover maps of the European Space Agency’s Climate Change Initiative (https://www.esa-landcover-cci.org/)55 over the 2000–2018 period at 300-m spatial resolution. FC was retrieved by summing the fraction of broadleaved deciduous, broadleaved evergreen, needle leaf deciduous and needle leaf evergreen forest. FC was resampled to 0.05° to match the kNDVI spatial resolution.Spatial patterns of slowness and its dependence on environmental factorsIn this study, we quantified the resilience of forest ecosystems—their ability to recover from external perturbations—by the use of the 1-lag TAC (refs. 3,4,5). Such an indicator was initially computed on the whole time series of vegetation anomalies (2000–2020) for forest pixels with less than 50% missing data in the original NDVI and FC greater than 0.05 and referred to in the text as long-term TAC. This analysis was used to assess the spatial patterns of the forest slowness mediated by environmental factors that affect plant growth rates and capacity to recover from perturbations. The long-term TAC was explored both in the geographic and climate space (Extended Data Fig. 1). In the climate space, long-term TAC was binned in a 50 × 50 grid as a function of average annual precipitation and temperature, both computed over the 2000–2020 period, using the average as an aggregation metric weighted by the areal extents of each record. We retained only bins with at least 50 records.To explore the potential drivers of long-term TAC, we developed an RF regression model23 and predicted the observed long-term TAC (response variable) based on a set of environmental features (predictors). The use of machine learning in general and of RF in particular, being nonparametric and nonlinear data-driven methods, does not require a priori assumptions about the functional form relating the key drivers and the response functions. The environmental variables include vegetation properties (FC and growing-season-averaged kNDVI) and climate variables (total precipitation, 2-m air temperature, evapotranspiration deficit and surface solar radiation downwards). Each of the climate variables was expressed in terms of average, coefficient of variation and 1-lag autocorrelation and resampled to 0.05° spatial resolution to match the spatial resolution of kNDVI. All environmental variables were computed annually and then averaged over time, except the autocorrelation that was computed directly for the whole period, analogously to the long-term TAC. This resulted in a set of 14 predictors representing the forest density, the background climate, the climate variability and its TAC in the observational period (Extended Data Table 1). The RF model was developed by splitting the observed long-term TAC into two separate samples: 60% of records were used for model calibration, and the remaining 40% were used to validate model performances in terms of coefficient of determination (R2), mean squared error and percentage bias (PBIAS). Each record refers to a 0.05° pixel. The RF implemented here uses 100 regression trees, whose depth and number of predictors to sample at each node were identified using Bayesian optimization. The general model formulation is as follows:$$text{TAC},=,fleft(Xright)+{varepsilon }_{{rm{f}}}$$
    (2)
    in which f is the RF regression model, X are the environmental predictors and εf are the residuals. We found that the model explains 87% of the spatial variance (R2) of the observed long-term TAC with a mean squared error of 0.007 and an average overestimation of 0.058 (PBIAS; Extended Data Fig. 2a). By definition, machine learning methods are not based on the mechanistic representation of the phenomena and therefore cannot provide direct information on the underlying processes influencing the system response to drivers. However, some model-agnostic methods can be applied to gain insights into the outputs of RF models. Here we used variable importance metrics to quantify and rank how individual environmental factors influence TAC (Extended Data Fig. 2b). Furthermore, using partial dependence plots derived from the machine learning algorithm RF, we explored the ecosystem response function (TAC) across gradients of vegetation and climate features (Supplementary Discussion 1 and Extended Data Fig. 2c–f).CSD indicatorsTo explore the temporal variation in forest resilience, we used CSD indicators, here quantified in terms of temporal changes in TAC retrieved for two consecutive and independent periods ranging from 2000 to 2010 and from 2011 to 2020, and assessed the significance of the change in the sampled mean aggregated for different climate regions through a two-sided t-test (Fig. 1c). This analysis was complemented by the computation of TAC on the annual scale over a 2-year lagged temporal window (3-year window size) to track the temporal changes in CSD. This resulted in a time series of TAC with an annual time step.We point out that temporal dynamics of annual TAC are driven by two processes: the changes in the resilience of the system that affect the velocity of the recovery from external perturbations and the confounding effects of the changes in autocorrelation of the climate drivers (Xac) that directly affect the autocorrelation of NDVI. Given the specific goals of this study, we factored out the second process from the total TAC signal to avoid that an increasing autocorrelation in the drivers would affect our analysis and conclusions about the resilience and the potential increase in instability56. For this purpose, we disentangled the temporal changes in TAC due to variations in autocorrelation in the climate drivers (({rm{TAC}}| {X}_{{rm{ac}}})) by adopting the space-for-time analogy and applied the RF model (f) at an annual time step (t) in a set of factorial simulations as follows:$${text{TAC}}^{t},{rm{| }},{X}_{{rm{ac}}}=fleft({X}^{t}right)-fleft({X}_{-{rm{ac}}}^{t},{X}_{{rm{ac}}}^{2000}right)$$
    (3)
    The first term on the right side of equation (3) is the RF model simulation obtained by accounting for the dynamics of all predictors, and the second term is the RF model simulation generated by considering all predictors dynamic except the factors of autocorrelation in climate that are kept constant to their first-year value (year 2000). For such runs, we used predictors computed on an annual scale over a 2-year lagged temporal window, consistently to the TAC time series. We found that the direct effects of autocorrelation in climate have led to a positive trend of TAC in dry zones (due to the increasing autocorrelation of the drivers in these regions) and to an opposite effect in temperate humid forests (Supplementary Fig. 3). To remove these confounding effects, the estimated term ({{rm{TAC}}}^{t}| {X}_{{rm{ac}}}) is factored out from the TACt by subtraction to derive an enhanced estimate of annual resilience that is independent of autocorrelation in climate (Extended Data Fig. 3).Long-term linear trends computed on the resulting enhanced TAC time series (δTAC) represent our reference CSD indicator used in this study to explore the changes in forest resilience. δTAC was quantified for each grid cell (Fig. 1a) and represented in the climate space following the methodology previously described (Fig. 1b). We then assessed the significance of the trends at bin level by applying a two-sided t-test for the sampled trend distributions within each bin. This significance test is independent from the structural temporal dependencies originating from the use of a 2-year lagged temporal window to compute the TAC time series.Following an analogous approach described in equation (3), we disentangled the effect of the variation in forest density, background climate and climate variability on temporal changes in TAC (Fig. 1d,e). We recognize that other environmental factors not explicitly accounted for in our RF model could play a role in modulating the temporal variations in TAC. However, given the comprehensiveness of the suite of predictors used in equation (2) (Extended Data Table 1), it seems plausible that residuals mostly reflect the intrinsic forest resilience, the component intimately connected to the short-term responses of forests to perturbations, which is not directly related to climate variability. Forest ecosystem evolutionary processes could also play a role, but longer time series would be required to reliably capture these dynamics. Furthermore, abrupt declines (ADs) in the vegetation state and following recoveries, similarly to those potentially originating from forest disturbances (for example, wildfires and insect outbreaks), could influence the TAC changes. However, such occurrences, being distributed across the globe throughout the whole period, are expected to only marginally affect the resulting trend in TAC time series.Sensitivity analysisTo assess the robustness of our results with respect to the modelling choices described above, we performed a series of sensitivity analyses for the difference in TAC retrieved for the two independent periods (2000–2010 and 2011–2020). To this aim, we tested their dependence on: the quality flag of the NDVI data used for the analyses (good, good and marginal); the gap-filling procedure tested on different periods (year and growing season); the inclusion or exclusion of forest areas affected by ADs; the threshold on the maximum percentage of missing NDVI data allowed at the pixel level (20%, 50% and 80%); the threshold on the minimum percentage of FC allowed at the pixel level (5%, 50% and 90%); and the pixel spatial resolution used for the analyses (0.05°, 0.25° and 1°). In addition, we tested the sensitivity of the trend in total TAC signal on the moving temporal window length used to calculate autocorrelation at lag 1. Results obtained for the different configurations were compared in terms of frequency distributions, separately for climate regions (Extended Data Fig. 4), and further explored in the climate space (Extended Data Figs. 5 and 6). Outcomes of the sensitivity analysis are discussed in Supplementary Discussion 2.Interplay between GPP and CSDResilience and GPP interact with each other through mutual causal links. On one hand, a reduction in forest resilience makes the system more sensitive to perturbations with potential consequent losses in GPP (ref. 26). On the other hand, a reduction in GPP may lead to a decline in resilience according to the carbon starvation hypothesis, and may be associated with increasing hydraulic failure46. To explore the link between forest resilience and primary productivity, we quantified the correlation between TAC and GPP. Estimates of GPP were derived from the FluxCom Model Tree Ensemble for the 2001–2019 period at 8-daily temporal resolution and 0.0833° spatial resolution and generated using ecosystem GPP fluxes from the FLUXNET network and MODIS remote sensing data as predictor variables36 (http://www.fluxcom.org/). Annual maps of GPP were quantified and resampled to 0.05° to match the temporal and spatial resolution of TAC time series. The Spearman rank correlation (ρ) was then computed between annual GPP and TAC over a 1° spatial moving window to better sample the empirical distribution of the two variables (Fig. 2d). The significance of ρ(GPP,TAC) was assessed over the climate space separately for each bin (Fig. 2e), similarly to the approach used to test the significance of δTAC. Furthermore, we explored the relationships between the trend in GPP (δGPP) and the trend in TAC (δTAC) by clustering the globe according to the directions of the long-term trajectories of the above-mentioned variables (Fig. 2f).Disentangling the impact of forest managementTo characterize TAC on different forest types and disentangle the potential effects originating from forest management, results were separately analysed for intact forests and managed forests. Intact forests were considered those forest pixels constituting the Intact Forest Landscapes57 dataset (https://intactforests.org/). Intact Forest Landscapes identifies the forest extents with no sign of significant human activity over the period 2000–2016 based on Landsat time series. The remaining forests pixels—not labelled as intact—were considered as managed forests (Extended Data Fig. 8). The resulting forest type map is consistent with those used for United Nations Framework Convention on Climate Change reporting58, although with more conservative estimates of intact forests in the boreal zone due to the masking based on FC and percentage of missing data applied in this study.We analysed the differences in long-term TAC (computed for the whole 2000–2020 period) between managed and intact forests by masking out the potential effect of climate background. To this aim, we compared the climate spaces generated separately for managed and intact forests by extracting only those bins that are covered by both forest classes. The resulting distributions—one for each forest class—have the same sample size, and each pair of elements shares the same climate background. Potential confounding environmental effects on average recovery rates are, therefore, minimized. We then applied a two-sided t-test for analysing the significance of the difference in the sampled means (Fig. 2a). An analogous approach was used to test the differences in δTAC and ρ(GPP,TAC) between managed and intact forests (Fig. 2b,c).Early-warning signals of abrupt forest declinesWhen forest ecosystems are subject to an extended and progressive degradation, the loss of resilience can lead to an AD (refs. 3,4,5). Such abrupt changes can trigger a regime shift (tipping point) depending on the capacity of the system to recover from the perturbations (Supplementary Methods 1 and 2). We investigated the potential of changes in TAC as early-warning signals of ADs in intact forests over the 2010–2020 period. To this aim, we quantified at the pixel level ADs as the events occurring on a certain year when the corresponding growing-season average kNDVI was more than n-times local standard deviation below the local mean. Local mean and standard deviation (σ) were computed over the 10-year antecedent temporal window (undisturbed) period and n varies between 1 and 6 with higher values reflecting more severe changes in the state of the system. For each pixel and for each fixed n value, we recorded only the first AD occurrence, thus imposing a univocal record for each abrupt change in the state of the system.We then explored whether the retrieved ADs were statistically associated with antecedent high values of δTAC. To avoid confusion with the attribution of causality, for each AD that occurred at time t (over the 2010–2020 period), we derived the δTAC over the temporal window 2000 − (t − 1). The resulting trend in δTAC is therefore antecedent and independent of the changes in vegetation associated with the AD. Then, for each pixel with an AD at time t, we also extracted randomly one of the undisturbed (with no AD) adjacent pixels and retrieved δTAC over the same temporal window. This analysis produced two distributions of δTAC associated with pixels with and without ADs (AD and no AD, respectively). The two distributions have the same size and each pair of elements shares similar background climate. We calculated the probability of occurrence of AD conditional on the trend in δTAC (({rm{AD}}| delta {rm{TAC}})) as the frequency of ADs for which (delta {rm{TAC}}left(mathrm{AD}right)| > delta {rm{TAC}}left(mathrm{no; AD}right)), and the significance of the difference in the two sampled means (AD and no AD) was evaluated through a two-sided t-test. Probability and significance were assessed for different climate regions and severity of ADs (Fig. 3a). High statistically significant probabilities suggest that the AD is following the drifting towards a critical resilience threshold plausibly associated with changes in environmental drivers.We complemented the aforementioned analyses by retrieving the tolerance and proximity to AD, hereafter determined for a 3σ severity. We first quantified the TAC that proceeded the occurrence of an AD and followed a progressive loss of resilience as captured by positive δTAC. This value, hereafter referred to as abrupt decline temporal autocorrelation (TACAD), reflects the TAC threshold over which we observed an abrupt change in the forest state (Fig. 3b). The tolerance to AD was quantified as the difference between the local TACAD and the TAC value averaged over the 2000–2009 period to characterize the pre-disturbance conditions. The tolerance metric was explored across a gradient of aridity index59 (Fig. 3c).TACAD can be directly retrieved only on those forest pixels that have already experienced an AD. As a considerable fraction of undisturbed forests could potentially be close to their critical TAC threshold, or even have already passed it, it is important to determine their TACAD. To this aim, we developed an RF regression model that expresses the TACAD as a function of the set X of environmental variables used in model f (equation (2)) but excluding the autocorrelation in climate drivers (Xreduced) already disentangled in the TAC signal. The general formulation is as follows:$${{rm{TAC}}}_{{rm{AD}}}=gleft({X}_{text{reduced}}right)+{varepsilon }_{{rm{g}}}$$
    (4)
    in which g is the RF regression model, Xreduced are the environmental predictors and εg are the residuals. Implementation, calibration and validation of g follow the same rationale described before for the f model. We found that the RF model explains 50% of the variance (R2) of the observed TACAD, with a mean squared error of 0.019 and an average underestimation of 0.86 (PBIAS).The RF model was then used to predict the TACAD over the whole domain of intact forests and served as input to quantify the proximity to AD of undisturbed forest pixels at the end of the observational period (year 2020). Here we defined the proximity metric as the difference between the value of TAC in 2020 and TACAD. Proximity takes negative or zero values when TACAD has already been reached (({{{rm{TAC}}}^{2020}ge {rm{TAC}}}_{{rm{AD}}})) and positive values when there are still margins before reaching the critical threshold (({{{rm{TAC}}}^{2020} < {rm{TAC}}}_{{rm{AD}}})). Together (delta {rm{TAC}} > 0) and ({{{rm{TAC}}}^{2020}ge {rm{TAC}}}_{{rm{AD}}}) therefore represent the most critical conditions, as they indicate that the critical resilience threshold for AD has already been reached and the ecosystem is continuing to lose its capacity to respond to external perturbations. We finally quantified the amount of GPP potentially exposed to such critical conditions by linearly extrapolating the GPP for the year 2020 (available GPP data stop in 2019) and overlaying it on the map of critical conditions (proximity to ({rm{AD}} < 0) and (delta {rm{TAC}} > 0)).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling

    Giorgi, A., Pentimalli, D., Giupponi, L. & Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2(1), 52–57 (2017).Article 

    Google Scholar 
    Winterhalter, P. & Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Intl. 16(1), 39–59 (2000).CAS 
    Article 

    Google Scholar 
    Schmidt, M., Betti, G. & Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med. Wochenschr. 157, 315–319 (2007).PubMed 
    Article 

    Google Scholar 
    Siddique, H. R., Fatma, H. & Khan, M. A. Medicinal properties of saffron with special reference to cancer—A review of preclinical studies. in Saffron: The Age-Old Panacea in a New Light (ed. Sarwat,
    M. & Sumaiya, S.) 233–244 (Academic Press, 2020).Chapter 

    Google Scholar 
    Abdullaev, F. I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227(1), 20–25 (2002).CAS 
    Article 

    Google Scholar 
    Kafi, M., Koocheki, A. & Rashed, M. H. Saffron (Crocus sativus): Production and Processing (Science Publishers, 2006).Book 

    Google Scholar 
    Mir, G.M. Saffron Agronomy in Kashmir (1992).Melnyk, J. P., Wang, S. & Marcone, M. F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43(8), 1981–1989 (2010).CAS 
    Article 

    Google Scholar 
    Menia, M. et al. Production technology of saffron for enhancing productivity. J. Pharmacognosy Phytochem. 7(1), 1033–1039 (2018).
    Google Scholar 
    Tanra, M. A., Dar, B. A. & Sing, S. Economic analysis of Production and Marketing of saffron in Jammu and Kashmir. J. Social Relevance Concern 5(10), 12–19 (2017).
    Google Scholar 
    Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A. & Kirmani, N. A. saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Sci. Biotechnol. 4(2), 108–115 (2010).
    Google Scholar 
    Amirnia, R., Bayat, M. & Tajbakhsh, M. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crops. 19(2), 158–168 (2014).Article 

    Google Scholar 
    Kumar, R. et al. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 25(1), 44–85 (2009).Article 

    Google Scholar 
    Dhar, A. K. Saffron breeding and agrotechnology. Status Rep. PAFAI J. 12, 18–22 (1990).
    Google Scholar 
    Ehsanzadeh, P., Yadollahi, A. A. & Maibodi, A. M. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Int. Symp. Saffron Biol. Biotechnol. 650, 183–188 (2003).
    Google Scholar 
    Duke, J. A. Ecosystematic data on economic plants. Quart. J. Crude Drug Res. 17(3–4), 91–109 (1979).Article 

    Google Scholar 
    Kanth, R.H., Khanday, B.A. & Tabassum, S. Crop weather relationship for saffron production. Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India 170–188 (2008).Shinde, D. A., Talib, A. R. & Gorantiwar, S. M. Composition and classification of some typical soils of saffron growing areas of Jammu and Kashmir. J. Indian Soc. Soil Sci. 32(3), 473–477 (1984).CAS 

    Google Scholar 
    Nazir, N. A., Khitrov, N. B. & Chizhikova, N. P. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci. 28(4), 120–138 (1996).
    Google Scholar 
    Ganai, M. R., Wani, M. A. & Zargar, G. H. Characterization of saffron growing soils of Kashmir. Appl. Biol. Res. 2(1/2), 27–30 (2000).
    Google Scholar 
    Ganai, M.R.D. Nutrient status of saffron soils and their management. in Proceedings of Seminar-cum-Workshop on saffron (Crocus sativus) 51–54 (2001).Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). ScientiaHorticulturae 103(3), 361–379 (2005).
    Google Scholar 
    Galavi, M., Soloki, M., Mousavi, S. R. & Ziyaie, M. Effect of planting depth and soil summer temperature control on growth and yield of saffron (Crocus sativus L.). Asian J. Plant Sci. 7(8), 747 (2008).Article 

    Google Scholar 
    Kamyabi, S., Habibi Nokhandan, M. & Rouhi, A. Effect of climatic factors affecting saffron using analytic hierarchy process (AHP); Case Study Roshtkhar Region, Iran. (2014).Gupta, R. K. Saffron status and cultivation in northwestern Himalayas. Vegetos 20(1), 1–7 (2007).
    Google Scholar 
    Qin, A. et al. Maxent modelling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evaluat. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Hao, T., Elith, J., Arroita, G. G. & Monfort, J. J. L. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25(5), 839–852 (2019).Article 

    Google Scholar 
    Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Mykhailenko, O., Desenko, V., Ivanauskas, L. & Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according to with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 151, 112376. https://doi.org/10.1016/j.indcrop.2020.112376 (2020).CAS 
    Article 

    Google Scholar 
    Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 12, 657819. https://doi.org/10.3389/fpls.2021.657819 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mir, J. I., Ahmed, N., Wafai, A. H. & Qadri, R. A. Variability in stigma length and apocarotenoid content in Crocus sativus L. selections of Kashmir. J. Spices Aromatic Crops. 21(2), 169–171 (2012).
    Google Scholar 
    Nehvi, F. A. et al. New emerging trends on production technology of saffron. II Int. Symp. Saffron Biol. Technol. 739, 375–381 (2006).
    Google Scholar 
    Golmohammadi, F. Sustainable agriculture and rural development in Iran, Some modern issues in sustainable agriculture and rural development in Iran Germany, LAP LAMBERT Academic Publishing GmbH & Co. LAP Lambert Academic Publishing. Germany. ISBN-13, 978-3 (2012).Golmohammadi, F. Saffron and its importance, medical uses and economical export situation in Iran. in Oral Article Presented in: International Conference on Advances in Plant Sciences 14–18 (2012).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Wisz, M. S. et al. NCEAS Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diversity Distributions. 14(5), 763–773 (2008).Article 

    Google Scholar 
    Rebelo, H. & Jones, G. Ground validation of presence only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47(2), 410–420 (2010).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Palomera, S. et al. Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity Conservation 21(11), 2927–2948 (2012).Article 

    Google Scholar 
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166, 221–230 (2013).Article 

    Google Scholar 
    Phillips, S.J., Dudík, M. & Schapire, R.E. A maximum entropy approach to species distribution modelling. in Proceedings of the Twenty-First International Conference on Machine Learning 83 (2004).Baldwin, R. A. Use of maximum entropy modelling in wildlife research. Entropy 11(4), 854–866 (2009).ADS 
    Article 

    Google Scholar 
    Izadpanah, F., Kalantari, S., Hassani, M. E., Naghavi, M. R. & Shokrpour, M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst. Evolut. 300, 1941–1944 (2014).Article 

    Google Scholar 
    Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).PubMed 
    Article 

    Google Scholar 
    Proosdij, A. S. J. V., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar  More

  • in

    Phase synchronization of chlorophyll and total phosphorus oscillations as an indicator of the transformation of a lake ecosystem

    Sakamoto, M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobilogie. 62, 1–28 (1966).
    Google Scholar 
    Vollenweider, R. A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (Organisation for Economic Co-operation and Development, 1968).
    Google Scholar 
    Edmondson, W. T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169, 690–691 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Dillon, P. J. & Rigler, F. H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19, 767–773 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J. R. & Bachmann, R. W. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Feder. 48, 2176–2182 (1976).CAS 

    Google Scholar 
    Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Filstrup, C. T. & Downing, J. A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 7, 385–400 (2017).CAS 
    Article 

    Google Scholar 
    Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).ADS 
    Article 

    Google Scholar 
    Quinlan, R. et al. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 66, 392–404 (2020).ADS 
    Article 

    Google Scholar 
    Yuan, L. L. & Jones, J. R. Rethinking phosphorus–chlorophyll relationships in lakes. Limnol. Oceanogr. 65, 1847–1857 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 11, 361–369 (1977).ADS 
    Article 

    Google Scholar 
    Neveux, J. et al. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. Microb. Food Webs 4, 217–238 (1990).
    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecology (Oxford University, 2007).
    Google Scholar 
    Kovalevskaya, R. Z., Zhukava, H. A. & Adamovich, B. V. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies. J. Appl. Spectrosc. 87, 72–78 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35–48 (2017).Article 

    Google Scholar 
    Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller. P. H. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosyst. Health Manag. 5(1), 19–29 (2002).Magumba, D., Atsushi, M., Michiko, T., Akira, K. & Masao, K. Relationships between Chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control. Biol. 51(4), 179–185 (2013).CAS 
    Article 

    Google Scholar 
    Smith, V. H. & Shapiro, J. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environ. Sci. Technol. 15(4), 444–451 (1981).Pothoven, S. A. & Vanderploeg, H. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 46, 519–527 (2020).CAS 
    Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Lake Søbygaard, Denmark: phosphorus dynamics during the first 35 years after an external loading reduction. In: Internal Phosphorus Loading: Causes, Case Studies, and Management (ed. Steinman, A.D. & Spears, B. M.) 285–299 (J. Ross, Plantation, 2020).Guildford, S. J. & Hecky, R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnol. Oceanogr. 45, 1213–1223 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J.R. et al. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes. An analysis of regional limnology. Lake Reser. Manag. 24, 155–180 (2008).Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A universal concept in nonlinear sciences (Cambridge University, 2001).Book 

    Google Scholar 
    Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).Book 

    Google Scholar 
    Sazonov, A. V. et al. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 100, 129–146 (2009).Article 

    Google Scholar 
    Medvinsky, A. B. et al. Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017).Article 

    Google Scholar 
    Zhukova, T. V. & Ostapenya, A. P. Estimation of efficiency of nature protection measures in water catchment area of the Naroch lakes. Natural Resources. 3, 68–73 (2000) ((in Russian)).
    Google Scholar 
    Burlakova, L. E., Karatayev, A. Y. & Padilla, D. K. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571, 133–146 (2006).Article 

    Google Scholar 
    Ostapenia, A. P. et al. Bentification of lake ecosystem: causes, mechanisms, possible consequences, prospect for future research. Trudy BGU. 7, 135–148 (2012) ((in Russian)).
    Google Scholar 
    Karatayev, A.Y., Burlakova, L.E. & Padilla, D.K. Impacts of Zebra Mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E., Gollasch, S., Olenin, S. (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management (Springer, Dordrecht, 2002).Adamovich, B. V. et al. The divergence of chlorophyll dynamics in the Naroch Lakes. Biophysics 60, 632–638 (2015).CAS 
    Article 

    Google Scholar 
    Zhukova, T. V. et al. Long-term dynamics of suspended matter in Naroch Lakes: Trend or intervation. Inland Water Biol. 10, 250–257 (2017).Article 

    Google Scholar 
    Adamovich, B. V. et al. Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring. J. Siber. Federal Univ. Biol. 10, 379–394 (2017).Article 

    Google Scholar 
    Ostapenya A.P. et al. Ecological passport of Lake Myastro (EcoMir, Minsk, 1994) (in Russian).Kantz, H. & Schreiber, T. Nonlinear time series analysis (Cambridge University, 1997).MATH 

    Google Scholar 
    Kot, M. Elements of mathematical ecology (Cambridge University, 2001).Book 

    Google Scholar 
    Turchin, P. Complex population dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003).MATH 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. & Padilla, D. K. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J. Shellfish Res. 16, 187–203 (1997).
    Google Scholar 
    Lia, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. PNAS 118(6), e2008223118. https://doi.org/10.1073/pnas.2008223118 (2021).CAS 
    Article 

    Google Scholar 
    Mikheyeva, T. M. et al. The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus). Ecol. Ind. 81, 481–490 (2017).Article 

    Google Scholar 
    Harris, P. H. Phytoplankton ecology. Structure, functioning and flucttuation (Chapman & Hall, London, New York, 1986).Jeppesen, E., Jensen, J. P., Søndergaard, M. & Lauridsen, T. L. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshw. Biol. 50, 1616–1627 (2005).CAS 
    Article 

    Google Scholar 
    Nezlin, N.P. & Li, B-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 39, 185–202 (2003).French, T. D. & Petticrew, E. L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299 (2007).CAS 
    Article 

    Google Scholar 
    SCOR-UNESCO Working Group no. 17. Determination of photosynthetic pigments in sea-water. Monographs on Oceanologic Methodology 9–18 (UNESSCO, Paris, 1966).Semenov, A. D. Guide on the chemical analysis of continental surface waters (Gidrometeoizdat, 1977) ((in Russian)).
    Google Scholar 
    Wetzel, R. G. & Likens, G. E. Limnological analysis (Springer, 2000).Book 

    Google Scholar 
    Steffen, M. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R J. 9(1), 207–218 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020). More

  • in

    Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae)

    Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article 

    Google Scholar 
    Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article 

    Google Scholar 
    Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article 

    Google Scholar 
    Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article 

    Google Scholar 
    Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article 

    Google Scholar 
    Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS 
    Article 

    Google Scholar 
    Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
    Google Scholar 
    Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 
    Article 

    Google Scholar 
    Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
    Google Scholar 
    IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article 
    CAS 

    Google Scholar 
    Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS 

    Google Scholar 
    CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article 

    Google Scholar 
    Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article 
    CAS 

    Google Scholar 
    Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
    Google Scholar 
    Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article 

    Google Scholar 
    Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS 
    Article 

    Google Scholar 
    La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article 

    Google Scholar 
    Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article 
    CAS 

    Google Scholar 
    Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article 
    CAS 

    Google Scholar 
    Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article 

    Google Scholar 
    Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article 

    Google Scholar 
    Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article 

    Google Scholar 
    Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
    Google Scholar 
    Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
    Google Scholar 
    Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
    Google Scholar 
    Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article 

    Google Scholar 
    Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article 

    Google Scholar 
    Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed 

    Google Scholar 
    Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article 
    CAS 

    Google Scholar 
    Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS 
    Article 

    Google Scholar 
    Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed 
    Article 

    Google Scholar 
    Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
    Google Scholar 
    Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article 

    Google Scholar 
    Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
    Google Scholar 
    Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article 

    Google Scholar 
    Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS 
    Article 

    Google Scholar 
    Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article 

    Google Scholar 
    Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS 
    Article 

    Google Scholar 
    Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Benchmark regression resultsParallel trend testThe premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.Table 4 Parallel trend test.Full size tableDynamic effect analysisTo compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.Figure 1Dynamic analysis diagram.Full size imageThe effect of ETS on ecologicalization efficiency of industryControlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.Table 5 Influence of ETS on ecologicalization efficiency of industry.Full size tableRobustness testPropensity matching score—double difference method (PSM-DID)The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.Table 6 The result of the PSM-DID.Full size tableCounterfactual testTo verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.Table 7 Counterfactual test results.Full size tableActing pattern analysis of ETS on the regional ecologicalization efficiency of industryFirst, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.Table 8 Mediating effect test results.Full size table More

  • in

    Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers

    Ryan MJ, Rand AS. Species recognition and sexual selection as a unitary problem in animal communication. Evolution. 1993;47:647–57.PubMed 
    Article 

    Google Scholar 
    Trivers RL. Parental Investment and Sexual Selection. In: Campbell BG, (ed). Sexual Selection and the Descent of Man. Aldine Publishing Company; 1972. p. 136–79.
    Google Scholar 
    Andersson M. Sexual selection. Sexual Selection. Princeton: Princeton University Press; 1994.Chapter 

    Google Scholar 
    Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, et al. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patters of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol – A Sens, Neural, Behav Physiol. 2000;186:567–74.CAS 
    Article 

    Google Scholar 
    Cohen C, Liltved WR, Colville JF, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol. 2021;31:1962–1969. e6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol. 2021;31:1954–1961. e7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen AN, De Fine Licht HH. Logistic growth of the host-specific obligate insect pathogenic fungus Entomophthora muscae in house flies (Musca domestica). J Appl Entomol. 2017;141:583–6.CAS 
    Article 

    Google Scholar 
    Schmid-Hempel P Evolutionary parasitology. 2011. Oxford University Press.Helluy S, Thomas F. Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B: Biol Sci. 2003;270:563–8.CAS 
    Article 

    Google Scholar 
    Hoover K, Grove M, Gardner M. A gene for an extended phenotype. Science. 2011;333:1401. others.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adamo SA. Parasites: evolution’s neurobiologists. J Exp Biol. 2013;216:3–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bekker C, Ohm RA, Loreto RG. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics. 2015;16:620. others.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ros VID, Van Houte S, Hemerik L, Van Oers MM. Baculovirus-induced tree-top disease: How extended is the role of egt as a gene for the extended phenotype? Mol Ecol. 2015;24:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Botnevik CF, Malagocka J, Jensen AB, Fredensborg BL. Relative effects of temperature, light, and humidity on clinging behavior of metacercariae-infected ants. J Parasitol. 2016;102:495–500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Małagocka J, Jensen AB, Eilenberg J. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy. J Invertebr Pathol. 2017;143:108–14.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hughes DP, Libersat F. Neuroparasitology of parasite-insect associations. Annu Rev Entomol. 2018;63:471–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hojo MK, Pierce NE, Tsuji K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol. 2015;25:2260–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS ONE. 2010;5:e10019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X, Machado RAR, Van Doan C, Arce CCM, Hu L, Robert CAM. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife. 2019;8:e46668.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George J, Jenkins NE, Blanford S, Thomas MB, Baker TC. Malaria mosquitoes attracted by fatal fungus. PLoS ONE. 2013;8:e62632.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trandem N, Bhattarai UR, Westrum K, Knudsen GK, Klingen I. Fatal attraction: male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J Invertebr Pathol. 2015;128:6–13.PubMed 
    Article 

    Google Scholar 
    Evans WS, Wong A, Hardy M, Currie RW, Vanderwel D. Evidence that the factor used by the tapeworm, Hymenolepis diminuta, to direct the foraging of its intermediate host, Tribolium confusum, is a volatile attractant. J Parasitol. 1998;84:1098–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shostak AW, Smyth KA. Activity of flour beetles (Tribolium confusum) in the presence of feces from rats infected with rat tapeworm (Hymenolepis diminuta). Can J Zool. 1998;76:1472–9.Article 

    Google Scholar 
    Shea JF. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor). J Helminthol. 2007;81:293–9.PubMed 
    Article 

    Google Scholar 
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dawkins R. The extended phenotype. Oxford: Oxdord University Press; 1982.
    Google Scholar 
    Van Houte S, Ros VID, Van Oers MM. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.PubMed 
    Article 

    Google Scholar 
    de Bekker C, Beckerson WC, Elya C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio. 2021;12:e01872–21.PubMed Central 
    Article 

    Google Scholar 
    Lefévre T, Lebarbenchon C, Gauthier-Clerc M, Missé D, Poulin R, Thomas F, et al. The ecological significance of manipulative parasites. Trends Ecol Evolution. 2009;24:41–48.Article 

    Google Scholar 
    Kalsbeek V, Pell JK, Steenberg T. Sporulation by Entomophthora schizophorae (Zygomycetes: Entomophthorales) from housefly cadavers and the persistence of primary conidia at constant temperatures and relative humidities. J Invertebr Pathol. 2001;77:149–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Ruiter J, Arnbjerg-Nielsen SF, Herren P, Høier F, De Fine Licht HH, Jensen KH. Fungal artillery of zombie flies: infectious spore dispersal using a soft water cannon. J R Soc Interface. 2019;16:20190448.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, et al. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLoS Pathog. 2020;16:e1008598.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moller AP. A fungus infecting domestic flies manipulates sexual behaviour of its host. Behav Ecol Sociobiol. 1993;33:403–7.
    Google Scholar 
    Murvosh CM, Fye RL, LaBrecque GC. Studies on the mating behavior of the house fly, Musca Domestica L. Ohio J Sci. 1964;64:264–71.
    Google Scholar 
    Tobin EN, Stoffolano JG. The courtship of Musca species found in North America. II. The face fly, Musca autumnalis, and a comparison. Ann Entomological Soc Am. 1973;66:1329–34.Article 

    Google Scholar 
    Goulson D, Bristow L, Elderfield E, Brinklow K, Parry-Jones B, Chapman JW. Size, Symmetry, and sexual selection in the housefly, Musca domestica. Evolution. 1999;53:527–34.PubMed 
    Article 

    Google Scholar 
    Zurek L, Wes Watson D, Krasnoff SB, Schal C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol. 2002;80:171–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rogoff WM, Beltz AD, Johnsen JO, Plapp FW. A sex pheromone in the housefly, Musca domestica L. J Insect Physiol. 1964;10:239–46.CAS 
    Article 

    Google Scholar 
    Adams TS, Holt GG. Effect of pheromone components when applied to different models on male sexual behaviour in the housefly, Musca domestica. J Insect Physiol. 1987;33:9–18.CAS 
    Article 

    Google Scholar 
    Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA, et al. Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science. 1971;174:76–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams TS, Nelson DR, Fatland CL. Effect of methylalkanes on male house fly, Musca domestica, sexual behavior. J Insect Physiol. 1995;41:443–9.CAS 
    Article 

    Google Scholar 
    Noorman N, Otter CJ. The effects of laboratory culturing on (Z)-9-tricosene (muscalure) quantities on female houseflies. Entomologia Experimentalis et Applicata. 2001;101:69–80.CAS 
    Article 

    Google Scholar 
    Uebel EC, Schwarz M, Lusby WR, Miller RW, Sonnet PE. Cuticular nonhydrocarbons of the female house fly and their evaluation as mating stimulants. Lloydia. 1978;41:63–67.CAS 

    Google Scholar 
    Blomquist GJ, Ginzel MD. Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annu Rev Entomol. 2021;66:45–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017;15:88.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krasnoff SB, Watson DW, Gibson DM, Kwan EC. Behavioral effects of the entomopathogenic fungus, Entomophthora muscae on its host Musca domestica: Postural changes in dying hosts and gated pattern of mortality. J Insect Physiol. 1995;41:895–903.CAS 
    Article 

    Google Scholar 
    Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evolution. 2016;7:1325–30.Article 

    Google Scholar 
    Quan AS, Eisen MB. The ecology of the Drosophila-yeast mutualism in wineries. PLOS ONE. 2018;13:e0196440.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Den Dool H, Dec, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–71.Article 

    Google Scholar 
    Nelson DR, Dillwith JW, Blomquist GJ. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 1981;11:187–97.CAS 
    Article 

    Google Scholar 
    Bagnères AG, Morgan ED. A simple method for analysis of insect cuticular hydrocarbons. J Chem Ecol. 1990;16:3263–76.PubMed 
    Article 

    Google Scholar 
    Stránský K, Jursík T, Vítek A, Skořepa J. An improved method of characterizing fatty acids by equivalent chain length values. J High Resolut Chromatogr. 1992;15:730–40.Article 

    Google Scholar 
    Stránský K, Zarevúcka M, Valterová I, Wimmer Z. Gas chromatographic retention data of wax esters. J Chromatogr A. 2006;1128:208–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.CAS 
    Article 

    Google Scholar 
    Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, et al. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol. 2001;31:139–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gulias Gomes CC, Trigo JR, Eiras ÁE. Sex pheromone of the American warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. J Chem Ecol. 2008;34:636–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang LX, Yun YF, Liang YZ, Cao DS. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J Chromatogr A. 2010;1217:3695–701.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 
    CAS 

    Google Scholar 
    Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008;25:1–18.Article 

    Google Scholar 
    Darbro JM, Millar JG, McElfresh JS, Mullens BA. Survey of muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol. 2005;34:1418–25.CAS 
    Article 

    Google Scholar 
    Butler SM, Moon RD, Hinkle NC, Millar JG, Mcelfresh JS, Mullens BA. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med Vet Entomol. 2009;23:426–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics. 2018;19:166.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700.PubMed 
    Article 
    CAS 

    Google Scholar 
    Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem. 2006;281:4446–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 2008;74:454–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooley JR, Marshall DC, Hill KBR. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep. 2018;8:1432.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X-M. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honey bees. J Appl Entomol. 2018;142:359–62.CAS 
    Article 

    Google Scholar 
    Haber AI, Sims JW, Mescher MC, De Moraes CM, Carr DE. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct Ecol. 2019;33:218–28.Article 

    Google Scholar 
    Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    Stanjek V, Herhaus C, Ritgen U, Boland W, Städler E. Changes in the leaf surface chemistry of Apium graveolens (apiaceae) stimulated by jasmonic acid and perceived by a specialist insect. Helvetica Chim Acta. 1997;80:1408–20.CAS 
    Article 

    Google Scholar 
    Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, et al. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol. 2017;175:1455–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Könen PP, Wüst M. Analysis of sesquiterpene hydrocarbons in grape berry exocarp (Vitis vinifera L.) using in vivo-labeling and comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS). Beilstein J Org Chem. 2019;15:1945–61.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lam K, Tsang M, Labrie A, Gries R, Gries G. Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol. 2010;36:141–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Phillips RD, Bohman B, Peakall R. Pollination by nectar‐foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. Plant Biology 2021;23:702–10.Spieth HT. Courtship behavior in Drosophila. Annu Rev Entomol. 1974;19:385–405.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GSXE, et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478:236–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullens BA, Rodrigues JL, Meyer JA. An epizootiological study of Entomophthora muscae in muscoid fly populations on southern california poultry facilities, with emphasis on Musca domestica. Hilgardia. 1987;55:1–41.Article 

    Google Scholar 
    Watson DW, Petersen JJ. Sexual activity of male Musca domestica (Diptera: Muscidae) infected with Entomophthora muscae (Entomophthoraceae: Entomophthorales). Biol Control. 1993;3:22–26.Article 

    Google Scholar 
    van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK. Insects as feed: house fly or black soldier fly? J Insects Food Feed. 2020;6:221–9.Article 

    Google Scholar 
    Khamesipour F, Lankarani KB, Honarvar B, Kwenti TE. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health. 2018;18:1049.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biedermann PHW, De Fine Licht HH, Rohlfs M. Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. 2019;38:1–6.Article 

    Google Scholar  More

  • in

    Brazil: heed price of marine mining for an alternative fertilizer

    Brazil’s government risks fuelling the climate and biodiversity crisis by offsetting the fertilizer shortage resulting from Russia’s invasion of Ukraine this year (J. Liu et al. Nature 604, 425 (2022); S. Osendarp et al. Nature 604, 620–624; 2022). To produce an alternative fertilizer, it plans to mine up to 12 million tonnes annually of rhodoliths taken from an area in the South Atlantic that is roughly the size of the United Kingdom (see go.nature.com/3yhiyio).A full list of co-signatories to this letter appears in Supplementary Information.
    Competing Interests
    The author declares no competing interests. More

  • in

    Evolutionary ecology of Miocene hominoid primates in Southeast Asia

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).
    Google Scholar 
    Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).ADS 

    Google Scholar 
    Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).
    Google Scholar 
    Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).
    Google Scholar 
    Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).PubMed 

    Google Scholar 
    Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).
    Google Scholar 
    Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).
    Google Scholar 
    Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).
    Google Scholar 
    Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).
    Google Scholar 
    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).Article 

    Google Scholar 
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).
    Google Scholar 
    Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).Article 

    Google Scholar 
    Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 

    Google Scholar 
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).Article 

    Google Scholar 
    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).Article 

    Google Scholar 
    Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).Article 

    Google Scholar 
    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).Article 
    PubMed 

    Google Scholar 
    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).Article 

    Google Scholar 
    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
    Google Scholar 
    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).Article 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).Article 
    PubMed 

    Google Scholar 
    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).Article 

    Google Scholar 
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).ADS 
    Article 

    Google Scholar 
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).ADS 
    Article 

    Google Scholar 
    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).Article 
    PubMed 

    Google Scholar 
    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).ADS 
    Article 

    Google Scholar 
    Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).
    Google Scholar 
    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
    Google Scholar 
    Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).
    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).ADS 
    CAS 
    Article 

    Google Scholar 
    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 

    Google Scholar 
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).Article 

    Google Scholar 
    Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).Article 

    Google Scholar 
    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).CAS 
    Article 

    Google Scholar 
    Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).
    Google Scholar 
    Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).
    Google Scholar 
    Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).
    Google Scholar 
    Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).
    Google Scholar 
    Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).CAS 
    Article 

    Google Scholar 
    Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Google Scholar 
    Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).
    Google Scholar 
    Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).Article 
    PubMed 

    Google Scholar 
    Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).Article 
    PubMed 

    Google Scholar 
    Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).Article 

    Google Scholar 
    Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).ADS 

    Google Scholar 
    Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).
    Google Scholar 
    Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).
    Google Scholar 
    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).Article 

    Google Scholar 
    Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).
    Google Scholar 
    Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).ADS 

    Google Scholar 
    Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).
    Google Scholar 
    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).
    Google Scholar 
    Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).
    Google Scholar 
    Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).Article 

    Google Scholar 
    Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).Article 
    PubMed 

    Google Scholar 
    Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).
    Google Scholar 
    Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).CAS 
    PubMed 

    Google Scholar 
    Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).
    Google Scholar 
    Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).Article 

    Google Scholar 
    Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).ADS 

    Google Scholar  More