Huxley, J. Evolution. The Modern Synthesis (Allen & Unwin, 1942).Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602â1612 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895â898 (2014).CASÂ
PubMedÂ
Google ScholarÂ
Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1â19 (2018).PubMedÂ
Google ScholarÂ
Fraune, S., ForĂȘt, S. & Reitzel, A. M. Using Nematostella vectensis to study the interactions between genome, epigenome, and bacteria in a changing environment. Front. Mar. Sci. 3, 1â8 (2016).
Google ScholarÂ
Kolodny, O. & Schulenburg, H. Opinion piece Microbiome-mediated plasticity directs host evolution along several distinct time scales. Phil. Trans. R. Soc. B 375, 20190589 (2020).Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068â2073 (2006).CASÂ
PubMedÂ
Google ScholarÂ
Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167â2174 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Totton, A. K. The British sea anemones. Nature 135, 977â978 (1935).
Google ScholarÂ
Hand, C. & Uhlinger, K. R. The unique, widely distributed, estuarine sea anemone, Nematostella vectensis Stephenson: a review, new facts, and questions. Estuaries 17, 501â501 (1994).
Google ScholarÂ
Darling, J. A., Reitzel, A. M. & Finnerty, J. R. Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Mol. Ecol. 13, 2969â2981 (2004).CASÂ
PubMedÂ
Google ScholarÂ
Darling, J. A. et al. Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27, 211â221 (2005).CASÂ
PubMedÂ
Google ScholarÂ
Hand, C. & Uhlinger, K. R. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol. Bull. 182, 169â176 (1992).CASÂ
PubMedÂ
Google ScholarÂ
Pearson, C. V. M., Rogers, A. D. & Sheader, M. The genetic structure of the rare lagoonal sea anemone, Nematostella vectensis Stephenson (Cnidaria; Anthozoa) in the United Kingdom based on RAPD analysis. Mol. Ecol. 11, 2285â2293 (2002).CASÂ
PubMedÂ
Google ScholarÂ
Reitzel, A. M., Darling, J. A., Sullivan, J. C. & Finnerty, J. R. Global population genetic structure of the starlet anemone Nematostella vectensis: multiple introductions and implications for conservation policy. Biol. Invasions 10, 1197â1213 (2008).
Google ScholarÂ
Stefanik, D. J., Friedman, L. E. & Finnerty, J. R. Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat. Protoc. 8, 916â923 (2013).PubMedÂ
Google ScholarÂ
Fritzenwanker, J. H. & Technau, U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev. Genes Evol. 212, 99â103 (2002).PubMedÂ
Google ScholarÂ
Mortzfeld, B. M. et al. Response of bacterial colonization in Nematostella vectensis to development, environment, and biogeography. Environ. Microbiol. 18, 1764â1781 (2016).PubMedÂ
Google ScholarÂ
Baldassarre, L. et al. Contribution of maternal and paternal transmission to bacterial colonization in Nematostella vectensis. Front. Microbiol. 12, 2892 (2021).
Google ScholarÂ
Domin, H. et al. Predicted bacterial interactions affect in vivo microbial colonization dynamics in Nematostella. Front. Microbiol. 9, 728 (2018).Guest, J. J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353âe33353 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Puisay, A., Pilon, R., Goiran, C. & HĂ©douin, L. Thermal resistances and acclimation potential during coral larval ontogeny in Acropora pulchra. Mar. Environ. Res. 135, 1â10 (2018).CASÂ
PubMedÂ
Google ScholarÂ
Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2313 (2015).
Google ScholarÂ
Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627â636 (2017).
Google ScholarÂ
Yu, Xiaopeng et al. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa,. Sci. Total Environ. 733, 139319â139319 (2020).CASÂ
PubMedÂ
Google ScholarÂ
Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614â20190614 (2019).
Google ScholarÂ
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 5 (2019).
Google ScholarÂ
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu,. Am. Samoa. Front. Mar. Sci. 4, 434 (2018).
Google ScholarÂ
Oliver, T. A. & Palumbi, S. R. Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30, 241â250 (2011).
Google ScholarÂ
Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 14 (2017).Barker, V. Exceptional thermal tolerance of coral reefs in American Samoa a review. Curr. Clim. Change Rep. 4, 427 (2018).
Google ScholarÂ
Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350â63 (2008).CASÂ
PubMedÂ
Google ScholarÂ
Carrier, T. J. & Reitzel, A. M. The hologenome across environments and the implications of a host-associated microbial repertoire. Front. Microbiol. 8, 802 (2017).Koren, O. & Rosenberg, E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72, 5254â5259 (2006).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651â60 (2011).CASÂ
PubMedÂ
Google ScholarÂ
Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213â14213 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Thurber, R. V. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148â2163 (2009).CASÂ
Google ScholarÂ
van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557â567 (2019).PubMedÂ
Google ScholarÂ
Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl Acad. Sci. USA 112, 2093â2096 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ainsworth, T. D. T. et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9, 2261â2274 (2015).CASÂ
Google ScholarÂ
Hester, E. R., Barott, K. L., Nulton, J., Vermeij, M. J. A. & Rohwer, F. L. Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J. 10, 1157â1169 (2016).CASÂ
PubMedÂ
Google ScholarÂ
Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 340 (2016).
Google ScholarÂ
Pollock, F. J. et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R. Soc. Open Sci. 6, 31312497 (2019).Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723â735 (2008).CASÂ
PubMedÂ
Google ScholarÂ
Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457â469 (2003).CASÂ
PubMedÂ
Google ScholarÂ
Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908â912 (2010).CASÂ
PubMedÂ
Google ScholarÂ
Bourne, D. G. Microbiological assessment of a disease outbreak on corals from Magnetic Island (Great Barrier Reef, Australia). Coral Reefs 24, 304â312 (2005).
Google ScholarÂ
Leach, W. B., Carrier, T. J. & Reitzel, A. M. Diel patterning in the bacterial community associated with the sea anemone Nematostella vectensis. Ecol. Evol. 9, 9935â9947 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pootakham, W. et al. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. MicrobiologyOpen 8, e935 (2019).Webster, N. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. Rep. 6, 19324 (2016).Van, K. L., Ae, A., Schupp, P. & Slattery, M. The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25, 321â327 (2006).
Google ScholarÂ
Rypien, K. L., Ward, J. R. & Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28â39 (2010).CASÂ
PubMedÂ
Google ScholarÂ
Blazejak, A., ErsĂ©us, C., Amann, R. & Dubilier, N. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (oligochaeta) from the Peru margin. Appl. Environ. Microbiol. 71, 1553â1561 (2005).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Dubilier, N. et al. Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida). Mar. Ecol. Prog. Ser. 178, 271â280 (1999).
Google ScholarÂ
RincĂłn-Rosales, R., Lloret, L., Ponce, E. & MartĂnez-Romero, E. Erratum: Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum (FEMS Microbiology Ecology (2009) 67 (103-117)). FEMS Microbiol. Ecol. 68, 255â255 (2009).
Google ScholarÂ
Rosenberg, E. & DeLong, E. F., Stackebrandt, E., Lory, S., Thompson, F. The ProkaryotesâProkaryotic Biology and Symbiotic Associations. (Springer, 2013).Kimura, H., Higashide, Y. & Naganuma, T. Endosymbiotic microflora of the Vestimentiferan Tubeworm (Lamellibrachia sp.) from a Bathyal Cold Seep. Mar. Biotechnol. 5, 593â603 (2003).CASÂ
Google ScholarÂ
Melillo, A. A., Bakshi, C. S. & Melendez, J. A. Francisella tularensis antioxidants harness reactive oxygen species to restrict macrophage signaling and cytokine production. J. Biol. Chem. 285, 27553â27560 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rabadi, S. M. et al. Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines. J. Biol. Chem. 291, 5009â5021 (2016).CASÂ
PubMedÂ
Google ScholarÂ
McBride, M. J. in The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Vol. 9783642389542, 643â676 (Springer-Verlag Berlin Heidelberg, 2014).Augustin, R., Fraune, S. & Bosch, T. C. G. How Hydra senses and destroys microbes. Semin. Immunol. 22, 54â58 (2010).CASÂ
PubMedÂ
Google ScholarÂ
Augustin, R. et al. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun. 8, 698 (2017).Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730âE3738 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Fraune, S., Abe, Y. & Bosch, T. C. G. G. Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ. Microbiol. 11, 2361â9 (2009).CASÂ
PubMedÂ
Google ScholarÂ
Brennan, J. J. et al. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-ÎșB signal transduction, and development. Proc. Natl Acad. Sci. USA 114, E10122âE10131 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sullivan, J. C. et al. Two alleles of NF-ÎșB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS ONE 4, e7311 (2009).Wolenski, F. S. et al. Characterization of the core elements of the NF-B signaling pathway of the sea anemone Nematostella vectensis. Mol. Cell. Biol. 31, 1076â1087 (2011).CASÂ
PubMedÂ
Google ScholarÂ
GĂĄlikovĂĄ, M., Klepsatel, P., Senti, G. & Flatt, T. Steroid hormone regulation of C. elegans and Drosophila aging and life history. Exp. Gerontol. 46, 141â147 (2011).PubMedÂ
Google ScholarÂ
Taubenheim, J., Kortmann, C. & Fraune, S. Function and evolution of nuclear receptors in environmental-dependent postembryonic development. Front. Cell Dev. Biol. 9, 653792 (2021).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. 5, a017905âa017905 (2013).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. BioEssays 43, 2100068.Reitzel, A. M. et al. Physiological and developmental responses to temperature by the sea anemone Nematostella vectensis. Mar. Ecol. Prog. Ser. 484, 115â130 (2013).
Google ScholarÂ
Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history stages of corals more than near future ocean acidification. Mar. Ecol. Prog. Ser. 475, 85â92 (2013).
Google ScholarÂ
Ericson, J. A. et al. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol. 35, 1027â1034 (2012).
Google ScholarÂ
Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R. & Byrne, M. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5, e11372 (2010).Bernal, M. A. et al. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol. Ecol. 27, 4516â4528 (2018).CASÂ
PubMedÂ
Google ScholarÂ
Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 1â12 (2019).
Google ScholarÂ
Donelson, J. et al. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30â32 (2012).
Google ScholarÂ
Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858â861 (2012).CASÂ
Google ScholarÂ
Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99â99 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ryu, T. et al. An epigenetic signature for within-generational plasticity of a reef fish to ocean warming. Front. Mar. Sci. 7, 284 (2020).Veilleux, H. et al. Molecular processes of transgenerational acclimation to a warming ocean. Nat. Clim. Change 5, 1074â1078 (2015).CASÂ
Google ScholarÂ
Zhao, C. et al. Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 151, 212â219 (2018).CASÂ
PubMedÂ
Google ScholarÂ
Eirin-Lopez, J. M. & Putnam, H. M. Marine Environmental Epigenetics. Annu. Rev. Mar. Sci. 11, 335â368 (2019).
Google ScholarÂ
Fallet, M., Luquet, E., David, P. & Cosseau, C. Epigenetic inheritance and intergenerational effects in mollusks. Gene 729, 144166â144166 (2020).CASÂ
PubMedÂ
Google ScholarÂ
Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365â2372 (2015).PubMedÂ
Google ScholarÂ
Daxinger, L. & Whitelaw, E. Transgenerational epigenetic inheritance: more questions than answers. Genome Res. 20, 1623â1628 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ptashne, M. Epigenetics: core misconcept. Proc. Natl Acad. Sci. USA 110, 7101â7103 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rivera, H. E., Chen, C.-Y., Gibson, M. C. & Tarrant, A. M. Plasticity in parental effects confers rapid larval thermal tolerance in the estuarine anemone Nematostella vectensis. J. Exp. Biol. 224, jeb236745 (2021).Hirose, E. & Fukuda, T. Vertical transmission of photosymbionts in the colonial ascidian Didemnum molle: The larval tunic prevents symbionts from attaching to the anterior part of larvae. Zool. Sci. 23, 669â674 (2006).
Google ScholarÂ
Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7, e38440âe38440 (2012).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sharp, K. H., Eam, B., John Faulkner, D. & Haygood, M. G. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl. Environ. Microbiol. 73, 622â629 (2007).CASÂ
PubMedÂ
Google ScholarÂ
Sipkema, D. et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ. Microbiol. 17, 3807â3821 (2015).CASÂ
PubMedÂ
Google ScholarÂ
Apprill, A., Marlow, H. Q., Martindale, M. Q. & RappĂ©, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685â699 (2009).PubMedÂ
Google ScholarÂ
Sharp, K. H., Distel, D. & Paul, V. J. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6, 790â801 (2012).CASÂ
PubMedÂ
Google ScholarÂ
Lesser, M. P., Stat, M. & Gates, R. D. The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32, 603â611 (2013).
Google ScholarÂ
Ceh, J., Raina, J. B., Soo, R. M., van Keulen, M. & Bourne, D. G. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef. PLoS ONE 7, e36920 (2012).Ricardo, G. F., Jones, R. J., Negri, A. P. & Stocker, R. That sinking feeling: suspended sediments can prevent the ascent of coral egg bundles. Sci. Rep. 6, 21567 (2016).Leite, D. C. A. D. et al. Broadcast spawning coral Mussismilia Hispida can vertically transfer its associated bacterial core. Front. Microbiol. 8, 176â176 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Epstein, H. E. et al. Microbiome engineering: enhancing climate resilience in corals. Front. Ecol. Environ. 17, 108 (2019).
Google ScholarÂ
Peixoto, R. S. et al. Beneficial microorganisms for corals (BMC) Proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 23, 4675â4688 (2017).
Google ScholarÂ
Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. H. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10, 1236â1243 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Damjanovic, K., Van Oppen, M. J. H., MenĂ©ndez, P. & Blackall, L. L. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Front. Microbiol. 10, 1702 (2019).Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921â936 (2019).CASÂ
PubMedÂ
Google ScholarÂ
Fraune, S. et al. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J. 9, 1543â1556 (2015).CASÂ
PubMedÂ
Google ScholarÂ
Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16âS rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6âJ fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343â355 (2016).PubMedÂ
Google ScholarÂ
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335â336 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439â1237439 (2013).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60âR60 (2011).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114â2120 (2014).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357â360 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290â295 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Shao, M. & Kingsford, C. accurate assembly of transcripts through phase-preserving graph decomposition. Nat. Biotechnol. 35, 1167â1169 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M. & Iyer, M. K. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14, 68â70 (2016).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pertea, M. & Pertea, G. GFF Utilities: GffRead and GffCompare. F1000Research 9, 304â304 (2020).
Google ScholarÂ
Manni, M., Berkeley, M. R., Seppey, M., SimĂŁo, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647â4654 (2021).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923â930 (2014).CASÂ
PubMedÂ
Google ScholarÂ
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550â550 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29âR29 (2014).PubMedÂ
PubMed CentralÂ
Google Scholar More