More stories

  • in

    Warmth worries workers

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Nonreproductive effects are more important than reproductive effects in a host feeding parasitoid

    Godfray, H. C. Parasitoids: Behavioural and Evolutionary Ecology (Princeton University Press, 1994).Book 

    Google Scholar 
    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jervis, M. A. & Kidd, N. A. C. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. 61, 395–434 (1986).Article 

    Google Scholar 
    Cebolla, R., Vanaclocha, P., Urbaneja, A. & Tena, A. Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. J. Pest Sci. 91, 327–339 (2018).Article 

    Google Scholar 
    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Münster-Swendsen, M. Population cycles of the spruce needle miner in Denmark driven by interactions with insect parasitoids. In Population Cycles: The Case for Trophic Interactions (ed. Berryman, A. A.) 29–43 (Oxford University Press, 2002).
    Google Scholar 
    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    Heimpel, G. E. & Collier, T. R. The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 71, 373–400 (1996).Article 

    Google Scholar 
    Heimpel, G. E., Rosenheim, J. A. & Adams, J. M. Behavioral ecology of host feeding in Aphytis melinus parasitoid. Nor. J. Agric. Sci. 6, 101–115 (1994).
    Google Scholar 
    Heimpel, G. E. & Rosenheim, J. A. Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. J. Anim. Ecol. 64, 153–167 (1995).Article 

    Google Scholar 
    Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).Article 

    Google Scholar 
    Burger, J. M. S., Hemerik, L., Leteren, J. C. & Vet, L. E. M. Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encasia formosa. Oikos 106, 117–130 (2004).Article 

    Google Scholar 
    Guillemaud, T. et al. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep. 5, 8371 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).Article 

    Google Scholar 
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).Article 

    Google Scholar 
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annu. Rev. Entomol. 63, 239–258 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).Article 

    Google Scholar 
    Han, P. et al. Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol. Gen. 38, 125 (2018).
    Google Scholar 
    Han, P. et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92, 1317–1327 (2019).Article 

    Google Scholar 
    Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–111 (2018).Article 

    Google Scholar 
    Zhang, G. F. et al. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: geographic and potential host range expansion. Pest Manag. Sci. 77, 5475–5488 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desneux, N. et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest Sci. 95, 17–39 (2022).Article 

    Google Scholar 
    Wang, M. H. et al. Polygyny of Tuta absoluta may affect sex pheromone-based control techniques. Entomol. Gen. 41, 357–367 (2021).Article 

    Google Scholar 
    Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H. & Cuthbertson, A. G. S. Pest density influences on tomato pigment contents: the South American tomato pinworm scenario. Entomol. Gen. 40, 195–205 (2020).Article 

    Google Scholar 
    Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gebiola, M., Bernardo, U., Ribes, A. & Gibson, G. A. P. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool. J. Linn. Soc. 173, 352–423 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naselli, M. et al. Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci. 73, 1352–1357 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R. et al. Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae. J. Pest Sci. 93, 207–218 (2020).Article 

    Google Scholar 
    Zhang, Y. B. et al. Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absoluta. Entomol. Gen. https://doi.org/10.1127/entomologia/2021/1246 (2021).Article 

    Google Scholar 
    Bodino, N., Ferracini, C. & Tavella, L. Is host selection influenced by natal and adult experience in the parasitoid Necremnus tutae (Hymenoptera: Eulophidae)?. Anim. Behav. 112, 221–228 (2016).Article 

    Google Scholar 
    Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid, Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).PubMed 
    Article 

    Google Scholar 
    Foltyn, S. & Gerling, D. The parasitoids of the aleyrodid Bemisia tabaci in Israel. Development, host preference and discrimination of the aphelinid Eretmocerus mundus. Entomol. Exp. Appl. 38, 255–260 (1985).Article 

    Google Scholar 
    Zhang, Y. B., Yang, N. W., Sun, L. Y. & Wan, F. H. Host instar suitability in two invasive whiteflies for the naturally occurring parasitoid Eretmocerus hayati in China. J. Pest Sci. 88(2), 1612–1618 (2015).
    Google Scholar 
    Lebreton, S., Darrouzet, E. & Chevrier, C. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding?. J. Insect Physiol. 55, 694–699 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23(7), 803–815 (2013).Article 

    Google Scholar 
    Chailleux, A., Desneux, N., Arnó, J. & Gabarra, R. Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J. Pest Sci. 87(3), 441–448 (2014).Article 

    Google Scholar 
    Asgari, S. & Rivers, D. B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 56, 313–335 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).Article 

    Google Scholar 
    Schlaepfer, M. A., Sherman, P. W., Blossey, B. & Runge, M. C. Introduced species as evolutionary traps. Ecol. Lett. 8, 241–246 (2005).Article 

    Google Scholar 
    van Driesche, R. G., Bellotti, A., Herrera, C. J. & Castello, J. A. Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids, Epidinocarsis diversicornis and Acerophagus coccois. Entomol. Exp. Appl. 44, 97–100 (1987).Article 

    Google Scholar 
    Barrett, B. & Brunner, J. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillaridae) as a host. Environ. Entomol. 19, 803–807 (1990).Article 

    Google Scholar 
    Huang, Y., Loomans, A. J. M., van Lenteren, J. C. & Xu, R. M. Hyperparasitism behavior of the autoparasitoid Encarsia tricolor on two secondary host species. BioControl 54, 411–424 (2009).Article 

    Google Scholar 
    Patel, K. J., Schuster, D. J. & Smerage, G. H. Density dependent parasitism and host-killing of Liriomyza trifolii (Diptera: Agromyzidae) by Diglyphus intermedius (Hymenoptera: Eulophidae). Fla. Entomol. 86, 8–14 (2003).Article 

    Google Scholar 
    Lauziere, I., Perez-Lachaud, G. & Bordeur, J. Influence of host density on the reproductive strategy of Cephalonomia stephanoderis, a parasitoid of the coffee berry borer. Entomol. Exp. Appl. 92, 21–28 (1999).Article 

    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: what keeps organisms small?. Quart. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Idriss, G. E. A., Mohamed, S. A., Khamis, F., Plessis, H. D. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28(6), 614–628 (2018).Article 

    Google Scholar 
    Blanckenhorn, W. U., Preziosi, R. F. & Fairbairn, D. J. Time and energy constraints and the evolution of sexual size dimorphism-to eat or to mate?. Evol. Ecol. 9, 369–381 (1995).Article 

    Google Scholar 
    Blomqvist, D., Johansson, O. C., Unger, U., Larsson, M. & Flodin, L. A. Male aerial display and reversed sexual size dimorphism in the dunlin. Anim. Behav. 54, 1291–1299 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmons, L. W., Tomkins, J. L. & Hunt, J. Sperm competition games played by dimorphic male beetles. Proc. R. Soc. Lond. B 266, 145–150 (1999).Article 

    Google Scholar 
    Madsen, T. & Shine, R. Costs of reproduction influence the evolution of sexual size dimorphism in snakes. Evolution 48, 1389–1397 (1994).PubMed 
    Article 

    Google Scholar 
    Blanckenhorn, W. U., Morf, C., Mühlhäuser, C. & Reusch, T. Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J. Evol. Biol. 9, 369–381 (1999).
    Google Scholar  More

  • in

    Single-cell stable isotope probing in microbial ecology

    Neufeld JD, Wagner M, Murrell JC. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 2007;1:103–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature. 1998;392:801–5Jehmlich N, Schmidt F, von Bergen M, Richnow H-H, Vogt C. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J. 2008;2:1122–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Radajewski S, Ineson P, Parekh NR, Colin Murrell J. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA. 2015;112:E194–203.CAS 
    PubMed 

    Google Scholar 
    Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Haichar, FEZ, Achouak W, Christen R, Heulin T, et al. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol. 2007;9:625–34Rangel-Castro JI, Ignacio Rangel-Castro J, Killham K, Ostle N, Nicol GW, Anderson IC, et al. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol. 2005;7:828–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou N-Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem. 2016;88:9443–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. Elife. 2020;9:e56275.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KS, Landry Z, Pereira FC, Wagner M, Berry D, Huang WE, et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Primers. 2021;1:80.CAS 
    Article 

    Google Scholar 
    Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner M. Single-cell ecophysiology of microbes as revealed by raman microspectroscopy or secondary ion mass spectrometry imaging. Ann Rev Microbiol. 2009;63:411–29Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2006;5:48–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environ Biosafety Res. 2007;6:37–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73:5111–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig. 2013;17:841–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms-which stain is suitable? BMC Oral Health. 2014;14:2.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci USA. 2016;113:E4069–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl. 2012;51:12519–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and15N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56Kopf SH, Sessions AL, Cowley ES, Reyes C, Van Sambeek L, Hu Y, et al. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci USA. 2016;113:E110–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Neubauer C, Kasi AS, Grahl N, Sessions AL, Kopf SH, Kato R, et al. Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum. J Bacteriol. 2018;200:e00365–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, et al. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol Microbiol. 2010;77:687–700.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kloehn J, Boughton BA, Saunders EC, O’Callaghan S, Binger KJ, McConville MJ. Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio. 2021;12:e00129–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kong L, Setlow P, Li Y-Q. Direct analysis of water content and movement in single dormant bacterial spores using confocal Raman microspectroscopy and Raman imaging. Anal Chem. 2013;85:7094–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Knudsen SM, Cermak N, Delgado FF, Setlow B, Setlow P, Manalis SR. Water and small-molecule permeation of dormant Bacillus subtilis spores. J Bacteriol. 2016;198:168–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen D, Huang S-S, Li Y-Q. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal Chem. 2006;78:6936–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, et al. Defining and measuring ecological specialization. J Appl Ecol. 2010;47:15–25.Article 

    Google Scholar 
    Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shakya M, Lo C-C, Chain PSG. Advances and challenges in metatranscriptomic analysis. Front Genet. 2019;10:904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berry D, Loy A. Stable-Isotope probing of human and animal microbiome function. Trends Microbiol. 2018;26:999–1007.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrado R, Pasulka AL, Lie AA-Y, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wegener G, Bausch M, Holler T, Thang NM, Mollar XP, Kellermann MY, et al. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ Microbiol. 2019;14:1517–27Jing X, Gou H, Gong Y, Su X, Xu L, Ji Y, et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ Microbiol. 2018;20:2241–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Zhu D, Ibrahim AD, Allen CCR, Gibson CM, Fowler PW, et al. Raman deuterium isotope probing reveals microbial metabolism at the single-cell level. Anal Chem. 2017;89:13305–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang M, Hong W, Abutaleb NS, Li J, Dong P-T, Zong C, et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv Chem Microsc Life Sci Transl Med. 2021.Lima C, Muhamadali H, Xu Y, Kansiz M, Goodacre R. Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy. Anal Chem. 2021;93:3082–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Maamar H, Raj A, Dubnau D. Noise in gene expression determines cell fate in Bacillus subtilis. Science. 2007;317:526–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Emonet T, Cluzel P. Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc Natl Acad Sci USA. 2008;105:3304–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. Multistability in the lactose utilization network of Escherichia coli. Nature. 2004;427:737–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. Stochasticity of metabolism and growth at the single-cell level. Nature. 2014;514:376–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotte O, Volkmer B, Radzikowski JL, Heinemann M. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol Syst Biol. 2014;10:736.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, et al. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 2014;12:e1001764.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA. 2014;111:7427–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nikolic N, Schreiber F, Dal Co A, Kiviet DJ, Bergmiller T, Littmann S, et al. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet. 2017;13:e1007122.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Takhaveev V, Heinemann M. Metabolic heterogeneity in clonal microbial populations. Curr Opin Microbiol. 2018;45:30–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141:559–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. Experimental evolution of bet hedging. Nature. 2009;462:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol. 2015;6:243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann M, Escrig S, Lavik G, Kuypers MMM, Meibom A, Ackermann M, et al. Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. Environ Microbiol Rep. 2018;10:179–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sheik AR, Muller EE, Audinot J-N, Lebrun LA, Grysan P, Guignard C, et al. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME J. 2016;10:1274–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrier-Pagès C, Leal MC. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol. 2019;9:723–40.PubMed 
    Article 

    Google Scholar 
    Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol. 2018;20:671–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:e02299–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci U S A. 2021;118:e2022653118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig S, et al. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis – a NanoSIMS study. Sci Rep. 2018;8:12710.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibbin E, Gavish A, Krueger T, Kramarsky-Winter E, Shapiro O, Guiet R, et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 2019;13:989–1003.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turk-Kubo KA, Mills MM, Arrigo KR, van Dijken G, Henke BA, Stewart B, et al. UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System. ISME Commun. 2021;1:1–13.Article 

    Google Scholar 
    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.CAS 
    Article 

    Google Scholar 
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mooshammer M, Kitzinger K, Schintlmeister A, Ahmerkamp S, Nielsen JL, Nielsen PH, et al. Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. ISME J. 2021;15:348–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Słomka J, Alcolombri U, Secchi E, Stocker R, Fernandez VI. Encounter rates between bacteria and small sinking particles. New J Phys. 2020;22:043016.Article 

    Google Scholar 
    Alcolombri U, Peaudecerf FJ, Fernandez VI, Behrendt L, Lee KS, Stocker R. Sinking enhances the degradation of organic particles by marine bacteria. Nat Geosci. 2021;14:775–80.CAS 
    Article 

    Google Scholar 
    University of Massachusetts Amherst Massachusetts Lynn Margulis, Margulis L, Fester R. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press; 1991. 454 p.Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S, Reipert S, et al. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. Nanoscale Adv. 2021;3:249–62.CAS 
    Article 

    Google Scholar 
    Schaible GA, et al. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME COMMUN. 2022;2:52.Article 

    Google Scholar 
    Yu G-H, Chi Z-L, Kappler A, Sun F-S, Liu C-Q, Teng HH, et al. Fungal nanophase particles catalyze iron transformation for oxidative stress removal and iron acquisition. Curr Biol. 2020;30:2943–50.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics. 2022;14:mfac011.PubMed 
    Article 

    Google Scholar 
    Bonnin EA, Fornasiero EF, Lange F, Turck CW, Rizzoli SO. NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover. BMC Mol Cell Biol. 2021;22:5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A. 2015;112:9364–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, et al. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. Lab Chip. 2022;22:1438–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eriksen R, Daria V, Gluckstad J. Fully dynamic multiple-beam optical tweezers. Opt Express. 2002;10:597–602.PubMed 
    Article 

    Google Scholar 
    Dai X, Fu W, Chi H, Mesias VSD, Zhu H, Leung CW, et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat Commun. 2021;12:1292.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods. 2019;16:830–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, et al. SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A. 2022;119:e2203519119.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vandergrift GW, Kew W, Lukowski JK, Bhattacharjee A, Liyu AV, Shank EA, et al. Imaging and direct sampling capabilities of nanospray desorption electrospray ionization with absorption-mode 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2022;94:3629–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Harrison JP, Berry D. Vibrational spectroscopy for imaging single microbial cells in complex biological samples. Front Microbiol. 2017;8:675.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayali X. NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Ann Rev Mar Sci. 2020;12:449–67.PubMed 
    Article 

    Google Scholar 
    Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu Rev Biomed Data Sci. 2020;3:61–87.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boschker HTS, Middelburg JJ. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol. 2002;40:85–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Nuccio E, Lietard J, Somoza M, Blazewicz SJ, et al. Chip-SIP: Stable Isotope Probing analyzed with rRNA-targeted microarrays and nanoSIMS. Methods Mol Biol. 2019;2046:71–87.PubMed 
    Article 

    Google Scholar 
    Chokkathukalam A, Kim D-H, Barrett MP, Breitling R, Creek DJ. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis. 2014;6:511–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G. Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal Chem. 2010;82:6621–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rusconi R, Garren M, Stocker R. Microfluidics expanding the frontiers of microbial ecology. Annu Rev Biophys. 2014;43:65–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner M, Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol. 2012;23:96–102.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A path forward for analysing the impacts of marine protected areas

    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Gillispie, C. C., Gratton-Guinness, I. & Fox, R. Pierre-Simon Laplace, 1749-1827: A Life in Exact Science (Princeton Univ. Press, 1999).Dinmore, T. A., Duplisea, D. E., Rackham, B. D., Maxwell, D. L. & Jennings, S. Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES J. Mar. Sci. 60, 371–380 (2003).Article 

    Google Scholar 
    Hiddink, J. G., Hutton, T., Jennings, S. & Kaiser, M. J. Predicting the effects of area closures and fishing effort restrictions on the production, biomass, and species richness of benthic invertebrate communities. ICES J. Mar. Sci. 63, 822–830 (2006).Article 

    Google Scholar 
    Greenstreet, S. P. R., Fraser, H. M. & Piet, G. J. Using MPAs to address regional-scale ecological objectives in the North Sea: modelling the effects of fishing effort displacement. ICES J. Mar. Sci. 66, 90–100 (2009).Article 

    Google Scholar 
    Suuronen, P. et al. A path to a sustainable trawl fishery in Southeast Asia. Rev. Fish. Sci. Aquac. 28, 499–517 (2020).Article 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).CAS 
    Article 

    Google Scholar 
    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).Article 

    Google Scholar 
    Smeaton, C., Hunt, C. A., Turrell, W. R. & Austin, W. E. N. Marine sedimentary carbon stocks of the United Kingdom’s exclusive economic zone. Front. Earth Sci. 9, 593324 (2021).Article 

    Google Scholar 
    Legge, O. et al. Carbon on the northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).Article 

    Google Scholar 
    Melnychuk, M. C. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. 4, 440–449 (2021).Article 

    Google Scholar  More

  • in

    Assessing the impact of free-roaming dog population management through systems modelling

    Model descriptionThe system dynamics model divided an urban dog population into the following subpopulations: (i) free-roaming dogs (both owned and unowned free-roaming, i.e. unrestricted dogs found on streets), (ii) shelter dogs (unowned restricted dogs living in shelters), and (iii) owned dogs (owned home-dwelling restricted dogs) (Fig. 1). The subpopulations change in size by individuals flowing between the different subpopulations or from flows extrinsically modelled (i.e. flows from subpopulations not included in the systems model; the acquisition of dogs from breeders and friends to the owned dog population, and the immigration/emigration of dogs from other neighbourhoods).Ordinary differential equations were used to describe the dog population dynamics. The models were written in R version 3.6.128, and numerically solved using the Runge–Kutta fourth order integration scheme with a 0.01 step sizes using the package “deSolve”29,30. For the baseline model, Eqs. (1–3) were used to describe the rates of change of dog subpopulations in the absence of management.Baseline free-roaming dog population (S):$$frac{dS}{dt}={r}_{s}times Stimes left(1-frac{S}{{K}_{s}}right)+alpha times O-delta times S$$
    (1)
    In the baseline model, the free-roaming dog population (Eq. 1) increases through the free-roaming dog intrinsic growth rate (rs), and the abandonment and roaming of dogs from the owned dog population (α) and decreases through adoption to the owned dog population (δ). The intrinsic growth rate is the sum of the effects of births, deaths, immigration, and emigration, which are not modelled separately. In this model, the growth rate of the free-roaming dog population is reduced depending on the population size in relation to the carrying capacity, through the logistic equation (rreal = rmax(1 − S/Ks))31. In the baseline simulation, the free-roaming dog population rises over time, until it stabilises at an equilibrium size.Baseline shelter dog population (H):$$frac{dH}{dt}=gamma times O-beta times H- {mu }_{h}times H$$
    (2)
    The shelter dog population (Eq. 2) increases through relinquishment of owned dogs (γ) and decreases through the adoption of shelter dogs to the owned dog population (β), and through the shelter dog death rate (µh). There is no carrying capacity for the shelter dog population as we assumed that more housing would be created as the population increases. This allowed calculation of the resources required to house shelter dogs.Baseline owned dog population (O),$$frac{dO}{dt}={r}_{o} times Otimes (1-frac{O}{{K}_{o}})+beta times H+delta times S-alpha times O-gamma times O$$
    (3)
    The owned dog population (Eq. 3) increases through the owned dog growth rate (ro), adoption of shelter dogs (β), and adoption of free-roaming dogs (δ); and decreases through abandonment/roaming (α) and relinquishment (γ) of owned dogs to the shelter dog population. The growth rate of the owned dog population (ro) combines the birth, death, and acquisition rates from sources other than the street or shelters (e.g. breeders, friends) and was modelled as density dependent by the limit to growth logistic formula (1 − O/Ko).Parameter estimatesDetailed descriptions of parameter estimates are provided in the supplementary information. The simulated environment was based on the city of Lviv, Ukraine. This city has an area of 182 km2 and a human population size of 717,803. Parameters were estimated from literature, where possible, and converted to monthly rates (Table 1). Initial sizes of the dog populations were estimated for the baseline simulation, based on our previous research in Lviv32. The carrying capacity depends on the availability of resources (i.e. food, shelter, water, and human attitudes and behaviour33) and is challenging to estimate. We assumed the initial free-roaming and owned dog populations were at carrying capacity. Initial population sizes for simulations including interventions were determined by the equilibrium population sizes from the baseline simulation (i.e. the stable population size, the points at which the populations were no longer increasing/decreasing).Table 1 Parameter description, parameter value, and minimum and maximum values used in the sensitivity analysis for the systems model.Full size tableEstimating the rate at which owned dogs are abandoned is difficult, as abandonment rates are often reported per dog-owning lifetime32,34 and owners are likely to under-report abandonment of dogs. Similarly, it is challenging to estimate the rate that owned dogs move from restricted to unrestricted (i.e. free-roaming). For simplicity, we modelled a combined abandonment/roaming rate (α) of 0.003 per month, estimated based on our previous research in Lviv and from literature34,35,36. We derive the owned dog relinquishment rate (γ) from New et al.37. We estimated shelter (β) and free-roaming adoption rates (δ) from shelter data in Lviv. We set the maximum intrinsic growth rate for the free-roaming dogs (rs) at 0.03 per month, similar to that reported in literature17,19,38. We assumed that demand for dogs was met quickly through a supply of dogs from births, breeders and friends and set a higher growth rate for the owned dog population (ro) at 0.07 per month.We assumed shelters operated with a “no-kill” policy (i.e. dogs were not killed in shelters as part of population management) and included a shelter dog death rate (µh) of 0.008 per month to incorporate deaths due to euthanasia for behavioural problems or health problems, or natural mortality. We modelled neutered free-roaming dog death rate (µn) explicitly for the CNR intervention at a minimum death rate of 0.02 per month38,39,40,41.InterventionsSix intervention scenarios were modelled (Table 2): sheltering; culling; CNR; responsible ownership; combined CNR and responsible ownership; and combined CNR and sheltering, representing interventions feasibly applied and often reported27. Table 2 outlines the equations describing each intervention. To simulate a sheltering intervention, a proportion of the free-roaming dog population was removed and added to the shelter dog population at sheltering rate (σ). In culling interventions, a proportion of the free-roaming dog population was removed through culling (χ).Table 2 Description of intervention parameters and coverages for simulations applied at continuous and annual periodicities.Full size tableFree-roaming dog population with sheltering intervention:$$frac{dS}{dt}={r}_{s}times Stimes left(1-frac{S}{{K}_{s}}right)+alpha times O-delta times S-sigma times S$$
    (4)
    Shelter dog population with sheltering intervention:$$frac{dH}{dt}=gamma times O-beta times H- {mu }_{h}times H+sigma times S$$
    (5)
    Free-roaming dog population with a culling intervention:$$frac{dS}{dt}={r}_{s}times Stimes left(1-frac{S}{{K}_{s}}right)+alpha times O-delta times S-chi times S$$
    (6)
    To simulate a CNR intervention, an additional subpopulation was added to the system (Eq. 7): (iv) the neutered free-roaming dog population (N; neutered, free-roaming). In this simulation, a proportion of the intact (I) free-roaming dog population was removed and added to the neutered free-roaming dog population. A neutering rate (φ) was added to the differential equations describing the intact free-roaming and the neutered free-roaming dog populations. Neutering was assumed to be lifelong (e.g. gonadectomy); a neutered free-roaming dog could not re-enter the intact free-roaming dog subpopulation. Neutered free-roaming dogs were removed from the population through the density dependent neutered dog death rate (µn); death rate increased when the population was closer to the carrying capacity. The death rate was a non-linear function of population size and carrying capacity modelled using a table lookup function (Fig. S1). Neutered free-roaming dogs were also removed through adoption to the owned dog population, and we assumed that adoption rates did not vary between neutered and intact free-roaming dogs.Neutered free-roaming dog population:$$frac{dN}{dt}=varphi times I-{mu }_{n}times N-delta times N$$
    (7)
    Intact free-roaming dog population with neutering intervention.$$frac{dI}{dt}={r}_{s}times Itimes left(1-frac{(I+N)}{{K}_{s}}right)+alpha times O-delta times I-varphi times I$$
    (8)
    To simulate a responsible ownership intervention, the baseline model was applied with decreased rate of abandonment/roaming (α) and increased rate of shelter adoption (β). To simulate combined CNR and responsible ownership, a proportion of the intact free-roaming dog population was removed through the neutering rate (φ), abandonments/roaming decreased (α) and shelter adoptions increased (β). In combined CNR and sheltering interventions, a proportion of the intact free-roaming dog population (I) was removed through neutering (φ) and added to the neutered free-roaming dog population (N), and a proportion was removed through sheltering (σ) and added to the shelter dog population (H).Intact free-roaming dog population with combined CNR and sheltering interventions:$$frac{dI}{dt}={r}_{s}times Stimes left(1-frac{(I+N)}{{K}_{s}}right)+alpha times O-delta times I-varphi times I- sigma times I$$
    (9)
    Intervention length, periodicity, and coverageAll simulations were run for 70 years to allow populations to reach equilibrium. It is important to note that this is a theoretical model; running the simulations for 70 years allows us to compare the interventions, but does not accurately predict the size of the dog subpopulations over this long time period. Interventions were applied for two lengths of time: (i) the full 70-year duration of the simulation; and (ii) a five-year period followed by no further intervention, to simulate a single period of investment in population management. In each of these simulations, we modelled the interventions as (i) continuous (i.e. a constant rate of e.g. neutering) and (ii) annual (i.e. intervention applied once per year). Interventions were run at low, medium, and high coverages (Table 2). As the processes are not equivalent, we apply different percentages for the intervention coverage (culling/neutering/sheltering) and the percent increase/decrease in parameter rates for the responsible ownership intervention. Intervention coverage refers to the proportion of dogs that are culled/neutered/sheltered per year (i.e. 20%, 40% and 70% annually) and, for responsible ownership interventions, the decrease in abandonment/roaming rate and increase in the adoption rate of shelter dogs (30%, 60% and 90% increase/decrease from baseline values). To model a low (20%), medium (40%) and high (70%) proportion of free-roaming dogs caught, but where half of the dogs were sheltered and half were neutered-and-returned, combined CNR and sheltering interventions were simulated at half-coverage (e.g. intervention rate of 0.7 was simulated by 0.35 neutered and 0.35 sheltered). For continuous interventions, sheltering (σ), culling (χ), and CNR (φ) were applied continuously during the length of the intervention. For annual interventions, σ, χ, and φ were applied to the ordinary differential equations using a forcing function applied at 12-month intervals. In simulations that included responsible ownership interventions, the decrease in owned dog abandonment/roaming (α) and the increase in shelter adoption (β) was assumed instantaneous and continuous (i.e. rates did not change throughout the intervention).Model outputsThe primary outcome of interest was the impact of interventions on free-roaming dog population size. For interventions applied for the duration of the simulation, we calculated: (i) equilibrium population size for each population; (ii) percent decrease in free-roaming dog population; (iii) costs of intervention in terms of staff-time; and (iv) an overall welfare score. For interventions applied for a five-year period, we also calculated: (v) minimum free-roaming dog population size and percent reduction from initial population size; and (vi) the length of time between the end of the intervention and time-point at which the free-roaming dog population reached above 20,000 dogs (the assumed initial free-roaming dog population size of Lviv, based on our previous research32, see Supplementary Information for detail).The costs of population management interventions vary by country (e.g. staff salaries vary between countries) and by the method of application (e.g. method of culling, or resources provided in a shelter). To enable a comparison of the resources required for each intervention, the staff time (staff working-months) required to achieve the intervention coverage was calculated. While this does not incorporate the full costs of an intervention, as equipment (e.g. surgical equipment), advertising campaigns, travel costs for the animal care team, and facilities (e.g. clinic or shelter costs) are not included, it can be used as a proxy for intervention cost. Using data provided from VIER PFOTEN International, we estimated the average number of staff required to catch and neuter the free-roaming dog population and to house the shelter dog population in each intervention, using this data as a proxy for catching and sheltering/culling. The number of dogs that can be cared for per shelter staff varies by shelter. To account for this, we estimated two staff-to-dog ratios (low and high). Table 3 describes the staff requirements for the different interventions.Table 3 Staff required for interventions and the number of dogs processed per staff per day.Full size tableUsing the projected population sizes, the staff time required for each staff type (e.g. number of veterinarian-months of work required) was calculated for each intervention. Relative salaries for the different staff types were estimated (Table 3). The relative salaries were used to calculate the cost of the interventions by:[Staff time required × relative salary ] × €20,000.Where €20,000 was the estimated annual salary of a European veterinarian, allowing relative staff-time costs to be compared between the different interventions. Average annual costs were reported.To provide overall welfare scores for each of the interventions, we apply the estimated welfare scores on a one to five scale, for each of the dog subpopulations, as determined by Hogasen et al. (2013)22. This scale is based on the Five Freedoms (freedom from hunger and thirst; freedom from discomfort; freedom from pain, injury, or disease; freedom to express normal behaviour; freedom from fear and distress42,43) and was calculated using expert opinions from 60 veterinarians in Italy22. The scores were weighted by the participants’ self-reported knowledge of different dog subpopulations, which resulted in the following scores: 2.8 for shelter dogs (WH); 3.5 for owned dogs (WO); 3.1 for neutered free-roaming dogs (WN); and 2.3 for intact free-roaming dogs (WI)22.Using these estimated welfare scores, we calculated an average welfare score for the total dog population based on the model’s projected population sizes for each subpopulation (Eq. 10). For interventions running for the duration of the simulation, the welfare score was calculated at the time point (t) when the population reached an equilibrium size. For interventions running for five years, the welfare score was calculated at the end of the five-year intervention. The percentage change in welfare scores from the baseline simulation were reported.$$Welfare score= frac{{H}_{t}times {W}_{H}+{O}_{t}times {W}_{O}+{N}_{t}times {W}_{N}+{I}_{t}times {W}_{I}}{{H}_{t}+{O}_{t}+{N}_{t}+{I}_{t}}$$
    (10)
    Model validation and sensitivity analysisA global sensitivity analysis was conducted on all parameters described in the baseline simulation and all interventions applied continuously, at high coverage, for the full duration of the simulation. A Latin square design algorithm was used in package “FME”44 to sample the parameters within their range of values (Table 1). For the global sensitivity analysis on interventions, all parameter values were varied, apart from the parameters involved in the intervention (e.g. culling, neutering, abandonment/roaming rates). The effects of altering individual parameters (local sensitivity analysis) on the population equilibrium was also examined for the baseline simulation using the Latin square design algorithm to sample each parameter, individually, within their range of values. Sensitivity analyses were run for 100 simulations over 50 years solved with 0.01 step sizes. More

  • in

    Anisogamy explains why males benefit more from additional matings

    Lehtonen12 presents three simple models with the same broad structure: a single mutant individual with divergent mating behaviour arises in a population of ‘residents’ that all play the same strategy, and the success of that mutant is then followed (Figs. 1, 2). Specifically, Lehtonen investigates the fitness benefits of increased mating for mutant males in comparison to mutant females. Two important parameters can be varied: (i) the degree of anisogamy (defined here as the ratio of sperm number to egg number), which captures how divergent males and females are in the size (and thus number) of gametes they produce, and (ii) the efficiency of fertilisation, which determines how easily gametes can find and fuse with each other. If fertilisation is highly efficient, then gametes of the less numerous type will achieve nearly full fertilisation; on the other hand, inefficient fertilisation can result in gametes of both sexes going unfertilised.Fig. 2: Structure of the three models of Lehtonen12, showing differences in mating behaviour between resident males (green), resident females (blue) and mutant males and females (both yellow).For illustration, we suppose that females produce four eggs each and males produce eight sperm (the anisogamy ratio in nature is typically much higher). In Model 1, resident individuals spawn monogamously in a ‘nest’ (black outline), whereas mutant males and females can bring additional partners to their nest to spawn in a group. In Model 2, resident individuals divide their gametes equally among m spawning groups, each consisting of m individuals of each sex (shown here with m = 2). Mutant males and females instead divide their gametes among a larger or smaller number of groups, mmutant (shown here with mmutant = 4). In Model 3, there is a further sex asymmetry in addition to anisogamy: Fertilisation takes place inside the female’s body. Resident individuals mate with m partners (shown here with m = 2), whereas mutant males and females mate with a larger or smaller number of partners, mmutant (shown here with mmutant = 4).Full size imageIn the first two models, fertilisation is external and no assumptions are made about pre-existing differences between the sexes apart from the number of gametes they produce. In other words, males and females are identical except that males produce sperm in greater numbers than females produce eggs. In Model 1, resident individuals are assumed to mate monogamously, whereas a mutant can monopolise multiple partners of the opposite sex (Fig. 2). Importantly, both male and female mutants can bring additional partners back to their ‘nest’ to spawn in a group. When fertilisation is highly efficient, females can fertilise all of their eggs by bringing back a single male, and there is simply no benefit (in this model) of seeking further partners (Fig. 1A). In contrast, anisogamy means that males always produce at least some gametes in excess, and thus can benefit from seeking additional mates. When fertilisation is inefficient, however, both sexes benefit from increasing the concentration of opposite-sex gametes at their ‘nest’ (Fig. 1B). This latter benefit is sex-symmetric, whereas the former continues to apply only to males. As a consequence, the Bateman gradients are always steeper for males than for females (Fig. 1A, B), confirming Bateman’s argument.Model 2 similarly assumes external fertilisation, but in this case the resident males and females meet in groups consisting of m individuals of each sex (Fig. 2). Fertilisation occurs via group spawning. It is assumed that each resident individual divides its gametes evenly across M groups, whereas mutant individuals can instead spread their gametes over a larger or smaller number of groups (note that the author assumes that M = m, but this assumption could be relaxed without undermining the core argument). Spreading gametes out across a larger number of spawning groups does not increase the concentration of opposite-sex gametes they encounter (Fig. 2). However, a mutant that spreads its gametes more widely reduces the density of its own gametes across those groups in which it spawns. This in turn results in there being more opposite-sex gametes for each gamete of the mutant’s sex in those groups. For example, in Fig. 2, mutant males spawn in twice as many groups as resident males and thereby halve the density of their own sperm in each group. The resulting egg-to-sperm ratio of (frac{4}{6}=frac{2}{3}) is more favourable than the ratio of (frac{4}{8}=frac{1}{2}) that the resident males experience. Mutant females can similarly increase local sperm-to-egg ratios by spreading their eggs over more groups. However, in contrast to males, this only leads to fitness benefit if fertilisation is inefficient, and even then the benefit to females is very modest (scarcely perceptible in Fig. 1D). Gamete spreading reduces wasteful competition among the mutants’ own gametes for fertilisation. Such ‘local’ gamete competition, like gamete competition more generally, is stronger among sperm than among eggs because sperm are more numerous under anisogamy13,14. Consequently, as in Model 1, Bateman gradients are always steeper in males (Fig. 1C, D). Recall that the results of the above models emerge in the absence of any assumptions beyond the sex difference in the number of gametes produced.The third and final model allows for a further pre-existing difference between the sexes in addition to anisogamy: internal fertilisation, which is common and widespread in animals (Fig. 2)15. Each female is assumed to mate with m males, while each male divides his gametes evenly among m females. As in the previous two models, males benefit more than females from additional matings under most conditions. However, in the particular case where fertilisation is highly inefficient and the ratio of sperm to eggs is not too large, the pattern can theoretically reverse, such that female Bateman gradients exceed their male counterparts (Fig. 1F). The reason is that the effects of gamete concentration are asymmetric under internal fertilisation: Multiple mating by a female increases the local concentration of sperm its eggs experience, whereas a male’s multiple mating does not increase the concentration of eggs around its sperm (Fig. 2). Under conditions of severe sperm limitation—due to both weak anisogamy and highly inefficient fertilisation—this can lead to females benefitting more from additional matings than males (Fig. 1F). Although intriguing, it is unclear whether this finding has any empirical relevance, as sperm limitation is probably rarely severe in internal fertilisers. Under more realistic conditions of moderate to high fertilisation rates, sex differences in the degree of local gamete competition once again become decisive, and male Bateman gradients exceed their female counterparts (Fig. 1E). More

  • in

    Effects of strip cropping with reducing row spacing and super absorbent polymer on yield and water productivity of oat (Avena sativa L.) under drip irrigation in Inner Mongolia, China

    Clemens, R. et al. Oats, more than just a whole grain: an introduction. Br. J. Nutr. 112, S1–S3 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stewart, D. & Mcdougal, G. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. Br. J. Nutr. 2, 50–57 (2014).Article 
    CAS 

    Google Scholar 
    Ren, C. Z. et al. “Twelfth Five-Year” Development Report of China’s Oat and Buckwheat Industry. Xi’an: Shaanxi Science and Technology Press, 2011–2015 (2016).Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Indian Natl. Sci. Acad. 107, 11155–11162 (2010).ADS 
    CAS 

    Google Scholar 
    Yu, L., Zhao, X., Gao, X. & Siddique, K. H. M. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agric. Water Manag. 228, 105906 (2020).Article 

    Google Scholar 
    Bai, W., Zhang, H., Liu, B., Wu, Y. & Song, J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 26, 253–260 (2010).Article 

    Google Scholar 
    Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Change 54, 269–293 (2002).ADS 
    Article 

    Google Scholar 
    Harris, F. et al. The water use of Indian diets and socio- demographic factors related to dietary blue water footprint. Sci. Total Environ. 587, 128–136 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Unesco. Water and jobs: Facts and figures. Perugia, Italy: UNESCO, World Water Assessment Program. Retrieved from http://unesdoc.unesco.org/images/0024/002440/244041e.pdf (2016).Landi, A. et al. Land suitability evaluation for surface, sprinkle and drip irrigation methods in Fakkeh Plain. Iran. J. Appl. Anim. Sci. 8, 3646–3653 (2008).ADS 

    Google Scholar 
    Kang, S. et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 179, 5–17 (2017).Article 

    Google Scholar 
    Yang, D. et al. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric. Water Manag. 232, 106001 (2020).Article 

    Google Scholar 
    Xu, S. T., Zhang, L., Neil, B. & McLaughlin, Mi. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Till. Res. 148, 31–39 (2015).Article 

    Google Scholar 
    Roper, M. M., Ward, P. R., Keulen, A. F. & Hill, J. R. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Till. Res. 126, 143–150 (2013).Article 

    Google Scholar 
    Zhao, H. et al. Ridge-furrow with full plasticfilm mulching improves water use efficiency and tuber yields of potato in a se miarid rainfed ecosystem. Field Crop Research. 161, 137–148 (2014).Article 

    Google Scholar 
    Li, J. et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 224, 105736 (2019).Article 

    Google Scholar 
    Chouhan, S. S., Awasthi, M. K. & Nema, R. K. Studies on water productivity and yields responses of wheat based on drip irrigation systems in clay loam soil. Indian J. Sci. Technol. 8, 650 (2015).Article 

    Google Scholar 
    Liao, L., Zhang, L. & Bengtsson, L. Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigat. Drainag. Syst. 22, 253–270 (2008).Article 

    Google Scholar 
    Jha, S. K. et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 217, 292–302 (2019).Article 

    Google Scholar 
    Yan, Z., Fengxin, W., Qi, Z., Kaijing, Y. & Youliang, Z. Effect of drip tape distance and irrigation amount on spring wheat yield and water use efficiency. Chin. Agric. Sci. Bull. 32, 194–199 (2016).
    Google Scholar 
    Chen, R. et al. Lateral spacing in drip-irrigated wheat: the effects on soil moisture, yield, and water use efficiency. Field Crop Res. 179, 52–62 (2015).Article 

    Google Scholar 
    Shock, C. C., Feibert, E.B.G., & Saunders, L. D. Water management for drip-irrigated spring wheat. Annual Rep. Med. Chem.. 2007 (2005).Bhardwaj, A. K., Shainberg, I., Goldstein, D., Warrington, D. N. & Levy, G. J. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Sci. Soc. Am. J. 71, 406–412 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Islam, M. R. et al. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco- physiological parameters. J. Agric. Food Sci. 91, 1998–2005 (2011).CAS 
    Article 

    Google Scholar 
    Nazarli, H., Zardashti, M. R., Darvishzadeh, R. & Najafi, S. The effect of water stress and polymer on water use efficiency, yield, and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae. 2, 53–58 (2010).Article 

    Google Scholar 
    Huettermann, A., Orikiriza, L. J. & Agaba, H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean: Soil, Air, Water 37, 517–526 (2009).CAS 

    Google Scholar 
    Jain, N. K., Meena, H. N. & Bhaduri, D. Improvement in productivity, water use efficiency, and soil nutrient dynamics of summer peanut (Arachis hypogaea L) through use of polythene mulch, hydrogel, and nutrient management. Commun. Soil Sci. Plant Anal. 48, 549–564 (2017).CAS 
    Article 

    Google Scholar 
    Shekari, F., Javanmard, A. & Abbasi, A. Effects of super absorbent polymer application on yield and yield components of rapeseed. Notulae Scientia Biologicae. 7, 361–366 (2015).Article 

    Google Scholar 
    Wang, L. et al. Drip irrigation mode and water-retaining agent on growth regulation and water-saving effect of small coffee. Chin. J. Drainag. Irrigat. Mech. Eng. 33, 796–801 (2015).
    Google Scholar 
    Liu, P. et al. Effects of soil treatments on soil moisture and soybean yield under the condition of underground drip irrigation. Water Saving Irrigat. 25–28 (2019).Li, R. et al. Effects of water-retaining agent on soil water, fertilizer and corn yield under drip irrigation. J. Drainag. Irrigat. Mech. Eng. 36, 1337–1344 (2018).
    Google Scholar 
    Ma, B. L., Biswas, D. K., Zhou, Q. P. & Ren, C. Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 92, 1213–1222 (2012).Article 

    Google Scholar 
    He, W. Effects of different irrigation methods on photosynthesis and soil biological characteristics of oat. Inner Mongolia: Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2013).Wu, N. et al. Effects of water-retaining agent dosage on the yield and quality of naked oats under two irrigation methods. J. Crops 35, 1552–1557 (2009).CAS 

    Google Scholar 
    Gee, G.W., Bauder, J.W.,. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Soil Science Society of America, South Segoe Road, Madison, WI 53711 USA. 383–409 (1986).Lu, R. Soil Agricultural Chemical Analysis Method (China Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Wang, D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crop Res. 213, 213–220 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric. Water Manag. 211, 142–151 (2019).Article 

    Google Scholar 
    Finn, D. et al. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biol. Biochem. 91, 160–168 (2015).CAS 
    Article 

    Google Scholar 
    Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136 (2016).Article 

    Google Scholar 
    Luo, C. L. et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bengough, A. G. Water dynamics of the root zone: Rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal. 11, 1–6 (2012).Article 

    Google Scholar 
    Zobel, R. W. Plant Roots: Rowth, Activity and Interaction with Soils. Crop Sci. 46, 2699 (2006).Article 

    Google Scholar 
    Scholl, P. et al. Root induced changes of effective 1D hydraulic properties in a soil column. Plant Soil 381, 193–213 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, S. M. & Weil, R. R. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68, 1403–1409 (2010).Article 

    Google Scholar 
    Farrell, C., Ang, X. Q. & Rayner, J. P. Water-retention additives increase plant available water in green roof substrates. Ecol. Eng. 52, 112–118 (2013).Article 

    Google Scholar 
    Agaba, H. et al. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean: Soil, Air, Water 38, 328–335 (2010).CAS 

    Google Scholar 
    Wu, L., Liu, M. Z. & Liang, R. Preparation and properties of a double-coated slow release NPK compound fertilizer with superabsorbent and water-retention. Biores. Technol. 99, 547–554 (2008).CAS 
    Article 

    Google Scholar 
    Afshar, R. K. et al. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind. Crops Prod. 58, 166–172 (2014).CAS 
    Article 

    Google Scholar 
    Wang, L. Effects of different sowing dates and fertilizer rates on the growth and yield of oats in Yinshan hilly area. Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2020).Liu, Y. G. et al. Influence of planting density on the yield of naked oats and its constituent factors. J. Wheat Crops 28, 140–143 (2008).
    Google Scholar 
    Jia, Z. F. Effects of sowing rate and row spacing on grain quality of naked oat. Seed. 32, 67–69 (2013).
    Google Scholar 
    Lascano, R. J. & Van Bavel, C. H. M. Stimulation and measurement of evaporation from bare soil. Soil Sci. Soc. Am. J. 50, 1127–1132 (1986).ADS 
    Article 

    Google Scholar 
    Lv, P. et al. Effects of descending distance under wide sowing conditions on wheat yield and dry matter accumulation and transport. J. Wheat Crops 40, 1–6 (2020).
    Google Scholar 
    Sun, H. Y. et al. Effects of different row spacing on evapotranspiration and yield of winter wheat in wheat fields. Chin. J. Agric. Eng. 1, 22–26 (2006).
    Google Scholar 
    Li, G. X. et al. Effects of sowing row spacing on yield and water use efficiency of dryland wheat in different years. Agric. Technol. Equipm. 1, 22–26 (2012).ADS 

    Google Scholar 
    Chen, S. Y. et al. Effects of planting row spacing on soil evaporation and water use in winter wheat fields. Chin. J. Ecol. Agric. 14, 86–89 (2006).
    Google Scholar 
    Yang, Y. H. et al. Effects of water-retaining agent on soil moisture and utilization of winter wheat at different growth stages. Chin. J. Agric. Eng. 26, 19–26 (2010).
    Google Scholar 
    Yang, Y. H. et al. Effects of different moisture conservation tillage measures on water consumption characteristics and annual water use of wheat and maize. North China Agric. J. 32, 103–110 (2017).
    Google Scholar 
    Du, S. N. et al. Effects of Water and PAM Application Modes on Soil Moisture and Maize Growth. Chin. J. Agric. Eng. 24, 30–35 (2008).
    Google Scholar 
    Tian, L. et al. Effects of combined application of water-retaining agent and microbial fertilizer on dry matter accumulation, distribution, transport and yield of dry oat. J. Ecol. 39, 2996–3003 (2020).
    Google Scholar  More

  • in

    Life table construction for crapemyrtle bark scale (Acanthococcus lagerstroemiae): the effect of different plant nutrient conditions on insect performance

    USDA, N. Census of Horticultural Specialties (USDA, 2014).
    Google Scholar 
    USDA, N. Census of Horticultural Specialties (USDA, 2019).
    Google Scholar 
    Soliman, A. S. & Shanan, N. T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 19, 35–45 (2017).Article 

    Google Scholar 
    Chappell, M. R., Braman, S. K., Williams-Woodward, J. & Knox, G. J. J. o. E. H. Optimizing plant health and pest management of Lagerstroemia spp. in commercial production and landscape situations in the southeastern United States: A review. 30, 161–172 (2012).Gu, M., Merchant, M., Robbins, J. & Hopkins, J. Crape Myrtle Bark Scale: A New Exotic Pest. Texas A&M AgriLife Ext. Service. EHT 49 (2014).Kondo, T., Gullan, P. J. & Williams, D. J. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Ciencia y Tecnología Agropecuaria 9, 55–61 (2008).Article 

    Google Scholar 
    Jiang, N. & Xu, H. Observertion on Eriococcus lagerostroemiae Kuwana. J. Anhui Agric. Coll. 25, 142–144 (1998).
    Google Scholar 
    He, D., Cheng, J., Zhao, H. & Chen, S. Biological characteristic and control efficacy of Eriococcus lagerstroemiae. Chin. Bull. Entomol. 45, 812–814 (2008).
    Google Scholar 
    Harcourt, D. The development and use of life tables in the study of natural insect populations. Annu. Rev. Entomol. 14, 175–196 (1969).Article 

    Google Scholar 
    Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 15–26 (1948).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article 

    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 24, 225–240 (1985).
    Google Scholar 
    Fathipour, Y. & Maleknia, B. in Ecofriendly Pest Management for Food Security (ed Omkar) 329–366 (Academic Press, 2016).Auad, A. et al. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphididae) fed with signal grass. Fla. Entomol. 569–577 (2009).Qu, Y. et al. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 26, 1002–1009 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Araujo, E. S., Benatto, A., Mogor, A. F., Penteado, S. C. & Zawadneak, M. A. Biological parameters and fertility life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae) on strawberry. Braz. J. Biol. 76, 937–941. https://doi.org/10.1590/1519-6984.04715 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krishnamoorthy, S. V. & Mahadevan, N. R. Life table studies of sugarcane scale, Melanaspis glomerata G. J. Entomol. Res. 27, 203–212 (2003).
    Google Scholar 
    Uematsu, H. Studies on life table for an armored scale insect, Aonidiella taxus Leonardi (Homoptera: Diaspididae). J. Fac. Agric. Kyushu Univ. (1979).Hill, M. G., Mauchline, N. A., Hall, A. J. & Stannard, K. A. Life table parameters of two armoured scale insect (Hemiptera: Diaspididae) species on resistant and susceptible kiwifruit (Actinidia spp.) germplasm. N. Z. J. Crop Hortic. Sci. 37, 335–343 (2009).Article 

    Google Scholar 
    Yong, C. X. W. Z. C. & Shaoyun, Z. J. Y. S. W. Age-specific life table of chinese white wax scale (Ericerus pela) natural population and analysis of death key factors. Scientia Silvae Sinica 9 (2008).Rosado, J. F. et al. Natural biological control of green scale (Hemiptera: Coccidae): a field life-table study. Biocontrol. Sci. Technol. 24, 190–202 (2014).Article 

    Google Scholar 
    Fand, B. B., Gautam, R. D., Chander, S. & Suroshe, S. S. Life table analysis of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) under laboratory conditions. J. Entomol. Res. 34, 175–179 (2010).
    Google Scholar 
    Vargas-Madríz, H. et al. Life and fertility table of Bactericera cockerelli (Hemiptera: Triozidae), under different fertilization treatments in the 7705 tomato hybrid. Rev. Chil. entomol. 39 (2014).Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    Saska, P. et al. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest. Sci. 94, 423–434 (2021).Article 

    Google Scholar 
    Ma, K., Tang, Q., Xia, J., Lv, N. & Gao, X. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 158, 40–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ullah, F. et al. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE 15, e0238707 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Güncan, A. & Gümüş, E. Influence of different hazelnut cultivars on some demographic characteristics of the filbert aphid (Hemiptera: Aphididae). J. Econ. Entomol. 110, 1856–1862 (2017).PubMed 
    Article 

    Google Scholar 
    Bailey, R., Chang, N.-T., Lai, P.-Y. & Hsu, T.-C. Life table of cycad scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae), reared on Cycas in Taiwan. J. Asia Pac. Entomol. 13, 183–187 (2010).Article 

    Google Scholar 
    Wang, Z., Chen, Y. & Diaz, R. Temperature-dependent development and host range of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae). Fla. Entomol. 102, 181–186 (2019).Article 

    Google Scholar 
    Zhang, Z.-J. et al. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 17, e3000162 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z., Chen, Y., Diaz, R. & Laine, R. A. Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. J. Insect Physiol. 112, 1–8 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Suh, S.-J. Notes on some parasitoids (Hymenoptera: Chalcidoidea) associated with Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae) in the Republic of Korea. Insecta mundi 0690, 1–5 (2019).
    Google Scholar 
    Meindl, G. A., Bain, D. J. & Ashman, T.-L. Edaphic factors and plant–insect interactions: Direct and indirect effects of serpentine soil on florivores and pollinators. Oecologia 173, 1355–1366 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wielgolaski, F. E. Phenological modifications in plants by various edaphic factors. Int. J. Biometeorol. 45, 196–202 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uchida, R. in Plant nutrient management in Hawaii’s soils (ed Raymond S. Uchida James A. Silva) 31–55 (University of Hawaii at Manoa, College of Agriculture & Tropical Resources, 2000).Flanders, S. E. Observations on host plant induced behavior of scale insects and their endoparasites. Can. Entomol. 102, 913–926 (1970).Article 

    Google Scholar 
    Yang, T.-C. & Chi, H. Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J. Econ. Entomol. 99, 691–698 (2006).PubMed 
    Article 

    Google Scholar 
    Tuan, S. J., Lee, C. C. & Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vafaie, E. et al. Seasonal population patterns of a new scale pest, Acanthococcus lagerstroemiae Kuwana (Hemiptera: Sternorrhynca: Eriococcidae), of Crapemyrtles in Texas, Louisiana, and Arkansas. J. Environ. Hortic. 38, 8–14 (2020).Article 

    Google Scholar 
    Vafaie, E. K. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Hemiptera: Eriococcidae) on Potted Crapemyrtles, 2017. Arthropod manag. tests 44, tsy109 (2019).Vafaie, E. K. & Knight, C. M. J. A. M. T. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Crapemyrtle Bark Scale) on Landscape Crapemyrtles, 2016. 42, tsx130 (2017).Vafaie, E. & Gu, M. Insecticidal control of crapemyrtle bark scale on potted crapemyrtles, Fall 2018. Arthropod. Manag. Tests 44, tsz061 (2019).Article 

    Google Scholar 
    Aktar, M. W., Sengupta, D. & Chowdhury, A. J. I. t. Impact of pesticides use in agriculture: their benefits and hazards. 2, 1 (2009).Grafton-Cardwell, E. & Vehrs, S. Monitoring for organophosphate-and carbamate-resistant armored scale (Homoptera: Diaspididae) in San Joaquin valley citrus. J. Econ. Entomol. 88, 495–504 (1995).CAS 
    Article 

    Google Scholar 
    Almarinez, B. J. M. et al. Biological control: A major component of the pest management program for the invasive coconut scale insect, Aspidiotus rigidus Reyne, in the Philippines. Insects 11, 745 (2020).PubMed Central 
    Article 

    Google Scholar 
    Grout, T. & Richards, G. Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell)(Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J. Appl. Entomol. 111, 20–27 (1991).Article 

    Google Scholar 
    Grafton-Cardwell, E., Millar, J., O’Connell, N. & Hanks, L. Sex pheromone of yellow scale, Aonidiella citrina (Homoptera: Diaspididae): Evaluation as an IPM tactic. J. Agric. Urban. Entomol. 17, 75–88 (2000).CAS 

    Google Scholar 
    Jactel, H., Menassieu, P., Lettere, M., Mori, K. & Einhorn, J. Field response of maritime pine scale, Matsucoccus feytaudi Duc. (Homoptera: Margarodidae), to synthetic sex pheromone stereoisomers. J. Chem. Ecol. 20, 2159–2170 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendel, Z. et al. Outdoor attractancy of males of Matsucoccus josephi (Homoptera: Matsucoccidae) and Elatophilus hebraicus (Hemiptera: Anthocoridae) to synthetic female sex pheromone of Matsucoccus josephi. J. Chem. Ecol. 21, 331–341 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zada, A. et al. Sex pheromone of the citrus mealybug Planococcus citri: Synthesis and optimization of trap parameters. J. Econ. Entomol. 97, 361–368 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Z. & Shi, Y. Studies on the Morphology and Biology of Eriococcus Lagerstroemiae Kuwana. J. Shandong Agri. Univ. 2 (1986).Savopoulou-Soultani, M., Papadopoulos, N. T., Milonas, P. & Moyal, P. Abiotic factors and insect abundance. PSYCHE 2012 (2012).Vandegehuchte, M. L., de la Pena, E. & Bonte, D. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5, e12937 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nebapure, S. M. & Sagar, D. Insect-plant interaction: A road map from knowledge to novel technology. Karnataka J. Agric. Sci. 28, 1–7 (2015).
    Google Scholar 
    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).CAS 
    Article 

    Google Scholar 
    Hogendorp, B. K., Cloyd, R. A. & Swiader, J. M. Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (Homoptera: Pseudococcidae), feeding on two colors of coleus Solenostemon scutellarioides L. Codd. Environ. Entomol. 35, 201–211 (2006).Article 

    Google Scholar 
    Lema, K. & Mahungu, N. in Tropical root crops: Production and uses in Africa: proceedings of the Second Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch held in Douala, Cameroon, 14-19 Aug. 1983. (IDRC, Ottawa, ON, CA).McClure, M. S. Dispersal of the scale Fiorinia externa (Homoptera: Diaspididae) and effects of edaphic factors on its establishment on hemlock. Environ. Entomol. 6, 539–544 (1977).Article 

    Google Scholar 
    Salama, H., Amin, A. & Hawash, M. Effect of nutrients supplied to citrus seedlings on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidosaphes beckii (Newman)(Coccoidea). Zeitschrift für Angewandte Entomologie 71, 395–405 (1972).Article 

    Google Scholar 
    Rasmann, S. & Pellissier, L. in Climate Change and Insect Pests Vol. 8 (ed P. Niemelä C. Björkman) 38–53 (Wallingford, UK: CAB Int., 2015).Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).CAS 
    Article 

    Google Scholar 
    Da Costa, P. B. et al. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil. 368, 267–280 (2013).Article 

    Google Scholar 
    Dong, H., Kong, X., Li, W., Tang, W. & Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 119, 106–113 (2010).Article 

    Google Scholar 
    Aulakh, M., Dev, G. & Arora, B. Effect of sulphur fertilization on the nitrogen–sulphur relationships in alfalfa (Medicago sativa L. Pers.). Plant Soil. 45, 75–80 (1976).CAS 
    Article 

    Google Scholar 
    Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sauge, M. H., Grechi, I. & Poëssel, J. L. Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: Vegetative growth allocation or chemical defence?. Entomol. Exp. Appl. 136, 123–133 (2010).CAS 
    Article 

    Google Scholar 
    Chen, Y., Serteyn, L., Wang, Z., He, K. & Francis, F. Reduction of plant suitability for corn leaf aphid (Hemiptera: Aphididae) under elevated carbon dioxide condition. Environ. Entomol. (2019).Miller, D. R. & Kosztarab, M. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24, 1–27 (1979).CAS 
    Article 

    Google Scholar 
    Hardy, N. B., Peterson, D. A. & Normark, B. B. Scale insect host ranges are broader in the tropics. Biol. Lett. 11, 20150924 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Q. et al. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS ONE 12, e0173380 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, X. et al. Density-dependent demography and mass-rearing of Carposina sasakii (Lepidoptera: Carposinidae) incorporating life table variability. J. Econ. Entomol. 112, 255–265 (2019).PubMed 
    Article 

    Google Scholar 
    Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis (2020).Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 
    Article 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).MATH 
    Book 

    Google Scholar  More