More stories

  • in

    Phase synchronization of chlorophyll and total phosphorus oscillations as an indicator of the transformation of a lake ecosystem

    Sakamoto, M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobilogie. 62, 1–28 (1966).
    Google Scholar 
    Vollenweider, R. A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (Organisation for Economic Co-operation and Development, 1968).
    Google Scholar 
    Edmondson, W. T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169, 690–691 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Dillon, P. J. & Rigler, F. H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19, 767–773 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J. R. & Bachmann, R. W. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Feder. 48, 2176–2182 (1976).CAS 

    Google Scholar 
    Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Filstrup, C. T. & Downing, J. A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 7, 385–400 (2017).CAS 
    Article 

    Google Scholar 
    Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).ADS 
    Article 

    Google Scholar 
    Quinlan, R. et al. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 66, 392–404 (2020).ADS 
    Article 

    Google Scholar 
    Yuan, L. L. & Jones, J. R. Rethinking phosphorus–chlorophyll relationships in lakes. Limnol. Oceanogr. 65, 1847–1857 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 11, 361–369 (1977).ADS 
    Article 

    Google Scholar 
    Neveux, J. et al. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. Microb. Food Webs 4, 217–238 (1990).
    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecology (Oxford University, 2007).
    Google Scholar 
    Kovalevskaya, R. Z., Zhukava, H. A. & Adamovich, B. V. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies. J. Appl. Spectrosc. 87, 72–78 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35–48 (2017).Article 

    Google Scholar 
    Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller. P. H. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosyst. Health Manag. 5(1), 19–29 (2002).Magumba, D., Atsushi, M., Michiko, T., Akira, K. & Masao, K. Relationships between Chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control. Biol. 51(4), 179–185 (2013).CAS 
    Article 

    Google Scholar 
    Smith, V. H. & Shapiro, J. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environ. Sci. Technol. 15(4), 444–451 (1981).Pothoven, S. A. & Vanderploeg, H. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 46, 519–527 (2020).CAS 
    Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Lake Søbygaard, Denmark: phosphorus dynamics during the first 35 years after an external loading reduction. In: Internal Phosphorus Loading: Causes, Case Studies, and Management (ed. Steinman, A.D. & Spears, B. M.) 285–299 (J. Ross, Plantation, 2020).Guildford, S. J. & Hecky, R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnol. Oceanogr. 45, 1213–1223 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J.R. et al. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes. An analysis of regional limnology. Lake Reser. Manag. 24, 155–180 (2008).Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A universal concept in nonlinear sciences (Cambridge University, 2001).Book 

    Google Scholar 
    Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).Book 

    Google Scholar 
    Sazonov, A. V. et al. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 100, 129–146 (2009).Article 

    Google Scholar 
    Medvinsky, A. B. et al. Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017).Article 

    Google Scholar 
    Zhukova, T. V. & Ostapenya, A. P. Estimation of efficiency of nature protection measures in water catchment area of the Naroch lakes. Natural Resources. 3, 68–73 (2000) ((in Russian)).
    Google Scholar 
    Burlakova, L. E., Karatayev, A. Y. & Padilla, D. K. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571, 133–146 (2006).Article 

    Google Scholar 
    Ostapenia, A. P. et al. Bentification of lake ecosystem: causes, mechanisms, possible consequences, prospect for future research. Trudy BGU. 7, 135–148 (2012) ((in Russian)).
    Google Scholar 
    Karatayev, A.Y., Burlakova, L.E. & Padilla, D.K. Impacts of Zebra Mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E., Gollasch, S., Olenin, S. (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management (Springer, Dordrecht, 2002).Adamovich, B. V. et al. The divergence of chlorophyll dynamics in the Naroch Lakes. Biophysics 60, 632–638 (2015).CAS 
    Article 

    Google Scholar 
    Zhukova, T. V. et al. Long-term dynamics of suspended matter in Naroch Lakes: Trend or intervation. Inland Water Biol. 10, 250–257 (2017).Article 

    Google Scholar 
    Adamovich, B. V. et al. Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring. J. Siber. Federal Univ. Biol. 10, 379–394 (2017).Article 

    Google Scholar 
    Ostapenya A.P. et al. Ecological passport of Lake Myastro (EcoMir, Minsk, 1994) (in Russian).Kantz, H. & Schreiber, T. Nonlinear time series analysis (Cambridge University, 1997).MATH 

    Google Scholar 
    Kot, M. Elements of mathematical ecology (Cambridge University, 2001).Book 

    Google Scholar 
    Turchin, P. Complex population dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003).MATH 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. & Padilla, D. K. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J. Shellfish Res. 16, 187–203 (1997).
    Google Scholar 
    Lia, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. PNAS 118(6), e2008223118. https://doi.org/10.1073/pnas.2008223118 (2021).CAS 
    Article 

    Google Scholar 
    Mikheyeva, T. M. et al. The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus). Ecol. Ind. 81, 481–490 (2017).Article 

    Google Scholar 
    Harris, P. H. Phytoplankton ecology. Structure, functioning and flucttuation (Chapman & Hall, London, New York, 1986).Jeppesen, E., Jensen, J. P., Søndergaard, M. & Lauridsen, T. L. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshw. Biol. 50, 1616–1627 (2005).CAS 
    Article 

    Google Scholar 
    Nezlin, N.P. & Li, B-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 39, 185–202 (2003).French, T. D. & Petticrew, E. L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299 (2007).CAS 
    Article 

    Google Scholar 
    SCOR-UNESCO Working Group no. 17. Determination of photosynthetic pigments in sea-water. Monographs on Oceanologic Methodology 9–18 (UNESSCO, Paris, 1966).Semenov, A. D. Guide on the chemical analysis of continental surface waters (Gidrometeoizdat, 1977) ((in Russian)).
    Google Scholar 
    Wetzel, R. G. & Likens, G. E. Limnological analysis (Springer, 2000).Book 

    Google Scholar 
    Steffen, M. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R J. 9(1), 207–218 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020). More

  • in

    European primary datasets of alien bacteria and viruses

    Brandes, N. & Linial, M. Giant viruses—big surprises. Viruses 11, 404 (2019).CAS 
    Article 

    Google Scholar 
    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS 
    Article 

    Google Scholar 
    Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. opinion biotechnology 22, 456–464 (2011).CAS 
    Article 

    Google Scholar 
    Gummow, B. Challenges posed by new and re-emerging infectious diseases in livestock production, wildlife and humans. Livest. Sci. 130, 41–46 (2010).CAS 
    Article 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. letters 18, 483–495 (2015).Article 

    Google Scholar 
    Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. infectious diseases 11, 1842 (2005).Article 

    Google Scholar 
    Foster, R. et al. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NeoBiota 69, 79–102 (2021).Article 

    Google Scholar 
    Brasier, C. The biosecurity threat to the uk and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).Article 

    Google Scholar 
    Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Essl, F. et al. Which taxa are alien? criteria, applications, and uncertainties. BioScience 68, 496–509 (2018).Article 

    Google Scholar 
    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019).Article 

    Google Scholar 
    Hawkins, C. L. et al. Framework and guidelines for implementing the proposed iucn environmental impact classification for alien taxa (eicat). Divers. Distributions 21, 1360–1363 (2015).Article 

    Google Scholar 
    Corrales, X. et al. Advances and challenges in modelling the impacts of invasive alien species on aquatic ecosystems. Biol. Invasions 22, 907–934 (2020).Article 

    Google Scholar 
    Regulation, E. Regulation (eu) no 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 57, 35–55 (2014).
    Google Scholar 
    EU. Regulation (eu) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending regulations (eu) 228/2013,(eu) 652/2014 and (eu) 1143/2014 and repealing council directives 69/464/eec, 74/647/eec, 93/85/eec, 98/57/ec, 2000/29/ec, 2006/91/ec and 2007/33/ec. Off. J. 317, 4–104 (2016).
    Google Scholar 
    Murtaugh, M. P. et al. The science behind one health: at the interface of humans, animals, and the environment. Tech. Rep. (2017).Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. Royal Soc. open science 6, 181577 (2019).ADS 
    Article 

    Google Scholar 
    Roy, H. E. et al. Alien pathogens on the horizon: Opportunities for predicting their threat to wildlife. Conserv. Lett. 10, 477–484 (2017).Article 

    Google Scholar 
    Ikner, L. A., Gerba, C. P. & Bright, K. R. Concentration and recovery of viruses from water: a comprehensive review. Food Environ. Virol. 4, 41–67 (2012).
    Google Scholar 
    Taylor, M. W. Introduction: A short history of virology. In Viruses and Man: A History of Interactions, 1–22 (Springer, 2014).Thakur, M. P., Van der Putten, W. H., Cobben, M. M., van Kleunen, M. & Geisen, S. Microbial invasions in terrestrial ecosystems. Nat. Rev. Microbiol. 17, 621–631 (2019).CAS 
    Article 

    Google Scholar 
    Desprez-Loustau, M.-L. et al. The fungal dimension of biological invasions. Trends ecology & evolution 22, 472–480 (2007).Article 

    Google Scholar 
    Rivett, D. W. et al. Elevated success of multispecies bacterial invasions impacts community composition during ecological succession. Ecol. Lett. 21, 516–524 (2018).Article 

    Google Scholar 
    Dunn, A. M. & Hatcher, M. J. Parasites and biological invasions: parallels, interactions, and control. TRENDS Parasitol. 31, 189–199 (2015).Article 

    Google Scholar 
    Pyšek, P. et al. Macroecological framework for invasive aliens (mafia): disentangling large-scale context dependence in biological invasions. (2020).Hulme, P. E. et al. Blurring alien introduction pathways risks losing the focus on invasive species policy. Conserv. Lett. 10, 265–266 (2017).Article 

    Google Scholar 
    Gilroy, J. J., Avery, J. D. & Lockwood, J. L. Seeking international agreement on what it means to be “native”. Conserv. Lett. 10, 238–247 (2017).Article 

    Google Scholar 
    Webber, B. L. & Scott, J. K. Rapid global change: implications for defining natives and aliens. Glob. Ecol. Biogeogr. 21, 305–311 (2012).Article 

    Google Scholar 
    CBD Secretariat. Decision VI/23: Alien species that threaten ecosystems, habitats and species. Document UNEP/CBD/COP/6/23 (2002).World Health Organization. A brief guide to emerging infectious diseases and zoonoses. Tech. Rep. https://apps.who.int/iris/handle/10665/204722 (2014).Firrao, G. et al. Candidatus phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243–1255 (2004).CAS 
    Article 

    Google Scholar 
    CBD. Pathways of introduction of invasive species, their prioritization and management (Secretariat of the Convention on Biological Diversity Montreal, 2014).OIE. Terrestrial Animal Health Code 2021 (OIE, 2021).Magliozzi, C. et al. bacteria and viruses traits and species-related factors. figshare https://doi.org/10.6084/m9.figshare.18550907.v2 (2022).Katsanevakis, S. et al. Implementing the European policies for alien species: networking, science, and partnership in a complex environment. Manag. Biol. Invasions 4, 3–6 (2013).Article 

    Google Scholar 
    Tsiamis, K. et al. The EASIN Editorial Board: quality assurance, exchange and sharing of alien species information in europe. Manag. Biol. invasions 7, 321–328 (2016).Article 

    Google Scholar 
    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PloS one 7, e29715 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Darwin Core. Darwin Core quick reference guide. https://dwc.tdwg.org/terms/ (2018).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis, https://ggplot2.tidyverse.org (Springer-Verlag New York, 2016).Schwarzl, T. ggBubbles: Mini Bubble Plots for Comparison of Discrete Data with ‘ggplot2’ R package version 0.1.4 (2019).Moon, K. R statistics and graphs for medical papers (Hannarae Seoul, 2015).Current, C. Invasive species compendium. Wallingford, UK: CAB Int. Available online: www.cabi.org/isc (accessed on 19 August 2020) (2011).Adams, M. J. & Antoniw, J. F. Dpvweb: An open access internet resource on plant viruses and virus diseases. Outlooks on Pest Manag. 16, 268 (2005).Article 

    Google Scholar 
    Adams, M. J. & Antoniw, J. F. Dpvweb: a comprehensive database of plant and fungal virus genes and genomes. Nucleic acids research 34, D382–D385 (2006).CAS 
    Article 

    Google Scholar 
    Benson, D. A. et al. Genbank. Nucleic acids research 41, D36–D42 (2012).Article 

    Google Scholar  More

  • in

    Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae)

    Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article 

    Google Scholar 
    Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article 

    Google Scholar 
    Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article 

    Google Scholar 
    Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article 

    Google Scholar 
    Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article 

    Google Scholar 
    Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS 
    Article 

    Google Scholar 
    Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
    Google Scholar 
    Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 
    Article 

    Google Scholar 
    Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
    Google Scholar 
    IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article 
    CAS 

    Google Scholar 
    Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS 

    Google Scholar 
    CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article 

    Google Scholar 
    Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article 
    CAS 

    Google Scholar 
    Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
    Google Scholar 
    Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article 

    Google Scholar 
    Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS 
    Article 

    Google Scholar 
    La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article 

    Google Scholar 
    Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article 
    CAS 

    Google Scholar 
    Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article 
    CAS 

    Google Scholar 
    Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article 

    Google Scholar 
    Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article 

    Google Scholar 
    Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article 

    Google Scholar 
    Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
    Google Scholar 
    Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
    Google Scholar 
    Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
    Google Scholar 
    Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article 

    Google Scholar 
    Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article 

    Google Scholar 
    Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed 

    Google Scholar 
    Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article 
    CAS 

    Google Scholar 
    Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS 
    Article 

    Google Scholar 
    Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed 
    Article 

    Google Scholar 
    Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
    Google Scholar 
    Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article 

    Google Scholar 
    Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
    Google Scholar 
    Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article 

    Google Scholar 
    Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS 
    Article 

    Google Scholar 
    Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article 

    Google Scholar 
    Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS 
    Article 

    Google Scholar 
    Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers

    Ryan MJ, Rand AS. Species recognition and sexual selection as a unitary problem in animal communication. Evolution. 1993;47:647–57.PubMed 
    Article 

    Google Scholar 
    Trivers RL. Parental Investment and Sexual Selection. In: Campbell BG, (ed). Sexual Selection and the Descent of Man. Aldine Publishing Company; 1972. p. 136–79.
    Google Scholar 
    Andersson M. Sexual selection. Sexual Selection. Princeton: Princeton University Press; 1994.Chapter 

    Google Scholar 
    Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, et al. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patters of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol – A Sens, Neural, Behav Physiol. 2000;186:567–74.CAS 
    Article 

    Google Scholar 
    Cohen C, Liltved WR, Colville JF, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol. 2021;31:1962–1969. e6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol. 2021;31:1954–1961. e7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen AN, De Fine Licht HH. Logistic growth of the host-specific obligate insect pathogenic fungus Entomophthora muscae in house flies (Musca domestica). J Appl Entomol. 2017;141:583–6.CAS 
    Article 

    Google Scholar 
    Schmid-Hempel P Evolutionary parasitology. 2011. Oxford University Press.Helluy S, Thomas F. Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B: Biol Sci. 2003;270:563–8.CAS 
    Article 

    Google Scholar 
    Hoover K, Grove M, Gardner M. A gene for an extended phenotype. Science. 2011;333:1401. others.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adamo SA. Parasites: evolution’s neurobiologists. J Exp Biol. 2013;216:3–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bekker C, Ohm RA, Loreto RG. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics. 2015;16:620. others.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ros VID, Van Houte S, Hemerik L, Van Oers MM. Baculovirus-induced tree-top disease: How extended is the role of egt as a gene for the extended phenotype? Mol Ecol. 2015;24:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Botnevik CF, Malagocka J, Jensen AB, Fredensborg BL. Relative effects of temperature, light, and humidity on clinging behavior of metacercariae-infected ants. J Parasitol. 2016;102:495–500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Małagocka J, Jensen AB, Eilenberg J. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy. J Invertebr Pathol. 2017;143:108–14.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hughes DP, Libersat F. Neuroparasitology of parasite-insect associations. Annu Rev Entomol. 2018;63:471–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hojo MK, Pierce NE, Tsuji K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol. 2015;25:2260–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS ONE. 2010;5:e10019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X, Machado RAR, Van Doan C, Arce CCM, Hu L, Robert CAM. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife. 2019;8:e46668.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George J, Jenkins NE, Blanford S, Thomas MB, Baker TC. Malaria mosquitoes attracted by fatal fungus. PLoS ONE. 2013;8:e62632.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trandem N, Bhattarai UR, Westrum K, Knudsen GK, Klingen I. Fatal attraction: male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J Invertebr Pathol. 2015;128:6–13.PubMed 
    Article 

    Google Scholar 
    Evans WS, Wong A, Hardy M, Currie RW, Vanderwel D. Evidence that the factor used by the tapeworm, Hymenolepis diminuta, to direct the foraging of its intermediate host, Tribolium confusum, is a volatile attractant. J Parasitol. 1998;84:1098–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shostak AW, Smyth KA. Activity of flour beetles (Tribolium confusum) in the presence of feces from rats infected with rat tapeworm (Hymenolepis diminuta). Can J Zool. 1998;76:1472–9.Article 

    Google Scholar 
    Shea JF. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor). J Helminthol. 2007;81:293–9.PubMed 
    Article 

    Google Scholar 
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dawkins R. The extended phenotype. Oxford: Oxdord University Press; 1982.
    Google Scholar 
    Van Houte S, Ros VID, Van Oers MM. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.PubMed 
    Article 

    Google Scholar 
    de Bekker C, Beckerson WC, Elya C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio. 2021;12:e01872–21.PubMed Central 
    Article 

    Google Scholar 
    Lefévre T, Lebarbenchon C, Gauthier-Clerc M, Missé D, Poulin R, Thomas F, et al. The ecological significance of manipulative parasites. Trends Ecol Evolution. 2009;24:41–48.Article 

    Google Scholar 
    Kalsbeek V, Pell JK, Steenberg T. Sporulation by Entomophthora schizophorae (Zygomycetes: Entomophthorales) from housefly cadavers and the persistence of primary conidia at constant temperatures and relative humidities. J Invertebr Pathol. 2001;77:149–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Ruiter J, Arnbjerg-Nielsen SF, Herren P, Høier F, De Fine Licht HH, Jensen KH. Fungal artillery of zombie flies: infectious spore dispersal using a soft water cannon. J R Soc Interface. 2019;16:20190448.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, et al. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLoS Pathog. 2020;16:e1008598.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moller AP. A fungus infecting domestic flies manipulates sexual behaviour of its host. Behav Ecol Sociobiol. 1993;33:403–7.
    Google Scholar 
    Murvosh CM, Fye RL, LaBrecque GC. Studies on the mating behavior of the house fly, Musca Domestica L. Ohio J Sci. 1964;64:264–71.
    Google Scholar 
    Tobin EN, Stoffolano JG. The courtship of Musca species found in North America. II. The face fly, Musca autumnalis, and a comparison. Ann Entomological Soc Am. 1973;66:1329–34.Article 

    Google Scholar 
    Goulson D, Bristow L, Elderfield E, Brinklow K, Parry-Jones B, Chapman JW. Size, Symmetry, and sexual selection in the housefly, Musca domestica. Evolution. 1999;53:527–34.PubMed 
    Article 

    Google Scholar 
    Zurek L, Wes Watson D, Krasnoff SB, Schal C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol. 2002;80:171–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rogoff WM, Beltz AD, Johnsen JO, Plapp FW. A sex pheromone in the housefly, Musca domestica L. J Insect Physiol. 1964;10:239–46.CAS 
    Article 

    Google Scholar 
    Adams TS, Holt GG. Effect of pheromone components when applied to different models on male sexual behaviour in the housefly, Musca domestica. J Insect Physiol. 1987;33:9–18.CAS 
    Article 

    Google Scholar 
    Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA, et al. Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science. 1971;174:76–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams TS, Nelson DR, Fatland CL. Effect of methylalkanes on male house fly, Musca domestica, sexual behavior. J Insect Physiol. 1995;41:443–9.CAS 
    Article 

    Google Scholar 
    Noorman N, Otter CJ. The effects of laboratory culturing on (Z)-9-tricosene (muscalure) quantities on female houseflies. Entomologia Experimentalis et Applicata. 2001;101:69–80.CAS 
    Article 

    Google Scholar 
    Uebel EC, Schwarz M, Lusby WR, Miller RW, Sonnet PE. Cuticular nonhydrocarbons of the female house fly and their evaluation as mating stimulants. Lloydia. 1978;41:63–67.CAS 

    Google Scholar 
    Blomquist GJ, Ginzel MD. Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annu Rev Entomol. 2021;66:45–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017;15:88.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krasnoff SB, Watson DW, Gibson DM, Kwan EC. Behavioral effects of the entomopathogenic fungus, Entomophthora muscae on its host Musca domestica: Postural changes in dying hosts and gated pattern of mortality. J Insect Physiol. 1995;41:895–903.CAS 
    Article 

    Google Scholar 
    Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evolution. 2016;7:1325–30.Article 

    Google Scholar 
    Quan AS, Eisen MB. The ecology of the Drosophila-yeast mutualism in wineries. PLOS ONE. 2018;13:e0196440.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Den Dool H, Dec, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–71.Article 

    Google Scholar 
    Nelson DR, Dillwith JW, Blomquist GJ. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 1981;11:187–97.CAS 
    Article 

    Google Scholar 
    Bagnères AG, Morgan ED. A simple method for analysis of insect cuticular hydrocarbons. J Chem Ecol. 1990;16:3263–76.PubMed 
    Article 

    Google Scholar 
    Stránský K, Jursík T, Vítek A, Skořepa J. An improved method of characterizing fatty acids by equivalent chain length values. J High Resolut Chromatogr. 1992;15:730–40.Article 

    Google Scholar 
    Stránský K, Zarevúcka M, Valterová I, Wimmer Z. Gas chromatographic retention data of wax esters. J Chromatogr A. 2006;1128:208–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.CAS 
    Article 

    Google Scholar 
    Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, et al. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol. 2001;31:139–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gulias Gomes CC, Trigo JR, Eiras ÁE. Sex pheromone of the American warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. J Chem Ecol. 2008;34:636–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang LX, Yun YF, Liang YZ, Cao DS. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J Chromatogr A. 2010;1217:3695–701.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 
    CAS 

    Google Scholar 
    Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008;25:1–18.Article 

    Google Scholar 
    Darbro JM, Millar JG, McElfresh JS, Mullens BA. Survey of muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol. 2005;34:1418–25.CAS 
    Article 

    Google Scholar 
    Butler SM, Moon RD, Hinkle NC, Millar JG, Mcelfresh JS, Mullens BA. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med Vet Entomol. 2009;23:426–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics. 2018;19:166.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700.PubMed 
    Article 
    CAS 

    Google Scholar 
    Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem. 2006;281:4446–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 2008;74:454–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooley JR, Marshall DC, Hill KBR. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep. 2018;8:1432.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X-M. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honey bees. J Appl Entomol. 2018;142:359–62.CAS 
    Article 

    Google Scholar 
    Haber AI, Sims JW, Mescher MC, De Moraes CM, Carr DE. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct Ecol. 2019;33:218–28.Article 

    Google Scholar 
    Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    Stanjek V, Herhaus C, Ritgen U, Boland W, Städler E. Changes in the leaf surface chemistry of Apium graveolens (apiaceae) stimulated by jasmonic acid and perceived by a specialist insect. Helvetica Chim Acta. 1997;80:1408–20.CAS 
    Article 

    Google Scholar 
    Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, et al. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol. 2017;175:1455–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Könen PP, Wüst M. Analysis of sesquiterpene hydrocarbons in grape berry exocarp (Vitis vinifera L.) using in vivo-labeling and comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS). Beilstein J Org Chem. 2019;15:1945–61.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lam K, Tsang M, Labrie A, Gries R, Gries G. Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol. 2010;36:141–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Phillips RD, Bohman B, Peakall R. Pollination by nectar‐foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. Plant Biology 2021;23:702–10.Spieth HT. Courtship behavior in Drosophila. Annu Rev Entomol. 1974;19:385–405.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GSXE, et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478:236–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullens BA, Rodrigues JL, Meyer JA. An epizootiological study of Entomophthora muscae in muscoid fly populations on southern california poultry facilities, with emphasis on Musca domestica. Hilgardia. 1987;55:1–41.Article 

    Google Scholar 
    Watson DW, Petersen JJ. Sexual activity of male Musca domestica (Diptera: Muscidae) infected with Entomophthora muscae (Entomophthoraceae: Entomophthorales). Biol Control. 1993;3:22–26.Article 

    Google Scholar 
    van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK. Insects as feed: house fly or black soldier fly? J Insects Food Feed. 2020;6:221–9.Article 

    Google Scholar 
    Khamesipour F, Lankarani KB, Honarvar B, Kwenti TE. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health. 2018;18:1049.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biedermann PHW, De Fine Licht HH, Rohlfs M. Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. 2019;38:1–6.Article 

    Google Scholar  More

  • in

    Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling

    Giorgi, A., Pentimalli, D., Giupponi, L. & Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2(1), 52–57 (2017).Article 

    Google Scholar 
    Winterhalter, P. & Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Intl. 16(1), 39–59 (2000).CAS 
    Article 

    Google Scholar 
    Schmidt, M., Betti, G. & Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med. Wochenschr. 157, 315–319 (2007).PubMed 
    Article 

    Google Scholar 
    Siddique, H. R., Fatma, H. & Khan, M. A. Medicinal properties of saffron with special reference to cancer—A review of preclinical studies. in Saffron: The Age-Old Panacea in a New Light (ed. Sarwat,
    M. & Sumaiya, S.) 233–244 (Academic Press, 2020).Chapter 

    Google Scholar 
    Abdullaev, F. I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227(1), 20–25 (2002).CAS 
    Article 

    Google Scholar 
    Kafi, M., Koocheki, A. & Rashed, M. H. Saffron (Crocus sativus): Production and Processing (Science Publishers, 2006).Book 

    Google Scholar 
    Mir, G.M. Saffron Agronomy in Kashmir (1992).Melnyk, J. P., Wang, S. & Marcone, M. F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43(8), 1981–1989 (2010).CAS 
    Article 

    Google Scholar 
    Menia, M. et al. Production technology of saffron for enhancing productivity. J. Pharmacognosy Phytochem. 7(1), 1033–1039 (2018).
    Google Scholar 
    Tanra, M. A., Dar, B. A. & Sing, S. Economic analysis of Production and Marketing of saffron in Jammu and Kashmir. J. Social Relevance Concern 5(10), 12–19 (2017).
    Google Scholar 
    Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A. & Kirmani, N. A. saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Sci. Biotechnol. 4(2), 108–115 (2010).
    Google Scholar 
    Amirnia, R., Bayat, M. & Tajbakhsh, M. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crops. 19(2), 158–168 (2014).Article 

    Google Scholar 
    Kumar, R. et al. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 25(1), 44–85 (2009).Article 

    Google Scholar 
    Dhar, A. K. Saffron breeding and agrotechnology. Status Rep. PAFAI J. 12, 18–22 (1990).
    Google Scholar 
    Ehsanzadeh, P., Yadollahi, A. A. & Maibodi, A. M. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Int. Symp. Saffron Biol. Biotechnol. 650, 183–188 (2003).
    Google Scholar 
    Duke, J. A. Ecosystematic data on economic plants. Quart. J. Crude Drug Res. 17(3–4), 91–109 (1979).Article 

    Google Scholar 
    Kanth, R.H., Khanday, B.A. & Tabassum, S. Crop weather relationship for saffron production. Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India 170–188 (2008).Shinde, D. A., Talib, A. R. & Gorantiwar, S. M. Composition and classification of some typical soils of saffron growing areas of Jammu and Kashmir. J. Indian Soc. Soil Sci. 32(3), 473–477 (1984).CAS 

    Google Scholar 
    Nazir, N. A., Khitrov, N. B. & Chizhikova, N. P. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci. 28(4), 120–138 (1996).
    Google Scholar 
    Ganai, M. R., Wani, M. A. & Zargar, G. H. Characterization of saffron growing soils of Kashmir. Appl. Biol. Res. 2(1/2), 27–30 (2000).
    Google Scholar 
    Ganai, M.R.D. Nutrient status of saffron soils and their management. in Proceedings of Seminar-cum-Workshop on saffron (Crocus sativus) 51–54 (2001).Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). ScientiaHorticulturae 103(3), 361–379 (2005).
    Google Scholar 
    Galavi, M., Soloki, M., Mousavi, S. R. & Ziyaie, M. Effect of planting depth and soil summer temperature control on growth and yield of saffron (Crocus sativus L.). Asian J. Plant Sci. 7(8), 747 (2008).Article 

    Google Scholar 
    Kamyabi, S., Habibi Nokhandan, M. & Rouhi, A. Effect of climatic factors affecting saffron using analytic hierarchy process (AHP); Case Study Roshtkhar Region, Iran. (2014).Gupta, R. K. Saffron status and cultivation in northwestern Himalayas. Vegetos 20(1), 1–7 (2007).
    Google Scholar 
    Qin, A. et al. Maxent modelling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evaluat. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Hao, T., Elith, J., Arroita, G. G. & Monfort, J. J. L. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25(5), 839–852 (2019).Article 

    Google Scholar 
    Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Mykhailenko, O., Desenko, V., Ivanauskas, L. & Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according to with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 151, 112376. https://doi.org/10.1016/j.indcrop.2020.112376 (2020).CAS 
    Article 

    Google Scholar 
    Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 12, 657819. https://doi.org/10.3389/fpls.2021.657819 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mir, J. I., Ahmed, N., Wafai, A. H. & Qadri, R. A. Variability in stigma length and apocarotenoid content in Crocus sativus L. selections of Kashmir. J. Spices Aromatic Crops. 21(2), 169–171 (2012).
    Google Scholar 
    Nehvi, F. A. et al. New emerging trends on production technology of saffron. II Int. Symp. Saffron Biol. Technol. 739, 375–381 (2006).
    Google Scholar 
    Golmohammadi, F. Sustainable agriculture and rural development in Iran, Some modern issues in sustainable agriculture and rural development in Iran Germany, LAP LAMBERT Academic Publishing GmbH & Co. LAP Lambert Academic Publishing. Germany. ISBN-13, 978-3 (2012).Golmohammadi, F. Saffron and its importance, medical uses and economical export situation in Iran. in Oral Article Presented in: International Conference on Advances in Plant Sciences 14–18 (2012).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Wisz, M. S. et al. NCEAS Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diversity Distributions. 14(5), 763–773 (2008).Article 

    Google Scholar 
    Rebelo, H. & Jones, G. Ground validation of presence only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47(2), 410–420 (2010).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Palomera, S. et al. Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity Conservation 21(11), 2927–2948 (2012).Article 

    Google Scholar 
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166, 221–230 (2013).Article 

    Google Scholar 
    Phillips, S.J., Dudík, M. & Schapire, R.E. A maximum entropy approach to species distribution modelling. in Proceedings of the Twenty-First International Conference on Machine Learning 83 (2004).Baldwin, R. A. Use of maximum entropy modelling in wildlife research. Entropy 11(4), 854–866 (2009).ADS 
    Article 

    Google Scholar 
    Izadpanah, F., Kalantari, S., Hassani, M. E., Naghavi, M. R. & Shokrpour, M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst. Evolut. 300, 1941–1944 (2014).Article 

    Google Scholar 
    Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).PubMed 
    Article 

    Google Scholar 
    Proosdij, A. S. J. V., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar  More

  • in

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Benchmark regression resultsParallel trend testThe premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.Table 4 Parallel trend test.Full size tableDynamic effect analysisTo compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.Figure 1Dynamic analysis diagram.Full size imageThe effect of ETS on ecologicalization efficiency of industryControlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.Table 5 Influence of ETS on ecologicalization efficiency of industry.Full size tableRobustness testPropensity matching score—double difference method (PSM-DID)The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.Table 6 The result of the PSM-DID.Full size tableCounterfactual testTo verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.Table 7 Counterfactual test results.Full size tableActing pattern analysis of ETS on the regional ecologicalization efficiency of industryFirst, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.Table 8 Mediating effect test results.Full size table More

  • in

    Caught by a whisker

    The whiskers of seals are known to function as vibration receptors. Earlier experiments with blindfolded harbour seals in captivity have for example revealed that the animals can detect small water movements, and follow the hydrodynamic trails created by passing objects. But it is unclear if seals in the wild actively use this ability to find prey.
    This is a preview of subscription content More

  • in

    No new evidence for an Atlantic eels spawning area outside the Sargasso Sea

    The Sargasso Sea was identified as the spawning area of the European eel (Anguilla anguilla) 100 years ago, and numerous subsequent surveys have verified that eel larvae just a week old are regularly recorded there. However, no adult eels or eel eggs have ever been found, leaving room for alternative hypotheses on the reproduction biology of this enigmatic species. Chang et al.1 theorize about an area along the Mid-Atlantic Ridge as a potential spawning ground. The main argument for this hypothesis was that the chemical signature found in eel otoliths would indicate that early stage larvae had been exposed to a volcanic environment, such as the one present along the Mid-Atlantic Ridge. Since this correlation was solely based on a mis-interpretation of cited literature data, no new, conclusive information to pinpoint the Mid-Atlantic Ridge as an additional or even alternative spawning area was presented by Chang et al.For more than 100 years, the life history of Atlantic eels remains a matter of scientific debate. In a recent paper by Chang and colleagues, published in Scientific Reports (Sci Rep 10, 15981 (2020)), it is hypothesized that the spawning areas of the European eel (Anguilla anguilla) and the American eel (A. rostrata) are located along the Mid-Atlantic Ridge at longitudes between 50° W and 40° W1. This area lies outside the Sargasso Sea, which has so far been widely assumed to be the spawning region of both species since the beginning of the twentieth century2. The Danish researcher Johannes Schmidt collected eel leptocephali 30 mm long or less, some as short as 9 mm, all south of 30° N and west of 50° W3,4. Since then, Schmidt’s assumption was supported by a number of investigations that found recently hatched European eel larvae ( More