More stories

  • in

    Houseflies harbor less diverse microbiota under laboratory conditions but maintain a consistent set of host-associated bacteria

    The copy numbers for 16S and ITS1 rRNA, and the sequencing depth for all samples are presented in Supplementary File 3 (qPCR data, Sequencing Rarefaction Curves). An average of 14,265.25 reads per housefly sample for the V4 16SrRNA and 16,149.4 reads per housefly sample for the ITS1 were retained after quality filtering. After quality filtering of the egg-laying substrate samples, an average of 10,371.75 reads were retained per sample for the V4 16SrRNA, and an average of 25,479.75 reads were retained per sample for the ITS1 region. The extracted DNA from newly emerged adult houseflies of the Spanish laboratory strain (12 samples in total, newly emerged adults, three replicates from four generations, strain SP100) returned a low copy number for the fungal ITS1 (qPCR data, Supplementary File 3) and a low number of acquired sequencing reads; they were therefore omitted from any further analysis of the fungal microbiota. In addition, the mitochondrial COI phylogeny showed that the Dutch wild-caught strain and the Dutch laboratory strain, which were sampled from the same locality at different times, are in close proximity and form a separate clade from the Spanish lab strain phylotypes (Supplementary File 2).The housefly microbiota alpha-diversity is determined by sampling environmentAbsolute richness (number of ASVs), Shannon index, and Phylogenetic diversity for all housefly strains and developmental stages are shown in Fig. 1. The highest bacterial alpha diversity was observed for the wild-caught housefly population GK0. Strain was an important factor for separating Shannon biodiversity levels both for newly emerged (F = 4.37, P  More

  • in

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20(1), 30–43. https://doi.org/10.1111/1462-2920.13941 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera Paredes, S. & Lebeis, S. L. Giving back to the community: Microbial mechanisms of plant–soil interactions. Funct. Ecol. 30(7), 1043–1052. https://doi.org/10.1111/1365-2435.12684 (2016).Article 

    Google Scholar 
    Nath, A. & Sundaram, S. Microbiome community interactions with social forestry and agroforestry. In Microbial services in restoration ecology (eds Singh, J. S. & Vimal, S. R.) 71–82 (Elsevier, 2020).Chapter 

    Google Scholar 
    Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12(6), 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guttman, D. S., McHardy, A. C. & Schulze-Lefert, P. Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15(12), 797–813. https://doi.org/10.1038/nrg3748 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewin, S., Francioli, D., Ulrich, A. & Kolb, S. Crop host signatures reflected by co-association patterns of keystone bacteria in the rhizosphere microbiota. Environ. Microb. 16(1), 18. https://doi.org/10.1186/s40793-021-00387-w (2021).CAS 
    Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardelli, T. et al. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 575, 1041–1055. https://doi.org/10.1016/j.scitotenv.2016.09.176 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987. https://doi.org/10.1016/j.funeco.2020.100987 (2020).Article 

    Google Scholar 
    Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20(1), 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 234(6), 1951–1959. https://doi.org/10.1111/nph.18016 (2022).Article 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Extension of plant phenotypes by the foliar microbiome. Annu. Rev. Plant Biol. 72(1), 823–846. https://doi.org/10.1146/annurev-arplant-080620-114342 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hunter, P. The revival of the extended phenotype: After more than 30 years, Dawkins’ extended phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep. 19(7), e46477. https://doi.org/10.15252/embr.201846477 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68(5), 229–245. https://doi.org/10.1007/s13213-018-1331-5 (2018).CAS 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238 (2016).Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28(3), 274–285. https://doi.org/10.1094/mpmi-10-14-0331-fi (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pérez-Bueno, M. L., Pineda, M., Díaz-Casado, E. & Barón, M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol. Plant. 153(1), 161–174. https://doi.org/10.1111/ppl.12237 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A Synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giauque, H. & Hawkes, C. V. Climate affects symbiotic fungal endophyte diversity and performance. Am. J. Bot. 100(7), 1435–1444. https://doi.org/10.3732/ajb.1200568 (2013).Article 
    PubMed 

    Google Scholar 
    Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2(4), 404–416. https://doi.org/10.1038/ismej.2007.106 (2008).Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230(6), 2129–2147. https://doi.org/10.1111/nph.17319 (2021).Article 
    PubMed 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106(38), 16428–16433. https://doi.org/10.1073/pnas.0905240106%JProceedingsoftheNationalAcademyofSciences (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10(12), 828–840. https://doi.org/10.1038/nrmicro2910 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whipps, J. M., Hand, P., Pink, D. & Bending, G. D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582), 364–369. https://doi.org/10.1038/nature16192 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4(1), 27. https://doi.org/10.1186/s40168-016-0174-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207(4), 1134–1144. https://doi.org/10.1111/nph.13418 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10(1), 4135. https://doi.org/10.1038/s41467-019-11974-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latz, M. A. C. et al. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci. Total Environ. 759, 143804. https://doi.org/10.1016/j.scitotenv.2020.143804 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bao, L. et al. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol. Ecol. 96, 3. https://doi.org/10.1093/femsec/fiaa017 (2020).CAS 
    Article 

    Google Scholar 
    Ding, T. & Melcher, U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11(3), e0150895. https://doi.org/10.1371/journal.pone.0150895 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant-microbe interactions in the phyllosphere: Facing challenges of the anthropocene. ISME J. https://doi.org/10.1038/s41396-021-01109-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redford, A. J. & Fierer, N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microb. Ecol. 58(1), 189–198. https://doi.org/10.1007/s00248-009-9495-y (2009).Article 
    PubMed 

    Google Scholar 
    Campisano, A. et al. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ. Microbiol. 19(8), 3353–3364. https://doi.org/10.1111/1462-2920.13843 (2017).Article 
    PubMed 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392(1), 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).CAS 
    Article 

    Google Scholar 
    Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17(3), 610–621. https://doi.org/10.1111/1462-2920.12452 (2015).Article 
    PubMed 

    Google Scholar 
    Francioli, D., Schulz, E., Buscot, F. & Reitz, T. Dynamics of soil bacterial communities over a vegetation season relate to both soil nutrient status and plant growth phenology. Microb. Ecol. 75(1), 216–227. https://doi.org/10.1007/s00248-017-1012-0 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Breitkreuz, C., Buscot, F., Tarkka, M. & Reitz, T. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Front. Microbiol. 10, 3109–3109. https://doi.org/10.3389/fmicb.2019.03109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na, X. et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front. Microbiol. 10, 828. https://doi.org/10.3389/fmicb.2019.00828 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ad-hoc-AG-Boden. Bodenkundliche Kartieranleitung 438 (Schweizerbart, 2005).
    Google Scholar 
    Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).Article 

    Google Scholar 
    Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31(2), 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).Article 

    Google Scholar 
    Drew, M. C. Soil aeration and plant root metabolism. Soil Sci. 154(4), 259–268 (1992).ADS 
    Article 

    Google Scholar 
    Meyer, W. et al. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soil. Aust. J. Agric. Res. https://doi.org/10.1071/AR9850171 (1985).Article 

    Google Scholar 
    Riehm, H. Bestimmung der laktatlöslichen Phosphorsäure in karbonathaltigen Böden. Phosphorsäure 1, 167–178. https://doi.org/10.1002/jpln.19420260107 (1943).Article 

    Google Scholar 
    Murphy, J., & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 (1962).CAS 
    Article 

    Google Scholar 
    Francioli, D., Lentendu, G., Lewin, S. & Kolb, S. DNA metabarcoding for the characterization of terrestrial microbiota—pitfalls and solutions. Microorganisms 9(2), 361 (2021).CAS 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41(3), 252–263. https://doi.org/10.1007/s002480000087 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12(11), 2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 1. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581. https://doi.org/10.1038/Nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francioli, D. et al. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front. Microbiol. 12, 3371. https://doi.org/10.3389/fmicb.2021.773116 (2021).Article 

    Google Scholar 
    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).
    Google Scholar 
    Dray, S., Legendre, P. & Blanchet, G. Packfor: Forward Selection with Permutation. R package version 0.0‐8/r100 ed. (2011).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. ed. (2018).Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lahti, L. & Sudarshan, S. Tools for Microbiome Analysis in R. Version 2.1.28. ed. (2020).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7(1), 136. https://doi.org/10.1186/s40168-019-0750-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. 7, 1207. https://doi.org/10.3389/fmicb.2016.01207 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comby, M., Lacoste, S., Baillieul, F., Profizi, C. & Dupont, J. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front. Microbiol. 7, 403. https://doi.org/10.3389/fmicb.2016.00403 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405(1), 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).CAS 
    Article 

    Google Scholar 
    Sapkota, R., Jørgensen, L. N. & Nicolaisen, M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01357 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhry, V. et al. Shaping the leaf microbiota: Plant–microbe–microbe interactions. J. Exp. Bot. 72(1), 36–56. https://doi.org/10.1093/jxb/eraa417 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Liu, Z., Cheng, R., Xiao, W., Guo, Q. & Wang, N. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9(9), e107636. https://doi.org/10.1371/journal.pone.0107636 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M. et al. Soluble sugars. Plant Signal. Behav. 4(5), 388–393. https://doi.org/10.4161/psb.4.5.8294 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H., Qualls, R. G. & Blank, R. R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot. 82(4), 250–268. https://doi.org/10.1016/j.aquabot.2005.02.013 (2005).CAS 
    Article 

    Google Scholar 
    Bacanamwo, M. & Purcell, L. C. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J. Exp. Bot. 50(334), 689–696. https://doi.org/10.1093/jxb/50.334.689 (1999).CAS 
    Article 

    Google Scholar 
    Boem, F. H. G., Lavado, R. S. & Porcelli, C. A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop. Res. 47(2), 175–179. https://doi.org/10.1016/0378-4290(96)00025-1 (1996).Article 

    Google Scholar 
    Kozlowski, T. T. Plant responses to flooding of soil. Bioscience 34(3), 162–167. https://doi.org/10.2307/1309751 (1984).Article 

    Google Scholar 
    Topa, M. A. & Cheeseman, J. M. 32P uptake and transport to shoots in Pinuus serotina seedlings under aerobic and hypoxic growth conditions. Physiol. Plant. 87(2), 125–133. https://doi.org/10.1111/j.1399-3054.1993.tb00134.x (1993).CAS 
    Article 

    Google Scholar 
    Colmer, T. D. & Flowers, T. J. Flooding tolerance in halophytes. New Phytol. 179(4), 964–974. https://doi.org/10.1111/j.1469-8137.2008.02483.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibbs, J. & Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30(1), 1–47. https://doi.org/10.1071/PP98095 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Board, J. E. Waterlogging effects on plant nutrient concentrations in soybean. J. Plant Nutr. 31(5), 828–838. https://doi.org/10.1080/01904160802043122 (2008).CAS 
    Article 

    Google Scholar 
    Smethurst, C. F., Garnett, T. & Shabala, S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31–45. https://doi.org/10.1007/s11104-004-1082-x (2005).CAS 
    Article 

    Google Scholar 
    Thomson, C. J., Atwell, B. J. & Greenway, H. Response of wheat seedlings to low O2 concentrations in nutrient solution: II. K+/Na+ selectivity of root tissues. J. Exp. Bot. 40(9), 993–999. https://doi.org/10.1093/jxb/40.9.993 (1989).Article 

    Google Scholar 
    Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant Soil 253(1), 35–54. https://doi.org/10.1023/A:1024574622669 (2003).CAS 
    Article 

    Google Scholar 
    Granzow, S. et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 8, 902. https://doi.org/10.3389/fmicb.2017.00902 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168. https://doi.org/10.1094/PBIOMES-05-17-0023-R (2017).Article 

    Google Scholar 
    Shade, A., McManus, P. S., Handelsman, J. & Zhou, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4(2), e00602-00612. https://doi.org/10.1128/mBio.00602-12 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New. Phytol. 230(5), 2047–2060. https://doi.org/10.1111/nph.17297 (2021).Article 
    PubMed 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111. https://doi.org/10.1016/j.phytochem.2015.01.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 9, 2479. https://doi.org/10.3389/fmicb.2018.02479 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9(1), 171. https://doi.org/10.1186/s40168-021-01118-6 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. https://doi.org/10.1016/j.jare.2019.03.003 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathur, P., Mehtani, P. & Sharma, C. (2021). Leaf Endophytes and Their Bioactive Compounds. In Symbiotic Soil Microorganisms: Biology and Applications, (eds Shrivastava, N. et al.) 147–159 (Cham, Springer International Publishing, 2021).Aquino, J., Junior, F. L. A., Figueiredo, M., De Alcântara Neto, F. & Araujo, A. Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesq. Agrop. Trop. https://doi.org/10.1590/1983-40632019v4956241 (2019).Article 

    Google Scholar 
    Gamalero, E. et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl. Sci. 10(17), 5767 (2020).CAS 
    Article 

    Google Scholar 
    Borah, A. & Thakur, D. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front. Microbiol. 11, 318. https://doi.org/10.3389/fmicb.2020.00318 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haidar, B. et al. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol. Res. 208, 43–53. https://doi.org/10.1016/j.micres.2018.01.008 (2018).Article 
    PubMed 

    Google Scholar 
    Bind, M. & Nema, S. Isolation and molecular characterization of endophytic bacteria from pigeon pea along with antimicrobial evaluation against Fusarium udum. J. Appl. Microbiol. Open Access 5, 163 (2019).
    Google Scholar 
    de Almeida Lopes, K. B. et al. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J. Appl. Microbiol. 125(5), 1466–1481. https://doi.org/10.1111/jam.14041 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Müller, T. & Behrendt, U. Exploiting the biocontrol potential of plant-associated pseudomonads: A step towards pesticide-free agriculture?. Biol. Control 155, 104538. https://doi.org/10.1016/j.biocontrol.2021.104538 (2021).CAS 
    Article 

    Google Scholar 
    Safin, R. I. et al. Features of seeds microbiome for spring wheat varieties from different regions of Eurasia. In: International Scientific and Practical Conference “AgroSMART: Smart Solutions for Agriculture”, 766–770 (Atlantis Press).Adler, P. B. & Drake, J. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172(5), E186–E195. https://doi.org/10.1086/591678 (2008).Article 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284(1855), 20170507. https://doi.org/10.1098/rspb.2017.0507 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115(6), E1157–E1165. https://doi.org/10.1073/pnas.1717617115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 232(3), 1123–1158. https://doi.org/10.1111/nph.17072 (2021).Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92(4), 303–311. https://doi.org/10.1139/cjb-2013-0194 (2014).Article 

    Google Scholar 
    Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12(7), 1794–1805. https://doi.org/10.1038/s41396-018-0089-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K. & Evans, S. E. Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars. Phytobiom. J. 5(1), 108–120. https://doi.org/10.1094/pbiomes-12-19-0069-fi (2021).Article 

    Google Scholar 
    Arduini, I., Orlandi, C., Pampana, S. & Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop Pasture Sci. 67(7), 703–711. https://doi.org/10.1071/CP15417 (2016).CAS 
    Article 

    Google Scholar 
    Ding, J. et al. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Res. 246, 107695. https://doi.org/10.1016/j.fcr.2019.107695 (2020).Article 

    Google Scholar 
    Malik, I., Colmer, T., Lambers, H. & Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Austral. J. Plant Physiol. 28, 1121–1131. https://doi.org/10.1071/PP01089 (2001).Article 

    Google Scholar 
    Pampana, S., Masoni, A. & Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 44(4), 706–716. https://doi.org/10.1556/0806.44.2016.026 (2016).Article 

    Google Scholar 
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115(18), E4284–E4293. https://doi.org/10.1073/pnas.1717308115%JProceedingsoftheNationalAcademyofSciences (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Angel, R. et al. The root-associated microbial community of the world’s highest growing vascular plants. Microb. Ecol. 72(2), 394–406. https://doi.org/10.1007/s00248-016-0779-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16(2), e2003862. https://doi.org/10.1371/journal.pbio.2003862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuźniar, A. et al. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst. Appl. Microbiol. 43(1), 126025. https://doi.org/10.1016/j.syapm.2019.126025 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Soldan, R. et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol. Res. 223–225, 33–43. https://doi.org/10.1016/j.micres.2019.03.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7(1), 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).Article 

    Google Scholar 
    Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, 6. https://doi.org/10.1093/femsec/fiw083 (2016).CAS 
    Article 

    Google Scholar 
    Eid, A. M. et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 10(5), 935 (2021).CAS 
    Article 

    Google Scholar 
    Mareque, C. et al. The endophytic bacterial microbiota associated with sweet sorghum (Sorghum bicolor) is modulated by the application of chemical N fertilizer to the field. Int. J. Genom. 2018, 7403670. https://doi.org/10.1155/2018/7403670 (2018).CAS 
    Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446. https://doi.org/10.3389/fmicb.2016.01446 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrey, S. D. & Tarkka, M. T. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1), 11–19. https://doi.org/10.1007/s10482-008-9241-3 (2008).Article 
    PubMed 

    Google Scholar 
    Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45. https://doi.org/10.1016/j.micres.2018.06.003 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yi, Y.-S. et al. Antifungal activity of Streptomyces sp. against Puccinia recondita causing wheat leaf rust. J. Microbiol. Biotechnol. 14(2), 422–425 (2004).CAS 

    Google Scholar 
    Sperdouli, I. & Moustakas, M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J. Plant. Res. 127(4), 481–489. https://doi.org/10.1007/s10265-014-0635-1 (2014).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Hydrologic regime alteration and influence factors in the Jialing River of the Yangtze River, China

    Ge, J., Peng, W., Wei, H. W., Qu, X. & Singh, S. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10(5), 597 (2018).Article 

    Google Scholar 
    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546(7658), 363–369 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process 24(1), 35–49 (2010).
    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570(2019), 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Wang, H., Liu, J. & Guo, W. The variation and attribution analysis of the runoff and sediment in the lower reach of the Yellow River during the past 60 years. Water Supply 21(6), 3193–3209 (2021).Article 

    Google Scholar 
    Guo, S. L., Guo, J., Hou, Y., Xiong, L. & Hong, X. Prediction of future runoff change based on Budyko hypothesis in Yangtze River basin. Adv. Water Sci. 26(02), 151–160 (2015).
    Google Scholar 
    Zhang, X., Dong, Z., Gupta, H., Wu, G. & Li, D. Impact of the three gorges dam on the hydrology and ecology of the Yangtze River. Water 590(8), 1–18 (2016).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Zhang, M., Song, Y. & Lai, Y. Hydrological simulation of the Jialing River Basin using the MIKE SHE model in changing climate. J. Water Clim. Change 12(6), 1–20 (2021).
    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, P. D. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10(4), 1163–1174 (1996).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Wigington, B. & Braun, D. How much water does a river need?. Freshw. Biol. 37(1), 231–249 (1997).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River Res. Manag. 14(4), 329–340 (1998).Article 

    Google Scholar 
    Guo, W., Xu, G., Shao, J., Bing, J. & Chen, X. Research on the middle and lower reaches of the Yangtze River and lake’s hydrological alterations based on RVA. In IOP Conference Series: Earth and Environmental Science Vol 153, No 6, 062047.1–062047.8 (2018).Guo, W., Li, Y., Wang, H. & Zha, H. Assessment of eco-hydrological regime of lower reaches of Three Gorges Reservoir based on IHA-RVA. Resour. Environ. Yangtze Basin 27(09), 2014–2021 (2018).
    Google Scholar 
    Zuo, Q. & Liang, S. Effects of dams on river flow regime based on IHA/RVA. Proc. Int. Assoc. Hydrol. Sci. 368(368), 275–276 (2015).
    Google Scholar 
    Mwedzi, T., Katiyo, L., Mugabe, F. T., Bere, T. & Kuoika, O. L. A spatial assessment of stream-flow characteristics and hydrologic alterations, post dam construction in the Manyame catchment, Zimbabwe. Water Sa 42(2), 194–202 (2016).CAS 
    Article 

    Google Scholar 
    Liu, J., Chen, J., Xu, J., Lin, Y. & Zhou, M. Attribution of runoff variation in the headwaters of the Yangtze River based on the Budyko hypothesis. Int. J. Environ. Res. Public Health 16(14), 2506.1-2506.15 (2019).
    Google Scholar 
    Yan, D. Using budyko-type equations for separating the impacts of climate and vegetation change on runoff in the source area of the yellow river. Water 12(12), 3418.1-3418.15 (2020).ADS 

    Google Scholar 
    Gunkel, A. & Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. Reg. Stud. 12(C), 136–149 (2017).Article 

    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570, 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Li, Y., Fan, J. & Liao, Y. Variation characteristics of streamflow and sediment in the Jialing river basin in the past 60 years. Mt. Res. 38(03), 339–348 (2020).
    Google Scholar 
    Liu, Y., Li, F. & Xu, X. Impacts of hydropower development on hydrological regime in mainstream of mid-lower Jialing River. Yangtze River 45(05), 10–15 (2014).
    Google Scholar 
    Zhou, Y. et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, Southwestern China. CATENA 193(C), 104593.1-104593.11 (2020).
    Google Scholar 
    Zeng, X. et al. Changes and relationships of climatic and hydrological droughts in the Jialing River Basin, China. PLoS ONE 10(11), e0141648 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, M., Fang, G. H., Dai, L. H., Tan, Q. F. & Huang, X. F. Optimizing reservoir operation considering downstream ecological demands of water quantity and fluctuation based on IHA parameters. J. Hydrol. 4(2021), 126647 (2021).Article 

    Google Scholar 
    Wei, R., Liu, J., Zhang, T., Zeng, Q. & Dong, X. Attribution analysis of runoff variation in the upper-middle reaches of Yalong river. Resour. Environ. Yangtze Basin 29(07), 1643–1652 (2020).
    Google Scholar 
    Xie, J. H., Yu, J. H., Chem, H. S. & Hsu, P. C. Sources of subseasonal prediction skill for heatwaves over the Yangtze river basin revealed from three S2S models. Adv. Atmos. Sci. 37(12), 1435–1450 (2020).Article 

    Google Scholar 
    Guo, W., Li, Y., Wang, H. & Cha, H. Temporal variations and influencing factors of river runoff and sediment regimes in the Yangtze River, China. Desalin. Water Treat. 174(2020), 258–270 (2020).Article 

    Google Scholar 
    Tian, X. et al. Hydrologic alteration and possible underlying causes in the Wuding River, China. Sci. Total Environ. 693, 133556.1-133556.9 (2019).Article 
    CAS 

    Google Scholar 
    Tang, B., Wang, W. C. & Fan, X. Study on the influence of reservoir dispatch of the upper Yangtze river on the runoff control. E3S Web Conf. 283(18), 01030 (2021).
    Google Scholar 
    Liu, Y. et al. Characteristics and resource status of main commercial fish in the middle reaches of Jialing River, China. J. Appl. Environ. Biol. 27(04), 837–847 (2021).
    Google Scholar 
    Sun, Z., Zhang, M. & Chen, Y. Protection of the rare and endemic fish in the conservation area located in the upstream of the Yangtze River. Freshw. Fish. 44(06), 3–8 (2014).
    Google Scholar 
    Chen, Q. H. et al. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. J. Geogr. Sci. 30(01), 85–102 (2020).Article 

    Google Scholar 
    Cui, L., Wang, Z. & Deng, L. Vegetation dynamics based on NDVI in Yangtze River Basin (China) during 1982–2015. IOP Conf. Ser. Materials Sci. Eng. 780(2020), 062049 (2020).Article 

    Google Scholar 
    Wang, Y., Wang, S., Wu, M. & Wang, S. Impacts of the land use and climate changes on the hydrological characteristics of Jialing River Basin. Res. Soil Water Conserv. 26(01), 135–142 (2019).
    Google Scholar 
    Wu, Y. L. & Pu, H. W. Y. The influence of hydropower station on sand content detection in Jialing River. Technol. Dev. Enterp. 38(9), 55–58 (2019).
    Google Scholar 
    Zhuo, Z., Qian, Z., Jiang, H., Wang, H. & Guo, W. Evaluation of hydrological regime in Xiangjiang basin on IHA-RVA method. China Rural Water Hydropower 8(2020), 188–192 (2020).
    Google Scholar 
    Chen, L. et al. Temporal characteristics detection and attribution analysis of hydrological time-series variation in the seagoing river of southern China under environmental change. Acta Geophys. 66(5), 1151–1170 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, R., Liu, J., Mao, G. & Wang, L. Flow regime alterations of upper Heihe River based on improved RVA. Arid Zone Res. 38(01), 29–38 (2021).
    Google Scholar 
    Sun, Y. & Wang, X. Changes in runoff and driving force analysis in the key section of the Yellow River diversion project. J. Hydroecol. 41(06), 19–26 (2020).
    Google Scholar 
    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37(3), 701–708 (2001).ADS 
    Article 

    Google Scholar 
    Fu, B. Calculation of soil evaporation. Acta Meteor. Sin. 02(1981), 226–236 (1981).
    Google Scholar 
    Liu, J., Zhang, Q., Singh, V. P. & Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 545(2016), 145–162 (2016).
    Google Scholar 
    Yang, D., Zhang, S. & Xu, X. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis. Sci. Sinica 45(10), 1024–1034 (2015).
    Google Scholar 
    Schreiber, P. Ber die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Meteorol. Z. 21, 441–452 (1904).Budyko, M. Evaporation under Natural Conditions (Gidrometeorizdat, Leningrad, Russia, 1948).Pike, J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 2, 116–123 (1964).Ol’dekop, E. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 4, 200 (1911). More

  • in

    Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet

    Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).
    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
    Google Scholar 
    Liu, X. J. & Ma, K. P. Plant functional traits concepts, applications and future directions. Sci. Sin. Vitae 45, 325–339 (2015).
    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton, K. E. Tougher and thornier: general patterns in the induction of physical defence traits. Func. Ecol. 30, 181–187 (2016).
    Google Scholar 
    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).PubMed 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 

    Google Scholar 
    Grubb, P. J. A positive distrust in simplicity-lessons from plant defences and from competition among plants and among animals. J. Ecol. 80, 585–610 (1992).
    Google Scholar 
    Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. 8, 157–178 (2007).
    Google Scholar 
    Burns, K. C. Spinescence in the New Zealand flora: parallels with Australia. N. Z. J. Bot. 54, 273–289 (2016).
    Google Scholar 
    Goheen, J. R., Young, T. P., Keesing, F. & Palmer, T. M. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 95, 129–138 (2007).
    Google Scholar 
    Goldel, B., Kissling, W. D. & Svenning, J.-C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
    Google Scholar 
    Alves-Silva, E. & Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 149, 73–80 (2016).
    Google Scholar 
    Cooper, S. M. & Ginnett, T. F. Spines protect plants against browsing by small climbing mammals. Oecologia 113, 219–221 (1998).ADS 
    PubMed 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 371, 20150305 (2016).
    Google Scholar 
    Scholes, R. & Archer, S. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
    Google Scholar 
    Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).
    Google Scholar 
    Brown, R. W. Additions to the flora of the Green River formation. U. S. Geol. Surv. Prof. Paper, U. S. Gov. Print. Off. 154-J, 279–292 (1929).Manchester, S. Oligocene fossil plants of the John Day Formation, Oregon. Or. Geol. 49, 115d–127d (1987).
    Google Scholar 
    Meyer, H. W. & Manchester, S. R. Oligocene Bridge Creek flora of the John Day Formation, Oregon (Univ. California Press, 1997).Lancucka-Srodoniowa, M. Tortonian flora from the “Gdow Bay” in the south of Poland. Acta Palaeobot. 7, 1–134 (1966).
    Google Scholar 
    Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. et al. Why the ‘Uplift of the Tibetan Plateau’is a myth. Natl Sci. Rev. 8, nwaa091 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity–In what ways are they related? Plant Divers. 39, 233–244 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).ADS 

    Google Scholar 
    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Deng, T., Wu, F. X., Zhou, Z. K. & Su, T. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 63, 172–187 (2020).ADS 

    Google Scholar 
    Favre, A. et al. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).PubMed 

    Google Scholar 
    Su, T. et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scientific Expedition Team to the Qinghai-Xizang Plateau. Vegetation of Xizang (Tibet) (Sci. Press, 1988).Liu. X. H. Paleoelevation History and Evolution of the Cenozoic Lunpola basin, Central Tibet. Doctoral thesis (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2018).Xiong, Z. Y. et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 8, eabj0944 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichgelt, T., West, C. K. & Greenwood, D. R. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).CAS 

    Google Scholar 
    Spicer, R. A. et al. Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 381–395 (2011).
    Google Scholar 
    Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-biosphere (Springer Berlin Heidelb., 1973).Burley, J. Encyclopedia of Forest Sciences (Acad. Press, 2004).Deng, T. et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Sci. Bull. 57, 261–269 (2012).CAS 

    Google Scholar 
    Ma, P. F. et al. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res. 48, 224–236 (2017).ADS 

    Google Scholar 
    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. The formation and interpretation of plant fossil assemblages. Adv. Bot. Res. 16, 95–191 (1989).
    Google Scholar 
    Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).Eltringham, S. K. The Hippos: Natural History and Conservation (Princeton Univ. Press, 1999).Jiang, H. et al. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175, 99–108 (2019).ADS 

    Google Scholar 
    Liu, J. et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 33–40 (2019).
    Google Scholar 
    Jia, L. B. et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: implications for morphological evolution and biogeography. J. Syst. Evol. 57, 94–104 (2019).
    Google Scholar 
    Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. L., Li, B. Y. & Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geol. Res. 21, 1–8 (2002).
    Google Scholar 
    Yao, T. D. et al. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 32, 924–931 (2017).
    Google Scholar 
    Spicer, R. A., Farnsworth, A. & Su, T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229–254 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. H., Xu, Q. & Ding, L. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Sci. China Earth Sci. 59, 2105–2120 (2016).ADS 
    CAS 

    Google Scholar 
    Ding, L., Li, Z. Y. & Song, P. P. Core fragments of Tibetan Plateau from Gondwanaland united in Northern Hemisphere. Bull. Chin. Acad. Sci. 32, 945–950 (2017).
    Google Scholar 
    Deng, T. & Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl Sci. Rev. 2, 417–437 (2015).CAS 

    Google Scholar 
    Li, S. F. et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ding, L. et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).ADS 
    CAS 

    Google Scholar 
    Deng, T. et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob. Planet. Change 174, 58–69 (2019).ADS 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, W. G. Introduction to Plant Physiology (John Wiley & Sons, 1999).Sun, J. M., Liu, W. G., Liu, Z. H. & Fu, B. H. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys ocean on the stepwise aridification of mid-latitude Asian interior. Bull. Chin. Acad. Sci. 32, 951–958 (2017).
    Google Scholar 
    Zong, G. F. Cenezoic Mammals and Environment of Hengduan Mountains Region (China Ocean Press, 1996).Deng, T. et al. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun. Biol. 4, 639 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Young, T. P., Stanton, M. L. & Christian, C. E. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101, 171–179 (2003).
    Google Scholar 
    Karban, R. & Myers, J. H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20, 331–348 (1989).
    Google Scholar 
    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 22, 477–503 (1991).
    Google Scholar 
    Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sankaran, M., Augustine, D. J. & Ratnam, J. Native ungulates of diverse body sizes collectively regulate long‐term woody plant demography and structure of a semi‐arid savanna. J. Ecol. 101, 1389–1399 (2013).
    Google Scholar 
    Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).
    Google Scholar 
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. et al. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobio. Palaeoenv. 101, 213–243 (2021).
    Google Scholar 
    Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sun, J. M. et al. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).
    Google Scholar 
    DeCelles, P. G., Kapp, P., Ding, L. & Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654–680 (2007).ADS 

    Google Scholar 
    Tang, H. et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J. Syst. Evol. 57, 670–677 (2019).
    Google Scholar 
    Wang, T. X. et al. Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. J. Syst. Evol. 59, 1276–1286 (2021).
    Google Scholar 
    Del Rio, C. et al. Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications. Am. J. Bot. 107, 126–138 (2020).PubMed 

    Google Scholar 
    Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas. Geol. 1, 153–158 (1980).
    Google Scholar 
    Zhang, K. X. et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci. China Earth Sci. 53, 1271–1294 (2010).ADS 

    Google Scholar 
    Wu, Y. F. & Chen, Y. Y. Fossil cyprinid fishes from the late Tertiary of north Xizang, China. Vertebrata Palasiat. 18, 15–20 (1980).
    Google Scholar 
    Wu, F. X., Miao, D. S., Chang, M. M., Shi, G. L. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, C. Y., Huang, D. Y., Wu, F. X., Zhao, M. & Wang, N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J. Asian Earth Sci. 175, 121–127 (2017).ADS 

    Google Scholar 
    Low, S. L. et al. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415–431 (2020).
    Google Scholar 
    Bell, A. D. & Bryan, A. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Timber Press, 2008).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics. 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Maddison, W. P. Confounding asymmetries in evolutionary diversification and character change. Evolution 60, 1743–1746 (2006).PubMed 

    Google Scholar 
    Forest, C. E., Molnar, P. & Emanuel, K. A. Palaeoaltimetry from energy conservation principles. Nature 374, 347–350 (1995).ADS 
    CAS 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).ADS 
    CAS 

    Google Scholar 
    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).ADS 
    CAS 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, P. M. Description of the “TRIFFID” Dynamic Global Vegetation Model. 1–16 (Met Office Hadley Centre, 2001).Cox, P., Huntingford, C. & Harding, R. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 212, 79–94 (1998).ADS 

    Google Scholar 
    McInerney, F. A., Strömberg, C. A. E. & White, J. W. C. The Neogene transition from C3 to C4 grasslands in North America stable carbon isotope ratios of fossil phytoliths. Paleobiology 37, 23–49 (2011).
    Google Scholar 
    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 25, 945–959 (2006).ADS 

    Google Scholar  More

  • in

    Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation

    Printzen, C. & Lumbsch, H. T. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary. Mol. Phylogenet. Evol. 17, 379–387 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraichak, E. et al. A Tale of two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi. Sci. Rep. https://doi.org/10.1038/srep100288 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & Clair, L. L. S. Pleistocene speciation in North American lichenized fungi and the the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8, e85240 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gaya, E. et al. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and bark-to-rock substrate shift. PNAS 112, 11600–11605 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: Lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Widhelm, T. J. et al. Oligocene origin and drivers for diversification in the genus Sticta (Lobariaceae, Ascomycota). Mol. Phylogenetic Evol. 126, 58–73 (2018).Article 

    Google Scholar 
    Vamosi, J. C. & Vamosi, S. M. Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98, 460–471 (2011).PubMed 
    Article 

    Google Scholar 
    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Karunarathne, P. et al. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakov, T., Beaulieu, J. & Alverson, A. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytol. 219, 462–473 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripp, E. A. Is asexual reproduction an evolutionary dead end in lichens?. Lichenologist 48, 559–580 (2016).Article 

    Google Scholar 
    Tripp, E. A. & Lendemer, J. C. Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia 70, 1–14 (2018).Article 

    Google Scholar 
    Bowler, P. A. & Rundell, P. W. Reproductive strategies in lichens. Bot. J. Linn. Soc. 70, 325–340 (1975).Article 

    Google Scholar 
    Honegger, R. Developmental biology of lichens. New Phytol. 125, 659–677 (1993).PubMed 
    Article 

    Google Scholar 
    Buschbom, J. & Mueller, G. M. Testing “Species Pair” hypotheses: Evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol. Biol. Evol. 23, 574–586. https://doi.org/10.1093/molbev/msj063 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, Thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).PubMed 
    Article 

    Google Scholar 
    Poelt, J. Flechtenflora und eiszeit in Europa. Phyton (Horn) 10, 206–214 (1963).
    Google Scholar 
    Stofer, S. et al. Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38, 331–353 (2006).Article 

    Google Scholar 
    Ludwig, L. R., Summerfield, T. C., Lord, J. M. & Singh, G. Characterization of the mating-type locus (MAT) reveals a heterothallic mating system in Knightiella splachnirima. Lichenologist 49, 373–385 (2017).Article 

    Google Scholar 
    Czarnota, P. The lichen genus Micarea (Lecanorales, Ascomycota) in Poland. Pol. Bot. Stud. 23, 1–190 (2007).
    Google Scholar 
    Czarnota, P. & Guzow-Krzemińska, B. A phylogenetic study of the Micarea prasina group shows that Micarea micrococca includes three distinct lineages. Lichenologist 42, 7–21 (2010).Article 

    Google Scholar 
    Sérusiaux, E., Brand, A. M., Motiejūnaitè, J., Orange, A. & Coppins, B. J. Lecidea doliiformis belongs to Micarea, Catillaria alba to Biatora and Biatora lignimollis occurs in Western Europe. Bryologist 113, 333–344 (2010).Article 

    Google Scholar 
    van den Boom, P., Brand, A., Coppins, B. & Sérusiaux, E. Two new species in the Micarea prasina group from Western Europe. Lichenologist 49, 13–25 (2017).Article 

    Google Scholar 
    Guzow-Krzemińska, B., Czarnota, P., Łubek, A. & Kukwa, M. Micarea soralifera sp. nov., a new sorediate species in the M. prasina group. Lichenologist 48, 161–169 (2016).Article 

    Google Scholar 
    Guzow-Krzemińska, B. et al. Understanding the evolution of phenotypical characters in the Micarea prasina group (Pilocarpaceae) and descriptions of six new species within the group. MycoKeys 57, 1–30 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kantvilas, G. & Coppins, B. J. Studies on Micarea in Australasia II. A synopsis of the genus in Tasmania, with the description of ten new species. Lichenologist 51, 431–481 (2019).Article 

    Google Scholar 
    Launis, A. & Myllys, L. Micarea fennica, a new lignicolous lichen species from Finland. Phytotaxa 409, 179–188 (2019).Article 

    Google Scholar 
    Launis, A., Pykälä, J., van den Boom, P., Sérusiaux, E. & Myllys, L. Four new epiphytic species in the Micarea prasina group from Europe. Lichenologist 51, 7–25 (2019).Article 

    Google Scholar 
    Launis, A. et al. Sharpening species boundaries in the Micarea prasina group, with a new circumscription of the type species M. prasina. Mycologia 111, 574–592 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    van den Boom, P., Guzow-Krzemińska, B. & Kukwa, M. Two new Micarea species (Pilocarpaceae) from Western Europe. Plant Fungal Syst. 65, 189–199. https://doi.org/10.35535/pfsyst-2020-0014 (2020).Article 

    Google Scholar 
    Kantelinen, A., Hyvärinen, M., Kirika, P. & Myllys, L. Four new Micarea species from the montane cloud forests of Taita Hills, Kenya. Lichenologist 53, 81–94. https://doi.org/10.1017/S0024282920000511 (2021).Article 

    Google Scholar 
    Coppins, B. J. A taxonomic study of the lichen genus Micarea in Europe. Bull. Br. Mus. (Nat. Hist.) Bot. 11, 17–214 (1983).
    Google Scholar 
    Launis, A. & Myllys, L. Micarea byssacea new to North America and Micarea hedlundii new to Maine, Michigan and Quebec. Opusc. Philolichenum 13, 84–90 (2014).
    Google Scholar 
    Myllys, L. & Launis, A. Additions to the diversity of lichens and lichenicolous fungi living on decaying wood in Finland. Graphis Scr. 30, 78–87 (2018).
    Google Scholar 
    Yahr, R., Florence, A., Škaloud, P. & Voytsekhovich, A. Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota). Lichenologist 47, 403–414 (2015).Article 

    Google Scholar 
    Spribille, T., Thor, G., Bunnell, F. L., Goward, T. & Björk, C. R. Lichens on dead wood: Species-substrate relationships in the epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography 31, 741–750 (2008).Article 

    Google Scholar 
    Resl, P., Fernańdez-Mendoza, F., Mayrhofer, H. & Spribille, T. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc. R. Soc. B 285, 20180640. https://doi.org/10.1098/rspb.2018.0640 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood 412 (Cambridge University Press, Cambridge, 2012).Book 

    Google Scholar 
    Russell, M. B., Woodall, C. W., Fraver, S. & D’Amato, A. W. Estimates of downed woody debris decay class transitions for forests across the eastern United States. Ecol. Model. 251, 22–31 (2013).Article 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US Forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Zoller, S., Lutzoni, F. & Scheidegger, C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol. Ecol. 8, 2049–2059 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. Mating systems in the genus Xanthoria (lichen forming Ascomycetes). Mycol. Res. 108, 480–488 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Honegger, R. & Zippler, U. Mating systems in representatives of the Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol. Res. 11, 424–432 (2007).Article 
    CAS 

    Google Scholar 
    Ament-Velásquez, S. L. et al. The plot thickens: Haploid and triploid-like thalli, hybridization, and biased mating Type Ratios in Letharia. Front. Fungal Biol. 2, 656386. https://doi.org/10.3389/ffunb.2021.656386 (2021).Article 

    Google Scholar 
    van den Boom, P. & Coppins, B. J. Micarea viridileprosa sp. nov., an overlooked lichen species from Western Europe. Lichenologist 33, 87–91 (2001).Article 

    Google Scholar 
    Simon, J.-C., Rispe, C. & Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39 (2002).Article 

    Google Scholar 
    Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).Article 

    Google Scholar 
    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700. https://doi.org/10.1111/J.1558-5646.2012.01715.X (2012).Article 
    PubMed 

    Google Scholar 
    Dańko, A., Schaible, R. & Dańko, M. J. Salinity effects on survival and reproduction of hydrozoan Eleutheria dichotoma. Estuaries Coasts 43, 360–374. https://doi.org/10.1007/s12237-019-00675-2 (2020).CAS 
    Article 

    Google Scholar 
    Coppins, B. J. & Tønsberg, T. A new xanthone-containing Micarea from Northwest Europe and the Pacific Northwest of North America. Lichenologist 33, 93–96 (2001).Article 

    Google Scholar 
    Konoreva, L., Chesnokov, S., Kuznetsova, E. & Stepanchikova, I. Remarkable records of Micarea from the Russian Far East and significant extension of Micarea laeta and M. microareolata range. Botanica 25, 186–201 (2019).Article 

    Google Scholar 
    Weber, L., Printzen, C., Bässler, C. & Kantelinen, A. Seven Micarea (Pilocarpaceae) species new to Germany and notes on deficiently known species in the Bavarian forest. Herzogia 34, 5–17 (2021).Article 

    Google Scholar 
    van den Boom, P. Some interesting records of lichens and lichenicolous fungi from The Netherlands VI. Osten. Z. Pilzk. 12 (2003).Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens 101 (British Lichen Society, London, 2010).
    Google Scholar 
    Meyer, B. & Printzen, C. Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32, 571–583 (2000).Article 

    Google Scholar 
    Culberson, C. F. & Kristinsson, H. D. A standardized method for the identification of lichen products. J. Chromatocraphy A 46, 85–93 (1970).CAS 
    Article 

    Google Scholar 
    Myllys, L. et al. Phylogeny of the genus Bryoria. Lichenologist 43, 617–638 (2011).Article 

    Google Scholar 
    Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. Sequence insertion and ITS data provide congruent information in Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol. Phylogenetics Evol. 12, 295–309 (1999).CAS 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to the Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 
    Zoller, S., Scheidegger, C. & Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516 (1999).Article 

    Google Scholar 
    Leavitt, S. D., Johnson, L. A., Goward, T. & Clair, L. L. S. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol. Phylogenetics Evol. 60(3), 317–332 (2011).Article 

    Google Scholar 
    Schmitt, I. et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23, 35–40 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kauff, F. & Lutzoni, F. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): Among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol. Phylogenet. Evol. 25, 138–156 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Mol. Biol. Evol. 21, 1123–1133. https://doi.org/10.1093/molbev/msh123 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maddison, D. R. & Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Version 3.40 http://mesquiteproject.org (2018).Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B. 255, 37–45 (1994).ADS 
    Article 

    Google Scholar  More

  • in

    Genetic diversity of Prosopis juliflora in the state of Qatar and its valuable use against postharvest pathogen of mango fruits

    Prosopis juliflora leaves collection and processing for RibotypingProsopis juliflora species of the genus Prosopis, family of Fabaceae had its genetic variation in Doha evaluated. Seven samples of P. juliflora leaves were collected from six different locations in Doha, Qatar, during five field trips. Plant leaves were collected after proper permissions and all methods were carried out in accordance with relevant guidelines and regulations. Trees in all locations were naturally growing around urbanization areas in their normal arid habitat without artificial irrigation, samples were collected from fully mature trees. Table 1 shows the samples details. Figure 1 shows the location sites of where the samples were collected on the map of Qatar, Doha. Leaf samples were kept in sterile labeled bags until having reached the laboratory where few leaflets were washed with sterile distilled water and sterilized using 70% ethanol to be used for DNA extraction.Table 1 Location details of the collection sites of P. juliflora leaves.Full size tableFigure 1Location map of collection sites of P. juliflora leaf samples (ArcGIS software).Full size imageRibotyping analysisThe leaflets of each sample were transferred into a sterile mortar previously cooled at -20 ˚C and used for DNA extraction following the kit manufacturer instructions (DNeasy Plant Mini Kit-QIAGEN-USA).Extracted DNA of each sample were subject to PCR using ITS1 and ITS4 primers. PCR products obtained were purified using the Invitrogen Quick PCR Purification Kit (QIAGEN, Germany) as indicated by the manufacturer and sequenced using Sanger sequencer (3130/3130xl DNA Analyzers, Thermofisher Scientific, USA) as previously described22.Sanger sequencer raw data was read using BioEdit software. Basic Local Alignment Search Tool (BLAST) network services of the National Centre for Biotechnology Information (NCBI) database were used to compare the obtained sequences to the existing sequences. Sequences were submitted to NCBI for accession numbers. The various P. juliflora ribosomal sequences obtained were also uploaded on MEGA-X software and the phylogeny tree was generated using the neighbor-joining algorithm26.Minimum inhibitory concentrations of PJ-WS-LE extracts prepared using leaf samples collected from various locations against A. alternata and C. gloeosporioides
    Preparation of PJ-WS-LE extractFresh, young full leaves of P. juliflora were collected from various locations as indicated in Fig. 1. Samples were washed, dried and ground into powder to be used in the preparation of PJ-WS-LE extract as previously described22. Briefly, every 20 g of the leaf powder were incubated in 200 mL of 70% ethanol for 48 h. The supernatant has its solvent evaporated, the extract was then re-dissolved in sterile distilled water. Only water-soluble phytochemicals were tested by centrifuging the final preparation tubes and excluding the pellet. Stock solution of 100 g L−1 was stored at 4 °C to be used for later experiments. PJ-WS-LE extract concentration used in treatments was 8 g L−1 which is double the highest minimum inhibitory concentration of the extract against spoiling microorganisms as previously determined22.Determination of minimum inhibitory concentrationThe MIC test was conducted in a sterile 96-well plate, with each well containing 100 μl of potato dextrose broth (PDB) (HIMEDIA-India). Every four wells made one replication, nine different concentrations of the crude extracts were tested (1:1 dilutions) ranging from 42 to 0.16 g L−1. Wells were then inoculated with one of the two tested microorganisms’ spore suspensions (A. alternata and C. gloeosporioides). The last three rows are control rows: no spores and no extract control wells, negative control with spores but no extract wells, and positive control with spores and 10 µl of the fungicidal Clatrimazole (1%) wells.Fungal spore suspensions were adjusted to the range of 104 spores L−1 using a 10 day old fungal plate and sterile distilled water, the spore concentration was calculated using a heamatocytometer.Fungal growth in each well was monitored using Resazurin (HIMEDIA-India) dye. Upon cells division, Resazurin changes its color from blue to pink and fluorescent27. Results were taken within 48 h of incubation at 25 °C. MIC was recorded as the last extract concentration that shows no change in the color of Resazurin within the incubation period.Curative and preventive effects of PJ-WS-LE extract against A. alternata and C. gloeosporioides induced infection in mangoesPathogensThe two fungal strains used C. gloeosporioides and A. alternata were obtained from our laboratory collection, Department of Biological and Environmental Sciences, Qatar University, Qatar. Both fungal isolates were previously isolated from locally collected fruit samples. Isolates were molecularly identified by sequencing the Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) that was amplified by PCR. Identified fungal isolates were given the strains code of AaltQU17 for A. alternata and CgloQU17 for C. gloeosporioides22. Preserved cultures were sub-cultured on potato dextrose agar (PDA) plates and incubated at 25 °C for 10 days. Plates were then flooded with 10 mL of sterile distilled water each, to prepare the needed spores suspension solutions. The concentrations of spores suspensions were adjusted to 106 spores L−1 using a heamatocytometer18.FruitThe mango (Mangifera indica) type known as Neelam imported from India was used in the experiments. Fruit were bought from the whole sale market upon their arrival to the country. Only undamaged mature fruit were used in the experiment. Fruits chosen were ripen but not yet soft with firmness average of 20 ± 5.1 N, weight average of 177.61 ± 0.2 g and TSS average of 70 ± 5.3%. Fruit were first washed with sink water and sterilized twice with 70% ethanol to be then washed with sterile distilled water and left to air dry.Preventive and curative effects of PJ-WS-LE extractWounded mango fruit were used during the experiment, the wounds were made through three needle pricks (2 mm deep) in three different places for each plant using a sterile syringe. A completely randomized design was used and each treatment was made of a triplicate of 10 fruit each. The experiment was repeated twice.PJ-WS-LE extract of leaves collected from Qatar university field was first tested for its efficacy in preventing fungal contamination in wounded mango fruit (preventive effect). Therefore, the wounded zone of each fruit was sprayed with 8 g L−1 PJ-WS-LE extract and then left to air-dry. Once dry the fruit were sprayed again with the extract at the same concentration and left to dry. Control fruit were only treated with sterile distilled water without the plants extract. After two hours all wounds were inoculated with 20 μL of conidia aqueous solution (106 spores mL−1) of one of the tested fungi. The extract was then tested for its ability to cure fungal contamination in wounded fruit. Therefore, wounds were inoculated first with 20 μL of conidia aqueous solution (106 spores mL−1) and left to dry. Wounds were then sprayed twice with 8 g L−1 PJ-WS-LE extract.All mangoes were stored in sterilized plastic trays inside an incubator at 25 °C and 75% humidity. Fruit were observed every 24 h for 5 days for C. gloeosporioides inoculated fruit and for 10 days for A. alternata inoculated fruit. Three parameters were recorded at the end of the experiment: disease incidence (DI), disease severity (DS), and percent plant extract efficacy (%EE). To calculate disease severity, the diameter of the infected area of each fruit was measured in two perpendicular directions and mean diameter mycelial growth was calculated28,29.$$mathrm{DI}=frac{(mathrm{Number, of, rotten, fruit})times 100}{mathrm{Total, number, of, fruit}}$$$$mathrm{DS }=frac{(mathrm{Average, lesion, diameter, of, treated, plants})times 100}{mathrm{Average, Lesion, diameter, of, control, plants})}$$$$mathrm{%EE}=frac{(mathrm{Disease, incidence, in, Control, batch}-mathrm{Disease, incidence, in, treated, batch})times 100}{mathrm{Disease, incidence, in, Control, batch}}$$End of the trial samples firmnessAt the end of the trial, remaining mango fruit were tested for their flesh quality using a penetrometer (Agriculture Solutions, USA) to test the flesh firmness. Fruit were peeled, then the stainless steel probe of the instrument was inserted in three different points towards the equator of the fruit. Firmness in Newton was recorded and compared with standard fruit firmness to judge fruit quality18.Effectiveness of PJ-WS-LE extract as long-term coating material and the preservative value of its chitosan-embedded formCoating solutions preparationChitosan solution of 1% concentration was prepared by stirring chitosan powder (CAS 9012-76-4, Himedia, India) in 1% glacial acetic acid (IsoLab, Germany) overnight. The final chitosan solution pH was adjusted to 5.6 using 0.1 M NAOH (Sigma-Aldrich, Germany). To prepare PJ-WS-LE extract chitosan-embedded coating material, filter-sterilized PJ-WS-LE extract stock solution was added to 1% chitosan to achieve a final concentration of 8 g L−130.Samples preparationEighty-four mango samples chosen as described above, were divided into four groups of 18 samples each. Samples were divided into four treatment batches and treated as following:

    Batch A: non-treated fruit.

    Batch B: PJ-WS-LE extract at 8 g L–1 was used to spray the fruit.

    Batch C: 1% chitosan was used to spray the fruit.

    Batch D: 8 g L−1 PJ-WS-LE extract embedded in 1% chitosan was used to spray the fruit.

    Every experimental replicate was made up of three mango samples that were stored together in one sterile bag at 4 °C. The number of replications per treatment was six. The experiment was repeated twice31.Evaluation of sensory qualityA five-points scale was used for the evaluation of the sensory quality of the samples for overall quality, smell, and color change. The attributes were evaluated weekly using the fruit of one experimental replicate. Scores were given using the following scale: 5 points indicate “extremely liked”, 4 points indicate “liked”, 3 points indicate “acceptable” 2 points indicate “disliked” and 1 point indicates “extremely disliked”. The weekly average score per batch was also calculated32.Estimation of weight lossUpon treatment at day zero, all mango samples were weighed and their weights were recorded as initial weights. Weights of all remaining samples were measured at the end of every week. The variation between the start weight and weekly weights is calculated as weekly weight loss. The average percent of weekly weight loss of each batch was calculated32.Determination of samples firmnessThe samples of each experimental replicate evaluated on a weekly basis had their firmness measured as previously described. The weekly average samples firmness (N) of every treatment batch was also calculated33.pH measurementMango fruit of each experimental replicate were blended weekly into juice, after filtration, a digital pH meter (Jenway, UK) was used to measure pH. The weekly average fruit pH of every treatment batch was also calculated. The pH meter was calibrated using a buffer solution of pH 734.Total soluble solids (TSS) measurementTotal soluble solids of the prepared mango juice samples were measured in percent brix using a refractometer (ANTAHI, New Zealand). The weekly average fruit TSS (%) for each treatment batch was also calculated. The refractometers was calibrated using distilled water35.DPPH radical scavenging assayA 1/10 mango juice dilution was prepared using sterile distilled water. 100 μL of each dilution was mixed with 1 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (100 mg L−1) to be incubated in the dark at 37 °C for 45 min. After incubation, samples were centrifuged and the pellet was discarded. The intensity of the change in color of the supernatant was measured by spectrophotometry at 517 nm using methanol as a blank. 100 μL of methanol in 1 mL DPPH was used as the control for the experiment. Percent radical scavenging activity was calculated as per the below formula:$$ % {text{ radical scavenging activity}}, = ,left( {{text{absorbance of the control solution}} – {text{ absorbance of the juice sample}}} right)*{1}00/{text{absorbance of the control solution}}. $$The weekly average % radical scavenging activity for each treatment batch was finally calculated31.Statistical analysisThe experimental design used was Completely Randomized Design (CRD). One-way ANOVA followed by Tukey Post-Hoc test was used to evaluate the significance of the weekly percent change in weight among treatment batches at P ≤ 0.05. The significances of pH and TSS variation within different treatment batches were evaluated using One-way ANOVA test at P ≤ 0.05. Data was presented as average ± standard error of the Means (SEM). SPSS (Ver. 27, SPSS Inc. Chicago, USA) was used to perform the statistical analysis tests. More

  • in

    Vision and vocal communication guide three-dimensional spatial coordination of zebra finches during wind-tunnel flights

    Dynamic in-flight flock organizationIt is commonly assumed that during flocking, flock members follow three basic interaction rules: Attraction, Repulsion and Alignment, to coordinate spatial positions between each other18. To study the spatial organization of our zebra finch flock during flight, the spatial positions of all birds in the flight section were tracked in every fifth frame (sample rate: 24 Hz (that is, frames per second)) of the synchronized footage recorded by two high-speed digital video cameras (Camera 1: centred upwind view, Fig. 1a,b; Camera 2: upturned vertical view, Fig. 1a,c) for the entire duration (51.7, 58.3, 69.2 and 127 s) of four (session 2, 5, 8 and 13) out of 13 flight sessions. Flight paths were reconstructed from the tracking data for each bird in the flock, with horizontal and vertical coordinates delivered by Camera 1 and coordinates in wind direction delivered by Camera 2. The data show that each bird mainly occupied a particular area in the flight section, and that this spatial preference was stable over different flight sessions. Bird Green, for example, was preferentially flying very low above the flight section’s floor, and bird Lilac preferred to fly at upwind positions in front of the flock (Fig. 1d, Extended Data Figs. 1 and 3 and Supplementary Information).Despite their preference in flight area, all birds constantly changed their spatial positions fast and rhythmically along the horizontal dimension of the flight section (Fig. 1e–g, Extended Data Figs. 2 and 4, Supplementary Video 1 and Supplementary Information). This behaviour is reminiscent of the flight behaviour of wild zebra finches: when being surprised in flight by a predator, zebra finches fly in a rapid zig-zag course low above the ground, heading for nearby vegetation16. Whether the sideways oscillating flight manoeuvres, which are performed by both wild birds in open space and domesticated birds in the wind tunnel’s flight section, are caused by the close proximity to the ground or are part of an escape reaction is yet unknown.From the tracking data, we further calculated the spatial distances in all three dimensions between all pairwise combinations of birds throughout the four flight sessions (sample rate: 24 Hz). When normalized to the maximum distance detected for each bird pairing, each dimension and each flight session, mean distances of bird pairings in all dimensions were narrowly distributed within a range of 27.7–38.0% of maximum distance (Fig. 1h and Supplementary Table 1). This may indicate that during flocking flight, zebra finches actively balance Attraction and Repulsion to maintain a stable 3D distance towards all other members of the flock. Owing to the spatial limitations in the wind tunnel’s flight section, we did not expect the zebra finches to perform large-scale flight manoeuvres with movements aligned between all flock members (Extended Data Fig. 5 and Supplementary Information), as can be observed, for example, in freely flying flocks of homing pigeons (Columba livia domestica)19 and white storks (Ciconia Ciconia)20.Visually guided horizontal repositioningWhen observing the dynamic spatial organization of our zebra finch flock, a question immediately arises: how do the birds prevent collisions during their frequent horizontal position changes? When considering the spatial limitation experienced by the flock of six birds during flight in the flight section and their highly dynamic flight style, collision rates seemed to be astonishingly low (median: 0.02 Hz; interquartile range (IQR): 0–0.03 Hz; n = 13 sessions) during flocking flight (in total 16 collisions in 13 min of analysed flight time). In birds, the visual system represents the main input channel for environmental information. To tackle the above question, we therefore first investigated the role of vision during flocking flight, and tested whether a bird’s viewing direction was correlated with the direction of horizontal position change. As gaze changes are governed by head movements in birds21, we used a bird’s head direction as an indicator for the orientation of its visual axis. We tracked (sample rate: 120 Hz) the position of a bird’s beak tip and neck in each frame of the footage during ten horizontal position changes (Fig. 2a and Supplementary Video 2) per bird, and found a strong interaction between a bird’s head angle relative to the wind direction and its direction of horizontal position change. During horizontal position changes, the birds always turned their heads in the direction of the position change (Fig. 2b). While the population’s median absolute angle of position change was 84.0° (IQR: 78.6–87.2°; n = 60) relative to 0° in wind direction, the population’s median absolute head turning angle was 36.0° (IQR: 26.4–42.5°; n = 60; see Supplementary Information for results on head movements during solo flight). The eyes of zebra finches are positioned laterally on their heads22 and each retina features a small region of highest ganglion cell density (fovea, that is, region of highest visual spatial resolution) at an area that receives visual input from horizontal positions at 60° relative to the midsagittal plane23. By turning their heads by about 36° during horizontal position changes, the zebra finches roughly align the foveal area in the retina of one eye with their direction of position change, and in the retina of the other eye with the wind direction (Fig. 2c,d). Thus, head turns in the direction of position change may indicate that the birds use visual cues while repositioning themselves within the flock. This hypothesis is supported by a study on zebra finch head movements performed during an obstacle avoidance task. In this study, instead of fixating on the obstacle, zebra finches turned their head in the direction of movement while navigating around the obstacle24.Fig. 2: Horizontal position changes are accompanied by head turns.a, Head and body orientation of bird Orange (ventral view) during one example of position changes to the right, tracked (sample rate: 120 Hz) in the footage of Camera 2. Circles: beak tip positions; plus signs: neck positions; upward pointing triangles: tail base positions. Cutouts of freeze frames of the footage taken with Camera 2 show the bird’s head and body posture for 11 time points during the position change. b, In all birds, the median angle of head turn during horizontal position change in flocking flight is positively correlated (linear mixed effects model (LMM), estimates ± s.e.m.: 2.05 ± 0.1, P  More