More stories

  • in

    3D model of the geometric nest structure, the “mystery circle,” constructed by pufferfish

    Wild animals construct various types of structures that are adaptive to their life and reproduction. For example, termites that inhabit the African savanna use soil to construct a huge mound that reaches 10 m in height; they produce hollows and holes in these mounds to allow air ventilation, thereby keeping the internal temperature constant1. In addition, prairie dogs inhabiting the North American prairie dig vertically and horizontally extending burrows in the ground that they use for shelter and rearing offspring; these burrows have multiple entrances, some of which are chimney-shaped to improve ventilation efficiency2. In the field of biomimetics, researchers apply the principles of animal-created structures in applications useful to humans3.The white-spotted pufferfish Torquigener albomaculosus (Pisces: Tetraodontidae) is a relatively small species that grows to ~10 cm in total total length (Fig. 1). Male T. albomaculosus individuals construct an intricate geometric circular structure, known as the “mystery circle,” with a diameter of 2 m in the sand of the seabed;4 the discovery of these structures has fascinated researchers and the general public worldwide. The male pufferfish digs the sand on the seabed with its fins and body while swimming straight ahead toward the centre from different directions, and a circular structure composed of radially aligned peaks and valleys was constructed. Finally, the male creates a maze-like pattern by flapping its anal fin on the bottom of the central zone4. Thus, the male completes the circular structure by himself. Furthermore, we discovered that the earliest stage of the mystery circle is composed of dozens of irregular depressions, which might function as landmarks for the formation of the radial patterns5. By accumulating observations of pufferfish behaviour, we were able to conduct a computer simulation including the swimming trajectory of the pufferfish extracted from video images wherein they constructed the circular structure. This simulation revealed that an elaborate circular geometric pattern is inevitably formed if the pufferfish repeats the digging behavior on the seabed using simple rules6. We also observed the reproductive behaviour of the pufferfish and found that they consistently breed in a semilunar cycle from spring to summer. Each male constructs a mystery circle and spawns with multiple females on the nest, and the male cares for the eggs alone until they hatch. Some of the elements of the circular structure, i.e., its size, symmetry, ornaments, and maze-like pattern, might be important factors in terms of female mate choice4,7.Fig. 1The white-spotted pufferfish Torquigener albomaculosus. Lateral view of a male (a), and male digging behaviour on the seabed while rolling up fine sand particles (b).Full size imageAlthough data on the reproductive ecology and circle-construction behaviour of these pufferfish have been collected, many questions remain. Our interdisciplinary research currently has two themes: (i) theoretical studies on the logic of 3D-structure formation of the circular structure and (ii) ethological studies on the relationship between female mate choice and the features of the structure. To advance these studies, it is essential to collect quantitative data on the circular structure. Thus, we reconstructed 3D models of six completed mystery circles using a “structure from motion” (SfM) algorithm (Fig. 2).Fig. 2“Mystery circle” constructed by a white-spotted pufferfish (Torquigener albomaculosus). 3D model displayed on a computer (a), one of the video frames used to reconstruct the 3D model (b), and a Styrofoam model output in full size created using a 3D printer and the 3D data (c) for a specific mystery circle 20160615_K13.Full size imageOn the other hand, the mystery circle constructed by the pufferfish may have potential applications in biomimetics similar to the structures constructed by termites and prairie dogs. To support the importance of its structural characteristics, it has been observed that the water passing through the valley upstream always gathers in the center of the structure, regardless of the direction of water flow4. Furthermore, particle size analysis of the sand forming the mystery circle has revealed that it has the function of extracting fine-grained sand particles from the valleys arranged radially to the outside and directing them to the center (Kawase, in prep.). The field of computational fluid dynamics, which makes full use of fluid dynamics technology, engineering knowledge, and computers, will logically clarify the characteristics of the 3D structure of the mystery circle we have reconstructed here. Shameem et al. reconstructed a 3D model of a mystery circle to explore the flow features with 2D computational fluid dynamic simulations8. Since our model has already been quantified as 3D data, computational fluid analysis can be immediately performed using this data, and the structural features of the mystery circle are expected to be applied in a wide range of fields, such as architecture and engineering, via biomimetics. More

  • in

    Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

    Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).Article 

    Google Scholar 
    Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).ADS 
    Article 

    Google Scholar 
    Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).
    Google Scholar 
    Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).CAS 

    Google Scholar 
    Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).Article 

    Google Scholar 
    Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).Article 
    CAS 

    Google Scholar 
    Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).
    Google Scholar 
    Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).Article 

    Google Scholar 
    Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).Article 

    Google Scholar 
    Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).CAS 
    PubMed 

    Google Scholar 
    Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).CAS 
    Article 

    Google Scholar 
    Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).Article 
    CAS 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).Article 

    Google Scholar 
    Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).
    Google Scholar 
    Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).
    Google Scholar 
    Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).
    Google Scholar 
    Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).
    Google Scholar 
    Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).
    Google Scholar 
    Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).CAS 
    Article 

    Google Scholar 
    Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).
    Google Scholar 
    Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).
    Google Scholar 
    Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).CAS 
    Article 

    Google Scholar 
    Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).CAS 
    Article 

    Google Scholar 
    Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).
    Google Scholar 
    Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).CAS 
    Article 

    Google Scholar 
    Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).ADS 
    Article 

    Google Scholar 
    Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).Chapter 

    Google Scholar 
    Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).CAS 
    Article 

    Google Scholar 
    Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).
    Google Scholar 
    Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).Book 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).Article 

    Google Scholar 
    Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).
    Google Scholar 
    Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).Article 
    CAS 

    Google Scholar 
    DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).CAS 
    Article 

    Google Scholar 
    Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).Article 

    Google Scholar 
    Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).Article 

    Google Scholar 
    Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).Article 
    CAS 

    Google Scholar 
    Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).PubMed 
    Article 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).
    Google Scholar 
    Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).
    Google Scholar 
    Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).
    Google Scholar 
    Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).CAS 
    Article 

    Google Scholar 
    Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).
    Google Scholar 
    Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).CAS 
    Article 

    Google Scholar 
    Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).
    Google Scholar 
    Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).
    Google Scholar 
    Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).Article 

    Google Scholar 
    Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).Article 
    CAS 

    Google Scholar 
    Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).CAS 

    Google Scholar 
    EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).
    Google Scholar  More

  • in

    Heterogeneous adaptive behavioral responses may increase epidemic burden

    Constant contacts modelWe assume the affected population is composed of two risk-groups, a fraction p of the population is composed of risk-takers (RT) and the remaining fraction (1-p) are risk-evaders (RE). We differentiate the RT and RE subpopulations by assuming the RE population face a reduced likelihood of infection due to adopting precautionary behaviors. On the other hand, we assume RT do not follow public health recommendations, thus facing a higher risk of infection, relative to the RE population. Political or ideological reasons, economic stress, the lack of reasonable alternatives, epidemic politicization or the lack of trust in public health authorities are some of the documented factors that potentially lead the population to risk the dangers of COVID-19 infection44, 45.Previous mathematical models consider complex within-host disease dynamics46 or the impact of exogenous factors on the COVID-19 transmission dynamics47. In this study, we focus on incorporating individual heterogeneous adaptive behavioral responses, based on group-specific infection risk perceptions. Our model of disease progression assumes that individuals in each behavioral group may show the following health status: Susceptible (S), infectious Exposed (E), Infectious symptomatic (I), infectious Asymptomatic (A), and Recovered (R). We consider a pre-symptomatic infectious health status (E), following evidence suggesting that exposed individuals exhibit a period of viral shedding38, 48,49,50,51. RT susceptible individuals ((S_1)) can get infected by making contacts with either: symptomatic ones (I) with a baseline per-contact likelihood of disease transmission (beta), exposed individuals ((E_1) and (E_2)) with reduced per-contact likelihood of infection (rho beta) , or asymptomatic individuals ((A_1) and (A_2)) with reduced per-contact likelihood of infection (alpha beta). Similarly RE susceptible individuals ((S_2)) may get infected by making contacts with symptomatic, exposed or asymptomatic individuals at respective likelihoods, (epsilon beta), (rho epsilon beta), and (alpha epsilon beta), where (0 More

  • in

    Permissive aggregative group formation favors coexistence between cooperators and defectors in yeast

    Szathmáry E. Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA. 2015;112:10104–11. https://doi.org/10.1073/pnas.1421398112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niklas KJ, Newman SA. The origins of multicellular organisms. Evol Dev. 2013;15:41–52. https://doi.org/10.1111/ede.12013Article 
    PubMed 

    Google Scholar 
    Pfeiffer T, Bonhoeffer S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA. 2003;100:1095–8. https://doi.org/10.1073/pnas.0335420100CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Regenberg B, Multicellular group formation in Saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1098Umen JG. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb Perspect Biol. 2014;6:a016170 https://doi.org/10.1101/cshperspect.a016170Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knoll AH. The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci. 2011;39:217–39. https://doi.org/10.1146/annurev.earth.031208.100209CAS 
    Article 

    Google Scholar 
    Bonner JT. The origins of multicellularity. Integr Biol Issues N. Rev. 1998;1:27–36.Article 

    Google Scholar 
    Tarnita CE, Taubes CH, Nowak MA. Evolutionary construction by staying together and coming together. J Theor Biol. 2013;320:10–22. https://doi.org/10.1016/j.jtbi.2012.11.022Article 
    PubMed 

    Google Scholar 
    Ratcliff WC, Denison RF, Borrello M, Travisano M. Experimental evolution of multicellularity. Proc Natl Acad Sci USA. 2012;109:1595–1600. https://doi.org/10.1073/pnas.1115323109Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koschwanez JH, Foster KR, Murray AW. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 2011;9:e1001122 https://doi.org/10.1371/journal.pbio.1001122CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuzdzal-Fick JJ, Chen L, Balázsi G. Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol Evol. 2019;9:8509–23. https://doi.org/10.1002/ece3.5322Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, et al. Kin discrimination in social yeast is mediated by cell surface receptors of the flo11 adhesin family. eLife 2020;9. https://doi.org/10.7554/eLife.55587Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 2008;135:726–37. https://doi.org/10.1016/j.cell.2008.09.037CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Driscoll WW, Travisano M, Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms15707Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, et al. Ecological advantages and evolutionary limitations of aggregative multicellular development. Curr Biol. 2020;30:4155–.e6. https://doi.org/10.1016/j.cub.2020.08.006.CAS 
    Article 
    PubMed 

    Google Scholar 
    Goossens K, Willaert R. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett. 2010;32:1571–85. https://doi.org/10.1007/s10529-010-0352-3CAS 
    Article 
    PubMed 

    Google Scholar 
    Di Gianvito P, Tesnière C, Suzzi G, Blondin B, Tofalo R. FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-09990-9CAS 
    Article 

    Google Scholar 
    Veelders M, Brückner S, Ott D, Unverzagt C, Mösch HU, Essen LO. Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA. 2010;107:22511–6. https://doi.org/10.1073/pnas.1013210108Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intragenic tandem repeats generate functional variability. Nat Genet. 2005;37:986–90. https://doi.org/10.1038/ng1618CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006;60:5–15. https://doi.org/10.1111/j.1365-2958.2006.05072.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2004;2:533–40. https://doi.org/10.1038/nrmicro927CAS 
    Article 
    PubMed 

    Google Scholar 
    Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, et al. Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands. Structure. 2015;23:1005–17. https://doi.org/10.1016/j.str.2015.03.021CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10. https://doi.org/10.1371/journal.pcbi.1003979Oppler ZJ, Parrish ME, Murphy HA, Variation at an adhesin locus suggests sociality in natural populations of the yeast saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1948Lo WS, Dranginis AM. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:161–71. https://doi.org/10.1091/mbc.9.1.161CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Kirat-Chatel S, Beaussart A, Vincent SP, Abellán Flos M, Hols P, Lipke PN, et al. Forces in yeast flocculation. Nanoscale. 2015;7:1760–7. https://doi.org/10.1039/c4nr06315eCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kobayashi O, Hayashi N, Kuroki R, Sone H. Region of Flo1 proteins responsible for sugar recognition. J Bacteriol. 1998;180:6503–10. https://doi.org/10.1128/jb.180.24.6503-6510.1998CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kapsetaki SE, West SA. The costs and benefits of multicellular group formation in algae. Evolution. 2019;73:1296–308. https://doi.org/10.1111/evo.13712Article 
    PubMed 

    Google Scholar 
    Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, et al. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol. 2018;8:4619–30. https://doi.org/10.1002/ece3.3979Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, et al. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio. 2015;6:1–16. https://doi.org/10.1128/mBio.00427-15CAS 
    Article 

    Google Scholar 
    Hamilton WD. The genetical evolution of social behaviour. I. J Theor Biol. 1964;7:1–16. https://doi.org/10.1016/0022-5193(64)90038-4CAS 
    Article 
    PubMed 

    Google Scholar 
    Queller DC, Ponte E, Bozzaro S, Strassmann JE. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science. 2003;299:105–6. https://doi.org/10.1126/science.1077742CAS 
    Article 
    PubMed 

    Google Scholar 
    Foty RA, Steinberg MS. The differential adhesion hypothesis: A direct evaluation. Dev Biol. 2005;278:255–63. https://doi.org/10.1016/j.ydbio.2004.11.012CAS 
    Article 
    PubMed 

    Google Scholar 
    Nowak MA. Five rules for the evolution of cooperation. Science. 2006;314:1560–3. https://doi.org/10.1126/science.1133755Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6:e1000716 https://doi.org/10.1371/journal.pcbi.1000716CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55. https://doi.org/10.1016/j.cub.2013.10.030CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu CG, Li ZY, Hao Y, Xia J, Bai FW, Mehmood MA, Computer simulation elucidates yeast flocculation and sedimentation for efficient industrial fermentation. Biotechnol J. 2018;13. https://doi.org/10.1002/biot.201700697Boraas ME, Seale DB, Boxhorn JE. Phagotrophy by flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol. 1998;12:153–64. https://doi.org/10.1023/A:1006527528063Article 

    Google Scholar 
    Staps M, van Gestel J, Tarnita CE. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat Ecol Evol. 2019;3:1197–205. https://doi.org/10.1038/s41559-019-0940-0Article 
    PubMed 

    Google Scholar 
    De Vargas Roditi L, Boyle KE, Xavier JB. Multilevel selection analysis of a microbial social trait. Mol Syst Biol. 2013;9:684 https://doi.org/10.1038/msb.2013.42Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damore JA, Gore J. Understanding microbial cooperation. J Theor Biol. 2012;299:31–41. https://doi.org/10.1016/j.jtbi.2011.03.008Article 
    PubMed 

    Google Scholar 
    Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev. 2014;38:300–25. https://doi.org/10.1111/1574-6976.12060CAS 
    Article 
    PubMed 

    Google Scholar 
    Janssens GE, Veenhoff LM. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLoS ONE. 2016;11:e0167394 https://doi.org/10.1371/journal.pone.0167394CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross-Gillespie A, Gardner A, West SA, Griffin AS. Frequency dependence and cooperation: Theory and a test with bacteria. Am Nat. 2007;170:331–42. https://doi.org/10.1086/519860Article 
    PubMed 

    Google Scholar 
    Healey D, Axelrod K, Gore J. Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Mol Syst Biol. 2016;12:877 https://doi.org/10.15252/msb.20167033CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, et al. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. ISME J. 2021;15:1523–38. https://doi.org/10.1038/s41396-020-00867-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avilés L. Solving the freeloaders paradox: Genetic associations and frequency-dependent selection in the evolution of cooperation among nonrelatives. Proc Natl Acad Sci USA. 2002;99:14268–73. https://doi.org/10.1073/pnas.212408299CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Cornwallis CK, West SA. Group formation, relatedness, and the evolution of multicellularity. Curr Biol. 2013;23:1120–5. https://doi.org/10.1016/j.cub.2013.05.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Pentz JT, Travisano M, Ratcliff WC, Clonal development is evolutionarily superior to aggregation in wild-collected Saccharomyces cerevisiae. In Artificial Life 14 – Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2014, 2014;550–4. 10.7551/978-0-262-32621-6-ch088.Melbinger A, Cremer J, Frey E, The emergence of cooperation from a single mutant during microbial life cycles. J Royal Soc Interface. 2015;12. https://doi.org/10.1098/rsif.2015.0171 More

  • in

    Individual variability in foraging success of a marine predator informs predator management

    Krause, M. & Robins, K. Charismatic species and beyond: How cultural schemas and organisational routines shape conservation. Conserv. Soc. 15, 313–321 (2017).
    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).
    Google Scholar 
    Bearzi, G., Holcer, D. & Di Sciara, G. N. The role of historical dolphin takes and habitat degradation in shaping the present status of northern Adriatic cetaceans. Aquat. Conserv. Mar. Freshw. Ecosyst. 14, 363–379 (2004).
    Google Scholar 
    Lavigne, D. M. Marine mammals and fisheries: The role of science in the culling debate. In Marine Mammals: Fisheries Tourism and Management Issues (eds Gales, N. et al.) 31–47 (CSIRO Publishing, 2003).
    Google Scholar 
    Bowen, W. D. & Lidgard, D. Marine mammal culling programs: Review of effects on predator and prey populations. Mamm. Rev. 43, 207–220 (2013).
    Google Scholar 
    Svanbäck, R. & Persson, L. Individual diet specialization, niche width and population dynamics: Implications for trophic polymorphisms. J. Anim. Ecol. 73, 973–982 (2004).
    Google Scholar 
    Butler, J. R. A. et al. The Moray Firth Seal Management Plan: An adaptive framework for balancing the conservation of seals, salmon, fisheries and wildlife tourism in the UK. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1025–1038 (2008).
    Google Scholar 
    Graham, I. M., Harris, R. N., Matejusová, I. & Middlemas, S. J. Do ‘rogue’ seals exist? Implications for seal conservation in the UK. Anim. Conserv. 14, 587–598 (2011).
    Google Scholar 
    Linnell, J. D. C., Aanes, R., Swenson, J. E., Odden, J. & Smith, M. E. Large carnivores that kill livestock: Do ‘problem individuals’ really exist?. Wildl. Soc. Bull. 27, 698–705 (1999).
    Google Scholar 
    Tidwell, K. S., van der Leeuw, B. K., Magill, L. N., Carrothers, B. A. & Wertheimer, R. H. Evaluation of pinniped predation on adult salmonids and other fish in the Bonneville Dam tailrace (2017).Guillemette, M. & Brousseau, P. Does culling predatory gulls enhance the productivity of breeding common terns?. J. Appl. Ecol. 38, 1–8 (2001).
    Google Scholar 
    Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional differences among species and ecosystem processes. Nat. Commun. 4, 2318 (2013).ADS 
    PubMed 

    Google Scholar 
    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Adams, J. et al. A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific Ocean. Ecol. Inform. 34, 44–51 (2016).
    Google Scholar 
    Chasco, B. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 1–14 (2017).CAS 

    Google Scholar 
    Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).ADS 

    Google Scholar 
    Thiemann, G. W., Iverson, S. J., Stirling, I. & Obbard, M. E. Individual patterns of prey selection and dietary specialization in an Arctic marine carnivore. Oikos 120, 1469–1478 (2011).
    Google Scholar 
    Königson, S., Fjälling, A., Berglind, M. & Lunneryd, S. G. Male gray seals specialize in raiding salmon traps. Fish. Res. 148, 117–123 (2013).
    Google Scholar 
    Sih, A., Sinn, D. L. & Patricelli, G. L. On the importance of individual differences in behavioural skill. Anim. Behav. 155, 307–317 (2019).
    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T., Costa, D. P., Estes, J. A. & Wieringa, N. Individual dietary specialization and dive behaviour in the California sea otter: Using archival time-depth data to detect alternative foraging strategies. Deep. Res. Part II Top. Stud. Oceanogr. 54, 330–342 (2007).ADS 

    Google Scholar 
    Voelker, M. R., Schwarz, D., Thomas, A., Nelson, B. W. & Acevedo-Gutiérrez, A. Large-scale molecular barcoding of prey DNA reveals predictors of intrapopulation feeding diversity in a marine predator. Ecol. Evol. 10, 9867–9885 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 

    Google Scholar 
    Harcourt, R. Individual variation in predation on fur seals by southern sea lions (Otaria byronia) in Peru. Can. J. Zool. 71, 1908–1911 (1993).
    Google Scholar 
    Marine Mammal Commission. Marine Mammal Protection Act. Marine Mammal Protection Act Amendment 1–56 (U.S. Fish and Wildlife Service, 2004). https://doi.org/10.1002/tcr.201190008.Book 

    Google Scholar 
    National Marine Fisheries Service. Willamette Falls Pinniped-Fishery Interaction Task Force Marine Mammal Protection Act, Section 120 (National Marine Fisheries Service, 2018).
    Google Scholar 
    Jefferson, T. A., Smultea, M. A., Ward, E. J. & Berejikian, B. Estimating the stock size of harbor seals (Phoca vitulina richardii) in the inland waters of Washington State using line-transect methods. PLoS ONE 16, e0241254 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jeffries, S., Huber, H., Calambokidis, J. & Laake, J. Trends and status of harbor seals in Washington State: 1978–1999. J. Wildl. Manag. 67, 208–219 (2003).
    Google Scholar 
    Thomas, A. C., Lance, M. M., Jeffries, S. J., Miner, B. G. & Acevedo-Gutiérrez, A. Harbor seal foraging response to a seasonal resource pulse, spawning Pacific herring. Mar. Ecol. Prog. Ser. 441, 225–239 (2011).ADS 

    Google Scholar 
    Chasco, B. et al. Estimates of chinook salmon consumption in Washington State inland waters by four marine mammal predators from 1970 to 2015. Can. J. Fish. Aquat. Sci. 74, 1173–1194 (2017).
    Google Scholar 
    Farrer, J. & Acevedo-Gutiérrez, A. Use of haul-out sites by harbor seals (Phoca vitulina) in Bellingham: Implications for future development. Northwest. Nat. 91, 74–79 (2010).
    Google Scholar 
    Steingass, S., Jeffries, S., Hatch, D. & Dupont, J. Field report: 2020 pinniped research and management activities at Bonneville Dam (2020).Tidwell, K. S., Carrothers, B. A., Blumstein, D. T. & Schakner, Z. A. Steller sea lion (Eumetopias jubatus) response to non-lethal hazing at Bonneville Dam. Front. Conserv. Sci. 2, 1–9 (2021).
    Google Scholar 
    Hiruki, L. M., Schwartz, M. K. & Boveng, P. L. Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. J. Zool. 249, 97–109 (1999).
    Google Scholar 
    Ainley, D. G., Ballard, G., Karl, B. J. & Dugger, K. M. Leopard seal predation rates at penguin colonies of different size. Antarct. Sci. 17, 335–340 (2005).ADS 

    Google Scholar 
    Páez-Rosas, D. et al. Hunting and cooperative foraging behavior of Galapagos sea lion: An attack to large pelagics. Mar. Mammal Sci. 36, 386–391 (2020).
    Google Scholar 
    Macneale, K. H., Kiffney, P. M. & Scholz, N. L. Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front. Ecol. Environ. 8, 475–482 (2010).
    Google Scholar 
    Roni, P., Anders, P. J., Beechie, T. J. & Kaplowe, D. J. Review of tools for identifying, planning, and implementing habitat restoration for Pacific salmon and steelhead. North Am. J. Fish. Manag. 38, 355–376 (2018).
    Google Scholar 
    Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: Would large scale culling benefit fisheries?. PLoS ONE 7, 1–18 (2012).
    Google Scholar 
    Thompson, D., Coram, A. J., Harris, R. N. & Sparling, C. E. Review of non-lethal seal control options to limit seal predation on salmonids in rivers and at finfish farms. Scott. Mar. Freshw. Sci. 12, 137 (2021).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Google Scholar 
    Fairbanks, C. & Penttila, D. Bellingham Bay Forage Fish Spawning Assessment (2016).Madsen, S. W. & Nightengale, T. Whatcom Creek Ten-Years After: Summary Report (Department of Public Works, 2009). https://doi.org/10.2307/j.ctt20krzd7.7.Book 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide (Cambridge University Press, 2007).
    Google Scholar 
    Bolger, D. T., Morrison, T. A., Vance, B., Lee, D. & Farid, H. A computer-assisted system for photographic mark-recapture analysis. Methods Ecol. Evol. 3, 813–822 (2012).
    Google Scholar 
    Harrison, P. J. et al. Incorporating movement into models of grey seal population dynamics. J. Anim. Ecol. 75, 634–645 (2006).PubMed 

    Google Scholar 
    Thompson, P. M. & Wheeler, H. Photo-ID-based estimates of reproductive patterns in female harbor seals. Mar. Mammal Sci. 24, 138–146 (2008).
    Google Scholar 
    Washington Department of Fish and Wildlife. Whatcom Creek Hatchery (WDFW, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Core Team, 2020).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Lloyd-Smith, J. O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2, 1–8 (2007).
    Google Scholar 
    Zhang, D. rsq: R-Squared and Related Measures. R package version 2.1 (2020).Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar  More

  • in

    Albedo changes caused by future urbanization contribute to global warming

    Land coverUrban landscapes are characterized by small clusters of patches, forming land mosaics that are distinct from natural landscapes. An accurate estimation of climate forcing requires a land cover dataset at high resolutions that does not omit small urban patches. In this study, the RF estimates are based on 500-m and 1-km land cover datasets. This fine resolution is necessary to preserve spatial details of small urban patches while avoiding the large underestimation of urban land areas at coarse resolution (e.g., ~19% underestimation at 10 km compared to that at 1 km)3. We used 500-m resolution MODIS Land Cover product (MCD12Q1v006) for historical land cover changes. For future urban land cover distributions, we used the global urban land expansion products simulated under the SSPs for 2030–2100 (i.e., Chen-2020)4. The simulation performance was tested using historical urban expansion from 2000 to 2015 based on Global Human Settlement Layer51, where the agreement between simulated and observed urban land was evaluated using the Figure of Merit (FoM) indicator52 that has showed similar or better values than those reported in other existing land simulation applications4. The high-resolution Chen-2020 also shows very high spatial consistency with the prominent coarse resolution global urban land projection LUH2 that is recommended in CMIP64. Considering different scenarios is also necessary to account for the uncertainties of future socioeconomic and environmental conditions, so we included simulated urban lands under three scenarios (Supplementary Table 1): Sustainability -SSP1, Middle of the Road – SSP2, and Fossil-fueled Development – SSP553. Within each SSP scenario, the product provides a likelihood map of each grid becoming urban, based on 100 urbanization simulations. We used the likelihood map to account for spatial uncertainties of urban expansion by deriving 90% confidence intervals of projected urban land demand within a SSP scenario. We used the MODIS IGBP Land Cover classes (Supplementary Table 2) and resampled the original 500-m resolution MODIS products in 2018 to 1-km resolution to match the future simulations when it was used as a baseline year. To isolate the independent effect of urbanization (vs other types of land uses) in future estimates, land covers that are not converted to urban are assumed to have the same cover types as in 2018 (i.e., the baseline year). Though there are other global land cover products for current periods, we choose the MODIS IGBP land cover products because the albedo look-up maps (LUMs) were based on IGBP land cover types (see Albedo Look-Up Maps).To further evaluate the uncertainties caused by different projections of future urbanization, we also included the other two SSPs from Chen-2020, and another two 1-km resolution urban land cover products projected for the future for the purpose of comparison. The other two products include four projections of SRES scenarios (i.e., A1, B1, A1B, and B2) (i.e., Li-2017 mentioned above)3 and one without scenario description but assumed historical development would continue (i.e., Zhou-2019 mentioned above)2. These projections of future urban land expansion were calibrated with different historical urban land products and can be regarded as independent.Albedo look-up maps (LUMs)Albedo Look-Up Maps (LUMs)31 were derived from the intersection of MODIS land cover54 and surface albedo55 products, which are used to determine the albedo values for each IGBP land cover type by month and by location. Monthly means of white-sky (i.e., diffuse surface illumination condition) and black sky (i.e., direct surface illumination condition) during 2001–2011 were processed for snow-free and snow-covered periods for each of the 17 IGBP land cover classes at spatial resolutions of 0.05°−1°31. The LUMs have been verified by comparing the reconstructed albedo using the LUMs with the original MODIS albedo, which shows very similar values31. We used the LUMs at a resolution of 1° due to the significantly fewer missing values, to assure the spatial continuity of albedo changes at a global scale while keeping the matches with the 1° resolution of radiation data and RF kernels. The underlying assumption is that albedo of the same land cover type varies insignificantly within a 1° grid.Snow and radiation productSnow cover can significantly change the albedo of land regardless of cover types (Supplementary Fig. 4). In this study, we tally monthly albedo using snow-free and snow-covered categories in estimating RF. Past and present snow-free and snow-covered conditions were derived from level 3 MODIS/Terra Snow Cover (MOD10CM.006)56 at 0.05° spatial resolution and resampled to a 1° spatial resolution. Monthly means of 2001–2005 vs 2015–2019 were used for 2001 and 2018 respectively. For future periods, ensemble mean snow cover for each year and month, projected under the CMIP5 framework for three Representative Concentration Pathway (RCP) scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) were used (for more details see Supplementary Note 2B). By comparing the model outputs with MODIS observations for a recent decade (2006–2015), we found that the multi-model mean snow cover was systematically biased compared to MODIS observations. Consequently, we calibrated the ensemble mean projections by subtracting the biases for the grids. In each 10th year of the future (e.g., 2030, 2040, etc.), the decadal monthly mean snow cover (e.g., 2026–2035 for 2030, and 2036–2045 for 2040, etc.) was used for the year.We used the long-term monthly averages (1981–2010) of diffuse and direct incoming surface solar radiation reanalysis Gaussian grid product from National Centers for Environmental Prediction (NCEP)57. Visible and near infrared beam downward radiation and diffuse downward radiation from NCEP were used to compute the white-sky and black-sky fractions. As for snow cover, ensemble mean shortwave radiation at surface (SWSF) and at top-of-atmosphere (SWTOA) projected from CMIP5 models (Supplementary Note 3C) for RCP2.6, RCP4.5, and RCP8.5 were collected for empirically computing future albedo kernels (see section 3.4 below).Radiative kernelsRadiative kernels were used to compute top-of-atmosphere RF due to small perturbations of temperature, water vapor, and albedo. We used the latest state-of-the-art albedo kernels calculated with CESM v1.1.258 to compute RF in 2018 relative to 2001. In brief, the albedo kernel is the change in top-of-atmosphere radiative flux for a 0.01 change in surface albedo. The CESM1.1.2 kernels are separated into clear- and all-sky illumination conditions. We used the all-sky kernels because we include both black-sky and white-sky albedos. For future periods, because there are no available radiative kernels produced from general circulation models, we approximated the future kernels using an empirical parameterization following Bright et al.59:$${K}_{m}left(iright)={{SW}}^{{SF}}(i)times {sqrt}left(frac{{{SW}}^{{SF}}(i)}{{{SW}}^{{TOA}}(i)}right)/(-100)$$
    (1)
    where m is the month, i is the location, and SWSF and SWTOA are the surface and top-of-atmosphere shortwave radiation; dividing by −100 is for matching the CESM1.1.2 kernel definition of a 0.01 change in surface albedo.Estimation of albedo change and RFWe analyzed the RF in 2018 due to albedo changes caused by urbanization since 2001 (2018–2001), and in the future from 2030 to 2100 at decadal intervals (i.e., 2030, 2040, 2050, …, and 2100) since 2018 under three illustrative scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5, which combine SSP-based urbanization projections and RCP-based climate projections. The three illustrative scenarios were selected following the scenario designation of the latest IPCC report50 and represent low greenhouse gas (GHG) emissions with CO2 emissions declining to net zero around or after 2050, intermediate GHG emissions with CO2 emissions remaining around current levels until the mid-century, and very high CO2 emissions that roughly double from current levels by 2050, respectively. We selected 2018 as the baseline year to divide the past from the future because 2018 was the latest year with available MODIS land cover products at the time of this study. We used ArcGIS 10.6 to produce spatial maps of all variables, including area of each land cover type within a 1° × 1°-grid, snow cover, albedo, radiation, and kernels, and R 3.6.1 to compute the RF.We focused only on albedo changes induced by urbanization, including the conversions from all other 16 IGBP land cover types to urban land. The changes of albedo for each grid (x, y) of a month (m) were obtained by computing the difference between albedo of that grid in the baseline year (t = t0) and in a later year (t = t1) with urban expansion:$${triangle alpha }_{m,t1-t0}(x,y)={alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y)$$
    (2)
    where αm, t = t1 (x, y) and αm, t = t0) (x, y) is the albedo for each grid (x,y) of a month (m) at the base year and later year respectively; the grid-scale albedo is computed as the weighted sum of albedo by land cover types with the weighing factor corresponding to areal percentage of a land cover within the grid. The albedo for each land cover type of a grid was then obtained by applying the albedo LUMs that provide spatially continuous black-sky, white-sky, snow-covered, and snow-free albedo maps for a given month for each land cover. Firstly, monthly mean albedo is computed as:$${alpha }_{m,t}(x,y)=mathop{sum }limits_{l=1}^{17}mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{{f}_{l,t}(x,y){f}_{s,m,t}(x,y)f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (3)
    where m is the month, t is the year, l is the land cover type, fl is the proportion of a cover type within the grid, fs,m,t is the fraction for snow-covered (s = 0) and snow-free (s = 1) conditions of the time (m, t), fr,m,t (x, y) is the fraction for white-sky (r = 0) or black-sky (r = 1) conditions of the time, and αl,s,r,m (x, y) is the albedo for land cover type l in month m that is extracted from the albedo LUMs corresponding to snow condition (s) and radiation condition (r). The annual mean albedo change is reported as the mean of monthly albedo change:$${triangle alpha }_{t1-t0}(x,y)=frac{1}{12}mathop{sum }limits_{m=1}^{m=12}({alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y))$$
    (4)
    The conversion of other land covers to urban land can contribute differently to the global RF, as the total area that is converted into urban land is different among non-urban land covers and the albedo differences between urban land and non-urban land cover types vary. To estimate the proportional contributions of different land conversions, we first decomposed the total albedo of each grid into the proportion of each land cover type:$${alpha }_{l,m,t}(x,y)={f}_{l,m,t}(x,y)mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{f}_{s,m,t}(x,y){f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (5)
    The global RF due to albedo change caused by conversion from each non-urban land cover type (l ≠ 13) to urban land (l = 13) (see Supplementary Table 2 land cover labels) was calculated as:$${{RF}}_{triangle alpha ,l(lne 13),{global}}=frac{1}{{A}_{{Earth}}}mathop{sum }limits_{i=1}^{n}mathop{sum }limits_{m=1}^{12}{({alpha }_{13,m,t=t1}left(iright)-{alpha }_{l,m,t=t0}left(iright))Delta p}_{lto 13}left(iright){Area}left(iright){K}_{m}(i)$$
    (6)
    where i refers to a grid, n is the total number of pixels on global lands, AEarth is the global surface area (5.1  ×  108 km2), α13,m,t = t1) (i) is the albedo of urban land in month m in the later year with urban expansion, αl,m,t = t0 (i) is the albedo of a targeted non-urban land cover type in the base year t0, Δpl→13 is the percentage of the non-urban land cover type that is converted to urban land in the year t1 compared to year t0, Area(i) is the area of the pixel, and Km (i) is the radiative kernel at the grid.The global RF due to urbanization-induced albedo changes was then calculated as:$${{RF}}_{triangle alpha ,{global}}=mathop{sum }limits_{l=1}^{17}{{RF}}_{triangle alpha ,l,{global}}(l,ne, 13)$$
    (7)
    GWP: CO2-equivalentWe followed GWP calculations by explicitly accounting for the lifetime and dynamic behavior of CO2 to convert RF to CO2 equivalent60,61:$${GWP}[{kg},{of},{{CO}}_{2}-{eq}]=frac{{int }_{t=0}^{{TH}}{{RF}}_{triangle alpha ,{global}}(t)}{{k}_{{CO}_2}{int }_{t=0}^{{TH}}{y}_{{{CO}}_{2}}(t)}$$
    (8)
    where kCO2 is radiative efficiency of CO2 in the atmosphere (W/m2/kg) at a constant background concentration of 389 ppmv, which is taken as 1.76  ×  1015 W/m2/kg62, and RF∆α,global is the global RF caused by albedo changes (W/m2). ({y}_{{{CO}}_{2}}) is the impulse-response function (IRF) for CO2 that ranges from 1 at the time of the emission pulse (t = 0) to 0.41 after 100 years, and here it is set to a mean value of 0.52 over 100 years60. The time horizon (TH) of our GWP calculations was fixed at 100 years following IPCC standards and previous studies60,63,64.Global mean surface air temperature changeWe estimated the 100-year global mean surface temperature change for the estimated RF by adopting an equilibrium climate sensitivity (ECS), defined as the global mean surface air temperature increase that follows a doubling of pre-industrial atmospheric carbon dioxide (RF = 3.7 W/m2). Given a value of RF induced by a forcing agent, the temperature change is estimated as RF/3.7 × ECS. To consider the uncertainties of ECS, we adopted a mean value of 3 °C and a very likely (90% confidence interval) range of 2–5 °C following IPCC AR650. Without knowing the exact distribution shape of ECS and future albedo-change-induced RF, we created a log-normal distribution (Supplementary Note 4) to approximate their asymmetric distribution through numerical simulation. We then conducted Monte Carlo simulations that draw 5000 random samples from each distribution to jointly estimate the uncertainties of global mean surface air temperature changes. We report the mean and 90% interval ranges of the change in temperature. More

  • in

    Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet

    Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).
    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
    Google Scholar 
    Liu, X. J. & Ma, K. P. Plant functional traits concepts, applications and future directions. Sci. Sin. Vitae 45, 325–339 (2015).
    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton, K. E. Tougher and thornier: general patterns in the induction of physical defence traits. Func. Ecol. 30, 181–187 (2016).
    Google Scholar 
    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).PubMed 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 

    Google Scholar 
    Grubb, P. J. A positive distrust in simplicity-lessons from plant defences and from competition among plants and among animals. J. Ecol. 80, 585–610 (1992).
    Google Scholar 
    Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. 8, 157–178 (2007).
    Google Scholar 
    Burns, K. C. Spinescence in the New Zealand flora: parallels with Australia. N. Z. J. Bot. 54, 273–289 (2016).
    Google Scholar 
    Goheen, J. R., Young, T. P., Keesing, F. & Palmer, T. M. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 95, 129–138 (2007).
    Google Scholar 
    Goldel, B., Kissling, W. D. & Svenning, J.-C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
    Google Scholar 
    Alves-Silva, E. & Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 149, 73–80 (2016).
    Google Scholar 
    Cooper, S. M. & Ginnett, T. F. Spines protect plants against browsing by small climbing mammals. Oecologia 113, 219–221 (1998).ADS 
    PubMed 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 371, 20150305 (2016).
    Google Scholar 
    Scholes, R. & Archer, S. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
    Google Scholar 
    Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).
    Google Scholar 
    Brown, R. W. Additions to the flora of the Green River formation. U. S. Geol. Surv. Prof. Paper, U. S. Gov. Print. Off. 154-J, 279–292 (1929).Manchester, S. Oligocene fossil plants of the John Day Formation, Oregon. Or. Geol. 49, 115d–127d (1987).
    Google Scholar 
    Meyer, H. W. & Manchester, S. R. Oligocene Bridge Creek flora of the John Day Formation, Oregon (Univ. California Press, 1997).Lancucka-Srodoniowa, M. Tortonian flora from the “Gdow Bay” in the south of Poland. Acta Palaeobot. 7, 1–134 (1966).
    Google Scholar 
    Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. et al. Why the ‘Uplift of the Tibetan Plateau’is a myth. Natl Sci. Rev. 8, nwaa091 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity–In what ways are they related? Plant Divers. 39, 233–244 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).ADS 

    Google Scholar 
    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Deng, T., Wu, F. X., Zhou, Z. K. & Su, T. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 63, 172–187 (2020).ADS 

    Google Scholar 
    Favre, A. et al. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).PubMed 

    Google Scholar 
    Su, T. et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scientific Expedition Team to the Qinghai-Xizang Plateau. Vegetation of Xizang (Tibet) (Sci. Press, 1988).Liu. X. H. Paleoelevation History and Evolution of the Cenozoic Lunpola basin, Central Tibet. Doctoral thesis (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2018).Xiong, Z. Y. et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 8, eabj0944 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichgelt, T., West, C. K. & Greenwood, D. R. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).CAS 

    Google Scholar 
    Spicer, R. A. et al. Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 381–395 (2011).
    Google Scholar 
    Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-biosphere (Springer Berlin Heidelb., 1973).Burley, J. Encyclopedia of Forest Sciences (Acad. Press, 2004).Deng, T. et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Sci. Bull. 57, 261–269 (2012).CAS 

    Google Scholar 
    Ma, P. F. et al. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res. 48, 224–236 (2017).ADS 

    Google Scholar 
    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. The formation and interpretation of plant fossil assemblages. Adv. Bot. Res. 16, 95–191 (1989).
    Google Scholar 
    Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).Eltringham, S. K. The Hippos: Natural History and Conservation (Princeton Univ. Press, 1999).Jiang, H. et al. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175, 99–108 (2019).ADS 

    Google Scholar 
    Liu, J. et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 33–40 (2019).
    Google Scholar 
    Jia, L. B. et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: implications for morphological evolution and biogeography. J. Syst. Evol. 57, 94–104 (2019).
    Google Scholar 
    Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. L., Li, B. Y. & Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geol. Res. 21, 1–8 (2002).
    Google Scholar 
    Yao, T. D. et al. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 32, 924–931 (2017).
    Google Scholar 
    Spicer, R. A., Farnsworth, A. & Su, T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229–254 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. H., Xu, Q. & Ding, L. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Sci. China Earth Sci. 59, 2105–2120 (2016).ADS 
    CAS 

    Google Scholar 
    Ding, L., Li, Z. Y. & Song, P. P. Core fragments of Tibetan Plateau from Gondwanaland united in Northern Hemisphere. Bull. Chin. Acad. Sci. 32, 945–950 (2017).
    Google Scholar 
    Deng, T. & Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl Sci. Rev. 2, 417–437 (2015).CAS 

    Google Scholar 
    Li, S. F. et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ding, L. et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).ADS 
    CAS 

    Google Scholar 
    Deng, T. et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob. Planet. Change 174, 58–69 (2019).ADS 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, W. G. Introduction to Plant Physiology (John Wiley & Sons, 1999).Sun, J. M., Liu, W. G., Liu, Z. H. & Fu, B. H. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys ocean on the stepwise aridification of mid-latitude Asian interior. Bull. Chin. Acad. Sci. 32, 951–958 (2017).
    Google Scholar 
    Zong, G. F. Cenezoic Mammals and Environment of Hengduan Mountains Region (China Ocean Press, 1996).Deng, T. et al. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun. Biol. 4, 639 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Young, T. P., Stanton, M. L. & Christian, C. E. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101, 171–179 (2003).
    Google Scholar 
    Karban, R. & Myers, J. H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20, 331–348 (1989).
    Google Scholar 
    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 22, 477–503 (1991).
    Google Scholar 
    Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sankaran, M., Augustine, D. J. & Ratnam, J. Native ungulates of diverse body sizes collectively regulate long‐term woody plant demography and structure of a semi‐arid savanna. J. Ecol. 101, 1389–1399 (2013).
    Google Scholar 
    Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).
    Google Scholar 
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. et al. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobio. Palaeoenv. 101, 213–243 (2021).
    Google Scholar 
    Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sun, J. M. et al. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).
    Google Scholar 
    DeCelles, P. G., Kapp, P., Ding, L. & Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654–680 (2007).ADS 

    Google Scholar 
    Tang, H. et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J. Syst. Evol. 57, 670–677 (2019).
    Google Scholar 
    Wang, T. X. et al. Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. J. Syst. Evol. 59, 1276–1286 (2021).
    Google Scholar 
    Del Rio, C. et al. Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications. Am. J. Bot. 107, 126–138 (2020).PubMed 

    Google Scholar 
    Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas. Geol. 1, 153–158 (1980).
    Google Scholar 
    Zhang, K. X. et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci. China Earth Sci. 53, 1271–1294 (2010).ADS 

    Google Scholar 
    Wu, Y. F. & Chen, Y. Y. Fossil cyprinid fishes from the late Tertiary of north Xizang, China. Vertebrata Palasiat. 18, 15–20 (1980).
    Google Scholar 
    Wu, F. X., Miao, D. S., Chang, M. M., Shi, G. L. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, C. Y., Huang, D. Y., Wu, F. X., Zhao, M. & Wang, N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J. Asian Earth Sci. 175, 121–127 (2017).ADS 

    Google Scholar 
    Low, S. L. et al. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415–431 (2020).
    Google Scholar 
    Bell, A. D. & Bryan, A. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Timber Press, 2008).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics. 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Maddison, W. P. Confounding asymmetries in evolutionary diversification and character change. Evolution 60, 1743–1746 (2006).PubMed 

    Google Scholar 
    Forest, C. E., Molnar, P. & Emanuel, K. A. Palaeoaltimetry from energy conservation principles. Nature 374, 347–350 (1995).ADS 
    CAS 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).ADS 
    CAS 

    Google Scholar 
    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).ADS 
    CAS 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, P. M. Description of the “TRIFFID” Dynamic Global Vegetation Model. 1–16 (Met Office Hadley Centre, 2001).Cox, P., Huntingford, C. & Harding, R. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 212, 79–94 (1998).ADS 

    Google Scholar 
    McInerney, F. A., Strömberg, C. A. E. & White, J. W. C. The Neogene transition from C3 to C4 grasslands in North America stable carbon isotope ratios of fossil phytoliths. Paleobiology 37, 23–49 (2011).
    Google Scholar 
    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 25, 945–959 (2006).ADS 

    Google Scholar  More

  • in

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20(1), 30–43. https://doi.org/10.1111/1462-2920.13941 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera Paredes, S. & Lebeis, S. L. Giving back to the community: Microbial mechanisms of plant–soil interactions. Funct. Ecol. 30(7), 1043–1052. https://doi.org/10.1111/1365-2435.12684 (2016).Article 

    Google Scholar 
    Nath, A. & Sundaram, S. Microbiome community interactions with social forestry and agroforestry. In Microbial services in restoration ecology (eds Singh, J. S. & Vimal, S. R.) 71–82 (Elsevier, 2020).Chapter 

    Google Scholar 
    Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12(6), 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guttman, D. S., McHardy, A. C. & Schulze-Lefert, P. Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15(12), 797–813. https://doi.org/10.1038/nrg3748 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewin, S., Francioli, D., Ulrich, A. & Kolb, S. Crop host signatures reflected by co-association patterns of keystone bacteria in the rhizosphere microbiota. Environ. Microb. 16(1), 18. https://doi.org/10.1186/s40793-021-00387-w (2021).CAS 
    Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardelli, T. et al. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 575, 1041–1055. https://doi.org/10.1016/j.scitotenv.2016.09.176 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987. https://doi.org/10.1016/j.funeco.2020.100987 (2020).Article 

    Google Scholar 
    Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20(1), 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 234(6), 1951–1959. https://doi.org/10.1111/nph.18016 (2022).Article 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Extension of plant phenotypes by the foliar microbiome. Annu. Rev. Plant Biol. 72(1), 823–846. https://doi.org/10.1146/annurev-arplant-080620-114342 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hunter, P. The revival of the extended phenotype: After more than 30 years, Dawkins’ extended phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep. 19(7), e46477. https://doi.org/10.15252/embr.201846477 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68(5), 229–245. https://doi.org/10.1007/s13213-018-1331-5 (2018).CAS 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238 (2016).Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28(3), 274–285. https://doi.org/10.1094/mpmi-10-14-0331-fi (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pérez-Bueno, M. L., Pineda, M., Díaz-Casado, E. & Barón, M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol. Plant. 153(1), 161–174. https://doi.org/10.1111/ppl.12237 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A Synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giauque, H. & Hawkes, C. V. Climate affects symbiotic fungal endophyte diversity and performance. Am. J. Bot. 100(7), 1435–1444. https://doi.org/10.3732/ajb.1200568 (2013).Article 
    PubMed 

    Google Scholar 
    Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2(4), 404–416. https://doi.org/10.1038/ismej.2007.106 (2008).Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230(6), 2129–2147. https://doi.org/10.1111/nph.17319 (2021).Article 
    PubMed 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106(38), 16428–16433. https://doi.org/10.1073/pnas.0905240106%JProceedingsoftheNationalAcademyofSciences (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10(12), 828–840. https://doi.org/10.1038/nrmicro2910 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whipps, J. M., Hand, P., Pink, D. & Bending, G. D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582), 364–369. https://doi.org/10.1038/nature16192 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4(1), 27. https://doi.org/10.1186/s40168-016-0174-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207(4), 1134–1144. https://doi.org/10.1111/nph.13418 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10(1), 4135. https://doi.org/10.1038/s41467-019-11974-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latz, M. A. C. et al. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci. Total Environ. 759, 143804. https://doi.org/10.1016/j.scitotenv.2020.143804 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bao, L. et al. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol. Ecol. 96, 3. https://doi.org/10.1093/femsec/fiaa017 (2020).CAS 
    Article 

    Google Scholar 
    Ding, T. & Melcher, U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11(3), e0150895. https://doi.org/10.1371/journal.pone.0150895 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant-microbe interactions in the phyllosphere: Facing challenges of the anthropocene. ISME J. https://doi.org/10.1038/s41396-021-01109-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redford, A. J. & Fierer, N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microb. Ecol. 58(1), 189–198. https://doi.org/10.1007/s00248-009-9495-y (2009).Article 
    PubMed 

    Google Scholar 
    Campisano, A. et al. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ. Microbiol. 19(8), 3353–3364. https://doi.org/10.1111/1462-2920.13843 (2017).Article 
    PubMed 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392(1), 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).CAS 
    Article 

    Google Scholar 
    Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17(3), 610–621. https://doi.org/10.1111/1462-2920.12452 (2015).Article 
    PubMed 

    Google Scholar 
    Francioli, D., Schulz, E., Buscot, F. & Reitz, T. Dynamics of soil bacterial communities over a vegetation season relate to both soil nutrient status and plant growth phenology. Microb. Ecol. 75(1), 216–227. https://doi.org/10.1007/s00248-017-1012-0 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Breitkreuz, C., Buscot, F., Tarkka, M. & Reitz, T. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Front. Microbiol. 10, 3109–3109. https://doi.org/10.3389/fmicb.2019.03109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na, X. et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front. Microbiol. 10, 828. https://doi.org/10.3389/fmicb.2019.00828 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ad-hoc-AG-Boden. Bodenkundliche Kartieranleitung 438 (Schweizerbart, 2005).
    Google Scholar 
    Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).Article 

    Google Scholar 
    Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31(2), 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).Article 

    Google Scholar 
    Drew, M. C. Soil aeration and plant root metabolism. Soil Sci. 154(4), 259–268 (1992).ADS 
    Article 

    Google Scholar 
    Meyer, W. et al. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soil. Aust. J. Agric. Res. https://doi.org/10.1071/AR9850171 (1985).Article 

    Google Scholar 
    Riehm, H. Bestimmung der laktatlöslichen Phosphorsäure in karbonathaltigen Böden. Phosphorsäure 1, 167–178. https://doi.org/10.1002/jpln.19420260107 (1943).Article 

    Google Scholar 
    Murphy, J., & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 (1962).CAS 
    Article 

    Google Scholar 
    Francioli, D., Lentendu, G., Lewin, S. & Kolb, S. DNA metabarcoding for the characterization of terrestrial microbiota—pitfalls and solutions. Microorganisms 9(2), 361 (2021).CAS 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41(3), 252–263. https://doi.org/10.1007/s002480000087 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12(11), 2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 1. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581. https://doi.org/10.1038/Nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francioli, D. et al. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front. Microbiol. 12, 3371. https://doi.org/10.3389/fmicb.2021.773116 (2021).Article 

    Google Scholar 
    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).
    Google Scholar 
    Dray, S., Legendre, P. & Blanchet, G. Packfor: Forward Selection with Permutation. R package version 0.0‐8/r100 ed. (2011).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. ed. (2018).Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lahti, L. & Sudarshan, S. Tools for Microbiome Analysis in R. Version 2.1.28. ed. (2020).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7(1), 136. https://doi.org/10.1186/s40168-019-0750-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. 7, 1207. https://doi.org/10.3389/fmicb.2016.01207 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comby, M., Lacoste, S., Baillieul, F., Profizi, C. & Dupont, J. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front. Microbiol. 7, 403. https://doi.org/10.3389/fmicb.2016.00403 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405(1), 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).CAS 
    Article 

    Google Scholar 
    Sapkota, R., Jørgensen, L. N. & Nicolaisen, M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01357 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhry, V. et al. Shaping the leaf microbiota: Plant–microbe–microbe interactions. J. Exp. Bot. 72(1), 36–56. https://doi.org/10.1093/jxb/eraa417 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Liu, Z., Cheng, R., Xiao, W., Guo, Q. & Wang, N. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9(9), e107636. https://doi.org/10.1371/journal.pone.0107636 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M. et al. Soluble sugars. Plant Signal. Behav. 4(5), 388–393. https://doi.org/10.4161/psb.4.5.8294 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H., Qualls, R. G. & Blank, R. R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot. 82(4), 250–268. https://doi.org/10.1016/j.aquabot.2005.02.013 (2005).CAS 
    Article 

    Google Scholar 
    Bacanamwo, M. & Purcell, L. C. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J. Exp. Bot. 50(334), 689–696. https://doi.org/10.1093/jxb/50.334.689 (1999).CAS 
    Article 

    Google Scholar 
    Boem, F. H. G., Lavado, R. S. & Porcelli, C. A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop. Res. 47(2), 175–179. https://doi.org/10.1016/0378-4290(96)00025-1 (1996).Article 

    Google Scholar 
    Kozlowski, T. T. Plant responses to flooding of soil. Bioscience 34(3), 162–167. https://doi.org/10.2307/1309751 (1984).Article 

    Google Scholar 
    Topa, M. A. & Cheeseman, J. M. 32P uptake and transport to shoots in Pinuus serotina seedlings under aerobic and hypoxic growth conditions. Physiol. Plant. 87(2), 125–133. https://doi.org/10.1111/j.1399-3054.1993.tb00134.x (1993).CAS 
    Article 

    Google Scholar 
    Colmer, T. D. & Flowers, T. J. Flooding tolerance in halophytes. New Phytol. 179(4), 964–974. https://doi.org/10.1111/j.1469-8137.2008.02483.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibbs, J. & Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30(1), 1–47. https://doi.org/10.1071/PP98095 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Board, J. E. Waterlogging effects on plant nutrient concentrations in soybean. J. Plant Nutr. 31(5), 828–838. https://doi.org/10.1080/01904160802043122 (2008).CAS 
    Article 

    Google Scholar 
    Smethurst, C. F., Garnett, T. & Shabala, S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31–45. https://doi.org/10.1007/s11104-004-1082-x (2005).CAS 
    Article 

    Google Scholar 
    Thomson, C. J., Atwell, B. J. & Greenway, H. Response of wheat seedlings to low O2 concentrations in nutrient solution: II. K+/Na+ selectivity of root tissues. J. Exp. Bot. 40(9), 993–999. https://doi.org/10.1093/jxb/40.9.993 (1989).Article 

    Google Scholar 
    Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant Soil 253(1), 35–54. https://doi.org/10.1023/A:1024574622669 (2003).CAS 
    Article 

    Google Scholar 
    Granzow, S. et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 8, 902. https://doi.org/10.3389/fmicb.2017.00902 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168. https://doi.org/10.1094/PBIOMES-05-17-0023-R (2017).Article 

    Google Scholar 
    Shade, A., McManus, P. S., Handelsman, J. & Zhou, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4(2), e00602-00612. https://doi.org/10.1128/mBio.00602-12 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New. Phytol. 230(5), 2047–2060. https://doi.org/10.1111/nph.17297 (2021).Article 
    PubMed 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111. https://doi.org/10.1016/j.phytochem.2015.01.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 9, 2479. https://doi.org/10.3389/fmicb.2018.02479 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9(1), 171. https://doi.org/10.1186/s40168-021-01118-6 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. https://doi.org/10.1016/j.jare.2019.03.003 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathur, P., Mehtani, P. & Sharma, C. (2021). Leaf Endophytes and Their Bioactive Compounds. In Symbiotic Soil Microorganisms: Biology and Applications, (eds Shrivastava, N. et al.) 147–159 (Cham, Springer International Publishing, 2021).Aquino, J., Junior, F. L. A., Figueiredo, M., De Alcântara Neto, F. & Araujo, A. Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesq. Agrop. Trop. https://doi.org/10.1590/1983-40632019v4956241 (2019).Article 

    Google Scholar 
    Gamalero, E. et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl. Sci. 10(17), 5767 (2020).CAS 
    Article 

    Google Scholar 
    Borah, A. & Thakur, D. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front. Microbiol. 11, 318. https://doi.org/10.3389/fmicb.2020.00318 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haidar, B. et al. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol. Res. 208, 43–53. https://doi.org/10.1016/j.micres.2018.01.008 (2018).Article 
    PubMed 

    Google Scholar 
    Bind, M. & Nema, S. Isolation and molecular characterization of endophytic bacteria from pigeon pea along with antimicrobial evaluation against Fusarium udum. J. Appl. Microbiol. Open Access 5, 163 (2019).
    Google Scholar 
    de Almeida Lopes, K. B. et al. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J. Appl. Microbiol. 125(5), 1466–1481. https://doi.org/10.1111/jam.14041 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Müller, T. & Behrendt, U. Exploiting the biocontrol potential of plant-associated pseudomonads: A step towards pesticide-free agriculture?. Biol. Control 155, 104538. https://doi.org/10.1016/j.biocontrol.2021.104538 (2021).CAS 
    Article 

    Google Scholar 
    Safin, R. I. et al. Features of seeds microbiome for spring wheat varieties from different regions of Eurasia. In: International Scientific and Practical Conference “AgroSMART: Smart Solutions for Agriculture”, 766–770 (Atlantis Press).Adler, P. B. & Drake, J. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172(5), E186–E195. https://doi.org/10.1086/591678 (2008).Article 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284(1855), 20170507. https://doi.org/10.1098/rspb.2017.0507 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115(6), E1157–E1165. https://doi.org/10.1073/pnas.1717617115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 232(3), 1123–1158. https://doi.org/10.1111/nph.17072 (2021).Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92(4), 303–311. https://doi.org/10.1139/cjb-2013-0194 (2014).Article 

    Google Scholar 
    Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12(7), 1794–1805. https://doi.org/10.1038/s41396-018-0089-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K. & Evans, S. E. Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars. Phytobiom. J. 5(1), 108–120. https://doi.org/10.1094/pbiomes-12-19-0069-fi (2021).Article 

    Google Scholar 
    Arduini, I., Orlandi, C., Pampana, S. & Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop Pasture Sci. 67(7), 703–711. https://doi.org/10.1071/CP15417 (2016).CAS 
    Article 

    Google Scholar 
    Ding, J. et al. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Res. 246, 107695. https://doi.org/10.1016/j.fcr.2019.107695 (2020).Article 

    Google Scholar 
    Malik, I., Colmer, T., Lambers, H. & Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Austral. J. Plant Physiol. 28, 1121–1131. https://doi.org/10.1071/PP01089 (2001).Article 

    Google Scholar 
    Pampana, S., Masoni, A. & Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 44(4), 706–716. https://doi.org/10.1556/0806.44.2016.026 (2016).Article 

    Google Scholar 
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115(18), E4284–E4293. https://doi.org/10.1073/pnas.1717308115%JProceedingsoftheNationalAcademyofSciences (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Angel, R. et al. The root-associated microbial community of the world’s highest growing vascular plants. Microb. Ecol. 72(2), 394–406. https://doi.org/10.1007/s00248-016-0779-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16(2), e2003862. https://doi.org/10.1371/journal.pbio.2003862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuźniar, A. et al. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst. Appl. Microbiol. 43(1), 126025. https://doi.org/10.1016/j.syapm.2019.126025 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Soldan, R. et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol. Res. 223–225, 33–43. https://doi.org/10.1016/j.micres.2019.03.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7(1), 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).Article 

    Google Scholar 
    Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, 6. https://doi.org/10.1093/femsec/fiw083 (2016).CAS 
    Article 

    Google Scholar 
    Eid, A. M. et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 10(5), 935 (2021).CAS 
    Article 

    Google Scholar 
    Mareque, C. et al. The endophytic bacterial microbiota associated with sweet sorghum (Sorghum bicolor) is modulated by the application of chemical N fertilizer to the field. Int. J. Genom. 2018, 7403670. https://doi.org/10.1155/2018/7403670 (2018).CAS 
    Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446. https://doi.org/10.3389/fmicb.2016.01446 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrey, S. D. & Tarkka, M. T. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1), 11–19. https://doi.org/10.1007/s10482-008-9241-3 (2008).Article 
    PubMed 

    Google Scholar 
    Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45. https://doi.org/10.1016/j.micres.2018.06.003 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yi, Y.-S. et al. Antifungal activity of Streptomyces sp. against Puccinia recondita causing wheat leaf rust. J. Microbiol. Biotechnol. 14(2), 422–425 (2004).CAS 

    Google Scholar 
    Sperdouli, I. & Moustakas, M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J. Plant. Res. 127(4), 481–489. https://doi.org/10.1007/s10265-014-0635-1 (2014).CAS 
    Article 
    PubMed 

    Google Scholar  More