More stories

  • in

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Benchmark regression resultsParallel trend testThe premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.Table 4 Parallel trend test.Full size tableDynamic effect analysisTo compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.Figure 1Dynamic analysis diagram.Full size imageThe effect of ETS on ecologicalization efficiency of industryControlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.Table 5 Influence of ETS on ecologicalization efficiency of industry.Full size tableRobustness testPropensity matching score—double difference method (PSM-DID)The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.Table 6 The result of the PSM-DID.Full size tableCounterfactual testTo verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.Table 7 Counterfactual test results.Full size tableActing pattern analysis of ETS on the regional ecologicalization efficiency of industryFirst, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.Table 8 Mediating effect test results.Full size table More

  • in

    Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers

    Ryan MJ, Rand AS. Species recognition and sexual selection as a unitary problem in animal communication. Evolution. 1993;47:647–57.PubMed 
    Article 

    Google Scholar 
    Trivers RL. Parental Investment and Sexual Selection. In: Campbell BG, (ed). Sexual Selection and the Descent of Man. Aldine Publishing Company; 1972. p. 136–79.
    Google Scholar 
    Andersson M. Sexual selection. Sexual Selection. Princeton: Princeton University Press; 1994.Chapter 

    Google Scholar 
    Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, et al. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patters of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol – A Sens, Neural, Behav Physiol. 2000;186:567–74.CAS 
    Article 

    Google Scholar 
    Cohen C, Liltved WR, Colville JF, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol. 2021;31:1962–1969. e6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol. 2021;31:1954–1961. e7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen AN, De Fine Licht HH. Logistic growth of the host-specific obligate insect pathogenic fungus Entomophthora muscae in house flies (Musca domestica). J Appl Entomol. 2017;141:583–6.CAS 
    Article 

    Google Scholar 
    Schmid-Hempel P Evolutionary parasitology. 2011. Oxford University Press.Helluy S, Thomas F. Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B: Biol Sci. 2003;270:563–8.CAS 
    Article 

    Google Scholar 
    Hoover K, Grove M, Gardner M. A gene for an extended phenotype. Science. 2011;333:1401. others.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adamo SA. Parasites: evolution’s neurobiologists. J Exp Biol. 2013;216:3–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bekker C, Ohm RA, Loreto RG. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics. 2015;16:620. others.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ros VID, Van Houte S, Hemerik L, Van Oers MM. Baculovirus-induced tree-top disease: How extended is the role of egt as a gene for the extended phenotype? Mol Ecol. 2015;24:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Botnevik CF, Malagocka J, Jensen AB, Fredensborg BL. Relative effects of temperature, light, and humidity on clinging behavior of metacercariae-infected ants. J Parasitol. 2016;102:495–500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Małagocka J, Jensen AB, Eilenberg J. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy. J Invertebr Pathol. 2017;143:108–14.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hughes DP, Libersat F. Neuroparasitology of parasite-insect associations. Annu Rev Entomol. 2018;63:471–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hojo MK, Pierce NE, Tsuji K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol. 2015;25:2260–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS ONE. 2010;5:e10019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X, Machado RAR, Van Doan C, Arce CCM, Hu L, Robert CAM. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife. 2019;8:e46668.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George J, Jenkins NE, Blanford S, Thomas MB, Baker TC. Malaria mosquitoes attracted by fatal fungus. PLoS ONE. 2013;8:e62632.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trandem N, Bhattarai UR, Westrum K, Knudsen GK, Klingen I. Fatal attraction: male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J Invertebr Pathol. 2015;128:6–13.PubMed 
    Article 

    Google Scholar 
    Evans WS, Wong A, Hardy M, Currie RW, Vanderwel D. Evidence that the factor used by the tapeworm, Hymenolepis diminuta, to direct the foraging of its intermediate host, Tribolium confusum, is a volatile attractant. J Parasitol. 1998;84:1098–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shostak AW, Smyth KA. Activity of flour beetles (Tribolium confusum) in the presence of feces from rats infected with rat tapeworm (Hymenolepis diminuta). Can J Zool. 1998;76:1472–9.Article 

    Google Scholar 
    Shea JF. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor). J Helminthol. 2007;81:293–9.PubMed 
    Article 

    Google Scholar 
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dawkins R. The extended phenotype. Oxford: Oxdord University Press; 1982.
    Google Scholar 
    Van Houte S, Ros VID, Van Oers MM. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.PubMed 
    Article 

    Google Scholar 
    de Bekker C, Beckerson WC, Elya C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio. 2021;12:e01872–21.PubMed Central 
    Article 

    Google Scholar 
    Lefévre T, Lebarbenchon C, Gauthier-Clerc M, Missé D, Poulin R, Thomas F, et al. The ecological significance of manipulative parasites. Trends Ecol Evolution. 2009;24:41–48.Article 

    Google Scholar 
    Kalsbeek V, Pell JK, Steenberg T. Sporulation by Entomophthora schizophorae (Zygomycetes: Entomophthorales) from housefly cadavers and the persistence of primary conidia at constant temperatures and relative humidities. J Invertebr Pathol. 2001;77:149–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Ruiter J, Arnbjerg-Nielsen SF, Herren P, Høier F, De Fine Licht HH, Jensen KH. Fungal artillery of zombie flies: infectious spore dispersal using a soft water cannon. J R Soc Interface. 2019;16:20190448.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, et al. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLoS Pathog. 2020;16:e1008598.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moller AP. A fungus infecting domestic flies manipulates sexual behaviour of its host. Behav Ecol Sociobiol. 1993;33:403–7.
    Google Scholar 
    Murvosh CM, Fye RL, LaBrecque GC. Studies on the mating behavior of the house fly, Musca Domestica L. Ohio J Sci. 1964;64:264–71.
    Google Scholar 
    Tobin EN, Stoffolano JG. The courtship of Musca species found in North America. II. The face fly, Musca autumnalis, and a comparison. Ann Entomological Soc Am. 1973;66:1329–34.Article 

    Google Scholar 
    Goulson D, Bristow L, Elderfield E, Brinklow K, Parry-Jones B, Chapman JW. Size, Symmetry, and sexual selection in the housefly, Musca domestica. Evolution. 1999;53:527–34.PubMed 
    Article 

    Google Scholar 
    Zurek L, Wes Watson D, Krasnoff SB, Schal C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol. 2002;80:171–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rogoff WM, Beltz AD, Johnsen JO, Plapp FW. A sex pheromone in the housefly, Musca domestica L. J Insect Physiol. 1964;10:239–46.CAS 
    Article 

    Google Scholar 
    Adams TS, Holt GG. Effect of pheromone components when applied to different models on male sexual behaviour in the housefly, Musca domestica. J Insect Physiol. 1987;33:9–18.CAS 
    Article 

    Google Scholar 
    Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA, et al. Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science. 1971;174:76–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams TS, Nelson DR, Fatland CL. Effect of methylalkanes on male house fly, Musca domestica, sexual behavior. J Insect Physiol. 1995;41:443–9.CAS 
    Article 

    Google Scholar 
    Noorman N, Otter CJ. The effects of laboratory culturing on (Z)-9-tricosene (muscalure) quantities on female houseflies. Entomologia Experimentalis et Applicata. 2001;101:69–80.CAS 
    Article 

    Google Scholar 
    Uebel EC, Schwarz M, Lusby WR, Miller RW, Sonnet PE. Cuticular nonhydrocarbons of the female house fly and their evaluation as mating stimulants. Lloydia. 1978;41:63–67.CAS 

    Google Scholar 
    Blomquist GJ, Ginzel MD. Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annu Rev Entomol. 2021;66:45–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017;15:88.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krasnoff SB, Watson DW, Gibson DM, Kwan EC. Behavioral effects of the entomopathogenic fungus, Entomophthora muscae on its host Musca domestica: Postural changes in dying hosts and gated pattern of mortality. J Insect Physiol. 1995;41:895–903.CAS 
    Article 

    Google Scholar 
    Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evolution. 2016;7:1325–30.Article 

    Google Scholar 
    Quan AS, Eisen MB. The ecology of the Drosophila-yeast mutualism in wineries. PLOS ONE. 2018;13:e0196440.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Den Dool H, Dec, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–71.Article 

    Google Scholar 
    Nelson DR, Dillwith JW, Blomquist GJ. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 1981;11:187–97.CAS 
    Article 

    Google Scholar 
    Bagnères AG, Morgan ED. A simple method for analysis of insect cuticular hydrocarbons. J Chem Ecol. 1990;16:3263–76.PubMed 
    Article 

    Google Scholar 
    Stránský K, Jursík T, Vítek A, Skořepa J. An improved method of characterizing fatty acids by equivalent chain length values. J High Resolut Chromatogr. 1992;15:730–40.Article 

    Google Scholar 
    Stránský K, Zarevúcka M, Valterová I, Wimmer Z. Gas chromatographic retention data of wax esters. J Chromatogr A. 2006;1128:208–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.CAS 
    Article 

    Google Scholar 
    Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, et al. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol. 2001;31:139–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gulias Gomes CC, Trigo JR, Eiras ÁE. Sex pheromone of the American warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. J Chem Ecol. 2008;34:636–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang LX, Yun YF, Liang YZ, Cao DS. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J Chromatogr A. 2010;1217:3695–701.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 
    CAS 

    Google Scholar 
    Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008;25:1–18.Article 

    Google Scholar 
    Darbro JM, Millar JG, McElfresh JS, Mullens BA. Survey of muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol. 2005;34:1418–25.CAS 
    Article 

    Google Scholar 
    Butler SM, Moon RD, Hinkle NC, Millar JG, Mcelfresh JS, Mullens BA. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med Vet Entomol. 2009;23:426–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics. 2018;19:166.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700.PubMed 
    Article 
    CAS 

    Google Scholar 
    Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem. 2006;281:4446–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 2008;74:454–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooley JR, Marshall DC, Hill KBR. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep. 2018;8:1432.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X-M. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honey bees. J Appl Entomol. 2018;142:359–62.CAS 
    Article 

    Google Scholar 
    Haber AI, Sims JW, Mescher MC, De Moraes CM, Carr DE. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct Ecol. 2019;33:218–28.Article 

    Google Scholar 
    Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    Stanjek V, Herhaus C, Ritgen U, Boland W, Städler E. Changes in the leaf surface chemistry of Apium graveolens (apiaceae) stimulated by jasmonic acid and perceived by a specialist insect. Helvetica Chim Acta. 1997;80:1408–20.CAS 
    Article 

    Google Scholar 
    Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, et al. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol. 2017;175:1455–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Könen PP, Wüst M. Analysis of sesquiterpene hydrocarbons in grape berry exocarp (Vitis vinifera L.) using in vivo-labeling and comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS). Beilstein J Org Chem. 2019;15:1945–61.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lam K, Tsang M, Labrie A, Gries R, Gries G. Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol. 2010;36:141–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Phillips RD, Bohman B, Peakall R. Pollination by nectar‐foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. Plant Biology 2021;23:702–10.Spieth HT. Courtship behavior in Drosophila. Annu Rev Entomol. 1974;19:385–405.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GSXE, et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478:236–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullens BA, Rodrigues JL, Meyer JA. An epizootiological study of Entomophthora muscae in muscoid fly populations on southern california poultry facilities, with emphasis on Musca domestica. Hilgardia. 1987;55:1–41.Article 

    Google Scholar 
    Watson DW, Petersen JJ. Sexual activity of male Musca domestica (Diptera: Muscidae) infected with Entomophthora muscae (Entomophthoraceae: Entomophthorales). Biol Control. 1993;3:22–26.Article 

    Google Scholar 
    van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK. Insects as feed: house fly or black soldier fly? J Insects Food Feed. 2020;6:221–9.Article 

    Google Scholar 
    Khamesipour F, Lankarani KB, Honarvar B, Kwenti TE. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health. 2018;18:1049.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biedermann PHW, De Fine Licht HH, Rohlfs M. Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. 2019;38:1–6.Article 

    Google Scholar  More

  • in

    Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae)

    Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article 

    Google Scholar 
    Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article 

    Google Scholar 
    Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article 

    Google Scholar 
    Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article 

    Google Scholar 
    Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article 

    Google Scholar 
    Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS 
    Article 

    Google Scholar 
    Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
    Google Scholar 
    Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 
    Article 

    Google Scholar 
    Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
    Google Scholar 
    IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article 
    CAS 

    Google Scholar 
    Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS 

    Google Scholar 
    CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article 

    Google Scholar 
    Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article 
    CAS 

    Google Scholar 
    Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
    Google Scholar 
    Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article 

    Google Scholar 
    Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS 
    Article 

    Google Scholar 
    La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article 

    Google Scholar 
    Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article 
    CAS 

    Google Scholar 
    Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article 
    CAS 

    Google Scholar 
    Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article 

    Google Scholar 
    Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article 

    Google Scholar 
    Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article 

    Google Scholar 
    Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
    Google Scholar 
    Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
    Google Scholar 
    Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
    Google Scholar 
    Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article 

    Google Scholar 
    Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article 

    Google Scholar 
    Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed 

    Google Scholar 
    Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article 
    CAS 

    Google Scholar 
    Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS 
    Article 

    Google Scholar 
    Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed 
    Article 

    Google Scholar 
    Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
    Google Scholar 
    Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article 

    Google Scholar 
    Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
    Google Scholar 
    Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article 

    Google Scholar 
    Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS 
    Article 

    Google Scholar 
    Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article 

    Google Scholar 
    Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS 
    Article 

    Google Scholar 
    Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Tropical forests as drivers of lake carbon burial

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. B Biol. Sci. 363, 1839–1848 (2008).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Res. Ecol. Environ. 15, 332–337 (2000).CAS 
    Article 

    Google Scholar 
    Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).ADS 
    CAS 

    Google Scholar 
    Dean, W. E. & Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26, 535–538 (1998).ADS 
    Article 

    Google Scholar 
    Tranvik, L. J., Cole, J. J. & Prairie, Y. T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 3, 41–48 (2018).Article 

    Google Scholar 
    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Heathcote, A. J. & Engstrom, D. R. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marotta, H., Pinho, L. & Gudasz, C. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Chang. 4, 11–14 (2014).Article 
    CAS 

    Google Scholar 
    Cardoso, S. J. B., Enrich-Prast, A. C., Pace, M. L. & Rol, F. B. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol. Oceanogr. 59, 48–54 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    Tateishi, R. et al. Production of global land cover data – GLCNMO2008. J. Geogr. Geol. 6, (2014).Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35, 745–756 (2015).Article 

    Google Scholar 
    Clow, D. W. et al. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ. Sci. Technol. 49, 7614–7622 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundin, E. J. et al. Large difference in carbon emission – burial balances between boreal and arctic lakes. Sci. Rep. 5, 14248 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, N. J., Dietz, R. D. & Engstrom, D. R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. Biol. Sci. 280, 20131278 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, L. M. et al. Carbon accumulation in Amazonian floodplain lakes: a significant component of Amazon budgets? Limnol. Oceanogr. Lett. 2, 29–35 (2017).Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. In Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences (eds. Ivanovich, M. & Harmon, R. S.) (Clarendon Press, 1992).Engstrom, D. R., Fritz, S. C., Almendinger, J. E. & Juggins, S. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161–166 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J.-H. et al. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim. Cosmochim. Acta 90, 163–180 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Marotta, H., Paiva, L. T. & Petrucio, M. M. Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil. Limnology 10, 195–202 (2009).CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Bennion, H. & Lotter, A. F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Chang. Biol. 20, 2741–2751 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanders, L. M. et al. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences 15, 447–455 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 9, 73–79 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Marotta, H., Duarte, C. M., Sobek, S. & Enrich-Prast, A. Large CO 2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 23, (2009).Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunne, T., Mertes, L. A. K. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Bull. Geol. Soc. Am. 110, 450–467 (1998).Article 

    Google Scholar 
    McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).ADS 
    Article 

    Google Scholar 
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).ADS 
    Article 

    Google Scholar 
    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Glob. Biogeochem. Cycles 29, 708–727 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hobbs, W. O., Engstrom, D. R., Scottler, S. P., Zimmer, K. D. & Cotner, J. B. Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol. Oceanogr. Methods 11, 316–326 (2013).CAS 
    Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. The calculation of Pb-210 dates assuming a constant rate of supply of unsupported Pb-210 to the sediment. Catena 5, 1–8 (1978).CAS 
    Article 

    Google Scholar 
    Turner, L. J. & Delorme, L. D. Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ. Geol. 28, 78–87 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Breithaupt, J. L., Smoak, J. M., Smith, T. J. & Sanders, C. J. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J. Geophys. Res. G Biogeosci. 119, 2032–2048 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41, 2475–2480 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Mitra, S., Wassmann, R. & Vlek, P. L. G. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 88, 25–35 (2005).CAS 

    Google Scholar 
    Ravichandran, K. S. Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng. A 201, 269–276 (1995).Article 

    Google Scholar 
    Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinelli, L. A., Victoria, R. L. & Forsberg, B. R. Isotopic composition of majors carbon reservoirs in the Amazon floodplain. Int. J. Ecol. Environ. Sci. 20, 31–46 (1994).
    Google Scholar 
    Martinelli, L. A. et al. Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrol. Process. 17, 1419–1430 (2003).ADS 
    Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis, Books a la Carte Edition (Pearson, 2010). More

  • in

    Prediction of the potential distribution of the predatory mite Neoseiulus californicus (McGregor) in China under current and future climate scenarios

    Moraes, G. J., Mcmurtry, J. A., Denmark, H. A. & Campos, C. B. A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1–494 (2004).Article 

    Google Scholar 
    Fraulo, A. B. & Liburd, O. E. Biological control of twospotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries. Exp. Appl. Acarol. 43, 109–119 (2007).PubMed 
    Article 

    Google Scholar 
    Kuştutan, O. & Cakmak, I. Development, fecundity, and prey consumption of Neoseiulus californicus (McGregor) fed Tetranychus cinnabarinus Boisduval. Turk. J. Agric. For. 33, 19–28 (2009).
    Google Scholar 
    Kishimoto, H. et al. Occurrence of Neoseiulus californicus (Acari: Phytoseiidae) on citrus in Kyushu district, Japan. J. Acarol. Soc. Japan 16, 129–137 (2007).Article 

    Google Scholar 
    Albayrak, T., Yorulmaz, S., İnak, E., Toprak, U. & Van Leeuwen, T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pestic. Biochem. Phys. 180, 104984 (2022).CAS 
    Article 

    Google Scholar 
    Abdellah, A., Abdelaziz, Z., Philipe, A., Serge, K. & Abdelhamid, E. M. Seasonal trend of Eutetranychus orientalis in Moroccan citrus orchards and its potential control by Neoseiulus californicus and Stethorus punctillum. Syst. Appl. Acarol. 26, 1458–1480 (2021).
    Google Scholar 
    Vidrih, M., Turnšek, A., Rak Cizej, M., Bohinc, T. & Trdan, S. Results of the single release efficacy of the predatory mite Neoseiulus californicus (McGregor) against the two-spotted spider mite (Tetranychus urticae Koch) on a hop plantation. Appl. Sci. 11, 118 (2021).CAS 
    Article 

    Google Scholar 
    Jiang, C. X., Chen, L., Huang, T. T., Mumtaz, M. & Li, Q. Neoseiulus californicus (Acari: Phytoseiidae) shows good predation potential when reared on an artificial diet supplemented with Tetranychus cinnabarinus. Syst. Appl. Acarol. 26, 2229–2246 (2021).
    Google Scholar 
    Katayama, H. et al. Density suppression of the citrus red mite Panonychus citri (Acari: Tetranychidae) due to the occurrence of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on Satsuma mandarin. Appl. Entomol. Zool. 41, 679–684 (2006).Article 

    Google Scholar 
    Zhu, R., Guo, J. J., Yi, T. C., Xiao, R. & Jin, D. C. Preying potential of predatory mite Neoseiulus californicus to broad mite Polyphagotarsonemus latus. J. Plant Prot. 46, 465–471 (2019) ([In Chinese]).
    Google Scholar 
    Silva, D. E. et al. Impact of vineyard agrochemicals against Panonychus ulmi (Acari: Tetranychidae) and its natural enemy, Neoseiulus californicus (Acari: Phytoseiidae) in Brazil. Crop Prot. 123, 5–11 (2019).CAS 
    Article 

    Google Scholar 
    Sato, M. E., Da Silva, M. Z., De Souza Filho, M. F., Matioli, A. L. & Raga, A. Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae) and acaricides. Exp. Appl. Acarol. 42, 107–120 (2007).PubMed 
    Article 

    Google Scholar 
    De Souza-Pimentel, G. C. et al. Biological control of Tetranychus urticae (Tetranychidae) on rosebushes using Neoseiulus californicus (Phytoseiidae) and agrochemical selectivity. Rev. Colombi. Entomol. 40, 80–84 (2014).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Peterson, A. T. & Shaw, J. Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distribution, and climate change effects. Int. J. Parasitol. 33, 919–931 (2003).PubMed 
    Article 

    Google Scholar 
    Peterson, A. T. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the Concepts Right. Nat. Conserv. 10, 102–107 (2012).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. P. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article 

    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).Article 

    Google Scholar 
    Arslan, E. S. & Örücü, Ö. K. MaxEnt modelling of the potential distribution areas of cultural ecosystem services using social media data and GIS. Environ. Dev. Sustain. 23, 2655–2667 (2021).Article 

    Google Scholar 
    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species distributions areas. Biodivers. Inf. 2, 1–10 (2005).
    Google Scholar 
    Ab Lah, N. Z., Yusop, Z., Hashim, M., Salim, J. M. & Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt Species Distribution Model. Forests 12, 1449 (2021).Article 

    Google Scholar 
    Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecol. Process. 10, 1–16 (2021).Article 

    Google Scholar 
    Kamyo, T. & Asanok, L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Sci. Technol. 16, 1–7 (2020).ADS 
    Article 

    Google Scholar 
    Barber, R. A., Ball, S. G., Morris, R. K. A. & Gilbert, F. Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Divers. Distrib. 28, 128–141 (2022).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Comino, E., Fiorucci, A., Rosso, M., Terenziani, A. & Treves, A. Vegetation and Glacier Trends in the area of the Maritime Alps Natural Park (Italy): MaxEnt application to predict habitat development. Clim. 9, 54 (2021).Article 

    Google Scholar 
    Wang, R. L. et al. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Glob. Ecol. Conserv. 29, e01733 (2021).Article 

    Google Scholar 
    Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive Pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Tang, J. T., Li, J. H., Lu, H., Lu, F. P. & Lu, B. Q. Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Manag. Sci. 75, 1630–1637 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chang, Y. et al. Predicting dynamics of the potential breeding habitat of Larus saundersi by MaxEnt model under changing land-use conditions in wetland nature reserve of Liaohe Estuary, China. Remote Sens. 14, 552 (2022).ADS 
    Article 

    Google Scholar 
    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article 

    Google Scholar 
    Smeraldo, S. et al. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).Article 

    Google Scholar 
    Pörtner, H. O. et al. Climate Change 2022: The Physical Science Basis. Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 15. https://www.ipcc.ch/report/ar6/wg3/ (2022).Ahmed, S. E. et al. Scientists and software–surveying the species distribution modelling community. Divers. Distrib. 21, 258–267 (2015).Article 

    Google Scholar 
    Tognelli, M. F., Roig-Juñent, S. A., Marvaldi, A. E., Flores, G. E. & Lobo, J. M. An evaluation of methods for modelling distribution of Patagonian insects. Rev. Chil. Hist. Nat. 82, 347–360 (2009).Article 

    Google Scholar 
    Pangga, I., Salvacion, A., Hamor, N. & Yap, S. Maximum entropy (MaxEnt) modeling of the potential distribution of Aspidiotus rigidus Reyne (Hemiptera: Diaspididae) in the Philippines. Philipp. Agric. Sci. 104, 1–7 (2021).
    Google Scholar 
    Zhou, R. B. et al. Projecting the potential distribution of Glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biol. 10, 1150 (2021).Article 

    Google Scholar 
    Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’s distribtional areas. Biodivers. Inform. 2, 1–10 (2005).Article 

    Google Scholar 
    Soberon, J. M. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167 (2010).Article 

    Google Scholar 
    Soberon, J. M. & Nakamura, M. Niches and distributional areas: concepts, methods and assumptions. P. Natl. Acad. Sci. USA 106, 19644–19650 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, Y. X., Ji, J., Chen, X., Lin, J. Z. & Chen, B. L. The effect of temperature on reproduction and development duration of Neoseiulus (Amblyseius) californicus (Mcgregor). Fujian J. Agric. Sci. 27, 157–161 (2012) ([In Chinese]).
    Google Scholar 
    Neto, M. P., Reis, P. R., Zacarias, M. S. & Silva, R. A. Influence of rainfall on mite distribution in organic and conventional coffee systems. Coffee Sci. 5, 67–74 (2010).
    Google Scholar 
    Hu, Z., Gui, L. Y., Hua, D. K. & Luo, J. Effect of simulated rainfall on laboratory population dynamics of Tetranychus cinnabarinus. J. Environ. Entomol. 38, 936–941 (2016) ([In Chinese]).
    Google Scholar 
    Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162, 79–98 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained.Gotoh, T., Yamaguchi, K. & Mori, K. Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 32, 15–30 (2004).PubMed 
    Article 

    Google Scholar 
    Yuan, X. P., Wang, X. D., Wang, J. W. & Zhao, Y. Y. Effects of brief exposure to high temperature on Neoseiulus californicus. Ying Yong Sheng Tai Xue Bao 26, 853–858 (2015) ([In Chinese]).PubMed 

    Google Scholar 
    Zhang, G. H. et al. Intraspecific variations on thermal susceptibility in the predatory mite Neoseiulus barkeri Hughes (Acari: Phytoseiidae): responding to long-term heat acclimations and frequent heat hardenings. Biol. Control 121, 208–215 (2018).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E.[Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 17 March 2022.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. url: https://www.R-project.org/ (2021).Seyedizadeh, S., Ghane-Jahromi, M., Sedaratian-Jahromi, A. & Faraji, F. Discovery of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) in some rose greenhouses in Iran and describing variation in spermathecal calyx shape. Pers. J. Acarol. 6, 67–70 (2017).
    Google Scholar 
    Fang, X. D., Nguyen, V. L., Ouyang, G. C. & Wu, W. N. Survey of phytoseiid mites (Acari: Mesostigmata, Phytoseiidae) in citrus orchards and a key for Amblyseiinae in Vietnam. Acarologia 60, 254–267 (2020).Article 

    Google Scholar 
    Greco, N. M., Tetzlaff, G. T. & Liljesthröm, G. G. Presence–absence sampling for Tetranychus urticae and its predator Neoseiulus californicus (Acari: Tetranychidae; Phytoseiidae) on strawberries. Int. J. Pest Manag. 50, 23–27 (2004).Article 

    Google Scholar 
    Beaulieu, F. & Beard, J. J. Acarine biocontrol agents Neoseiulus californicus sensu Athias-Henriot (1977) and N. barkeri Hughes (Mesostigmata: Phytoseiidae) redescribed, their synonymies assessed, and the identity of N. californicus (McGregor) clarified based on examination of types. Zootaxa 4500, 451–507 (2018).Kawashima, M. & Jung, C. Effects of sheltered ground habitats on the overwintering potential of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards on mainland Korea. Exp. Appl. Acarol. 55, 375–388 (2011).PubMed 
    Article 

    Google Scholar 
    Koller, M., Knapp, M. & Schausberger, P. Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol. Exp. Appl. 125, 297–305 (2007).Article 

    Google Scholar 
    Ohno, S. et al. Geographic distribution of phytoseiid mite species (Acari: Phytoseiidae) on crops in Okinawa, a subtropical area of Japan. Entomol. Sci. 15, 115–120 (2012).Article 

    Google Scholar 
    Tixier, M. S., Otto, J., Kreiter, S., Dos Santos, V. & Beard, J. Is Neoseiulus wearnei the Neoseiulus californicus of Australia? Exp. Appl. Acarol. 62, 267–277 (2014).PubMed 
    Article 

    Google Scholar 
    Vacacela Ajila, H. E. et al. Supplementary food for Neoseiulus californicus boosts biological control of Tetranychus urticae on strawberry. Pest Manag. Sci. 75, 1986–1992 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, X. N., Wang, B. M., Wang, E. D. & Zhang, Z. Q. Comments on the identity of Neoseiulus californicus sensu lato (Acari: Phytoseiidae) with a redescription of this species from southern China. Syst. Appl. Acarol. 18, 329–344 (2013).
    Google Scholar 
    Pringle, K. L. & Heunis, J. M. Biological control of phytophagous mites in apple orchards in the Elgin area of South Africa using the predatory mite, Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae): a benefit-cost analysis. Afr. Entomol. 14, 113–121 (2006).
    Google Scholar 
    Tai, Y. W. et al. R package ‘corrplot’: Visualization of a Correlation Matrix. url: https://github.com/taiyun/corrplot (2021).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).Article 

    Google Scholar 
    Araujo, M. B., Pearson, R. G., Tuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).ADS 
    Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar  More

  • in

    Brazil: heed price of marine mining for an alternative fertilizer

    Brazil’s government risks fuelling the climate and biodiversity crisis by offsetting the fertilizer shortage resulting from Russia’s invasion of Ukraine this year (J. Liu et al. Nature 604, 425 (2022); S. Osendarp et al. Nature 604, 620–624; 2022). To produce an alternative fertilizer, it plans to mine up to 12 million tonnes annually of rhodoliths taken from an area in the South Atlantic that is roughly the size of the United Kingdom (see go.nature.com/3yhiyio).A full list of co-signatories to this letter appears in Supplementary Information.
    Competing Interests
    The author declares no competing interests. More

  • in

    Evolutionary ecology of Miocene hominoid primates in Southeast Asia

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).
    Google Scholar 
    Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).ADS 

    Google Scholar 
    Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).
    Google Scholar 
    Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).
    Google Scholar 
    Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).PubMed 

    Google Scholar 
    Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).
    Google Scholar 
    Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).
    Google Scholar 
    Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).
    Google Scholar 
    Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).
    Google Scholar 
    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).Article 

    Google Scholar 
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).
    Google Scholar 
    Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).Article 

    Google Scholar 
    Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 

    Google Scholar 
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).Article 

    Google Scholar 
    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).Article 

    Google Scholar 
    Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).Article 

    Google Scholar 
    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).Article 
    PubMed 

    Google Scholar 
    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).Article 

    Google Scholar 
    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
    Google Scholar 
    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).Article 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).Article 
    PubMed 

    Google Scholar 
    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).Article 

    Google Scholar 
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).ADS 
    Article 

    Google Scholar 
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).ADS 
    Article 

    Google Scholar 
    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).Article 
    PubMed 

    Google Scholar 
    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).ADS 
    Article 

    Google Scholar 
    Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).
    Google Scholar 
    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
    Google Scholar 
    Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).
    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).ADS 
    CAS 
    Article 

    Google Scholar 
    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 

    Google Scholar 
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).Article 

    Google Scholar 
    Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).Article 

    Google Scholar 
    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).CAS 
    Article 

    Google Scholar 
    Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).
    Google Scholar 
    Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).
    Google Scholar 
    Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).
    Google Scholar 
    Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).
    Google Scholar 
    Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).CAS 
    Article 

    Google Scholar 
    Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Google Scholar 
    Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).
    Google Scholar 
    Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).Article 
    PubMed 

    Google Scholar 
    Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).Article 
    PubMed 

    Google Scholar 
    Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).Article 

    Google Scholar 
    Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).ADS 

    Google Scholar 
    Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).
    Google Scholar 
    Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).
    Google Scholar 
    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).Article 

    Google Scholar 
    Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).
    Google Scholar 
    Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).ADS 

    Google Scholar 
    Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).
    Google Scholar 
    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).
    Google Scholar 
    Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).
    Google Scholar 
    Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).Article 

    Google Scholar 
    Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).Article 
    PubMed 

    Google Scholar 
    Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).
    Google Scholar 
    Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).CAS 
    PubMed 

    Google Scholar 
    Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).
    Google Scholar 
    Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).Article 

    Google Scholar 
    Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).ADS 

    Google Scholar  More

  • in

    Caught by a whisker

    The whiskers of seals are known to function as vibration receptors. Earlier experiments with blindfolded harbour seals in captivity have for example revealed that the animals can detect small water movements, and follow the hydrodynamic trails created by passing objects. But it is unclear if seals in the wild actively use this ability to find prey.
    This is a preview of subscription content More