More stories

  • in

    Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia

    MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. M. et al. Bluetongue, Schmallenberg—What is next? Culicoides-borne viral diseases in the 21st Century. BMC Res. Notes 10, 77 (2014).
    Google Scholar 
    Dennis, S. J., Meyers, A. E., Hitzeroth, I. I. & Rybicki, E. P. African horse sickness: A review of current understanding and vaccine development in the. Viruses 11, 844 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, Á. B., Doherty, M. L., Barrett, D. J. & Mee, J. F. Schmallenberg virus: A systematic international literature review (2011–2019) from an Irish perspective. Ir. Vet. J. 72, 1–22 (2019).Article 

    Google Scholar 
    Tkuwet, G. & Firesbhat, A. A review on African horse sickness. Eur. J. Appl. Sci. 7, 213–219 (2015).CAS 

    Google Scholar 
    Mellor, P. S. & Hamblin, C. African horse sickness. Vet. Res. 35, 445–466 (2004).PubMed 
    Article 

    Google Scholar 
    Coetzee, P., Stokstad, M., Venter, E. H., Myrmel, M. & Van Vuuren, M. Bluetongue: A historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9, 198 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagienard, A., Griot, C., Mellor, P. S., Denison, E. & Stärk, K. D. Bluetongue vector species of Culicoides in Switzerland. Med. Vet. Entomol. 20, 239–247 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oluwayelu, D., Adebiyi, A. & Tomori, O. Endemic and emerging arboviral diseases of livestock in Nigeria: A review. Parasit. Vectors 11, 1–12 (2018).Article 

    Google Scholar 
    Sibhat, B., Ayelet, G., Gebremedhin, E. Z., Skjerve, E. & Asmare, K. Seroprevalence of Schmallenberg virus in dairy cattle in Ethiopia. Acta Trop. 178, 61–67 (2018).PubMed 
    Article 

    Google Scholar 
    Aklilu, N. et al. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound. Emerg. Dis. 61, 185–192 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rojas, J. M., Rodríguez-Martín, D., Martín, V. & Sevilla, N. Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Vet. Med. Res. Rep. 10, 17 (2019).
    Google Scholar 
    Gizaw, D., Sibhat, D., Ayalew, B. & Sehal, M. Sero-prevalence study of bluetongue infection in sheep and goats in selected areas of Ethiopia. Ethiop. Vet. J. 20, 105 (2016).Article 

    Google Scholar 
    Abera, T. et al. Bluetongue disease in small ruminants in south western Ethiopia: Cross-sectional sero-epidemiological study. BMC Res. Notes 11, 112 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antivir. Res. 100, 102–113 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sick, F., Beer, M., Kampen, H. & Wernike, K. Culicoides biting midges—Underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11, 376 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Blanda, V. et al. Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy. Parasit. Vectors 11, 78 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vasić, A. et al. Species diversity, host preference and arbovirus detection of Culicoides (Diptera: Ceratopogonidae) in south-eastern Serbia. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Martin, E. et al. Culicoides species community composition and infection status with parasites in an urban environment of east central Texas, USA. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Gusmão, G. M. C., Brito, G. A., Moraes, L. S., Bandeira, M. D. C. A. & Rebêlo, J. M. M. Temporal variation in species abundance and richness of Culicoides (Diptera: Ceratopogonidae) in a tropical equatorial area. J. Med. Entomol. https://doi.org/10.1093/jme/tjz015 (2019).Article 
    PubMed 

    Google Scholar 
    Sghaier, S. et al. New species of the genus Culicoides (Diptera Ceratopogonidae) for Tunisia, with detection of Bluetongue viruses in vectors. Vet. Ital. 53, 357–366 (2017).PubMed 

    Google Scholar 
    Gordon, S. J. G. et al. The occurrence of Culicoides species, the vectors of arboviruses, at selected trap sites in Zimbabwe. Onderstepoort J. Vet. Res. 82, e1–e8 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Villard, P. et al. Modeling Culicoides abundance in mainland France: Implications for surveillance. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 341 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calvete, C. et al. Spatial distribution of Culicoides imicola, the main vector of bluetongue virus, Spain. Vet. Rec. 158, 130–131 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Med. Vet. Entomol. 18, 90–101 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Med. Vet. Entomol. 20, 335–344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Modeling the global distribution of Culicoides imicola: An ensemble approach. Sci. Rep. 9, 1–9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mulatu, T. & Hailu, A. The occurrence and identification of Culicoides species in the Western Ethiopia. Acad. J. Entomol. 12, 40–43 (2019).
    Google Scholar 
    Khamala, C. P. M. & Kettle, D. S. The Culicoides Latreille (Diptera: Ceratopogonidae) of East Africa. Trans. R. Entomol. Soc. Lond. 123, 1–95 (1971).Article 

    Google Scholar 
    Venter, G. J. Specie di Culicoides (Diptera: Ceratopogonidae) vettori del virus della Bluetongue in Sud Africa. Vet. Ital. 51, 325–333 (2015).PubMed 

    Google Scholar 
    Mathieu, B. et al. Development and validation of IIKC: An interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit. Vectors 5, 137 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).Article 

    Google Scholar 
    Baylis, M., Bouayoune, H., Touti, J. & El Hasnaoui, H. Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med. Vet. Entomol. 12, 255–266 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diarra, M. et al. Modelling the abundances of two major culicoides (Diptera: Ceratopogonidae) species in the Niayes area of Senegal. PLoS One 10, e0131021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ramilo, D. W., Nunes, T., Madeira, S., Boinas, F. & da Fonseca, I. P. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species. PLoS One 12, e0180606 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Chang. Biol. 16, 3233–3245 (2010).ADS 
    Article 

    Google Scholar 
    Tiffin, P. & Ross-Ibarra, J. Goal-oriented evaluation of species distribution models accuracy and precision: True Skill Statistic profile and uncertainty maps. PeerJ PrePints https://doi.org/10.7287/peerj.preprints.488v1 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Demissie, G. H. Seroepidemiological study of African horse sickness in southern Ethiopia. Open Sci. Repos. Vet. Med. 10, e70081919 (2013).
    Google Scholar 
    Zeleke, A., Sori, T., Powel, K., Gebre-Ab, F. & Endebu, B. Isolation and identification of circulating serotypes of African horse sickness virus in Ethiopia. J. Appl. Res. Vet. Med. 3, 40–43 (2005).
    Google Scholar 
    Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).PubMed 
    Article 

    Google Scholar 
    Gulima, D. Seroepidemiological study of bluetongue in indigenous sheep in selected districts of Amhara National Regional State, north western Ethiopia. Ethiop. Vet. J. 13, 1–15 (2009).
    Google Scholar 
    Borkent, A. & Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787, 1–377 (2020).Article 

    Google Scholar 
    Borkent, A. & Wirth, W. W. World species of biting midges (Diptera: Ceratopogonidae). Bull. Am. Museum Nat. Hist. 233, 5–195 (1997).
    Google Scholar 
    Guichard, S. et al. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One 9, e112491 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Becker, E. E. E., Venter, G. J., Labuschagne, K., Greyling, T. & van Hamburg, H. Occurrence of Culicoides species Diptera: Ceratopogonidae) in the Khomas region of Namibia during the winter months. Vet. Ital. 48, 45–54 (2012).PubMed 

    Google Scholar 
    Capela, R. et al. Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Med. Vet. Entomol. 17, 165–177 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvete, C. et al. Modelling the distributions and spatial coincidence of bluetongue vectors Culicoides imicola and the Culicoides obsoletus group throughout the Iberian peninsula. Med. Vet. Entomol. 22, 124–134 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 498–511 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foxi, C. et al. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering in Sardinia (Italy). Parasit. Vectors 9, 440 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musuka, G. N., Mellor, P. S., Meiswinkel, R., Baylis, M. & Kelly, P. J. Prevalence of Culicoides imicola and other species (Diptera: Ceratopogonidae) ateight sites in Zimbabwe: To the editor. J. S. Afr. Vet. Assoc. 72, 62–63 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiswinkel, R. The 1996 outbreak of African horse sickness in South Africa—the entomological perspective. Arch. Virol. Suppl. 14, 69–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Jean Pierre, T. et al. Characteristics, classification and genesis of vertisols under seasonally contrasted climate in the Lake Chad Basin, Central Africa. J. Afr. Earth Sci. 150, 176–193 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 6, 1–15 (2017).Article 

    Google Scholar 
    Nachtergaele, F. The classification of leptosols in the world reference base for soil resources.Veronesi, E., Venter, G. J., Labuschagne, K., Mellor, P. S. & Carpenter, S. Life-history parameters of Culicoides (Avaritia) imicola Kieffer in the laboratory at different rearing temperatures. Vet. Parasitol. 163, 370–373 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verhoef, F. A. A., Venter, G. J. & Weldon, C. W. Thermal limits of two biting midges, Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae). Parasites Vectors 7, 384 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conte, A., Goffredo, M., Ippoliti, C. & Meiswinkel, R. Influence of biotic and abiotic factors on the distribution and abundance of Culicoides imicola and the Obsoletus Complex in Italy. Vet. Parasitol. 150, 333–344 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinez-de la Puente, J., Navarro, J., Ferraguti, M., Soriguer, R. & Figuerola, J. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: Implications for the transmission of bluetongue disease and African horse sickness. Med. Vet. Entomol. 31, 333–339 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Updating the global occurrence of Culicoides imicola, a vector for emerging viral diseases. Sci. Data 6, 1–8 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Post-foraging in-colony behaviour of a central-place foraging seabird

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotler, B. P., Brown, J. S. & Bouskila, A. Apprehension and time allocation in gerbils: The effects of predatory risk and energetic state. Ecology 85, 917–922 (2004).Article 

    Google Scholar 
    Wajnberg, E., Bernhard, P., Hamelin, F. & Boivin, G. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60, 1–10 (2006).Article 

    Google Scholar 
    Embar, K., Kotler, B. P. & Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 120, 1657–1666 (2011).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Beauchamp, G. & Ruxton, G. D. A reassessment of the predation risk allocation hypothesis: A comment on Lima and Bednekoff. Am. Nat. 177, 143–146 (2011).PubMed 
    Article 

    Google Scholar 
    Ferrari, M. C. O., Sih, A. & Chivers, D. P. The paradox of risk allocation: A review and prospectus. Anim. Behav. 78, 579–585 (2009).Article 

    Google Scholar 
    Wolf, L. L. & Hainsworth, F. R. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128 (1975).Article 

    Google Scholar 
    Litzow, M. A. & Piatt, J. F. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba. J. Avian Biol. 34, 54–64 (2003).Article 

    Google Scholar 
    Rishworth, G. M., Tremblay, Y. & Green, D. B. Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9, e116544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology. (The University of Chicago Press, 2007).Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Systems (eds. Horn, D., Mitchell, R. & Stairs, G.) 154–177 (The Ohio State University Press, 1979).Chaurand, T. & Weimerskirch, H. The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: A previously undescribed strategy of food provisioning in a pelagic seabird. J. Anim. Ecol. 63, 275–282 (1994).Article 

    Google Scholar 
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. 23, 1372–1378 (2012).Article 

    Google Scholar 
    Welcker, J. et al. Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J. Avian Biol. 40, 388–399 (2009).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M. & Kidawa, D. Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci. Rep. https://doi.org/10.1038/s41598-020-65210-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shoji, A. et al. Dual foraging and pair coordination during chick provisioning by Manx shearwaters: Empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, R. A., Wakefield, E. D., Croxall, J. P., Fukuda, A. & Higuchi, H. Albatross foraging behaviour: No evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar. Ecol. Prog. Ser. 391, 279–292 (2009).ADS 
    Article 

    Google Scholar 
    Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W. & Karnovsky, N. J. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. J. Avian Biol. 43, 215–226 (2012).Article 

    Google Scholar 
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: Does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 
    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ochi, D., Oka, N. & Watanuki, Y. Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J. Ethol. 28, 313–321 (2010).Article 

    Google Scholar 
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).ADS 
    Article 

    Google Scholar 
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).ADS 
    Article 

    Google Scholar 
    Weimerskirch, H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J. Anim. Ecol. 67, 99–109 (1998).Article 

    Google Scholar 
    Stempniewicz, L. BWP update. Little Auk (Alle alle). J. Birds West. Palearct. 3, 175–201 (2001).
    Google Scholar 
    Wojczulanis-Jakubas, K. & Jakubas, D. When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle Alle). Auk 129, 632–637 (2012).Article 

    Google Scholar 
    Harding, A. M. A., Van Pelt, T. I., Lifjeld, J. T. & Mehlum, F. Sex differences in little auk Alle alle parental care: Transition from biparental to paternal-only care. Ibis (Lond. 1859). 146, 642–651 (2004).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K. et al. Duration of female parental care and their survival in the little auk Alle alle—Are these two traits linked ?. Behav. Ecol. Sociobiol. 74, 1–11 (2020).Article 

    Google Scholar 
    Wojczulanis, K., Dariusz, J. & Lech, S. The Little Auk Alle alle: An ecological indicator of a changing Arctic and a model organism. Polar Biol. https://doi.org/10.1007/s00300-021-02981-7 (2021).Article 

    Google Scholar 
    Steen, H., Vogedes, D., Broms, F., Falk-Petersen, S. & Berge, J. Little auks (Alle alle) breeding in a High Arctic fjord system: Bimodal foraging strategies as a response to poor food quality?. Polar Res. 26, 118–125 (2007).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D., Karnovsky, N. J. & Walkusz, W. Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res. 29, 22–29 (2010).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L., Darecki, M. & Stempniewicz, L. Foraging strategy of the little auk Alle alle throughout breeding season—switch from unimodal to bimodal pattern. J. Avian Biol. 45, 551–560 (2014).Article 

    Google Scholar 
    Jakubas, D., Iliszko, L., Wojczulanis-Jakubas, K. & Stempniewicz, L. Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol. 35, 73–81 (2012).Article 

    Google Scholar 
    Jakubas, D. et al. Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol. 391, 1547–1561 (2016).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 
    Article 

    Google Scholar 
    Stempniewicz, L. Predator-prey interactions between Glaucous Gull Larus hyperboreus and Little Auk Alle alle in Spitsbergen. Acta Ornithol. 29, 155–170 (1995).
    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Changes in the glaucous gull predatory pressure on little auks in Southwest Spitsbergen. Waterbirds 28, 430–435 (2005).Article 

    Google Scholar 
    Kharitonov, S. Methods and Theoretical Aspects of Seabird Studies. (Proc 5 All-Russian Mar Biol School, Marine Biological Institute, 2007).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Avifauna of Hornsund area, SW Spitsbergen: Present state and recent changes. Polish Polar Res. 29, 187–197 (2008).
    Google Scholar 
    Keslinka, K. L., Wojczulanis-Jakubas, K., Jakubas, D. & Neubauer, G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 14, 1–20 (2019).
    Google Scholar 
    Kidawa, D., Barcikowski, M. & Palme, R. Parent-offspring interactions in a long-lived seabird, the Little Auk (Alle alle): Begging and provisioning under simulated stress. J. Ornithol. 158, 145–157 (2017).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. https://doi.org/10.1093/beheco/ars131 (2012).Article 

    Google Scholar 
    Jakubas, D. & Wojczulanis, K. Predicting the sex of Dovekies by discriminant analysis. Waterbirds 30, 92–96 (2007).Article 

    Google Scholar 
    Grissot, A. et al. Parental coordination of chick provisioning in a planktivorous arctic seabird under divergent conditions on foraging grounds. Front. Ecol. Evol. 7, 349 (2019).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R. (2019).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Sex-specific parental care by incubating Little Auks (Alle alle). Ornis Fenn. 86, 140–148 (2009).
    Google Scholar 
    Welcker, J., Steen, H., Harding, A. M. A. & Gabrielsen, G. W. Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis (Lond. 1859). 151, 502–513 (2009).Article 

    Google Scholar 
    Kidawa, D. et al. Parental efforts of an Arctic seabird, the little auk Alle alle under variable foraging conditions. Mar. Biol. Res. 11, 349–360 (2015).Article 

    Google Scholar 
    Wickham, H. Hadley Wickham. Media 35, 211 (2009).
    Google Scholar 
    Karnovsky, N. J. et al. Inter-colony comparison of diving behavior of an Arctic top predator: Implications for warming in the Greenland Sea. Mar. Ecol. Prog. Ser. 440, 229–240 (2011).ADS 
    Article 

    Google Scholar 
    Karnovsky, N. et al. Foraging distributions of little auks Alle alle across the Greenland Sea: Implications of present and future Arctic climate change. Mar. Ecol. Prog. Ser. 415, 283–293 (2010).ADS 
    Article 

    Google Scholar 
    Gremillet, D. et al. Little auks buffer the impact of current Arctic climate change. Mar. Ecol. Prog. Ser. 454, 197–206 (2012).ADS 
    Article 

    Google Scholar 
    Harding, A. M. A. et al. Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23, 348–358 (2009).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging effort does not influence body condition and stress level in little auks. Mar. Ecol. Prog. Ser. 432, 277–290 (2011).ADS 
    Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M., Strøm, H. & Stempniewicz, L. Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change

    El Bilali, H., Callenius, C., Strassner, C. & Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8, e00154 (2019).Article 

    Google Scholar 
    De Raymond, A. B. & Goulet, F. Science, technology and food security: An introduction. Sci. Technol. Soc. 25, 7–18 (2020).Article 

    Google Scholar 
    Wang, C. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).Article 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verger, P. J. P. & Boobis, A. R. Reevaluate pesticides for food security and safety. Science 341, 717–718 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Humann‐Guilleminot, S. et al. A nation‐wide survey of neonicotinoid insecticides in agricultural land with implications for agri‐environment schemes. J. Appl. Ecol. 56, 1502–1514 (2019).Article 
    CAS 

    Google Scholar 
    Haynes, K. J., Allstadt, A. J. & Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 20, 2004–2018 (2014).Article 

    Google Scholar 
    Sheppard, L., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Change 6, 610–613 (2016).Article 

    Google Scholar 
    Skendžić, S. et al. The impact of climate change on agricultural insect pests. Insects 12, 440 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    WASDE. World Agricultural Supply and Demand Estimates 1554–9089 (World Agricultural Outlook Board, 2012).FAOSTAT. Food and agriculture organisation of the United Nations. http://faostat.fao.org/ (2018).Bellard, C. et al. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).PubMed 
    Article 

    Google Scholar 
    Stephane, A. P., Derocles, D. H., Lunt Sophie, C. F. & Moss., B. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Mol. Ecol. 27, 4931–4946 (2018).Article 

    Google Scholar 
    Nechols, J. R. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. Bio. Control 66, 37–44 (2021).
    Google Scholar 
    Tian, B. et al. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. Pest Manag. Sci. 75, 466–475 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Zhao, F., Zhang, W., Hoffmann, A. A. & Ma, C. Night warming on hot days produces novel impacts on development, survival, and reproduction in a small arthropod. J. Anim. Ecol. 83, 769–778 (2014).PubMed 
    Article 

    Google Scholar 
    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).Article 

    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gagic, V. et al. Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, 1–6 (2021).Article 
    CAS 

    Google Scholar 
    Paredes, D. et al. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 24, 73–83 (2021).PubMed 
    Article 

    Google Scholar 
    Brattsten, L. B., Holyoke, C. W., Leeper, J. R. & Raffa, K. F. Insecticide resistance: Challenge to pest management and basic research. Science 231, 1255–1260 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddi, K. et al. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 76, 2286–2293 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gould, F., Brown, Z. S. & Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, N. et al. Transcriptome analysis and identification of insecticide tolerance-related genes after exposure to insecticide in Sitobion avenae. Genes 1012, 951 (2019).Article 
    CAS 

    Google Scholar 
    Gong, X. et al. Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere 269, 128687 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain 1, 361–368 (2018).Article 

    Google Scholar 
    Lu, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed 
    Article 

    Google Scholar 
    Baillod, A. B., Tscharntke, T., Clough, Y. & Batary, P. Landscape‐scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J. Appl. Ecol. 54, 1804–1813 (2017).Article 

    Google Scholar 
    Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20, 1427–1436 (2017).PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc. Natl Acad. Sci. USA 115, 700–7709 (2018).
    Google Scholar 
    Horgan, F. G. et al. Population development of rice black bug, Scotinophara latiuscula (Breddin), under varying nitrogen in a field experiment. Entomol. Gen. 37, 19–33 (2018).Article 

    Google Scholar 
    Butler, J., Garratt, M., & Leather, S. Fertilisers and insect herbivores: A meta‐analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article 

    Google Scholar 
    Aqueel, M. A. et al. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. Insect Sci. 21, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579 (2011).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macfadyen, S. et al. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol. Lett. 12, 229–238 (2009).PubMed 
    Article 

    Google Scholar 
    Liu, J., Ning, J., Kuang, W. & Xu, X. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 73, 789–802 (2018).
    Google Scholar 
    Ma, C., Ma, G. & Zhao, F. Impact of global warming on cereal aphids. Chin. J. Appl. Entomol. 51, 1435–1443 (2014).
    Google Scholar 
    Han, Z. et al. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Manag. Sci. 75, 3252–3259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long‐term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).Article 

    Google Scholar 
    Xiao, H. et al. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117–125 (2017).Article 

    Google Scholar 
    Senior, V. L. et al. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study. Glob. Change Biol. 26, 2814–2828 (2020).Article 

    Google Scholar 
    Chiu, M. C., Chen, Y. H. & Kuo, M. H. The effect of experimental warming on a low‐latitude aphid, Myzus varians. Entomol. Exp. Appl. 142, 216–222 (2012).Article 

    Google Scholar 
    Adler, L. S., De Valpine, P., Harte, J. & Call, J. Effects of long-term experimental warming on aphid density in the field. J. Kans. Entomol. Soc. 80, 156–169 (2007).Article 

    Google Scholar 
    Clement, S. L., Husebye, D. S. & Eigenbrode, S. D. Aphid Biodiversity under Environmental Change 107–129 (Springer, 2010).Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos. T. Roy. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur. J. Entomol. 105, 369–380 (2013).Article 

    Google Scholar 
    Sigsgaard, L. A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids’ role in biological control. J. Appl. Entomol. 126, 101–107 (2002).Article 

    Google Scholar 
    Diehl, E., Sereda, E., Wolters, V. & Birkhofer, K. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J. Appl. Ecol. 50, 262–270 (2013).Article 

    Google Scholar 
    Hopper, K. R. et al. Natural enemy impact on the abundance of Diuraphis noxia (Homoptera: Aphididae) in wheat in Southern France. Environ. Entomol. 24, 402–408 (1995).Article 

    Google Scholar 
    Latham, D. R. & Mills, N. J. Quantifying aphid predation: The mealy plum aphid Hyalopterus pruni in California as a case study. J. Appl. Ecol. 47, 200–208 (2010).Article 

    Google Scholar 
    Östman, Ö., Ekbom, B. & Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45, 149–158 (2003).Article 

    Google Scholar 
    Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid control. Ecology 84, 91–107 (2003).Article 

    Google Scholar 
    Freier, B., Triltsch, H., Möwes, M. & Moll, E. The potential of predators in natural control of aphids in wheat: results of a ten-year field study in two German landscapes. Biocontrology 52, 775–788 (2007).Article 

    Google Scholar 
    Barczak, T., Dębek-Jankowska, A. & Bennewicz, J. Primary parasitoid and hyperparasitoid guilds (Hymenoptera) of grain aphid (Sitobion avenae F.) in northern Poland. Arch. Biol. Sci. 66, 1141–1148 (2014).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Jiang, F. & Ou, J. Global pesticide consumption and pollution: With China as a focus. P. Intern. Acad. Ecol. Environ. Sci. 1, 125–144 (2011).CAS 

    Google Scholar 
    El-Wakeil, N., Gaafar, N., Sallam, A. & Volkmar, C. Side Effects of Insecticides on Natural Enemies and Possibility of their Integration in Plant Protection Strategies. Insecticides: Development of Safer and More Effective Technologies Agricultural and Biological Sciences (ed Trdan, S.) 1–56 (Intech Open Access Publisher, 2013).Peshin, R. & Dhawan, A. K. Integrated Pest Management: Innovation-Development Process (Springer Science & Business Media, 2009).Jia, B., Hong, S., Zhang, Y. & Cao, Y. Toxicity and safety of 12 insecticides to Diadegma semiclausum. J. Shanxi Agric. Sci. 43, 999–1002 (2015).
    Google Scholar 
    Emery, S. E. et al. High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agric. Ecosyst. Environ. 306, 107199 (2021).Article 

    Google Scholar 
    Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.)(Homoptera: Aphididae) on different wheat cultivars. Crop. Prot. 30, 216–221 (2011).Article 

    Google Scholar 
    Gao, J., Guo, H. J., Sun, Y. C. & Ge, F. Juvenile hormone mediates the positive effects of nitrogen fertilization on weight and reproduction in pea aphid. Pest Manag. Sci. 74, 2511–2519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnett, K. L. & Facey, S. L. Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Front. Plant. Sci. 7, 1196 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, X. et al. Engineering plants for aphid resistance: Current status and future perspectives. Theor. Appl. Genet. 127, 2065–2083 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article 

    Google Scholar 
    Lu, Y. H. et al. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manag. 48, 13–27 (2011).Article 

    Google Scholar 
    Wood, G. A. et al. Real-time measures of canopy size as a basis for spatially varying nitroge applications to winter wheat sown at different seed rates. Biosyst. Eng. 84, 513–531 (2003).Article 

    Google Scholar 
    NOAA. https://www.ncdc.noaa.gov/cdo-web/ (2018).WORLD BANK GROUP. https://climateknowledgeportal.worldbank.org/download-data (2018). More

  • in

    Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia

    Sylvan, J. How to protect a coral reef: the public trust doctrine and the law of the sea recommended citation. Sustain. Dev. Law Policy 7, 12 (2006).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4, e00052–13 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reef. 25, 75–87 (1990).
    Google Scholar 
    Dubinsky, Z. & Stambler, N. Coral reefs: an ecosystem in transition. (Springer, 2011).Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. https://doi.org/10.1038/NCLIMATE1661 (2012).Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evolution 32, 735–745 (2017).Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehnert, E. M. et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda) 4, 277–95 (2014).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Berman-Frank, I. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. in. Aquat. Sci. 63, 4–17 (2001).CAS 
    Article 

    Google Scholar 
    Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–61 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15, e1008189 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2022653118 (2021).Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences Discuss. 9, 8111–8139 (2012).
    Google Scholar 
    Cziesielski, M. J., Schmidt‐Roach, S. & Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. https://doi.org/10.1002/ece3.5576 (2019).Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).PubMed 
    Article 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. Biol. Sci./R. Soc. 273, 2305–12 (2006).
    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change https://doi.org/10.1038/nclimate1330 (2011).Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. Biol. Sci. 285, 20172654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to environmental stress,making its relative ability to acclimate or adapt extremely important to the to future climate change. Science 344, 895–898 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrera, M. et al. Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J. 15, 141–153 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 1–19 https://doi.org/10.1007/s00338-020-01917-7 (2020).Perez, S. F., Cook, C. B. & Brooks, W. R. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 256, 1–14 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4, e6364 (2009).Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405–414 (2009).Article 

    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).Article 

    Google Scholar 
    LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).Article 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. 112, 201513318 (2015).
    Google Scholar 
    Matthews, J. L. et al. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J. Exp. Biol. jeb.128934 https://doi.org/10.1242/JEB.128934 (2015).Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeSalvo, M., Sunagawa, S., Voolstra, C. R. & Medina, M. Transcriptomic resonses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97–113 (2010).CAS 
    Article 

    Google Scholar 
    Maor-Landaw, K. & Levy, O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4, e1814 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).PubMed 
    Article 

    Google Scholar 
    Meyer, E. & Weis, V. M. Study of cnidarian-algal symbiosis in the “omics” age. Biol. Bull. 223, 44–65 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oakley, C. A. et al. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. J. Proteome Res. 16, 2121–2134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robbart, M. L., Peckol, P., Scordilis, S. P., Curran, H. A. & Brown-Saracino, J. Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A-tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283, 151–160 (2004).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H. & Palumbi, S. R. The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol. 220, 1837–1845 (2017).PubMed 

    Google Scholar 
    Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: The diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 62 (2016).Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).Article 

    Google Scholar 
    Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. N. Phytologist 212, 472–484 (2016).CAS 
    Article 

    Google Scholar 
    Lesser, K. B. & Garcia, F. A. Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern. Fetal Med. 6, 303–307 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunn, S. R., Schnitzler, C. E. & Weis, V. M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B: Biol. Sci. 274, 3079–3085 (2007).
    Google Scholar 
    DeSalvo, M. K. et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174–1186 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01220 (2017).Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 16802 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sproles, A. E. et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ. Microbiol. 22, 3741–3753 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rädecker, N. et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front. Physiol. 9, 214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. BioScience 43, 606–611 (1993).Article 

    Google Scholar 
    Wang & Douglas. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J. Exp. Biol. 201, 2445–53 (1998).Loram, J. E., Trapido-Rosenthal, H. G. & Douglas, A. E. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol. Ecol. 16, 4849–4857 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karako-Lampert, S. et al. Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS One 9, e88615 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hillyer, K. E., Tumanov, S., Villas-Bôas, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 219, 516–27 (2016).PubMed 

    Google Scholar 
    Bertucci, A., Forêt, S., Ball, E. E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl Acad. Sci. 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, M.-F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol. Open 8, bio038281 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medrano, E., Merselis, D. G., Bellantuono, A. J. & Rodriguez-Lanetty, M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Front. Microbiol. 10, 1153 (2019).Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J. Phycol. 49, 447–458 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Best practices for instrumenting honey bees

    Experiment 1To study the acceptance and tag retention rates of honey bees under different introduction conditions, we set up three two-frame observation hives with (sim 1500) adult bees and a queen. Observation hives were set up in a shed, with an entrance tube that connected to the outside 4 ft above the ground so bees could freely forage in the surrounding fields (Fig. 1A). We put emerging brood from healthy source colonies in an incubator ((33.5^{circ }) C, (ge 55)% RH) and tagged individuals that emerged overnight. Each hive had two vent holes (1” Dia.) through which we could introduce bees (Fig. 1A).Figure 1(A) Observation hive with introduction holes (red), through which bees were introduced via funnel or introduction cage. (B) Plastic tags, silicon tags, and sucrose spray. (C) Photograph of a tagged bee foraging (Photo by Greg Yauney).Full size imageIn our initial experiment, there were seven treatment groups with 20 bees each per colony (n = 420 bees total). The seven treatments were: Control (C), No Sucrose (NS), Plastic (P), Wood Glue (WG), Not Incubated (NI), No Cage (NC), and Day (D). The Control treatment was designed to be a positive control, where we applied all the techniques we thought might increase acceptance of bees into a colony and tag retention rates. All other treatments had a single difference in the tag, tagging process, or introduction process to distinguish it from the control group, as detailed in Table 1. We glued a tag to the thorax of each bee (Fig. 1B) and marked the abdomen with a paint pen (Posca) to distinguish among treatment groups. In order to glue tags on, we picked each bee up, placed a small amount of glue on the thorax, and placed a tag on top of the glue with a pair of forceps (see Video 1 which details the tagging process). All bees except those in the Plastic group were tagged with 1.7 mm(^2) silicon tags (3.4 mm area). Silicon was chosen because it is a material representative of ASICs, which you would expect in a custom chip designed to track bee foraging flights. Plastic tags were 3 mm Dia. plastic discs (7.07 mm area), which are the commercially available bee tags commonly used in honey bee tracking and behavior experiments (Betterbee). All tags were glued on with shellac glue, the glue that comes with commerical honey bee marking kits (Betterbee), except for in the wood glue group, where they were glued on with wood glue (Titebond III). Next, bees were placed in a container with a bit of honey and stored until they were ready to be introduced. All bees except those in the Not Incubated group were placed in the incubator ((33.5^{circ }) C, (ge 55)% RH). The Not Incubated group was stored in a room environment, with variation between 21–27(^{circ }) C and 35–42% RH until introduction. Bees in the Day treatment spent 5 h in the incubator and then were sprayed with a light sucrose syrup (1 sucrose: 1 water (v/v)) and introduced at 4pm while the hives were still actively foraging. The rest of the bees spent between 5 and 8 h in the incubator or room environment before being introduced at 10:30 pm, after foraging had concluded. All except the No Sucrose group were sprayed with a light sucrose syrup before being introduced. The No Cage bees were rapidly introduced through one of the vent holes on the top of the hive using a funnel. The rest of the bees were placed in a cage together, which we connected to the introduction holes at the top of the colony, allowing them to move freely between the cage and the hive.Table 1 Experimental design used for preparation and introduction of treatment groups.Full size tableBeginning on day 2 (07/09/2020), we observed each hive in the morning on days 2-4 and 6-9 to see how many bees per group were present, hereinafter referred to as presence, and how many bees per group were present with tags, hereinafter referred to as success. We selected a random order in which to observe the three hives and a random order in which to observe the treatment groups for each hive. Each side of each hive had a grid drawn on it that divided it into nine squares. We scanned each side of each colony by eye for each treatment, starting with the lower left square of the grid on the first side, moving across the row, and then moving up to the next row, counting presence and success, using a tally counter when needed. We then moved rapidly to the other side and started at the top left of the grid, scanning row by row until we had observed each square in the grid. After an initial scan for each treatment, we placed the covers on the hives and shook for 10s to encourage bees to move around in the hive, and then waited for at least 15 minutes before a second observation. The maximum presence and success from the two daily observations were used for each treatment group and hive for analysis. Since we collected data by scanning each colony, we sometimes found more bees from a group in an observation hive than we had found in the same hive on previous day(s), even though more time had passed. Over the course of the experiment, our hives grew in size, and we believed we were seeing less tagged bees in part because they made up a smaller proportion of the hive population, and so decided to do a destructive sampling before the tagged bees reached foraging age. After dark on day 14 (7/21/2020), we made sure no tagged bees were dead on the bottom of the hives. We blocked the entrances, vacuumed all bees at the entrances into containers, and froze vacuumed bees and the three colonies, so that we could do a destructive sampling of all 3 colonies. This allowed us to get a final count of the presence and success for each of the seven treatment groups. We dissected each frozen colony, removing and inspecting each dead bee, and recorded the presence and success of each treatment group.Experiments 2 and 3We set up three two-frame observation hives in the same shed used for experiment 1 to conduct follow-up experiments in August 2020. The goal of experiment 2 was to compare Gorillaglue gel, an easily accessible Superglue (SG), to Titebond III, a readily accessible Wood Glue (WG2) used in experiment 1. We placed frames of capped brood in an incubator overnight to produce one day old nurse bees. We picked up each bee, placed a small dot of either superglue or wood glue on the thorax, and then placed 1.7 mm(^2) silicon tags on top of the glue. Bees were stored in the incubator with honey for 5–6 h until after dark. Then, we sprayed the bees with a light sucrose syrup and connected their cages to the vent holes at the top of the observation hives, allowing the bees to freely move between their cage and the hives. These details are summarized in Table 1.Some honey bee tagging projects may benefit from tagging foragers as opposed to nurse bees, because nurse bees are the youngest workers and if you tag them you must wait for them to reach foraging age, during which time they may lose their tags. Specifically, tagging foragers as opposed to nurses will be advantageous when the tag price is extremely high or the project is very time constrained, and knowing the exact age of tagged bees is not important for the project goals. Since foragers are older workers that have already acquired the colony scent and learned to navigate the area surrounding their hive, the optimal methods for introducing nurses and foragers may differ. It is not easy to use bees from a source colony, because if they are within foraging range of their maternal colony, they will attempt to fly back home. The goal of experiment 3 was to apply a treatment that had high success with nurse bees (Experiment 1: WG) to foragers, and compare with releasing foragers near their colony and allowing them to return freely. We call these treatments Hive Introduced (HI) and Natural Release (NR), respectively. All foragers for this experiment were collected from the observation hives and were introduced back to the same observation hive after tagging, either through the vent holes at the top of the hive or by releasing the bees near the entrance of the hive. We collected foragers from each colony entrance into a cage with an insect vacuum (Hand-Held DC Vac/Aspirator, Bioquip), specifically aspirating bees that were arriving from foraging trips or had nectar loads, and placed them in the fridge to anesthetize them. We then selected those with intact wings, placed a dot of wood glue on their thoraxes, and placed silicon tags on top of the glue. Both treatment groups were stored in the incubator ((33.5^{circ }) C, (ge 55)% RH) and given honey to feed on. After 2 h in the incubator, the containers with NR bees were sprayed with a light sucrose syrup and placed on the ground 5 ft in front of their respective hive entrances and opened, allowing the bees to fly back to their hives unaided. At 10PM, when it was dark and foraging had concluded, the HI bees were sprayed with a light sucrose syrup. Their cages were then connected to the vent holes at the top of the observation hives, allowing them to freely move between their cage and the hives.Experiments 2 and 3 were conducted in the same hives simultaneously, but were considered separate experiments because experiment 2 was conducted with nurses of known age and experiment 3 was conducted with foragers of unknown age. Nurses and foragers typically have an age difference and experience different levels of risk due to the behaviors they engage in, and so we analyzed these data separately in order to not confound our results. Beginning on day two (08/26/2020), we observed each hive on days 2–11 and 15–21 to determine introduction presence and success for experiment 2 and experiment 3. Forager observations (experiment 3) were always done early in the morning, before foraging activity commenced. As in experiment 1, we randomized observation order, scanned colonies for each treatment group before and after shaking, and used the maximum presence and success from the two observations for analysis. Since we collected data on multiple days by scanning each colony, we occasionally found more bees in a group than we had found on previous day(s), even though more time had passed.Statistical methodsStatistical analyses were performed in R 4.0.520. To determine which preparation and introduction techniques were associated with the highest presence and success, we built generalized linear mixed-effects models (glmms)21 for the proportion of present and success bees to introduced bees respectively, with treatment and sampling day as fixed effects, and colony as a random effect. For experiment 1, treatment was a categorical variable, where the Control bees were the reference group. We assessed the significance of the full models using Wald likelihood ratio chi-square tests on each glmm (‘Anova’ function in the ‘car’ package with test set to ‘Chisq’)22. In all statistical tests, (alpha) was set to 0.05. The destructive data from experiment 1 were analyzed separately from hive observation data. We ran a correlation test to determine the relationship between hive observation data from the final observation day, day 9, and the destructive sampling on day 14 using the ggpubr package23. More

  • in

    Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems

    Brierley AS, Kingsford MJ. Impacts of climate change on marine organisms and ecosystems. Curr Biol. 2009;19:R602–R614.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ. 2021;755:142564.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carella F, Antuofermo E, Farina S, Salati F, Mandas D, Prado P, et al. In the wake of the ongoing mass mortality events: co-occurrence of Mycobacterium, Haplosporidium and other pathogens in Pinna nobilis collected in Italy and Spain (Mediterranean Sea). Front Mar Sci. 2020;7:48.Article 

    Google Scholar 
    Seuront L, Nicastro KR, Zardi GI, Goberville E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci Rep. 2019;9:17498.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fey SB, Siepielski AM, Nussle S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc Natl Acad Sci USA. 2015;112:1083–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scarpa F, Sanna D, Azzena I, Mugetti D, Cerruti F, Hosseini S, et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life. 2020;10:238.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley M, Kutz SJ, Jenkins E, O’Hara TM. The potential impact of climate change on infectious diseases of Arctic fauna. Int J Circumpolar Health. 2005;64:468–77.PubMed 
    Article 

    Google Scholar 
    Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar Environ Res. 2017;130:338–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mandel P, Metais P. Nuclear acids in human blood plasma. Comptes Rendus Séances Soc Biol Filiales. 1948;142:241–3.CAS 

    Google Scholar 
    Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.PubMed 
    Article 

    Google Scholar 
    Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moufarrej MN, Wong RJ, Shaw GM, Stevenson DK, Quake SR. Investigating pregnancy and its complications using circulating cell-free RNA in women’s blood during gestation. Front Pediatr. 2020;8:605219.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oellerich M, Sherwood K, Keown P, Schutz E, Beck J, Stegbauer J, et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol. 2021;17:591–603.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong FC, Lo YM. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu W, Deng X, Lee M, Sucu YD, Arevalo S, Stryke D, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med. 2021;27:115–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang YF, Chen YJ, Fan TC, Chang NC, Chen YJ, Midha MK, et al. Analysis of microbial sequences in plasma cell-free DNA for early-onset breast cancer patients and healthy females. BMC Med Genom. 2018;11:16.Article 
    CAS 

    Google Scholar 
    Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-extracellular traps, cell-free DNA, and immunothrombosis in companion animals: a review. Vet Pathol. 2020;57:6–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kowarsky M, De Vlaminck I, Okamoto J, Neff NF, LeBreton M, Nwobegabay J, et al. Cell-free DNA reveals potential zoonotic reservoirs in non-human primates. BioRxiv. 2018;481093.Caza F, Bernet E, Veyrier FJ, Betoulle S, St-Pierre Y. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci Rep. 2020;10:19696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrew S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. Comput Biol. 2006;13:1028–40.CAS 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics. 2014;30:1928–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385.Article 

    Google Scholar 
    Lüskow F, Riisgård H. In situ filtration rates of blue mussels (Mytilus edulis) measured by an open-top chamber method. OJMS. 2018;8:395–406.Article 

    Google Scholar 
    Szpechcinski A, Struniawska R, Zaleska J, Chabowski M, Orlowski T, Roszkowski K, et al. Evaluation of fluorescence-based methods for total vs. amplifiable DNA quantification in plasma of lung cancer patients. J Physiol Pharmacol. 2008;59:675–81.PubMed 

    Google Scholar 
    Tissot C, Toffart AC, Villar S, Souquet PJ, Merle P, Moro-Sibilot D, et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J. 2015;46:1773–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20:1057–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, et al. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep. 2021;11:877.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D. Presence and potential of cell free DNA in different types of forensic samples. For Sci Int Genet. 2013;7:316–20.CAS 
    Article 

    Google Scholar 
    Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci USA. 2017;114:9623–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019;9:5220.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li YF, Yang N, Liang X, Yoshida A, Osatomi K, Power D, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front Physiol. 2018;9:839.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musella M, Wathsala R, Tavella T, Rampelli S, Barone M, Palladino G, et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci Total Environ. 2020;717:137209.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF. Diversity and dynamics of a north atlantic coastal Vibrio community. Appl Environ Microbiol. 2004;70:4103–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pfister CA, Meyer F, Antonopoulos DA. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS One. 2010;5:e10518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 2009;3:860–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, et al. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome. 2019;7:11.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spain EA, Johnson SC, Hutton B, Whittaker JM, Lucieer V, Watson SJ, et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 2020;7:e2019EA000695.Article 

    Google Scholar 
    Farías L, Florez-Leiva L, Besoain V, Sarthou G, Fernández C. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean. Biogeosciences. 2015;12:1925–40.Article 

    Google Scholar 
    Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 2014;111:4274–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C, La Scola B, et al. Comparison of a modern and fossil pithovirus reveals its genetic conservation and evolution. Genome Biol Evol. 2016;8:2333–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17:523–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Colmer SF, Luethy D, Abraham M, Stefanovski D, Hurcombe SD. Utility of cell-free DNA concentrations and illness severity scores to predict survival in critically ill neonatal foals. PLoS One. 2021;16:e0242635.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton JG, Ertl R, Klein D, Tichy A, Nell B. Circulating cell-free DNA does not harbour a diagnostic benefit in cats with feline diffuse iris melanomas. J Feline Med Surg. 2019;21:124–32.PubMed 
    Article 

    Google Scholar 
    Tagawa M, Shimbo G, Inokuma H, Miyahara K. Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Investig. 2019;31:836–43.CAS 
    Article 

    Google Scholar 
    Shi J, Zhang R, Li J, Zhang R. Size profile of cell-free DNA: a beacon guiding the practice and innovation of clinical testing. Theranostics. 2020;10:4737–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays. Clin Chim Acta. 2018;483:39–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett. 2016;363:fnw103.PubMed 
    Article 
    CAS 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier J, Jannasch HW. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol. 2000;66:3125–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang X, Du Z, Zheng R, Luan Z, Qi F, Cheng K, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Res Part I Oceanogr Res Pap. 2017;123:1–12.Article 
    CAS 

    Google Scholar 
    Egger M, Riedinger N, Mogollón JM, Jørgensen BB. Global diffusive fluxes of methane in marine sediments. Nat Geosci. 2018;11:421–5.CAS 
    Article 

    Google Scholar 
    Ansorge R, Romano S, Sayavedra L, Kupczok A, Tegetmeyer HE, Dubilier N, et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol. 2019;4:2487–97.PubMed 
    Article 
    CAS 

    Google Scholar 
    Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, et al. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet. 2020;16:e1008935.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, et al. The marine viromes of four oceanic regions. PLoS Biol. 2006;4:e368.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thongsripong P, Chandler JA, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci Rep. 2021;11:8448.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koonin EV, Krupovic M, Agol VI. The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev. 2021;85:e0005321.PubMed 
    Article 

    Google Scholar 
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.PubMed 
    Article 

    Google Scholar 
    Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost. 2017;117:1272–82.PubMed 
    Article 

    Google Scholar 
    Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 2013;15:211.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murphy DJ. Freezing resistance in intertidal invertebrates. Annu Rev Physiol. 1983;45:289–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Robledo JAF, Yadavalli R, Allam B, Espinosa EP, Gerdol M, Greco S, et al. From the raw bar to the bench: bivalves as models for human health. Dev Comp Immunol. 2019;92:260–82.Article 

    Google Scholar 
    Cowart DA, Murphy KR, Cheng CC. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Mar Genom. 2018;37:148–60.Article 

    Google Scholar 
    Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, et al. Ancient plant DNA in lake sediments. New Phytol. 2017;214:924–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani S, Baillie C, Giuliano C, Riesgo A. Sponges as natural environmental DNA samplers. Curr Biol. 2019;29:R401–R402.CAS 
    PubMed 
    Article 

    Google Scholar 
    Weber S, Brink L, Wörner M, Künzel S, Veith M, Teubner D, et al. Molecular diet analysis in zebra and quagga mussels (Dreissena spp.) and an assessment of the utility of aquatic filter feeders as biological eDNA filters. BioRxiv. 2021; 432951.Caza F, Joly de Boissel PG, Villemur R, Betoulle S, St-Pierre Y. Liquid biopsies for omics-based analysis in sentinel mussels. Plos One. 2019;14:e0223525.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunter ME, Ferrante JA, Meigs-Friend G, Ulmer A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci Rep. 2019;9:5259.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burkhardt W III, Calci KR. Selective accumulation may account for shellfish-associated viral illness. Appl Environ Microbiol. 2000;66:1375–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Girolamo R, Liston J, Matches J. Ionic bonding, the mechanism of viral uptake by shellfish mucus. Appl Environ Microbiol. 1977;33:19–25.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Reinisch C, Sherry J, Goff SP. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell. 2015;161:255–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature. 2016;534:705–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canesi L, Gallo G, Gavioli M, Pruzzo C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech. 2002;57:469–76.PubMed 
    Article 

    Google Scholar 
    Andruszkiewicz EA, Koseff JR, Fringer OB, Ouellette NT, Lowe AB, Edwards CA, et al. Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front Mar Sci. 2019;6:477.Article 

    Google Scholar 
    Wood ZT, Lacoursière-Roussel A, LeBlanc F, Trudel M, Kinnison MT, Garry McBrine C, et al. Spatial heterogeneity of eDNA transport improves stream assessment of threatened salmon presence, abundance, and location. Front Ecol Evol. 2021;9:650717.Article 

    Google Scholar 
    Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14:411–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience. 2020;9:giaa080.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Disentangling structural and functional responses of native versus alien communities by canonical ordination analyses and variation partitioning with multiple matrices

    Time dynamics of the mollusk communitiesIn this section, the presence-absence of the species recorded in the three periods (T1, T2, T3) are analyzed in relation to time, habitat, and human impact. The list of the 28 species of freshwater mollusks (17 gastropods and 11 bivalves) in T1–T3, their codes, and origins are given in Table 1.The number of mollusk species has increased in time as the river has shifted from lotic to a mixture of flowing and stagnant sectors due to the building of reservoirs. T1 was characterized mainly by rheophilic elements and prosobranchs. Some species became extinct during the hydro-technical works (before or during T2) and are unlikely to recover, such as the rheophilic Theodoxus transversalis and Lithoglyphus naticoides. Other rheophilic species disappeared between T1 and T2 but managed to survive in tributaries and repopulated some sectors during the last years. The most remarkable recovery is that of the thick-shelled river mussel Unio crassus, a species protected by EU legislation. T2 was characterized by some extinctions but also colonization by lentiphilic pulmonates and tolerant, resistant species such as some clams. A few lotic species also survived in the river sectors between the dams. In T3, we encountered a rich and diverse community, including some newly established populations of AIS and the discontinuous presence of both lentic and lotic communities. Overall, the present-day fauna is richer than in former periods, consisting of 15 species of gastropods and 8 bivalves. The AIS included the gastropods Physa acuta and Ferrissia californica, which arrived in the area most likely during the XXth century, Viviparus acerosus, which is native to the Danube, but unknown until after 2000 in the upper-middle Olt River basin, the bivalves Dreissena polymorpha, also native in the Danube but an invader in the middle Olt since 2008–2010, Sinanodonta woodiana, first found in 2015, and Corbicula fluminea, which was first discovered in the Olt (and also in Transylvania) during our survey in February 2020. The mean number of native species per river’s sector increases almost linearly (2.8 species per sector in T1, 3.3 in T2, and 4.6 in T3), while the corresponding values for AIS increase non-linearly (no AIS in T1, 0.6 species per sector in T2 and 3.2 in T3).In the CCA of freshwater mollusk community changes through time (Period as predictor), the adjusted explained variation was 23.6% (test on all axes, pseudo-F = 5.9, p = 0.001). The polygons delimiting the positions of the sites during the three periods of time show no overlap, and they were distinct and separated in the ordination space (Fig. 1a). T2 (the period with maximum human impact) is distinctly placed and separated from the period without impact (T1) along both ordination axes. Meantime, T3 is closer to T1, having an intermediate position between the other two periods, showing a trend of recovery, such as the return of some species. In the CCA of T1–T3 species presence-absence predicted by the selected environmental descriptors (Period, Habitat, and Impact) (Fig. 1b), the adjusted explained variation was 28.36% (test on all axes, pseudo-F = 4.2, p = 0.001). FD(Rao) computed on all FT was plotted as isolines by GAM on the ordination space (model AIC = -17.19, model test F = 5.1, p = 0.003; tests of non-linearity in predictor effects: F = 3.9, p = 0.03). The functional diversity decreased from T1 to T2, then increased sharply to T3; it also decreased from rivers (R) to lakes (L) and along the human impact gradient (Impact).Figure 1Canonical correspondence analysis (CCA) of mollusk communities: (a) classification diagram of sampling sites based on period (as predictors): T1—XIXth century, T2—1995–2000, T3—2020 (adjusted explained variation 23.6%; first axis accounts for 17.6% the second for 6.0%, both axes are significant, p = 0.001); (b) CCA diagram of species occurrence constrained by environmental predictors (period, habitat: L—lakes, lentic sector in reservoirs, R—river, lotic sectors, and Impact—human impact) with functional diversity expressed as Rao quadratic entropy index (FD (Rao)) isolines plotted by generalized additive models (GAM) on the ordination space (adjusted explained variation 28.36%; first axis accounts for 16.3%, the second for 6.0%, both axes are significant, p = 0.001) .Full size imageIn the dc-CA with the selected predictors on T1–T3 presence-absence data, the first two axes separate the communities by period, each positioned in a distinct quadrant (Fig. 2). After a decrease in diversity from T1 to T2, in T3, there were more species and higher functional diversity. In time, there was a reduction in body size, a switch from species with separate sexes to hermaphrodites, a transition of oviposition towards ovo-viviparity (in snails), and external fecundation (in bivalves), and a switch of the feeding type. The dc-CA adjusted explained variation was 16.47%; tests based on sectors and species showed significant relationships (combined test for all axes, pseudo-F = 2.6, p = 0.006), the dimensionality test based on case scores was significant for the first axis (pseudo-F = 4.2, p = 0.001) and marginally significant for the second one (pseudo-F = 1.1, p = 0.053). In contrast, the dimensionality test based on species scores was significant only for the first axis (pseudo-F = 1.6, p = 0.004). The adjusted variation explained by environmental predictors (Hab, Impact, and Period) was 28.36%, and by the selected functional traits (Sexes, FeedT, SizeM, and Ovipos) was 14.64%.Figure 2Double-constrained correspondence analysis (dc-CA) with selected predictors on presence-absence data in T1–T3. The selected functional traits (in blue) are Sexes (circles: H—hermaphrodite, S—separate sexes), Feeding type (squares: SCR—scraper, SS—scraper and sediment, SF—scraper and filter, F—filter, SEDF—suspension and deposit feeder), Oviposition (diamonds: OV—ovo-viviparity, CAP—capsule/eggmass, BE—parental care, juveniles in brood pouches of demibranchs, No—no oviposition, external fecundation), and mean body size (SizeM); the selected environmental predictors (in red) are time (Period, with levels T1—XIXth century, T2—1995–2000, T3—2020), habitat (R—river, lotic sector; L—lake, a lentic sector in reservoirs) and human impact (Impact). Species are coded by the first three letters of the genus and species names. The adjusted explained variation was 16.47%, the first axis accounts for 12.7% and the second for 2.2%. Native species have black labels, while aliens (AIS) are written in green.Full size imageWe have split the binary data describing communities into two parts: natives and AIS, using the latter as predictors. We partitioned the variation in native species composition explained by the three predictor groups (Period, Environment, and AIS) (Fig. 3), subjecting the explanatory variables to an interactive forward selection procedure. We used RDA with centered response variables (CCA can not be used because the empty rows in some tables hinder the use of a proper hierarchical permutation scheme). The adjusted explained variation was 39.6% (the simple effects: time accounted for 22.33%, habitat and impact 24.73%, and the selected AIS 20.82%). All simple and unique effects were significant (p  More

  • in

    Ecological niche models for the assessment of site suitability of sea cucumbers and sea urchins in China

    FAO (Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department). The State of World Fisheries and Aquaculture 2020 (Food and Agriculture Organization of the United Nations, 2020).Costello, C. et al. The future of food from the sea. Nature 588(7836), 1–6 (2020).
    Google Scholar 
    Sarah, A. B. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26(12), 1780–1797 (2020).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Academic Journal Electronic Publishing House, 1949–1975). https://www.cafs.ac.cn/kxyj/qgyytjnj.htm. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2021). (in Chinese).Shelton, W. L. & Rothbard, S. Exotic species in global aquaculture—a review. Isr. J. Aquac. 58(1), 3–28 (2006).
    Google Scholar 
    Ju, R. et al. Emerging risks of non-native species escapes from aquaculture: Call for policy improvements in China and other developing countries. J. Appl. Ecol. 57, 86–90 (2020).
    Google Scholar 
    Zhu, C. & Dong S. Aquaculture site selection and carrying capacity management in the People’s Republic of China. In Site Selection and Carrying Capacities for Inland and Coastal Aquaculture (eds Ross, L. G., Telfer, T. C., Falconer, L., Soto, D. & Aguilar Manjarrez, J.) 219–230 (FAO/Institute of Aquaculture, Expert Workshop, 6–8 December 2010, University of Stirling, UK, FAO, Rome, 2013).Falconer, L., Telfer, T. C. & Ross, L. G. Investigation of a novel approach for aquaculture site selection. J. Environ. Manag. 181, 791–804 (2016).
    Google Scholar 
    Liu, Y. et al. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in the Dalian coastal area from 2003 to 2012. Aquaculture 422, 172–183 (2014).
    Google Scholar 
    Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1870 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eve, G., Marc, B. & Montserrat, R. Immune response of the sea cucumber Parastichopus regalis to different temperatures: Implications for aquaculture purposes. Aquaculture 497, 357–363 (2018).
    Google Scholar 
    Gentry, R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1(9), 1317 (2017).PubMed 

    Google Scholar 
    Kim, B. et al. Impact of seawater temperature on Korean aquaculture under representative concentration pathways (RCP) scenarios. Aquaculture 542(3), 736893 (2021).
    Google Scholar 
    Wentz, F. J. et al. Satellite measurements of sea surface temperature through clouds. Science 288(5467), 847–850 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mediodia, H. Effects of sea surface temperature on tuna catch: Evidence from countries in the Eastern Pacific Ocean. Ocean. Coast. Manag. 209, 105657 (2021).
    Google Scholar 
    Liu, S., Zhang, Z., Wu, J. & Yu W. Spatial and temporal variations of potential habitats of jumbo flying squid Dosidicus gigas off Peru under increasing sea surface Temperature. Fish. Sci. (2020). (in Chinese with an English Abstract).Nian, R. et al. The identification and prediction in abundance variation of Atlantic cod via long short-term memory with periodicity, time–frequency co-movement, and lead-lag effect across sea surface temperature, sea surface salinity, catches, and prey biomass from 1919 to 2016. Front. Mar. Sci. 8, 665716 (2021).
    Google Scholar 
    Radiarta, I. & Saitoh, S. Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquacult. Int. 17(5), 403 (2009).
    Google Scholar 
    Laama, C. & Bachar, N. Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. J. Appl. Aquac. 31(4), 337–355 (2019).
    Google Scholar 
    Liu, Y. et al. Impact of iceanographic environmental shifts and atmospheric events on the sustainable development of coastal aquaculture: A case study of kelp and scallops in southern Hokkaido, Japan. Sustainability 7(2), 1263–1279 (2015).
    Google Scholar 
    Foo, S. & Gregory, P. Sea surface temperature in coral reef restoration outcomes. Environ. Res. Lett. 15(7), 074045 (2020).ADS 

    Google Scholar 
    Warren, D. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).PubMed 

    Google Scholar 
    Warren, D., Glor, R. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).
    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222(8), 1343–1346 (2011).
    Google Scholar 
    Bo, Z., Xin-Jun, C. & Gang, L. Relationship between the resource and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea. Shuichan Xuebao 32(3), 379–386 (2008) (in Chinese with an English abstract).
    Google Scholar 
    Chen, P. & Chen, X. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the southwest Atlantic Ocean using maximum entropy model. Shuichan Xuebao 40(6), 893–902 (2016) (in Chinese with an English abstract).
    Google Scholar 
    Zhang, S., Shi, Y., Li, F., Zhu, M. & Wei, Z. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based on MAXENT model. J. Ocean. Univ. China 29(2), 280–286 (2020) (in Chinese with an English abstract).
    Google Scholar 
    Phillips, S. & Elith, J. On estimating probability of presence from use–availability or presence–background data. Ecology 94(6), 1409–1419 (2013).PubMed 

    Google Scholar 
    Yang, H. et al. Current advances and technological prospects of the sea cucumber seed industry in China. Mar. Sci. 7, 2–9 (2020) (in Chinese with an English abstract).CAS 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, Beijing, 2004) (in Chinese).
    Google Scholar 
    Li, C. & Hu, W. Status, trend and countermeasure in development of sea cucumber Apostichopus Japonicus Selenka industry in China. Mar. Econ. China. 1, 3–20 (2017) (in Chinese with an English abstract).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook. China Agriculture Press; 2003. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2012). (in Chinese).He, C. & Huang, G. On Apostichopus japonicus culture in China and major culture provinces. Fish. Inf. St. (2014). (in Chinese with an English abstract).Su, L., Zhou, C., Hu, L. & Xu, J. Development status and sustainable development of Apostichopus japonicus industry in south China. Fish. Sci. Technol. Inf. 2, 57–60 (2014) (in Chinese).
    Google Scholar 
    Guo, F. Research and analysis report on sea cucumber Apostichopus japonicus aquaculture industry in typical regions of North and South China: A case study of Wafangdian city and Xiapu county. Masteral dissertation, Dalian Ocean University. (2021). (in Chinese with an English abstract).Agatsuma, Y. Strongylocentrotus intermedius. In Sea Urchins: Biology and Ecology 4th edn (ed. Lawrence, J. M.) 609–621 (Elsevier, Amsterdam, 2020).
    Google Scholar 
    Wang, Z. & Chang, Y. Studies on hatching of Japanese sea urchin Strongylocentrotus intermedius. J. Fish. Sci. C 4(1), 60–67 (1997) (in Chinese with an English abstract).
    Google Scholar 
    Liao, Y. Fauna of China: Echinodermata: Holothuroidea (Science Press, 1997) (in Chinese).Merckx, B. et al. Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecol. Model. 222(3), 588–597 (2011).CAS 

    Google Scholar 
    Matthew, A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery 35–38 (Tianjin, China. 2009).Zhao, G. Water environment analysis of two typical breeding patterns. Masteral dissertation, Hebei Agricultural University. (2019). (in Chinese with an English abstract).Liu, C. & Lan, Y. Situation and countermeasure of sea cucumber culturing industry in Fujian Province. J. Fujian Fish. (2013). (in Chinese with an English abstract).Fei, G. et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation. J. Oceanol. Limnol. 27(4), 714–722 (2009).
    Google Scholar 
    Han, C., Lin, P., et al. A study on key technique of Stichopus japonicus Selenka farming in southern sea area. Mod. Fish. Inf. (2011). (in Chinese with an English abstract).Chang, Y., Wang, Z. & Wang, G. Effect of temperature and algae on feeding and growth in sea urchin, Strongylocentrotus intermedius. J. Fish. China. (1997). (in Chinese with an English abstract).Lawrence, J. et al. Temperature effect of feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius. J. Shellfish Res. 28, 389–395 (2009).
    Google Scholar 
    Zhao, C. et al. Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biolog. Assoc. 96(1), 185–195 (2015).
    Google Scholar 
    Lawrence, J., Zhao, C. & Chang, Y. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 27(1), 1–7 (2019).CAS 

    Google Scholar 
    Chang, Y. et al. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas. South China Fish. Sci. 16(3), 1–9 (2020).
    Google Scholar 
    Yu, Z. Raft culture technique of sea urchin in south China. China Fish. 376(003), 57–57 (2007) (in Chinese).
    Google Scholar  More